1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1997, 1998, 1999
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring descriptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include <sys/cdefs.h>
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_var.h>
98#include <net/if_arp.h>
99#include <net/ethernet.h>
100#include <net/if_dl.h>
101#include <net/if_media.h>
102#include <net/if_types.h>
103#include <net/if_vlan_var.h>
104
105#include <net/bpf.h>
106
107#include <netinet/in_systm.h>
108#include <netinet/in.h>
109#include <netinet/ip.h>
110
111#include <machine/bus.h>
112#include <machine/resource.h>
113#include <sys/bus.h>
114#include <sys/rman.h>
115
116#ifdef TI_SF_BUF_JUMBO
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#include <sys/sysctl.h>
130
131#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
132/*
133 * We can only turn on header splitting if we're using extended receive
134 * BDs.
135 */
136#if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
137#error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
138#endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
139
140typedef enum {
141	TI_SWAP_HTON,
142	TI_SWAP_NTOH
143} ti_swap_type;
144
145/*
146 * Various supported device vendors/types and their names.
147 */
148
149static const struct ti_type ti_devs[] = {
150	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
151		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
152	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
153		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
154	{ TC_VENDORID,	TC_DEVICEID_3C985,
155		"3Com 3c985-SX Gigabit Ethernet" },
156	{ NG_VENDORID, NG_DEVICEID_GA620,
157		"Netgear GA620 1000baseSX Gigabit Ethernet" },
158	{ NG_VENDORID, NG_DEVICEID_GA620T,
159		"Netgear GA620 1000baseT Gigabit Ethernet" },
160	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
161		"Silicon Graphics Gigabit Ethernet" },
162	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
163		"Farallon PN9000SX Gigabit Ethernet" },
164	{ 0, 0, NULL }
165};
166
167static	d_open_t	ti_open;
168static	d_close_t	ti_close;
169static	d_ioctl_t	ti_ioctl2;
170
171static struct cdevsw ti_cdevsw = {
172	.d_version =	D_VERSION,
173	.d_flags =	0,
174	.d_open =	ti_open,
175	.d_close =	ti_close,
176	.d_ioctl =	ti_ioctl2,
177	.d_name =	"ti",
178};
179
180static int ti_probe(device_t);
181static int ti_attach(device_t);
182static int ti_detach(device_t);
183static void ti_txeof(struct ti_softc *);
184static void ti_rxeof(struct ti_softc *);
185
186static int ti_encap(struct ti_softc *, struct mbuf **);
187
188static void ti_intr(void *);
189static void ti_start(if_t);
190static void ti_start_locked(if_t);
191static int ti_ioctl(if_t, u_long, caddr_t);
192static uint64_t ti_get_counter(if_t, ift_counter);
193static void ti_init(void *);
194static void ti_init_locked(void *);
195static void ti_init2(struct ti_softc *);
196static void ti_stop(struct ti_softc *);
197static void ti_watchdog(void *);
198static int ti_shutdown(device_t);
199static int ti_ifmedia_upd(if_t);
200static int ti_ifmedia_upd_locked(struct ti_softc *);
201static void ti_ifmedia_sts(if_t, struct ifmediareq *);
202
203static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
204static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
205static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
206
207static u_int ti_add_mcast(void *, struct sockaddr_dl *, u_int);
208static u_int ti_del_mcast(void *, struct sockaddr_dl *, u_int);
209static void ti_setmulti(struct ti_softc *);
210
211static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
212static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
213static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
214static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
215    int);
216static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
217    int, int, int);
218static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
219static void ti_loadfw(struct ti_softc *);
220static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
221static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
222static void ti_handle_events(struct ti_softc *);
223static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
224static int ti_dma_alloc(struct ti_softc *);
225static void ti_dma_free(struct ti_softc *);
226static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
227    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
228static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
229    bus_dmamap_t, bus_addr_t *);
230static int ti_newbuf_std(struct ti_softc *, int);
231static int ti_newbuf_mini(struct ti_softc *, int);
232static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
233static int ti_init_rx_ring_std(struct ti_softc *);
234static void ti_free_rx_ring_std(struct ti_softc *);
235static int ti_init_rx_ring_jumbo(struct ti_softc *);
236static void ti_free_rx_ring_jumbo(struct ti_softc *);
237static int ti_init_rx_ring_mini(struct ti_softc *);
238static void ti_free_rx_ring_mini(struct ti_softc *);
239static void ti_free_tx_ring(struct ti_softc *);
240static int ti_init_tx_ring(struct ti_softc *);
241static void ti_discard_std(struct ti_softc *, int);
242#ifndef TI_SF_BUF_JUMBO
243static void ti_discard_jumbo(struct ti_softc *, int);
244#endif
245static void ti_discard_mini(struct ti_softc *, int);
246
247static int ti_64bitslot_war(struct ti_softc *);
248static int ti_chipinit(struct ti_softc *);
249static int ti_gibinit(struct ti_softc *);
250
251#ifdef TI_JUMBO_HDRSPLIT
252static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
253    int idx);
254#endif /* TI_JUMBO_HDRSPLIT */
255
256static void ti_sysctl_node(struct ti_softc *);
257
258static device_method_t ti_methods[] = {
259	/* Device interface */
260	DEVMETHOD(device_probe,		ti_probe),
261	DEVMETHOD(device_attach,	ti_attach),
262	DEVMETHOD(device_detach,	ti_detach),
263	DEVMETHOD(device_shutdown,	ti_shutdown),
264	{ 0, 0 }
265};
266
267static driver_t ti_driver = {
268	"ti",
269	ti_methods,
270	sizeof(struct ti_softc)
271};
272
273DRIVER_MODULE(ti, pci, ti_driver, 0, 0);
274MODULE_DEPEND(ti, pci, 1, 1, 1);
275MODULE_DEPEND(ti, ether, 1, 1, 1);
276
277/*
278 * Send an instruction or address to the EEPROM, check for ACK.
279 */
280static uint32_t
281ti_eeprom_putbyte(struct ti_softc *sc, int byte)
282{
283	int i, ack = 0;
284
285	/*
286	 * Make sure we're in TX mode.
287	 */
288	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
289
290	/*
291	 * Feed in each bit and stobe the clock.
292	 */
293	for (i = 0x80; i; i >>= 1) {
294		if (byte & i) {
295			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
296		} else {
297			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
298		}
299		DELAY(1);
300		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
301		DELAY(1);
302		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
303	}
304
305	/*
306	 * Turn off TX mode.
307	 */
308	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
309
310	/*
311	 * Check for ack.
312	 */
313	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
314	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
315	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316
317	return (ack);
318}
319
320/*
321 * Read a byte of data stored in the EEPROM at address 'addr.'
322 * We have to send two address bytes since the EEPROM can hold
323 * more than 256 bytes of data.
324 */
325static uint8_t
326ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
327{
328	int i;
329	uint8_t byte = 0;
330
331	EEPROM_START;
332
333	/*
334	 * Send write control code to EEPROM.
335	 */
336	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
337		device_printf(sc->ti_dev,
338		    "failed to send write command, status: %x\n",
339		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
340		return (1);
341	}
342
343	/*
344	 * Send first byte of address of byte we want to read.
345	 */
346	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
347		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
348		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
349		return (1);
350	}
351	/*
352	 * Send second byte address of byte we want to read.
353	 */
354	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
355		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
356		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
357		return (1);
358	}
359
360	EEPROM_STOP;
361	EEPROM_START;
362	/*
363	 * Send read control code to EEPROM.
364	 */
365	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
366		device_printf(sc->ti_dev,
367		    "failed to send read command, status: %x\n",
368		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
369		return (1);
370	}
371
372	/*
373	 * Start reading bits from EEPROM.
374	 */
375	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
376	for (i = 0x80; i; i >>= 1) {
377		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378		DELAY(1);
379		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
380			byte |= i;
381		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
382		DELAY(1);
383	}
384
385	EEPROM_STOP;
386
387	/*
388	 * No ACK generated for read, so just return byte.
389	 */
390
391	*dest = byte;
392
393	return (0);
394}
395
396/*
397 * Read a sequence of bytes from the EEPROM.
398 */
399static int
400ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
401{
402	int err = 0, i;
403	uint8_t byte = 0;
404
405	for (i = 0; i < cnt; i++) {
406		err = ti_eeprom_getbyte(sc, off + i, &byte);
407		if (err)
408			break;
409		*(dest + i) = byte;
410	}
411
412	return (err ? 1 : 0);
413}
414
415/*
416 * NIC memory read function.
417 * Can be used to copy data from NIC local memory.
418 */
419static void
420ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
421{
422	int segptr, segsize, cnt;
423	char *ptr;
424
425	segptr = addr;
426	cnt = len;
427	ptr = buf;
428
429	while (cnt) {
430		if (cnt < TI_WINLEN)
431			segsize = cnt;
432		else
433			segsize = TI_WINLEN - (segptr % TI_WINLEN);
434		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
435		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
436		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
437		    segsize / 4);
438		ptr += segsize;
439		segptr += segsize;
440		cnt -= segsize;
441	}
442}
443
444/*
445 * NIC memory write function.
446 * Can be used to copy data into NIC local memory.
447 */
448static void
449ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
450{
451	int segptr, segsize, cnt;
452	char *ptr;
453
454	segptr = addr;
455	cnt = len;
456	ptr = buf;
457
458	while (cnt) {
459		if (cnt < TI_WINLEN)
460			segsize = cnt;
461		else
462			segsize = TI_WINLEN - (segptr % TI_WINLEN);
463		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
464		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
465		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
466		    segsize / 4);
467		ptr += segsize;
468		segptr += segsize;
469		cnt -= segsize;
470	}
471}
472
473/*
474 * NIC memory read function.
475 * Can be used to clear a section of NIC local memory.
476 */
477static void
478ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
479{
480	int segptr, segsize, cnt;
481
482	segptr = addr;
483	cnt = len;
484
485	while (cnt) {
486		if (cnt < TI_WINLEN)
487			segsize = cnt;
488		else
489			segsize = TI_WINLEN - (segptr % TI_WINLEN);
490		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
491		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
492		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
493		segptr += segsize;
494		cnt -= segsize;
495	}
496}
497
498static int
499ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
500    caddr_t buf, int useraddr, int readdata)
501{
502	int segptr, segsize, cnt;
503	caddr_t ptr;
504	uint32_t origwin;
505	int error, resid, segresid;
506	int first_pass;
507
508	TI_LOCK_ASSERT(sc);
509
510	error = 0;
511
512	/*
513	 * At the moment, we don't handle non-aligned cases, we just bail.
514	 * If this proves to be a problem, it will be fixed.
515	 */
516	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
517		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
518		    "word-aligned\n", __func__, tigon_addr);
519		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
520		    "yet supported\n", __func__);
521		return (EINVAL);
522	}
523
524	segptr = tigon_addr & ~0x3;
525	segresid = tigon_addr - segptr;
526
527	/*
528	 * This is the non-aligned amount left over that we'll need to
529	 * copy.
530	 */
531	resid = len & 0x3;
532
533	/* Add in the left over amount at the front of the buffer */
534	resid += segresid;
535
536	cnt = len & ~0x3;
537	/*
538	 * If resid + segresid is >= 4, add multiples of 4 to the count and
539	 * decrease the residual by that much.
540	 */
541	cnt += resid & ~0x3;
542	resid -= resid & ~0x3;
543
544	ptr = buf;
545
546	first_pass = 1;
547
548	/*
549	 * Save the old window base value.
550	 */
551	origwin = CSR_READ_4(sc, TI_WINBASE);
552
553	while (cnt != 0 && error == 0) {
554		bus_size_t ti_offset;
555
556		if (cnt < TI_WINLEN)
557			segsize = cnt;
558		else
559			segsize = TI_WINLEN - (segptr % TI_WINLEN);
560		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
561
562		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
563
564		if (readdata) {
565			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
566			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
567			if (useraddr) {
568				/*
569				 * Yeah, this is a little on the kludgy
570				 * side, but at least this code is only
571				 * used for debugging.
572				 */
573				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
574				    segsize, TI_SWAP_NTOH);
575
576				TI_UNLOCK(sc);
577				if (first_pass) {
578					error = copyout(
579					    &sc->ti_membuf2[segresid], ptr,
580					    segsize - segresid);
581					first_pass = 0;
582				} else
583					error = copyout(sc->ti_membuf2, ptr,
584					    segsize);
585				TI_LOCK(sc);
586			} else {
587				if (first_pass) {
588					ti_bcopy_swap(sc->ti_membuf,
589					    sc->ti_membuf2, segsize,
590					    TI_SWAP_NTOH);
591					TI_UNLOCK(sc);
592					bcopy(&sc->ti_membuf2[segresid], ptr,
593					    segsize - segresid);
594					TI_LOCK(sc);
595					first_pass = 0;
596				} else
597					ti_bcopy_swap(sc->ti_membuf, ptr,
598					    segsize, TI_SWAP_NTOH);
599			}
600
601		} else {
602			if (useraddr) {
603				TI_UNLOCK(sc);
604				error = copyin(ptr, sc->ti_membuf2, segsize);
605				TI_LOCK(sc);
606				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
607				    segsize, TI_SWAP_HTON);
608			} else
609				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
610				    TI_SWAP_HTON);
611
612			if (error == 0) {
613				bus_space_write_region_4(sc->ti_btag,
614				    sc->ti_bhandle, ti_offset,
615				    (uint32_t *)sc->ti_membuf, segsize >> 2);
616			}
617		}
618		segptr += segsize;
619		ptr += segsize;
620		cnt -= segsize;
621	}
622
623	/*
624	 * Handle leftover, non-word-aligned bytes.
625	 */
626	if (resid != 0 && error == 0) {
627		uint32_t tmpval, tmpval2;
628		bus_size_t ti_offset;
629
630		/*
631		 * Set the segment pointer.
632		 */
633		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
634
635		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
636
637		/*
638		 * First, grab whatever is in our source/destination.
639		 * We'll obviously need this for reads, but also for
640		 * writes, since we'll be doing read/modify/write.
641		 */
642		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
643		    ti_offset, &tmpval, 1);
644
645		/*
646		 * Next, translate this from little-endian to big-endian
647		 * (at least on i386 boxes).
648		 */
649		tmpval2 = ntohl(tmpval);
650
651		if (readdata) {
652			/*
653			 * If we're reading, just copy the leftover number
654			 * of bytes from the host byte order buffer to
655			 * the user's buffer.
656			 */
657			if (useraddr) {
658				TI_UNLOCK(sc);
659				error = copyout(&tmpval2, ptr, resid);
660				TI_LOCK(sc);
661			} else
662				bcopy(&tmpval2, ptr, resid);
663		} else {
664			/*
665			 * If we're writing, first copy the bytes to be
666			 * written into the network byte order buffer,
667			 * leaving the rest of the buffer with whatever was
668			 * originally in there.  Then, swap the bytes
669			 * around into host order and write them out.
670			 *
671			 * XXX KDM the read side of this has been verified
672			 * to work, but the write side of it has not been
673			 * verified.  So user beware.
674			 */
675			if (useraddr) {
676				TI_UNLOCK(sc);
677				error = copyin(ptr, &tmpval2, resid);
678				TI_LOCK(sc);
679			} else
680				bcopy(ptr, &tmpval2, resid);
681
682			if (error == 0) {
683				tmpval = htonl(tmpval2);
684				bus_space_write_region_4(sc->ti_btag,
685				    sc->ti_bhandle, ti_offset, &tmpval, 1);
686			}
687		}
688	}
689
690	CSR_WRITE_4(sc, TI_WINBASE, origwin);
691
692	return (error);
693}
694
695static int
696ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
697    caddr_t buf, int useraddr, int readdata, int cpu)
698{
699	uint32_t segptr;
700	int cnt, error;
701	uint32_t tmpval, tmpval2;
702	caddr_t ptr;
703
704	TI_LOCK_ASSERT(sc);
705
706	/*
707	 * At the moment, we don't handle non-aligned cases, we just bail.
708	 * If this proves to be a problem, it will be fixed.
709	 */
710	if (tigon_addr & 0x3) {
711		device_printf(sc->ti_dev, "%s: tigon address %#x "
712		    "isn't word-aligned\n", __func__, tigon_addr);
713		return (EINVAL);
714	}
715
716	if (len & 0x3) {
717		device_printf(sc->ti_dev, "%s: transfer length %d "
718		    "isn't word-aligned\n", __func__, len);
719		return (EINVAL);
720	}
721
722	segptr = tigon_addr;
723	cnt = len;
724	ptr = buf;
725
726	while (cnt && error == 0) {
727		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
728
729		if (readdata) {
730			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
731
732			tmpval = ntohl(tmpval2);
733
734			/*
735			 * Note:  I've used this debugging interface
736			 * extensively with Alteon's 12.3.15 firmware,
737			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
738			 *
739			 * When you compile the firmware without
740			 * optimization, which is necessary sometimes in
741			 * order to properly step through it, you sometimes
742			 * read out a bogus value of 0xc0017c instead of
743			 * whatever was supposed to be in that scratchpad
744			 * location.  That value is on the stack somewhere,
745			 * but I've never been able to figure out what was
746			 * causing the problem.
747			 *
748			 * The address seems to pop up in random places,
749			 * often not in the same place on two subsequent
750			 * reads.
751			 *
752			 * In any case, the underlying data doesn't seem
753			 * to be affected, just the value read out.
754			 *
755			 * KDM, 3/7/2000
756			 */
757
758			if (tmpval2 == 0xc0017c)
759				device_printf(sc->ti_dev, "found 0xc0017c at "
760				    "%#x (tmpval2)\n", segptr);
761
762			if (tmpval == 0xc0017c)
763				device_printf(sc->ti_dev, "found 0xc0017c at "
764				    "%#x (tmpval)\n", segptr);
765
766			if (useraddr)
767				error = copyout(&tmpval, ptr, 4);
768			else
769				bcopy(&tmpval, ptr, 4);
770		} else {
771			if (useraddr)
772				error = copyin(ptr, &tmpval2, 4);
773			else
774				bcopy(ptr, &tmpval2, 4);
775
776			if (error == 0) {
777				tmpval = htonl(tmpval2);
778				CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu),
779				    tmpval);
780			}
781		}
782
783		cnt -= 4;
784		segptr += 4;
785		ptr += 4;
786	}
787
788	return (error);
789}
790
791static int
792ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
793{
794	const uint8_t *tmpsrc;
795	uint8_t *tmpdst;
796	size_t tmplen;
797
798	if (len & 0x3) {
799		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
800		return (-1);
801	}
802
803	tmpsrc = src;
804	tmpdst = dst;
805	tmplen = len;
806
807	while (tmplen) {
808		if (swap_type == TI_SWAP_NTOH)
809			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
810		else
811			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
812		tmpsrc += 4;
813		tmpdst += 4;
814		tmplen -= 4;
815	}
816
817	return (0);
818}
819
820/*
821 * Load firmware image into the NIC. Check that the firmware revision
822 * is acceptable and see if we want the firmware for the Tigon 1 or
823 * Tigon 2.
824 */
825static void
826ti_loadfw(struct ti_softc *sc)
827{
828
829	TI_LOCK_ASSERT(sc);
830
831	switch (sc->ti_hwrev) {
832	case TI_HWREV_TIGON:
833		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
834		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
835		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
836			device_printf(sc->ti_dev, "firmware revision mismatch; "
837			    "want %d.%d.%d, got %d.%d.%d\n",
838			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
839			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
840			    tigonFwReleaseMinor, tigonFwReleaseFix);
841			return;
842		}
843		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
844		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
845		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
846		    tigonFwRodata);
847		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
848		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
849		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
850		break;
851	case TI_HWREV_TIGON_II:
852		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
853		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
854		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
855			device_printf(sc->ti_dev, "firmware revision mismatch; "
856			    "want %d.%d.%d, got %d.%d.%d\n",
857			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
858			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
859			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
860			return;
861		}
862		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
863		    tigon2FwText);
864		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
865		    tigon2FwData);
866		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
867		    tigon2FwRodata);
868		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
869		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
870		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
871		break;
872	default:
873		device_printf(sc->ti_dev,
874		    "can't load firmware: unknown hardware rev\n");
875		break;
876	}
877}
878
879/*
880 * Send the NIC a command via the command ring.
881 */
882static void
883ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
884{
885	int index;
886
887	index = sc->ti_cmd_saved_prodidx;
888	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
889	TI_INC(index, TI_CMD_RING_CNT);
890	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
891	sc->ti_cmd_saved_prodidx = index;
892}
893
894/*
895 * Send the NIC an extended command. The 'len' parameter specifies the
896 * number of command slots to include after the initial command.
897 */
898static void
899ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
900{
901	int index;
902	int i;
903
904	index = sc->ti_cmd_saved_prodidx;
905	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
906	TI_INC(index, TI_CMD_RING_CNT);
907	for (i = 0; i < len; i++) {
908		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
909		    *(uint32_t *)(&arg[i * 4]));
910		TI_INC(index, TI_CMD_RING_CNT);
911	}
912	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
913	sc->ti_cmd_saved_prodidx = index;
914}
915
916/*
917 * Handle events that have triggered interrupts.
918 */
919static void
920ti_handle_events(struct ti_softc *sc)
921{
922	struct ti_event_desc *e;
923
924	if (sc->ti_rdata.ti_event_ring == NULL)
925		return;
926
927	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
928	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
929	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
930		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
931		switch (TI_EVENT_EVENT(e)) {
932		case TI_EV_LINKSTAT_CHANGED:
933			sc->ti_linkstat = TI_EVENT_CODE(e);
934			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
935				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
936				if_setbaudrate(sc->ti_ifp, IF_Mbps(100));
937				if (bootverbose)
938					device_printf(sc->ti_dev,
939					    "10/100 link up\n");
940			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
941				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
942				if_setbaudrate(sc->ti_ifp, IF_Gbps(1UL));
943				if (bootverbose)
944					device_printf(sc->ti_dev,
945					    "gigabit link up\n");
946			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
947				if_link_state_change(sc->ti_ifp,
948				    LINK_STATE_DOWN);
949				if_setbaudrate(sc->ti_ifp, 0);
950				if (bootverbose)
951					device_printf(sc->ti_dev,
952					    "link down\n");
953			}
954			break;
955		case TI_EV_ERROR:
956			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
957				device_printf(sc->ti_dev, "invalid command\n");
958			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
959				device_printf(sc->ti_dev, "unknown command\n");
960			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
961				device_printf(sc->ti_dev, "bad config data\n");
962			break;
963		case TI_EV_FIRMWARE_UP:
964			ti_init2(sc);
965			break;
966		case TI_EV_STATS_UPDATED:
967		case TI_EV_RESET_JUMBO_RING:
968		case TI_EV_MCAST_UPDATED:
969			/* Who cares. */
970			break;
971		default:
972			device_printf(sc->ti_dev, "unknown event: %d\n",
973			    TI_EVENT_EVENT(e));
974			break;
975		}
976		/* Advance the consumer index. */
977		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
978		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
979	}
980	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
981	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
982}
983
984struct ti_dmamap_arg {
985	bus_addr_t	ti_busaddr;
986};
987
988static void
989ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
990{
991	struct ti_dmamap_arg *ctx;
992
993	if (error)
994		return;
995
996	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
997
998	ctx = arg;
999	ctx->ti_busaddr = segs->ds_addr;
1000}
1001
1002static int
1003ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
1004    bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1005    const char *msg)
1006{
1007	struct ti_dmamap_arg ctx;
1008	int error;
1009
1010	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1011	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1012	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1013	if (error != 0) {
1014		device_printf(sc->ti_dev,
1015		    "could not create %s dma tag\n", msg);
1016		return (error);
1017	}
1018	/* Allocate DMA'able memory for ring. */
1019	error = bus_dmamem_alloc(*tag, (void **)ring,
1020	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1021	if (error != 0) {
1022		device_printf(sc->ti_dev,
1023		    "could not allocate DMA'able memory for %s\n", msg);
1024		return (error);
1025	}
1026	/* Load the address of the ring. */
1027	ctx.ti_busaddr = 0;
1028	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1029	    &ctx, BUS_DMA_NOWAIT);
1030	if (error != 0) {
1031		device_printf(sc->ti_dev,
1032		    "could not load DMA'able memory for %s\n", msg);
1033		return (error);
1034	}
1035	*paddr = ctx.ti_busaddr;
1036	return (0);
1037}
1038
1039static void
1040ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1041    bus_dmamap_t map, bus_addr_t *paddr)
1042{
1043
1044	if (*paddr != 0) {
1045		bus_dmamap_unload(*tag, map);
1046		*paddr = 0;
1047	}
1048	if (*ring != NULL) {
1049		bus_dmamem_free(*tag, *ring, map);
1050		*ring = NULL;
1051	}
1052	if (*tag) {
1053		bus_dma_tag_destroy(*tag);
1054		*tag = NULL;
1055	}
1056}
1057
1058static int
1059ti_dma_alloc(struct ti_softc *sc)
1060{
1061	bus_addr_t lowaddr;
1062	int i, error;
1063
1064	lowaddr = BUS_SPACE_MAXADDR;
1065	if (sc->ti_dac == 0)
1066		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1067
1068	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1069	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1070	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1071	    &sc->ti_cdata.ti_parent_tag);
1072	if (error != 0) {
1073		device_printf(sc->ti_dev,
1074		    "could not allocate parent dma tag\n");
1075		return (ENOMEM);
1076	}
1077
1078	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1079	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1080	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1081	if (error)
1082		return (error);
1083
1084	/* Producer/consumer status */
1085	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1086	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1087	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1088	    "event ring");
1089	if (error)
1090		return (error);
1091
1092	/* Event ring */
1093	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1094	    &sc->ti_cdata.ti_event_ring_tag,
1095	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1096	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1097	    "event ring");
1098	if (error)
1099		return (error);
1100
1101	/* Command ring lives in shared memory so no need to create DMA area. */
1102
1103	/* Standard RX ring */
1104	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1105	    &sc->ti_cdata.ti_rx_std_ring_tag,
1106	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1107	    &sc->ti_cdata.ti_rx_std_ring_map,
1108	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1109	if (error)
1110		return (error);
1111
1112	/* Jumbo RX ring */
1113	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1114	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1115	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1116	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1117	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1118	if (error)
1119		return (error);
1120
1121	/* RX return ring */
1122	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1123	    &sc->ti_cdata.ti_rx_return_ring_tag,
1124	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1125	    &sc->ti_cdata.ti_rx_return_ring_map,
1126	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1127	if (error)
1128		return (error);
1129
1130	/* Create DMA tag for standard RX mbufs. */
1131	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1132	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1133	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1134	if (error) {
1135		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1136		return (error);
1137	}
1138
1139	/* Create DMA tag for jumbo RX mbufs. */
1140#ifdef TI_SF_BUF_JUMBO
1141	/*
1142	 * The VM system will take care of providing aligned pages.  Alignment
1143	 * is set to 1 here so that busdma resources won't be wasted.
1144	 */
1145	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1146	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1147	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1148#else
1149	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1150	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1151	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1152#endif
1153	if (error) {
1154		device_printf(sc->ti_dev,
1155		    "could not allocate jumbo RX dma tag\n");
1156		return (error);
1157	}
1158
1159	/* Create DMA tag for TX mbufs. */
1160	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1161	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1162	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1163	    &sc->ti_cdata.ti_tx_tag);
1164	if (error) {
1165		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1166		return (ENOMEM);
1167	}
1168
1169	/* Create DMA maps for RX buffers. */
1170	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1171		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1172		    &sc->ti_cdata.ti_rx_std_maps[i]);
1173		if (error) {
1174			device_printf(sc->ti_dev,
1175			    "could not create DMA map for RX\n");
1176			return (error);
1177		}
1178	}
1179	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1180	    &sc->ti_cdata.ti_rx_std_sparemap);
1181	if (error) {
1182		device_printf(sc->ti_dev,
1183		    "could not create spare DMA map for RX\n");
1184		return (error);
1185	}
1186
1187	/* Create DMA maps for jumbo RX buffers. */
1188	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1189		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1190		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1191		if (error) {
1192			device_printf(sc->ti_dev,
1193			    "could not create DMA map for jumbo RX\n");
1194			return (error);
1195		}
1196	}
1197	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1198	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1199	if (error) {
1200		device_printf(sc->ti_dev,
1201		    "could not create spare DMA map for jumbo RX\n");
1202		return (error);
1203	}
1204
1205	/* Create DMA maps for TX buffers. */
1206	for (i = 0; i < TI_TX_RING_CNT; i++) {
1207		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1208		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1209		if (error) {
1210			device_printf(sc->ti_dev,
1211			    "could not create DMA map for TX\n");
1212			return (ENOMEM);
1213		}
1214	}
1215
1216	/* Mini ring and TX ring is not available on Tigon 1. */
1217	if (sc->ti_hwrev == TI_HWREV_TIGON)
1218		return (0);
1219
1220	/* TX ring */
1221	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1222	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1223	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1224	    "TX ring");
1225	if (error)
1226		return (error);
1227
1228	/* Mini RX ring */
1229	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1230	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1231	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1232	    &sc->ti_cdata.ti_rx_mini_ring_map,
1233	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1234	if (error)
1235		return (error);
1236
1237	/* Create DMA tag for mini RX mbufs. */
1238	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1239	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1240	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1241	if (error) {
1242		device_printf(sc->ti_dev,
1243		    "could not allocate mini RX dma tag\n");
1244		return (error);
1245	}
1246
1247	/* Create DMA maps for mini RX buffers. */
1248	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1249		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1250		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1251		if (error) {
1252			device_printf(sc->ti_dev,
1253			    "could not create DMA map for mini RX\n");
1254			return (error);
1255		}
1256	}
1257	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1258	    &sc->ti_cdata.ti_rx_mini_sparemap);
1259	if (error) {
1260		device_printf(sc->ti_dev,
1261		    "could not create spare DMA map for mini RX\n");
1262		return (error);
1263	}
1264
1265	return (0);
1266}
1267
1268static void
1269ti_dma_free(struct ti_softc *sc)
1270{
1271	int i;
1272
1273	/* Destroy DMA maps for RX buffers. */
1274	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1275		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1276			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1277			    sc->ti_cdata.ti_rx_std_maps[i]);
1278			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1279		}
1280	}
1281	if (sc->ti_cdata.ti_rx_std_sparemap) {
1282		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1283		    sc->ti_cdata.ti_rx_std_sparemap);
1284		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1285	}
1286	if (sc->ti_cdata.ti_rx_std_tag) {
1287		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1288		sc->ti_cdata.ti_rx_std_tag = NULL;
1289	}
1290
1291	/* Destroy DMA maps for jumbo RX buffers. */
1292	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1293		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1294			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1295			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1296			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1297		}
1298	}
1299	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1300		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1301		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1302		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1303	}
1304	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1305		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1306		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1307	}
1308
1309	/* Destroy DMA maps for mini RX buffers. */
1310	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1311		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1312			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1313			    sc->ti_cdata.ti_rx_mini_maps[i]);
1314			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1315		}
1316	}
1317	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1318		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1319		    sc->ti_cdata.ti_rx_mini_sparemap);
1320		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1321	}
1322	if (sc->ti_cdata.ti_rx_mini_tag) {
1323		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1324		sc->ti_cdata.ti_rx_mini_tag = NULL;
1325	}
1326
1327	/* Destroy DMA maps for TX buffers. */
1328	for (i = 0; i < TI_TX_RING_CNT; i++) {
1329		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1330			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1331			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1332			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1333		}
1334	}
1335	if (sc->ti_cdata.ti_tx_tag) {
1336		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1337		sc->ti_cdata.ti_tx_tag = NULL;
1338	}
1339
1340	/* Destroy standard RX ring. */
1341	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1342	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1343	    sc->ti_cdata.ti_rx_std_ring_map,
1344	    &sc->ti_rdata.ti_rx_std_ring_paddr);
1345	/* Destroy jumbo RX ring. */
1346	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1347	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1348	    sc->ti_cdata.ti_rx_jumbo_ring_map,
1349	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr);
1350	/* Destroy mini RX ring. */
1351	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1352	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1353	    sc->ti_cdata.ti_rx_mini_ring_map,
1354	    &sc->ti_rdata.ti_rx_mini_ring_paddr);
1355	/* Destroy RX return ring. */
1356	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1357	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1358	    sc->ti_cdata.ti_rx_return_ring_map,
1359	    &sc->ti_rdata.ti_rx_return_ring_paddr);
1360	/* Destroy TX ring. */
1361	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1362	    (void *)&sc->ti_rdata.ti_tx_ring, sc->ti_cdata.ti_tx_ring_map,
1363	    &sc->ti_rdata.ti_tx_ring_paddr);
1364	/* Destroy status block. */
1365	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1366	    (void *)&sc->ti_rdata.ti_status, sc->ti_cdata.ti_status_map,
1367	    &sc->ti_rdata.ti_status_paddr);
1368	/* Destroy event ring. */
1369	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1370	    (void *)&sc->ti_rdata.ti_event_ring,
1371	    sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr);
1372	/* Destroy GIB */
1373	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1374	    (void *)&sc->ti_rdata.ti_info, sc->ti_cdata.ti_gib_map,
1375	    &sc->ti_rdata.ti_info_paddr);
1376
1377	/* Destroy the parent tag. */
1378	if (sc->ti_cdata.ti_parent_tag) {
1379		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1380		sc->ti_cdata.ti_parent_tag = NULL;
1381	}
1382}
1383
1384/*
1385 * Intialize a standard receive ring descriptor.
1386 */
1387static int
1388ti_newbuf_std(struct ti_softc *sc, int i)
1389{
1390	bus_dmamap_t map;
1391	bus_dma_segment_t segs[1];
1392	struct mbuf *m;
1393	struct ti_rx_desc *r;
1394	int error, nsegs;
1395
1396	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1397	if (m == NULL)
1398		return (ENOBUFS);
1399	m->m_len = m->m_pkthdr.len = MCLBYTES;
1400	m_adj(m, ETHER_ALIGN);
1401
1402	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1403	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1404	if (error != 0) {
1405		m_freem(m);
1406		return (error);
1407        }
1408	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1409
1410	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1411		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1412		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1413		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1414		    sc->ti_cdata.ti_rx_std_maps[i]);
1415	}
1416
1417	map = sc->ti_cdata.ti_rx_std_maps[i];
1418	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1419	sc->ti_cdata.ti_rx_std_sparemap = map;
1420	sc->ti_cdata.ti_rx_std_chain[i] = m;
1421
1422	r = &sc->ti_rdata.ti_rx_std_ring[i];
1423	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1424	r->ti_len = segs[0].ds_len;
1425	r->ti_type = TI_BDTYPE_RECV_BD;
1426	r->ti_flags = 0;
1427	r->ti_vlan_tag = 0;
1428	r->ti_tcp_udp_cksum = 0;
1429	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1430		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1431	r->ti_idx = i;
1432
1433	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1434	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1435	return (0);
1436}
1437
1438/*
1439 * Intialize a mini receive ring descriptor. This only applies to
1440 * the Tigon 2.
1441 */
1442static int
1443ti_newbuf_mini(struct ti_softc *sc, int i)
1444{
1445	bus_dmamap_t map;
1446	bus_dma_segment_t segs[1];
1447	struct mbuf *m;
1448	struct ti_rx_desc *r;
1449	int error, nsegs;
1450
1451	MGETHDR(m, M_NOWAIT, MT_DATA);
1452	if (m == NULL)
1453		return (ENOBUFS);
1454	m->m_len = m->m_pkthdr.len = MHLEN;
1455	m_adj(m, ETHER_ALIGN);
1456
1457	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1458	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1459	if (error != 0) {
1460		m_freem(m);
1461		return (error);
1462        }
1463	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1464
1465	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1466		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1467		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1468		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1469		    sc->ti_cdata.ti_rx_mini_maps[i]);
1470	}
1471
1472	map = sc->ti_cdata.ti_rx_mini_maps[i];
1473	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1474	sc->ti_cdata.ti_rx_mini_sparemap = map;
1475	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1476
1477	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1478	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1479	r->ti_len = segs[0].ds_len;
1480	r->ti_type = TI_BDTYPE_RECV_BD;
1481	r->ti_flags = TI_BDFLAG_MINI_RING;
1482	r->ti_vlan_tag = 0;
1483	r->ti_tcp_udp_cksum = 0;
1484	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1485		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1486	r->ti_idx = i;
1487
1488	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1489	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1490	return (0);
1491}
1492
1493#ifndef TI_SF_BUF_JUMBO
1494
1495/*
1496 * Initialize a jumbo receive ring descriptor. This allocates
1497 * a jumbo buffer from the pool managed internally by the driver.
1498 */
1499static int
1500ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1501{
1502	bus_dmamap_t map;
1503	bus_dma_segment_t segs[1];
1504	struct mbuf *m;
1505	struct ti_rx_desc *r;
1506	int error, nsegs;
1507
1508	(void)dummy;
1509
1510	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1511	if (m == NULL)
1512		return (ENOBUFS);
1513	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1514	m_adj(m, ETHER_ALIGN);
1515
1516	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1517	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1518	if (error != 0) {
1519		m_freem(m);
1520		return (error);
1521        }
1522	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1523
1524	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1525		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1526		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1527		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1528		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1529	}
1530
1531	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1532	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1533	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1534	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1535
1536	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1537	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1538	r->ti_len = segs[0].ds_len;
1539	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1540	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1541	r->ti_vlan_tag = 0;
1542	r->ti_tcp_udp_cksum = 0;
1543	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1544		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1545	r->ti_idx = i;
1546
1547	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1548	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1549	return (0);
1550}
1551
1552#else
1553
1554#if (PAGE_SIZE == 4096)
1555#define NPAYLOAD 2
1556#else
1557#define NPAYLOAD 1
1558#endif
1559
1560#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1561#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1562#define NFS_HDR_LEN (UDP_HDR_LEN)
1563static int HDR_LEN = TCP_HDR_LEN;
1564
1565/*
1566 * Initialize a jumbo receive ring descriptor. This allocates
1567 * a jumbo buffer from the pool managed internally by the driver.
1568 */
1569static int
1570ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1571{
1572	bus_dmamap_t map;
1573	struct mbuf *cur, *m_new = NULL;
1574	struct mbuf *m[3] = {NULL, NULL, NULL};
1575	struct ti_rx_desc_ext *r;
1576	vm_page_t frame;
1577	/* 1 extra buf to make nobufs easy*/
1578	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1579	int i;
1580	bus_dma_segment_t segs[4];
1581	int nsegs;
1582
1583	if (m_old != NULL) {
1584		m_new = m_old;
1585		cur = m_old->m_next;
1586		for (i = 0; i <= NPAYLOAD; i++){
1587			m[i] = cur;
1588			cur = cur->m_next;
1589		}
1590	} else {
1591		/* Allocate the mbufs. */
1592		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1593		if (m_new == NULL) {
1594			device_printf(sc->ti_dev, "mbuf allocation failed "
1595			    "-- packet dropped!\n");
1596			goto nobufs;
1597		}
1598		MGET(m[NPAYLOAD], M_NOWAIT, MT_DATA);
1599		if (m[NPAYLOAD] == NULL) {
1600			device_printf(sc->ti_dev, "cluster mbuf allocation "
1601			    "failed -- packet dropped!\n");
1602			goto nobufs;
1603		}
1604		if (!(MCLGET(m[NPAYLOAD], M_NOWAIT))) {
1605			device_printf(sc->ti_dev, "mbuf allocation failed "
1606			    "-- packet dropped!\n");
1607			goto nobufs;
1608		}
1609		m[NPAYLOAD]->m_len = MCLBYTES;
1610
1611		for (i = 0; i < NPAYLOAD; i++){
1612			MGET(m[i], M_NOWAIT, MT_DATA);
1613			if (m[i] == NULL) {
1614				device_printf(sc->ti_dev, "mbuf allocation "
1615				    "failed -- packet dropped!\n");
1616				goto nobufs;
1617			}
1618			frame = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
1619			    VM_ALLOC_WIRED);
1620			if (frame == NULL) {
1621				device_printf(sc->ti_dev, "buffer allocation "
1622				    "failed -- packet dropped!\n");
1623				printf("      index %d page %d\n", idx, i);
1624				goto nobufs;
1625			}
1626			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1627			if (sf[i] == NULL) {
1628				vm_page_unwire_noq(frame);
1629				vm_page_free(frame);
1630				device_printf(sc->ti_dev, "buffer allocation "
1631				    "failed -- packet dropped!\n");
1632				printf("      index %d page %d\n", idx, i);
1633				goto nobufs;
1634			}
1635		}
1636		for (i = 0; i < NPAYLOAD; i++){
1637		/* Attach the buffer to the mbuf. */
1638			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1639			m[i]->m_len = PAGE_SIZE;
1640			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1641			    sf_mext_free, (void*)sf_buf_kva(sf[i]), sf[i],
1642			    0, EXT_DISPOSABLE);
1643			m[i]->m_next = m[i+1];
1644		}
1645		/* link the buffers to the header */
1646		m_new->m_next = m[0];
1647		m_new->m_data += ETHER_ALIGN;
1648		if (sc->ti_hdrsplit)
1649			m_new->m_len = MHLEN - ETHER_ALIGN;
1650		else
1651			m_new->m_len = HDR_LEN;
1652		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1653	}
1654
1655	/* Set up the descriptor. */
1656	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1657	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1658	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1659	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1660	    segs, &nsegs, 0))
1661		return (ENOBUFS);
1662	if ((nsegs < 1) || (nsegs > 4))
1663		return (ENOBUFS);
1664	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1665	r->ti_len0 = m_new->m_len;
1666
1667	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1668	r->ti_len1 = PAGE_SIZE;
1669
1670	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1671	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1672
1673	if (PAGE_SIZE == 4096) {
1674		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1675		r->ti_len3 = MCLBYTES;
1676	} else {
1677		r->ti_len3 = 0;
1678	}
1679	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1680
1681	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1682
1683	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1684		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1685
1686	r->ti_idx = idx;
1687
1688	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1689	return (0);
1690
1691nobufs:
1692
1693	/*
1694	 * Warning! :
1695	 * This can only be called before the mbufs are strung together.
1696	 * If the mbufs are strung together, m_freem() will free the chain,
1697	 * so that the later mbufs will be freed multiple times.
1698	 */
1699	if (m_new)
1700		m_freem(m_new);
1701
1702	for (i = 0; i < 3; i++) {
1703		if (m[i])
1704			m_freem(m[i]);
1705		if (sf[i])
1706			sf_mext_free((void *)sf_buf_kva(sf[i]), sf[i]);
1707	}
1708	return (ENOBUFS);
1709}
1710#endif
1711
1712/*
1713 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1714 * that's 1MB or memory, which is a lot. For now, we fill only the first
1715 * 256 ring entries and hope that our CPU is fast enough to keep up with
1716 * the NIC.
1717 */
1718static int
1719ti_init_rx_ring_std(struct ti_softc *sc)
1720{
1721	int i;
1722	struct ti_cmd_desc cmd;
1723
1724	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1725		if (ti_newbuf_std(sc, i) != 0)
1726			return (ENOBUFS);
1727	}
1728
1729	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1730	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1731
1732	return (0);
1733}
1734
1735static void
1736ti_free_rx_ring_std(struct ti_softc *sc)
1737{
1738	bus_dmamap_t map;
1739	int i;
1740
1741	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1742		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1743			map = sc->ti_cdata.ti_rx_std_maps[i];
1744			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1745			    BUS_DMASYNC_POSTREAD);
1746			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1747			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1748			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1749		}
1750	}
1751	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1752	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1753	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1754}
1755
1756static int
1757ti_init_rx_ring_jumbo(struct ti_softc *sc)
1758{
1759	struct ti_cmd_desc cmd;
1760	int i;
1761
1762	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1763		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1764			return (ENOBUFS);
1765	}
1766
1767	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1768	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1769
1770	return (0);
1771}
1772
1773static void
1774ti_free_rx_ring_jumbo(struct ti_softc *sc)
1775{
1776	bus_dmamap_t map;
1777	int i;
1778
1779	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1780		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1781			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1782			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1783			    BUS_DMASYNC_POSTREAD);
1784			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1785			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1786			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1787		}
1788	}
1789	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1790	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1791	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1792}
1793
1794static int
1795ti_init_rx_ring_mini(struct ti_softc *sc)
1796{
1797	int i;
1798
1799	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1800		if (ti_newbuf_mini(sc, i) != 0)
1801			return (ENOBUFS);
1802	}
1803
1804	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1805	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1806
1807	return (0);
1808}
1809
1810static void
1811ti_free_rx_ring_mini(struct ti_softc *sc)
1812{
1813	bus_dmamap_t map;
1814	int i;
1815
1816	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1817		return;
1818
1819	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1820		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1821			map = sc->ti_cdata.ti_rx_mini_maps[i];
1822			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1823			    BUS_DMASYNC_POSTREAD);
1824			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1825			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1826			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1827		}
1828	}
1829	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1830	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1831	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1832}
1833
1834static void
1835ti_free_tx_ring(struct ti_softc *sc)
1836{
1837	struct ti_txdesc *txd;
1838	int i;
1839
1840	if (sc->ti_rdata.ti_tx_ring == NULL)
1841		return;
1842
1843	for (i = 0; i < TI_TX_RING_CNT; i++) {
1844		txd = &sc->ti_cdata.ti_txdesc[i];
1845		if (txd->tx_m != NULL) {
1846			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1847			    BUS_DMASYNC_POSTWRITE);
1848			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1849			    txd->tx_dmamap);
1850			m_freem(txd->tx_m);
1851			txd->tx_m = NULL;
1852		}
1853	}
1854	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1855	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1856	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1857}
1858
1859static int
1860ti_init_tx_ring(struct ti_softc *sc)
1861{
1862	struct ti_txdesc *txd;
1863	int i;
1864
1865	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1866	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1867	for (i = 0; i < TI_TX_RING_CNT; i++) {
1868		txd = &sc->ti_cdata.ti_txdesc[i];
1869		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1870	}
1871	sc->ti_txcnt = 0;
1872	sc->ti_tx_saved_considx = 0;
1873	sc->ti_tx_saved_prodidx = 0;
1874	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1875	return (0);
1876}
1877
1878/*
1879 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1880 * but we have to support the old way too so that Tigon 1 cards will
1881 * work.
1882 */
1883static u_int
1884ti_add_mcast(void *arg, struct sockaddr_dl *sdl, u_int count)
1885{
1886	struct ti_softc *sc = arg;
1887	struct ti_cmd_desc cmd;
1888	uint16_t *m;
1889	uint32_t ext[2] = {0, 0};
1890
1891	m = (uint16_t *)LLADDR(sdl);
1892
1893	switch (sc->ti_hwrev) {
1894	case TI_HWREV_TIGON:
1895		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1896		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1897		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1898		break;
1899	case TI_HWREV_TIGON_II:
1900		ext[0] = htons(m[0]);
1901		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1902		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1903		break;
1904	default:
1905		device_printf(sc->ti_dev, "unknown hwrev\n");
1906		return (0);
1907	}
1908	return (1);
1909}
1910
1911static u_int
1912ti_del_mcast(void *arg, struct sockaddr_dl *sdl, u_int count)
1913{
1914	struct ti_softc *sc = arg;
1915	struct ti_cmd_desc cmd;
1916	uint16_t *m;
1917	uint32_t ext[2] = {0, 0};
1918
1919	m = (uint16_t *)LLADDR(sdl);
1920
1921	switch (sc->ti_hwrev) {
1922	case TI_HWREV_TIGON:
1923		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1924		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1925		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1926		break;
1927	case TI_HWREV_TIGON_II:
1928		ext[0] = htons(m[0]);
1929		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1930		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1931		break;
1932	default:
1933		device_printf(sc->ti_dev, "unknown hwrev\n");
1934		return (0);
1935	}
1936
1937	return (1);
1938}
1939
1940/*
1941 * Configure the Tigon's multicast address filter.
1942 *
1943 * The actual multicast table management is a bit of a pain, thanks to
1944 * slight brain damage on the part of both Alteon and us. With our
1945 * multicast code, we are only alerted when the multicast address table
1946 * changes and at that point we only have the current list of addresses:
1947 * we only know the current state, not the previous state, so we don't
1948 * actually know what addresses were removed or added. The firmware has
1949 * state, but we can't get our grubby mits on it, and there is no 'delete
1950 * all multicast addresses' command. Hence, we have to maintain our own
1951 * state so we know what addresses have been programmed into the NIC at
1952 * any given time.
1953 */
1954static void
1955ti_setmulti(struct ti_softc *sc)
1956{
1957	if_t ifp;
1958	struct ti_cmd_desc cmd;
1959	uint32_t intrs;
1960
1961	TI_LOCK_ASSERT(sc);
1962
1963	ifp = sc->ti_ifp;
1964
1965	if (if_getflags(ifp) & IFF_ALLMULTI) {
1966		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1967		return;
1968	} else {
1969		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1970	}
1971
1972	/* Disable interrupts. */
1973	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1974	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1975
1976	/* First, zot all the existing filters. */
1977	if_foreach_llmaddr(ifp, ti_del_mcast, sc);
1978
1979	/* Now program new ones. */
1980	if_foreach_llmaddr(ifp, ti_add_mcast, sc);
1981
1982	/* Re-enable interrupts. */
1983	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1984}
1985
1986/*
1987 * Check to see if the BIOS has configured us for a 64 bit slot when
1988 * we aren't actually in one. If we detect this condition, we can work
1989 * around it on the Tigon 2 by setting a bit in the PCI state register,
1990 * but for the Tigon 1 we must give up and abort the interface attach.
1991 */
1992static int
1993ti_64bitslot_war(struct ti_softc *sc)
1994{
1995
1996	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1997		CSR_WRITE_4(sc, 0x600, 0);
1998		CSR_WRITE_4(sc, 0x604, 0);
1999		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2000		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2001			if (sc->ti_hwrev == TI_HWREV_TIGON)
2002				return (EINVAL);
2003			else {
2004				TI_SETBIT(sc, TI_PCI_STATE,
2005				    TI_PCISTATE_32BIT_BUS);
2006				return (0);
2007			}
2008		}
2009	}
2010
2011	return (0);
2012}
2013
2014/*
2015 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2016 * self-test results.
2017 */
2018static int
2019ti_chipinit(struct ti_softc *sc)
2020{
2021	uint32_t cacheline;
2022	uint32_t pci_writemax = 0;
2023	uint32_t hdrsplit;
2024
2025	/* Initialize link to down state. */
2026	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2027
2028	/* Set endianness before we access any non-PCI registers. */
2029#if 0 && BYTE_ORDER == BIG_ENDIAN
2030	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2031	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2032#else
2033	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2034	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2035#endif
2036
2037	/* Check the ROM failed bit to see if self-tests passed. */
2038	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2039		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2040		return (ENODEV);
2041	}
2042
2043	/* Halt the CPU. */
2044	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2045
2046	/* Figure out the hardware revision. */
2047	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2048	case TI_REV_TIGON_I:
2049		sc->ti_hwrev = TI_HWREV_TIGON;
2050		break;
2051	case TI_REV_TIGON_II:
2052		sc->ti_hwrev = TI_HWREV_TIGON_II;
2053		break;
2054	default:
2055		device_printf(sc->ti_dev, "unsupported chip revision\n");
2056		return (ENODEV);
2057	}
2058
2059	/* Do special setup for Tigon 2. */
2060	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2061		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2062		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2063		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2064	}
2065
2066	/*
2067	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2068	 * can't do header splitting.
2069	 */
2070#ifdef TI_JUMBO_HDRSPLIT
2071	if (sc->ti_hwrev != TI_HWREV_TIGON)
2072		sc->ti_hdrsplit = 1;
2073	else
2074		device_printf(sc->ti_dev,
2075		    "can't do header splitting on a Tigon I board\n");
2076#endif /* TI_JUMBO_HDRSPLIT */
2077
2078	/* Set up the PCI state register. */
2079	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2080	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2081		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2082	}
2083
2084	/* Clear the read/write max DMA parameters. */
2085	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2086	    TI_PCISTATE_READ_MAXDMA));
2087
2088	/* Get cache line size. */
2089	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2090
2091	/*
2092	 * If the system has set enabled the PCI memory write
2093	 * and invalidate command in the command register, set
2094	 * the write max parameter accordingly. This is necessary
2095	 * to use MWI with the Tigon 2.
2096	 */
2097	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2098		switch (cacheline) {
2099		case 1:
2100		case 4:
2101		case 8:
2102		case 16:
2103		case 32:
2104		case 64:
2105			break;
2106		default:
2107		/* Disable PCI memory write and invalidate. */
2108			if (bootverbose)
2109				device_printf(sc->ti_dev, "cache line size %d"
2110				    " not supported; disabling PCI MWI\n",
2111				    cacheline);
2112			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2113			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2114			break;
2115		}
2116	}
2117
2118	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2119
2120	/* This sets the min dma param all the way up (0xff). */
2121	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2122
2123	if (sc->ti_hdrsplit)
2124		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2125	else
2126		hdrsplit = 0;
2127
2128	/* Configure DMA variables. */
2129#if BYTE_ORDER == BIG_ENDIAN
2130	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2131	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2132	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2133	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2134#else /* BYTE_ORDER */
2135	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2136	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2137	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2138#endif /* BYTE_ORDER */
2139
2140	/*
2141	 * Only allow 1 DMA channel to be active at a time.
2142	 * I don't think this is a good idea, but without it
2143	 * the firmware racks up lots of nicDmaReadRingFull
2144	 * errors.  This is not compatible with hardware checksums.
2145	 */
2146	if ((if_getcapenable(sc->ti_ifp) & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2147		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2148
2149	/* Recommended settings from Tigon manual. */
2150	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2151	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2152
2153	if (ti_64bitslot_war(sc)) {
2154		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2155		    "but we aren't");
2156		return (EINVAL);
2157	}
2158
2159	return (0);
2160}
2161
2162/*
2163 * Initialize the general information block and firmware, and
2164 * start the CPU(s) running.
2165 */
2166static int
2167ti_gibinit(struct ti_softc *sc)
2168{
2169	if_t ifp;
2170	struct ti_rcb *rcb;
2171	int i;
2172
2173	TI_LOCK_ASSERT(sc);
2174
2175	ifp = sc->ti_ifp;
2176
2177	/* Disable interrupts for now. */
2178	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2179
2180	/* Tell the chip where to find the general information block. */
2181	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2182	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2183	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2184	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2185
2186	/* Load the firmware into SRAM. */
2187	ti_loadfw(sc);
2188
2189	/* Set up the contents of the general info and ring control blocks. */
2190
2191	/* Set up the event ring and producer pointer. */
2192	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2193	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2194	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2195	rcb->ti_flags = 0;
2196	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2197	    sc->ti_rdata.ti_status_paddr +
2198	    offsetof(struct ti_status, ti_ev_prodidx_r));
2199	sc->ti_ev_prodidx.ti_idx = 0;
2200	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2201	sc->ti_ev_saved_considx = 0;
2202
2203	/* Set up the command ring and producer mailbox. */
2204	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2205	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2206	rcb->ti_flags = 0;
2207	rcb->ti_max_len = 0;
2208	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2209		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2210	}
2211	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2212	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2213	sc->ti_cmd_saved_prodidx = 0;
2214
2215	/*
2216	 * Assign the address of the stats refresh buffer.
2217	 * We re-use the current stats buffer for this to
2218	 * conserve memory.
2219	 */
2220	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2221	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2222	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2223
2224	/* Set up the standard receive ring. */
2225	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2226	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2227	rcb->ti_max_len = TI_FRAMELEN;
2228	rcb->ti_flags = 0;
2229	if (if_getcapenable(ifp) & IFCAP_RXCSUM)
2230		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2231		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2232	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2233		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2234
2235	/* Set up the jumbo receive ring. */
2236	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2237	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2238
2239#ifndef TI_SF_BUF_JUMBO
2240	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2241	rcb->ti_flags = 0;
2242#else
2243	rcb->ti_max_len = PAGE_SIZE;
2244	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2245#endif
2246	if (if_getcapenable(ifp) & IFCAP_RXCSUM)
2247		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2248		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2249	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2250		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2251
2252	/*
2253	 * Set up the mini ring. Only activated on the
2254	 * Tigon 2 but the slot in the config block is
2255	 * still there on the Tigon 1.
2256	 */
2257	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2258	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2259	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2260	if (sc->ti_hwrev == TI_HWREV_TIGON)
2261		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2262	else
2263		rcb->ti_flags = 0;
2264	if (if_getcapenable(ifp) & IFCAP_RXCSUM)
2265		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2266		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2267	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2268		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2269
2270	/*
2271	 * Set up the receive return ring.
2272	 */
2273	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2274	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2275	rcb->ti_flags = 0;
2276	rcb->ti_max_len = TI_RETURN_RING_CNT;
2277	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2278	    sc->ti_rdata.ti_status_paddr +
2279	    offsetof(struct ti_status, ti_return_prodidx_r));
2280
2281	/*
2282	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2283	 * of putting the transmit ring in the host's address space and
2284	 * letting the chip DMA it instead of leaving the ring in the NIC's
2285	 * memory and accessing it through the shared memory region. We
2286	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2287	 * so we have to revert to the shared memory scheme if we detect
2288	 * a Tigon 1 chip.
2289	 */
2290	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2291	if (sc->ti_rdata.ti_tx_ring != NULL)
2292		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2293	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2294	if (sc->ti_hwrev == TI_HWREV_TIGON)
2295		rcb->ti_flags = 0;
2296	else
2297		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2298	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2299		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2300	if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2301		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2302		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2303	rcb->ti_max_len = TI_TX_RING_CNT;
2304	if (sc->ti_hwrev == TI_HWREV_TIGON)
2305		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2306	else
2307		ti_hostaddr64(&rcb->ti_hostaddr,
2308		    sc->ti_rdata.ti_tx_ring_paddr);
2309	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2310	    sc->ti_rdata.ti_status_paddr +
2311	    offsetof(struct ti_status, ti_tx_considx_r));
2312
2313	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2314	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2315	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2316	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2317	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2318	    sc->ti_cdata.ti_event_ring_map,
2319	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2320	if (sc->ti_rdata.ti_tx_ring != NULL)
2321		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2322		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2323
2324	/* Set up tunables */
2325#if 0
2326	if (if_getmtu(ifp) > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2327		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2328		    (sc->ti_rx_coal_ticks / 10));
2329	else
2330#endif
2331		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2332	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2333	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2334	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2335	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2336	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2337
2338	/* Turn interrupts on. */
2339	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2340	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2341
2342	/* Start CPU. */
2343	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2344
2345	return (0);
2346}
2347
2348/*
2349 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2350 * against our list and return its name if we find a match.
2351 */
2352static int
2353ti_probe(device_t dev)
2354{
2355	const struct ti_type *t;
2356
2357	t = ti_devs;
2358
2359	while (t->ti_name != NULL) {
2360		if ((pci_get_vendor(dev) == t->ti_vid) &&
2361		    (pci_get_device(dev) == t->ti_did)) {
2362			device_set_desc(dev, t->ti_name);
2363			return (BUS_PROBE_DEFAULT);
2364		}
2365		t++;
2366	}
2367
2368	return (ENXIO);
2369}
2370
2371static int
2372ti_attach(device_t dev)
2373{
2374	if_t ifp;
2375	struct ti_softc *sc;
2376	int error = 0, rid;
2377	u_char eaddr[6];
2378
2379	sc = device_get_softc(dev);
2380	sc->ti_dev = dev;
2381
2382	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2383	    MTX_DEF);
2384	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2385	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2386	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2387	if (ifp == NULL) {
2388		device_printf(dev, "can not if_alloc()\n");
2389		error = ENOSPC;
2390		goto fail;
2391	}
2392	if_sethwassist(ifp, TI_CSUM_FEATURES);
2393	if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM);
2394	if_setcapenable(ifp, if_getcapabilities(sc->ti_ifp));
2395
2396	/*
2397	 * Map control/status registers.
2398	 */
2399	pci_enable_busmaster(dev);
2400
2401	rid = PCIR_BAR(0);
2402	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2403	    RF_ACTIVE);
2404
2405	if (sc->ti_res == NULL) {
2406		device_printf(dev, "couldn't map memory\n");
2407		error = ENXIO;
2408		goto fail;
2409	}
2410
2411	sc->ti_btag = rman_get_bustag(sc->ti_res);
2412	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2413
2414	/* Allocate interrupt */
2415	rid = 0;
2416
2417	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2418	    RF_SHAREABLE | RF_ACTIVE);
2419
2420	if (sc->ti_irq == NULL) {
2421		device_printf(dev, "couldn't map interrupt\n");
2422		error = ENXIO;
2423		goto fail;
2424	}
2425
2426	if (ti_chipinit(sc)) {
2427		device_printf(dev, "chip initialization failed\n");
2428		error = ENXIO;
2429		goto fail;
2430	}
2431
2432	/* Zero out the NIC's on-board SRAM. */
2433	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2434
2435	/* Init again -- zeroing memory may have clobbered some registers. */
2436	if (ti_chipinit(sc)) {
2437		device_printf(dev, "chip initialization failed\n");
2438		error = ENXIO;
2439		goto fail;
2440	}
2441
2442	/*
2443	 * Get station address from the EEPROM. Note: the manual states
2444	 * that the MAC address is at offset 0x8c, however the data is
2445	 * stored as two longwords (since that's how it's loaded into
2446	 * the NIC). This means the MAC address is actually preceded
2447	 * by two zero bytes. We need to skip over those.
2448	 */
2449	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2450		device_printf(dev, "failed to read station address\n");
2451		error = ENXIO;
2452		goto fail;
2453	}
2454
2455	/* Allocate working area for memory dump. */
2456	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2457	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2458	    M_NOWAIT);
2459	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2460		device_printf(dev, "cannot allocate memory buffer\n");
2461		error = ENOMEM;
2462		goto fail;
2463	}
2464	if ((error = ti_dma_alloc(sc)) != 0)
2465		goto fail;
2466
2467	/*
2468	 * We really need a better way to tell a 1000baseTX card
2469	 * from a 1000baseSX one, since in theory there could be
2470	 * OEMed 1000baseTX cards from lame vendors who aren't
2471	 * clever enough to change the PCI ID. For the moment
2472	 * though, the AceNIC is the only copper card available.
2473	 */
2474	if (pci_get_vendor(dev) == ALT_VENDORID &&
2475	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2476		sc->ti_copper = 1;
2477	/* Ok, it's not the only copper card available. */
2478	if (pci_get_vendor(dev) == NG_VENDORID &&
2479	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2480		sc->ti_copper = 1;
2481
2482	/* Set default tunable values. */
2483	ti_sysctl_node(sc);
2484
2485	/* Set up ifnet structure */
2486	if_setsoftc(ifp, sc);
2487	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2488	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2489	if_setioctlfn(ifp, ti_ioctl);
2490	if_setstartfn(ifp, ti_start);
2491	if_setinitfn(ifp, ti_init);
2492	if_setgetcounterfn(ifp, ti_get_counter);
2493	if_setbaudrate(ifp, IF_Gbps(1UL));
2494	if_setsendqlen(ifp, TI_TX_RING_CNT - 1);
2495	if_setsendqready(ifp);
2496
2497	/* Set up ifmedia support. */
2498	if (sc->ti_copper) {
2499		/*
2500		 * Copper cards allow manual 10/100 mode selection,
2501		 * but not manual 1000baseTX mode selection. Why?
2502		 * Because currently there's no way to specify the
2503		 * master/slave setting through the firmware interface,
2504		 * so Alteon decided to just bag it and handle it
2505		 * via autonegotiation.
2506		 */
2507		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2508		ifmedia_add(&sc->ifmedia,
2509		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2510		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2511		ifmedia_add(&sc->ifmedia,
2512		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2513		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2514		ifmedia_add(&sc->ifmedia,
2515		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2516	} else {
2517		/* Fiber cards don't support 10/100 modes. */
2518		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2519		ifmedia_add(&sc->ifmedia,
2520		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2521	}
2522	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2523	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2524
2525	/*
2526	 * We're assuming here that card initialization is a sequential
2527	 * thing.  If it isn't, multiple cards probing at the same time
2528	 * could stomp on the list of softcs here.
2529	 */
2530
2531	/* Register the device */
2532	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2533	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2534	sc->dev->si_drv1 = sc;
2535
2536	/*
2537	 * Call MI attach routine.
2538	 */
2539	ether_ifattach(ifp, eaddr);
2540
2541	/* VLAN capability setup. */
2542	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2543	    IFCAP_VLAN_HWTAGGING, 0);
2544	if_setcapenable(ifp, if_getcapabilities(ifp));
2545	/* Tell the upper layer we support VLAN over-sized frames. */
2546	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2547
2548	/* Driver supports link state tracking. */
2549	if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0);
2550	if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0);
2551
2552	/* Hook interrupt last to avoid having to lock softc */
2553	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2554	   NULL, ti_intr, sc, &sc->ti_intrhand);
2555
2556	if (error) {
2557		device_printf(dev, "couldn't set up irq\n");
2558		goto fail;
2559	}
2560
2561fail:
2562	if (error)
2563		ti_detach(dev);
2564
2565	return (error);
2566}
2567
2568/*
2569 * Shutdown hardware and free up resources. This can be called any
2570 * time after the mutex has been initialized. It is called in both
2571 * the error case in attach and the normal detach case so it needs
2572 * to be careful about only freeing resources that have actually been
2573 * allocated.
2574 */
2575static int
2576ti_detach(device_t dev)
2577{
2578	struct ti_softc *sc;
2579	if_t ifp;
2580
2581	sc = device_get_softc(dev);
2582	if (sc->dev)
2583		destroy_dev(sc->dev);
2584	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2585	ifp = sc->ti_ifp;
2586	if (device_is_attached(dev)) {
2587		ether_ifdetach(ifp);
2588		TI_LOCK(sc);
2589		ti_stop(sc);
2590		TI_UNLOCK(sc);
2591	}
2592
2593	/* These should only be active if attach succeeded */
2594	callout_drain(&sc->ti_watchdog);
2595	bus_generic_detach(dev);
2596	ti_dma_free(sc);
2597	ifmedia_removeall(&sc->ifmedia);
2598
2599	if (sc->ti_intrhand)
2600		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2601	if (sc->ti_irq)
2602		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2603	if (sc->ti_res) {
2604		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2605		    sc->ti_res);
2606	}
2607	if (ifp)
2608		if_free(ifp);
2609	if (sc->ti_membuf)
2610		free(sc->ti_membuf, M_DEVBUF);
2611	if (sc->ti_membuf2)
2612		free(sc->ti_membuf2, M_DEVBUF);
2613
2614	mtx_destroy(&sc->ti_mtx);
2615
2616	return (0);
2617}
2618
2619#ifdef TI_JUMBO_HDRSPLIT
2620/*
2621 * If hdr_len is 0, that means that header splitting wasn't done on
2622 * this packet for some reason.  The two most likely reasons are that
2623 * the protocol isn't a supported protocol for splitting, or this
2624 * packet had a fragment offset that wasn't 0.
2625 *
2626 * The header length, if it is non-zero, will always be the length of
2627 * the headers on the packet, but that length could be longer than the
2628 * first mbuf.  So we take the minimum of the two as the actual
2629 * length.
2630 */
2631static __inline void
2632ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2633{
2634	int i = 0;
2635	int lengths[4] = {0, 0, 0, 0};
2636	struct mbuf *m, *mp;
2637
2638	if (hdr_len != 0)
2639		top->m_len = min(hdr_len, top->m_len);
2640	pkt_len -= top->m_len;
2641	lengths[i++] = top->m_len;
2642
2643	mp = top;
2644	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2645		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2646		pkt_len -= m->m_len;
2647		lengths[i++] = m->m_len;
2648		mp = m;
2649	}
2650
2651#if 0
2652	if (hdr_len != 0)
2653		printf("got split packet: ");
2654	else
2655		printf("got non-split packet: ");
2656
2657	printf("%d,%d,%d,%d = %d\n", lengths[0],
2658	    lengths[1], lengths[2], lengths[3],
2659	    lengths[0] + lengths[1] + lengths[2] +
2660	    lengths[3]);
2661#endif
2662
2663	if (pkt_len)
2664		panic("header splitting didn't");
2665
2666	if (m) {
2667		m_freem(m);
2668		mp->m_next = NULL;
2669	}
2670	if (mp->m_next != NULL)
2671		panic("ti_hdr_split: last mbuf in chain should be null");
2672}
2673#endif /* TI_JUMBO_HDRSPLIT */
2674
2675static void
2676ti_discard_std(struct ti_softc *sc, int i)
2677{
2678
2679	struct ti_rx_desc *r;
2680
2681	r = &sc->ti_rdata.ti_rx_std_ring[i];
2682	r->ti_len = MCLBYTES - ETHER_ALIGN;
2683	r->ti_type = TI_BDTYPE_RECV_BD;
2684	r->ti_flags = 0;
2685	r->ti_vlan_tag = 0;
2686	r->ti_tcp_udp_cksum = 0;
2687	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
2688		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2689	r->ti_idx = i;
2690}
2691
2692static void
2693ti_discard_mini(struct ti_softc *sc, int i)
2694{
2695
2696	struct ti_rx_desc *r;
2697
2698	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2699	r->ti_len = MHLEN - ETHER_ALIGN;
2700	r->ti_type = TI_BDTYPE_RECV_BD;
2701	r->ti_flags = TI_BDFLAG_MINI_RING;
2702	r->ti_vlan_tag = 0;
2703	r->ti_tcp_udp_cksum = 0;
2704	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
2705		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2706	r->ti_idx = i;
2707}
2708
2709#ifndef TI_SF_BUF_JUMBO
2710static void
2711ti_discard_jumbo(struct ti_softc *sc, int i)
2712{
2713
2714	struct ti_rx_desc *r;
2715
2716	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2717	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2718	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2719	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2720	r->ti_vlan_tag = 0;
2721	r->ti_tcp_udp_cksum = 0;
2722	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
2723		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2724	r->ti_idx = i;
2725}
2726#endif
2727
2728/*
2729 * Frame reception handling. This is called if there's a frame
2730 * on the receive return list.
2731 *
2732 * Note: we have to be able to handle three possibilities here:
2733 * 1) the frame is from the mini receive ring (can only happen)
2734 *    on Tigon 2 boards)
2735 * 2) the frame is from the jumbo receive ring
2736 * 3) the frame is from the standard receive ring
2737 */
2738
2739static void
2740ti_rxeof(struct ti_softc *sc)
2741{
2742	if_t ifp;
2743#ifdef TI_SF_BUF_JUMBO
2744	bus_dmamap_t map;
2745#endif
2746	struct ti_cmd_desc cmd;
2747	int jumbocnt, minicnt, stdcnt, ti_len;
2748
2749	TI_LOCK_ASSERT(sc);
2750
2751	ifp = sc->ti_ifp;
2752
2753	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2754	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2755	if (if_getmtu(ifp) > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2756		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2757		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2758	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2759		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2760		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2761	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2762	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2763
2764	jumbocnt = minicnt = stdcnt = 0;
2765	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2766		struct ti_rx_desc *cur_rx;
2767		uint32_t rxidx;
2768		struct mbuf *m = NULL;
2769		uint16_t vlan_tag = 0;
2770		int have_tag = 0;
2771
2772		cur_rx =
2773		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2774		rxidx = cur_rx->ti_idx;
2775		ti_len = cur_rx->ti_len;
2776		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2777
2778		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2779			have_tag = 1;
2780			vlan_tag = cur_rx->ti_vlan_tag;
2781		}
2782
2783		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2784			jumbocnt++;
2785			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2786			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2787#ifndef TI_SF_BUF_JUMBO
2788			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2789				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2790				ti_discard_jumbo(sc, rxidx);
2791				continue;
2792			}
2793			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2794				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2795				ti_discard_jumbo(sc, rxidx);
2796				continue;
2797			}
2798			m->m_len = ti_len;
2799#else /* !TI_SF_BUF_JUMBO */
2800			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2801			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2802			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2803			    BUS_DMASYNC_POSTREAD);
2804			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2805			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2806				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2807				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2808				continue;
2809			}
2810			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2811				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2812				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2813				continue;
2814			}
2815#ifdef TI_JUMBO_HDRSPLIT
2816			if (sc->ti_hdrsplit)
2817				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2818					     ti_len, rxidx);
2819			else
2820#endif /* TI_JUMBO_HDRSPLIT */
2821			m_adj(m, ti_len - m->m_pkthdr.len);
2822#endif /* TI_SF_BUF_JUMBO */
2823		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2824			minicnt++;
2825			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2826			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2827			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2828				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2829				ti_discard_mini(sc, rxidx);
2830				continue;
2831			}
2832			if (ti_newbuf_mini(sc, rxidx) != 0) {
2833				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2834				ti_discard_mini(sc, rxidx);
2835				continue;
2836			}
2837			m->m_len = ti_len;
2838		} else {
2839			stdcnt++;
2840			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2841			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2842			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2843				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2844				ti_discard_std(sc, rxidx);
2845				continue;
2846			}
2847			if (ti_newbuf_std(sc, rxidx) != 0) {
2848				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2849				ti_discard_std(sc, rxidx);
2850				continue;
2851			}
2852			m->m_len = ti_len;
2853		}
2854
2855		m->m_pkthdr.len = ti_len;
2856		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2857		m->m_pkthdr.rcvif = ifp;
2858
2859		if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
2860			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2861				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2862				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2863					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2864			}
2865			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2866				m->m_pkthdr.csum_data =
2867				    cur_rx->ti_tcp_udp_cksum;
2868				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2869			}
2870		}
2871
2872		/*
2873		 * If we received a packet with a vlan tag,
2874		 * tag it before passing the packet upward.
2875		 */
2876		if (have_tag) {
2877			m->m_pkthdr.ether_vtag = vlan_tag;
2878			m->m_flags |= M_VLANTAG;
2879		}
2880		TI_UNLOCK(sc);
2881		if_input(ifp, m);
2882		TI_LOCK(sc);
2883	}
2884
2885	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2886	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2887	/* Only necessary on the Tigon 1. */
2888	if (sc->ti_hwrev == TI_HWREV_TIGON)
2889		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2890		    sc->ti_rx_saved_considx);
2891
2892	if (stdcnt > 0) {
2893		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2894		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2895		TI_UPDATE_STDPROD(sc, sc->ti_std);
2896	}
2897	if (minicnt > 0) {
2898		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2899		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2900		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2901	}
2902	if (jumbocnt > 0) {
2903		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2904		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2905		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2906	}
2907}
2908
2909static void
2910ti_txeof(struct ti_softc *sc)
2911{
2912	struct ti_txdesc *txd;
2913	struct ti_tx_desc txdesc;
2914	struct ti_tx_desc *cur_tx = NULL;
2915	if_t ifp;
2916	int idx;
2917
2918	ifp = sc->ti_ifp;
2919
2920	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2921	if (txd == NULL)
2922		return;
2923
2924	if (sc->ti_rdata.ti_tx_ring != NULL)
2925		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2926		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2927	/*
2928	 * Go through our tx ring and free mbufs for those
2929	 * frames that have been sent.
2930	 */
2931	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2932	    TI_INC(idx, TI_TX_RING_CNT)) {
2933		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2934			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2935			    sizeof(txdesc), &txdesc);
2936			cur_tx = &txdesc;
2937		} else
2938			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2939		sc->ti_txcnt--;
2940		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2941		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2942			continue;
2943		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2944		    BUS_DMASYNC_POSTWRITE);
2945		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2946
2947		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2948		m_freem(txd->tx_m);
2949		txd->tx_m = NULL;
2950		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2951		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2952		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2953	}
2954	sc->ti_tx_saved_considx = idx;
2955	if (sc->ti_txcnt == 0)
2956		sc->ti_timer = 0;
2957}
2958
2959static void
2960ti_intr(void *xsc)
2961{
2962	struct ti_softc *sc;
2963	if_t ifp;
2964
2965	sc = xsc;
2966	TI_LOCK(sc);
2967	ifp = sc->ti_ifp;
2968
2969	/* Make sure this is really our interrupt. */
2970	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2971		TI_UNLOCK(sc);
2972		return;
2973	}
2974
2975	/* Ack interrupt and stop others from occurring. */
2976	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2977
2978	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2979		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2980		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2981		/* Check RX return ring producer/consumer */
2982		ti_rxeof(sc);
2983
2984		/* Check TX ring producer/consumer */
2985		ti_txeof(sc);
2986		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2987		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
2988	}
2989
2990	ti_handle_events(sc);
2991
2992	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2993		/* Re-enable interrupts. */
2994		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2995		if (!if_sendq_empty(ifp))
2996			ti_start_locked(ifp);
2997	}
2998
2999	TI_UNLOCK(sc);
3000}
3001
3002static uint64_t
3003ti_get_counter(if_t ifp, ift_counter cnt)
3004{
3005
3006	switch (cnt) {
3007	case IFCOUNTER_COLLISIONS:
3008	    {
3009		struct ti_softc *sc;
3010		struct ti_stats *s;
3011		uint64_t rv;
3012
3013		sc = if_getsoftc(ifp);
3014		s = &sc->ti_rdata.ti_info->ti_stats;
3015
3016		TI_LOCK(sc);
3017		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3018		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3019		rv = s->dot3StatsSingleCollisionFrames +
3020		    s->dot3StatsMultipleCollisionFrames +
3021		    s->dot3StatsExcessiveCollisions +
3022		    s->dot3StatsLateCollisions;
3023		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3024		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3025		TI_UNLOCK(sc);
3026		return (rv);
3027	    }
3028	default:
3029		return (if_get_counter_default(ifp, cnt));
3030	}
3031}
3032
3033/*
3034 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3035 * pointers to descriptors.
3036 */
3037static int
3038ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3039{
3040	struct ti_txdesc *txd;
3041	struct ti_tx_desc *f;
3042	struct ti_tx_desc txdesc;
3043	struct mbuf *m;
3044	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3045	uint16_t csum_flags;
3046	int error, frag, i, nseg;
3047
3048	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3049		return (ENOBUFS);
3050
3051	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3052	    *m_head, txsegs, &nseg, 0);
3053	if (error == EFBIG) {
3054		m = m_defrag(*m_head, M_NOWAIT);
3055		if (m == NULL) {
3056			m_freem(*m_head);
3057			*m_head = NULL;
3058			return (ENOMEM);
3059		}
3060		*m_head = m;
3061		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3062		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3063		if (error) {
3064			m_freem(*m_head);
3065			*m_head = NULL;
3066			return (error);
3067		}
3068	} else if (error != 0)
3069		return (error);
3070	if (nseg == 0) {
3071		m_freem(*m_head);
3072		*m_head = NULL;
3073		return (EIO);
3074	}
3075
3076	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3077		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3078		return (ENOBUFS);
3079	}
3080	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3081	    BUS_DMASYNC_PREWRITE);
3082
3083	m = *m_head;
3084	csum_flags = 0;
3085	if (m->m_pkthdr.csum_flags & CSUM_IP)
3086		csum_flags |= TI_BDFLAG_IP_CKSUM;
3087	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3088		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3089
3090	frag = sc->ti_tx_saved_prodidx;
3091	for (i = 0; i < nseg; i++) {
3092		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3093			bzero(&txdesc, sizeof(txdesc));
3094			f = &txdesc;
3095		} else
3096			f = &sc->ti_rdata.ti_tx_ring[frag];
3097		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3098		f->ti_len = txsegs[i].ds_len;
3099		f->ti_flags = csum_flags;
3100		if (m->m_flags & M_VLANTAG) {
3101			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3102			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3103		} else {
3104			f->ti_vlan_tag = 0;
3105		}
3106
3107		if (sc->ti_hwrev == TI_HWREV_TIGON)
3108			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3109			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3110		TI_INC(frag, TI_TX_RING_CNT);
3111	}
3112
3113	sc->ti_tx_saved_prodidx = frag;
3114	/* set TI_BDFLAG_END on the last descriptor */
3115	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3116	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3117		txdesc.ti_flags |= TI_BDFLAG_END;
3118		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3119		    sizeof(txdesc), &txdesc);
3120	} else
3121		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3122
3123	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3124	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3125	txd->tx_m = m;
3126	sc->ti_txcnt += nseg;
3127
3128	return (0);
3129}
3130
3131static void
3132ti_start(if_t ifp)
3133{
3134	struct ti_softc *sc;
3135
3136	sc = if_getsoftc(ifp);
3137	TI_LOCK(sc);
3138	ti_start_locked(ifp);
3139	TI_UNLOCK(sc);
3140}
3141
3142/*
3143 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3144 * to the mbuf data regions directly in the transmit descriptors.
3145 */
3146static void
3147ti_start_locked(if_t ifp)
3148{
3149	struct ti_softc *sc;
3150	struct mbuf *m_head = NULL;
3151	int enq = 0;
3152
3153	sc = if_getsoftc(ifp);
3154
3155	for (; !if_sendq_empty(ifp) &&
3156	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3157		m_head = if_dequeue(ifp);
3158		if (m_head == NULL)
3159			break;
3160
3161		/*
3162		 * Pack the data into the transmit ring. If we
3163		 * don't have room, set the OACTIVE flag and wait
3164		 * for the NIC to drain the ring.
3165		 */
3166		if (ti_encap(sc, &m_head)) {
3167			if (m_head == NULL)
3168				break;
3169			if_sendq_prepend(ifp, m_head);
3170			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3171			break;
3172		}
3173
3174		enq++;
3175		/*
3176		 * If there's a BPF listener, bounce a copy of this frame
3177		 * to him.
3178		 */
3179		ETHER_BPF_MTAP(ifp, m_head);
3180	}
3181
3182	if (enq > 0) {
3183		if (sc->ti_rdata.ti_tx_ring != NULL)
3184			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3185			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3186		/* Transmit */
3187		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3188
3189		/*
3190		 * Set a timeout in case the chip goes out to lunch.
3191		 */
3192		sc->ti_timer = 5;
3193	}
3194}
3195
3196static void
3197ti_init(void *xsc)
3198{
3199	struct ti_softc *sc;
3200
3201	sc = xsc;
3202	TI_LOCK(sc);
3203	ti_init_locked(sc);
3204	TI_UNLOCK(sc);
3205}
3206
3207static void
3208ti_init_locked(void *xsc)
3209{
3210	struct ti_softc *sc = xsc;
3211
3212	if (if_getdrvflags(sc->ti_ifp) & IFF_DRV_RUNNING)
3213		return;
3214
3215	/* Cancel pending I/O and flush buffers. */
3216	ti_stop(sc);
3217
3218	/* Init the gen info block, ring control blocks and firmware. */
3219	if (ti_gibinit(sc)) {
3220		device_printf(sc->ti_dev, "initialization failure\n");
3221		return;
3222	}
3223}
3224
3225static void ti_init2(struct ti_softc *sc)
3226{
3227	struct ti_cmd_desc cmd;
3228	if_t ifp;
3229	uint8_t *ea;
3230	struct ifmedia *ifm;
3231	int tmp;
3232
3233	TI_LOCK_ASSERT(sc);
3234
3235	ifp = sc->ti_ifp;
3236
3237	/* Specify MTU and interface index. */
3238	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3239	CSR_WRITE_4(sc, TI_GCR_IFMTU, if_getmtu(ifp) +
3240	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3241	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3242
3243	/* Load our MAC address. */
3244	ea = if_getlladdr(sc->ti_ifp);
3245	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3246	CSR_WRITE_4(sc, TI_GCR_PAR1,
3247	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3248	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3249
3250	/* Enable or disable promiscuous mode as needed. */
3251	if (if_getflags(ifp) & IFF_PROMISC) {
3252		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3253	} else {
3254		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3255	}
3256
3257	/* Program multicast filter. */
3258	ti_setmulti(sc);
3259
3260	/*
3261	 * If this is a Tigon 1, we should tell the
3262	 * firmware to use software packet filtering.
3263	 */
3264	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3265		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3266	}
3267
3268	/* Init RX ring. */
3269	if (ti_init_rx_ring_std(sc) != 0) {
3270		/* XXX */
3271		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3272		return;
3273	}
3274
3275	/* Init jumbo RX ring. */
3276	if (if_getmtu(ifp) > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3277		if (ti_init_rx_ring_jumbo(sc) != 0) {
3278			/* XXX */
3279			device_printf(sc->ti_dev,
3280			    "no memory for jumbo Rx buffers.\n");
3281			return;
3282		}
3283	}
3284
3285	/*
3286	 * If this is a Tigon 2, we can also configure the
3287	 * mini ring.
3288	 */
3289	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3290		if (ti_init_rx_ring_mini(sc) != 0) {
3291			/* XXX */
3292			device_printf(sc->ti_dev,
3293			    "no memory for mini Rx buffers.\n");
3294			return;
3295		}
3296	}
3297
3298	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3299	sc->ti_rx_saved_considx = 0;
3300
3301	/* Init TX ring. */
3302	ti_init_tx_ring(sc);
3303
3304	/* Tell firmware we're alive. */
3305	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3306
3307	/* Enable host interrupts. */
3308	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3309
3310	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3311	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3312	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3313
3314	/*
3315	 * Make sure to set media properly. We have to do this
3316	 * here since we have to issue commands in order to set
3317	 * the link negotiation and we can't issue commands until
3318	 * the firmware is running.
3319	 */
3320	ifm = &sc->ifmedia;
3321	tmp = ifm->ifm_media;
3322	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3323	ti_ifmedia_upd_locked(sc);
3324	ifm->ifm_media = tmp;
3325}
3326
3327/*
3328 * Set media options.
3329 */
3330static int
3331ti_ifmedia_upd(if_t ifp)
3332{
3333	struct ti_softc *sc;
3334	int error;
3335
3336	sc = if_getsoftc(ifp);
3337	TI_LOCK(sc);
3338	error = ti_ifmedia_upd_locked(sc);
3339	TI_UNLOCK(sc);
3340
3341	return (error);
3342}
3343
3344static int
3345ti_ifmedia_upd_locked(struct ti_softc *sc)
3346{
3347	struct ifmedia *ifm;
3348	struct ti_cmd_desc cmd;
3349	uint32_t flowctl;
3350
3351	ifm = &sc->ifmedia;
3352
3353	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3354		return (EINVAL);
3355
3356	flowctl = 0;
3357
3358	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3359	case IFM_AUTO:
3360		/*
3361		 * Transmit flow control doesn't work on the Tigon 1.
3362		 */
3363		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3364
3365		/*
3366		 * Transmit flow control can also cause problems on the
3367		 * Tigon 2, apparently with both the copper and fiber
3368		 * boards.  The symptom is that the interface will just
3369		 * hang.  This was reproduced with Alteon 180 switches.
3370		 */
3371#if 0
3372		if (sc->ti_hwrev != TI_HWREV_TIGON)
3373			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3374#endif
3375
3376		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3377		    TI_GLNK_FULL_DUPLEX| flowctl |
3378		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3379
3380		flowctl = TI_LNK_RX_FLOWCTL_Y;
3381#if 0
3382		if (sc->ti_hwrev != TI_HWREV_TIGON)
3383			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3384#endif
3385
3386		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3387		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3388		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3389		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3390		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3391		break;
3392	case IFM_1000_SX:
3393	case IFM_1000_T:
3394		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3395#if 0
3396		if (sc->ti_hwrev != TI_HWREV_TIGON)
3397			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3398#endif
3399
3400		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3401		    flowctl |TI_GLNK_ENB);
3402		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3403		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3404			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3405		}
3406		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3407		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3408		break;
3409	case IFM_100_FX:
3410	case IFM_10_FL:
3411	case IFM_100_TX:
3412	case IFM_10_T:
3413		flowctl = TI_LNK_RX_FLOWCTL_Y;
3414#if 0
3415		if (sc->ti_hwrev != TI_HWREV_TIGON)
3416			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3417#endif
3418
3419		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3420		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3421		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3422		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3423			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3424		} else {
3425			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3426		}
3427		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3428			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3429		} else {
3430			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3431		}
3432		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3433		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3434		break;
3435	}
3436
3437	return (0);
3438}
3439
3440/*
3441 * Report current media status.
3442 */
3443static void
3444ti_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
3445{
3446	struct ti_softc *sc;
3447	uint32_t media = 0;
3448
3449	sc = if_getsoftc(ifp);
3450
3451	TI_LOCK(sc);
3452
3453	ifmr->ifm_status = IFM_AVALID;
3454	ifmr->ifm_active = IFM_ETHER;
3455
3456	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3457		TI_UNLOCK(sc);
3458		return;
3459	}
3460
3461	ifmr->ifm_status |= IFM_ACTIVE;
3462
3463	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3464		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3465		if (sc->ti_copper)
3466			ifmr->ifm_active |= IFM_1000_T;
3467		else
3468			ifmr->ifm_active |= IFM_1000_SX;
3469		if (media & TI_GLNK_FULL_DUPLEX)
3470			ifmr->ifm_active |= IFM_FDX;
3471		else
3472			ifmr->ifm_active |= IFM_HDX;
3473	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3474		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3475		if (sc->ti_copper) {
3476			if (media & TI_LNK_100MB)
3477				ifmr->ifm_active |= IFM_100_TX;
3478			if (media & TI_LNK_10MB)
3479				ifmr->ifm_active |= IFM_10_T;
3480		} else {
3481			if (media & TI_LNK_100MB)
3482				ifmr->ifm_active |= IFM_100_FX;
3483			if (media & TI_LNK_10MB)
3484				ifmr->ifm_active |= IFM_10_FL;
3485		}
3486		if (media & TI_LNK_FULL_DUPLEX)
3487			ifmr->ifm_active |= IFM_FDX;
3488		if (media & TI_LNK_HALF_DUPLEX)
3489			ifmr->ifm_active |= IFM_HDX;
3490	}
3491	TI_UNLOCK(sc);
3492}
3493
3494static int
3495ti_ioctl(if_t ifp, u_long command, caddr_t data)
3496{
3497	struct ti_softc *sc = if_getsoftc(ifp);
3498	struct ifreq *ifr = (struct ifreq *) data;
3499	struct ti_cmd_desc cmd;
3500	int mask, error = 0;
3501
3502	switch (command) {
3503	case SIOCSIFMTU:
3504		TI_LOCK(sc);
3505		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3506			error = EINVAL;
3507		else {
3508			if_setmtu(ifp, ifr->ifr_mtu);
3509			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3510				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3511				ti_init_locked(sc);
3512			}
3513		}
3514		TI_UNLOCK(sc);
3515		break;
3516	case SIOCSIFFLAGS:
3517		TI_LOCK(sc);
3518		if (if_getflags(ifp) & IFF_UP) {
3519			/*
3520			 * If only the state of the PROMISC flag changed,
3521			 * then just use the 'set promisc mode' command
3522			 * instead of reinitializing the entire NIC. Doing
3523			 * a full re-init means reloading the firmware and
3524			 * waiting for it to start up, which may take a
3525			 * second or two.
3526			 */
3527			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
3528			    if_getflags(ifp) & IFF_PROMISC &&
3529			    !(sc->ti_if_flags & IFF_PROMISC)) {
3530				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3531				    TI_CMD_CODE_PROMISC_ENB, 0);
3532			} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
3533			    !(if_getflags(ifp) & IFF_PROMISC) &&
3534			    sc->ti_if_flags & IFF_PROMISC) {
3535				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3536				    TI_CMD_CODE_PROMISC_DIS, 0);
3537			} else
3538				ti_init_locked(sc);
3539		} else {
3540			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3541				ti_stop(sc);
3542			}
3543		}
3544		sc->ti_if_flags = if_getflags(ifp);
3545		TI_UNLOCK(sc);
3546		break;
3547	case SIOCADDMULTI:
3548	case SIOCDELMULTI:
3549		TI_LOCK(sc);
3550		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3551			ti_setmulti(sc);
3552		TI_UNLOCK(sc);
3553		break;
3554	case SIOCSIFMEDIA:
3555	case SIOCGIFMEDIA:
3556		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3557		break;
3558	case SIOCSIFCAP:
3559		TI_LOCK(sc);
3560		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3561		if ((mask & IFCAP_TXCSUM) != 0 &&
3562		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
3563			if_togglecapenable(ifp, IFCAP_TXCSUM);
3564			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
3565				if_sethwassistbits(ifp, TI_CSUM_FEATURES, 0);
3566                        else
3567				if_sethwassistbits(ifp, 0, TI_CSUM_FEATURES);
3568                }
3569		if ((mask & IFCAP_RXCSUM) != 0 &&
3570		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
3571			if_togglecapenable(ifp, IFCAP_RXCSUM);
3572		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3573		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3574                        if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3575		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3576		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
3577			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3578		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3579		    IFCAP_VLAN_HWTAGGING)) != 0) {
3580			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3581				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3582				ti_init_locked(sc);
3583			}
3584		}
3585		TI_UNLOCK(sc);
3586		VLAN_CAPABILITIES(ifp);
3587		break;
3588	default:
3589		error = ether_ioctl(ifp, command, data);
3590		break;
3591	}
3592
3593	return (error);
3594}
3595
3596static int
3597ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3598{
3599	struct ti_softc *sc;
3600
3601	sc = dev->si_drv1;
3602	if (sc == NULL)
3603		return (ENODEV);
3604
3605	TI_LOCK(sc);
3606	sc->ti_flags |= TI_FLAG_DEBUGING;
3607	TI_UNLOCK(sc);
3608
3609	return (0);
3610}
3611
3612static int
3613ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3614{
3615	struct ti_softc *sc;
3616
3617	sc = dev->si_drv1;
3618	if (sc == NULL)
3619		return (ENODEV);
3620
3621	TI_LOCK(sc);
3622	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3623	TI_UNLOCK(sc);
3624
3625	return (0);
3626}
3627
3628/*
3629 * This ioctl routine goes along with the Tigon character device.
3630 */
3631static int
3632ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3633    struct thread *td)
3634{
3635	struct ti_softc *sc;
3636	int error;
3637
3638	sc = dev->si_drv1;
3639	if (sc == NULL)
3640		return (ENODEV);
3641
3642	error = 0;
3643
3644	switch (cmd) {
3645	case TIIOCGETSTATS:
3646	{
3647		struct ti_stats *outstats;
3648
3649		outstats = (struct ti_stats *)addr;
3650
3651		TI_LOCK(sc);
3652		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3653		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3654		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3655		    sizeof(struct ti_stats));
3656		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3657		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3658		TI_UNLOCK(sc);
3659		break;
3660	}
3661	case TIIOCGETPARAMS:
3662	{
3663		struct ti_params *params;
3664
3665		params = (struct ti_params *)addr;
3666
3667		TI_LOCK(sc);
3668		params->ti_stat_ticks = sc->ti_stat_ticks;
3669		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3670		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3671		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3672		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3673		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3674		params->param_mask = TI_PARAM_ALL;
3675		TI_UNLOCK(sc);
3676		break;
3677	}
3678	case TIIOCSETPARAMS:
3679	{
3680		struct ti_params *params;
3681
3682		params = (struct ti_params *)addr;
3683
3684		TI_LOCK(sc);
3685		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3686			sc->ti_stat_ticks = params->ti_stat_ticks;
3687			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3688		}
3689
3690		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3691			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3692			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3693				    sc->ti_rx_coal_ticks);
3694		}
3695
3696		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3697			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3698			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3699				    sc->ti_tx_coal_ticks);
3700		}
3701
3702		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3703			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3704			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3705				    sc->ti_rx_max_coal_bds);
3706		}
3707
3708		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3709			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3710			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3711				    sc->ti_tx_max_coal_bds);
3712		}
3713
3714		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3715			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3716			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3717				    sc->ti_tx_buf_ratio);
3718		}
3719		TI_UNLOCK(sc);
3720		break;
3721	}
3722	case TIIOCSETTRACE: {
3723		ti_trace_type trace_type;
3724
3725		trace_type = *(ti_trace_type *)addr;
3726
3727		/*
3728		 * Set tracing to whatever the user asked for.  Setting
3729		 * this register to 0 should have the effect of disabling
3730		 * tracing.
3731		 */
3732		TI_LOCK(sc);
3733		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3734		TI_UNLOCK(sc);
3735		break;
3736	}
3737	case TIIOCGETTRACE: {
3738		struct ti_trace_buf *trace_buf;
3739		uint32_t trace_start, cur_trace_ptr, trace_len;
3740
3741		trace_buf = (struct ti_trace_buf *)addr;
3742
3743		TI_LOCK(sc);
3744		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3745		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3746		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3747#if 0
3748		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3749		       "trace_len = %d\n", trace_start,
3750		       cur_trace_ptr, trace_len);
3751		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3752		       trace_buf->buf_len);
3753#endif
3754		error = ti_copy_mem(sc, trace_start, min(trace_len,
3755		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3756		if (error == 0) {
3757			trace_buf->fill_len = min(trace_len,
3758			    trace_buf->buf_len);
3759			if (cur_trace_ptr < trace_start)
3760				trace_buf->cur_trace_ptr =
3761				    trace_start - cur_trace_ptr;
3762			else
3763				trace_buf->cur_trace_ptr =
3764				    cur_trace_ptr - trace_start;
3765		} else
3766			trace_buf->fill_len = 0;
3767		TI_UNLOCK(sc);
3768		break;
3769	}
3770
3771	/*
3772	 * For debugging, five ioctls are needed:
3773	 * ALT_ATTACH
3774	 * ALT_READ_TG_REG
3775	 * ALT_WRITE_TG_REG
3776	 * ALT_READ_TG_MEM
3777	 * ALT_WRITE_TG_MEM
3778	 */
3779	case ALT_ATTACH:
3780		/*
3781		 * From what I can tell, Alteon's Solaris Tigon driver
3782		 * only has one character device, so you have to attach
3783		 * to the Tigon board you're interested in.  This seems
3784		 * like a not-so-good way to do things, since unless you
3785		 * subsequently specify the unit number of the device
3786		 * you're interested in every ioctl, you'll only be
3787		 * able to debug one board at a time.
3788		 */
3789		break;
3790	case ALT_READ_TG_MEM:
3791	case ALT_WRITE_TG_MEM:
3792	{
3793		struct tg_mem *mem_param;
3794		uint32_t sram_end, scratch_end;
3795
3796		mem_param = (struct tg_mem *)addr;
3797
3798		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3799			sram_end = TI_END_SRAM_I;
3800			scratch_end = TI_END_SCRATCH_I;
3801		} else {
3802			sram_end = TI_END_SRAM_II;
3803			scratch_end = TI_END_SCRATCH_II;
3804		}
3805
3806		/*
3807		 * For now, we'll only handle accessing regular SRAM,
3808		 * nothing else.
3809		 */
3810		TI_LOCK(sc);
3811		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3812		    mem_param->tgAddr + mem_param->len <= sram_end) {
3813			/*
3814			 * In this instance, we always copy to/from user
3815			 * space, so the user space argument is set to 1.
3816			 */
3817			error = ti_copy_mem(sc, mem_param->tgAddr,
3818			    mem_param->len, mem_param->userAddr, 1,
3819			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3820		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3821		    mem_param->tgAddr <= scratch_end) {
3822			error = ti_copy_scratch(sc, mem_param->tgAddr,
3823			    mem_param->len, mem_param->userAddr, 1,
3824			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3825		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3826		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3827			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3828				if_printf(sc->ti_ifp,
3829				    "invalid memory range for Tigon I\n");
3830				error = EINVAL;
3831				break;
3832			}
3833			error = ti_copy_scratch(sc, mem_param->tgAddr -
3834			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3835			    mem_param->userAddr, 1,
3836			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3837		} else {
3838			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3839			        "out of supported range\n",
3840			        mem_param->tgAddr, mem_param->len);
3841			error = EINVAL;
3842		}
3843		TI_UNLOCK(sc);
3844		break;
3845	}
3846	case ALT_READ_TG_REG:
3847	case ALT_WRITE_TG_REG:
3848	{
3849		struct tg_reg *regs;
3850		uint32_t tmpval;
3851
3852		regs = (struct tg_reg *)addr;
3853
3854		/*
3855		 * Make sure the address in question isn't out of range.
3856		 */
3857		if (regs->addr > TI_REG_MAX) {
3858			error = EINVAL;
3859			break;
3860		}
3861		TI_LOCK(sc);
3862		if (cmd == ALT_READ_TG_REG) {
3863			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3864			    regs->addr, &tmpval, 1);
3865			regs->data = ntohl(tmpval);
3866#if 0
3867			if ((regs->addr == TI_CPU_STATE)
3868			 || (regs->addr == TI_CPU_CTL_B)) {
3869				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3870				       regs->addr, tmpval);
3871			}
3872#endif
3873		} else {
3874			tmpval = htonl(regs->data);
3875			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3876			    regs->addr, &tmpval, 1);
3877		}
3878		TI_UNLOCK(sc);
3879		break;
3880	}
3881	default:
3882		error = ENOTTY;
3883		break;
3884	}
3885	return (error);
3886}
3887
3888static void
3889ti_watchdog(void *arg)
3890{
3891	struct ti_softc *sc;
3892	if_t ifp;
3893
3894	sc = arg;
3895	TI_LOCK_ASSERT(sc);
3896	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3897	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3898		return;
3899
3900	/*
3901	 * When we're debugging, the chip is often stopped for long periods
3902	 * of time, and that would normally cause the watchdog timer to fire.
3903	 * Since that impedes debugging, we don't want to do that.
3904	 */
3905	if (sc->ti_flags & TI_FLAG_DEBUGING)
3906		return;
3907
3908	ifp = sc->ti_ifp;
3909	if_printf(ifp, "watchdog timeout -- resetting\n");
3910	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3911	ti_init_locked(sc);
3912
3913	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3914}
3915
3916/*
3917 * Stop the adapter and free any mbufs allocated to the
3918 * RX and TX lists.
3919 */
3920static void
3921ti_stop(struct ti_softc *sc)
3922{
3923	if_t ifp;
3924	struct ti_cmd_desc cmd;
3925
3926	TI_LOCK_ASSERT(sc);
3927
3928	ifp = sc->ti_ifp;
3929
3930	/* Disable host interrupts. */
3931	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3932	/*
3933	 * Tell firmware we're shutting down.
3934	 */
3935	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3936
3937	/* Halt and reinitialize. */
3938	if (ti_chipinit(sc) == 0) {
3939		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3940		/* XXX ignore init errors. */
3941		ti_chipinit(sc);
3942	}
3943
3944	/* Free the RX lists. */
3945	ti_free_rx_ring_std(sc);
3946
3947	/* Free jumbo RX list. */
3948	ti_free_rx_ring_jumbo(sc);
3949
3950	/* Free mini RX list. */
3951	ti_free_rx_ring_mini(sc);
3952
3953	/* Free TX buffers. */
3954	ti_free_tx_ring(sc);
3955
3956	sc->ti_ev_prodidx.ti_idx = 0;
3957	sc->ti_return_prodidx.ti_idx = 0;
3958	sc->ti_tx_considx.ti_idx = 0;
3959	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3960
3961	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3962	callout_stop(&sc->ti_watchdog);
3963}
3964
3965/*
3966 * Stop all chip I/O so that the kernel's probe routines don't
3967 * get confused by errant DMAs when rebooting.
3968 */
3969static int
3970ti_shutdown(device_t dev)
3971{
3972	struct ti_softc *sc;
3973
3974	sc = device_get_softc(dev);
3975	TI_LOCK(sc);
3976	ti_chipinit(sc);
3977	TI_UNLOCK(sc);
3978
3979	return (0);
3980}
3981
3982static void
3983ti_sysctl_node(struct ti_softc *sc)
3984{
3985	struct sysctl_ctx_list *ctx;
3986	struct sysctl_oid_list *child;
3987	char tname[32];
3988
3989	ctx = device_get_sysctl_ctx(sc->ti_dev);
3990	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
3991
3992	/* Use DAC */
3993	sc->ti_dac = 1;
3994	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
3995	    device_get_unit(sc->ti_dev));
3996	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
3997
3998	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
3999	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
4000	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
4001	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
4002
4003	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
4004	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4005	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4006	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4007	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4008	    &sc->ti_tx_buf_ratio, 0,
4009	    "Ratio of NIC memory devoted to TX buffer");
4010
4011	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4012	    &sc->ti_stat_ticks, 0,
4013	    "Number of clock ticks for statistics update interval");
4014
4015	/* Pull in device tunables. */
4016	sc->ti_rx_coal_ticks = 170;
4017	resource_int_value(device_get_name(sc->ti_dev),
4018	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4019	    &sc->ti_rx_coal_ticks);
4020	sc->ti_rx_max_coal_bds = 64;
4021	resource_int_value(device_get_name(sc->ti_dev),
4022	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4023	    &sc->ti_rx_max_coal_bds);
4024
4025	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4026	resource_int_value(device_get_name(sc->ti_dev),
4027	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4028	    &sc->ti_tx_coal_ticks);
4029	sc->ti_tx_max_coal_bds = 32;
4030	resource_int_value(device_get_name(sc->ti_dev),
4031	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4032	    &sc->ti_tx_max_coal_bds);
4033	sc->ti_tx_buf_ratio = 21;
4034	resource_int_value(device_get_name(sc->ti_dev),
4035	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4036	    &sc->ti_tx_buf_ratio);
4037
4038	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4039	resource_int_value(device_get_name(sc->ti_dev),
4040	    device_get_unit(sc->ti_dev), "stat_ticks",
4041	    &sc->ti_stat_ticks);
4042}
4043