1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5 *  PCI-SCSI controllers.
6 *
7 *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
8 *
9 *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
10 *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11 *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
12 *
13 *
14 *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15 *  Copyright (C) 1998-1999  Gerard Roudier
16 *
17 *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18 *  a port of the FreeBSD ncr driver to Linux-1.2.13.
19 *
20 *  The original ncr driver has been written for 386bsd and FreeBSD by
21 *          Wolfgang Stanglmeier        <wolf@cologne.de>
22 *          Stefan Esser                <se@mi.Uni-Koeln.de>
23 *  Copyright (C) 1994  Wolfgang Stanglmeier
24 *
25 *  The initialisation code, and part of the code that addresses
26 *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27 *  written by Justin T. Gibbs.
28 *
29 *  Other major contributions:
30 *
31 *  NVRAM detection and reading.
32 *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33 *
34 *-----------------------------------------------------------------------------
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. The name of the author may not be used to endorse or promote products
45 *    derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 */
59
60#include <sys/cdefs.h>
61#define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62
63/* #define SYM_DEBUG_GENERIC_SUPPORT */
64
65#include <sys/param.h>
66
67/*
68 *  Driver configuration options.
69 */
70#include "opt_sym.h"
71#include <dev/sym/sym_conf.h>
72
73#include <sys/systm.h>
74#include <sys/malloc.h>
75#include <sys/endian.h>
76#include <sys/kernel.h>
77#include <sys/lock.h>
78#include <sys/mutex.h>
79#include <sys/module.h>
80#include <sys/bus.h>
81
82#include <sys/proc.h>
83
84#include <dev/pci/pcireg.h>
85#include <dev/pci/pcivar.h>
86
87#include <machine/bus.h>
88#include <machine/resource.h>
89#include <machine/atomic.h>
90
91#include <sys/rman.h>
92
93#include <cam/cam.h>
94#include <cam/cam_ccb.h>
95#include <cam/cam_sim.h>
96#include <cam/cam_xpt_sim.h>
97#include <cam/cam_debug.h>
98
99#include <cam/scsi/scsi_all.h>
100#include <cam/scsi/scsi_message.h>
101
102/* Short and quite clear integer types */
103typedef int8_t    s8;
104typedef int16_t   s16;
105typedef	int32_t   s32;
106typedef u_int8_t  u8;
107typedef u_int16_t u16;
108typedef	u_int32_t u32;
109
110/*
111 *  Driver definitions.
112 */
113#include <dev/sym/sym_defs.h>
114#include <dev/sym/sym_fw.h>
115
116/*
117 *  IA32 architecture does not reorder STORES and prevents
118 *  LOADS from passing STORES. It is called `program order'
119 *  by Intel and allows device drivers to deal with memory
120 *  ordering by only ensuring that the code is not reordered
121 *  by the compiler when ordering is required.
122 *  Other architectures implement a weaker ordering that
123 *  requires memory barriers (and also IO barriers when they
124 *  make sense) to be used.
125 */
126#if	defined	__i386__ || defined __amd64__
127#define MEMORY_BARRIER()	do { ; } while(0)
128#elif	defined	__powerpc__
129#define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
130#elif	defined	__arm__
131#define MEMORY_BARRIER()	dmb()
132#elif	defined	__aarch64__
133#define MEMORY_BARRIER()	dmb(sy)
134#elif	defined __riscv
135#define MEMORY_BARRIER()	fence()
136#else
137#error	"Not supported platform"
138#endif
139
140/*
141 *  A la VMS/CAM-3 queue management.
142 */
143typedef struct sym_quehead {
144	struct sym_quehead *flink;	/* Forward  pointer */
145	struct sym_quehead *blink;	/* Backward pointer */
146} SYM_QUEHEAD;
147
148#define sym_que_init(ptr) do { \
149	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
150} while (0)
151
152static __inline void __sym_que_add(struct sym_quehead * new,
153	struct sym_quehead * blink,
154	struct sym_quehead * flink)
155{
156	flink->blink	= new;
157	new->flink	= flink;
158	new->blink	= blink;
159	blink->flink	= new;
160}
161
162static __inline void __sym_que_del(struct sym_quehead * blink,
163	struct sym_quehead * flink)
164{
165	flink->blink = blink;
166	blink->flink = flink;
167}
168
169static __inline int sym_que_empty(struct sym_quehead *head)
170{
171	return head->flink == head;
172}
173
174static __inline void sym_que_splice(struct sym_quehead *list,
175	struct sym_quehead *head)
176{
177	struct sym_quehead *first = list->flink;
178
179	if (first != list) {
180		struct sym_quehead *last = list->blink;
181		struct sym_quehead *at   = head->flink;
182
183		first->blink = head;
184		head->flink  = first;
185
186		last->flink = at;
187		at->blink   = last;
188	}
189}
190
191#define sym_que_entry(ptr, type, member) \
192	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
193
194#define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
195
196#define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
197
198#define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
199
200static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
201{
202	struct sym_quehead *elem = head->flink;
203
204	if (elem != head)
205		__sym_que_del(head, elem->flink);
206	else
207		elem = NULL;
208	return elem;
209}
210
211#define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
212
213/*
214 *  This one may be useful.
215 */
216#define FOR_EACH_QUEUED_ELEMENT(head, qp) \
217	for (qp = (head)->flink; qp != (head); qp = qp->flink)
218/*
219 *  FreeBSD does not offer our kind of queue in the CAM CCB.
220 *  So, we have to cast.
221 */
222#define sym_qptr(p)	((struct sym_quehead *) (p))
223
224/*
225 *  Simple bitmap operations.
226 */
227#define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
228#define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
229#define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
230
231/*
232 *  Number of tasks per device we want to handle.
233 */
234#if	SYM_CONF_MAX_TAG_ORDER > 8
235#error	"more than 256 tags per logical unit not allowed."
236#endif
237#define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
238
239/*
240 *  Donnot use more tasks that we can handle.
241 */
242#ifndef	SYM_CONF_MAX_TAG
243#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
244#endif
245#if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
246#undef	SYM_CONF_MAX_TAG
247#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
248#endif
249
250/*
251 *    This one means 'NO TAG for this job'
252 */
253#define NO_TAG	(256)
254
255/*
256 *  Number of SCSI targets.
257 */
258#if	SYM_CONF_MAX_TARGET > 16
259#error	"more than 16 targets not allowed."
260#endif
261
262/*
263 *  Number of logical units per target.
264 */
265#if	SYM_CONF_MAX_LUN > 64
266#error	"more than 64 logical units per target not allowed."
267#endif
268
269/*
270 *    Asynchronous pre-scaler (ns). Shall be 40 for
271 *    the SCSI timings to be compliant.
272 */
273#define	SYM_CONF_MIN_ASYNC (40)
274
275/*
276 *  Number of entries in the START and DONE queues.
277 *
278 *  We limit to 1 PAGE in order to succeed allocation of
279 *  these queues. Each entry is 8 bytes long (2 DWORDS).
280 */
281#ifdef	SYM_CONF_MAX_START
282#define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
283#else
284#define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
285#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
286#endif
287
288#if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
289#undef	SYM_CONF_MAX_QUEUE
290#define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
291#undef	SYM_CONF_MAX_START
292#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
293#endif
294
295/*
296 *  For this one, we want a short name :-)
297 */
298#define MAX_QUEUE	SYM_CONF_MAX_QUEUE
299
300/*
301 *  Active debugging tags and verbosity.
302 */
303#define DEBUG_ALLOC	(0x0001)
304#define DEBUG_PHASE	(0x0002)
305#define DEBUG_POLL	(0x0004)
306#define DEBUG_QUEUE	(0x0008)
307#define DEBUG_RESULT	(0x0010)
308#define DEBUG_SCATTER	(0x0020)
309#define DEBUG_SCRIPT	(0x0040)
310#define DEBUG_TINY	(0x0080)
311#define DEBUG_TIMING	(0x0100)
312#define DEBUG_NEGO	(0x0200)
313#define DEBUG_TAGS	(0x0400)
314#define DEBUG_POINTER	(0x0800)
315
316#if 0
317static int sym_debug = 0;
318	#define DEBUG_FLAGS sym_debug
319#else
320/*	#define DEBUG_FLAGS (0x0631) */
321	#define DEBUG_FLAGS (0x0000)
322
323#endif
324#define sym_verbose	(np->verbose)
325
326/*
327 *  Insert a delay in micro-seconds and milli-seconds.
328 */
329static void UDELAY(int us) { DELAY(us); }
330static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
331
332/*
333 *  Simple power of two buddy-like allocator.
334 *
335 *  This simple code is not intended to be fast, but to
336 *  provide power of 2 aligned memory allocations.
337 *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
338 *  this allocator allows simple and fast address calculations
339 *  from the SCRIPTS code. In addition, cache line alignment
340 *  is guaranteed for power of 2 cache line size.
341 *
342 *  This allocator has been developed for the Linux sym53c8xx
343 *  driver, since this O/S does not provide naturally aligned
344 *  allocations.
345 *  It has the advantage of allowing the driver to use private
346 *  pages of memory that will be useful if we ever need to deal
347 *  with IO MMUs for PCI.
348 */
349#define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
350#define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
351#if 0
352#define MEMO_FREE_UNUSED	/* Free unused pages immediately */
353#endif
354#define MEMO_WARN	1
355#define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
356#define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
357#define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
358
359#define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
360#define free_pages(p)		free((p), M_DEVBUF)
361
362typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
363
364typedef struct m_link {		/* Link between free memory chunks */
365	struct m_link *next;
366} m_link_s;
367
368typedef struct m_vtob {		/* Virtual to Bus address translation */
369	struct m_vtob	*next;
370	bus_dmamap_t	dmamap;	/* Map for this chunk */
371	m_addr_t	vaddr;	/* Virtual address */
372	m_addr_t	baddr;	/* Bus physical address */
373} m_vtob_s;
374/* Hash this stuff a bit to speed up translations */
375#define VTOB_HASH_SHIFT		5
376#define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
377#define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
378#define VTOB_HASH_CODE(m)	\
379	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
380
381typedef struct m_pool {		/* Memory pool of a given kind */
382	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
383	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
384	m_addr_t (*getp)(struct m_pool *);
385#ifdef	MEMO_FREE_UNUSED
386	void (*freep)(struct m_pool *, m_addr_t);
387#endif
388#define M_GETP()		mp->getp(mp)
389#define M_FREEP(p)		mp->freep(mp, p)
390	int nump;
391	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
392	struct m_pool *next;
393	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
394} m_pool_s;
395
396static void *___sym_malloc(m_pool_s *mp, int size)
397{
398	int i = 0;
399	int s = (1 << MEMO_SHIFT);
400	int j;
401	m_addr_t a;
402	m_link_s *h = mp->h;
403
404	if (size > MEMO_CLUSTER_SIZE)
405		return NULL;
406
407	while (size > s) {
408		s <<= 1;
409		++i;
410	}
411
412	j = i;
413	while (!h[j].next) {
414		if (s == MEMO_CLUSTER_SIZE) {
415			h[j].next = (m_link_s *) M_GETP();
416			if (h[j].next)
417				h[j].next->next = NULL;
418			break;
419		}
420		++j;
421		s <<= 1;
422	}
423	a = (m_addr_t) h[j].next;
424	if (a) {
425		h[j].next = h[j].next->next;
426		while (j > i) {
427			j -= 1;
428			s >>= 1;
429			h[j].next = (m_link_s *) (a+s);
430			h[j].next->next = NULL;
431		}
432	}
433#ifdef DEBUG
434	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
435#endif
436	return (void *) a;
437}
438
439static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
440{
441	int i = 0;
442	int s = (1 << MEMO_SHIFT);
443	m_link_s *q;
444	m_addr_t a, b;
445	m_link_s *h = mp->h;
446
447#ifdef DEBUG
448	printf("___sym_mfree(%p, %d)\n", ptr, size);
449#endif
450
451	if (size > MEMO_CLUSTER_SIZE)
452		return;
453
454	while (size > s) {
455		s <<= 1;
456		++i;
457	}
458
459	a = (m_addr_t) ptr;
460
461	while (1) {
462#ifdef MEMO_FREE_UNUSED
463		if (s == MEMO_CLUSTER_SIZE) {
464			M_FREEP(a);
465			break;
466		}
467#endif
468		b = a ^ s;
469		q = &h[i];
470		while (q->next && q->next != (m_link_s *) b) {
471			q = q->next;
472		}
473		if (!q->next) {
474			((m_link_s *) a)->next = h[i].next;
475			h[i].next = (m_link_s *) a;
476			break;
477		}
478		q->next = q->next->next;
479		a = a & b;
480		s <<= 1;
481		++i;
482	}
483}
484
485static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
486{
487	void *p;
488
489	p = ___sym_malloc(mp, size);
490
491	if (DEBUG_FLAGS & DEBUG_ALLOC)
492		printf ("new %-10s[%4d] @%p.\n", name, size, p);
493
494	if (p)
495		bzero(p, size);
496	else if (uflags & MEMO_WARN)
497		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
498
499	return p;
500}
501
502#define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
503
504static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
505{
506	if (DEBUG_FLAGS & DEBUG_ALLOC)
507		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
508
509	___sym_mfree(mp, ptr, size);
510
511}
512
513/*
514 * Default memory pool we donnot need to involve in DMA.
515 */
516/*
517 * With the `bus dma abstraction', we use a separate pool for
518 * memory we donnot need to involve in DMA.
519 */
520static m_addr_t ___mp0_getp(m_pool_s *mp)
521{
522	m_addr_t m = (m_addr_t) get_pages();
523	if (m)
524		++mp->nump;
525	return m;
526}
527
528#ifdef	MEMO_FREE_UNUSED
529static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
530{
531	free_pages(m);
532	--mp->nump;
533}
534#endif
535
536#ifdef	MEMO_FREE_UNUSED
537static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
538#else
539static m_pool_s mp0 = {0, 0, ___mp0_getp};
540#endif
541
542/*
543 * Actual memory allocation routine for non-DMAed memory.
544 */
545static void *sym_calloc(int size, char *name)
546{
547	void *m;
548	/* Lock */
549	m = __sym_calloc(&mp0, size, name);
550	/* Unlock */
551	return m;
552}
553
554/*
555 * Actual memory allocation routine for non-DMAed memory.
556 */
557static void sym_mfree(void *ptr, int size, char *name)
558{
559	/* Lock */
560	__sym_mfree(&mp0, ptr, size, name);
561	/* Unlock */
562}
563
564/*
565 * DMAable pools.
566 */
567/*
568 * With `bus dma abstraction', we use a separate pool per parent
569 * BUS handle. A reverse table (hashed) is maintained for virtual
570 * to BUS address translation.
571 */
572static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __diagused,
573    int error)
574{
575	bus_addr_t *baddr;
576
577	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
578
579	baddr = (bus_addr_t *)arg;
580	if (error)
581		*baddr = 0;
582	else
583		*baddr = segs->ds_addr;
584}
585
586static m_addr_t ___dma_getp(m_pool_s *mp)
587{
588	m_vtob_s *vbp;
589	void *vaddr = NULL;
590	bus_addr_t baddr = 0;
591
592	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
593	if (!vbp)
594		goto out_err;
595
596	if (bus_dmamem_alloc(mp->dmat, &vaddr,
597			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
598		goto out_err;
599	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
600			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
601	if (baddr) {
602		int hc = VTOB_HASH_CODE(vaddr);
603		vbp->vaddr = (m_addr_t) vaddr;
604		vbp->baddr = (m_addr_t) baddr;
605		vbp->next = mp->vtob[hc];
606		mp->vtob[hc] = vbp;
607		++mp->nump;
608		return (m_addr_t) vaddr;
609	}
610out_err:
611	if (vaddr)
612		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
613	if (vbp)
614		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
615	return 0;
616}
617
618#ifdef	MEMO_FREE_UNUSED
619static void ___dma_freep(m_pool_s *mp, m_addr_t m)
620{
621	m_vtob_s **vbpp, *vbp;
622	int hc = VTOB_HASH_CODE(m);
623
624	vbpp = &mp->vtob[hc];
625	while (*vbpp && (*vbpp)->vaddr != m)
626		vbpp = &(*vbpp)->next;
627	if (*vbpp) {
628		vbp = *vbpp;
629		*vbpp = (*vbpp)->next;
630		bus_dmamap_unload(mp->dmat, vbp->dmamap);
631		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
632		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
633		--mp->nump;
634	}
635}
636#endif
637
638static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
639{
640	m_pool_s *mp;
641	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
642	return mp;
643}
644
645static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
646{
647	m_pool_s *mp = NULL;
648
649	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
650	if (mp) {
651		mp->dev_dmat = dev_dmat;
652		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
653			       BUS_SPACE_MAXADDR_32BIT,
654			       BUS_SPACE_MAXADDR,
655			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
656			       MEMO_CLUSTER_SIZE, 0,
657			       NULL, NULL, &mp->dmat)) {
658			mp->getp = ___dma_getp;
659#ifdef	MEMO_FREE_UNUSED
660			mp->freep = ___dma_freep;
661#endif
662			mp->next = mp0.next;
663			mp0.next = mp;
664			return mp;
665		}
666	}
667	if (mp)
668		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
669	return NULL;
670}
671
672#ifdef	MEMO_FREE_UNUSED
673static void ___del_dma_pool(m_pool_s *p)
674{
675	struct m_pool **pp = &mp0.next;
676
677	while (*pp && *pp != p)
678		pp = &(*pp)->next;
679	if (*pp) {
680		*pp = (*pp)->next;
681		bus_dma_tag_destroy(p->dmat);
682		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
683	}
684}
685#endif
686
687static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
688{
689	struct m_pool *mp;
690	void *m = NULL;
691
692	/* Lock */
693	mp = ___get_dma_pool(dev_dmat);
694	if (!mp)
695		mp = ___cre_dma_pool(dev_dmat);
696	if (mp)
697		m = __sym_calloc(mp, size, name);
698#ifdef	MEMO_FREE_UNUSED
699	if (mp && !mp->nump)
700		___del_dma_pool(mp);
701#endif
702	/* Unlock */
703
704	return m;
705}
706
707static void
708__sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
709{
710	struct m_pool *mp;
711
712	/* Lock */
713	mp = ___get_dma_pool(dev_dmat);
714	if (mp)
715		__sym_mfree(mp, m, size, name);
716#ifdef	MEMO_FREE_UNUSED
717	if (mp && !mp->nump)
718		___del_dma_pool(mp);
719#endif
720	/* Unlock */
721}
722
723static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
724{
725	m_pool_s *mp;
726	int hc = VTOB_HASH_CODE(m);
727	m_vtob_s *vp = NULL;
728	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
729
730	/* Lock */
731	mp = ___get_dma_pool(dev_dmat);
732	if (mp) {
733		vp = mp->vtob[hc];
734		while (vp && (m_addr_t) vp->vaddr != a)
735			vp = vp->next;
736	}
737	/* Unlock */
738	if (!vp)
739		panic("sym: VTOBUS FAILED!\n");
740	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
741}
742
743/*
744 * Verbs for DMAable memory handling.
745 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
746 * being discarded.
747 */
748#define _uvptv_(p) ((void *)((vm_offset_t)(p)))
749#define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
750#define _sym_mfree_dma(np, p, s, n)	\
751				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
752#define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
753#define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
754#define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
755#define vtobus(p)			_vtobus(np, p)
756
757/*
758 *  Print a buffer in hexadecimal format.
759 */
760static void sym_printb_hex (u_char *p, int n)
761{
762	while (n-- > 0)
763		printf (" %x", *p++);
764}
765
766/*
767 *  Same with a label at beginning and .\n at end.
768 */
769static void sym_printl_hex (char *label, u_char *p, int n)
770{
771	printf ("%s", label);
772	sym_printb_hex (p, n);
773	printf (".\n");
774}
775
776/*
777 *  Return a string for SCSI BUS mode.
778 */
779static const char *sym_scsi_bus_mode(int mode)
780{
781	switch(mode) {
782	case SMODE_HVD:	return "HVD";
783	case SMODE_SE:	return "SE";
784	case SMODE_LVD: return "LVD";
785	}
786	return "??";
787}
788
789/*
790 *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
791 */
792#ifdef SYM_CONF_NVRAM_SUPPORT
793static const u_char Tekram_sync[16] =
794	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
795#endif
796
797/*
798 *  Union of supported NVRAM formats.
799 */
800struct sym_nvram {
801	int type;
802#define	SYM_SYMBIOS_NVRAM	(1)
803#define	SYM_TEKRAM_NVRAM	(2)
804#ifdef	SYM_CONF_NVRAM_SUPPORT
805	union {
806		Symbios_nvram Symbios;
807		Tekram_nvram Tekram;
808	} data;
809#endif
810};
811
812/*
813 *  This one is hopefully useless, but actually useful. :-)
814 */
815#ifndef assert
816#define	assert(expression) { \
817	if (!(expression)) { \
818		(void)panic( \
819			"assertion \"%s\" failed: file \"%s\", line %d\n", \
820			#expression, \
821			__FILE__, __LINE__); \
822	} \
823}
824#endif
825
826/*
827 *  Some provision for a possible big endian mode supported by
828 *  Symbios chips (never seen, by the way).
829 *  For now, this stuff does not deserve any comments. :)
830 */
831#define sym_offb(o)	(o)
832#define sym_offw(o)	(o)
833
834/*
835 *  Some provision for support for BIG ENDIAN CPU.
836 */
837#define cpu_to_scr(dw)	htole32(dw)
838#define scr_to_cpu(dw)	le32toh(dw)
839
840/*
841 *  Access to the chip IO registers and on-chip RAM.
842 *  We use the `bus space' interface under FreeBSD-4 and
843 *  later kernel versions.
844 */
845#if defined(SYM_CONF_IOMAPPED)
846
847#define INB_OFF(o)	bus_read_1(np->io_res, (o))
848#define INW_OFF(o)	bus_read_2(np->io_res, (o))
849#define INL_OFF(o)	bus_read_4(np->io_res, (o))
850
851#define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
852#define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
853#define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
854
855#else	/* Memory mapped IO */
856
857#define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
858#define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
859#define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
860
861#define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
862#define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
863#define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
864
865#endif	/* SYM_CONF_IOMAPPED */
866
867#define OUTRAM_OFF(o, a, l)	\
868	bus_write_region_1(np->ram_res, (o), (a), (l))
869
870/*
871 *  Common definitions for both bus space and legacy IO methods.
872 */
873#define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
874#define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
875#define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
876
877#define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
878#define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
879#define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
880
881#define OUTONB(r, m)	OUTB(r, INB(r) | (m))
882#define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
883#define OUTONW(r, m)	OUTW(r, INW(r) | (m))
884#define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
885#define OUTONL(r, m)	OUTL(r, INL(r) | (m))
886#define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
887
888/*
889 *  We normally want the chip to have a consistent view
890 *  of driver internal data structures when we restart it.
891 *  Thus these macros.
892 */
893#define OUTL_DSP(v)				\
894	do {					\
895		MEMORY_BARRIER();		\
896		OUTL (nc_dsp, (v));		\
897	} while (0)
898
899#define OUTONB_STD()				\
900	do {					\
901		MEMORY_BARRIER();		\
902		OUTONB (nc_dcntl, (STD|NOCOM));	\
903	} while (0)
904
905/*
906 *  Command control block states.
907 */
908#define HS_IDLE		(0)
909#define HS_BUSY		(1)
910#define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
911#define HS_DISCONNECT	(3)	/* Disconnected by target */
912#define HS_WAIT		(4)	/* waiting for resource	  */
913
914#define HS_DONEMASK	(0x80)
915#define HS_COMPLETE	(4|HS_DONEMASK)
916#define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
917#define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
918#define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
919
920/*
921 *  Software Interrupt Codes
922 */
923#define	SIR_BAD_SCSI_STATUS	(1)
924#define	SIR_SEL_ATN_NO_MSG_OUT	(2)
925#define	SIR_MSG_RECEIVED	(3)
926#define	SIR_MSG_WEIRD		(4)
927#define	SIR_NEGO_FAILED		(5)
928#define	SIR_NEGO_PROTO		(6)
929#define	SIR_SCRIPT_STOPPED	(7)
930#define	SIR_REJECT_TO_SEND	(8)
931#define	SIR_SWIDE_OVERRUN	(9)
932#define	SIR_SODL_UNDERRUN	(10)
933#define	SIR_RESEL_NO_MSG_IN	(11)
934#define	SIR_RESEL_NO_IDENTIFY	(12)
935#define	SIR_RESEL_BAD_LUN	(13)
936#define	SIR_TARGET_SELECTED	(14)
937#define	SIR_RESEL_BAD_I_T_L	(15)
938#define	SIR_RESEL_BAD_I_T_L_Q	(16)
939#define	SIR_ABORT_SENT		(17)
940#define	SIR_RESEL_ABORTED	(18)
941#define	SIR_MSG_OUT_DONE	(19)
942#define	SIR_COMPLETE_ERROR	(20)
943#define	SIR_DATA_OVERRUN	(21)
944#define	SIR_BAD_PHASE		(22)
945#define	SIR_MAX			(22)
946
947/*
948 *  Extended error bit codes.
949 *  xerr_status field of struct sym_ccb.
950 */
951#define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
952#define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
953#define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
954#define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
955#define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
956
957/*
958 *  Negotiation status.
959 *  nego_status field of struct sym_ccb.
960 */
961#define NS_SYNC		(1)
962#define NS_WIDE		(2)
963#define NS_PPR		(3)
964
965/*
966 *  A CCB hashed table is used to retrieve CCB address
967 *  from DSA value.
968 */
969#define CCB_HASH_SHIFT		8
970#define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
971#define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
972#define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
973
974/*
975 *  Device flags.
976 */
977#define SYM_DISC_ENABLED	(1)
978#define SYM_TAGS_ENABLED	(1<<1)
979#define SYM_SCAN_BOOT_DISABLED	(1<<2)
980#define SYM_SCAN_LUNS_DISABLED	(1<<3)
981
982/*
983 *  Host adapter miscellaneous flags.
984 */
985#define SYM_AVOID_BUS_RESET	(1)
986#define SYM_SCAN_TARGETS_HILO	(1<<1)
987
988/*
989 *  Device quirks.
990 *  Some devices, for example the CHEETAH 2 LVD, disconnects without
991 *  saving the DATA POINTER then reselects and terminates the IO.
992 *  On reselection, the automatic RESTORE DATA POINTER makes the
993 *  CURRENT DATA POINTER not point at the end of the IO.
994 *  This behaviour just breaks our calculation of the residual.
995 *  For now, we just force an AUTO SAVE on disconnection and will
996 *  fix that in a further driver version.
997 */
998#define SYM_QUIRK_AUTOSAVE 1
999
1000/*
1001 *  Misc.
1002 */
1003#define	SYM_LOCK()		mtx_lock(&np->mtx)
1004#define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1005#define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1006#define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1007#define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1008#define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1009
1010#define SYM_SNOOP_TIMEOUT (10000000)
1011#define SYM_PCI_IO	PCIR_BAR(0)
1012#define SYM_PCI_MMIO	PCIR_BAR(1)
1013#define SYM_PCI_RAM	PCIR_BAR(2)
1014#define SYM_PCI_RAM64	PCIR_BAR(3)
1015
1016/*
1017 *  Back-pointer from the CAM CCB to our data structures.
1018 */
1019#define sym_hcb_ptr	spriv_ptr0
1020/* #define sym_ccb_ptr	spriv_ptr1 */
1021
1022/*
1023 *  We mostly have to deal with pointers.
1024 *  Thus these typedef's.
1025 */
1026typedef struct sym_tcb *tcb_p;
1027typedef struct sym_lcb *lcb_p;
1028typedef struct sym_ccb *ccb_p;
1029typedef struct sym_hcb *hcb_p;
1030
1031/*
1032 *  Gather negotiable parameters value
1033 */
1034struct sym_trans {
1035	u8 scsi_version;
1036	u8 spi_version;
1037	u8 period;
1038	u8 offset;
1039	u8 width;
1040	u8 options;	/* PPR options */
1041};
1042
1043struct sym_tinfo {
1044	struct sym_trans current;
1045	struct sym_trans goal;
1046	struct sym_trans user;
1047};
1048
1049#define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1050#define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1051
1052/*
1053 *  Global TCB HEADER.
1054 *
1055 *  Due to lack of indirect addressing on earlier NCR chips,
1056 *  this substructure is copied from the TCB to a global
1057 *  address after selection.
1058 *  For SYMBIOS chips that support LOAD/STORE this copy is
1059 *  not needed and thus not performed.
1060 */
1061struct sym_tcbh {
1062	/*
1063	 *  Scripts bus addresses of LUN table accessed from scripts.
1064	 *  LUN #0 is a special case, since multi-lun devices are rare,
1065	 *  and we we want to speed-up the general case and not waste
1066	 *  resources.
1067	 */
1068	u32	luntbl_sa;	/* bus address of this table	*/
1069	u32	lun0_sa;	/* bus address of LCB #0	*/
1070	/*
1071	 *  Actual SYNC/WIDE IO registers value for this target.
1072	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1073	 *  so have alignment constraints.
1074	 */
1075/*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1076/*1*/	u_char	sval;		/* -> SXFER  io register	*/
1077/*2*/	u_char	filler1;
1078/*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1079};
1080
1081/*
1082 *  Target Control Block
1083 */
1084struct sym_tcb {
1085	/*
1086	 *  TCB header.
1087	 *  Assumed at offset 0.
1088	 */
1089/*0*/	struct sym_tcbh head;
1090
1091	/*
1092	 *  LUN table used by the SCRIPTS processor.
1093	 *  An array of bus addresses is used on reselection.
1094	 */
1095	u32	*luntbl;	/* LCBs bus address table	*/
1096
1097	/*
1098	 *  LUN table used by the C code.
1099	 */
1100	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1101#if SYM_CONF_MAX_LUN > 1
1102	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1103#endif
1104
1105	/*
1106	 *  Bitmap that tells about LUNs that succeeded at least
1107	 *  1 IO and therefore assumed to be a real device.
1108	 *  Avoid useless allocation of the LCB structure.
1109	 */
1110	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1111
1112	/*
1113	 *  Bitmap that tells about LUNs that haven't yet an LCB
1114	 *  allocated (not discovered or LCB allocation failed).
1115	 */
1116	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1117
1118	/*
1119	 *  Transfer capabilities (SIP)
1120	 */
1121	struct sym_tinfo tinfo;
1122
1123	/*
1124	 * Keep track of the CCB used for the negotiation in order
1125	 * to ensure that only 1 negotiation is queued at a time.
1126	 */
1127	ccb_p   nego_cp;	/* CCB used for the nego		*/
1128
1129	/*
1130	 *  Set when we want to reset the device.
1131	 */
1132	u_char	to_reset;
1133
1134	/*
1135	 *  Other user settable limits and options.
1136	 *  These limits are read from the NVRAM if present.
1137	 */
1138	u_char	usrflags;
1139	u_short	usrtags;
1140};
1141
1142/*
1143 *  Assert some alignments required by the chip.
1144 */
1145CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1146    offsetof(struct sym_tcb, head.sval)) &3) == 0);
1147CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1148    offsetof(struct sym_tcb, head.wval)) &3) == 0);
1149
1150/*
1151 *  Global LCB HEADER.
1152 *
1153 *  Due to lack of indirect addressing on earlier NCR chips,
1154 *  this substructure is copied from the LCB to a global
1155 *  address after selection.
1156 *  For SYMBIOS chips that support LOAD/STORE this copy is
1157 *  not needed and thus not performed.
1158 */
1159struct sym_lcbh {
1160	/*
1161	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1162	 *  For not probed logical units, this address points to
1163	 *  SCRIPTS that deal with bad LU handling (must be at
1164	 *  offset zero of the LCB for that reason).
1165	 */
1166/*0*/	u32	resel_sa;
1167
1168	/*
1169	 *  Task (bus address of a CCB) read from SCRIPTS that points
1170	 *  to the unique ITL nexus allowed to be disconnected.
1171	 */
1172	u32	itl_task_sa;
1173
1174	/*
1175	 *  Task table bus address (read from SCRIPTS).
1176	 */
1177	u32	itlq_tbl_sa;
1178};
1179
1180/*
1181 *  Logical Unit Control Block
1182 */
1183struct sym_lcb {
1184	/*
1185	 *  TCB header.
1186	 *  Assumed at offset 0.
1187	 */
1188/*0*/	struct sym_lcbh head;
1189
1190	/*
1191	 *  Task table read from SCRIPTS that contains pointers to
1192	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1193	 *  inside the header.
1194	 */
1195	u32	*itlq_tbl;	/* Kernel virtual address	*/
1196
1197	/*
1198	 *  Busy CCBs management.
1199	 */
1200	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1201	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1202
1203	/*
1204	 *  Circular tag allocation buffer.
1205	 */
1206	u_short	ia_tag;		/* Tag allocation index		*/
1207	u_short	if_tag;		/* Tag release index		*/
1208	u_char	*cb_tags;	/* Circular tags buffer		*/
1209
1210	/*
1211	 *  Set when we want to clear all tasks.
1212	 */
1213	u_char to_clear;
1214
1215	/*
1216	 *  Capabilities.
1217	 */
1218	u_char	user_flags;
1219	u_char	current_flags;
1220};
1221
1222/*
1223 *  Action from SCRIPTS on a task.
1224 *  Is part of the CCB, but is also used separately to plug
1225 *  error handling action to perform from SCRIPTS.
1226 */
1227struct sym_actscr {
1228	u32	start;		/* Jumped by SCRIPTS after selection	*/
1229	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1230};
1231
1232/*
1233 *  Phase mismatch context.
1234 *
1235 *  It is part of the CCB and is used as parameters for the
1236 *  DATA pointer. We need two contexts to handle correctly the
1237 *  SAVED DATA POINTER.
1238 */
1239struct sym_pmc {
1240	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1241	u32	ret;		/* SCRIPT return address	*/
1242};
1243
1244/*
1245 *  LUN control block lookup.
1246 *  We use a direct pointer for LUN #0, and a table of
1247 *  pointers which is only allocated for devices that support
1248 *  LUN(s) > 0.
1249 */
1250#if SYM_CONF_MAX_LUN <= 1
1251#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1252#else
1253#define sym_lp(tp, lun) \
1254	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1255#endif
1256
1257/*
1258 *  Status are used by the host and the script processor.
1259 *
1260 *  The last four bytes (status[4]) are copied to the
1261 *  scratchb register (declared as scr0..scr3) just after the
1262 *  select/reselect, and copied back just after disconnecting.
1263 *  Inside the script the XX_REG are used.
1264 */
1265
1266/*
1267 *  Last four bytes (script)
1268 */
1269#define  QU_REG	scr0
1270#define  HS_REG	scr1
1271#define  HS_PRT	nc_scr1
1272#define  SS_REG	scr2
1273#define  SS_PRT	nc_scr2
1274#define  HF_REG	scr3
1275#define  HF_PRT	nc_scr3
1276
1277/*
1278 *  Last four bytes (host)
1279 */
1280#define  actualquirks  phys.head.status[0]
1281#define  host_status   phys.head.status[1]
1282#define  ssss_status   phys.head.status[2]
1283#define  host_flags    phys.head.status[3]
1284
1285/*
1286 *  Host flags
1287 */
1288#define HF_IN_PM0	1u
1289#define HF_IN_PM1	(1u<<1)
1290#define HF_ACT_PM	(1u<<2)
1291#define HF_DP_SAVED	(1u<<3)
1292#define HF_SENSE	(1u<<4)
1293#define HF_EXT_ERR	(1u<<5)
1294#define HF_DATA_IN	(1u<<6)
1295#ifdef SYM_CONF_IARB_SUPPORT
1296#define HF_HINT_IARB	(1u<<7)
1297#endif
1298
1299/*
1300 *  Global CCB HEADER.
1301 *
1302 *  Due to lack of indirect addressing on earlier NCR chips,
1303 *  this substructure is copied from the ccb to a global
1304 *  address after selection (or reselection) and copied back
1305 *  before disconnect.
1306 *  For SYMBIOS chips that support LOAD/STORE this copy is
1307 *  not needed and thus not performed.
1308 */
1309struct sym_ccbh {
1310	/*
1311	 *  Start and restart SCRIPTS addresses (must be at 0).
1312	 */
1313/*0*/	struct sym_actscr go;
1314
1315	/*
1316	 *  SCRIPTS jump address that deal with data pointers.
1317	 *  'savep' points to the position in the script responsible
1318	 *  for the actual transfer of data.
1319	 *  It's written on reception of a SAVE_DATA_POINTER message.
1320	 */
1321	u32	savep;		/* Jump address to saved data pointer	*/
1322	u32	lastp;		/* SCRIPTS address at end of data	*/
1323	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1324
1325	/*
1326	 *  Status fields.
1327	 */
1328	u8	status[4];
1329};
1330
1331/*
1332 *  Data Structure Block
1333 *
1334 *  During execution of a ccb by the script processor, the
1335 *  DSA (data structure address) register points to this
1336 *  substructure of the ccb.
1337 */
1338struct sym_dsb {
1339	/*
1340	 *  CCB header.
1341	 *  Also assumed at offset 0 of the sym_ccb structure.
1342	 */
1343/*0*/	struct sym_ccbh head;
1344
1345	/*
1346	 *  Phase mismatch contexts.
1347	 *  We need two to handle correctly the SAVED DATA POINTER.
1348	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1349	 *  for address calculation from SCRIPTS.
1350	 */
1351	struct sym_pmc pm0;
1352	struct sym_pmc pm1;
1353
1354	/*
1355	 *  Table data for Script
1356	 */
1357	struct sym_tblsel  select;
1358	struct sym_tblmove smsg;
1359	struct sym_tblmove smsg_ext;
1360	struct sym_tblmove cmd;
1361	struct sym_tblmove sense;
1362	struct sym_tblmove wresid;
1363	struct sym_tblmove data [SYM_CONF_MAX_SG];
1364};
1365
1366/*
1367 *  Our Command Control Block
1368 */
1369struct sym_ccb {
1370	/*
1371	 *  This is the data structure which is pointed by the DSA
1372	 *  register when it is executed by the script processor.
1373	 *  It must be the first entry.
1374	 */
1375	struct sym_dsb phys;
1376
1377	/*
1378	 *  Pointer to CAM ccb and related stuff.
1379	 */
1380	struct callout ch;	/* callout handle		*/
1381	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1382	u8	cdb_buf[16];	/* Copy of CDB			*/
1383	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1384#define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1385	int	data_len;	/* Total data length		*/
1386	int	segments;	/* Number of SG segments	*/
1387
1388	/*
1389	 *  Miscellaneous status'.
1390	 */
1391	u_char	nego_status;	/* Negotiation status		*/
1392	u_char	xerr_status;	/* Extended error flags		*/
1393	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1394
1395	/*
1396	 *  Message areas.
1397	 *  We prepare a message to be sent after selection.
1398	 *  We may use a second one if the command is rescheduled
1399	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1400	 *  Contents are IDENTIFY and SIMPLE_TAG.
1401	 *  While negotiating sync or wide transfer,
1402	 *  a SDTR or WDTR message is appended.
1403	 */
1404	u_char	scsi_smsg [12];
1405	u_char	scsi_smsg2[12];
1406
1407	/*
1408	 *  Auto request sense related fields.
1409	 */
1410	u_char	sensecmd[6];	/* Request Sense command	*/
1411	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1412	u_char	sv_xerr_status;	/* Saved extended status	*/
1413	int	sv_resid;	/* Saved residual		*/
1414
1415	/*
1416	 *  Map for the DMA of user data.
1417	 */
1418	void		*arg;	/* Argument for some callback	*/
1419	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1420	u_char		dmamapped;
1421#define SYM_DMA_NONE	0
1422#define SYM_DMA_READ	1
1423#define SYM_DMA_WRITE	2
1424	/*
1425	 *  Other fields.
1426	 */
1427	u32	ccb_ba;		/* BUS address of this CCB	*/
1428	u_short	tag;		/* Tag for this transfer	*/
1429				/*  NO_TAG means no tag		*/
1430	u_char	target;
1431	u_char	lun;
1432	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1433	SYM_QUEHEAD
1434		link_ccbq;	/* Link to free/busy CCB queue	*/
1435	u32	startp;		/* Initial data pointer		*/
1436	int	ext_sg;		/* Extreme data pointer, used	*/
1437	int	ext_ofs;	/*  to calculate the residual.	*/
1438	u_char	to_abort;	/* Want this IO to be aborted	*/
1439};
1440
1441#define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1442
1443/*
1444 *  Host Control Block
1445 */
1446struct sym_hcb {
1447	struct mtx	mtx;
1448
1449	/*
1450	 *  Global headers.
1451	 *  Due to poorness of addressing capabilities, earlier
1452	 *  chips (810, 815, 825) copy part of the data structures
1453	 *  (CCB, TCB and LCB) in fixed areas.
1454	 */
1455#ifdef	SYM_CONF_GENERIC_SUPPORT
1456	struct sym_ccbh	ccb_head;
1457	struct sym_tcbh	tcb_head;
1458	struct sym_lcbh	lcb_head;
1459#endif
1460	/*
1461	 *  Idle task and invalid task actions and
1462	 *  their bus addresses.
1463	 */
1464	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1465	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1466
1467	/*
1468	 *  Dummy lun table to protect us against target
1469	 *  returning bad lun number on reselection.
1470	 */
1471	u32	*badluntbl;	/* Table physical address	*/
1472	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1473
1474	/*
1475	 *  Bus address of this host control block.
1476	 */
1477	u32	hcb_ba;
1478
1479	/*
1480	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1481	 *  The START_RAM64 script loads the MMRS and MMWS from this
1482	 *  field.
1483	 */
1484	u32	scr_ram_seg;
1485
1486	/*
1487	 *  Chip and controller indentification.
1488	 */
1489	device_t device;
1490
1491	/*
1492	 *  Initial value of some IO register bits.
1493	 *  These values are assumed to have been set by BIOS, and may
1494	 *  be used to probe adapter implementation differences.
1495	 */
1496	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1497		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1498		sv_stest1;
1499
1500	/*
1501	 *  Actual initial value of IO register bits used by the
1502	 *  driver. They are loaded at initialisation according to
1503	 *  features that are to be enabled/disabled.
1504	 */
1505	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1506		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1507
1508	/*
1509	 *  Target data.
1510	 */
1511#ifdef __amd64__
1512	struct sym_tcb	*target;
1513#else
1514	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1515#endif
1516
1517	/*
1518	 *  Target control block bus address array used by the SCRIPT
1519	 *  on reselection.
1520	 */
1521	u32		*targtbl;
1522	u32		targtbl_ba;
1523
1524	/*
1525	 *  CAM SIM information for this instance.
1526	 */
1527	struct		cam_sim  *sim;
1528	struct		cam_path *path;
1529
1530	/*
1531	 *  Allocated hardware resources.
1532	 */
1533	struct resource	*irq_res;
1534	struct resource	*io_res;
1535	struct resource	*mmio_res;
1536	struct resource	*ram_res;
1537	int		ram_id;
1538	void *intr;
1539
1540	/*
1541	 *  Bus stuff.
1542	 *
1543	 *  My understanding of PCI is that all agents must share the
1544	 *  same addressing range and model.
1545	 *  But some hardware architecture guys provide complex and
1546	 *  brain-deaded stuff that makes shit.
1547	 *  This driver only support PCI compliant implementations and
1548	 *  deals with part of the BUS stuff complexity only to fit O/S
1549	 *  requirements.
1550	 */
1551
1552	/*
1553	 *  DMA stuff.
1554	 */
1555	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1556	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1557	/*
1558	 *  BUS addresses of the chip
1559	 */
1560	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1561	int		mmio_ws;	/* MMIO Window size		*/
1562
1563	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1564	int		ram_ws;		/* RAM window size		*/
1565
1566	/*
1567	 *  SCRIPTS virtual and physical bus addresses.
1568	 *  'script'  is loaded in the on-chip RAM if present.
1569	 *  'scripth' stays in main memory for all chips except the
1570	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1571	 */
1572	u_char		*scripta0;	/* Copies of script and scripth	*/
1573	u_char		*scriptb0;	/* Copies of script and scripth	*/
1574	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1575	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1576	vm_offset_t	scriptb0_ba;
1577	u_short		scripta_sz;	/* Actual size of script A	*/
1578	u_short		scriptb_sz;	/* Actual size of script B	*/
1579
1580	/*
1581	 *  Bus addresses, setup and patch methods for
1582	 *  the selected firmware.
1583	 */
1584	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1585	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1586	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1587	void		(*fw_patch)(hcb_p np);
1588	const char	*fw_name;
1589
1590	/*
1591	 *  General controller parameters and configuration.
1592	 */
1593	u_short	device_id;	/* PCI device id		*/
1594	u_char	revision_id;	/* PCI device revision id	*/
1595	u_int	features;	/* Chip features map		*/
1596	u_char	myaddr;		/* SCSI id of the adapter	*/
1597	u_char	maxburst;	/* log base 2 of dwords burst	*/
1598	u_char	maxwide;	/* Maximum transfer width	*/
1599	u_char	minsync;	/* Min sync period factor (ST)	*/
1600	u_char	maxsync;	/* Max sync period factor (ST)	*/
1601	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1602	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1603	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1604	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1605	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1606	u_char	clock_divn;	/* Number of clock divisors	*/
1607	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1608	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1609	/*
1610	 *  Start queue management.
1611	 *  It is filled up by the host processor and accessed by the
1612	 *  SCRIPTS processor in order to start SCSI commands.
1613	 */
1614	volatile		/* Prevent code optimizations	*/
1615	u32	*squeue;	/* Start queue virtual address	*/
1616	u32	squeue_ba;	/* Start queue BUS address	*/
1617	u_short	squeueput;	/* Next free slot of the queue	*/
1618	u_short	actccbs;	/* Number of allocated CCBs	*/
1619
1620	/*
1621	 *  Command completion queue.
1622	 *  It is the same size as the start queue to avoid overflow.
1623	 */
1624	u_short	dqueueget;	/* Next position to scan	*/
1625	volatile		/* Prevent code optimizations	*/
1626	u32	*dqueue;	/* Completion (done) queue	*/
1627	u32	dqueue_ba;	/* Done queue BUS address	*/
1628
1629	/*
1630	 *  Miscellaneous buffers accessed by the scripts-processor.
1631	 *  They shall be DWORD aligned, because they may be read or
1632	 *  written with a script command.
1633	 */
1634	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1635	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1636	u32		lastmsg;	/* Last SCSI message sent	*/
1637	u_char		scratch;	/* Scratch for SCSI receive	*/
1638
1639	/*
1640	 *  Miscellaneous configuration and status parameters.
1641	 */
1642	u_char		usrflags;	/* Miscellaneous user flags	*/
1643	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1644	u_char		verbose;	/* Verbosity for this controller*/
1645	u32		cache;		/* Used for cache test at init.	*/
1646
1647	/*
1648	 *  CCB lists and queue.
1649	 */
1650	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1651	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1652	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1653
1654	/*
1655	 *  During error handling and/or recovery,
1656	 *  active CCBs that are to be completed with
1657	 *  error or requeued are moved from the busy_ccbq
1658	 *  to the comp_ccbq prior to completion.
1659	 */
1660	SYM_QUEHEAD	comp_ccbq;
1661
1662	/*
1663	 *  CAM CCB pending queue.
1664	 */
1665	SYM_QUEHEAD	cam_ccbq;
1666
1667	/*
1668	 *  IMMEDIATE ARBITRATION (IARB) control.
1669	 *
1670	 *  We keep track in 'last_cp' of the last CCB that has been
1671	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1672	 *  this CCB completes. If last_cp is not zero at the moment
1673	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1674	 *  used by the SCRIPTS as a hint for setting IARB.
1675	 *  We donnot set more than 'iarb_max' consecutive hints for
1676	 *  IARB in order to leave devices a chance to reselect.
1677	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1678	 */
1679#ifdef SYM_CONF_IARB_SUPPORT
1680	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1681	u_short		iarb_count;	/* Actual # of these hints	*/
1682	ccb_p		last_cp;
1683#endif
1684
1685	/*
1686	 *  Command abort handling.
1687	 *  We need to synchronize tightly with the SCRIPTS
1688	 *  processor in order to handle things correctly.
1689	 */
1690	u_char		abrt_msg[4];	/* Message to send buffer	*/
1691	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1692	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1693	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1694};
1695
1696#define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1697
1698/*
1699 *  Return the name of the controller.
1700 */
1701static __inline const char *sym_name(hcb_p np)
1702{
1703	return device_get_nameunit(np->device);
1704}
1705
1706/*--------------------------------------------------------------------------*/
1707/*------------------------------ FIRMWARES ---------------------------------*/
1708/*--------------------------------------------------------------------------*/
1709
1710/*
1711 *  This stuff will be moved to a separate source file when
1712 *  the driver will be broken into several source modules.
1713 */
1714
1715/*
1716 *  Macros used for all firmwares.
1717 */
1718#define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1719#define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1720#define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1721#define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1722
1723#ifdef	SYM_CONF_GENERIC_SUPPORT
1724/*
1725 *  Allocate firmware #1 script area.
1726 */
1727#define	SYM_FWA_SCR		sym_fw1a_scr
1728#define	SYM_FWB_SCR		sym_fw1b_scr
1729#include <dev/sym/sym_fw1.h>
1730static const struct sym_fwa_ofs sym_fw1a_ofs = {
1731	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1732};
1733static const struct sym_fwb_ofs sym_fw1b_ofs = {
1734	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1735};
1736#undef	SYM_FWA_SCR
1737#undef	SYM_FWB_SCR
1738#endif	/* SYM_CONF_GENERIC_SUPPORT */
1739
1740/*
1741 *  Allocate firmware #2 script area.
1742 */
1743#define	SYM_FWA_SCR		sym_fw2a_scr
1744#define	SYM_FWB_SCR		sym_fw2b_scr
1745#include <dev/sym/sym_fw2.h>
1746static const struct sym_fwa_ofs sym_fw2a_ofs = {
1747	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1748};
1749static const struct sym_fwb_ofs sym_fw2b_ofs = {
1750	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1751	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1752	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1753};
1754#undef	SYM_FWA_SCR
1755#undef	SYM_FWB_SCR
1756
1757#undef	SYM_GEN_A
1758#undef	SYM_GEN_B
1759#undef	PADDR_A
1760#undef	PADDR_B
1761
1762#ifdef	SYM_CONF_GENERIC_SUPPORT
1763/*
1764 *  Patch routine for firmware #1.
1765 */
1766static void
1767sym_fw1_patch(hcb_p np)
1768{
1769	struct sym_fw1a_scr *scripta0;
1770	struct sym_fw1b_scr *scriptb0;
1771
1772	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1773	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1774
1775	/*
1776	 *  Remove LED support if not needed.
1777	 */
1778	if (!(np->features & FE_LED0)) {
1779		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1780		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1781		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1782	}
1783
1784#ifdef SYM_CONF_IARB_SUPPORT
1785	/*
1786	 *    If user does not want to use IMMEDIATE ARBITRATION
1787	 *    when we are reselected while attempting to arbitrate,
1788	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1789	 */
1790	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1791		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1792#endif
1793	/*
1794	 *  Patch some data in SCRIPTS.
1795	 *  - start and done queue initial bus address.
1796	 *  - target bus address table bus address.
1797	 */
1798	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1799	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1800	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1801}
1802#endif	/* SYM_CONF_GENERIC_SUPPORT */
1803
1804/*
1805 *  Patch routine for firmware #2.
1806 */
1807static void
1808sym_fw2_patch(hcb_p np)
1809{
1810	struct sym_fw2a_scr *scripta0;
1811	struct sym_fw2b_scr *scriptb0;
1812
1813	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1814	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1815
1816	/*
1817	 *  Remove LED support if not needed.
1818	 */
1819	if (!(np->features & FE_LED0)) {
1820		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1821		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1822		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1823	}
1824
1825#ifdef SYM_CONF_IARB_SUPPORT
1826	/*
1827	 *    If user does not want to use IMMEDIATE ARBITRATION
1828	 *    when we are reselected while attempting to arbitrate,
1829	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1830	 */
1831	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1832		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1833#endif
1834	/*
1835	 *  Patch some variable in SCRIPTS.
1836	 *  - start and done queue initial bus address.
1837	 *  - target bus address table bus address.
1838	 */
1839	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1840	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1841	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1842
1843	/*
1844	 *  Remove the load of SCNTL4 on reselection if not a C10.
1845	 */
1846	if (!(np->features & FE_C10)) {
1847		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1848		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1849	}
1850
1851	/*
1852	 *  Remove a couple of work-arounds specific to C1010 if
1853	 *  they are not desirable. See `sym_fw2.h' for more details.
1854	 */
1855	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1856	      np->revision_id < 0x1 &&
1857	      np->pciclk_khz < 60000)) {
1858		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1859		scripta0->datao_phase[1] = cpu_to_scr(0);
1860	}
1861	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1862	      /* np->revision_id < 0xff */ 1)) {
1863		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1864		scripta0->sel_done[1] = cpu_to_scr(0);
1865	}
1866
1867	/*
1868	 *  Patch some other variables in SCRIPTS.
1869	 *  These ones are loaded by the SCRIPTS processor.
1870	 */
1871	scriptb0->pm0_data_addr[0] =
1872		cpu_to_scr(np->scripta_ba +
1873			   offsetof(struct sym_fw2a_scr, pm0_data));
1874	scriptb0->pm1_data_addr[0] =
1875		cpu_to_scr(np->scripta_ba +
1876			   offsetof(struct sym_fw2a_scr, pm1_data));
1877}
1878
1879/*
1880 *  Fill the data area in scripts.
1881 *  To be done for all firmwares.
1882 */
1883static void
1884sym_fw_fill_data (u32 *in, u32 *out)
1885{
1886	int	i;
1887
1888	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1889		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1890		*in++  = offsetof (struct sym_dsb, data[i]);
1891		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1892		*out++ = offsetof (struct sym_dsb, data[i]);
1893	}
1894}
1895
1896/*
1897 *  Setup useful script bus addresses.
1898 *  To be done for all firmwares.
1899 */
1900static void
1901sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1902{
1903	u32 *pa;
1904	const u_short *po;
1905	int i;
1906
1907	/*
1908	 *  Build the bus address table for script A
1909	 *  from the script A offset table.
1910	 */
1911	po = (const u_short *) fw->a_ofs;
1912	pa = (u32 *) &np->fwa_bas;
1913	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1914		pa[i] = np->scripta_ba + po[i];
1915
1916	/*
1917	 *  Same for script B.
1918	 */
1919	po = (const u_short *) fw->b_ofs;
1920	pa = (u32 *) &np->fwb_bas;
1921	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1922		pa[i] = np->scriptb_ba + po[i];
1923}
1924
1925#ifdef	SYM_CONF_GENERIC_SUPPORT
1926/*
1927 *  Setup routine for firmware #1.
1928 */
1929static void
1930sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1931{
1932	struct sym_fw1a_scr *scripta0;
1933
1934	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1935
1936	/*
1937	 *  Fill variable parts in scripts.
1938	 */
1939	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1940
1941	/*
1942	 *  Setup bus addresses used from the C code..
1943	 */
1944	sym_fw_setup_bus_addresses(np, fw);
1945}
1946#endif	/* SYM_CONF_GENERIC_SUPPORT */
1947
1948/*
1949 *  Setup routine for firmware #2.
1950 */
1951static void
1952sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1953{
1954	struct sym_fw2a_scr *scripta0;
1955
1956	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1957
1958	/*
1959	 *  Fill variable parts in scripts.
1960	 */
1961	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1962
1963	/*
1964	 *  Setup bus addresses used from the C code..
1965	 */
1966	sym_fw_setup_bus_addresses(np, fw);
1967}
1968
1969/*
1970 *  Allocate firmware descriptors.
1971 */
1972#ifdef	SYM_CONF_GENERIC_SUPPORT
1973static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1974#endif	/* SYM_CONF_GENERIC_SUPPORT */
1975static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1976
1977/*
1978 *  Find the most appropriate firmware for a chip.
1979 */
1980static const struct sym_fw *
1981sym_find_firmware(const struct sym_pci_chip *chip)
1982{
1983	if (chip->features & FE_LDSTR)
1984		return &sym_fw2;
1985#ifdef	SYM_CONF_GENERIC_SUPPORT
1986	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1987		return &sym_fw1;
1988#endif
1989	else
1990		return NULL;
1991}
1992
1993/*
1994 *  Bind a script to physical addresses.
1995 */
1996static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
1997{
1998	u32 opcode, new, old, tmp1, tmp2;
1999	u32 *end, *cur;
2000	int relocs;
2001
2002	cur = start;
2003	end = start + len/4;
2004
2005	while (cur < end) {
2006		opcode = *cur;
2007
2008		/*
2009		 *  If we forget to change the length
2010		 *  in scripts, a field will be
2011		 *  padded with 0. This is an illegal
2012		 *  command.
2013		 */
2014		if (opcode == 0) {
2015			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2016				sym_name(np), (int) (cur-start));
2017			MDELAY (10000);
2018			++cur;
2019			continue;
2020		}
2021
2022		/*
2023		 *  We use the bogus value 0xf00ff00f ;-)
2024		 *  to reserve data area in SCRIPTS.
2025		 */
2026		if (opcode == SCR_DATA_ZERO) {
2027			*cur++ = 0;
2028			continue;
2029		}
2030
2031		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2032			printf ("%d:  <%x>\n", (int) (cur-start),
2033				(unsigned)opcode);
2034
2035		/*
2036		 *  We don't have to decode ALL commands
2037		 */
2038		switch (opcode >> 28) {
2039		case 0xf:
2040			/*
2041			 *  LOAD / STORE DSA relative, don't relocate.
2042			 */
2043			relocs = 0;
2044			break;
2045		case 0xe:
2046			/*
2047			 *  LOAD / STORE absolute.
2048			 */
2049			relocs = 1;
2050			break;
2051		case 0xc:
2052			/*
2053			 *  COPY has TWO arguments.
2054			 */
2055			relocs = 2;
2056			tmp1 = cur[1];
2057			tmp2 = cur[2];
2058			if ((tmp1 ^ tmp2) & 3) {
2059				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2060					sym_name(np), (int) (cur-start));
2061				MDELAY (10000);
2062			}
2063			/*
2064			 *  If PREFETCH feature not enabled, remove
2065			 *  the NO FLUSH bit if present.
2066			 */
2067			if ((opcode & SCR_NO_FLUSH) &&
2068			    !(np->features & FE_PFEN)) {
2069				opcode = (opcode & ~SCR_NO_FLUSH);
2070			}
2071			break;
2072		case 0x0:
2073			/*
2074			 *  MOVE/CHMOV (absolute address)
2075			 */
2076			if (!(np->features & FE_WIDE))
2077				opcode = (opcode | OPC_MOVE);
2078			relocs = 1;
2079			break;
2080		case 0x1:
2081			/*
2082			 *  MOVE/CHMOV (table indirect)
2083			 */
2084			if (!(np->features & FE_WIDE))
2085				opcode = (opcode | OPC_MOVE);
2086			relocs = 0;
2087			break;
2088		case 0x8:
2089			/*
2090			 *  JUMP / CALL
2091			 *  dont't relocate if relative :-)
2092			 */
2093			if (opcode & 0x00800000)
2094				relocs = 0;
2095			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2096				relocs = 2;
2097			else
2098				relocs = 1;
2099			break;
2100		case 0x4:
2101		case 0x5:
2102		case 0x6:
2103		case 0x7:
2104			relocs = 1;
2105			break;
2106		default:
2107			relocs = 0;
2108			break;
2109		}
2110
2111		/*
2112		 *  Scriptify:) the opcode.
2113		 */
2114		*cur++ = cpu_to_scr(opcode);
2115
2116		/*
2117		 *  If no relocation, assume 1 argument
2118		 *  and just scriptize:) it.
2119		 */
2120		if (!relocs) {
2121			*cur = cpu_to_scr(*cur);
2122			++cur;
2123			continue;
2124		}
2125
2126		/*
2127		 *  Otherwise performs all needed relocations.
2128		 */
2129		while (relocs--) {
2130			old = *cur;
2131
2132			switch (old & RELOC_MASK) {
2133			case RELOC_REGISTER:
2134				new = (old & ~RELOC_MASK) + np->mmio_ba;
2135				break;
2136			case RELOC_LABEL_A:
2137				new = (old & ~RELOC_MASK) + np->scripta_ba;
2138				break;
2139			case RELOC_LABEL_B:
2140				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2141				break;
2142			case RELOC_SOFTC:
2143				new = (old & ~RELOC_MASK) + np->hcb_ba;
2144				break;
2145			case 0:
2146				/*
2147				 *  Don't relocate a 0 address.
2148				 *  They are mostly used for patched or
2149				 *  script self-modified areas.
2150				 */
2151				if (old == 0) {
2152					new = old;
2153					break;
2154				}
2155				/* fall through */
2156			default:
2157				new = 0;
2158				panic("sym_fw_bind_script: "
2159				      "weird relocation %x\n", old);
2160				break;
2161			}
2162
2163			*cur++ = cpu_to_scr(new);
2164		}
2165	}
2166}
2167
2168/*---------------------------------------------------------------------------*/
2169/*--------------------------- END OF FIRMWARES  -----------------------------*/
2170/*---------------------------------------------------------------------------*/
2171
2172/*
2173 *  Function prototypes.
2174 */
2175static void sym_save_initial_setting (hcb_p np);
2176static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2177static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2178static void sym_put_start_queue (hcb_p np, ccb_p cp);
2179static void sym_chip_reset (hcb_p np);
2180static void sym_soft_reset (hcb_p np);
2181static void sym_start_reset (hcb_p np);
2182static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2183static int  sym_wakeup_done (hcb_p np);
2184static void sym_flush_busy_queue (hcb_p np, int cam_status);
2185static void sym_flush_comp_queue (hcb_p np, int cam_status);
2186static void sym_init (hcb_p np, int reason);
2187static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2188		        u_char *fakp);
2189static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2190			 u_char div, u_char fak);
2191static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2192static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2193			 u_char per, u_char wide, u_char div, u_char fak);
2194static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2195			 u_char per, u_char wide, u_char div, u_char fak);
2196static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2197static void sym_intr (void *arg);
2198static void sym_poll (struct cam_sim *sim);
2199static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2200static void sym_int_sto (hcb_p np);
2201static void sym_int_udc (hcb_p np);
2202static void sym_int_sbmc (hcb_p np);
2203static void sym_int_par (hcb_p np, u_short sist);
2204static void sym_int_ma (hcb_p np);
2205static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2206				    int task);
2207static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2208static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2209static void sym_sir_task_recovery (hcb_p np, int num);
2210static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2211static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2212static int  sym_compute_residual (hcb_p np, ccb_p cp);
2213static int  sym_show_msg (u_char * msg);
2214static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2215static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2216static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2217static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2218static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2219static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2220static void sym_int_sir (hcb_p np);
2221static void sym_free_ccb (hcb_p np, ccb_p cp);
2222static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2223static ccb_p sym_alloc_ccb (hcb_p np);
2224static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2225static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2226static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2227static int  sym_snooptest (hcb_p np);
2228static void sym_selectclock(hcb_p np, u_char scntl3);
2229static void sym_getclock (hcb_p np, int mult);
2230static int  sym_getpciclock (hcb_p np);
2231static void sym_complete_ok (hcb_p np, ccb_p cp);
2232static void sym_complete_error (hcb_p np, ccb_p cp);
2233static void sym_callout (void *arg);
2234static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2235static void sym_reset_dev (hcb_p np, union ccb *ccb);
2236static void sym_action (struct cam_sim *sim, union ccb *ccb);
2237static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2238static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2239				      ccb_p cp);
2240static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2241					bus_dma_segment_t *psegs, int nsegs);
2242static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2243				    bus_dma_segment_t *psegs, int nsegs);
2244static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2245static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2246			      struct ccb_trans_settings *cts);
2247static void sym_update_dflags(hcb_p np, u_char *flags,
2248			      struct ccb_trans_settings *cts);
2249
2250static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2251static int  sym_pci_probe (device_t dev);
2252static int  sym_pci_attach (device_t dev);
2253
2254static void sym_pci_free (hcb_p np);
2255static int  sym_cam_attach (hcb_p np);
2256static void sym_cam_free (hcb_p np);
2257
2258static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2259static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2260static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2261
2262/*
2263 *  Print something which allows to retrieve the controller type,
2264 *  unit, target, lun concerned by a kernel message.
2265 */
2266static void PRINT_TARGET (hcb_p np, int target)
2267{
2268	printf ("%s:%d:", sym_name(np), target);
2269}
2270
2271static void PRINT_LUN(hcb_p np, int target, int lun)
2272{
2273	printf ("%s:%d:%d:", sym_name(np), target, lun);
2274}
2275
2276static void PRINT_ADDR (ccb_p cp)
2277{
2278	if (cp && cp->cam_ccb)
2279		xpt_print_path(cp->cam_ccb->ccb_h.path);
2280}
2281
2282/*
2283 *  Take into account this ccb in the freeze count.
2284 */
2285static void sym_freeze_cam_ccb(union ccb *ccb)
2286{
2287	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2288		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2289			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2290			xpt_freeze_devq(ccb->ccb_h.path, 1);
2291		}
2292	}
2293}
2294
2295/*
2296 *  Set the status field of a CAM CCB.
2297 */
2298static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2299{
2300	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2301	ccb->ccb_h.status |= status;
2302}
2303
2304/*
2305 *  Get the status field of a CAM CCB.
2306 */
2307static __inline int sym_get_cam_status(union ccb *ccb)
2308{
2309	return ccb->ccb_h.status & CAM_STATUS_MASK;
2310}
2311
2312/*
2313 *  Enqueue a CAM CCB.
2314 */
2315static void sym_enqueue_cam_ccb(ccb_p cp)
2316{
2317	hcb_p np;
2318	union ccb *ccb;
2319
2320	ccb = cp->cam_ccb;
2321	np = (hcb_p) cp->arg;
2322
2323	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2324	ccb->ccb_h.status = CAM_REQ_INPROG;
2325
2326	callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2327	    (caddr_t)ccb, 0);
2328	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2329	ccb->ccb_h.sym_hcb_ptr = np;
2330
2331	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2332}
2333
2334/*
2335 *  Complete a pending CAM CCB.
2336 */
2337
2338static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2339{
2340
2341	SYM_LOCK_ASSERT(MA_OWNED);
2342
2343	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2344		callout_stop(&cp->ch);
2345		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2346		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2347		ccb->ccb_h.sym_hcb_ptr = NULL;
2348	}
2349	xpt_done(ccb);
2350}
2351
2352static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2353{
2354
2355	SYM_LOCK_ASSERT(MA_OWNED);
2356
2357	sym_set_cam_status(ccb, cam_status);
2358	xpt_done(ccb);
2359}
2360
2361/*
2362 *  SYMBIOS chip clock divisor table.
2363 *
2364 *  Divisors are multiplied by 10,000,000 in order to make
2365 *  calculations more simple.
2366 */
2367#define _5M 5000000
2368static const u32 div_10M[] =
2369	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2370
2371/*
2372 *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2373 *  128 transfers. All chips support at least 16 transfers
2374 *  bursts. The 825A, 875 and 895 chips support bursts of up
2375 *  to 128 transfers and the 895A and 896 support bursts of up
2376 *  to 64 transfers. All other chips support up to 16
2377 *  transfers bursts.
2378 *
2379 *  For PCI 32 bit data transfers each transfer is a DWORD.
2380 *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2381 *
2382 *  We use log base 2 (burst length) as internal code, with
2383 *  value 0 meaning "burst disabled".
2384 */
2385
2386/*
2387 *  Burst length from burst code.
2388 */
2389#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2390
2391/*
2392 *  Burst code from io register bits.
2393 */
2394#define burst_code(dmode, ctest4, ctest5) \
2395	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2396
2397/*
2398 *  Set initial io register bits from burst code.
2399 */
2400static __inline void sym_init_burst(hcb_p np, u_char bc)
2401{
2402	np->rv_ctest4	&= ~0x80;
2403	np->rv_dmode	&= ~(0x3 << 6);
2404	np->rv_ctest5	&= ~0x4;
2405
2406	if (!bc) {
2407		np->rv_ctest4	|= 0x80;
2408	}
2409	else {
2410		--bc;
2411		np->rv_dmode	|= ((bc & 0x3) << 6);
2412		np->rv_ctest5	|= (bc & 0x4);
2413	}
2414}
2415
2416/*
2417 * Print out the list of targets that have some flag disabled by user.
2418 */
2419static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2420{
2421	int cnt;
2422	int i;
2423
2424	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2425		if (i == np->myaddr)
2426			continue;
2427		if (np->target[i].usrflags & mask) {
2428			if (!cnt++)
2429				printf("%s: %s disabled for targets",
2430					sym_name(np), msg);
2431			printf(" %d", i);
2432		}
2433	}
2434	if (cnt)
2435		printf(".\n");
2436}
2437
2438/*
2439 *  Save initial settings of some IO registers.
2440 *  Assumed to have been set by BIOS.
2441 *  We cannot reset the chip prior to reading the
2442 *  IO registers, since informations will be lost.
2443 *  Since the SCRIPTS processor may be running, this
2444 *  is not safe on paper, but it seems to work quite
2445 *  well. :)
2446 */
2447static void sym_save_initial_setting (hcb_p np)
2448{
2449	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2450	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2451	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2452	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2453	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2454	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2455	np->sv_gpcntl	= INB(nc_gpcntl);
2456	np->sv_stest1	= INB(nc_stest1);
2457	np->sv_stest2	= INB(nc_stest2) & 0x20;
2458	np->sv_stest4	= INB(nc_stest4);
2459	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2460		np->sv_scntl4	= INB(nc_scntl4);
2461		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2462	}
2463	else
2464		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2465}
2466
2467/*
2468 *  Prepare io register values used by sym_init() according
2469 *  to selected and supported features.
2470 */
2471static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2472{
2473	u_char	burst_max;
2474	u32	period;
2475	int i;
2476
2477	/*
2478	 *  Wide ?
2479	 */
2480	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2481
2482	/*
2483	 *  Get the frequency of the chip's clock.
2484	 */
2485	if	(np->features & FE_QUAD)
2486		np->multiplier	= 4;
2487	else if	(np->features & FE_DBLR)
2488		np->multiplier	= 2;
2489	else
2490		np->multiplier	= 1;
2491
2492	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2493	np->clock_khz	*= np->multiplier;
2494
2495	if (np->clock_khz != 40000)
2496		sym_getclock(np, np->multiplier);
2497
2498	/*
2499	 * Divisor to be used for async (timer pre-scaler).
2500	 */
2501	i = np->clock_divn - 1;
2502	while (--i >= 0) {
2503		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2504			++i;
2505			break;
2506		}
2507	}
2508	np->rv_scntl3 = i+1;
2509
2510	/*
2511	 * The C1010 uses hardwired divisors for async.
2512	 * So, we just throw away, the async. divisor.:-)
2513	 */
2514	if (np->features & FE_C10)
2515		np->rv_scntl3 = 0;
2516
2517	/*
2518	 * Minimum synchronous period factor supported by the chip.
2519	 * Btw, 'period' is in tenths of nanoseconds.
2520	 */
2521	period = howmany(4 * div_10M[0], np->clock_khz);
2522	if	(period <= 250)		np->minsync = 10;
2523	else if	(period <= 303)		np->minsync = 11;
2524	else if	(period <= 500)		np->minsync = 12;
2525	else				np->minsync = howmany(period, 40);
2526
2527	/*
2528	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2529	 */
2530	if	(np->minsync < 25 &&
2531		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2532		np->minsync = 25;
2533	else if	(np->minsync < 12 &&
2534		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2535		np->minsync = 12;
2536
2537	/*
2538	 * Maximum synchronous period factor supported by the chip.
2539	 */
2540	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2541	np->maxsync = period > 2540 ? 254 : period / 10;
2542
2543	/*
2544	 * If chip is a C1010, guess the sync limits in DT mode.
2545	 */
2546	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2547		if (np->clock_khz == 160000) {
2548			np->minsync_dt = 9;
2549			np->maxsync_dt = 50;
2550			np->maxoffs_dt = 62;
2551		}
2552	}
2553
2554	/*
2555	 *  64 bit addressing  (895A/896/1010) ?
2556	 */
2557	if (np->features & FE_DAC)
2558#ifdef __LP64__
2559		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2560#else
2561		np->rv_ccntl1	|= (DDAC);
2562#endif
2563
2564	/*
2565	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2566  	 */
2567	if (np->features & FE_NOPM)
2568		np->rv_ccntl0	|= (ENPMJ);
2569
2570 	/*
2571	 *  C1010 Errata.
2572	 *  In dual channel mode, contention occurs if internal cycles
2573	 *  are used. Disable internal cycles.
2574	 */
2575	if (np->device_id == PCI_ID_LSI53C1010 &&
2576	    np->revision_id < 0x2)
2577		np->rv_ccntl0	|=  DILS;
2578
2579	/*
2580	 *  Select burst length (dwords)
2581	 */
2582	burst_max	= SYM_SETUP_BURST_ORDER;
2583	if (burst_max == 255)
2584		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2585				       np->sv_ctest5);
2586	if (burst_max > 7)
2587		burst_max = 7;
2588	if (burst_max > np->maxburst)
2589		burst_max = np->maxburst;
2590
2591	/*
2592	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2593	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2594	 *  based transactions on LOAD/STORE instructions. So we have
2595	 *  to prevent these chips from using such PCI transactions in
2596	 *  this driver. The generic ncr driver that does not use
2597	 *  LOAD/STORE instructions does not need this work-around.
2598	 */
2599	if ((np->device_id == PCI_ID_SYM53C810 &&
2600	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2601	    (np->device_id == PCI_ID_SYM53C860 &&
2602	     np->revision_id <= 0x1))
2603		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2604
2605	/*
2606	 *  Select all supported special features.
2607	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2608	 *  does not help, but burst op fetch (BOF) does.
2609	 *  Disabling PFEN makes sure BOF will be used.
2610	 */
2611	if (np->features & FE_ERL)
2612		np->rv_dmode	|= ERL;		/* Enable Read Line */
2613	if (np->features & FE_BOF)
2614		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2615	if (np->features & FE_ERMP)
2616		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2617#if 1
2618	if ((np->features & FE_PFEN) && !np->ram_ba)
2619#else
2620	if (np->features & FE_PFEN)
2621#endif
2622		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2623	if (np->features & FE_CLSE)
2624		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2625	if (np->features & FE_WRIE)
2626		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2627	if (np->features & FE_DFS)
2628		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2629
2630	/*
2631	 *  Select some other
2632	 */
2633	if (SYM_SETUP_PCI_PARITY)
2634		np->rv_ctest4	|= MPEE; /* Master parity checking */
2635	if (SYM_SETUP_SCSI_PARITY)
2636		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2637
2638	/*
2639	 *  Get parity checking, host ID and verbose mode from NVRAM
2640	 */
2641	np->myaddr = 255;
2642	sym_nvram_setup_host (np, nvram);
2643
2644	/*
2645	 *  Get SCSI addr of host adapter (set by bios?).
2646	 */
2647	if (np->myaddr == 255) {
2648		np->myaddr = INB(nc_scid) & 0x07;
2649		if (!np->myaddr)
2650			np->myaddr = SYM_SETUP_HOST_ID;
2651	}
2652
2653	/*
2654	 *  Prepare initial io register bits for burst length
2655	 */
2656	sym_init_burst(np, burst_max);
2657
2658	/*
2659	 *  Set SCSI BUS mode.
2660	 *  - LVD capable chips (895/895A/896/1010) report the
2661	 *    current BUS mode through the STEST4 IO register.
2662	 *  - For previous generation chips (825/825A/875),
2663	 *    user has to tell us how to check against HVD,
2664	 *    since a 100% safe algorithm is not possible.
2665	 */
2666	np->scsi_mode = SMODE_SE;
2667	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2668		np->scsi_mode = (np->sv_stest4 & SMODE);
2669	else if	(np->features & FE_DIFF) {
2670		if (SYM_SETUP_SCSI_DIFF == 1) {
2671			if (np->sv_scntl3) {
2672				if (np->sv_stest2 & 0x20)
2673					np->scsi_mode = SMODE_HVD;
2674			}
2675			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2676				if (!(INB(nc_gpreg) & 0x08))
2677					np->scsi_mode = SMODE_HVD;
2678			}
2679		}
2680		else if	(SYM_SETUP_SCSI_DIFF == 2)
2681			np->scsi_mode = SMODE_HVD;
2682	}
2683	if (np->scsi_mode == SMODE_HVD)
2684		np->rv_stest2 |= 0x20;
2685
2686	/*
2687	 *  Set LED support from SCRIPTS.
2688	 *  Ignore this feature for boards known to use a
2689	 *  specific GPIO wiring and for the 895A, 896
2690	 *  and 1010 that drive the LED directly.
2691	 */
2692	if ((SYM_SETUP_SCSI_LED ||
2693	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2694	      (nvram->type == SYM_TEKRAM_NVRAM &&
2695	       np->device_id == PCI_ID_SYM53C895))) &&
2696	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2697		np->features |= FE_LED0;
2698
2699	/*
2700	 *  Set irq mode.
2701	 */
2702	switch(SYM_SETUP_IRQ_MODE & 3) {
2703	case 2:
2704		np->rv_dcntl	|= IRQM;
2705		break;
2706	case 1:
2707		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2708		break;
2709	default:
2710		break;
2711	}
2712
2713	/*
2714	 *  Configure targets according to driver setup.
2715	 *  If NVRAM present get targets setup from NVRAM.
2716	 */
2717	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2718		tcb_p tp = &np->target[i];
2719
2720		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2721		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2722		tp->tinfo.user.period = np->minsync;
2723		if (np->features & FE_ULTRA3)
2724			tp->tinfo.user.period = np->minsync_dt;
2725		tp->tinfo.user.offset = np->maxoffs;
2726		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2727		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2728		tp->usrtags = SYM_SETUP_MAX_TAG;
2729
2730		sym_nvram_setup_target (np, i, nvram);
2731
2732		/*
2733		 *  For now, guess PPR/DT support from the period
2734		 *  and BUS width.
2735		 */
2736		if (np->features & FE_ULTRA3) {
2737			if (tp->tinfo.user.period <= 9	&&
2738			    tp->tinfo.user.width == BUS_16_BIT) {
2739				tp->tinfo.user.options |= PPR_OPT_DT;
2740				tp->tinfo.user.offset   = np->maxoffs_dt;
2741				tp->tinfo.user.spi_version = 3;
2742			}
2743		}
2744
2745		if (!tp->usrtags)
2746			tp->usrflags &= ~SYM_TAGS_ENABLED;
2747	}
2748
2749	/*
2750	 *  Let user know about the settings.
2751	 */
2752	i = nvram->type;
2753	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2754		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2755		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2756		np->myaddr,
2757		(np->features & FE_ULTRA3) ? 80 :
2758		(np->features & FE_ULTRA2) ? 40 :
2759		(np->features & FE_ULTRA)  ? 20 : 10,
2760		sym_scsi_bus_mode(np->scsi_mode),
2761		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2762	/*
2763	 *  Tell him more on demand.
2764	 */
2765	if (sym_verbose) {
2766		printf("%s: %s IRQ line driver%s\n",
2767			sym_name(np),
2768			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2769			np->ram_ba ? ", using on-chip SRAM" : "");
2770		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2771		if (np->features & FE_NOPM)
2772			printf("%s: handling phase mismatch from SCRIPTS.\n",
2773			       sym_name(np));
2774	}
2775	/*
2776	 *  And still more.
2777	 */
2778	if (sym_verbose > 1) {
2779		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2780			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2781			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2782			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2783
2784		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2785			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2786			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2787			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2788	}
2789	/*
2790	 *  Let user be aware of targets that have some disable flags set.
2791	 */
2792	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2793	if (sym_verbose)
2794		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2795				       "SCAN FOR LUNS");
2796
2797	return 0;
2798}
2799
2800/*
2801 *  Prepare the next negotiation message if needed.
2802 *
2803 *  Fill in the part of message buffer that contains the
2804 *  negotiation and the nego_status field of the CCB.
2805 *  Returns the size of the message in bytes.
2806 */
2807static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2808{
2809	tcb_p tp = &np->target[cp->target];
2810	int msglen = 0;
2811
2812	/*
2813	 *  Early C1010 chips need a work-around for DT
2814	 *  data transfer to work.
2815	 */
2816	if (!(np->features & FE_U3EN))
2817		tp->tinfo.goal.options = 0;
2818	/*
2819	 *  negotiate using PPR ?
2820	 */
2821	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2822		nego = NS_PPR;
2823	/*
2824	 *  negotiate wide transfers ?
2825	 */
2826	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2827		nego = NS_WIDE;
2828	/*
2829	 *  negotiate synchronous transfers?
2830	 */
2831	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2832		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2833		nego = NS_SYNC;
2834
2835	switch (nego) {
2836	case NS_SYNC:
2837		msgptr[msglen++] = M_EXTENDED;
2838		msgptr[msglen++] = 3;
2839		msgptr[msglen++] = M_X_SYNC_REQ;
2840		msgptr[msglen++] = tp->tinfo.goal.period;
2841		msgptr[msglen++] = tp->tinfo.goal.offset;
2842		break;
2843	case NS_WIDE:
2844		msgptr[msglen++] = M_EXTENDED;
2845		msgptr[msglen++] = 2;
2846		msgptr[msglen++] = M_X_WIDE_REQ;
2847		msgptr[msglen++] = tp->tinfo.goal.width;
2848		break;
2849	case NS_PPR:
2850		msgptr[msglen++] = M_EXTENDED;
2851		msgptr[msglen++] = 6;
2852		msgptr[msglen++] = M_X_PPR_REQ;
2853		msgptr[msglen++] = tp->tinfo.goal.period;
2854		msgptr[msglen++] = 0;
2855		msgptr[msglen++] = tp->tinfo.goal.offset;
2856		msgptr[msglen++] = tp->tinfo.goal.width;
2857		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2858		break;
2859	}
2860
2861	cp->nego_status = nego;
2862
2863	if (nego) {
2864		tp->nego_cp = cp; /* Keep track a nego will be performed */
2865		if (DEBUG_FLAGS & DEBUG_NEGO) {
2866			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2867					  nego == NS_WIDE ? "wide msgout" :
2868					  "ppr msgout", msgptr);
2869		}
2870	}
2871
2872	return msglen;
2873}
2874
2875/*
2876 *  Insert a job into the start queue.
2877 */
2878static void sym_put_start_queue(hcb_p np, ccb_p cp)
2879{
2880	u_short	qidx;
2881
2882#ifdef SYM_CONF_IARB_SUPPORT
2883	/*
2884	 *  If the previously queued CCB is not yet done,
2885	 *  set the IARB hint. The SCRIPTS will go with IARB
2886	 *  for this job when starting the previous one.
2887	 *  We leave devices a chance to win arbitration by
2888	 *  not using more than 'iarb_max' consecutive
2889	 *  immediate arbitrations.
2890	 */
2891	if (np->last_cp && np->iarb_count < np->iarb_max) {
2892		np->last_cp->host_flags |= HF_HINT_IARB;
2893		++np->iarb_count;
2894	}
2895	else
2896		np->iarb_count = 0;
2897	np->last_cp = cp;
2898#endif
2899
2900	/*
2901	 *  Insert first the idle task and then our job.
2902	 *  The MB should ensure proper ordering.
2903	 */
2904	qidx = np->squeueput + 2;
2905	if (qidx >= MAX_QUEUE*2) qidx = 0;
2906
2907	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2908	MEMORY_BARRIER();
2909	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2910
2911	np->squeueput = qidx;
2912
2913	if (DEBUG_FLAGS & DEBUG_QUEUE)
2914		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2915
2916	/*
2917	 *  Script processor may be waiting for reselect.
2918	 *  Wake it up.
2919	 */
2920	MEMORY_BARRIER();
2921	OUTB (nc_istat, SIGP|np->istat_sem);
2922}
2923
2924/*
2925 *  Soft reset the chip.
2926 *
2927 *  Raising SRST when the chip is running may cause
2928 *  problems on dual function chips (see below).
2929 *  On the other hand, LVD devices need some delay
2930 *  to settle and report actual BUS mode in STEST4.
2931 */
2932static void sym_chip_reset (hcb_p np)
2933{
2934	OUTB (nc_istat, SRST);
2935	UDELAY (10);
2936	OUTB (nc_istat, 0);
2937	UDELAY(2000);	/* For BUS MODE to settle */
2938}
2939
2940/*
2941 *  Soft reset the chip.
2942 *
2943 *  Some 896 and 876 chip revisions may hang-up if we set
2944 *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2945 *  are running.
2946 *  So, we need to abort the current operation prior to
2947 *  soft resetting the chip.
2948 */
2949static void sym_soft_reset (hcb_p np)
2950{
2951	u_char istat;
2952	int i;
2953
2954	OUTB (nc_istat, CABRT);
2955	for (i = 1000000 ; i ; --i) {
2956		istat = INB (nc_istat);
2957		if (istat & SIP) {
2958			INW (nc_sist);
2959			continue;
2960		}
2961		if (istat & DIP) {
2962			OUTB (nc_istat, 0);
2963			INB (nc_dstat);
2964			break;
2965		}
2966	}
2967	if (!i)
2968		printf("%s: unable to abort current chip operation.\n",
2969			sym_name(np));
2970	sym_chip_reset (np);
2971}
2972
2973/*
2974 *  Start reset process.
2975 *
2976 *  The interrupt handler will reinitialize the chip.
2977 */
2978static void sym_start_reset(hcb_p np)
2979{
2980	(void) sym_reset_scsi_bus(np, 1);
2981}
2982
2983static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2984{
2985	u32 term;
2986	int retv = 0;
2987
2988	sym_soft_reset(np);	/* Soft reset the chip */
2989	if (enab_int)
2990		OUTW (nc_sien, RST);
2991	/*
2992	 *  Enable Tolerant, reset IRQD if present and
2993	 *  properly set IRQ mode, prior to resetting the bus.
2994	 */
2995	OUTB (nc_stest3, TE);
2996	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
2997	OUTB (nc_scntl1, CRST);
2998	UDELAY (200);
2999
3000	if (!SYM_SETUP_SCSI_BUS_CHECK)
3001		goto out;
3002	/*
3003	 *  Check for no terminators or SCSI bus shorts to ground.
3004	 *  Read SCSI data bus, data parity bits and control signals.
3005	 *  We are expecting RESET to be TRUE and other signals to be
3006	 *  FALSE.
3007	 */
3008	term =	INB(nc_sstat0);
3009	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3010	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3011		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3012		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3013		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3014
3015	if (!(np->features & FE_WIDE))
3016		term &= 0x3ffff;
3017
3018	if (term != (2<<7)) {
3019		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3020			sym_name(np));
3021		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3022			"0x%lx, expecting 0x%lx\n",
3023			sym_name(np),
3024			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3025			(u_long)term, (u_long)(2<<7));
3026		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3027			retv = 1;
3028	}
3029out:
3030	OUTB (nc_scntl1, 0);
3031	/* MDELAY(100); */
3032	return retv;
3033}
3034
3035/*
3036 *  The chip may have completed jobs. Look at the DONE QUEUE.
3037 *
3038 *  On architectures that may reorder LOAD/STORE operations,
3039 *  a memory barrier may be needed after the reading of the
3040 *  so-called `flag' and prior to dealing with the data.
3041 */
3042static int sym_wakeup_done (hcb_p np)
3043{
3044	ccb_p cp;
3045	int i, n;
3046	u32 dsa;
3047
3048	SYM_LOCK_ASSERT(MA_OWNED);
3049
3050	n = 0;
3051	i = np->dqueueget;
3052	while (1) {
3053		dsa = scr_to_cpu(np->dqueue[i]);
3054		if (!dsa)
3055			break;
3056		np->dqueue[i] = 0;
3057		if ((i = i+2) >= MAX_QUEUE*2)
3058			i = 0;
3059
3060		cp = sym_ccb_from_dsa(np, dsa);
3061		if (cp) {
3062			MEMORY_BARRIER();
3063			sym_complete_ok (np, cp);
3064			++n;
3065		}
3066		else
3067			printf ("%s: bad DSA (%x) in done queue.\n",
3068				sym_name(np), (u_int) dsa);
3069	}
3070	np->dqueueget = i;
3071
3072	return n;
3073}
3074
3075/*
3076 *  Complete all active CCBs with error.
3077 *  Used on CHIP/SCSI RESET.
3078 */
3079static void sym_flush_busy_queue (hcb_p np, int cam_status)
3080{
3081	/*
3082	 *  Move all active CCBs to the COMP queue
3083	 *  and flush this queue.
3084	 */
3085	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3086	sym_que_init(&np->busy_ccbq);
3087	sym_flush_comp_queue(np, cam_status);
3088}
3089
3090/*
3091 *  Start chip.
3092 *
3093 *  'reason' means:
3094 *     0: initialisation.
3095 *     1: SCSI BUS RESET delivered or received.
3096 *     2: SCSI BUS MODE changed.
3097 */
3098static void sym_init (hcb_p np, int reason)
3099{
3100 	int	i;
3101	u32	phys;
3102
3103	SYM_LOCK_ASSERT(MA_OWNED);
3104
3105 	/*
3106	 *  Reset chip if asked, otherwise just clear fifos.
3107 	 */
3108	if (reason == 1)
3109		sym_soft_reset(np);
3110	else {
3111		OUTB (nc_stest3, TE|CSF);
3112		OUTONB (nc_ctest3, CLF);
3113	}
3114
3115	/*
3116	 *  Clear Start Queue
3117	 */
3118	phys = np->squeue_ba;
3119	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3120		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3121		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3122	}
3123	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3124
3125	/*
3126	 *  Start at first entry.
3127	 */
3128	np->squeueput = 0;
3129
3130	/*
3131	 *  Clear Done Queue
3132	 */
3133	phys = np->dqueue_ba;
3134	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3135		np->dqueue[i]   = 0;
3136		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3137	}
3138	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3139
3140	/*
3141	 *  Start at first entry.
3142	 */
3143	np->dqueueget = 0;
3144
3145	/*
3146	 *  Install patches in scripts.
3147	 *  This also let point to first position the start
3148	 *  and done queue pointers used from SCRIPTS.
3149	 */
3150	np->fw_patch(np);
3151
3152	/*
3153	 *  Wakeup all pending jobs.
3154	 */
3155	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3156
3157	/*
3158	 *  Init chip.
3159	 */
3160	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3161	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3162
3163	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3164					/*  full arb., ena parity, par->ATN  */
3165	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3166
3167	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3168
3169	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3170	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3171	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3172	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3173	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3174
3175	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3176	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3177	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3178
3179	/* Extended Sreq/Sack filtering not supported on the C10 */
3180	if (np->features & FE_C10)
3181		OUTB (nc_stest2, np->rv_stest2);
3182	else
3183		OUTB (nc_stest2, EXT|np->rv_stest2);
3184
3185	OUTB (nc_stest3, TE);			/* TolerANT enable */
3186	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3187
3188	/*
3189	 *  For now, disable AIP generation on C1010-66.
3190	 */
3191	if (np->device_id == PCI_ID_LSI53C1010_2)
3192		OUTB (nc_aipcntl1, DISAIP);
3193
3194	/*
3195	 *  C10101 Errata.
3196	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3197	 *  STEST1 register to disable SGE. We probably should do
3198	 *  that from SCRIPTS for each selection/reselection, but
3199	 *  I just don't want. :)
3200	 */
3201	if (np->device_id == PCI_ID_LSI53C1010 &&
3202	    /* np->revision_id < 0xff */ 1)
3203		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3204
3205	/*
3206	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3207	 *  Disable overlapped arbitration for some dual function devices,
3208	 *  regardless revision id (kind of post-chip-design feature. ;-))
3209	 */
3210	if (np->device_id == PCI_ID_SYM53C875)
3211		OUTB (nc_ctest0, (1<<5));
3212	else if (np->device_id == PCI_ID_SYM53C896)
3213		np->rv_ccntl0 |= DPR;
3214
3215	/*
3216	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3217	 *  and/or hardware phase mismatch, since only such chips
3218	 *  seem to support those IO registers.
3219	 */
3220	if (np->features & (FE_DAC|FE_NOPM)) {
3221		OUTB (nc_ccntl0, np->rv_ccntl0);
3222		OUTB (nc_ccntl1, np->rv_ccntl1);
3223	}
3224
3225	/*
3226	 *  If phase mismatch handled by scripts (895A/896/1010),
3227	 *  set PM jump addresses.
3228	 */
3229	if (np->features & FE_NOPM) {
3230		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3231		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3232	}
3233
3234	/*
3235	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3236	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3237	 */
3238	if (np->features & FE_LED0)
3239		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3240	else if (np->features & FE_LEDC)
3241		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3242
3243	/*
3244	 *      enable ints
3245	 */
3246	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3247	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3248
3249	/*
3250	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3251	 *  Try to eat the spurious SBMC interrupt that may occur when
3252	 *  we reset the chip but not the SCSI BUS (at initialization).
3253	 */
3254	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3255		OUTONW (nc_sien, SBMC);
3256		if (reason == 0) {
3257			MDELAY(100);
3258			INW (nc_sist);
3259		}
3260		np->scsi_mode = INB (nc_stest4) & SMODE;
3261	}
3262
3263	/*
3264	 *  Fill in target structure.
3265	 *  Reinitialize usrsync.
3266	 *  Reinitialize usrwide.
3267	 *  Prepare sync negotiation according to actual SCSI bus mode.
3268	 */
3269	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3270		tcb_p tp = &np->target[i];
3271
3272		tp->to_reset  = 0;
3273		tp->head.sval = 0;
3274		tp->head.wval = np->rv_scntl3;
3275		tp->head.uval = 0;
3276
3277		tp->tinfo.current.period = 0;
3278		tp->tinfo.current.offset = 0;
3279		tp->tinfo.current.width  = BUS_8_BIT;
3280		tp->tinfo.current.options = 0;
3281	}
3282
3283	/*
3284	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3285	 *  and start script processor.
3286	 */
3287	if (np->ram_ba) {
3288		if (sym_verbose > 1)
3289			printf ("%s: Downloading SCSI SCRIPTS.\n",
3290				sym_name(np));
3291		if (np->ram_ws == 8192) {
3292			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3293			OUTL (nc_mmws, np->scr_ram_seg);
3294			OUTL (nc_mmrs, np->scr_ram_seg);
3295			OUTL (nc_sfs,  np->scr_ram_seg);
3296			phys = SCRIPTB_BA (np, start64);
3297		}
3298		else
3299			phys = SCRIPTA_BA (np, init);
3300		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3301	}
3302	else
3303		phys = SCRIPTA_BA (np, init);
3304
3305	np->istat_sem = 0;
3306
3307	OUTL (nc_dsa, np->hcb_ba);
3308	OUTL_DSP (phys);
3309
3310	/*
3311	 *  Notify the XPT about the RESET condition.
3312	 */
3313	if (reason != 0)
3314		xpt_async(AC_BUS_RESET, np->path, NULL);
3315}
3316
3317/*
3318 *  Get clock factor and sync divisor for a given
3319 *  synchronous factor period.
3320 */
3321static int
3322sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3323{
3324	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3325	int	div = np->clock_divn;	/* Number of divisors supported	*/
3326	u32	fak;			/* Sync factor in sxfer		*/
3327	u32	per;			/* Period in tenths of ns	*/
3328	u32	kpc;			/* (per * clk)			*/
3329	int	ret;
3330
3331	/*
3332	 *  Compute the synchronous period in tenths of nano-seconds
3333	 */
3334	if (dt && sfac <= 9)	per = 125;
3335	else if	(sfac <= 10)	per = 250;
3336	else if	(sfac == 11)	per = 303;
3337	else if	(sfac == 12)	per = 500;
3338	else			per = 40 * sfac;
3339	ret = per;
3340
3341	kpc = per * clk;
3342	if (dt)
3343		kpc <<= 1;
3344
3345	/*
3346	 *  For earliest C10 revision 0, we cannot use extra
3347	 *  clocks for the setting of the SCSI clocking.
3348	 *  Note that this limits the lowest sync data transfer
3349	 *  to 5 Mega-transfers per second and may result in
3350	 *  using higher clock divisors.
3351	 */
3352#if 1
3353	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3354		/*
3355		 *  Look for the lowest clock divisor that allows an
3356		 *  output speed not faster than the period.
3357		 */
3358		while (div > 0) {
3359			--div;
3360			if (kpc > (div_10M[div] << 2)) {
3361				++div;
3362				break;
3363			}
3364		}
3365		fak = 0;			/* No extra clocks */
3366		if (div == np->clock_divn) {	/* Are we too fast ? */
3367			ret = -1;
3368		}
3369		*divp = div;
3370		*fakp = fak;
3371		return ret;
3372	}
3373#endif
3374
3375	/*
3376	 *  Look for the greatest clock divisor that allows an
3377	 *  input speed faster than the period.
3378	 */
3379	while (div-- > 0)
3380		if (kpc >= (div_10M[div] << 2)) break;
3381
3382	/*
3383	 *  Calculate the lowest clock factor that allows an output
3384	 *  speed not faster than the period, and the max output speed.
3385	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3386	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3387	 */
3388	if (dt) {
3389		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3390		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3391	}
3392	else {
3393		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3394		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3395	}
3396
3397	/*
3398	 *  Check against our hardware limits, or bugs :).
3399	 */
3400	if (fak > 2)	{fak = 2; ret = -1;}
3401
3402	/*
3403	 *  Compute and return sync parameters.
3404	 */
3405	*divp = div;
3406	*fakp = fak;
3407
3408	return ret;
3409}
3410
3411/*
3412 *  Tell the SCSI layer about the new transfer parameters.
3413 */
3414static void
3415sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3416{
3417	struct ccb_trans_settings cts;
3418	struct cam_path *path;
3419	int sts;
3420	tcb_p tp = &np->target[target];
3421
3422	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3423	                      CAM_LUN_WILDCARD);
3424	if (sts != CAM_REQ_CMP)
3425		return;
3426
3427	bzero(&cts, sizeof(cts));
3428
3429#define	cts__scsi (cts.proto_specific.scsi)
3430#define	cts__spi  (cts.xport_specific.spi)
3431
3432	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3433	cts.protocol  = PROTO_SCSI;
3434	cts.transport = XPORT_SPI;
3435	cts.protocol_version  = tp->tinfo.current.scsi_version;
3436	cts.transport_version = tp->tinfo.current.spi_version;
3437
3438	cts__spi.valid = spi_valid;
3439	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3440		cts__spi.sync_period = tp->tinfo.current.period;
3441	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3442		cts__spi.sync_offset = tp->tinfo.current.offset;
3443	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3444		cts__spi.bus_width   = tp->tinfo.current.width;
3445	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3446		cts__spi.ppr_options = tp->tinfo.current.options;
3447#undef cts__spi
3448#undef cts__scsi
3449	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3450	xpt_async(AC_TRANSFER_NEG, path, &cts);
3451	xpt_free_path(path);
3452}
3453
3454#define SYM_SPI_VALID_WDTR		\
3455	CTS_SPI_VALID_BUS_WIDTH |	\
3456	CTS_SPI_VALID_SYNC_RATE |	\
3457	CTS_SPI_VALID_SYNC_OFFSET
3458#define SYM_SPI_VALID_SDTR		\
3459	CTS_SPI_VALID_SYNC_RATE |	\
3460	CTS_SPI_VALID_SYNC_OFFSET
3461#define SYM_SPI_VALID_PPR		\
3462	CTS_SPI_VALID_PPR_OPTIONS |	\
3463	CTS_SPI_VALID_BUS_WIDTH |	\
3464	CTS_SPI_VALID_SYNC_RATE |	\
3465	CTS_SPI_VALID_SYNC_OFFSET
3466
3467/*
3468 *  We received a WDTR.
3469 *  Let everything be aware of the changes.
3470 */
3471static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3472{
3473	tcb_p tp = &np->target[cp->target];
3474
3475	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3476
3477	/*
3478	 *  Tell the SCSI layer about the new transfer parameters.
3479	 */
3480	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3481	tp->tinfo.current.offset = 0;
3482	tp->tinfo.current.period = 0;
3483	tp->tinfo.current.options = 0;
3484
3485	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3486}
3487
3488/*
3489 *  We received a SDTR.
3490 *  Let everything be aware of the changes.
3491 */
3492static void
3493sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3494{
3495	tcb_p tp = &np->target[cp->target];
3496	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3497
3498	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3499
3500	/*
3501	 *  Tell the SCSI layer about the new transfer parameters.
3502	 */
3503	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3504	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3505	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3506
3507	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3508}
3509
3510/*
3511 *  We received a PPR.
3512 *  Let everything be aware of the changes.
3513 */
3514static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3515			 u_char per, u_char wide, u_char div, u_char fak)
3516{
3517	tcb_p tp = &np->target[cp->target];
3518
3519	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3520
3521	/*
3522	 *  Tell the SCSI layer about the new transfer parameters.
3523	 */
3524	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3525	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3526	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3527	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3528
3529	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3530}
3531
3532/*
3533 *  Switch trans mode for current job and it's target.
3534 */
3535static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3536			 u_char per, u_char wide, u_char div, u_char fak)
3537{
3538	SYM_QUEHEAD *qp;
3539	union	ccb *ccb;
3540	tcb_p tp;
3541	u_char target = INB (nc_sdid) & 0x0f;
3542	u_char sval, wval, uval;
3543
3544	assert (cp);
3545	if (!cp) return;
3546	ccb = cp->cam_ccb;
3547	assert (ccb);
3548	if (!ccb) return;
3549	assert (target == (cp->target & 0xf));
3550	tp = &np->target[target];
3551
3552	sval = tp->head.sval;
3553	wval = tp->head.wval;
3554	uval = tp->head.uval;
3555
3556#if 0
3557	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3558		sval, wval, uval, np->rv_scntl3);
3559#endif
3560	/*
3561	 *  Set the offset.
3562	 */
3563	if (!(np->features & FE_C10))
3564		sval = (sval & ~0x1f) | ofs;
3565	else
3566		sval = (sval & ~0x3f) | ofs;
3567
3568	/*
3569	 *  Set the sync divisor and extra clock factor.
3570	 */
3571	if (ofs != 0) {
3572		wval = (wval & ~0x70) | ((div+1) << 4);
3573		if (!(np->features & FE_C10))
3574			sval = (sval & ~0xe0) | (fak << 5);
3575		else {
3576			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3577			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3578			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3579		}
3580	}
3581
3582	/*
3583	 *  Set the bus width.
3584	 */
3585	wval = wval & ~EWS;
3586	if (wide != 0)
3587		wval |= EWS;
3588
3589	/*
3590	 *  Set misc. ultra enable bits.
3591	 */
3592	if (np->features & FE_C10) {
3593		uval = uval & ~(U3EN|AIPCKEN);
3594		if (dt)	{
3595			assert(np->features & FE_U3EN);
3596			uval |= U3EN;
3597		}
3598	}
3599	else {
3600		wval = wval & ~ULTRA;
3601		if (per <= 12)	wval |= ULTRA;
3602	}
3603
3604	/*
3605	 *   Stop there if sync parameters are unchanged.
3606	 */
3607	if (tp->head.sval == sval &&
3608	    tp->head.wval == wval &&
3609	    tp->head.uval == uval)
3610		return;
3611	tp->head.sval = sval;
3612	tp->head.wval = wval;
3613	tp->head.uval = uval;
3614
3615	/*
3616	 *  Disable extended Sreq/Sack filtering if per < 50.
3617	 *  Not supported on the C1010.
3618	 */
3619	if (per < 50 && !(np->features & FE_C10))
3620		OUTOFFB (nc_stest2, EXT);
3621
3622	/*
3623	 *  set actual value and sync_status
3624	 */
3625	OUTB (nc_sxfer,  tp->head.sval);
3626	OUTB (nc_scntl3, tp->head.wval);
3627
3628	if (np->features & FE_C10) {
3629		OUTB (nc_scntl4, tp->head.uval);
3630	}
3631
3632	/*
3633	 *  patch ALL busy ccbs of this target.
3634	 */
3635	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3636		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3637		if (cp->target != target)
3638			continue;
3639		cp->phys.select.sel_scntl3 = tp->head.wval;
3640		cp->phys.select.sel_sxfer  = tp->head.sval;
3641		if (np->features & FE_C10) {
3642			cp->phys.select.sel_scntl4 = tp->head.uval;
3643		}
3644	}
3645}
3646
3647/*
3648 *  log message for real hard errors
3649 *
3650 *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3651 *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3652 *
3653 *  exception register:
3654 *  	ds:	dstat
3655 *  	si:	sist
3656 *
3657 *  SCSI bus lines:
3658 *  	so:	control lines as driven by chip.
3659 *  	si:	control lines as seen by chip.
3660 *  	sd:	scsi data lines as seen by chip.
3661 *
3662 *  wide/fastmode:
3663 *  	sxfer:	(see the manual)
3664 *  	scntl3:	(see the manual)
3665 *
3666 *  current script command:
3667 *  	dsp:	script address (relative to start of script).
3668 *  	dbc:	first word of script command.
3669 *
3670 *  First 24 register of the chip:
3671 *  	r0..rf
3672 */
3673static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3674{
3675	u32	dsp;
3676	int	script_ofs;
3677	int	script_size;
3678	char	*script_name;
3679	u_char	*script_base;
3680	int	i;
3681
3682	dsp	= INL (nc_dsp);
3683
3684	if	(dsp > np->scripta_ba &&
3685		 dsp <= np->scripta_ba + np->scripta_sz) {
3686		script_ofs	= dsp - np->scripta_ba;
3687		script_size	= np->scripta_sz;
3688		script_base	= (u_char *) np->scripta0;
3689		script_name	= "scripta";
3690	}
3691	else if (np->scriptb_ba < dsp &&
3692		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3693		script_ofs	= dsp - np->scriptb_ba;
3694		script_size	= np->scriptb_sz;
3695		script_base	= (u_char *) np->scriptb0;
3696		script_name	= "scriptb";
3697	} else {
3698		script_ofs	= dsp;
3699		script_size	= 0;
3700		script_base	= NULL;
3701		script_name	= "mem";
3702	}
3703
3704	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3705		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3706		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3707		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3708		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3709		(unsigned)INL (nc_dbc));
3710
3711	if (((script_ofs & 3) == 0) &&
3712	    (unsigned)script_ofs < script_size) {
3713		printf ("%s: script cmd = %08x\n", sym_name(np),
3714			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3715	}
3716
3717        printf ("%s: regdump:", sym_name(np));
3718        for (i=0; i<24;i++)
3719            printf (" %02x", (unsigned)INB_OFF(i));
3720        printf (".\n");
3721
3722	/*
3723	 *  PCI BUS error, read the PCI ststus register.
3724	 */
3725	if (dstat & (MDPE|BF)) {
3726		u_short pci_sts;
3727		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3728		if (pci_sts & 0xf900) {
3729			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3730			printf("%s: PCI STATUS = 0x%04x\n",
3731				sym_name(np), pci_sts & 0xf900);
3732		}
3733	}
3734}
3735
3736/*
3737 *  chip interrupt handler
3738 *
3739 *  In normal situations, interrupt conditions occur one at
3740 *  a time. But when something bad happens on the SCSI BUS,
3741 *  the chip may raise several interrupt flags before
3742 *  stopping and interrupting the CPU. The additionnal
3743 *  interrupt flags are stacked in some extra registers
3744 *  after the SIP and/or DIP flag has been raised in the
3745 *  ISTAT. After the CPU has read the interrupt condition
3746 *  flag from SIST or DSTAT, the chip unstacks the other
3747 *  interrupt flags and sets the corresponding bits in
3748 *  SIST or DSTAT. Since the chip starts stacking once the
3749 *  SIP or DIP flag is set, there is a small window of time
3750 *  where the stacking does not occur.
3751 *
3752 *  Typically, multiple interrupt conditions may happen in
3753 *  the following situations:
3754 *
3755 *  - SCSI parity error + Phase mismatch  (PAR|MA)
3756 *    When a parity error is detected in input phase
3757 *    and the device switches to msg-in phase inside a
3758 *    block MOV.
3759 *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3760 *    When a stupid device does not want to handle the
3761 *    recovery of an SCSI parity error.
3762 *  - Some combinations of STO, PAR, UDC, ...
3763 *    When using non compliant SCSI stuff, when user is
3764 *    doing non compliant hot tampering on the BUS, when
3765 *    something really bad happens to a device, etc ...
3766 *
3767 *  The heuristic suggested by SYMBIOS to handle
3768 *  multiple interrupts is to try unstacking all
3769 *  interrupts conditions and to handle them on some
3770 *  priority based on error severity.
3771 *  This will work when the unstacking has been
3772 *  successful, but we cannot be 100 % sure of that,
3773 *  since the CPU may have been faster to unstack than
3774 *  the chip is able to stack. Hmmm ... But it seems that
3775 *  such a situation is very unlikely to happen.
3776 *
3777 *  If this happen, for example STO caught by the CPU
3778 *  then UDC happenning before the CPU have restarted
3779 *  the SCRIPTS, the driver may wrongly complete the
3780 *  same command on UDC, since the SCRIPTS didn't restart
3781 *  and the DSA still points to the same command.
3782 *  We avoid this situation by setting the DSA to an
3783 *  invalid value when the CCB is completed and before
3784 *  restarting the SCRIPTS.
3785 *
3786 *  Another issue is that we need some section of our
3787 *  recovery procedures to be somehow uninterruptible but
3788 *  the SCRIPTS processor does not provides such a
3789 *  feature. For this reason, we handle recovery preferently
3790 *  from the C code and check against some SCRIPTS critical
3791 *  sections from the C code.
3792 *
3793 *  Hopefully, the interrupt handling of the driver is now
3794 *  able to resist to weird BUS error conditions, but donnot
3795 *  ask me for any guarantee that it will never fail. :-)
3796 *  Use at your own decision and risk.
3797 */
3798static void sym_intr1 (hcb_p np)
3799{
3800	u_char	istat, istatc;
3801	u_char	dstat;
3802	u_short	sist;
3803
3804	SYM_LOCK_ASSERT(MA_OWNED);
3805
3806	/*
3807	 *  interrupt on the fly ?
3808	 *
3809	 *  A `dummy read' is needed to ensure that the
3810	 *  clear of the INTF flag reaches the device
3811	 *  before the scanning of the DONE queue.
3812	 */
3813	istat = INB (nc_istat);
3814	if (istat & INTF) {
3815		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3816		istat = INB (nc_istat);		/* DUMMY READ */
3817		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3818		(void)sym_wakeup_done (np);
3819	}
3820
3821	if (!(istat & (SIP|DIP)))
3822		return;
3823
3824#if 0	/* We should never get this one */
3825	if (istat & CABRT)
3826		OUTB (nc_istat, CABRT);
3827#endif
3828
3829	/*
3830	 *  PAR and MA interrupts may occur at the same time,
3831	 *  and we need to know of both in order to handle
3832	 *  this situation properly. We try to unstack SCSI
3833	 *  interrupts for that reason. BTW, I dislike a LOT
3834	 *  such a loop inside the interrupt routine.
3835	 *  Even if DMA interrupt stacking is very unlikely to
3836	 *  happen, we also try unstacking these ones, since
3837	 *  this has no performance impact.
3838	 */
3839	sist	= 0;
3840	dstat	= 0;
3841	istatc	= istat;
3842	do {
3843		if (istatc & SIP)
3844			sist  |= INW (nc_sist);
3845		if (istatc & DIP)
3846			dstat |= INB (nc_dstat);
3847		istatc = INB (nc_istat);
3848		istat |= istatc;
3849	} while (istatc & (SIP|DIP));
3850
3851	if (DEBUG_FLAGS & DEBUG_TINY)
3852		printf ("<%d|%x:%x|%x:%x>",
3853			(int)INB(nc_scr0),
3854			dstat,sist,
3855			(unsigned)INL(nc_dsp),
3856			(unsigned)INL(nc_dbc));
3857	/*
3858	 *  On paper, a memory barrier may be needed here.
3859	 *  And since we are paranoid ... :)
3860	 */
3861	MEMORY_BARRIER();
3862
3863	/*
3864	 *  First, interrupts we want to service cleanly.
3865	 *
3866	 *  Phase mismatch (MA) is the most frequent interrupt
3867	 *  for chip earlier than the 896 and so we have to service
3868	 *  it as quickly as possible.
3869	 *  A SCSI parity error (PAR) may be combined with a phase
3870	 *  mismatch condition (MA).
3871	 *  Programmed interrupts (SIR) are used to call the C code
3872	 *  from SCRIPTS.
3873	 *  The single step interrupt (SSI) is not used in this
3874	 *  driver.
3875	 */
3876	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3877	    !(dstat & (MDPE|BF|ABRT|IID))) {
3878		if	(sist & PAR)	sym_int_par (np, sist);
3879		else if (sist & MA)	sym_int_ma (np);
3880		else if (dstat & SIR)	sym_int_sir (np);
3881		else if (dstat & SSI)	OUTONB_STD ();
3882		else			goto unknown_int;
3883		return;
3884	}
3885
3886	/*
3887	 *  Now, interrupts that donnot happen in normal
3888	 *  situations and that we may need to recover from.
3889	 *
3890	 *  On SCSI RESET (RST), we reset everything.
3891	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3892	 *  active CCBs with RESET status, prepare all devices
3893	 *  for negotiating again and restart the SCRIPTS.
3894	 *  On STO and UDC, we complete the CCB with the corres-
3895	 *  ponding status and restart the SCRIPTS.
3896	 */
3897	if (sist & RST) {
3898		xpt_print_path(np->path);
3899		printf("SCSI BUS reset detected.\n");
3900		sym_init (np, 1);
3901		return;
3902	}
3903
3904	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3905	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3906
3907	if (!(sist  & (GEN|HTH|SGE)) &&
3908	    !(dstat & (MDPE|BF|ABRT|IID))) {
3909		if	(sist & SBMC)	sym_int_sbmc (np);
3910		else if (sist & STO)	sym_int_sto (np);
3911		else if (sist & UDC)	sym_int_udc (np);
3912		else			goto unknown_int;
3913		return;
3914	}
3915
3916	/*
3917	 *  Now, interrupts we are not able to recover cleanly.
3918	 *
3919	 *  Log message for hard errors.
3920	 *  Reset everything.
3921	 */
3922
3923	sym_log_hard_error(np, sist, dstat);
3924
3925	if ((sist & (GEN|HTH|SGE)) ||
3926		(dstat & (MDPE|BF|ABRT|IID))) {
3927		sym_start_reset(np);
3928		return;
3929	}
3930
3931unknown_int:
3932	/*
3933	 *  We just miss the cause of the interrupt. :(
3934	 *  Print a message. The timeout will do the real work.
3935	 */
3936	printf(	"%s: unknown interrupt(s) ignored, "
3937		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3938		sym_name(np), istat, dstat, sist);
3939}
3940
3941static void sym_intr(void *arg)
3942{
3943	hcb_p np = arg;
3944
3945	SYM_LOCK();
3946
3947	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3948	sym_intr1((hcb_p) arg);
3949	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3950
3951	SYM_UNLOCK();
3952}
3953
3954static void sym_poll(struct cam_sim *sim)
3955{
3956	sym_intr1(cam_sim_softc(sim));
3957}
3958
3959/*
3960 *  generic recovery from scsi interrupt
3961 *
3962 *  The doc says that when the chip gets an SCSI interrupt,
3963 *  it tries to stop in an orderly fashion, by completing
3964 *  an instruction fetch that had started or by flushing
3965 *  the DMA fifo for a write to memory that was executing.
3966 *  Such a fashion is not enough to know if the instruction
3967 *  that was just before the current DSP value has been
3968 *  executed or not.
3969 *
3970 *  There are some small SCRIPTS sections that deal with
3971 *  the start queue and the done queue that may break any
3972 *  assomption from the C code if we are interrupted
3973 *  inside, so we reset if this happens. Btw, since these
3974 *  SCRIPTS sections are executed while the SCRIPTS hasn't
3975 *  started SCSI operations, it is very unlikely to happen.
3976 *
3977 *  All the driver data structures are supposed to be
3978 *  allocated from the same 4 GB memory window, so there
3979 *  is a 1 to 1 relationship between DSA and driver data
3980 *  structures. Since we are careful :) to invalidate the
3981 *  DSA when we complete a command or when the SCRIPTS
3982 *  pushes a DSA into a queue, we can trust it when it
3983 *  points to a CCB.
3984 */
3985static void sym_recover_scsi_int (hcb_p np, u_char hsts)
3986{
3987	u32	dsp	= INL (nc_dsp);
3988	u32	dsa	= INL (nc_dsa);
3989	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
3990
3991	/*
3992	 *  If we haven't been interrupted inside the SCRIPTS
3993	 *  critical paths, we can safely restart the SCRIPTS
3994	 *  and trust the DSA value if it matches a CCB.
3995	 */
3996	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
3997	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
3998	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
3999	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4000	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4001	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4002	    (!(dsp > SCRIPTA_BA (np, done) &&
4003	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4004		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4005		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4006		/*
4007		 *  If we have a CCB, let the SCRIPTS call us back for
4008		 *  the handling of the error with SCRATCHA filled with
4009		 *  STARTPOS. This way, we will be able to freeze the
4010		 *  device queue and requeue awaiting IOs.
4011		 */
4012		if (cp) {
4013			cp->host_status = hsts;
4014			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4015		}
4016		/*
4017		 *  Otherwise just restart the SCRIPTS.
4018		 */
4019		else {
4020			OUTL (nc_dsa, 0xffffff);
4021			OUTL_DSP (SCRIPTA_BA (np, start));
4022		}
4023	}
4024	else
4025		goto reset_all;
4026
4027	return;
4028
4029reset_all:
4030	sym_start_reset(np);
4031}
4032
4033/*
4034 *  chip exception handler for selection timeout
4035 */
4036static void sym_int_sto (hcb_p np)
4037{
4038	u32 dsp	= INL (nc_dsp);
4039
4040	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4041
4042	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4043		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4044	else
4045		sym_start_reset(np);
4046}
4047
4048/*
4049 *  chip exception handler for unexpected disconnect
4050 */
4051static void sym_int_udc (hcb_p np)
4052{
4053	printf ("%s: unexpected disconnect\n", sym_name(np));
4054	sym_recover_scsi_int(np, HS_UNEXPECTED);
4055}
4056
4057/*
4058 *  chip exception handler for SCSI bus mode change
4059 *
4060 *  spi2-r12 11.2.3 says a transceiver mode change must
4061 *  generate a reset event and a device that detects a reset
4062 *  event shall initiate a hard reset. It says also that a
4063 *  device that detects a mode change shall set data transfer
4064 *  mode to eight bit asynchronous, etc...
4065 *  So, just reinitializing all except chip should be enough.
4066 */
4067static void sym_int_sbmc (hcb_p np)
4068{
4069	u_char scsi_mode = INB (nc_stest4) & SMODE;
4070
4071	/*
4072	 *  Notify user.
4073	 */
4074	xpt_print_path(np->path);
4075	printf("SCSI BUS mode change from %s to %s.\n",
4076		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4077
4078	/*
4079	 *  Should suspend command processing for a few seconds and
4080	 *  reinitialize all except the chip.
4081	 */
4082	sym_init (np, 2);
4083}
4084
4085/*
4086 *  chip exception handler for SCSI parity error.
4087 *
4088 *  When the chip detects a SCSI parity error and is
4089 *  currently executing a (CH)MOV instruction, it does
4090 *  not interrupt immediately, but tries to finish the
4091 *  transfer of the current scatter entry before
4092 *  interrupting. The following situations may occur:
4093 *
4094 *  - The complete scatter entry has been transferred
4095 *    without the device having changed phase.
4096 *    The chip will then interrupt with the DSP pointing
4097 *    to the instruction that follows the MOV.
4098 *
4099 *  - A phase mismatch occurs before the MOV finished
4100 *    and phase errors are to be handled by the C code.
4101 *    The chip will then interrupt with both PAR and MA
4102 *    conditions set.
4103 *
4104 *  - A phase mismatch occurs before the MOV finished and
4105 *    phase errors are to be handled by SCRIPTS.
4106 *    The chip will load the DSP with the phase mismatch
4107 *    JUMP address and interrupt the host processor.
4108 */
4109static void sym_int_par (hcb_p np, u_short sist)
4110{
4111	u_char	hsts	= INB (HS_PRT);
4112	u32	dsp	= INL (nc_dsp);
4113	u32	dbc	= INL (nc_dbc);
4114	u32	dsa	= INL (nc_dsa);
4115	u_char	sbcl	= INB (nc_sbcl);
4116	u_char	cmd	= dbc >> 24;
4117	int phase	= cmd & 7;
4118	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4119
4120	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4121		sym_name(np), hsts, dbc, sbcl);
4122
4123	/*
4124	 *  Check that the chip is connected to the SCSI BUS.
4125	 */
4126	if (!(INB (nc_scntl1) & ISCON)) {
4127		sym_recover_scsi_int(np, HS_UNEXPECTED);
4128		return;
4129	}
4130
4131	/*
4132	 *  If the nexus is not clearly identified, reset the bus.
4133	 *  We will try to do better later.
4134	 */
4135	if (!cp)
4136		goto reset_all;
4137
4138	/*
4139	 *  Check instruction was a MOV, direction was INPUT and
4140	 *  ATN is asserted.
4141	 */
4142	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4143		goto reset_all;
4144
4145	/*
4146	 *  Keep track of the parity error.
4147	 */
4148	OUTONB (HF_PRT, HF_EXT_ERR);
4149	cp->xerr_status |= XE_PARITY_ERR;
4150
4151	/*
4152	 *  Prepare the message to send to the device.
4153	 */
4154	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4155
4156	/*
4157	 *  If the old phase was DATA IN phase, we have to deal with
4158	 *  the 3 situations described above.
4159	 *  For other input phases (MSG IN and STATUS), the device
4160	 *  must resend the whole thing that failed parity checking
4161	 *  or signal error. So, jumping to dispatcher should be OK.
4162	 */
4163	if (phase == 1 || phase == 5) {
4164		/* Phase mismatch handled by SCRIPTS */
4165		if (dsp == SCRIPTB_BA (np, pm_handle))
4166			OUTL_DSP (dsp);
4167		/* Phase mismatch handled by the C code */
4168		else if (sist & MA)
4169			sym_int_ma (np);
4170		/* No phase mismatch occurred */
4171		else {
4172			OUTL (nc_temp, dsp);
4173			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4174		}
4175	}
4176	else
4177		OUTL_DSP (SCRIPTA_BA (np, clrack));
4178	return;
4179
4180reset_all:
4181	sym_start_reset(np);
4182}
4183
4184/*
4185 *  chip exception handler for phase errors.
4186 *
4187 *  We have to construct a new transfer descriptor,
4188 *  to transfer the rest of the current block.
4189 */
4190static void sym_int_ma (hcb_p np)
4191{
4192	u32	dbc;
4193	u32	rest;
4194	u32	dsp;
4195	u32	dsa;
4196	u32	nxtdsp;
4197	u32	*vdsp;
4198	u32	oadr, olen;
4199	u32	*tblp;
4200        u32	newcmd;
4201	u_int	delta;
4202	u_char	cmd;
4203	u_char	hflags, hflags0;
4204	struct	sym_pmc *pm;
4205	ccb_p	cp;
4206
4207	dsp	= INL (nc_dsp);
4208	dbc	= INL (nc_dbc);
4209	dsa	= INL (nc_dsa);
4210
4211	cmd	= dbc >> 24;
4212	rest	= dbc & 0xffffff;
4213	delta	= 0;
4214
4215	/*
4216	 *  locate matching cp if any.
4217	 */
4218	cp = sym_ccb_from_dsa(np, dsa);
4219
4220	/*
4221	 *  Donnot take into account dma fifo and various buffers in
4222	 *  INPUT phase since the chip flushes everything before
4223	 *  raising the MA interrupt for interrupted INPUT phases.
4224	 *  For DATA IN phase, we will check for the SWIDE later.
4225	 */
4226	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4227		u_char ss0, ss2;
4228
4229		if (np->features & FE_DFBC)
4230			delta = INW (nc_dfbc);
4231		else {
4232			u32 dfifo;
4233
4234			/*
4235			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4236			 */
4237			dfifo = INL(nc_dfifo);
4238
4239			/*
4240			 *  Calculate remaining bytes in DMA fifo.
4241			 *  (CTEST5 = dfifo >> 16)
4242			 */
4243			if (dfifo & (DFS << 16))
4244				delta = ((((dfifo >> 8) & 0x300) |
4245				          (dfifo & 0xff)) - rest) & 0x3ff;
4246			else
4247				delta = ((dfifo & 0xff) - rest) & 0x7f;
4248		}
4249
4250		/*
4251		 *  The data in the dma fifo has not been transferred to
4252		 *  the target -> add the amount to the rest
4253		 *  and clear the data.
4254		 *  Check the sstat2 register in case of wide transfer.
4255		 */
4256		rest += delta;
4257		ss0  = INB (nc_sstat0);
4258		if (ss0 & OLF) rest++;
4259		if (!(np->features & FE_C10))
4260			if (ss0 & ORF) rest++;
4261		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4262			ss2 = INB (nc_sstat2);
4263			if (ss2 & OLF1) rest++;
4264			if (!(np->features & FE_C10))
4265				if (ss2 & ORF1) rest++;
4266		}
4267
4268		/*
4269		 *  Clear fifos.
4270		 */
4271		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4272		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4273	}
4274
4275	/*
4276	 *  log the information
4277	 */
4278	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4279		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4280			(unsigned) rest, (unsigned) delta);
4281
4282	/*
4283	 *  try to find the interrupted script command,
4284	 *  and the address at which to continue.
4285	 */
4286	vdsp	= NULL;
4287	nxtdsp	= 0;
4288	if	(dsp >  np->scripta_ba &&
4289		 dsp <= np->scripta_ba + np->scripta_sz) {
4290		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4291		nxtdsp = dsp;
4292	}
4293	else if	(dsp >  np->scriptb_ba &&
4294		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4295		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4296		nxtdsp = dsp;
4297	}
4298
4299	/*
4300	 *  log the information
4301	 */
4302	if (DEBUG_FLAGS & DEBUG_PHASE) {
4303		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4304			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4305	}
4306
4307	if (!vdsp) {
4308		printf ("%s: interrupted SCRIPT address not found.\n",
4309			sym_name (np));
4310		goto reset_all;
4311	}
4312
4313	if (!cp) {
4314		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4315			sym_name (np));
4316		goto reset_all;
4317	}
4318
4319	/*
4320	 *  get old startaddress and old length.
4321	 */
4322	oadr = scr_to_cpu(vdsp[1]);
4323
4324	if (cmd & 0x10) {	/* Table indirect */
4325		tblp = (u32 *) ((char*) &cp->phys + oadr);
4326		olen = scr_to_cpu(tblp[0]);
4327		oadr = scr_to_cpu(tblp[1]);
4328	} else {
4329		tblp = (u32 *) 0;
4330		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4331	}
4332
4333	if (DEBUG_FLAGS & DEBUG_PHASE) {
4334		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4335			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4336			tblp,
4337			(unsigned) olen,
4338			(unsigned) oadr);
4339	}
4340
4341	/*
4342	 *  check cmd against assumed interrupted script command.
4343	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4344	 *  the phase.
4345	 */
4346	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4347		PRINT_ADDR(cp);
4348		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4349			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4350
4351		goto reset_all;
4352	}
4353
4354	/*
4355	 *  if old phase not dataphase, leave here.
4356	 */
4357	if (cmd & 2) {
4358		PRINT_ADDR(cp);
4359		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4360			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4361			(unsigned)oadr, (unsigned)rest);
4362		goto unexpected_phase;
4363	}
4364
4365	/*
4366	 *  Choose the correct PM save area.
4367	 *
4368	 *  Look at the PM_SAVE SCRIPT if you want to understand
4369	 *  this stuff. The equivalent code is implemented in
4370	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4371	 *  handle PM from the SCRIPTS processor.
4372	 */
4373	hflags0 = INB (HF_PRT);
4374	hflags = hflags0;
4375
4376	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4377		if (hflags & HF_IN_PM0)
4378			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4379		else if	(hflags & HF_IN_PM1)
4380			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4381
4382		if (hflags & HF_DP_SAVED)
4383			hflags ^= HF_ACT_PM;
4384	}
4385
4386	if (!(hflags & HF_ACT_PM)) {
4387		pm = &cp->phys.pm0;
4388		newcmd = SCRIPTA_BA (np, pm0_data);
4389	}
4390	else {
4391		pm = &cp->phys.pm1;
4392		newcmd = SCRIPTA_BA (np, pm1_data);
4393	}
4394
4395	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4396	if (hflags != hflags0)
4397		OUTB (HF_PRT, hflags);
4398
4399	/*
4400	 *  fillin the phase mismatch context
4401	 */
4402	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4403	pm->sg.size = cpu_to_scr(rest);
4404	pm->ret     = cpu_to_scr(nxtdsp);
4405
4406	/*
4407	 *  If we have a SWIDE,
4408	 *  - prepare the address to write the SWIDE from SCRIPTS,
4409	 *  - compute the SCRIPTS address to restart from,
4410	 *  - move current data pointer context by one byte.
4411	 */
4412	nxtdsp = SCRIPTA_BA (np, dispatch);
4413	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4414	    (INB (nc_scntl2) & WSR)) {
4415		u32 tmp;
4416
4417		/*
4418		 *  Set up the table indirect for the MOVE
4419		 *  of the residual byte and adjust the data
4420		 *  pointer context.
4421		 */
4422		tmp = scr_to_cpu(pm->sg.addr);
4423		cp->phys.wresid.addr = cpu_to_scr(tmp);
4424		pm->sg.addr = cpu_to_scr(tmp + 1);
4425		tmp = scr_to_cpu(pm->sg.size);
4426		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4427		pm->sg.size = cpu_to_scr(tmp - 1);
4428
4429		/*
4430		 *  If only the residual byte is to be moved,
4431		 *  no PM context is needed.
4432		 */
4433		if ((tmp&0xffffff) == 1)
4434			newcmd = pm->ret;
4435
4436		/*
4437		 *  Prepare the address of SCRIPTS that will
4438		 *  move the residual byte to memory.
4439		 */
4440		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4441	}
4442
4443	if (DEBUG_FLAGS & DEBUG_PHASE) {
4444		PRINT_ADDR(cp);
4445		printf ("PM %x %x %x / %x %x %x.\n",
4446			hflags0, hflags, newcmd,
4447			(unsigned)scr_to_cpu(pm->sg.addr),
4448			(unsigned)scr_to_cpu(pm->sg.size),
4449			(unsigned)scr_to_cpu(pm->ret));
4450	}
4451
4452	/*
4453	 *  Restart the SCRIPTS processor.
4454	 */
4455	OUTL (nc_temp, newcmd);
4456	OUTL_DSP (nxtdsp);
4457	return;
4458
4459	/*
4460	 *  Unexpected phase changes that occurs when the current phase
4461	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4462	 *  Such event may only happen when the SCRIPTS is using a
4463	 *  multibyte SCSI MOVE.
4464	 *
4465	 *  Phase change		Some possible cause
4466	 *
4467	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4468	 *  COMMAND  --> STATUS	Bad command or refused by target.
4469	 *  MSG OUT  --> MSG IN     Message rejected by target.
4470	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4471	 *  			negotiation messages.
4472	 *
4473	 *  The code below does not care of the new phase and so
4474	 *  trusts the target. Why to annoy it ?
4475	 *  If the interrupted phase is COMMAND phase, we restart at
4476	 *  dispatcher.
4477	 *  If a target does not get all the messages after selection,
4478	 *  the code assumes blindly that the target discards extended
4479	 *  messages and clears the negotiation status.
4480	 *  If the target does not want all our response to negotiation,
4481	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4482	 *  bloat for such a should_not_happen situation).
4483	 *  In all other situation, we reset the BUS.
4484	 *  Are these assumptions reasonnable ? (Wait and see ...)
4485	 */
4486unexpected_phase:
4487	dsp -= 8;
4488	nxtdsp = 0;
4489
4490	switch (cmd & 7) {
4491	case 2:	/* COMMAND phase */
4492		nxtdsp = SCRIPTA_BA (np, dispatch);
4493		break;
4494#if 0
4495	case 3:	/* STATUS  phase */
4496		nxtdsp = SCRIPTA_BA (np, dispatch);
4497		break;
4498#endif
4499	case 6:	/* MSG OUT phase */
4500		/*
4501		 *  If the device may want to use untagged when we want
4502		 *  tagged, we prepare an IDENTIFY without disc. granted,
4503		 *  since we will not be able to handle reselect.
4504		 *  Otherwise, we just don't care.
4505		 */
4506		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4507			if (cp->tag != NO_TAG && olen - rest <= 3) {
4508				cp->host_status = HS_BUSY;
4509				np->msgout[0] = M_IDENTIFY | cp->lun;
4510				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4511			}
4512			else
4513				nxtdsp = SCRIPTB_BA (np, ident_break);
4514		}
4515		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4516			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4517			 dsp == SCRIPTB_BA (np, send_ppr)) {
4518			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4519		}
4520		break;
4521#if 0
4522	case 7:	/* MSG IN  phase */
4523		nxtdsp = SCRIPTA_BA (np, clrack);
4524		break;
4525#endif
4526	}
4527
4528	if (nxtdsp) {
4529		OUTL_DSP (nxtdsp);
4530		return;
4531	}
4532
4533reset_all:
4534	sym_start_reset(np);
4535}
4536
4537/*
4538 *  Dequeue from the START queue all CCBs that match
4539 *  a given target/lun/task condition (-1 means all),
4540 *  and move them from the BUSY queue to the COMP queue
4541 *  with CAM_REQUEUE_REQ status condition.
4542 *  This function is used during error handling/recovery.
4543 *  It is called with SCRIPTS not running.
4544 */
4545static int
4546sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4547{
4548	int j;
4549	ccb_p cp;
4550
4551	/*
4552	 *  Make sure the starting index is within range.
4553	 */
4554	assert((i >= 0) && (i < 2*MAX_QUEUE));
4555
4556	/*
4557	 *  Walk until end of START queue and dequeue every job
4558	 *  that matches the target/lun/task condition.
4559	 */
4560	j = i;
4561	while (i != np->squeueput) {
4562		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4563		assert(cp);
4564#ifdef SYM_CONF_IARB_SUPPORT
4565		/* Forget hints for IARB, they may be no longer relevant */
4566		cp->host_flags &= ~HF_HINT_IARB;
4567#endif
4568		if ((target == -1 || cp->target == target) &&
4569		    (lun    == -1 || cp->lun    == lun)    &&
4570		    (task   == -1 || cp->tag    == task)) {
4571			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4572			sym_remque(&cp->link_ccbq);
4573			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4574		}
4575		else {
4576			if (i != j)
4577				np->squeue[j] = np->squeue[i];
4578			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4579		}
4580		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4581	}
4582	if (i != j)		/* Copy back the idle task if needed */
4583		np->squeue[j] = np->squeue[i];
4584	np->squeueput = j;	/* Update our current start queue pointer */
4585
4586	return (i - j) / 2;
4587}
4588
4589/*
4590 *  Complete all CCBs queued to the COMP queue.
4591 *
4592 *  These CCBs are assumed:
4593 *  - Not to be referenced either by devices or
4594 *    SCRIPTS-related queues and datas.
4595 *  - To have to be completed with an error condition
4596 *    or requeued.
4597 *
4598 *  The device queue freeze count is incremented
4599 *  for each CCB that does not prevent this.
4600 *  This function is called when all CCBs involved
4601 *  in error handling/recovery have been reaped.
4602 */
4603static void
4604sym_flush_comp_queue(hcb_p np, int cam_status)
4605{
4606	SYM_QUEHEAD *qp;
4607	ccb_p cp;
4608
4609	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4610		union ccb *ccb;
4611		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4612		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4613		/* Leave quiet CCBs waiting for resources */
4614		if (cp->host_status == HS_WAIT)
4615			continue;
4616		ccb = cp->cam_ccb;
4617		if (cam_status)
4618			sym_set_cam_status(ccb, cam_status);
4619		sym_freeze_cam_ccb(ccb);
4620		sym_xpt_done(np, ccb, cp);
4621		sym_free_ccb(np, cp);
4622	}
4623}
4624
4625/*
4626 *  chip handler for bad SCSI status condition
4627 *
4628 *  In case of bad SCSI status, we unqueue all the tasks
4629 *  currently queued to the controller but not yet started
4630 *  and then restart the SCRIPTS processor immediately.
4631 *
4632 *  QUEUE FULL and BUSY conditions are handled the same way.
4633 *  Basically all the not yet started tasks are requeued in
4634 *  device queue and the queue is frozen until a completion.
4635 *
4636 *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4637 *  the CCB of the failed command to prepare a REQUEST SENSE
4638 *  SCSI command and queue it to the controller queue.
4639 *
4640 *  SCRATCHA is assumed to have been loaded with STARTPOS
4641 *  before the SCRIPTS called the C code.
4642 */
4643static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4644{
4645	tcb_p tp	= &np->target[cp->target];
4646	u32		startp;
4647	u_char		s_status = cp->ssss_status;
4648	u_char		h_flags  = cp->host_flags;
4649	int		msglen;
4650	int		nego;
4651	int		i;
4652
4653	SYM_LOCK_ASSERT(MA_OWNED);
4654
4655	/*
4656	 *  Compute the index of the next job to start from SCRIPTS.
4657	 */
4658	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4659
4660	/*
4661	 *  The last CCB queued used for IARB hint may be
4662	 *  no longer relevant. Forget it.
4663	 */
4664#ifdef SYM_CONF_IARB_SUPPORT
4665	if (np->last_cp)
4666		np->last_cp = NULL;
4667#endif
4668
4669	/*
4670	 *  Now deal with the SCSI status.
4671	 */
4672	switch(s_status) {
4673	case S_BUSY:
4674	case S_QUEUE_FULL:
4675		if (sym_verbose >= 2) {
4676			PRINT_ADDR(cp);
4677			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4678		}
4679		/* FALLTHROUGH */
4680	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4681		sym_complete_error (np, cp);
4682		break;
4683	case S_TERMINATED:
4684	case S_CHECK_COND:
4685		/*
4686		 *  If we get an SCSI error when requesting sense, give up.
4687		 */
4688		if (h_flags & HF_SENSE) {
4689			sym_complete_error (np, cp);
4690			break;
4691		}
4692
4693		/*
4694		 *  Dequeue all queued CCBs for that device not yet started,
4695		 *  and restart the SCRIPTS processor immediately.
4696		 */
4697		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4698		OUTL_DSP (SCRIPTA_BA (np, start));
4699
4700 		/*
4701		 *  Save some info of the actual IO.
4702		 *  Compute the data residual.
4703		 */
4704		cp->sv_scsi_status = cp->ssss_status;
4705		cp->sv_xerr_status = cp->xerr_status;
4706		cp->sv_resid = sym_compute_residual(np, cp);
4707
4708		/*
4709		 *  Prepare all needed data structures for
4710		 *  requesting sense data.
4711		 */
4712
4713		/*
4714		 *  identify message
4715		 */
4716		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4717		msglen = 1;
4718
4719		/*
4720		 *  If we are currently using anything different from
4721		 *  async. 8 bit data transfers with that target,
4722		 *  start a negotiation, since the device may want
4723		 *  to report us a UNIT ATTENTION condition due to
4724		 *  a cause we currently ignore, and we donnot want
4725		 *  to be stuck with WIDE and/or SYNC data transfer.
4726		 *
4727		 *  cp->nego_status is filled by sym_prepare_nego().
4728		 */
4729		cp->nego_status = 0;
4730		nego = 0;
4731		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4732			nego = NS_PPR;
4733		else if	(tp->tinfo.current.width != BUS_8_BIT)
4734			nego = NS_WIDE;
4735		else if (tp->tinfo.current.offset != 0)
4736			nego = NS_SYNC;
4737		if (nego)
4738			msglen +=
4739			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4740		/*
4741		 *  Message table indirect structure.
4742		 */
4743		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4744		cp->phys.smsg.size	= cpu_to_scr(msglen);
4745
4746		/*
4747		 *  sense command
4748		 */
4749		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4750		cp->phys.cmd.size	= cpu_to_scr(6);
4751
4752		/*
4753		 *  patch requested size into sense command
4754		 */
4755		cp->sensecmd[0]		= 0x03;
4756		cp->sensecmd[1]		= cp->lun << 5;
4757		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4758			cp->sensecmd[1]	= 0;
4759		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4760		cp->data_len		= SYM_SNS_BBUF_LEN;
4761
4762		/*
4763		 *  sense data
4764		 */
4765		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4766		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4767		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4768
4769		/*
4770		 *  requeue the command.
4771		 */
4772		startp = SCRIPTB_BA (np, sdata_in);
4773
4774		cp->phys.head.savep	= cpu_to_scr(startp);
4775		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4776		cp->phys.head.lastp	= cpu_to_scr(startp);
4777		cp->startp	= cpu_to_scr(startp);
4778
4779		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4780		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4781		cp->ssss_status = S_ILLEGAL;
4782		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4783		cp->xerr_status = 0;
4784		cp->extra_bytes = 0;
4785
4786		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4787
4788		/*
4789		 *  Requeue the command.
4790		 */
4791		sym_put_start_queue(np, cp);
4792
4793		/*
4794		 *  Give back to upper layer everything we have dequeued.
4795		 */
4796		sym_flush_comp_queue(np, 0);
4797		break;
4798	}
4799}
4800
4801/*
4802 *  After a device has accepted some management message
4803 *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4804 *  a device signals a UNIT ATTENTION condition, some
4805 *  tasks are thrown away by the device. We are required
4806 *  to reflect that on our tasks list since the device
4807 *  will never complete these tasks.
4808 *
4809 *  This function move from the BUSY queue to the COMP
4810 *  queue all disconnected CCBs for a given target that
4811 *  match the following criteria:
4812 *  - lun=-1  means any logical UNIT otherwise a given one.
4813 *  - task=-1 means any task, otherwise a given one.
4814 */
4815static int
4816sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4817{
4818	SYM_QUEHEAD qtmp, *qp;
4819	int i = 0;
4820	ccb_p cp;
4821
4822	/*
4823	 *  Move the entire BUSY queue to our temporary queue.
4824	 */
4825	sym_que_init(&qtmp);
4826	sym_que_splice(&np->busy_ccbq, &qtmp);
4827	sym_que_init(&np->busy_ccbq);
4828
4829	/*
4830	 *  Put all CCBs that matches our criteria into
4831	 *  the COMP queue and put back other ones into
4832	 *  the BUSY queue.
4833	 */
4834	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4835		union ccb *ccb;
4836		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4837		ccb = cp->cam_ccb;
4838		if (cp->host_status != HS_DISCONNECT ||
4839		    cp->target != target	     ||
4840		    (lun  != -1 && cp->lun != lun)   ||
4841		    (task != -1 &&
4842			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4843			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4844			continue;
4845		}
4846		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4847
4848		/* Preserve the software timeout condition */
4849		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4850			sym_set_cam_status(ccb, cam_status);
4851		++i;
4852#if 0
4853printf("XXXX TASK @%p CLEARED\n", cp);
4854#endif
4855	}
4856	return i;
4857}
4858
4859/*
4860 *  chip handler for TASKS recovery
4861 *
4862 *  We cannot safely abort a command, while the SCRIPTS
4863 *  processor is running, since we just would be in race
4864 *  with it.
4865 *
4866 *  As long as we have tasks to abort, we keep the SEM
4867 *  bit set in the ISTAT. When this bit is set, the
4868 *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4869 *  each time it enters the scheduler.
4870 *
4871 *  If we have to reset a target, clear tasks of a unit,
4872 *  or to perform the abort of a disconnected job, we
4873 *  restart the SCRIPTS for selecting the target. Once
4874 *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4875 *  If it loses arbitration, the SCRIPTS will interrupt again
4876 *  the next time it will enter its scheduler, and so on ...
4877 *
4878 *  On SIR_TARGET_SELECTED, we scan for the more
4879 *  appropriate thing to do:
4880 *
4881 *  - If nothing, we just sent a M_ABORT message to the
4882 *    target to get rid of the useless SCSI bus ownership.
4883 *    According to the specs, no tasks shall be affected.
4884 *  - If the target is to be reset, we send it a M_RESET
4885 *    message.
4886 *  - If a logical UNIT is to be cleared , we send the
4887 *    IDENTIFY(lun) + M_ABORT.
4888 *  - If an untagged task is to be aborted, we send the
4889 *    IDENTIFY(lun) + M_ABORT.
4890 *  - If a tagged task is to be aborted, we send the
4891 *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4892 *
4893 *  Once our 'kiss of death' :) message has been accepted
4894 *  by the target, the SCRIPTS interrupts again
4895 *  (SIR_ABORT_SENT). On this interrupt, we complete
4896 *  all the CCBs that should have been aborted by the
4897 *  target according to our message.
4898 */
4899static void sym_sir_task_recovery(hcb_p np, int num)
4900{
4901	SYM_QUEHEAD *qp;
4902	ccb_p cp;
4903	tcb_p tp;
4904	int target=-1, lun=-1, task;
4905	int i, k;
4906
4907	switch(num) {
4908	/*
4909	 *  The SCRIPTS processor stopped before starting
4910	 *  the next command in order to allow us to perform
4911	 *  some task recovery.
4912	 */
4913	case SIR_SCRIPT_STOPPED:
4914		/*
4915		 *  Do we have any target to reset or unit to clear ?
4916		 */
4917		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4918			tp = &np->target[i];
4919			if (tp->to_reset ||
4920			    (tp->lun0p && tp->lun0p->to_clear)) {
4921				target = i;
4922				break;
4923			}
4924			if (!tp->lunmp)
4925				continue;
4926			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4927				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4928					target	= i;
4929					break;
4930				}
4931			}
4932			if (target != -1)
4933				break;
4934		}
4935
4936		/*
4937		 *  If not, walk the busy queue for any
4938		 *  disconnected CCB to be aborted.
4939		 */
4940		if (target == -1) {
4941			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4942				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4943				if (cp->host_status != HS_DISCONNECT)
4944					continue;
4945				if (cp->to_abort) {
4946					target = cp->target;
4947					break;
4948				}
4949			}
4950		}
4951
4952		/*
4953		 *  If some target is to be selected,
4954		 *  prepare and start the selection.
4955		 */
4956		if (target != -1) {
4957			tp = &np->target[target];
4958			np->abrt_sel.sel_id	= target;
4959			np->abrt_sel.sel_scntl3 = tp->head.wval;
4960			np->abrt_sel.sel_sxfer  = tp->head.sval;
4961			OUTL(nc_dsa, np->hcb_ba);
4962			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4963			return;
4964		}
4965
4966		/*
4967		 *  Now look for a CCB to abort that haven't started yet.
4968		 *  Btw, the SCRIPTS processor is still stopped, so
4969		 *  we are not in race.
4970		 */
4971		i = 0;
4972		cp = NULL;
4973		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4974			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4975			if (cp->host_status != HS_BUSY &&
4976			    cp->host_status != HS_NEGOTIATE)
4977				continue;
4978			if (!cp->to_abort)
4979				continue;
4980#ifdef SYM_CONF_IARB_SUPPORT
4981			/*
4982			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4983			 *    want to cancel the last queued CCB, since the
4984			 *    SCRIPTS may have anticipated the selection.
4985			 */
4986			if (cp == np->last_cp) {
4987				cp->to_abort = 0;
4988				continue;
4989			}
4990#endif
4991			i = 1;	/* Means we have found some */
4992			break;
4993		}
4994		if (!i) {
4995			/*
4996			 *  We are done, so we donnot need
4997			 *  to synchronize with the SCRIPTS anylonger.
4998			 *  Remove the SEM flag from the ISTAT.
4999			 */
5000			np->istat_sem = 0;
5001			OUTB (nc_istat, SIGP);
5002			break;
5003		}
5004		/*
5005		 *  Compute index of next position in the start
5006		 *  queue the SCRIPTS intends to start and dequeue
5007		 *  all CCBs for that device that haven't been started.
5008		 */
5009		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5010		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5011
5012		/*
5013		 *  Make sure at least our IO to abort has been dequeued.
5014		 */
5015		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5016
5017		/*
5018		 *  Keep track in cam status of the reason of the abort.
5019		 */
5020		if (cp->to_abort == 2)
5021			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5022		else
5023			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5024
5025		/*
5026		 *  Complete with error everything that we have dequeued.
5027	 	 */
5028		sym_flush_comp_queue(np, 0);
5029		break;
5030	/*
5031	 *  The SCRIPTS processor has selected a target
5032	 *  we may have some manual recovery to perform for.
5033	 */
5034	case SIR_TARGET_SELECTED:
5035		target = (INB (nc_sdid) & 0xf);
5036		tp = &np->target[target];
5037
5038		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5039
5040		/*
5041		 *  If the target is to be reset, prepare a
5042		 *  M_RESET message and clear the to_reset flag
5043		 *  since we donnot expect this operation to fail.
5044		 */
5045		if (tp->to_reset) {
5046			np->abrt_msg[0] = M_RESET;
5047			np->abrt_tbl.size = 1;
5048			tp->to_reset = 0;
5049			break;
5050		}
5051
5052		/*
5053		 *  Otherwise, look for some logical unit to be cleared.
5054		 */
5055		if (tp->lun0p && tp->lun0p->to_clear)
5056			lun = 0;
5057		else if (tp->lunmp) {
5058			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5059				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5060					lun = k;
5061					break;
5062				}
5063			}
5064		}
5065
5066		/*
5067		 *  If a logical unit is to be cleared, prepare
5068		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5069		 */
5070		if (lun != -1) {
5071			lcb_p lp = sym_lp(tp, lun);
5072			lp->to_clear = 0; /* We donnot expect to fail here */
5073			np->abrt_msg[0] = M_IDENTIFY | lun;
5074			np->abrt_msg[1] = M_ABORT;
5075			np->abrt_tbl.size = 2;
5076			break;
5077		}
5078
5079		/*
5080		 *  Otherwise, look for some disconnected job to
5081		 *  abort for this target.
5082		 */
5083		i = 0;
5084		cp = NULL;
5085		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5086			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5087			if (cp->host_status != HS_DISCONNECT)
5088				continue;
5089			if (cp->target != target)
5090				continue;
5091			if (!cp->to_abort)
5092				continue;
5093			i = 1;	/* Means we have some */
5094			break;
5095		}
5096
5097		/*
5098		 *  If we have none, probably since the device has
5099		 *  completed the command before we won abitration,
5100		 *  send a M_ABORT message without IDENTIFY.
5101		 *  According to the specs, the device must just
5102		 *  disconnect the BUS and not abort any task.
5103		 */
5104		if (!i) {
5105			np->abrt_msg[0] = M_ABORT;
5106			np->abrt_tbl.size = 1;
5107			break;
5108		}
5109
5110		/*
5111		 *  We have some task to abort.
5112		 *  Set the IDENTIFY(lun)
5113		 */
5114		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5115
5116		/*
5117		 *  If we want to abort an untagged command, we
5118		 *  will send an IDENTIFY + M_ABORT.
5119		 *  Otherwise (tagged command), we will send
5120		 *  an IDENTIFY + task attributes + ABORT TAG.
5121		 */
5122		if (cp->tag == NO_TAG) {
5123			np->abrt_msg[1] = M_ABORT;
5124			np->abrt_tbl.size = 2;
5125		}
5126		else {
5127			np->abrt_msg[1] = cp->scsi_smsg[1];
5128			np->abrt_msg[2] = cp->scsi_smsg[2];
5129			np->abrt_msg[3] = M_ABORT_TAG;
5130			np->abrt_tbl.size = 4;
5131		}
5132		/*
5133		 *  Keep track of software timeout condition, since the
5134		 *  peripheral driver may not count retries on abort
5135		 *  conditions not due to timeout.
5136		 */
5137		if (cp->to_abort == 2)
5138			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5139		cp->to_abort = 0; /* We donnot expect to fail here */
5140		break;
5141
5142	/*
5143	 *  The target has accepted our message and switched
5144	 *  to BUS FREE phase as we expected.
5145	 */
5146	case SIR_ABORT_SENT:
5147		target = (INB (nc_sdid) & 0xf);
5148		tp = &np->target[target];
5149
5150		/*
5151		**  If we didn't abort anything, leave here.
5152		*/
5153		if (np->abrt_msg[0] == M_ABORT)
5154			break;
5155
5156		/*
5157		 *  If we sent a M_RESET, then a hardware reset has
5158		 *  been performed by the target.
5159		 *  - Reset everything to async 8 bit
5160		 *  - Tell ourself to negotiate next time :-)
5161		 *  - Prepare to clear all disconnected CCBs for
5162		 *    this target from our task list (lun=task=-1)
5163		 */
5164		lun = -1;
5165		task = -1;
5166		if (np->abrt_msg[0] == M_RESET) {
5167			tp->head.sval = 0;
5168			tp->head.wval = np->rv_scntl3;
5169			tp->head.uval = 0;
5170			tp->tinfo.current.period = 0;
5171			tp->tinfo.current.offset = 0;
5172			tp->tinfo.current.width  = BUS_8_BIT;
5173			tp->tinfo.current.options = 0;
5174		}
5175
5176		/*
5177		 *  Otherwise, check for the LUN and TASK(s)
5178		 *  concerned by the cancellation.
5179		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5180		 *  or an ABORT message :-)
5181		 */
5182		else {
5183			lun = np->abrt_msg[0] & 0x3f;
5184			if (np->abrt_msg[1] == M_ABORT_TAG)
5185				task = np->abrt_msg[2];
5186		}
5187
5188		/*
5189		 *  Complete all the CCBs the device should have
5190		 *  aborted due to our 'kiss of death' message.
5191		 */
5192		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5193		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5194		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5195		sym_flush_comp_queue(np, 0);
5196
5197		/*
5198		 *  If we sent a BDR, make uper layer aware of that.
5199		 */
5200		if (np->abrt_msg[0] == M_RESET)
5201			xpt_async(AC_SENT_BDR, np->path, NULL);
5202		break;
5203	}
5204
5205	/*
5206	 *  Print to the log the message we intend to send.
5207	 */
5208	if (num == SIR_TARGET_SELECTED) {
5209		PRINT_TARGET(np, target);
5210		sym_printl_hex("control msgout:", np->abrt_msg,
5211			      np->abrt_tbl.size);
5212		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5213	}
5214
5215	/*
5216	 *  Let the SCRIPTS processor continue.
5217	 */
5218	OUTONB_STD ();
5219}
5220
5221/*
5222 *  Gerard's alchemy:) that deals with with the data
5223 *  pointer for both MDP and the residual calculation.
5224 *
5225 *  I didn't want to bloat the code by more than 200
5226 *  lignes for the handling of both MDP and the residual.
5227 *  This has been achieved by using a data pointer
5228 *  representation consisting in an index in the data
5229 *  array (dp_sg) and a negative offset (dp_ofs) that
5230 *  have the following meaning:
5231 *
5232 *  - dp_sg = SYM_CONF_MAX_SG
5233 *    we are at the end of the data script.
5234 *  - dp_sg < SYM_CONF_MAX_SG
5235 *    dp_sg points to the next entry of the scatter array
5236 *    we want to transfer.
5237 *  - dp_ofs < 0
5238 *    dp_ofs represents the residual of bytes of the
5239 *    previous entry scatter entry we will send first.
5240 *  - dp_ofs = 0
5241 *    no residual to send first.
5242 *
5243 *  The function sym_evaluate_dp() accepts an arbitray
5244 *  offset (basically from the MDP message) and returns
5245 *  the corresponding values of dp_sg and dp_ofs.
5246 */
5247static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5248{
5249	u32	dp_scr;
5250	int	dp_ofs, dp_sg, dp_sgmin;
5251	int	tmp;
5252	struct sym_pmc *pm;
5253
5254	/*
5255	 *  Compute the resulted data pointer in term of a script
5256	 *  address within some DATA script and a signed byte offset.
5257	 */
5258	dp_scr = scr;
5259	dp_ofs = *ofs;
5260	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5261		pm = &cp->phys.pm0;
5262	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5263		pm = &cp->phys.pm1;
5264	else
5265		pm = NULL;
5266
5267	if (pm) {
5268		dp_scr  = scr_to_cpu(pm->ret);
5269		dp_ofs -= scr_to_cpu(pm->sg.size);
5270	}
5271
5272	/*
5273	 *  If we are auto-sensing, then we are done.
5274	 */
5275	if (cp->host_flags & HF_SENSE) {
5276		*ofs = dp_ofs;
5277		return 0;
5278	}
5279
5280	/*
5281	 *  Deduce the index of the sg entry.
5282	 *  Keep track of the index of the first valid entry.
5283	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5284	 *  end of the data.
5285	 */
5286	tmp = scr_to_cpu(cp->phys.head.goalp);
5287	dp_sg = SYM_CONF_MAX_SG;
5288	if (dp_scr != tmp)
5289		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5290	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5291
5292	/*
5293	 *  Move to the sg entry the data pointer belongs to.
5294	 *
5295	 *  If we are inside the data area, we expect result to be:
5296	 *
5297	 *  Either,
5298	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5299	 *      the data pointer belongs to (or the end of the data)
5300	 *  Or,
5301	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5302	 *      the data pointer belongs to + 1.
5303	 */
5304	if (dp_ofs < 0) {
5305		int n;
5306		while (dp_sg > dp_sgmin) {
5307			--dp_sg;
5308			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5309			n = dp_ofs + (tmp & 0xffffff);
5310			if (n > 0) {
5311				++dp_sg;
5312				break;
5313			}
5314			dp_ofs = n;
5315		}
5316	}
5317	else if (dp_ofs > 0) {
5318		while (dp_sg < SYM_CONF_MAX_SG) {
5319			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5320			dp_ofs -= (tmp & 0xffffff);
5321			++dp_sg;
5322			if (dp_ofs <= 0)
5323				break;
5324		}
5325	}
5326
5327	/*
5328	 *  Make sure the data pointer is inside the data area.
5329	 *  If not, return some error.
5330	 */
5331	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5332		goto out_err;
5333	else if	(dp_sg > SYM_CONF_MAX_SG ||
5334		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5335		goto out_err;
5336
5337	/*
5338	 *  Save the extreme pointer if needed.
5339	 */
5340	if (dp_sg > cp->ext_sg ||
5341            (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5342		cp->ext_sg  = dp_sg;
5343		cp->ext_ofs = dp_ofs;
5344	}
5345
5346	/*
5347	 *  Return data.
5348	 */
5349	*ofs = dp_ofs;
5350	return dp_sg;
5351
5352out_err:
5353	return -1;
5354}
5355
5356/*
5357 *  chip handler for MODIFY DATA POINTER MESSAGE
5358 *
5359 *  We also call this function on IGNORE WIDE RESIDUE
5360 *  messages that do not match a SWIDE full condition.
5361 *  Btw, we assume in that situation that such a message
5362 *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5363 */
5364static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5365{
5366	int dp_ofs	= ofs;
5367	u32	dp_scr	= INL (nc_temp);
5368	u32	dp_ret;
5369	u32	tmp;
5370	u_char	hflags;
5371	int	dp_sg;
5372	struct	sym_pmc *pm;
5373
5374	/*
5375	 *  Not supported for auto-sense.
5376	 */
5377	if (cp->host_flags & HF_SENSE)
5378		goto out_reject;
5379
5380	/*
5381	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5382	 *  to the resulted data pointer.
5383	 */
5384	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5385	if (dp_sg < 0)
5386		goto out_reject;
5387
5388	/*
5389	 *  And our alchemy:) allows to easily calculate the data
5390	 *  script address we want to return for the next data phase.
5391	 */
5392	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5393	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5394
5395	/*
5396	 *  If offset / scatter entry is zero we donnot need
5397	 *  a context for the new current data pointer.
5398	 */
5399	if (dp_ofs == 0) {
5400		dp_scr = dp_ret;
5401		goto out_ok;
5402	}
5403
5404	/*
5405	 *  Get a context for the new current data pointer.
5406	 */
5407	hflags = INB (HF_PRT);
5408
5409	if (hflags & HF_DP_SAVED)
5410		hflags ^= HF_ACT_PM;
5411
5412	if (!(hflags & HF_ACT_PM)) {
5413		pm  = &cp->phys.pm0;
5414		dp_scr = SCRIPTA_BA (np, pm0_data);
5415	}
5416	else {
5417		pm = &cp->phys.pm1;
5418		dp_scr = SCRIPTA_BA (np, pm1_data);
5419	}
5420
5421	hflags &= ~(HF_DP_SAVED);
5422
5423	OUTB (HF_PRT, hflags);
5424
5425	/*
5426	 *  Set up the new current data pointer.
5427	 *  ofs < 0 there, and for the next data phase, we
5428	 *  want to transfer part of the data of the sg entry
5429	 *  corresponding to index dp_sg-1 prior to returning
5430	 *  to the main data script.
5431	 */
5432	pm->ret = cpu_to_scr(dp_ret);
5433	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5434	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5435	pm->sg.addr = cpu_to_scr(tmp);
5436	pm->sg.size = cpu_to_scr(-dp_ofs);
5437
5438out_ok:
5439	OUTL (nc_temp, dp_scr);
5440	OUTL_DSP (SCRIPTA_BA (np, clrack));
5441	return;
5442
5443out_reject:
5444	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5445}
5446
5447/*
5448 *  chip calculation of the data residual.
5449 *
5450 *  As I used to say, the requirement of data residual
5451 *  in SCSI is broken, useless and cannot be achieved
5452 *  without huge complexity.
5453 *  But most OSes and even the official CAM require it.
5454 *  When stupidity happens to be so widely spread inside
5455 *  a community, it gets hard to convince.
5456 *
5457 *  Anyway, I don't care, since I am not going to use
5458 *  any software that considers this data residual as
5459 *  a relevant information. :)
5460 */
5461static int sym_compute_residual(hcb_p np, ccb_p cp)
5462{
5463	int dp_sg, resid = 0;
5464	int dp_ofs = 0;
5465
5466	/*
5467	 *  Check for some data lost or just thrown away.
5468	 *  We are not required to be quite accurate in this
5469	 *  situation. Btw, if we are odd for output and the
5470	 *  device claims some more data, it may well happen
5471	 *  than our residual be zero. :-)
5472	 */
5473	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5474		if (cp->xerr_status & XE_EXTRA_DATA)
5475			resid -= cp->extra_bytes;
5476		if (cp->xerr_status & XE_SODL_UNRUN)
5477			++resid;
5478		if (cp->xerr_status & XE_SWIDE_OVRUN)
5479			--resid;
5480	}
5481
5482	/*
5483	 *  If all data has been transferred,
5484	 *  there is no residual.
5485	 */
5486	if (cp->phys.head.lastp == cp->phys.head.goalp)
5487		return resid;
5488
5489	/*
5490	 *  If no data transfer occurs, or if the data
5491	 *  pointer is weird, return full residual.
5492	 */
5493	if (cp->startp == cp->phys.head.lastp ||
5494	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5495			    &dp_ofs) < 0) {
5496		return cp->data_len;
5497	}
5498
5499	/*
5500	 *  If we were auto-sensing, then we are done.
5501	 */
5502	if (cp->host_flags & HF_SENSE) {
5503		return -dp_ofs;
5504	}
5505
5506	/*
5507	 *  We are now full comfortable in the computation
5508	 *  of the data residual (2's complement).
5509	 */
5510	resid = -cp->ext_ofs;
5511	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5512		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5513		resid += (tmp & 0xffffff);
5514	}
5515
5516	/*
5517	 *  Hopefully, the result is not too wrong.
5518	 */
5519	return resid;
5520}
5521
5522/*
5523 *  Print out the content of a SCSI message.
5524 */
5525static int sym_show_msg (u_char * msg)
5526{
5527	u_char i;
5528	printf ("%x",*msg);
5529	if (*msg==M_EXTENDED) {
5530		for (i=1;i<8;i++) {
5531			if (i-1>msg[1]) break;
5532			printf ("-%x",msg[i]);
5533		}
5534		return (i+1);
5535	} else if ((*msg & 0xf0) == 0x20) {
5536		printf ("-%x",msg[1]);
5537		return (2);
5538	}
5539	return (1);
5540}
5541
5542static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5543{
5544	PRINT_ADDR(cp);
5545	if (label)
5546		printf ("%s: ", label);
5547
5548	(void) sym_show_msg (msg);
5549	printf (".\n");
5550}
5551
5552/*
5553 *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5554 *
5555 *  When we try to negotiate, we append the negotiation message
5556 *  to the identify and (maybe) simple tag message.
5557 *  The host status field is set to HS_NEGOTIATE to mark this
5558 *  situation.
5559 *
5560 *  If the target doesn't answer this message immediately
5561 *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5562 *  will be raised eventually.
5563 *  The handler removes the HS_NEGOTIATE status, and sets the
5564 *  negotiated value to the default (async / nowide).
5565 *
5566 *  If we receive a matching answer immediately, we check it
5567 *  for validity, and set the values.
5568 *
5569 *  If we receive a Reject message immediately, we assume the
5570 *  negotiation has failed, and fall back to standard values.
5571 *
5572 *  If we receive a negotiation message while not in HS_NEGOTIATE
5573 *  state, it's a target initiated negotiation. We prepare a
5574 *  (hopefully) valid answer, set our parameters, and send back
5575 *  this answer to the target.
5576 *
5577 *  If the target doesn't fetch the answer (no message out phase),
5578 *  we assume the negotiation has failed, and fall back to default
5579 *  settings (SIR_NEGO_PROTO interrupt).
5580 *
5581 *  When we set the values, we adjust them in all ccbs belonging
5582 *  to this target, in the controller's register, and in the "phys"
5583 *  field of the controller's struct sym_hcb.
5584 */
5585
5586/*
5587 *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5588 */
5589static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5590{
5591	u_char	chg, ofs, per, fak, div;
5592	int	req = 1;
5593
5594	/*
5595	 *  Synchronous request message received.
5596	 */
5597	if (DEBUG_FLAGS & DEBUG_NEGO) {
5598		sym_print_msg(cp, "sync msgin", np->msgin);
5599	}
5600
5601	/*
5602	 * request or answer ?
5603	 */
5604	if (INB (HS_PRT) == HS_NEGOTIATE) {
5605		OUTB (HS_PRT, HS_BUSY);
5606		if (cp->nego_status && cp->nego_status != NS_SYNC)
5607			goto reject_it;
5608		req = 0;
5609	}
5610
5611	/*
5612	 *  get requested values.
5613	 */
5614	chg = 0;
5615	per = np->msgin[3];
5616	ofs = np->msgin[4];
5617
5618	/*
5619	 *  check values against our limits.
5620	 */
5621	if (ofs) {
5622		if (ofs > np->maxoffs)
5623			{chg = 1; ofs = np->maxoffs;}
5624		if (req) {
5625			if (ofs > tp->tinfo.user.offset)
5626				{chg = 1; ofs = tp->tinfo.user.offset;}
5627		}
5628	}
5629
5630	if (ofs) {
5631		if (per < np->minsync)
5632			{chg = 1; per = np->minsync;}
5633		if (req) {
5634			if (per < tp->tinfo.user.period)
5635				{chg = 1; per = tp->tinfo.user.period;}
5636		}
5637	}
5638
5639	div = fak = 0;
5640	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5641		goto reject_it;
5642
5643	if (DEBUG_FLAGS & DEBUG_NEGO) {
5644		PRINT_ADDR(cp);
5645		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5646			ofs, per, div, fak, chg);
5647	}
5648
5649	/*
5650	 *  This was an answer message
5651	 */
5652	if (req == 0) {
5653		if (chg) 	/* Answer wasn't acceptable. */
5654			goto reject_it;
5655		sym_setsync (np, cp, ofs, per, div, fak);
5656		OUTL_DSP (SCRIPTA_BA (np, clrack));
5657		return;
5658	}
5659
5660	/*
5661	 *  It was a request. Set value and
5662	 *  prepare an answer message
5663	 */
5664	sym_setsync (np, cp, ofs, per, div, fak);
5665
5666	np->msgout[0] = M_EXTENDED;
5667	np->msgout[1] = 3;
5668	np->msgout[2] = M_X_SYNC_REQ;
5669	np->msgout[3] = per;
5670	np->msgout[4] = ofs;
5671
5672	cp->nego_status = NS_SYNC;
5673
5674	if (DEBUG_FLAGS & DEBUG_NEGO) {
5675		sym_print_msg(cp, "sync msgout", np->msgout);
5676	}
5677
5678	np->msgin [0] = M_NOOP;
5679
5680	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5681	return;
5682reject_it:
5683	sym_setsync (np, cp, 0, 0, 0, 0);
5684	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5685}
5686
5687/*
5688 *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5689 */
5690static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5691{
5692	u_char	chg, ofs, per, fak, dt, div, wide;
5693	int	req = 1;
5694
5695	/*
5696	 * Synchronous request message received.
5697	 */
5698	if (DEBUG_FLAGS & DEBUG_NEGO) {
5699		sym_print_msg(cp, "ppr msgin", np->msgin);
5700	}
5701
5702	/*
5703	 *  get requested values.
5704	 */
5705	chg  = 0;
5706	per  = np->msgin[3];
5707	ofs  = np->msgin[5];
5708	wide = np->msgin[6];
5709	dt   = np->msgin[7] & PPR_OPT_DT;
5710
5711	/*
5712	 * request or answer ?
5713	 */
5714	if (INB (HS_PRT) == HS_NEGOTIATE) {
5715		OUTB (HS_PRT, HS_BUSY);
5716		if (cp->nego_status && cp->nego_status != NS_PPR)
5717			goto reject_it;
5718		req = 0;
5719	}
5720
5721	/*
5722	 *  check values against our limits.
5723	 */
5724	if (wide > np->maxwide)
5725		{chg = 1; wide = np->maxwide;}
5726	if (!wide || !(np->features & FE_ULTRA3))
5727		dt &= ~PPR_OPT_DT;
5728	if (req) {
5729		if (wide > tp->tinfo.user.width)
5730			{chg = 1; wide = tp->tinfo.user.width;}
5731	}
5732
5733	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5734		dt &= ~PPR_OPT_DT;
5735
5736	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5737
5738	if (ofs) {
5739		if (dt) {
5740			if (ofs > np->maxoffs_dt)
5741				{chg = 1; ofs = np->maxoffs_dt;}
5742		}
5743		else if (ofs > np->maxoffs)
5744			{chg = 1; ofs = np->maxoffs;}
5745		if (req) {
5746			if (ofs > tp->tinfo.user.offset)
5747				{chg = 1; ofs = tp->tinfo.user.offset;}
5748		}
5749	}
5750
5751	if (ofs) {
5752		if (dt) {
5753			if (per < np->minsync_dt)
5754				{chg = 1; per = np->minsync_dt;}
5755		}
5756		else if (per < np->minsync)
5757			{chg = 1; per = np->minsync;}
5758		if (req) {
5759			if (per < tp->tinfo.user.period)
5760				{chg = 1; per = tp->tinfo.user.period;}
5761		}
5762	}
5763
5764	div = fak = 0;
5765	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5766		goto reject_it;
5767
5768	if (DEBUG_FLAGS & DEBUG_NEGO) {
5769		PRINT_ADDR(cp);
5770		printf ("ppr: "
5771			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5772			dt, ofs, per, wide, div, fak, chg);
5773	}
5774
5775	/*
5776	 *  It was an answer.
5777	 */
5778	if (req == 0) {
5779		if (chg) 	/* Answer wasn't acceptable */
5780			goto reject_it;
5781		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5782		OUTL_DSP (SCRIPTA_BA (np, clrack));
5783		return;
5784	}
5785
5786	/*
5787	 *  It was a request. Set value and
5788	 *  prepare an answer message
5789	 */
5790	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5791
5792	np->msgout[0] = M_EXTENDED;
5793	np->msgout[1] = 6;
5794	np->msgout[2] = M_X_PPR_REQ;
5795	np->msgout[3] = per;
5796	np->msgout[4] = 0;
5797	np->msgout[5] = ofs;
5798	np->msgout[6] = wide;
5799	np->msgout[7] = dt;
5800
5801	cp->nego_status = NS_PPR;
5802
5803	if (DEBUG_FLAGS & DEBUG_NEGO) {
5804		sym_print_msg(cp, "ppr msgout", np->msgout);
5805	}
5806
5807	np->msgin [0] = M_NOOP;
5808
5809	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5810	return;
5811reject_it:
5812	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5813	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5814	/*
5815	 *  If it was a device response that should result in
5816	 *  ST, we may want to try a legacy negotiation later.
5817	 */
5818	if (!req && !dt) {
5819		tp->tinfo.goal.options = 0;
5820		tp->tinfo.goal.width   = wide;
5821		tp->tinfo.goal.period  = per;
5822		tp->tinfo.goal.offset  = ofs;
5823	}
5824}
5825
5826/*
5827 *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5828 */
5829static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5830{
5831	u_char	chg, wide;
5832	int	req = 1;
5833
5834	/*
5835	 *  Wide request message received.
5836	 */
5837	if (DEBUG_FLAGS & DEBUG_NEGO) {
5838		sym_print_msg(cp, "wide msgin", np->msgin);
5839	}
5840
5841	/*
5842	 * Is it a request from the device?
5843	 */
5844	if (INB (HS_PRT) == HS_NEGOTIATE) {
5845		OUTB (HS_PRT, HS_BUSY);
5846		if (cp->nego_status && cp->nego_status != NS_WIDE)
5847			goto reject_it;
5848		req = 0;
5849	}
5850
5851	/*
5852	 *  get requested values.
5853	 */
5854	chg  = 0;
5855	wide = np->msgin[3];
5856
5857	/*
5858	 *  check values against driver limits.
5859	 */
5860	if (wide > np->maxwide)
5861		{chg = 1; wide = np->maxwide;}
5862	if (req) {
5863		if (wide > tp->tinfo.user.width)
5864			{chg = 1; wide = tp->tinfo.user.width;}
5865	}
5866
5867	if (DEBUG_FLAGS & DEBUG_NEGO) {
5868		PRINT_ADDR(cp);
5869		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5870	}
5871
5872	/*
5873	 * This was an answer message
5874	 */
5875	if (req == 0) {
5876		if (chg)	/*  Answer wasn't acceptable. */
5877			goto reject_it;
5878		sym_setwide (np, cp, wide);
5879
5880		/*
5881		 * Negotiate for SYNC immediately after WIDE response.
5882		 * This allows to negotiate for both WIDE and SYNC on
5883		 * a single SCSI command (Suggested by Justin Gibbs).
5884		 */
5885		if (tp->tinfo.goal.offset) {
5886			np->msgout[0] = M_EXTENDED;
5887			np->msgout[1] = 3;
5888			np->msgout[2] = M_X_SYNC_REQ;
5889			np->msgout[3] = tp->tinfo.goal.period;
5890			np->msgout[4] = tp->tinfo.goal.offset;
5891
5892			if (DEBUG_FLAGS & DEBUG_NEGO) {
5893				sym_print_msg(cp, "sync msgout", np->msgout);
5894			}
5895
5896			cp->nego_status = NS_SYNC;
5897			OUTB (HS_PRT, HS_NEGOTIATE);
5898			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5899			return;
5900		}
5901
5902		OUTL_DSP (SCRIPTA_BA (np, clrack));
5903		return;
5904	}
5905
5906	/*
5907	 *  It was a request, set value and
5908	 *  prepare an answer message
5909	 */
5910	sym_setwide (np, cp, wide);
5911
5912	np->msgout[0] = M_EXTENDED;
5913	np->msgout[1] = 2;
5914	np->msgout[2] = M_X_WIDE_REQ;
5915	np->msgout[3] = wide;
5916
5917	np->msgin [0] = M_NOOP;
5918
5919	cp->nego_status = NS_WIDE;
5920
5921	if (DEBUG_FLAGS & DEBUG_NEGO) {
5922		sym_print_msg(cp, "wide msgout", np->msgout);
5923	}
5924
5925	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5926	return;
5927reject_it:
5928	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5929}
5930
5931/*
5932 *  Reset SYNC or WIDE to default settings.
5933 *
5934 *  Called when a negotiation does not succeed either
5935 *  on rejection or on protocol error.
5936 *
5937 *  If it was a PPR that made problems, we may want to
5938 *  try a legacy negotiation later.
5939 */
5940static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5941{
5942	/*
5943	 *  any error in negotiation:
5944	 *  fall back to default mode.
5945	 */
5946	switch (cp->nego_status) {
5947	case NS_PPR:
5948#if 0
5949		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5950#else
5951		tp->tinfo.goal.options = 0;
5952		if (tp->tinfo.goal.period < np->minsync)
5953			tp->tinfo.goal.period = np->minsync;
5954		if (tp->tinfo.goal.offset > np->maxoffs)
5955			tp->tinfo.goal.offset = np->maxoffs;
5956#endif
5957		break;
5958	case NS_SYNC:
5959		sym_setsync (np, cp, 0, 0, 0, 0);
5960		break;
5961	case NS_WIDE:
5962		sym_setwide (np, cp, 0);
5963		break;
5964	}
5965	np->msgin [0] = M_NOOP;
5966	np->msgout[0] = M_NOOP;
5967	cp->nego_status = 0;
5968}
5969
5970/*
5971 *  chip handler for MESSAGE REJECT received in response to
5972 *  a WIDE or SYNCHRONOUS negotiation.
5973 */
5974static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5975{
5976	sym_nego_default(np, tp, cp);
5977	OUTB (HS_PRT, HS_BUSY);
5978}
5979
5980/*
5981 *  chip exception handler for programmed interrupts.
5982 */
5983static void sym_int_sir (hcb_p np)
5984{
5985	u_char	num	= INB (nc_dsps);
5986	u32	dsa	= INL (nc_dsa);
5987	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
5988	u_char	target	= INB (nc_sdid) & 0x0f;
5989	tcb_p	tp	= &np->target[target];
5990	int	tmp;
5991
5992	SYM_LOCK_ASSERT(MA_OWNED);
5993
5994	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
5995
5996	switch (num) {
5997	/*
5998	 *  Command has been completed with error condition
5999	 *  or has been auto-sensed.
6000	 */
6001	case SIR_COMPLETE_ERROR:
6002		if (!cp)
6003			goto out;
6004		sym_complete_error(np, cp);
6005		return;
6006	/*
6007	 *  The C code is currently trying to recover from something.
6008	 *  Typically, user want to abort some command.
6009	 */
6010	case SIR_SCRIPT_STOPPED:
6011	case SIR_TARGET_SELECTED:
6012	case SIR_ABORT_SENT:
6013		sym_sir_task_recovery(np, num);
6014		return;
6015	/*
6016	 *  The device didn't go to MSG OUT phase after having
6017	 *  been selected with ATN. We donnot want to handle
6018	 *  that.
6019	 */
6020	case SIR_SEL_ATN_NO_MSG_OUT:
6021		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6022			sym_name (np), target);
6023		goto out_stuck;
6024	/*
6025	 *  The device didn't switch to MSG IN phase after
6026	 *  having reseleted the initiator.
6027	 */
6028	case SIR_RESEL_NO_MSG_IN:
6029		printf ("%s:%d: No MSG IN phase after reselection.\n",
6030			sym_name (np), target);
6031		goto out_stuck;
6032	/*
6033	 *  After reselection, the device sent a message that wasn't
6034	 *  an IDENTIFY.
6035	 */
6036	case SIR_RESEL_NO_IDENTIFY:
6037		printf ("%s:%d: No IDENTIFY after reselection.\n",
6038			sym_name (np), target);
6039		goto out_stuck;
6040	/*
6041	 *  The device reselected a LUN we donnot know about.
6042	 */
6043	case SIR_RESEL_BAD_LUN:
6044		np->msgout[0] = M_RESET;
6045		goto out;
6046	/*
6047	 *  The device reselected for an untagged nexus and we
6048	 *  haven't any.
6049	 */
6050	case SIR_RESEL_BAD_I_T_L:
6051		np->msgout[0] = M_ABORT;
6052		goto out;
6053	/*
6054	 *  The device reselected for a tagged nexus that we donnot
6055	 *  have.
6056	 */
6057	case SIR_RESEL_BAD_I_T_L_Q:
6058		np->msgout[0] = M_ABORT_TAG;
6059		goto out;
6060	/*
6061	 *  The SCRIPTS let us know that the device has grabbed
6062	 *  our message and will abort the job.
6063	 */
6064	case SIR_RESEL_ABORTED:
6065		np->lastmsg = np->msgout[0];
6066		np->msgout[0] = M_NOOP;
6067		printf ("%s:%d: message %x sent on bad reselection.\n",
6068			sym_name (np), target, np->lastmsg);
6069		goto out;
6070	/*
6071	 *  The SCRIPTS let us know that a message has been
6072	 *  successfully sent to the device.
6073	 */
6074	case SIR_MSG_OUT_DONE:
6075		np->lastmsg = np->msgout[0];
6076		np->msgout[0] = M_NOOP;
6077		/* Should we really care of that */
6078		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6079			if (cp) {
6080				cp->xerr_status &= ~XE_PARITY_ERR;
6081				if (!cp->xerr_status)
6082					OUTOFFB (HF_PRT, HF_EXT_ERR);
6083			}
6084		}
6085		goto out;
6086	/*
6087	 *  The device didn't send a GOOD SCSI status.
6088	 *  We may have some work to do prior to allow
6089	 *  the SCRIPTS processor to continue.
6090	 */
6091	case SIR_BAD_SCSI_STATUS:
6092		if (!cp)
6093			goto out;
6094		sym_sir_bad_scsi_status(np, cp);
6095		return;
6096	/*
6097	 *  We are asked by the SCRIPTS to prepare a
6098	 *  REJECT message.
6099	 */
6100	case SIR_REJECT_TO_SEND:
6101		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6102		np->msgout[0] = M_REJECT;
6103		goto out;
6104	/*
6105	 *  We have been ODD at the end of a DATA IN
6106	 *  transfer and the device didn't send a
6107	 *  IGNORE WIDE RESIDUE message.
6108	 *  It is a data overrun condition.
6109	 */
6110	case SIR_SWIDE_OVERRUN:
6111		if (cp) {
6112			OUTONB (HF_PRT, HF_EXT_ERR);
6113			cp->xerr_status |= XE_SWIDE_OVRUN;
6114		}
6115		goto out;
6116	/*
6117	 *  We have been ODD at the end of a DATA OUT
6118	 *  transfer.
6119	 *  It is a data underrun condition.
6120	 */
6121	case SIR_SODL_UNDERRUN:
6122		if (cp) {
6123			OUTONB (HF_PRT, HF_EXT_ERR);
6124			cp->xerr_status |= XE_SODL_UNRUN;
6125		}
6126		goto out;
6127	/*
6128	 *  The device wants us to transfer more data than
6129	 *  expected or in the wrong direction.
6130	 *  The number of extra bytes is in scratcha.
6131	 *  It is a data overrun condition.
6132	 */
6133	case SIR_DATA_OVERRUN:
6134		if (cp) {
6135			OUTONB (HF_PRT, HF_EXT_ERR);
6136			cp->xerr_status |= XE_EXTRA_DATA;
6137			cp->extra_bytes += INL (nc_scratcha);
6138		}
6139		goto out;
6140	/*
6141	 *  The device switched to an illegal phase (4/5).
6142	 */
6143	case SIR_BAD_PHASE:
6144		if (cp) {
6145			OUTONB (HF_PRT, HF_EXT_ERR);
6146			cp->xerr_status |= XE_BAD_PHASE;
6147		}
6148		goto out;
6149	/*
6150	 *  We received a message.
6151	 */
6152	case SIR_MSG_RECEIVED:
6153		if (!cp)
6154			goto out_stuck;
6155		switch (np->msgin [0]) {
6156		/*
6157		 *  We received an extended message.
6158		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6159		 *  and reject all other extended messages.
6160		 */
6161		case M_EXTENDED:
6162			switch (np->msgin [2]) {
6163			case M_X_MODIFY_DP:
6164				if (DEBUG_FLAGS & DEBUG_POINTER)
6165					sym_print_msg(cp,"modify DP",np->msgin);
6166				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6167				      (np->msgin[5]<<8)  + (np->msgin[6]);
6168				sym_modify_dp(np, cp, tmp);
6169				return;
6170			case M_X_SYNC_REQ:
6171				sym_sync_nego(np, tp, cp);
6172				return;
6173			case M_X_PPR_REQ:
6174				sym_ppr_nego(np, tp, cp);
6175				return;
6176			case M_X_WIDE_REQ:
6177				sym_wide_nego(np, tp, cp);
6178				return;
6179			default:
6180				goto out_reject;
6181			}
6182			break;
6183		/*
6184		 *  We received a 1/2 byte message not handled from SCRIPTS.
6185		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6186		 *  RESIDUE messages that haven't been anticipated by
6187		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6188		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6189		 */
6190		case M_IGN_RESIDUE:
6191			if (DEBUG_FLAGS & DEBUG_POINTER)
6192				sym_print_msg(cp,"ign wide residue", np->msgin);
6193			sym_modify_dp(np, cp, -1);
6194			return;
6195		case M_REJECT:
6196			if (INB (HS_PRT) == HS_NEGOTIATE)
6197				sym_nego_rejected(np, tp, cp);
6198			else {
6199				PRINT_ADDR(cp);
6200				printf ("M_REJECT received (%x:%x).\n",
6201					scr_to_cpu(np->lastmsg), np->msgout[0]);
6202			}
6203			goto out_clrack;
6204			break;
6205		default:
6206			goto out_reject;
6207		}
6208		break;
6209	/*
6210	 *  We received an unknown message.
6211	 *  Ignore all MSG IN phases and reject it.
6212	 */
6213	case SIR_MSG_WEIRD:
6214		sym_print_msg(cp, "WEIRD message received", np->msgin);
6215		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6216		return;
6217	/*
6218	 *  Negotiation failed.
6219	 *  Target does not send us the reply.
6220	 *  Remove the HS_NEGOTIATE status.
6221	 */
6222	case SIR_NEGO_FAILED:
6223		OUTB (HS_PRT, HS_BUSY);
6224	/*
6225	 *  Negotiation failed.
6226	 *  Target does not want answer message.
6227	 */
6228	case SIR_NEGO_PROTO:
6229		if (!cp)
6230			goto out;
6231		sym_nego_default(np, tp, cp);
6232		goto out;
6233	}
6234
6235out:
6236	OUTONB_STD ();
6237	return;
6238out_reject:
6239	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6240	return;
6241out_clrack:
6242	OUTL_DSP (SCRIPTA_BA (np, clrack));
6243	return;
6244out_stuck:
6245	return;
6246}
6247
6248/*
6249 *  Acquire a control block
6250 */
6251static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6252{
6253	tcb_p tp = &np->target[tn];
6254	lcb_p lp = sym_lp(tp, ln);
6255	u_short tag = NO_TAG;
6256	SYM_QUEHEAD *qp;
6257	ccb_p cp = (ccb_p) NULL;
6258
6259	/*
6260	 *  Look for a free CCB
6261	 */
6262	if (sym_que_empty(&np->free_ccbq))
6263		goto out;
6264	qp = sym_remque_head(&np->free_ccbq);
6265	if (!qp)
6266		goto out;
6267	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6268
6269	/*
6270	 *  If the LCB is not yet available and the LUN
6271	 *  has been probed ok, try to allocate the LCB.
6272	 */
6273	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6274		lp = sym_alloc_lcb(np, tn, ln);
6275		if (!lp)
6276			goto out_free;
6277	}
6278
6279	/*
6280	 *  If the LCB is not available here, then the
6281	 *  logical unit is not yet discovered. For those
6282	 *  ones only accept 1 SCSI IO per logical unit,
6283	 *  since we cannot allow disconnections.
6284	 */
6285	if (!lp) {
6286		if (!sym_is_bit(tp->busy0_map, ln))
6287			sym_set_bit(tp->busy0_map, ln);
6288		else
6289			goto out_free;
6290	} else {
6291		/*
6292		 *  If we have been asked for a tagged command, refuse
6293		 *  to overlap with an existing untagged one.
6294		 */
6295		if (tag_order) {
6296			if (lp->busy_itl != 0)
6297				goto out_free;
6298			/*
6299			 *  Allocate resources for tags if not yet.
6300			 */
6301			if (!lp->cb_tags) {
6302				sym_alloc_lcb_tags(np, tn, ln);
6303				if (!lp->cb_tags)
6304					goto out_free;
6305			}
6306			/*
6307			 *  Get a tag for this SCSI IO and set up
6308			 *  the CCB bus address for reselection,
6309			 *  and count it for this LUN.
6310			 *  Toggle reselect path to tagged.
6311			 */
6312			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6313				tag = lp->cb_tags[lp->ia_tag];
6314				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6315					lp->ia_tag = 0;
6316				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6317				++lp->busy_itlq;
6318				lp->head.resel_sa =
6319					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6320			}
6321			else
6322				goto out_free;
6323		}
6324		/*
6325		 *  This command will not be tagged.
6326		 *  If we already have either a tagged or untagged
6327		 *  one, refuse to overlap this untagged one.
6328		 */
6329		else {
6330			if (lp->busy_itlq != 0 || lp->busy_itl != 0)
6331				goto out_free;
6332			/*
6333			 *  Count this nexus for this LUN.
6334			 *  Set up the CCB bus address for reselection.
6335			 *  Toggle reselect path to untagged.
6336			 */
6337			lp->busy_itl = 1;
6338			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6339			lp->head.resel_sa =
6340			      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6341		}
6342	}
6343	/*
6344	 *  Put the CCB into the busy queue.
6345	 */
6346	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6347
6348	/*
6349	 *  Remember all informations needed to free this CCB.
6350	 */
6351	cp->to_abort = 0;
6352	cp->tag	   = tag;
6353	cp->target = tn;
6354	cp->lun    = ln;
6355
6356	if (DEBUG_FLAGS & DEBUG_TAGS) {
6357		PRINT_LUN(np, tn, ln);
6358		printf ("ccb @%p using tag %d.\n", cp, tag);
6359	}
6360
6361out:
6362	return cp;
6363out_free:
6364	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6365	return NULL;
6366}
6367
6368/*
6369 *  Release one control block
6370 */
6371static void sym_free_ccb(hcb_p np, ccb_p cp)
6372{
6373	tcb_p tp = &np->target[cp->target];
6374	lcb_p lp = sym_lp(tp, cp->lun);
6375
6376	if (DEBUG_FLAGS & DEBUG_TAGS) {
6377		PRINT_LUN(np, cp->target, cp->lun);
6378		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6379	}
6380
6381	/*
6382	 *  If LCB available,
6383	 */
6384	if (lp) {
6385		/*
6386		 *  If tagged, release the tag, set the reselect path.
6387		 */
6388		if (cp->tag != NO_TAG) {
6389			/*
6390			 *  Free the tag value.
6391			 */
6392			lp->cb_tags[lp->if_tag] = cp->tag;
6393			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6394				lp->if_tag = 0;
6395			/*
6396			 *  Make the reselect path invalid,
6397			 *  and uncount this CCB.
6398			 */
6399			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6400			--lp->busy_itlq;
6401		} else {	/* Untagged */
6402			/*
6403			 *  Make the reselect path invalid,
6404			 *  and uncount this CCB.
6405			 */
6406			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6407			lp->busy_itl = 0;
6408		}
6409		/*
6410		 *  If no JOB active, make the LUN reselect path invalid.
6411		 */
6412		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6413			lp->head.resel_sa =
6414				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6415	}
6416	/*
6417	 *  Otherwise, we only accept 1 IO per LUN.
6418	 *  Clear the bit that keeps track of this IO.
6419	 */
6420	else
6421		sym_clr_bit(tp->busy0_map, cp->lun);
6422
6423	/*
6424	 *  We donnot queue more than 1 ccb per target
6425	 *  with negotiation at any time. If this ccb was
6426	 *  used for negotiation, clear this info in the tcb.
6427	 */
6428	if (cp == tp->nego_cp)
6429		tp->nego_cp = NULL;
6430
6431#ifdef SYM_CONF_IARB_SUPPORT
6432	/*
6433	 *  If we just complete the last queued CCB,
6434	 *  clear this info that is no longer relevant.
6435	 */
6436	if (cp == np->last_cp)
6437		np->last_cp = NULL;
6438#endif
6439
6440	/*
6441	 *  Unmap user data from DMA map if needed.
6442	 */
6443	if (cp->dmamapped) {
6444		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6445		cp->dmamapped = 0;
6446	}
6447
6448	/*
6449	 *  Make this CCB available.
6450	 */
6451	cp->cam_ccb = NULL;
6452	cp->host_status = HS_IDLE;
6453	sym_remque(&cp->link_ccbq);
6454	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6455}
6456
6457/*
6458 *  Allocate a CCB from memory and initialize its fixed part.
6459 */
6460static ccb_p sym_alloc_ccb(hcb_p np)
6461{
6462	ccb_p cp = NULL;
6463	int hcode;
6464
6465	SYM_LOCK_ASSERT(MA_NOTOWNED);
6466
6467	/*
6468	 *  Prevent from allocating more CCBs than we can
6469	 *  queue to the controller.
6470	 */
6471	if (np->actccbs >= SYM_CONF_MAX_START)
6472		return NULL;
6473
6474	/*
6475	 *  Allocate memory for this CCB.
6476	 */
6477	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6478	if (!cp)
6479		return NULL;
6480
6481	/*
6482	 *  Allocate a bounce buffer for sense data.
6483	 */
6484	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6485	if (!cp->sns_bbuf)
6486		goto out_free;
6487
6488	/*
6489	 *  Allocate a map for the DMA of user data.
6490	 */
6491	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6492		goto out_free;
6493	/*
6494	 *  Count it.
6495	 */
6496	np->actccbs++;
6497
6498	/*
6499	 * Initialize the callout.
6500	 */
6501	callout_init(&cp->ch, 1);
6502
6503	/*
6504	 *  Compute the bus address of this ccb.
6505	 */
6506	cp->ccb_ba = vtobus(cp);
6507
6508	/*
6509	 *  Insert this ccb into the hashed list.
6510	 */
6511	hcode = CCB_HASH_CODE(cp->ccb_ba);
6512	cp->link_ccbh = np->ccbh[hcode];
6513	np->ccbh[hcode] = cp;
6514
6515	/*
6516	 *  Initialize the start and restart actions.
6517	 */
6518	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6519	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6520
6521 	/*
6522	 *  Initilialyze some other fields.
6523	 */
6524	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6525
6526	/*
6527	 *  Chain into free ccb queue.
6528	 */
6529	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6530
6531	return cp;
6532out_free:
6533	if (cp->sns_bbuf)
6534		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6535	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6536	return NULL;
6537}
6538
6539/*
6540 *  Look up a CCB from a DSA value.
6541 */
6542static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6543{
6544	int hcode;
6545	ccb_p cp;
6546
6547	hcode = CCB_HASH_CODE(dsa);
6548	cp = np->ccbh[hcode];
6549	while (cp) {
6550		if (cp->ccb_ba == dsa)
6551			break;
6552		cp = cp->link_ccbh;
6553	}
6554
6555	return cp;
6556}
6557
6558/*
6559 *  Lun control block allocation and initialization.
6560 */
6561static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6562{
6563	tcb_p tp = &np->target[tn];
6564	lcb_p lp = sym_lp(tp, ln);
6565
6566	/*
6567	 *  Already done, just return.
6568	 */
6569	if (lp)
6570		return lp;
6571	/*
6572	 *  Check against some race.
6573	 */
6574	assert(!sym_is_bit(tp->busy0_map, ln));
6575
6576	/*
6577	 *  Allocate the LCB bus address array.
6578	 *  Compute the bus address of this table.
6579	 */
6580	if (ln && !tp->luntbl) {
6581		int i;
6582
6583		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6584		if (!tp->luntbl)
6585			goto fail;
6586		for (i = 0 ; i < 64 ; i++)
6587			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6588		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6589	}
6590
6591	/*
6592	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6593	 */
6594	if (ln && !tp->lunmp) {
6595		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6596				   "LUNMP");
6597		if (!tp->lunmp)
6598			goto fail;
6599	}
6600
6601	/*
6602	 *  Allocate the lcb.
6603	 *  Make it available to the chip.
6604	 */
6605	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6606	if (!lp)
6607		goto fail;
6608	if (ln) {
6609		tp->lunmp[ln] = lp;
6610		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6611	}
6612	else {
6613		tp->lun0p = lp;
6614		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6615	}
6616
6617	/*
6618	 *  Let the itl task point to error handling.
6619	 */
6620	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6621
6622	/*
6623	 *  Set the reselect pattern to our default. :)
6624	 */
6625	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6626
6627	/*
6628	 *  Set user capabilities.
6629	 */
6630	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6631
6632fail:
6633	return lp;
6634}
6635
6636/*
6637 *  Allocate LCB resources for tagged command queuing.
6638 */
6639static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6640{
6641	tcb_p tp = &np->target[tn];
6642	lcb_p lp = sym_lp(tp, ln);
6643	int i;
6644
6645	/*
6646	 *  If LCB not available, try to allocate it.
6647	 */
6648	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6649		return;
6650
6651	/*
6652	 *  Allocate the task table and and the tag allocation
6653	 *  circular buffer. We want both or none.
6654	 */
6655	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6656	if (!lp->itlq_tbl)
6657		return;
6658	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6659	if (!lp->cb_tags) {
6660		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6661		lp->itlq_tbl = NULL;
6662		return;
6663	}
6664
6665	/*
6666	 *  Initialize the task table with invalid entries.
6667	 */
6668	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6669		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6670
6671	/*
6672	 *  Fill up the tag buffer with tag numbers.
6673	 */
6674	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6675		lp->cb_tags[i] = i;
6676
6677	/*
6678	 *  Make the task table available to SCRIPTS,
6679	 *  And accept tagged commands now.
6680	 */
6681	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6682}
6683
6684/*
6685 *  Test the pci bus snoop logic :-(
6686 *
6687 *  Has to be called with interrupts disabled.
6688 */
6689#ifndef SYM_CONF_IOMAPPED
6690static int sym_regtest (hcb_p np)
6691{
6692	register volatile u32 data;
6693	/*
6694	 *  chip registers may NOT be cached.
6695	 *  write 0xffffffff to a read only register area,
6696	 *  and try to read it back.
6697	 */
6698	data = 0xffffffff;
6699	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6700	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6701#if 1
6702	if (data == 0xffffffff) {
6703#else
6704	if ((data & 0xe2f0fffd) != 0x02000080) {
6705#endif
6706		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6707			(unsigned) data);
6708		return (0x10);
6709	}
6710	return (0);
6711}
6712#endif
6713
6714static int sym_snooptest (hcb_p np)
6715{
6716	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6717	int	i, err=0;
6718#ifndef SYM_CONF_IOMAPPED
6719	err |= sym_regtest (np);
6720	if (err) return (err);
6721#endif
6722restart_test:
6723	/*
6724	 *  Enable Master Parity Checking as we intend
6725	 *  to enable it for normal operations.
6726	 */
6727	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6728	/*
6729	 *  init
6730	 */
6731	pc  = SCRIPTB0_BA (np, snooptest);
6732	host_wr = 1;
6733	sym_wr  = 2;
6734	/*
6735	 *  Set memory and register.
6736	 */
6737	np->cache = cpu_to_scr(host_wr);
6738	OUTL (nc_temp, sym_wr);
6739	/*
6740	 *  Start script (exchange values)
6741	 */
6742	OUTL (nc_dsa, np->hcb_ba);
6743	OUTL_DSP (pc);
6744	/*
6745	 *  Wait 'til done (with timeout)
6746	 */
6747	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6748		if (INB(nc_istat) & (INTF|SIP|DIP))
6749			break;
6750	if (i>=SYM_SNOOP_TIMEOUT) {
6751		printf ("CACHE TEST FAILED: timeout.\n");
6752		return (0x20);
6753	}
6754	/*
6755	 *  Check for fatal DMA errors.
6756	 */
6757	dstat = INB (nc_dstat);
6758#if 1	/* Band aiding for broken hardwares that fail PCI parity */
6759	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6760		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6761			"DISABLING MASTER DATA PARITY CHECKING.\n",
6762			sym_name(np));
6763		np->rv_ctest4 &= ~MPEE;
6764		goto restart_test;
6765	}
6766#endif
6767	if (dstat & (MDPE|BF|IID)) {
6768		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6769		return (0x80);
6770	}
6771	/*
6772	 *  Save termination position.
6773	 */
6774	pc = INL (nc_dsp);
6775	/*
6776	 *  Read memory and register.
6777	 */
6778	host_rd = scr_to_cpu(np->cache);
6779	sym_rd  = INL (nc_scratcha);
6780	sym_bk  = INL (nc_temp);
6781
6782	/*
6783	 *  Check termination position.
6784	 */
6785	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6786		printf ("CACHE TEST FAILED: script execution failed.\n");
6787		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6788			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6789			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6790		return (0x40);
6791	}
6792	/*
6793	 *  Show results.
6794	 */
6795	if (host_wr != sym_rd) {
6796		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6797			(int) host_wr, (int) sym_rd);
6798		err |= 1;
6799	}
6800	if (host_rd != sym_wr) {
6801		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6802			(int) sym_wr, (int) host_rd);
6803		err |= 2;
6804	}
6805	if (sym_bk != sym_wr) {
6806		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6807			(int) sym_wr, (int) sym_bk);
6808		err |= 4;
6809	}
6810
6811	return (err);
6812}
6813
6814/*
6815 *  Determine the chip's clock frequency.
6816 *
6817 *  This is essential for the negotiation of the synchronous
6818 *  transfer rate.
6819 *
6820 *  Note: we have to return the correct value.
6821 *  THERE IS NO SAFE DEFAULT VALUE.
6822 *
6823 *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6824 *  53C860 and 53C875 rev. 1 support fast20 transfers but
6825 *  do not have a clock doubler and so are provided with a
6826 *  80 MHz clock. All other fast20 boards incorporate a doubler
6827 *  and so should be delivered with a 40 MHz clock.
6828 *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6829 *  clock and provide a clock quadrupler (160 Mhz).
6830 */
6831
6832/*
6833 *  Select SCSI clock frequency
6834 */
6835static void sym_selectclock(hcb_p np, u_char scntl3)
6836{
6837	/*
6838	 *  If multiplier not present or not selected, leave here.
6839	 */
6840	if (np->multiplier <= 1) {
6841		OUTB(nc_scntl3,	scntl3);
6842		return;
6843	}
6844
6845	if (sym_verbose >= 2)
6846		printf ("%s: enabling clock multiplier\n", sym_name(np));
6847
6848	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6849	/*
6850	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6851	 *  Otherwise wait 20 micro-seconds.
6852	 */
6853	if (np->features & FE_LCKFRQ) {
6854		int i = 20;
6855		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6856			UDELAY (20);
6857		if (!i)
6858			printf("%s: the chip cannot lock the frequency\n",
6859				sym_name(np));
6860	} else
6861		UDELAY (20);
6862	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6863	OUTB(nc_scntl3,	scntl3);
6864	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6865	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6866}
6867
6868/*
6869 *  calculate SCSI clock frequency (in KHz)
6870 */
6871static unsigned getfreq (hcb_p np, int gen)
6872{
6873	unsigned int ms = 0;
6874	unsigned int f;
6875
6876	/*
6877	 * Measure GEN timer delay in order
6878	 * to calculate SCSI clock frequency
6879	 *
6880	 * This code will never execute too
6881	 * many loop iterations (if DELAY is
6882	 * reasonably correct). It could get
6883	 * too low a delay (too high a freq.)
6884	 * if the CPU is slow executing the
6885	 * loop for some reason (an NMI, for
6886	 * example). For this reason we will
6887	 * if multiple measurements are to be
6888	 * performed trust the higher delay
6889	 * (lower frequency returned).
6890	 */
6891	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6892	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6893	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6894	(void) INW (nc_sist);	/* another one, just to be sure :) */
6895	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6896	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6897	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6898	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6899		UDELAY (1000);	/* count ms */
6900	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6901 	/*
6902 	 * set prescaler to divide by whatever 0 means
6903 	 * 0 ought to choose divide by 2, but appears
6904 	 * to set divide by 3.5 mode in my 53c810 ...
6905 	 */
6906 	OUTB (nc_scntl3, 0);
6907
6908  	/*
6909 	 * adjust for prescaler, and convert into KHz
6910  	 */
6911	f = ms ? ((1 << gen) * 4340) / ms : 0;
6912
6913	if (sym_verbose >= 2)
6914		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6915			sym_name(np), gen, ms, f);
6916
6917	return f;
6918}
6919
6920static unsigned sym_getfreq (hcb_p np)
6921{
6922	u_int f1, f2;
6923	int gen = 11;
6924
6925	(void) getfreq (np, gen);	/* throw away first result */
6926	f1 = getfreq (np, gen);
6927	f2 = getfreq (np, gen);
6928	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6929	return f1;
6930}
6931
6932/*
6933 *  Get/probe chip SCSI clock frequency
6934 */
6935static void sym_getclock (hcb_p np, int mult)
6936{
6937	unsigned char scntl3 = np->sv_scntl3;
6938	unsigned char stest1 = np->sv_stest1;
6939	unsigned f1;
6940
6941	/*
6942	 *  For the C10 core, assume 40 MHz.
6943	 */
6944	if (np->features & FE_C10) {
6945		np->multiplier = mult;
6946		np->clock_khz = 40000 * mult;
6947		return;
6948	}
6949
6950	np->multiplier = 1;
6951	f1 = 40000;
6952	/*
6953	 *  True with 875/895/896/895A with clock multiplier selected
6954	 */
6955	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6956		if (sym_verbose >= 2)
6957			printf ("%s: clock multiplier found\n", sym_name(np));
6958		np->multiplier = mult;
6959	}
6960
6961	/*
6962	 *  If multiplier not found or scntl3 not 7,5,3,
6963	 *  reset chip and get frequency from general purpose timer.
6964	 *  Otherwise trust scntl3 BIOS setting.
6965	 */
6966	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6967		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6968		f1 = sym_getfreq (np);
6969
6970		if (sym_verbose)
6971			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
6972
6973		if	(f1 <	45000)		f1 =  40000;
6974		else if (f1 <	55000)		f1 =  50000;
6975		else				f1 =  80000;
6976
6977		if (f1 < 80000 && mult > 1) {
6978			if (sym_verbose >= 2)
6979				printf ("%s: clock multiplier assumed\n",
6980					sym_name(np));
6981			np->multiplier	= mult;
6982		}
6983	} else {
6984		if	((scntl3 & 7) == 3)	f1 =  40000;
6985		else if	((scntl3 & 7) == 5)	f1 =  80000;
6986		else 				f1 = 160000;
6987
6988		f1 /= np->multiplier;
6989	}
6990
6991	/*
6992	 *  Compute controller synchronous parameters.
6993	 */
6994	f1		*= np->multiplier;
6995	np->clock_khz	= f1;
6996}
6997
6998/*
6999 *  Get/probe PCI clock frequency
7000 */
7001static int sym_getpciclock (hcb_p np)
7002{
7003	int f = 0;
7004
7005	/*
7006	 *  For the C1010-33, this doesn't work.
7007	 *  For the C1010-66, this will be tested when I'll have
7008	 *  such a beast to play with.
7009	 */
7010	if (!(np->features & FE_C10)) {
7011		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7012		f = (int) sym_getfreq (np);
7013		OUTB (nc_stest1, 0);
7014	}
7015	np->pciclk_khz = f;
7016
7017	return f;
7018}
7019
7020/*============= DRIVER ACTION/COMPLETION ====================*/
7021
7022/*
7023 *  Print something that tells about extended errors.
7024 */
7025static void sym_print_xerr(ccb_p cp, int x_status)
7026{
7027	if (x_status & XE_PARITY_ERR) {
7028		PRINT_ADDR(cp);
7029		printf ("unrecovered SCSI parity error.\n");
7030	}
7031	if (x_status & XE_EXTRA_DATA) {
7032		PRINT_ADDR(cp);
7033		printf ("extraneous data discarded.\n");
7034	}
7035	if (x_status & XE_BAD_PHASE) {
7036		PRINT_ADDR(cp);
7037		printf ("illegal scsi phase (4/5).\n");
7038	}
7039	if (x_status & XE_SODL_UNRUN) {
7040		PRINT_ADDR(cp);
7041		printf ("ODD transfer in DATA OUT phase.\n");
7042	}
7043	if (x_status & XE_SWIDE_OVRUN) {
7044		PRINT_ADDR(cp);
7045		printf ("ODD transfer in DATA IN phase.\n");
7046	}
7047}
7048
7049/*
7050 *  Choose the more appropriate CAM status if
7051 *  the IO encountered an extended error.
7052 */
7053static int sym_xerr_cam_status(int cam_status, int x_status)
7054{
7055	if (x_status) {
7056		if	(x_status & XE_PARITY_ERR)
7057			cam_status = CAM_UNCOR_PARITY;
7058		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7059			cam_status = CAM_DATA_RUN_ERR;
7060		else if	(x_status & XE_BAD_PHASE)
7061			cam_status = CAM_REQ_CMP_ERR;
7062		else
7063			cam_status = CAM_REQ_CMP_ERR;
7064	}
7065	return cam_status;
7066}
7067
7068/*
7069 *  Complete execution of a SCSI command with extented
7070 *  error, SCSI status error, or having been auto-sensed.
7071 *
7072 *  The SCRIPTS processor is not running there, so we
7073 *  can safely access IO registers and remove JOBs from
7074 *  the START queue.
7075 *  SCRATCHA is assumed to have been loaded with STARTPOS
7076 *  before the SCRIPTS called the C code.
7077 */
7078static void sym_complete_error (hcb_p np, ccb_p cp)
7079{
7080	struct ccb_scsiio *csio;
7081	u_int cam_status;
7082	int i, sense_returned;
7083
7084	SYM_LOCK_ASSERT(MA_OWNED);
7085
7086	/*
7087	 *  Paranoid check. :)
7088	 */
7089	if (!cp || !cp->cam_ccb)
7090		return;
7091
7092	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7093		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7094			cp->host_status, cp->ssss_status, cp->host_flags,
7095			cp->target, cp->lun);
7096		MDELAY(100);
7097	}
7098
7099	/*
7100	 *  Get CAM command pointer.
7101	 */
7102	csio = &cp->cam_ccb->csio;
7103
7104	/*
7105	 *  Check for extended errors.
7106	 */
7107	if (cp->xerr_status) {
7108		if (sym_verbose)
7109			sym_print_xerr(cp, cp->xerr_status);
7110		if (cp->host_status == HS_COMPLETE)
7111			cp->host_status = HS_COMP_ERR;
7112	}
7113
7114	/*
7115	 *  Calculate the residual.
7116	 */
7117	csio->sense_resid = 0;
7118	csio->resid = sym_compute_residual(np, cp);
7119
7120	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7121		csio->resid  = 0;	/* throw them away. :)		   */
7122		cp->sv_resid = 0;
7123	}
7124
7125	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7126		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7127		csio->sense_resid = csio->resid;	/* Swap residuals */
7128		csio->resid       = cp->sv_resid;
7129		cp->sv_resid	  = 0;
7130		if (sym_verbose && cp->sv_xerr_status)
7131			sym_print_xerr(cp, cp->sv_xerr_status);
7132		if (cp->host_status == HS_COMPLETE &&
7133		    cp->ssss_status == S_GOOD &&
7134		    cp->xerr_status == 0) {
7135			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7136							 cp->sv_xerr_status);
7137			cam_status |= CAM_AUTOSNS_VALID;
7138			/*
7139			 *  Bounce back the sense data to user and
7140			 *  fix the residual.
7141			 */
7142			bzero(&csio->sense_data, sizeof(csio->sense_data));
7143			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7144			if (sense_returned < csio->sense_len)
7145				csio->sense_resid = csio->sense_len -
7146				    sense_returned;
7147			else
7148				csio->sense_resid = 0;
7149			bcopy(cp->sns_bbuf, &csio->sense_data,
7150			    MIN(csio->sense_len, sense_returned));
7151#if 0
7152			/*
7153			 *  If the device reports a UNIT ATTENTION condition
7154			 *  due to a RESET condition, we should consider all
7155			 *  disconnect CCBs for this unit as aborted.
7156			 */
7157			if (1) {
7158				u_char *p;
7159				p  = (u_char *) csio->sense_data;
7160				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7161					sym_clear_tasks(np, CAM_REQ_ABORTED,
7162							cp->target,cp->lun, -1);
7163			}
7164#endif
7165		}
7166		else
7167			cam_status = CAM_AUTOSENSE_FAIL;
7168	}
7169	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7170		csio->scsi_status = cp->ssss_status;
7171		cam_status = CAM_SCSI_STATUS_ERROR;
7172	}
7173	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7174		cam_status = CAM_SEL_TIMEOUT;
7175	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7176		cam_status = CAM_UNEXP_BUSFREE;
7177	else {						/* Extended error */
7178		if (sym_verbose) {
7179			PRINT_ADDR(cp);
7180			printf ("COMMAND FAILED (%x %x %x).\n",
7181				cp->host_status, cp->ssss_status,
7182				cp->xerr_status);
7183		}
7184		csio->scsi_status = cp->ssss_status;
7185		/*
7186		 *  Set the most appropriate value for CAM status.
7187		 */
7188		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7189						 cp->xerr_status);
7190	}
7191
7192	/*
7193	 *  Dequeue all queued CCBs for that device
7194	 *  not yet started by SCRIPTS.
7195	 */
7196	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7197	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7198
7199	/*
7200	 *  Restart the SCRIPTS processor.
7201	 */
7202	OUTL_DSP (SCRIPTA_BA (np, start));
7203
7204	/*
7205	 *  Synchronize DMA map if needed.
7206	 */
7207	if (cp->dmamapped) {
7208		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7209			(cp->dmamapped == SYM_DMA_READ ?
7210				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7211	}
7212	/*
7213	 *  Add this one to the COMP queue.
7214	 *  Complete all those commands with either error
7215	 *  or requeue condition.
7216	 */
7217	sym_set_cam_status((union ccb *) csio, cam_status);
7218	sym_remque(&cp->link_ccbq);
7219	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7220	sym_flush_comp_queue(np, 0);
7221}
7222
7223/*
7224 *  Complete execution of a successful SCSI command.
7225 *
7226 *  Only successful commands go to the DONE queue,
7227 *  since we need to have the SCRIPTS processor
7228 *  stopped on any error condition.
7229 *  The SCRIPTS processor is running while we are
7230 *  completing successful commands.
7231 */
7232static void sym_complete_ok (hcb_p np, ccb_p cp)
7233{
7234	struct ccb_scsiio *csio;
7235	tcb_p tp;
7236	lcb_p lp;
7237
7238	SYM_LOCK_ASSERT(MA_OWNED);
7239
7240	/*
7241	 *  Paranoid check. :)
7242	 */
7243	if (!cp || !cp->cam_ccb)
7244		return;
7245	assert (cp->host_status == HS_COMPLETE);
7246
7247	/*
7248	 *  Get command, target and lun pointers.
7249	 */
7250	csio = &cp->cam_ccb->csio;
7251	tp = &np->target[cp->target];
7252	lp = sym_lp(tp, cp->lun);
7253
7254	/*
7255	 *  Assume device discovered on first success.
7256	 */
7257	if (!lp)
7258		sym_set_bit(tp->lun_map, cp->lun);
7259
7260	/*
7261	 *  If all data have been transferred, given than no
7262	 *  extended error did occur, there is no residual.
7263	 */
7264	csio->resid = 0;
7265	if (cp->phys.head.lastp != cp->phys.head.goalp)
7266		csio->resid = sym_compute_residual(np, cp);
7267
7268	/*
7269	 *  Wrong transfer residuals may be worse than just always
7270	 *  returning zero. User can disable this feature from
7271	 *  sym_conf.h. Residual support is enabled by default.
7272	 */
7273	if (!SYM_CONF_RESIDUAL_SUPPORT)
7274		csio->resid  = 0;
7275
7276	/*
7277	 *  Synchronize DMA map if needed.
7278	 */
7279	if (cp->dmamapped) {
7280		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7281			(cp->dmamapped == SYM_DMA_READ ?
7282				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7283	}
7284	/*
7285	 *  Set status and complete the command.
7286	 */
7287	csio->scsi_status = cp->ssss_status;
7288	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7289	sym_xpt_done(np, (union ccb *) csio, cp);
7290	sym_free_ccb(np, cp);
7291}
7292
7293/*
7294 *  Our callout handler
7295 */
7296static void sym_callout(void *arg)
7297{
7298	union ccb *ccb = (union ccb *) arg;
7299	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7300
7301	/*
7302	 *  Check that the CAM CCB is still queued.
7303	 */
7304	if (!np)
7305		return;
7306
7307	SYM_LOCK();
7308
7309	switch(ccb->ccb_h.func_code) {
7310	case XPT_SCSI_IO:
7311		(void) sym_abort_scsiio(np, ccb, 1);
7312		break;
7313	default:
7314		break;
7315	}
7316
7317	SYM_UNLOCK();
7318}
7319
7320/*
7321 *  Abort an SCSI IO.
7322 */
7323static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7324{
7325	ccb_p cp;
7326	SYM_QUEHEAD *qp;
7327
7328	SYM_LOCK_ASSERT(MA_OWNED);
7329
7330	/*
7331	 *  Look up our CCB control block.
7332	 */
7333	cp = NULL;
7334	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7335		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7336		if (cp2->cam_ccb == ccb) {
7337			cp = cp2;
7338			break;
7339		}
7340	}
7341	if (!cp || cp->host_status == HS_WAIT)
7342		return -1;
7343
7344	/*
7345	 *  If a previous abort didn't succeed in time,
7346	 *  perform a BUS reset.
7347	 */
7348	if (cp->to_abort) {
7349		sym_reset_scsi_bus(np, 1);
7350		return 0;
7351	}
7352
7353	/*
7354	 *  Mark the CCB for abort and allow time for.
7355	 */
7356	cp->to_abort = timed_out ? 2 : 1;
7357	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7358
7359	/*
7360	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7361	 */
7362	np->istat_sem = SEM;
7363	OUTB (nc_istat, SIGP|SEM);
7364	return 0;
7365}
7366
7367/*
7368 *  Reset a SCSI device (all LUNs of a target).
7369 */
7370static void sym_reset_dev(hcb_p np, union ccb *ccb)
7371{
7372	tcb_p tp;
7373	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7374
7375	SYM_LOCK_ASSERT(MA_OWNED);
7376
7377	if (ccb_h->target_id   == np->myaddr ||
7378	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7379	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7380		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7381		return;
7382	}
7383
7384	tp = &np->target[ccb_h->target_id];
7385
7386	tp->to_reset = 1;
7387	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7388
7389	np->istat_sem = SEM;
7390	OUTB (nc_istat, SIGP|SEM);
7391}
7392
7393/*
7394 *  SIM action entry point.
7395 */
7396static void sym_action(struct cam_sim *sim, union ccb *ccb)
7397{
7398	hcb_p	np;
7399	tcb_p	tp;
7400	lcb_p	lp;
7401	ccb_p	cp;
7402	int 	tmp;
7403	u_char	idmsg, *msgptr;
7404	u_int   msglen;
7405	struct	ccb_scsiio *csio;
7406	struct	ccb_hdr  *ccb_h;
7407
7408	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7409
7410	/*
7411	 *  Retrieve our controller data structure.
7412	 */
7413	np = (hcb_p) cam_sim_softc(sim);
7414
7415	SYM_LOCK_ASSERT(MA_OWNED);
7416
7417	/*
7418	 *  The common case is SCSI IO.
7419	 *  We deal with other ones elsewhere.
7420	 */
7421	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7422		sym_action2(sim, ccb);
7423		return;
7424	}
7425	csio  = &ccb->csio;
7426	ccb_h = &csio->ccb_h;
7427
7428	/*
7429	 *  Work around races.
7430	 */
7431	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7432		xpt_done(ccb);
7433		return;
7434	}
7435
7436	/*
7437	 *  Minimal checkings, so that we will not
7438	 *  go outside our tables.
7439	 */
7440	if (ccb_h->target_id   == np->myaddr ||
7441	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7442	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7443		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7444		return;
7445        }
7446
7447	/*
7448	 *  Retrieve the target and lun descriptors.
7449	 */
7450	tp = &np->target[ccb_h->target_id];
7451	lp = sym_lp(tp, ccb_h->target_lun);
7452
7453	/*
7454	 *  Complete the 1st INQUIRY command with error
7455	 *  condition if the device is flagged NOSCAN
7456	 *  at BOOT in the NVRAM. This may speed up
7457	 *  the boot and maintain coherency with BIOS
7458	 *  device numbering. Clearing the flag allows
7459	 *  user to rescan skipped devices later.
7460	 *  We also return error for devices not flagged
7461	 *  for SCAN LUNS in the NVRAM since some mono-lun
7462	 *  devices behave badly when asked for some non
7463	 *  zero LUN. Btw, this is an absolute hack.:-)
7464	 */
7465	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7466	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7467		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7468		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7469		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7470		     ccb_h->target_lun != 0)) {
7471			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7472			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7473			return;
7474		}
7475	}
7476
7477	/*
7478	 *  Get a control block for this IO.
7479	 */
7480	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7481	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7482	if (!cp) {
7483		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7484		return;
7485	}
7486
7487	/*
7488	 *  Keep track of the IO in our CCB.
7489	 */
7490	cp->cam_ccb = ccb;
7491
7492	/*
7493	 *  Build the IDENTIFY message.
7494	 */
7495	idmsg = M_IDENTIFY | cp->lun;
7496	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7497		idmsg |= 0x40;
7498
7499	msgptr = cp->scsi_smsg;
7500	msglen = 0;
7501	msgptr[msglen++] = idmsg;
7502
7503	/*
7504	 *  Build the tag message if present.
7505	 */
7506	if (cp->tag != NO_TAG) {
7507		u_char order = csio->tag_action;
7508
7509		switch(order) {
7510		case M_ORDERED_TAG:
7511			break;
7512		case M_HEAD_TAG:
7513			break;
7514		default:
7515			order = M_SIMPLE_TAG;
7516		}
7517		msgptr[msglen++] = order;
7518
7519		/*
7520		 *  For less than 128 tags, actual tags are numbered
7521		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7522		 *  with devices that have problems with #TAG 0 or too
7523		 *  great #TAG numbers. For more tags (up to 256),
7524		 *  we use directly our tag number.
7525		 */
7526#if SYM_CONF_MAX_TASK > (512/4)
7527		msgptr[msglen++] = cp->tag;
7528#else
7529		msgptr[msglen++] = (cp->tag << 1) + 1;
7530#endif
7531	}
7532
7533	/*
7534	 *  Build a negotiation message if needed.
7535	 *  (nego_status is filled by sym_prepare_nego())
7536	 */
7537	cp->nego_status = 0;
7538	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7539	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7540	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7541	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7542		if (!tp->nego_cp && lp)
7543			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7544	}
7545
7546	/*
7547	 *  Fill in our ccb
7548	 */
7549
7550	/*
7551	 *  Startqueue
7552	 */
7553	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7554	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7555
7556	/*
7557	 *  select
7558	 */
7559	cp->phys.select.sel_id		= cp->target;
7560	cp->phys.select.sel_scntl3	= tp->head.wval;
7561	cp->phys.select.sel_sxfer	= tp->head.sval;
7562	cp->phys.select.sel_scntl4	= tp->head.uval;
7563
7564	/*
7565	 *  message
7566	 */
7567	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7568	cp->phys.smsg.size	= cpu_to_scr(msglen);
7569
7570	/*
7571	 *  command
7572	 */
7573	if (sym_setup_cdb(np, csio, cp) < 0) {
7574		sym_xpt_done(np, ccb, cp);
7575		sym_free_ccb(np, cp);
7576		return;
7577	}
7578
7579	/*
7580	 *  status
7581	 */
7582#if	0	/* Provision */
7583	cp->actualquirks	= tp->quirks;
7584#endif
7585	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7586	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7587	cp->ssss_status		= S_ILLEGAL;
7588	cp->xerr_status		= 0;
7589	cp->host_flags		= 0;
7590	cp->extra_bytes		= 0;
7591
7592	/*
7593	 *  extreme data pointer.
7594	 *  shall be positive, so -1 is lower than lowest.:)
7595	 */
7596	cp->ext_sg  = -1;
7597	cp->ext_ofs = 0;
7598
7599	/*
7600	 *  Build the data descriptor block
7601	 *  and start the IO.
7602	 */
7603	sym_setup_data_and_start(np, csio, cp);
7604}
7605
7606/*
7607 *  Setup buffers and pointers that address the CDB.
7608 *  I bet, physical CDBs will never be used on the planet,
7609 *  since they can be bounced without significant overhead.
7610 */
7611static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7612{
7613	struct ccb_hdr *ccb_h;
7614	u32	cmd_ba;
7615	int	cmd_len;
7616
7617	SYM_LOCK_ASSERT(MA_OWNED);
7618
7619	ccb_h = &csio->ccb_h;
7620
7621	/*
7622	 *  CDB is 16 bytes max.
7623	 */
7624	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7625		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7626		return -1;
7627	}
7628	cmd_len = csio->cdb_len;
7629
7630	if (ccb_h->flags & CAM_CDB_POINTER) {
7631		/* CDB is a pointer */
7632		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7633			/* CDB pointer is virtual */
7634			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7635			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7636		} else {
7637			/* CDB pointer is physical */
7638#if 0
7639			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7640#else
7641			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7642			return -1;
7643#endif
7644		}
7645	} else {
7646		/* CDB is in the CAM ccb (buffer) */
7647		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7648		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7649	}
7650
7651	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7652	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7653
7654	return 0;
7655}
7656
7657/*
7658 *  Set up data pointers used by SCRIPTS.
7659 */
7660static void __inline
7661sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7662{
7663	u32 lastp, goalp;
7664
7665	SYM_LOCK_ASSERT(MA_OWNED);
7666
7667	/*
7668	 *  No segments means no data.
7669	 */
7670	if (!cp->segments)
7671		dir = CAM_DIR_NONE;
7672
7673	/*
7674	 *  Set the data pointer.
7675	 */
7676	switch(dir) {
7677	case CAM_DIR_OUT:
7678		goalp = SCRIPTA_BA (np, data_out2) + 8;
7679		lastp = goalp - 8 - (cp->segments * (2*4));
7680		break;
7681	case CAM_DIR_IN:
7682		cp->host_flags |= HF_DATA_IN;
7683		goalp = SCRIPTA_BA (np, data_in2) + 8;
7684		lastp = goalp - 8 - (cp->segments * (2*4));
7685		break;
7686	case CAM_DIR_NONE:
7687	default:
7688		lastp = goalp = SCRIPTB_BA (np, no_data);
7689		break;
7690	}
7691
7692	cp->phys.head.lastp = cpu_to_scr(lastp);
7693	cp->phys.head.goalp = cpu_to_scr(goalp);
7694	cp->phys.head.savep = cpu_to_scr(lastp);
7695	cp->startp	    = cp->phys.head.savep;
7696}
7697
7698/*
7699 *  Call back routine for the DMA map service.
7700 *  If bounce buffers are used (why ?), we may sleep and then
7701 *  be called there in another context.
7702 */
7703static void
7704sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7705{
7706	ccb_p	cp;
7707	hcb_p	np;
7708	union	ccb *ccb;
7709
7710	cp  = (ccb_p) arg;
7711	ccb = cp->cam_ccb;
7712	np  = (hcb_p) cp->arg;
7713
7714	SYM_LOCK_ASSERT(MA_OWNED);
7715
7716	/*
7717	 *  Deal with weird races.
7718	 */
7719	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7720		goto out_abort;
7721
7722	/*
7723	 *  Deal with weird errors.
7724	 */
7725	if (error) {
7726		cp->dmamapped = 0;
7727		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7728		goto out_abort;
7729	}
7730
7731	/*
7732	 *  Build the data descriptor for the chip.
7733	 */
7734	if (nsegs) {
7735		int retv;
7736		/* 896 rev 1 requires to be careful about boundaries */
7737		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7738			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7739		else
7740			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7741		if (retv < 0) {
7742			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7743			goto out_abort;
7744		}
7745	}
7746
7747	/*
7748	 *  Synchronize the DMA map only if we have
7749	 *  actually mapped the data.
7750	 */
7751	if (cp->dmamapped) {
7752		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7753			(cp->dmamapped == SYM_DMA_READ ?
7754				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7755	}
7756
7757	/*
7758	 *  Set host status to busy state.
7759	 *  May have been set back to HS_WAIT to avoid a race.
7760	 */
7761	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7762
7763	/*
7764	 *  Set data pointers.
7765	 */
7766	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7767
7768	/*
7769	 *  Enqueue this IO in our pending queue.
7770	 */
7771	sym_enqueue_cam_ccb(cp);
7772
7773	/*
7774	 *  When `#ifed 1', the code below makes the driver
7775	 *  panic on the first attempt to write to a SCSI device.
7776	 *  It is the first test we want to do after a driver
7777	 *  change that does not seem obviously safe. :)
7778	 */
7779#if 0
7780	switch (cp->cdb_buf[0]) {
7781	case 0x0A: case 0x2A: case 0xAA:
7782		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7783		MDELAY(10000);
7784		break;
7785	default:
7786		break;
7787	}
7788#endif
7789	/*
7790	 *  Activate this job.
7791	 */
7792	sym_put_start_queue(np, cp);
7793	return;
7794out_abort:
7795	sym_xpt_done(np, ccb, cp);
7796	sym_free_ccb(np, cp);
7797}
7798
7799/*
7800 *  How complex it gets to deal with the data in CAM.
7801 *  The Bus Dma stuff makes things still more complex.
7802 */
7803static void
7804sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7805{
7806	struct ccb_hdr *ccb_h;
7807	int dir, retv;
7808
7809	SYM_LOCK_ASSERT(MA_OWNED);
7810
7811	ccb_h = &csio->ccb_h;
7812
7813	/*
7814	 *  Now deal with the data.
7815	 */
7816	cp->data_len = csio->dxfer_len;
7817	cp->arg      = np;
7818
7819	/*
7820	 *  No direction means no data.
7821	 */
7822	dir = (ccb_h->flags & CAM_DIR_MASK);
7823	if (dir == CAM_DIR_NONE) {
7824		sym_execute_ccb(cp, NULL, 0, 0);
7825		return;
7826	}
7827
7828	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7829	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7830			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7831	if (retv == EINPROGRESS) {
7832		cp->host_status	= HS_WAIT;
7833		xpt_freeze_simq(np->sim, 1);
7834		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7835	}
7836}
7837
7838/*
7839 *  Move the scatter list to our data block.
7840 */
7841static int
7842sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7843			     bus_dma_segment_t *psegs, int nsegs)
7844{
7845	struct sym_tblmove *data;
7846	bus_dma_segment_t *psegs2;
7847
7848	SYM_LOCK_ASSERT(MA_OWNED);
7849
7850	if (nsegs > SYM_CONF_MAX_SG)
7851		return -1;
7852
7853	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7854	psegs2 = &psegs[nsegs-1];
7855	cp->segments = nsegs;
7856
7857	while (1) {
7858		data->addr = cpu_to_scr(psegs2->ds_addr);
7859		data->size = cpu_to_scr(psegs2->ds_len);
7860		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7861			printf ("%s scatter: paddr=%lx len=%ld\n",
7862				sym_name(np), (long) psegs2->ds_addr,
7863				(long) psegs2->ds_len);
7864		}
7865		if (psegs2 != psegs) {
7866			--data;
7867			--psegs2;
7868			continue;
7869		}
7870		break;
7871	}
7872	return 0;
7873}
7874
7875/*
7876 *  Scatter a SG list with physical addresses into bus addressable chunks.
7877 */
7878static int
7879sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7880{
7881	u_long	ps, pe, pn;
7882	u_long	k;
7883	int s, t;
7884
7885	SYM_LOCK_ASSERT(MA_OWNED);
7886
7887	s  = SYM_CONF_MAX_SG - 1;
7888	t  = nsegs - 1;
7889	ps = psegs[t].ds_addr;
7890	pe = ps + psegs[t].ds_len;
7891
7892	while (s >= 0) {
7893		pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY);
7894		if (pn <= ps)
7895			pn = ps;
7896		k = pe - pn;
7897		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7898			printf ("%s scatter: paddr=%lx len=%ld\n",
7899				sym_name(np), pn, k);
7900		}
7901		cp->phys.data[s].addr = cpu_to_scr(pn);
7902		cp->phys.data[s].size = cpu_to_scr(k);
7903		--s;
7904		if (pn == ps) {
7905			if (--t < 0)
7906				break;
7907			ps = psegs[t].ds_addr;
7908			pe = ps + psegs[t].ds_len;
7909		}
7910		else
7911			pe = pn;
7912	}
7913
7914	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7915
7916	return t >= 0 ? -1 : 0;
7917}
7918
7919/*
7920 *  SIM action for non performance critical stuff.
7921 */
7922static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7923{
7924	union ccb *abort_ccb;
7925	struct ccb_hdr *ccb_h;
7926	struct ccb_pathinq *cpi;
7927	struct ccb_trans_settings *cts;
7928	struct sym_trans *tip;
7929	hcb_p	np;
7930	tcb_p	tp;
7931	lcb_p	lp;
7932	u_char dflags;
7933
7934	/*
7935	 *  Retrieve our controller data structure.
7936	 */
7937	np = (hcb_p) cam_sim_softc(sim);
7938
7939	SYM_LOCK_ASSERT(MA_OWNED);
7940
7941	ccb_h = &ccb->ccb_h;
7942
7943	switch (ccb_h->func_code) {
7944	case XPT_SET_TRAN_SETTINGS:
7945		cts  = &ccb->cts;
7946		tp = &np->target[ccb_h->target_id];
7947
7948		/*
7949		 *  Update SPI transport settings in TARGET control block.
7950		 *  Update SCSI device settings in LUN control block.
7951		 */
7952		lp = sym_lp(tp, ccb_h->target_lun);
7953		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7954			sym_update_trans(np, &tp->tinfo.goal, cts);
7955			if (lp)
7956				sym_update_dflags(np, &lp->current_flags, cts);
7957		}
7958		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7959			sym_update_trans(np, &tp->tinfo.user, cts);
7960			if (lp)
7961				sym_update_dflags(np, &lp->user_flags, cts);
7962		}
7963
7964		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7965		break;
7966	case XPT_GET_TRAN_SETTINGS:
7967		cts = &ccb->cts;
7968		tp = &np->target[ccb_h->target_id];
7969		lp = sym_lp(tp, ccb_h->target_lun);
7970
7971#define	cts__scsi (&cts->proto_specific.scsi)
7972#define	cts__spi  (&cts->xport_specific.spi)
7973		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7974			tip = &tp->tinfo.current;
7975			dflags = lp ? lp->current_flags : 0;
7976		}
7977		else {
7978			tip = &tp->tinfo.user;
7979			dflags = lp ? lp->user_flags : tp->usrflags;
7980		}
7981
7982		cts->protocol  = PROTO_SCSI;
7983		cts->transport = XPORT_SPI;
7984		cts->protocol_version  = tip->scsi_version;
7985		cts->transport_version = tip->spi_version;
7986
7987		cts__spi->sync_period = tip->period;
7988		cts__spi->sync_offset = tip->offset;
7989		cts__spi->bus_width   = tip->width;
7990		cts__spi->ppr_options = tip->options;
7991
7992		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
7993		                | CTS_SPI_VALID_SYNC_OFFSET
7994		                | CTS_SPI_VALID_BUS_WIDTH
7995		                | CTS_SPI_VALID_PPR_OPTIONS;
7996
7997		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
7998		if (dflags & SYM_DISC_ENABLED)
7999			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8000		cts__spi->valid |= CTS_SPI_VALID_DISC;
8001
8002		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8003		if (dflags & SYM_TAGS_ENABLED)
8004			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8005		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8006#undef	cts__spi
8007#undef	cts__scsi
8008		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8009		break;
8010	case XPT_CALC_GEOMETRY:
8011		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8012		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8013		break;
8014	case XPT_PATH_INQ:
8015		cpi = &ccb->cpi;
8016		cpi->version_num = 1;
8017		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8018		if ((np->features & FE_WIDE) != 0)
8019			cpi->hba_inquiry |= PI_WIDE_16;
8020		cpi->target_sprt = 0;
8021		cpi->hba_misc = PIM_UNMAPPED;
8022		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8023			cpi->hba_misc |= PIM_SCANHILO;
8024		if (np->usrflags & SYM_AVOID_BUS_RESET)
8025			cpi->hba_misc |= PIM_NOBUSRESET;
8026		cpi->hba_eng_cnt = 0;
8027		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8028		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8029		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8030		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8031			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8032		cpi->bus_id = cam_sim_bus(sim);
8033		cpi->initiator_id = np->myaddr;
8034		cpi->base_transfer_speed = 3300;
8035		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8036		strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8037		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8038		cpi->unit_number = cam_sim_unit(sim);
8039
8040		cpi->protocol = PROTO_SCSI;
8041		cpi->protocol_version = SCSI_REV_2;
8042		cpi->transport = XPORT_SPI;
8043		cpi->transport_version = 2;
8044		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8045		if (np->features & FE_ULTRA3) {
8046			cpi->transport_version = 3;
8047			cpi->xport_specific.spi.ppr_options =
8048			    SID_SPI_CLOCK_DT_ST;
8049		}
8050		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8051		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8052		break;
8053	case XPT_ABORT:
8054		abort_ccb = ccb->cab.abort_ccb;
8055		switch(abort_ccb->ccb_h.func_code) {
8056		case XPT_SCSI_IO:
8057			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8058				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8059				break;
8060			}
8061		default:
8062			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8063			break;
8064		}
8065		break;
8066	case XPT_RESET_DEV:
8067		sym_reset_dev(np, ccb);
8068		break;
8069	case XPT_RESET_BUS:
8070		sym_reset_scsi_bus(np, 0);
8071		if (sym_verbose) {
8072			xpt_print_path(np->path);
8073			printf("SCSI BUS reset delivered.\n");
8074		}
8075		sym_init (np, 1);
8076		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8077		break;
8078	case XPT_TERM_IO:
8079	default:
8080		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8081		break;
8082	}
8083}
8084
8085/*
8086 *  Asynchronous notification handler.
8087 */
8088static void
8089sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8090{
8091	hcb_p np;
8092	struct cam_sim *sim;
8093	u_int tn;
8094	tcb_p tp;
8095
8096	sim = (struct cam_sim *) cb_arg;
8097	np  = (hcb_p) cam_sim_softc(sim);
8098
8099	SYM_LOCK_ASSERT(MA_OWNED);
8100
8101	switch (code) {
8102	case AC_LOST_DEVICE:
8103		tn = xpt_path_target_id(path);
8104		if (tn >= SYM_CONF_MAX_TARGET)
8105			break;
8106
8107		tp = &np->target[tn];
8108
8109		tp->to_reset  = 0;
8110		tp->head.sval = 0;
8111		tp->head.wval = np->rv_scntl3;
8112		tp->head.uval = 0;
8113
8114		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8115		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8116		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8117		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8118
8119		break;
8120	default:
8121		break;
8122	}
8123}
8124
8125/*
8126 *  Update transfer settings of a target.
8127 */
8128static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8129    struct ccb_trans_settings *cts)
8130{
8131
8132	SYM_LOCK_ASSERT(MA_OWNED);
8133
8134	/*
8135	 *  Update the infos.
8136	 */
8137#define cts__spi (&cts->xport_specific.spi)
8138	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8139		tip->width = cts__spi->bus_width;
8140	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8141		tip->offset = cts__spi->sync_offset;
8142	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8143		tip->period = cts__spi->sync_period;
8144	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8145		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8146	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8147	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8148		tip->scsi_version = cts->protocol_version;
8149	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8150	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8151		tip->spi_version = cts->transport_version;
8152#undef cts__spi
8153	/*
8154	 *  Scale against driver configuration limits.
8155	 */
8156	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8157	if (tip->period && tip->offset) {
8158		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8159		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8160	} else {
8161		tip->offset = 0;
8162		tip->period = 0;
8163	}
8164
8165	/*
8166	 *  Scale against actual controller BUS width.
8167	 */
8168	if (tip->width > np->maxwide)
8169		tip->width  = np->maxwide;
8170
8171	/*
8172	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8173	 */
8174	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8175	    !(tip->width == BUS_16_BIT && tip->offset)) {
8176		tip->options &= ~PPR_OPT_DT;
8177	}
8178
8179	/*
8180	 *  Scale period factor and offset against controller limits.
8181	 */
8182	if (tip->offset && tip->period) {
8183		if (tip->options & PPR_OPT_DT) {
8184			if (tip->period < np->minsync_dt)
8185				tip->period = np->minsync_dt;
8186			if (tip->period > np->maxsync_dt)
8187				tip->period = np->maxsync_dt;
8188			if (tip->offset > np->maxoffs_dt)
8189				tip->offset = np->maxoffs_dt;
8190		}
8191		else {
8192			if (tip->period < np->minsync)
8193				tip->period = np->minsync;
8194			if (tip->period > np->maxsync)
8195				tip->period = np->maxsync;
8196			if (tip->offset > np->maxoffs)
8197				tip->offset = np->maxoffs;
8198		}
8199	}
8200}
8201
8202/*
8203 *  Update flags for a device (logical unit).
8204 */
8205static void
8206sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8207{
8208
8209	SYM_LOCK_ASSERT(MA_OWNED);
8210
8211#define	cts__scsi (&cts->proto_specific.scsi)
8212#define	cts__spi  (&cts->xport_specific.spi)
8213	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8214		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8215			*flags |= SYM_DISC_ENABLED;
8216		else
8217			*flags &= ~SYM_DISC_ENABLED;
8218	}
8219
8220	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8221		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8222			*flags |= SYM_TAGS_ENABLED;
8223		else
8224			*flags &= ~SYM_TAGS_ENABLED;
8225	}
8226#undef	cts__spi
8227#undef	cts__scsi
8228}
8229
8230/*============= DRIVER INITIALISATION ==================*/
8231
8232static device_method_t sym_pci_methods[] = {
8233	DEVMETHOD(device_probe,	 sym_pci_probe),
8234	DEVMETHOD(device_attach, sym_pci_attach),
8235	DEVMETHOD_END
8236};
8237
8238static driver_t sym_pci_driver = {
8239	"sym",
8240	sym_pci_methods,
8241	1	/* no softc */
8242};
8243
8244DRIVER_MODULE(sym, pci, sym_pci_driver, NULL, NULL);
8245MODULE_DEPEND(sym, cam, 1, 1, 1);
8246MODULE_DEPEND(sym, pci, 1, 1, 1);
8247
8248static const struct sym_pci_chip sym_pci_dev_table[] = {
8249 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8250 FE_ERL}
8251 ,
8252#ifdef SYM_DEBUG_GENERIC_SUPPORT
8253 {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8254 FE_BOF}
8255 ,
8256#else
8257 {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8258 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8259 ,
8260#endif
8261 {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8262 FE_BOF|FE_ERL}
8263 ,
8264 {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8265 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8266 ,
8267 {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8268 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8269 ,
8270 {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8271 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8272 ,
8273 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8274 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8275 FE_RAM|FE_DIFF}
8276 ,
8277 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8278 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8279 FE_RAM|FE_DIFF}
8280 ,
8281 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8282 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8283 FE_RAM|FE_DIFF}
8284 ,
8285 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8286 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8287 FE_RAM|FE_DIFF}
8288 ,
8289#ifdef SYM_DEBUG_GENERIC_SUPPORT
8290 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8291 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8292 FE_RAM|FE_LCKFRQ}
8293 ,
8294#else
8295 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8296 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8297 FE_RAM|FE_LCKFRQ}
8298 ,
8299#endif
8300 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8301 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8302 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8303 ,
8304 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8305 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8306 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8307 ,
8308 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8309 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8310 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8311 FE_C10}
8312 ,
8313 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8314 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8315 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8316 FE_C10|FE_U3EN}
8317 ,
8318 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8319 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8320 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8321 FE_C10|FE_U3EN}
8322 ,
8323 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8324 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8325 FE_RAM|FE_IO256|FE_LEDC}
8326};
8327
8328/*
8329 *  Look up the chip table.
8330 *
8331 *  Return a pointer to the chip entry if found,
8332 *  zero otherwise.
8333 */
8334static const struct sym_pci_chip *
8335sym_find_pci_chip(device_t dev)
8336{
8337	const struct	sym_pci_chip *chip;
8338	int	i;
8339	u_short	device_id;
8340	u_char	revision;
8341
8342	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8343		return NULL;
8344
8345	device_id = pci_get_device(dev);
8346	revision  = pci_get_revid(dev);
8347
8348	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8349		chip = &sym_pci_dev_table[i];
8350		if (device_id != chip->device_id)
8351			continue;
8352		if (revision > chip->revision_id)
8353			continue;
8354		return chip;
8355	}
8356
8357	return NULL;
8358}
8359
8360/*
8361 *  Tell upper layer if the chip is supported.
8362 */
8363static int
8364sym_pci_probe(device_t dev)
8365{
8366	const struct	sym_pci_chip *chip;
8367
8368	chip = sym_find_pci_chip(dev);
8369	if (chip && sym_find_firmware(chip)) {
8370		device_set_desc(dev, chip->name);
8371		return BUS_PROBE_DEFAULT;
8372	}
8373	return ENXIO;
8374}
8375
8376/*
8377 *  Attach a sym53c8xx device.
8378 */
8379static int
8380sym_pci_attach(device_t dev)
8381{
8382	const struct	sym_pci_chip *chip;
8383	u_short	command;
8384	u_char	cachelnsz;
8385	struct	sym_hcb *np = NULL;
8386	struct	sym_nvram nvram;
8387	const struct	sym_fw *fw = NULL;
8388	int 	i;
8389	bus_dma_tag_t	bus_dmat;
8390
8391	bus_dmat = bus_get_dma_tag(dev);
8392
8393	/*
8394	 *  Only probed devices should be attached.
8395	 *  We just enjoy being paranoid. :)
8396	 */
8397	chip = sym_find_pci_chip(dev);
8398	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8399		return (ENXIO);
8400
8401	/*
8402	 *  Allocate immediately the host control block,
8403	 *  since we are only expecting to succeed. :)
8404	 *  We keep track in the HCB of all the resources that
8405	 *  are to be released on error.
8406	 */
8407	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8408	if (np)
8409		np->bus_dmat = bus_dmat;
8410	else
8411		return (ENXIO);
8412	device_set_softc(dev, np);
8413
8414	SYM_LOCK_INIT();
8415
8416	/*
8417	 *  Copy some useful infos to the HCB.
8418	 */
8419	np->hcb_ba	 = vtobus(np);
8420	np->verbose	 = bootverbose;
8421	np->device	 = dev;
8422	np->device_id	 = pci_get_device(dev);
8423	np->revision_id  = pci_get_revid(dev);
8424	np->features	 = chip->features;
8425	np->clock_divn	 = chip->nr_divisor;
8426	np->maxoffs	 = chip->offset_max;
8427	np->maxburst	 = chip->burst_max;
8428	np->scripta_sz	 = fw->a_size;
8429	np->scriptb_sz	 = fw->b_size;
8430	np->fw_setup	 = fw->setup;
8431	np->fw_patch	 = fw->patch;
8432	np->fw_name	 = fw->name;
8433
8434#ifdef __amd64__
8435	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8436			"TARGET");
8437	if (!np->target)
8438		goto attach_failed;
8439#endif
8440
8441	/*
8442	 *  Initialize the CCB free and busy queues.
8443	 */
8444	sym_que_init(&np->free_ccbq);
8445	sym_que_init(&np->busy_ccbq);
8446	sym_que_init(&np->comp_ccbq);
8447	sym_que_init(&np->cam_ccbq);
8448
8449	/*
8450	 *  Allocate a tag for the DMA of user data.
8451	 */
8452	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8453	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8454	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8455	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8456		device_printf(dev, "failed to create DMA tag.\n");
8457		goto attach_failed;
8458	}
8459
8460	/*
8461	 *  Read and apply some fix-ups to the PCI COMMAND
8462	 *  register. We want the chip to be enabled for:
8463	 *  - BUS mastering
8464	 *  - PCI parity checking (reporting would also be fine)
8465	 *  - Write And Invalidate.
8466	 */
8467	command = pci_read_config(dev, PCIR_COMMAND, 2);
8468	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8469	    PCIM_CMD_MWRICEN;
8470	pci_write_config(dev, PCIR_COMMAND, command, 2);
8471
8472	/*
8473	 *  Let the device know about the cache line size,
8474	 *  if it doesn't yet.
8475	 */
8476	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8477	if (!cachelnsz) {
8478		cachelnsz = 8;
8479		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8480	}
8481
8482	/*
8483	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8484	 */
8485	i = SYM_PCI_MMIO;
8486	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8487	    RF_ACTIVE);
8488	if (!np->mmio_res) {
8489		device_printf(dev, "failed to allocate MMIO resources\n");
8490		goto attach_failed;
8491	}
8492	np->mmio_ba = rman_get_start(np->mmio_res);
8493
8494	/*
8495	 *  Allocate the IRQ.
8496	 */
8497	i = 0;
8498	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8499					     RF_ACTIVE | RF_SHAREABLE);
8500	if (!np->irq_res) {
8501		device_printf(dev, "failed to allocate IRQ resource\n");
8502		goto attach_failed;
8503	}
8504
8505#ifdef	SYM_CONF_IOMAPPED
8506	/*
8507	 *  User want us to use normal IO with PCI.
8508	 *  Alloc/get/map/retrieve everything that deals with IO.
8509	 */
8510	i = SYM_PCI_IO;
8511	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8512	if (!np->io_res) {
8513		device_printf(dev, "failed to allocate IO resources\n");
8514		goto attach_failed;
8515	}
8516
8517#endif /* SYM_CONF_IOMAPPED */
8518
8519	/*
8520	 *  If the chip has RAM.
8521	 *  Alloc/get/map/retrieve the corresponding resources.
8522	 */
8523	if (np->features & (FE_RAM|FE_RAM8K)) {
8524		int regs_id = SYM_PCI_RAM;
8525		if (np->features & FE_64BIT)
8526			regs_id = SYM_PCI_RAM64;
8527		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8528						     &regs_id, RF_ACTIVE);
8529		if (!np->ram_res) {
8530			device_printf(dev,"failed to allocate RAM resources\n");
8531			goto attach_failed;
8532		}
8533		np->ram_id  = regs_id;
8534		np->ram_ba = rman_get_start(np->ram_res);
8535	}
8536
8537	/*
8538	 *  Save setting of some IO registers, so we will
8539	 *  be able to probe specific implementations.
8540	 */
8541	sym_save_initial_setting (np);
8542
8543	/*
8544	 *  Reset the chip now, since it has been reported
8545	 *  that SCSI clock calibration may not work properly
8546	 *  if the chip is currently active.
8547	 */
8548	sym_chip_reset (np);
8549
8550	/*
8551	 *  Try to read the user set-up.
8552	 */
8553	(void) sym_read_nvram(np, &nvram);
8554
8555	/*
8556	 *  Prepare controller and devices settings, according
8557	 *  to chip features, user set-up and driver set-up.
8558	 */
8559	(void) sym_prepare_setting(np, &nvram);
8560
8561	/*
8562	 *  Check the PCI clock frequency.
8563	 *  Must be performed after prepare_setting since it destroys
8564	 *  STEST1 that is used to probe for the clock doubler.
8565	 */
8566	i = sym_getpciclock(np);
8567	if (i > 37000)
8568		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8569
8570	/*
8571	 *  Allocate the start queue.
8572	 */
8573	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8574	if (!np->squeue)
8575		goto attach_failed;
8576	np->squeue_ba = vtobus(np->squeue);
8577
8578	/*
8579	 *  Allocate the done queue.
8580	 */
8581	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8582	if (!np->dqueue)
8583		goto attach_failed;
8584	np->dqueue_ba = vtobus(np->dqueue);
8585
8586	/*
8587	 *  Allocate the target bus address array.
8588	 */
8589	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8590	if (!np->targtbl)
8591		goto attach_failed;
8592	np->targtbl_ba = vtobus(np->targtbl);
8593
8594	/*
8595	 *  Allocate SCRIPTS areas.
8596	 */
8597	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8598	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8599	if (!np->scripta0 || !np->scriptb0)
8600		goto attach_failed;
8601
8602	/*
8603	 *  Allocate the CCBs. We need at least ONE.
8604	 */
8605	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8606		;
8607	if (i < 1)
8608		goto attach_failed;
8609
8610	/*
8611	 *  Calculate BUS addresses where we are going
8612	 *  to load the SCRIPTS.
8613	 */
8614	np->scripta_ba	= vtobus(np->scripta0);
8615	np->scriptb_ba	= vtobus(np->scriptb0);
8616	np->scriptb0_ba	= np->scriptb_ba;
8617
8618	if (np->ram_ba) {
8619		np->scripta_ba	= np->ram_ba;
8620		if (np->features & FE_RAM8K) {
8621			np->ram_ws = 8192;
8622			np->scriptb_ba = np->scripta_ba + 4096;
8623#ifdef __LP64__
8624			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8625#endif
8626		}
8627		else
8628			np->ram_ws = 4096;
8629	}
8630
8631	/*
8632	 *  Copy scripts to controller instance.
8633	 */
8634	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8635	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8636
8637	/*
8638	 *  Setup variable parts in scripts and compute
8639	 *  scripts bus addresses used from the C code.
8640	 */
8641	np->fw_setup(np, fw);
8642
8643	/*
8644	 *  Bind SCRIPTS with physical addresses usable by the
8645	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8646	 */
8647	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8648	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8649
8650#ifdef SYM_CONF_IARB_SUPPORT
8651	/*
8652	 *    If user wants IARB to be set when we win arbitration
8653	 *    and have other jobs, compute the max number of consecutive
8654	 *    settings of IARB hints before we leave devices a chance to
8655	 *    arbitrate for reselection.
8656	 */
8657#ifdef	SYM_SETUP_IARB_MAX
8658	np->iarb_max = SYM_SETUP_IARB_MAX;
8659#else
8660	np->iarb_max = 4;
8661#endif
8662#endif
8663
8664	/*
8665	 *  Prepare the idle and invalid task actions.
8666	 */
8667	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8668	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8669	np->idletask_ba		= vtobus(&np->idletask);
8670
8671	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8672	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8673	np->notask_ba		= vtobus(&np->notask);
8674
8675	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8676	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8677	np->bad_itl_ba		= vtobus(&np->bad_itl);
8678
8679	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8680	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8681	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8682
8683	/*
8684	 *  Allocate and prepare the lun JUMP table that is used
8685	 *  for a target prior the probing of devices (bad lun table).
8686	 *  A private table will be allocated for the target on the
8687	 *  first INQUIRY response received.
8688	 */
8689	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8690	if (!np->badluntbl)
8691		goto attach_failed;
8692
8693	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8694	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8695		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8696
8697	/*
8698	 *  Prepare the bus address array that contains the bus
8699	 *  address of each target control block.
8700	 *  For now, assume all logical units are wrong. :)
8701	 */
8702	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8703		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8704		np->target[i].head.luntbl_sa =
8705				cpu_to_scr(vtobus(np->badluntbl));
8706		np->target[i].head.lun0_sa =
8707				cpu_to_scr(vtobus(&np->badlun_sa));
8708	}
8709
8710	/*
8711	 *  Now check the cache handling of the pci chipset.
8712	 */
8713	if (sym_snooptest (np)) {
8714		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8715		goto attach_failed;
8716	}
8717
8718	/*
8719	 *  Now deal with CAM.
8720	 *  Hopefully, we will succeed with that one.:)
8721	 */
8722	if (!sym_cam_attach(np))
8723		goto attach_failed;
8724
8725	/*
8726	 *  Sigh! we are done.
8727	 */
8728	return 0;
8729
8730	/*
8731	 *  We have failed.
8732	 *  We will try to free all the resources we have
8733	 *  allocated, but if we are a boot device, this
8734	 *  will not help that much.;)
8735	 */
8736attach_failed:
8737	if (np)
8738		sym_pci_free(np);
8739	return ENXIO;
8740}
8741
8742/*
8743 *  Free everything that have been allocated for this device.
8744 */
8745static void sym_pci_free(hcb_p np)
8746{
8747	SYM_QUEHEAD *qp;
8748	ccb_p cp;
8749	tcb_p tp;
8750	lcb_p lp;
8751	int target, lun;
8752
8753	/*
8754	 *  First free CAM resources.
8755	 */
8756	sym_cam_free(np);
8757
8758	/*
8759	 *  Now every should be quiet for us to
8760	 *  free other resources.
8761	 */
8762	if (np->ram_res)
8763		bus_release_resource(np->device, SYS_RES_MEMORY,
8764				     np->ram_id, np->ram_res);
8765	if (np->mmio_res)
8766		bus_release_resource(np->device, SYS_RES_MEMORY,
8767				     SYM_PCI_MMIO, np->mmio_res);
8768	if (np->io_res)
8769		bus_release_resource(np->device, SYS_RES_IOPORT,
8770				     SYM_PCI_IO, np->io_res);
8771	if (np->irq_res)
8772		bus_release_resource(np->device, SYS_RES_IRQ,
8773				     0, np->irq_res);
8774
8775	if (np->scriptb0)
8776		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8777	if (np->scripta0)
8778		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8779	if (np->squeue)
8780		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8781	if (np->dqueue)
8782		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8783
8784	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8785		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8786		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8787		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8788		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8789	}
8790
8791	if (np->badluntbl)
8792		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8793
8794	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8795		tp = &np->target[target];
8796		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8797			lp = sym_lp(tp, lun);
8798			if (!lp)
8799				continue;
8800			if (lp->itlq_tbl)
8801				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8802				       "ITLQ_TBL");
8803			if (lp->cb_tags)
8804				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8805				       "CB_TAGS");
8806			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8807		}
8808#if SYM_CONF_MAX_LUN > 1
8809		if (tp->lunmp)
8810			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8811			       "LUNMP");
8812#endif
8813	}
8814#ifdef __amd64__
8815	if (np->target)
8816		sym_mfree_dma(np->target,
8817			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8818#endif
8819	if (np->targtbl)
8820		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8821	if (np->data_dmat)
8822		bus_dma_tag_destroy(np->data_dmat);
8823	if (SYM_LOCK_INITIALIZED() != 0)
8824		SYM_LOCK_DESTROY();
8825	device_set_softc(np->device, NULL);
8826	sym_mfree_dma(np, sizeof(*np), "HCB");
8827}
8828
8829/*
8830 *  Allocate CAM resources and register a bus to CAM.
8831 */
8832static int sym_cam_attach(hcb_p np)
8833{
8834	struct cam_devq *devq = NULL;
8835	struct cam_sim *sim = NULL;
8836	struct cam_path *path = NULL;
8837	int err;
8838
8839	/*
8840	 *  Establish our interrupt handler.
8841	 */
8842	err = bus_setup_intr(np->device, np->irq_res,
8843			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8844			NULL, sym_intr, np, &np->intr);
8845	if (err) {
8846		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8847			      err);
8848		goto fail;
8849	}
8850
8851	/*
8852	 *  Create the device queue for our sym SIM.
8853	 */
8854	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8855	if (!devq)
8856		goto fail;
8857
8858	/*
8859	 *  Construct our SIM entry.
8860	 */
8861	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8862			device_get_unit(np->device),
8863			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8864	if (!sim)
8865		goto fail;
8866
8867	SYM_LOCK();
8868
8869	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8870		goto fail;
8871	np->sim = sim;
8872	sim = NULL;
8873
8874	if (xpt_create_path(&path, NULL,
8875			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8876			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8877		goto fail;
8878	}
8879	np->path = path;
8880
8881	/*
8882	 *  Establish our async notification handler.
8883	 */
8884	if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) !=
8885	    CAM_REQ_CMP)
8886		goto fail;
8887
8888	/*
8889	 *  Start the chip now, without resetting the BUS, since
8890	 *  it seems that this must stay under control of CAM.
8891	 *  With LVD/SE capable chips and BUS in SE mode, we may
8892	 *  get a spurious SMBC interrupt.
8893	 */
8894	sym_init (np, 0);
8895
8896	SYM_UNLOCK();
8897
8898	return 1;
8899fail:
8900	if (sim)
8901		cam_sim_free(sim, FALSE);
8902	if (devq)
8903		cam_simq_free(devq);
8904
8905	SYM_UNLOCK();
8906
8907	sym_cam_free(np);
8908
8909	return 0;
8910}
8911
8912/*
8913 *  Free everything that deals with CAM.
8914 */
8915static void sym_cam_free(hcb_p np)
8916{
8917
8918	SYM_LOCK_ASSERT(MA_NOTOWNED);
8919
8920	if (np->intr) {
8921		bus_teardown_intr(np->device, np->irq_res, np->intr);
8922		np->intr = NULL;
8923	}
8924
8925	SYM_LOCK();
8926
8927	if (np->sim) {
8928		xpt_bus_deregister(cam_sim_path(np->sim));
8929		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8930		np->sim = NULL;
8931	}
8932	if (np->path) {
8933		xpt_free_path(np->path);
8934		np->path = NULL;
8935	}
8936
8937	SYM_UNLOCK();
8938}
8939
8940/*============ OPTIONNAL NVRAM SUPPORT =================*/
8941
8942/*
8943 *  Get host setup from NVRAM.
8944 */
8945static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8946{
8947#ifdef SYM_CONF_NVRAM_SUPPORT
8948	/*
8949	 *  Get parity checking, host ID, verbose mode
8950	 *  and miscellaneous host flags from NVRAM.
8951	 */
8952	switch(nvram->type) {
8953	case SYM_SYMBIOS_NVRAM:
8954		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8955			np->rv_scntl0  &= ~0x0a;
8956		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8957		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8958			np->verbose += 1;
8959		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8960			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8961		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8962			np->usrflags |= SYM_AVOID_BUS_RESET;
8963		break;
8964	case SYM_TEKRAM_NVRAM:
8965		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8966		break;
8967	default:
8968		break;
8969	}
8970#endif
8971}
8972
8973/*
8974 *  Get target setup from NVRAM.
8975 */
8976#ifdef SYM_CONF_NVRAM_SUPPORT
8977static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8978static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8979#endif
8980
8981static void
8982sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
8983{
8984#ifdef SYM_CONF_NVRAM_SUPPORT
8985	switch(nvp->type) {
8986	case SYM_SYMBIOS_NVRAM:
8987		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
8988		break;
8989	case SYM_TEKRAM_NVRAM:
8990		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
8991		break;
8992	default:
8993		break;
8994	}
8995#endif
8996}
8997
8998#ifdef SYM_CONF_NVRAM_SUPPORT
8999/*
9000 *  Get target set-up from Symbios format NVRAM.
9001 */
9002static void
9003sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9004{
9005	tcb_p tp = &np->target[target];
9006	Symbios_target *tn = &nvram->target[target];
9007
9008	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9009	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9010	tp->usrtags =
9011		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9012
9013	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9014		tp->usrflags &= ~SYM_DISC_ENABLED;
9015	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9016		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9017	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9018		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9019}
9020
9021/*
9022 *  Get target set-up from Tekram format NVRAM.
9023 */
9024static void
9025sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9026{
9027	tcb_p tp = &np->target[target];
9028	struct Tekram_target *tn = &nvram->target[target];
9029	int i;
9030
9031	if (tn->flags & TEKRAM_SYNC_NEGO) {
9032		i = tn->sync_index & 0xf;
9033		tp->tinfo.user.period = Tekram_sync[i];
9034	}
9035
9036	tp->tinfo.user.width =
9037		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9038
9039	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9040		tp->usrtags = 2 << nvram->max_tags_index;
9041	}
9042
9043	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9044		tp->usrflags |= SYM_DISC_ENABLED;
9045
9046	/* If any device does not support parity, we will not use this option */
9047	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9048		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9049}
9050
9051#ifdef	SYM_CONF_DEBUG_NVRAM
9052/*
9053 *  Dump Symbios format NVRAM for debugging purpose.
9054 */
9055static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9056{
9057	int i;
9058
9059	/* display Symbios nvram host data */
9060	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9061		sym_name(np), nvram->host_id & 0x0f,
9062		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9063		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9064		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9065		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9066		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9067		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9068
9069	/* display Symbios nvram drive data */
9070	for (i = 0 ; i < 15 ; i++) {
9071		struct Symbios_target *tn = &nvram->target[i];
9072		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9073		sym_name(np), i,
9074		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9075		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9076		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9077		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9078		tn->bus_width,
9079		tn->sync_period / 4,
9080		tn->timeout);
9081	}
9082}
9083
9084/*
9085 *  Dump TEKRAM format NVRAM for debugging purpose.
9086 */
9087static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9088static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9089{
9090	int i, tags, boot_delay;
9091	char *rem;
9092
9093	/* display Tekram nvram host data */
9094	tags = 2 << nvram->max_tags_index;
9095	boot_delay = 0;
9096	if (nvram->boot_delay_index < 6)
9097		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9098	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9099	default:
9100	case 0:	rem = "";			break;
9101	case 1: rem = " REMOVABLE=boot device";	break;
9102	case 2: rem = " REMOVABLE=all";		break;
9103	}
9104
9105	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9106		sym_name(np), nvram->host_id & 0x0f,
9107		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9108		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9109		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9110		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9111		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9112		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9113		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9114		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9115		rem, boot_delay, tags);
9116
9117	/* display Tekram nvram drive data */
9118	for (i = 0; i <= 15; i++) {
9119		int sync, j;
9120		struct Tekram_target *tn = &nvram->target[i];
9121		j = tn->sync_index & 0xf;
9122		sync = Tekram_sync[j];
9123		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9124		sym_name(np), i,
9125		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9126		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9127		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9128		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9129		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9130		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9131		sync);
9132	}
9133}
9134#endif	/* SYM_CONF_DEBUG_NVRAM */
9135#endif	/* SYM_CONF_NVRAM_SUPPORT */
9136
9137/*
9138 *  Try reading Symbios or Tekram NVRAM
9139 */
9140#ifdef SYM_CONF_NVRAM_SUPPORT
9141static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9142static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9143#endif
9144
9145static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9146{
9147#ifdef SYM_CONF_NVRAM_SUPPORT
9148	/*
9149	 *  Try to read SYMBIOS nvram.
9150	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9151	 */
9152	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9153		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9154		nvp->type = SYM_SYMBIOS_NVRAM;
9155#ifdef SYM_CONF_DEBUG_NVRAM
9156		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9157#endif
9158	}
9159	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9160		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9161		nvp->type = SYM_TEKRAM_NVRAM;
9162#ifdef SYM_CONF_DEBUG_NVRAM
9163		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9164#endif
9165	}
9166	else
9167		nvp->type = 0;
9168#else
9169	nvp->type = 0;
9170#endif
9171	return nvp->type;
9172}
9173
9174#ifdef SYM_CONF_NVRAM_SUPPORT
9175/*
9176 *  24C16 EEPROM reading.
9177 *
9178 *  GPOI0 - data in/data out
9179 *  GPIO1 - clock
9180 *  Symbios NVRAM wiring now also used by Tekram.
9181 */
9182
9183#define SET_BIT 0
9184#define CLR_BIT 1
9185#define SET_CLK 2
9186#define CLR_CLK 3
9187
9188/*
9189 *  Set/clear data/clock bit in GPIO0
9190 */
9191static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9192			  int bit_mode)
9193{
9194	UDELAY (5);
9195	switch (bit_mode){
9196	case SET_BIT:
9197		*gpreg |= write_bit;
9198		break;
9199	case CLR_BIT:
9200		*gpreg &= 0xfe;
9201		break;
9202	case SET_CLK:
9203		*gpreg |= 0x02;
9204		break;
9205	case CLR_CLK:
9206		*gpreg &= 0xfd;
9207		break;
9208	}
9209	OUTB (nc_gpreg, *gpreg);
9210	UDELAY (5);
9211}
9212
9213/*
9214 *  Send START condition to NVRAM to wake it up.
9215 */
9216static void S24C16_start(hcb_p np, u_char *gpreg)
9217{
9218	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9219	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9220	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9221	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9222}
9223
9224/*
9225 *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9226 */
9227static void S24C16_stop(hcb_p np, u_char *gpreg)
9228{
9229	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9230	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9231}
9232
9233/*
9234 *  Read or write a bit to the NVRAM,
9235 *  read if GPIO0 input else write if GPIO0 output
9236 */
9237static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9238			 u_char *gpreg)
9239{
9240	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9241	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9242	if (read_bit)
9243		*read_bit = INB (nc_gpreg);
9244	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9245	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9246}
9247
9248/*
9249 *  Output an ACK to the NVRAM after reading,
9250 *  change GPIO0 to output and when done back to an input
9251 */
9252static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9253			    u_char *gpcntl)
9254{
9255	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9256	S24C16_do_bit(np, 0, write_bit, gpreg);
9257	OUTB (nc_gpcntl, *gpcntl);
9258}
9259
9260/*
9261 *  Input an ACK from NVRAM after writing,
9262 *  change GPIO0 to input and when done back to an output
9263 */
9264static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9265			   u_char *gpcntl)
9266{
9267	OUTB (nc_gpcntl, *gpcntl | 0x01);
9268	S24C16_do_bit(np, read_bit, 1, gpreg);
9269	OUTB (nc_gpcntl, *gpcntl);
9270}
9271
9272/*
9273 *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9274 *  GPIO0 must already be set as an output
9275 */
9276static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9277			     u_char *gpreg, u_char *gpcntl)
9278{
9279	int x;
9280
9281	for (x = 0; x < 8; x++)
9282		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9283
9284	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9285}
9286
9287/*
9288 *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9289 *  GPIO0 must already be set as an input
9290 */
9291static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9292			    u_char *gpreg, u_char *gpcntl)
9293{
9294	int x;
9295	u_char read_bit;
9296
9297	*read_data = 0;
9298	for (x = 0; x < 8; x++) {
9299		S24C16_do_bit(np, &read_bit, 1, gpreg);
9300		*read_data |= ((read_bit & 0x01) << (7 - x));
9301	}
9302
9303	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9304}
9305
9306/*
9307 *  Read 'len' bytes starting at 'offset'.
9308 */
9309static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9310{
9311	u_char	gpcntl, gpreg;
9312	u_char	old_gpcntl, old_gpreg;
9313	u_char	ack_data;
9314	int	retv = 1;
9315	int	x;
9316
9317	/* save current state of GPCNTL and GPREG */
9318	old_gpreg	= INB (nc_gpreg);
9319	old_gpcntl	= INB (nc_gpcntl);
9320	gpcntl		= old_gpcntl & 0x1c;
9321
9322	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9323	OUTB (nc_gpreg,  old_gpreg);
9324	OUTB (nc_gpcntl, gpcntl);
9325
9326	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9327	gpreg = old_gpreg;
9328	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9329	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9330
9331	/* now set NVRAM inactive with GPIO0/1 both high */
9332	S24C16_stop(np, &gpreg);
9333
9334	/* activate NVRAM */
9335	S24C16_start(np, &gpreg);
9336
9337	/* write device code and random address MSB */
9338	S24C16_write_byte(np, &ack_data,
9339		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9340	if (ack_data & 0x01)
9341		goto out;
9342
9343	/* write random address LSB */
9344	S24C16_write_byte(np, &ack_data,
9345		offset & 0xff, &gpreg, &gpcntl);
9346	if (ack_data & 0x01)
9347		goto out;
9348
9349	/* regenerate START state to set up for reading */
9350	S24C16_start(np, &gpreg);
9351
9352	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9353	S24C16_write_byte(np, &ack_data,
9354		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9355	if (ack_data & 0x01)
9356		goto out;
9357
9358	/* now set up GPIO0 for inputting data */
9359	gpcntl |= 0x01;
9360	OUTB (nc_gpcntl, gpcntl);
9361
9362	/* input all requested data - only part of total NVRAM */
9363	for (x = 0; x < len; x++)
9364		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9365
9366	/* finally put NVRAM back in inactive mode */
9367	gpcntl &= 0xfe;
9368	OUTB (nc_gpcntl, gpcntl);
9369	S24C16_stop(np, &gpreg);
9370	retv = 0;
9371out:
9372	/* return GPIO0/1 to original states after having accessed NVRAM */
9373	OUTB (nc_gpcntl, old_gpcntl);
9374	OUTB (nc_gpreg,  old_gpreg);
9375
9376	return retv;
9377}
9378
9379#undef SET_BIT /* 0 */
9380#undef CLR_BIT /* 1 */
9381#undef SET_CLK /* 2 */
9382#undef CLR_CLK /* 3 */
9383
9384/*
9385 *  Try reading Symbios NVRAM.
9386 *  Return 0 if OK.
9387 */
9388static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9389{
9390	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9391	u_char *data = (u_char *) nvram;
9392	int len  = sizeof(*nvram);
9393	u_short	csum;
9394	int x;
9395
9396	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9397	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9398		return 1;
9399
9400	/* check valid NVRAM signature, verify byte count and checksum */
9401	if (nvram->type != 0 ||
9402	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9403	    nvram->byte_count != len - 12)
9404		return 1;
9405
9406	/* verify checksum */
9407	for (x = 6, csum = 0; x < len - 6; x++)
9408		csum += data[x];
9409	if (csum != nvram->checksum)
9410		return 1;
9411
9412	return 0;
9413}
9414
9415/*
9416 *  93C46 EEPROM reading.
9417 *
9418 *  GPOI0 - data in
9419 *  GPIO1 - data out
9420 *  GPIO2 - clock
9421 *  GPIO4 - chip select
9422 *
9423 *  Used by Tekram.
9424 */
9425
9426/*
9427 *  Pulse clock bit in GPIO0
9428 */
9429static void T93C46_Clk(hcb_p np, u_char *gpreg)
9430{
9431	OUTB (nc_gpreg, *gpreg | 0x04);
9432	UDELAY (2);
9433	OUTB (nc_gpreg, *gpreg);
9434}
9435
9436/*
9437 *  Read bit from NVRAM
9438 */
9439static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9440{
9441	UDELAY (2);
9442	T93C46_Clk(np, gpreg);
9443	*read_bit = INB (nc_gpreg);
9444}
9445
9446/*
9447 *  Write bit to GPIO0
9448 */
9449static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9450{
9451	if (write_bit & 0x01)
9452		*gpreg |= 0x02;
9453	else
9454		*gpreg &= 0xfd;
9455
9456	*gpreg |= 0x10;
9457
9458	OUTB (nc_gpreg, *gpreg);
9459	UDELAY (2);
9460
9461	T93C46_Clk(np, gpreg);
9462}
9463
9464/*
9465 *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9466 */
9467static void T93C46_Stop(hcb_p np, u_char *gpreg)
9468{
9469	*gpreg &= 0xef;
9470	OUTB (nc_gpreg, *gpreg);
9471	UDELAY (2);
9472
9473	T93C46_Clk(np, gpreg);
9474}
9475
9476/*
9477 *  Send read command and address to NVRAM
9478 */
9479static void T93C46_Send_Command(hcb_p np, u_short write_data,
9480				u_char *read_bit, u_char *gpreg)
9481{
9482	int x;
9483
9484	/* send 9 bits, start bit (1), command (2), address (6)  */
9485	for (x = 0; x < 9; x++)
9486		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9487
9488	*read_bit = INB (nc_gpreg);
9489}
9490
9491/*
9492 *  READ 2 bytes from the NVRAM
9493 */
9494static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9495{
9496	int x;
9497	u_char read_bit;
9498
9499	*nvram_data = 0;
9500	for (x = 0; x < 16; x++) {
9501		T93C46_Read_Bit(np, &read_bit, gpreg);
9502
9503		if (read_bit & 0x01)
9504			*nvram_data |=  (0x01 << (15 - x));
9505		else
9506			*nvram_data &= ~(0x01 << (15 - x));
9507	}
9508}
9509
9510/*
9511 *  Read Tekram NvRAM data.
9512 */
9513static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9514{
9515	u_char	read_bit;
9516	int	x;
9517
9518	for (x = 0; x < len; x++)  {
9519		/* output read command and address */
9520		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9521		if (read_bit & 0x01)
9522			return 1; /* Bad */
9523		T93C46_Read_Word(np, &data[x], gpreg);
9524		T93C46_Stop(np, gpreg);
9525	}
9526
9527	return 0;
9528}
9529
9530/*
9531 *  Try reading 93C46 Tekram NVRAM.
9532 */
9533static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9534{
9535	u_char gpcntl, gpreg;
9536	u_char old_gpcntl, old_gpreg;
9537	int retv = 1;
9538
9539	/* save current state of GPCNTL and GPREG */
9540	old_gpreg	= INB (nc_gpreg);
9541	old_gpcntl	= INB (nc_gpcntl);
9542
9543	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9544	   1/2/4 out */
9545	gpreg = old_gpreg & 0xe9;
9546	OUTB (nc_gpreg, gpreg);
9547	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9548	OUTB (nc_gpcntl, gpcntl);
9549
9550	/* input all of NVRAM, 64 words */
9551	retv = T93C46_Read_Data(np, (u_short *) nvram,
9552				sizeof(*nvram) / sizeof(short), &gpreg);
9553
9554	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9555	OUTB (nc_gpcntl, old_gpcntl);
9556	OUTB (nc_gpreg,  old_gpreg);
9557
9558	return retv;
9559}
9560
9561/*
9562 *  Try reading Tekram NVRAM.
9563 *  Return 0 if OK.
9564 */
9565static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9566{
9567	u_char *data = (u_char *) nvram;
9568	int len = sizeof(*nvram);
9569	u_short	csum;
9570	int x;
9571
9572	switch (np->device_id) {
9573	case PCI_ID_SYM53C885:
9574	case PCI_ID_SYM53C895:
9575	case PCI_ID_SYM53C896:
9576		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9577					  data, len);
9578		break;
9579	case PCI_ID_SYM53C875:
9580		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9581					  data, len);
9582		if (!x)
9583			break;
9584	default:
9585		x = sym_read_T93C46_nvram(np, nvram);
9586		break;
9587	}
9588	if (x)
9589		return 1;
9590
9591	/* verify checksum */
9592	for (x = 0, csum = 0; x < len - 1; x += 2)
9593		csum += data[x] + (data[x+1] << 8);
9594	if (csum != 0x1234)
9595		return 1;
9596
9597	return 0;
9598}
9599
9600#endif	/* SYM_CONF_NVRAM_SUPPORT */
9601