1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1997, 1998-2003
5 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/sysctl.h>
127#include <sys/taskqueue.h>
128
129#include <net/debugnet.h>
130#include <net/if.h>
131#include <net/if_var.h>
132#include <net/if_arp.h>
133#include <net/ethernet.h>
134#include <net/if_dl.h>
135#include <net/if_media.h>
136#include <net/if_types.h>
137#include <net/if_vlan_var.h>
138
139#include <net/bpf.h>
140
141#include <machine/bus.h>
142#include <machine/resource.h>
143#include <sys/bus.h>
144#include <sys/rman.h>
145
146#include <dev/mii/mii.h>
147#include <dev/mii/miivar.h>
148
149#include <dev/pci/pcireg.h>
150#include <dev/pci/pcivar.h>
151
152#include <dev/rl/if_rlreg.h>
153
154MODULE_DEPEND(re, pci, 1, 1, 1);
155MODULE_DEPEND(re, ether, 1, 1, 1);
156MODULE_DEPEND(re, miibus, 1, 1, 1);
157
158/* "device miibus" required.  See GENERIC if you get errors here. */
159#include "miibus_if.h"
160
161/* Tunables. */
162static int intr_filter = 0;
163TUNABLE_INT("hw.re.intr_filter", &intr_filter);
164static int msi_disable = 0;
165TUNABLE_INT("hw.re.msi_disable", &msi_disable);
166static int msix_disable = 0;
167TUNABLE_INT("hw.re.msix_disable", &msix_disable);
168static int prefer_iomap = 0;
169TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
170
171#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
172
173/*
174 * Various supported device vendors/types and their names.
175 */
176static const struct rl_type re_devs[] = {
177	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
178	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
179	{ DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
180	    "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
181	{ RT_VENDORID, RT_DEVICEID_2600, 0,
182	   "RealTek Killer E2600 Gigabit Ethernet Controller" },
183	{ RT_VENDORID, RT_DEVICEID_8139, 0,
184	    "RealTek 8139C+ 10/100BaseTX" },
185	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
186	    "RealTek 810xE PCIe 10/100baseTX" },
187	{ RT_VENDORID, RT_DEVICEID_8168, 0,
188	    "RealTek 8168/8111 B/C/CP/D/DP/E/F/G PCIe Gigabit Ethernet" },
189	{ RT_VENDORID, RT_DEVICEID_8161, 0,
190	    "RealTek 8168 Gigabit Ethernet" },
191	{ NCUBE_VENDORID, RT_DEVICEID_8168, 0,
192	    "TP-Link TG-3468 v2 (RTL8168) Gigabit Ethernet" },
193	{ RT_VENDORID, RT_DEVICEID_8169, 0,
194	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
195	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
196	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
197	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
198	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
199	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
200	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
201	{ USR_VENDORID, USR_DEVICEID_997902, 0,
202	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
203};
204
205static const struct rl_hwrev re_hwrevs[] = {
206	{ RL_HWREV_8139, RL_8139, "", RL_MTU },
207	{ RL_HWREV_8139A, RL_8139, "A", RL_MTU },
208	{ RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
209	{ RL_HWREV_8139B, RL_8139, "B", RL_MTU },
210	{ RL_HWREV_8130, RL_8139, "8130", RL_MTU },
211	{ RL_HWREV_8139C, RL_8139, "C", RL_MTU },
212	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
213	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
214	{ RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
215	{ RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
216	{ RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
217	{ RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
218	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
219	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
220	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
221	{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
222	{ RL_HWREV_8100, RL_8139, "8100", RL_MTU },
223	{ RL_HWREV_8101, RL_8139, "8101", RL_MTU },
224	{ RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
225	{ RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
226	{ RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
227	{ RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
228	{ RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
229	{ RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
230	{ RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
231	{ RL_HWREV_8402, RL_8169, "8402", RL_MTU },
232	{ RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
233	{ RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
234	{ RL_HWREV_8106E, RL_8169, "8106E", RL_MTU },
235	{ RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
236	{ RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
237	{ RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
238	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
239	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
240	{ RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
241	{ RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
242	{ RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
243	{ RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
244	{ RL_HWREV_8168EP, RL_8169, "8168EP/8111EP", RL_JUMBO_MTU_9K},
245	{ RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
246	{ RL_HWREV_8168FP, RL_8169, "8168FP/8111FP", RL_JUMBO_MTU_9K},
247	{ RL_HWREV_8168G, RL_8169, "8168G/8111G", RL_JUMBO_MTU_9K},
248	{ RL_HWREV_8168GU, RL_8169, "8168GU/8111GU", RL_JUMBO_MTU_9K},
249	{ RL_HWREV_8168H, RL_8169, "8168H/8111H", RL_JUMBO_MTU_9K},
250	{ RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
251	{ RL_HWREV_8411B, RL_8169, "8411B", RL_JUMBO_MTU_9K},
252	{ 0, 0, NULL, 0 }
253};
254
255static int re_probe		(device_t);
256static int re_attach		(device_t);
257static int re_detach		(device_t);
258
259static int re_encap		(struct rl_softc *, struct mbuf **);
260
261static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
262static int re_allocmem		(device_t, struct rl_softc *);
263static __inline void re_discard_rxbuf
264				(struct rl_softc *, int);
265static int re_newbuf		(struct rl_softc *, int);
266static int re_jumbo_newbuf	(struct rl_softc *, int);
267static int re_rx_list_init	(struct rl_softc *);
268static int re_jrx_list_init	(struct rl_softc *);
269static int re_tx_list_init	(struct rl_softc *);
270#ifdef RE_FIXUP_RX
271static __inline void re_fixup_rx
272				(struct mbuf *);
273#endif
274static int re_rxeof		(struct rl_softc *, int *);
275static void re_txeof		(struct rl_softc *);
276#ifdef DEVICE_POLLING
277static int re_poll		(if_t, enum poll_cmd, int);
278static int re_poll_locked	(if_t, enum poll_cmd, int);
279#endif
280static int re_intr		(void *);
281static void re_intr_msi		(void *);
282static void re_tick		(void *);
283static void re_int_task		(void *, int);
284static void re_start		(if_t);
285static void re_start_locked	(if_t);
286static void re_start_tx		(struct rl_softc *);
287static int re_ioctl		(if_t, u_long, caddr_t);
288static void re_init		(void *);
289static void re_init_locked	(struct rl_softc *);
290static void re_stop		(struct rl_softc *);
291static void re_watchdog		(struct rl_softc *);
292static int re_suspend		(device_t);
293static int re_resume		(device_t);
294static int re_shutdown		(device_t);
295static int re_ifmedia_upd	(if_t);
296static void re_ifmedia_sts	(if_t, struct ifmediareq *);
297
298static void re_eeprom_putbyte	(struct rl_softc *, int);
299static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
300static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
301static int re_gmii_readreg	(device_t, int, int);
302static int re_gmii_writereg	(device_t, int, int, int);
303
304static int re_miibus_readreg	(device_t, int, int);
305static int re_miibus_writereg	(device_t, int, int, int);
306static void re_miibus_statchg	(device_t);
307
308static void re_set_jumbo	(struct rl_softc *, int);
309static void re_set_rxmode		(struct rl_softc *);
310static void re_reset		(struct rl_softc *);
311static void re_setwol		(struct rl_softc *);
312static void re_clrwol		(struct rl_softc *);
313static void re_set_linkspeed	(struct rl_softc *);
314
315DEBUGNET_DEFINE(re);
316
317#ifdef DEV_NETMAP	/* see ixgbe.c for details */
318#include <dev/netmap/if_re_netmap.h>
319MODULE_DEPEND(re, netmap, 1, 1, 1);
320#endif /* !DEV_NETMAP */
321
322#ifdef RE_DIAG
323static int re_diag		(struct rl_softc *);
324#endif
325
326static void re_add_sysctls	(struct rl_softc *);
327static int re_sysctl_stats	(SYSCTL_HANDLER_ARGS);
328static int sysctl_int_range	(SYSCTL_HANDLER_ARGS, int, int);
329static int sysctl_hw_re_int_mod	(SYSCTL_HANDLER_ARGS);
330
331static device_method_t re_methods[] = {
332	/* Device interface */
333	DEVMETHOD(device_probe,		re_probe),
334	DEVMETHOD(device_attach,	re_attach),
335	DEVMETHOD(device_detach,	re_detach),
336	DEVMETHOD(device_suspend,	re_suspend),
337	DEVMETHOD(device_resume,	re_resume),
338	DEVMETHOD(device_shutdown,	re_shutdown),
339
340	/* MII interface */
341	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
342	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
343	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
344
345	DEVMETHOD_END
346};
347
348static driver_t re_driver = {
349	"re",
350	re_methods,
351	sizeof(struct rl_softc)
352};
353
354DRIVER_MODULE(re, pci, re_driver, 0, 0);
355DRIVER_MODULE(miibus, re, miibus_driver, 0, 0);
356
357#define EE_SET(x)					\
358	CSR_WRITE_1(sc, RL_EECMD,			\
359		CSR_READ_1(sc, RL_EECMD) | x)
360
361#define EE_CLR(x)					\
362	CSR_WRITE_1(sc, RL_EECMD,			\
363		CSR_READ_1(sc, RL_EECMD) & ~x)
364
365/*
366 * Send a read command and address to the EEPROM, check for ACK.
367 */
368static void
369re_eeprom_putbyte(struct rl_softc *sc, int addr)
370{
371	int			d, i;
372
373	d = addr | (RL_9346_READ << sc->rl_eewidth);
374
375	/*
376	 * Feed in each bit and strobe the clock.
377	 */
378
379	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
380		if (d & i) {
381			EE_SET(RL_EE_DATAIN);
382		} else {
383			EE_CLR(RL_EE_DATAIN);
384		}
385		DELAY(100);
386		EE_SET(RL_EE_CLK);
387		DELAY(150);
388		EE_CLR(RL_EE_CLK);
389		DELAY(100);
390	}
391}
392
393/*
394 * Read a word of data stored in the EEPROM at address 'addr.'
395 */
396static void
397re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
398{
399	int			i;
400	u_int16_t		word = 0;
401
402	/*
403	 * Send address of word we want to read.
404	 */
405	re_eeprom_putbyte(sc, addr);
406
407	/*
408	 * Start reading bits from EEPROM.
409	 */
410	for (i = 0x8000; i; i >>= 1) {
411		EE_SET(RL_EE_CLK);
412		DELAY(100);
413		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
414			word |= i;
415		EE_CLR(RL_EE_CLK);
416		DELAY(100);
417	}
418
419	*dest = word;
420}
421
422/*
423 * Read a sequence of words from the EEPROM.
424 */
425static void
426re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
427{
428	int			i;
429	u_int16_t		word = 0, *ptr;
430
431	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
432
433        DELAY(100);
434
435	for (i = 0; i < cnt; i++) {
436		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
437		re_eeprom_getword(sc, off + i, &word);
438		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
439		ptr = (u_int16_t *)(dest + (i * 2));
440                *ptr = word;
441	}
442
443	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
444}
445
446static int
447re_gmii_readreg(device_t dev, int phy, int reg)
448{
449	struct rl_softc		*sc;
450	u_int32_t		rval;
451	int			i;
452
453	sc = device_get_softc(dev);
454
455	/* Let the rgephy driver read the GMEDIASTAT register */
456
457	if (reg == RL_GMEDIASTAT) {
458		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
459		return (rval);
460	}
461
462	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
463
464	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
465		rval = CSR_READ_4(sc, RL_PHYAR);
466		if (rval & RL_PHYAR_BUSY)
467			break;
468		DELAY(25);
469	}
470
471	if (i == RL_PHY_TIMEOUT) {
472		device_printf(sc->rl_dev, "PHY read failed\n");
473		return (0);
474	}
475
476	/*
477	 * Controller requires a 20us delay to process next MDIO request.
478	 */
479	DELAY(20);
480
481	return (rval & RL_PHYAR_PHYDATA);
482}
483
484static int
485re_gmii_writereg(device_t dev, int phy, int reg, int data)
486{
487	struct rl_softc		*sc;
488	u_int32_t		rval;
489	int			i;
490
491	sc = device_get_softc(dev);
492
493	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
494	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
495
496	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
497		rval = CSR_READ_4(sc, RL_PHYAR);
498		if (!(rval & RL_PHYAR_BUSY))
499			break;
500		DELAY(25);
501	}
502
503	if (i == RL_PHY_TIMEOUT) {
504		device_printf(sc->rl_dev, "PHY write failed\n");
505		return (0);
506	}
507
508	/*
509	 * Controller requires a 20us delay to process next MDIO request.
510	 */
511	DELAY(20);
512
513	return (0);
514}
515
516static int
517re_miibus_readreg(device_t dev, int phy, int reg)
518{
519	struct rl_softc		*sc;
520	u_int16_t		rval = 0;
521	u_int16_t		re8139_reg = 0;
522
523	sc = device_get_softc(dev);
524
525	if (sc->rl_type == RL_8169) {
526		rval = re_gmii_readreg(dev, phy, reg);
527		return (rval);
528	}
529
530	switch (reg) {
531	case MII_BMCR:
532		re8139_reg = RL_BMCR;
533		break;
534	case MII_BMSR:
535		re8139_reg = RL_BMSR;
536		break;
537	case MII_ANAR:
538		re8139_reg = RL_ANAR;
539		break;
540	case MII_ANER:
541		re8139_reg = RL_ANER;
542		break;
543	case MII_ANLPAR:
544		re8139_reg = RL_LPAR;
545		break;
546	case MII_PHYIDR1:
547	case MII_PHYIDR2:
548		return (0);
549	/*
550	 * Allow the rlphy driver to read the media status
551	 * register. If we have a link partner which does not
552	 * support NWAY, this is the register which will tell
553	 * us the results of parallel detection.
554	 */
555	case RL_MEDIASTAT:
556		rval = CSR_READ_1(sc, RL_MEDIASTAT);
557		return (rval);
558	default:
559		device_printf(sc->rl_dev, "bad phy register\n");
560		return (0);
561	}
562	rval = CSR_READ_2(sc, re8139_reg);
563	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
564		/* 8139C+ has different bit layout. */
565		rval &= ~(BMCR_LOOP | BMCR_ISO);
566	}
567	return (rval);
568}
569
570static int
571re_miibus_writereg(device_t dev, int phy, int reg, int data)
572{
573	struct rl_softc		*sc;
574	u_int16_t		re8139_reg = 0;
575	int			rval = 0;
576
577	sc = device_get_softc(dev);
578
579	if (sc->rl_type == RL_8169) {
580		rval = re_gmii_writereg(dev, phy, reg, data);
581		return (rval);
582	}
583
584	switch (reg) {
585	case MII_BMCR:
586		re8139_reg = RL_BMCR;
587		if (sc->rl_type == RL_8139CPLUS) {
588			/* 8139C+ has different bit layout. */
589			data &= ~(BMCR_LOOP | BMCR_ISO);
590		}
591		break;
592	case MII_BMSR:
593		re8139_reg = RL_BMSR;
594		break;
595	case MII_ANAR:
596		re8139_reg = RL_ANAR;
597		break;
598	case MII_ANER:
599		re8139_reg = RL_ANER;
600		break;
601	case MII_ANLPAR:
602		re8139_reg = RL_LPAR;
603		break;
604	case MII_PHYIDR1:
605	case MII_PHYIDR2:
606		return (0);
607		break;
608	default:
609		device_printf(sc->rl_dev, "bad phy register\n");
610		return (0);
611	}
612	CSR_WRITE_2(sc, re8139_reg, data);
613	return (0);
614}
615
616static void
617re_miibus_statchg(device_t dev)
618{
619	struct rl_softc		*sc;
620	if_t ifp;
621	struct mii_data		*mii;
622
623	sc = device_get_softc(dev);
624	mii = device_get_softc(sc->rl_miibus);
625	ifp = sc->rl_ifp;
626	if (mii == NULL || ifp == NULL ||
627	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
628		return;
629
630	sc->rl_flags &= ~RL_FLAG_LINK;
631	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
632	    (IFM_ACTIVE | IFM_AVALID)) {
633		switch (IFM_SUBTYPE(mii->mii_media_active)) {
634		case IFM_10_T:
635		case IFM_100_TX:
636			sc->rl_flags |= RL_FLAG_LINK;
637			break;
638		case IFM_1000_T:
639			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
640				break;
641			sc->rl_flags |= RL_FLAG_LINK;
642			break;
643		default:
644			break;
645		}
646	}
647	/*
648	 * RealTek controllers do not provide any interface to the RX/TX
649	 * MACs for resolved speed, duplex and flow-control parameters.
650	 */
651}
652
653static u_int
654re_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
655{
656	uint32_t h, *hashes = arg;
657
658	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
659	if (h < 32)
660		hashes[0] |= (1 << h);
661	else
662		hashes[1] |= (1 << (h - 32));
663
664	return (1);
665}
666
667/*
668 * Set the RX configuration and 64-bit multicast hash filter.
669 */
670static void
671re_set_rxmode(struct rl_softc *sc)
672{
673	if_t ifp;
674	uint32_t		h, hashes[2] = { 0, 0 };
675	uint32_t		rxfilt;
676
677	RL_LOCK_ASSERT(sc);
678
679	ifp = sc->rl_ifp;
680
681	rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
682	if ((sc->rl_flags & RL_FLAG_EARLYOFF) != 0)
683		rxfilt |= RL_RXCFG_EARLYOFF;
684	else if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0)
685		rxfilt |= RL_RXCFG_EARLYOFFV2;
686
687	if (if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) {
688		if (if_getflags(ifp) & IFF_PROMISC)
689			rxfilt |= RL_RXCFG_RX_ALLPHYS;
690		/*
691		 * Unlike other hardwares, we have to explicitly set
692		 * RL_RXCFG_RX_MULTI to receive multicast frames in
693		 * promiscuous mode.
694		 */
695		rxfilt |= RL_RXCFG_RX_MULTI;
696		hashes[0] = hashes[1] = 0xffffffff;
697		goto done;
698	}
699
700	if_foreach_llmaddr(ifp, re_hash_maddr, hashes);
701
702	if (hashes[0] != 0 || hashes[1] != 0) {
703		/*
704		 * For some unfathomable reason, RealTek decided to
705		 * reverse the order of the multicast hash registers
706		 * in the PCI Express parts.  This means we have to
707		 * write the hash pattern in reverse order for those
708		 * devices.
709		 */
710		if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
711			h = bswap32(hashes[0]);
712			hashes[0] = bswap32(hashes[1]);
713			hashes[1] = h;
714		}
715		rxfilt |= RL_RXCFG_RX_MULTI;
716	}
717
718	if  (sc->rl_hwrev->rl_rev == RL_HWREV_8168F) {
719		/* Disable multicast filtering due to silicon bug. */
720		hashes[0] = 0xffffffff;
721		hashes[1] = 0xffffffff;
722	}
723
724done:
725	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
726	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
727	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
728}
729
730static void
731re_reset(struct rl_softc *sc)
732{
733	int			i;
734
735	RL_LOCK_ASSERT(sc);
736
737	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
738
739	for (i = 0; i < RL_TIMEOUT; i++) {
740		DELAY(10);
741		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
742			break;
743	}
744	if (i == RL_TIMEOUT)
745		device_printf(sc->rl_dev, "reset never completed!\n");
746
747	if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
748		CSR_WRITE_1(sc, 0x82, 1);
749	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
750		re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
751}
752
753#ifdef RE_DIAG
754
755/*
756 * The following routine is designed to test for a defect on some
757 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
758 * lines connected to the bus, however for a 32-bit only card, they
759 * should be pulled high. The result of this defect is that the
760 * NIC will not work right if you plug it into a 64-bit slot: DMA
761 * operations will be done with 64-bit transfers, which will fail
762 * because the 64-bit data lines aren't connected.
763 *
764 * There's no way to work around this (short of talking a soldering
765 * iron to the board), however we can detect it. The method we use
766 * here is to put the NIC into digital loopback mode, set the receiver
767 * to promiscuous mode, and then try to send a frame. We then compare
768 * the frame data we sent to what was received. If the data matches,
769 * then the NIC is working correctly, otherwise we know the user has
770 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
771 * slot. In the latter case, there's no way the NIC can work correctly,
772 * so we print out a message on the console and abort the device attach.
773 */
774
775static int
776re_diag(struct rl_softc *sc)
777{
778	if_t ifp = sc->rl_ifp;
779	struct mbuf		*m0;
780	struct ether_header	*eh;
781	struct rl_desc		*cur_rx;
782	u_int16_t		status;
783	u_int32_t		rxstat;
784	int			total_len, i, error = 0, phyaddr;
785	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
786	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
787
788	/* Allocate a single mbuf */
789	MGETHDR(m0, M_NOWAIT, MT_DATA);
790	if (m0 == NULL)
791		return (ENOBUFS);
792
793	RL_LOCK(sc);
794
795	/*
796	 * Initialize the NIC in test mode. This sets the chip up
797	 * so that it can send and receive frames, but performs the
798	 * following special functions:
799	 * - Puts receiver in promiscuous mode
800	 * - Enables digital loopback mode
801	 * - Leaves interrupts turned off
802	 */
803
804	if_setflagbit(ifp, IFF_PROMISC, 0);
805	sc->rl_testmode = 1;
806	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
807	re_init_locked(sc);
808	sc->rl_flags |= RL_FLAG_LINK;
809	if (sc->rl_type == RL_8169)
810		phyaddr = 1;
811	else
812		phyaddr = 0;
813
814	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
815	for (i = 0; i < RL_TIMEOUT; i++) {
816		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
817		if (!(status & BMCR_RESET))
818			break;
819	}
820
821	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
822	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
823
824	DELAY(100000);
825
826	/* Put some data in the mbuf */
827
828	eh = mtod(m0, struct ether_header *);
829	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
830	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
831	eh->ether_type = htons(ETHERTYPE_IP);
832	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
833
834	/*
835	 * Queue the packet, start transmission.
836	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
837	 */
838
839	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
840	RL_UNLOCK(sc);
841	/* XXX: re_diag must not be called when in ALTQ mode */
842	if_handoff(ifp, m0, ifp);
843	RL_LOCK(sc);
844	m0 = NULL;
845
846	/* Wait for it to propagate through the chip */
847
848	DELAY(100000);
849	for (i = 0; i < RL_TIMEOUT; i++) {
850		status = CSR_READ_2(sc, RL_ISR);
851		CSR_WRITE_2(sc, RL_ISR, status);
852		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
853		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
854			break;
855		DELAY(10);
856	}
857
858	if (i == RL_TIMEOUT) {
859		device_printf(sc->rl_dev,
860		    "diagnostic failed, failed to receive packet in"
861		    " loopback mode\n");
862		error = EIO;
863		goto done;
864	}
865
866	/*
867	 * The packet should have been dumped into the first
868	 * entry in the RX DMA ring. Grab it from there.
869	 */
870
871	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
872	    sc->rl_ldata.rl_rx_list_map,
873	    BUS_DMASYNC_POSTREAD);
874	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
875	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
876	    BUS_DMASYNC_POSTREAD);
877	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
878	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
879
880	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
881	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
882	eh = mtod(m0, struct ether_header *);
883
884	cur_rx = &sc->rl_ldata.rl_rx_list[0];
885	total_len = RL_RXBYTES(cur_rx);
886	rxstat = le32toh(cur_rx->rl_cmdstat);
887
888	if (total_len != ETHER_MIN_LEN) {
889		device_printf(sc->rl_dev,
890		    "diagnostic failed, received short packet\n");
891		error = EIO;
892		goto done;
893	}
894
895	/* Test that the received packet data matches what we sent. */
896
897	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
898	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
899	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
900		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
901		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
902		    dst, ":", src, ":", ETHERTYPE_IP);
903		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
904		    eh->ether_dhost, ":", eh->ether_shost, ":",
905		    ntohs(eh->ether_type));
906		device_printf(sc->rl_dev, "You may have a defective 32-bit "
907		    "NIC plugged into a 64-bit PCI slot.\n");
908		device_printf(sc->rl_dev, "Please re-install the NIC in a "
909		    "32-bit slot for proper operation.\n");
910		device_printf(sc->rl_dev, "Read the re(4) man page for more "
911		    "details.\n");
912		error = EIO;
913	}
914
915done:
916	/* Turn interface off, release resources */
917
918	sc->rl_testmode = 0;
919	sc->rl_flags &= ~RL_FLAG_LINK;
920	if_setflagbit(ifp, 0, IFF_PROMISC);
921	re_stop(sc);
922	if (m0 != NULL)
923		m_freem(m0);
924
925	RL_UNLOCK(sc);
926
927	return (error);
928}
929
930#endif
931
932/*
933 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
934 * IDs against our list and return a device name if we find a match.
935 */
936static int
937re_probe(device_t dev)
938{
939	const struct rl_type	*t;
940	uint16_t		devid, vendor;
941	uint16_t		revid, sdevid;
942	int			i;
943
944	vendor = pci_get_vendor(dev);
945	devid = pci_get_device(dev);
946	revid = pci_get_revid(dev);
947	sdevid = pci_get_subdevice(dev);
948
949	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
950		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
951			/*
952			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
953			 * Rev. 2 is supported by sk(4).
954			 */
955			return (ENXIO);
956		}
957	}
958
959	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
960		if (revid != 0x20) {
961			/* 8139, let rl(4) take care of this device. */
962			return (ENXIO);
963		}
964	}
965
966	t = re_devs;
967	for (i = 0; i < nitems(re_devs); i++, t++) {
968		if (vendor == t->rl_vid && devid == t->rl_did) {
969			device_set_desc(dev, t->rl_name);
970			return (BUS_PROBE_DEFAULT);
971		}
972	}
973
974	return (ENXIO);
975}
976
977/*
978 * Map a single buffer address.
979 */
980
981static void
982re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
983{
984	bus_addr_t		*addr;
985
986	if (error)
987		return;
988
989	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
990	addr = arg;
991	*addr = segs->ds_addr;
992}
993
994static int
995re_allocmem(device_t dev, struct rl_softc *sc)
996{
997	bus_addr_t		lowaddr;
998	bus_size_t		rx_list_size, tx_list_size;
999	int			error;
1000	int			i;
1001
1002	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
1003	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
1004
1005	/*
1006	 * Allocate the parent bus DMA tag appropriate for PCI.
1007	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
1008	 * register should be set. However some RealTek chips are known
1009	 * to be buggy on DAC handling, therefore disable DAC by limiting
1010	 * DMA address space to 32bit. PCIe variants of RealTek chips
1011	 * may not have the limitation.
1012	 */
1013	lowaddr = BUS_SPACE_MAXADDR;
1014	if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
1015		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1016	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
1017	    lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
1018	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1019	    NULL, NULL, &sc->rl_parent_tag);
1020	if (error) {
1021		device_printf(dev, "could not allocate parent DMA tag\n");
1022		return (error);
1023	}
1024
1025	/*
1026	 * Allocate map for TX mbufs.
1027	 */
1028	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1029	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1030	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1031	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1032	if (error) {
1033		device_printf(dev, "could not allocate TX DMA tag\n");
1034		return (error);
1035	}
1036
1037	/*
1038	 * Allocate map for RX mbufs.
1039	 */
1040
1041	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1042		error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1043		    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1044		    MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1045		    &sc->rl_ldata.rl_jrx_mtag);
1046		if (error) {
1047			device_printf(dev,
1048			    "could not allocate jumbo RX DMA tag\n");
1049			return (error);
1050		}
1051	}
1052	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1053	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1054	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1055	if (error) {
1056		device_printf(dev, "could not allocate RX DMA tag\n");
1057		return (error);
1058	}
1059
1060	/*
1061	 * Allocate map for TX descriptor list.
1062	 */
1063	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1064	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1065	    NULL, tx_list_size, 1, tx_list_size, 0,
1066	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1067	if (error) {
1068		device_printf(dev, "could not allocate TX DMA ring tag\n");
1069		return (error);
1070	}
1071
1072	/* Allocate DMA'able memory for the TX ring */
1073
1074	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1075	    (void **)&sc->rl_ldata.rl_tx_list,
1076	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1077	    &sc->rl_ldata.rl_tx_list_map);
1078	if (error) {
1079		device_printf(dev, "could not allocate TX DMA ring\n");
1080		return (error);
1081	}
1082
1083	/* Load the map for the TX ring. */
1084
1085	sc->rl_ldata.rl_tx_list_addr = 0;
1086	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1087	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1088	     tx_list_size, re_dma_map_addr,
1089	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1090	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1091		device_printf(dev, "could not load TX DMA ring\n");
1092		return (ENOMEM);
1093	}
1094
1095	/* Create DMA maps for TX buffers */
1096
1097	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1098		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1099		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1100		if (error) {
1101			device_printf(dev, "could not create DMA map for TX\n");
1102			return (error);
1103		}
1104	}
1105
1106	/*
1107	 * Allocate map for RX descriptor list.
1108	 */
1109	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1110	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1111	    NULL, rx_list_size, 1, rx_list_size, 0,
1112	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1113	if (error) {
1114		device_printf(dev, "could not create RX DMA ring tag\n");
1115		return (error);
1116	}
1117
1118	/* Allocate DMA'able memory for the RX ring */
1119
1120	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1121	    (void **)&sc->rl_ldata.rl_rx_list,
1122	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1123	    &sc->rl_ldata.rl_rx_list_map);
1124	if (error) {
1125		device_printf(dev, "could not allocate RX DMA ring\n");
1126		return (error);
1127	}
1128
1129	/* Load the map for the RX ring. */
1130
1131	sc->rl_ldata.rl_rx_list_addr = 0;
1132	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1133	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1134	     rx_list_size, re_dma_map_addr,
1135	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1136	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1137		device_printf(dev, "could not load RX DMA ring\n");
1138		return (ENOMEM);
1139	}
1140
1141	/* Create DMA maps for RX buffers */
1142
1143	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1144		error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1145		    &sc->rl_ldata.rl_jrx_sparemap);
1146		if (error) {
1147			device_printf(dev,
1148			    "could not create spare DMA map for jumbo RX\n");
1149			return (error);
1150		}
1151		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1152			error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1153			    &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1154			if (error) {
1155				device_printf(dev,
1156				    "could not create DMA map for jumbo RX\n");
1157				return (error);
1158			}
1159		}
1160	}
1161	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1162	    &sc->rl_ldata.rl_rx_sparemap);
1163	if (error) {
1164		device_printf(dev, "could not create spare DMA map for RX\n");
1165		return (error);
1166	}
1167	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1168		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1169		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1170		if (error) {
1171			device_printf(dev, "could not create DMA map for RX\n");
1172			return (error);
1173		}
1174	}
1175
1176	/* Create DMA map for statistics. */
1177	error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1178	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1179	    sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1180	    &sc->rl_ldata.rl_stag);
1181	if (error) {
1182		device_printf(dev, "could not create statistics DMA tag\n");
1183		return (error);
1184	}
1185	/* Allocate DMA'able memory for statistics. */
1186	error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1187	    (void **)&sc->rl_ldata.rl_stats,
1188	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1189	    &sc->rl_ldata.rl_smap);
1190	if (error) {
1191		device_printf(dev,
1192		    "could not allocate statistics DMA memory\n");
1193		return (error);
1194	}
1195	/* Load the map for statistics. */
1196	sc->rl_ldata.rl_stats_addr = 0;
1197	error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1198	    sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1199	     &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1200	if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1201		device_printf(dev, "could not load statistics DMA memory\n");
1202		return (ENOMEM);
1203	}
1204
1205	return (0);
1206}
1207
1208/*
1209 * Attach the interface. Allocate softc structures, do ifmedia
1210 * setup and ethernet/BPF attach.
1211 */
1212static int
1213re_attach(device_t dev)
1214{
1215	u_char			eaddr[ETHER_ADDR_LEN];
1216	u_int16_t		as[ETHER_ADDR_LEN / 2];
1217	struct rl_softc		*sc;
1218	if_t ifp;
1219	const struct rl_hwrev	*hw_rev;
1220	int			capmask, error = 0, hwrev, i, msic, msixc,
1221				phy, reg, rid;
1222	u_int32_t		cap, ctl;
1223	u_int16_t		devid, re_did = 0;
1224	uint8_t			cfg;
1225
1226	sc = device_get_softc(dev);
1227	sc->rl_dev = dev;
1228
1229	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1230	    MTX_DEF);
1231	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1232
1233	/*
1234	 * Map control/status registers.
1235	 */
1236	pci_enable_busmaster(dev);
1237
1238	devid = pci_get_device(dev);
1239	/*
1240	 * Prefer memory space register mapping over IO space.
1241	 * Because RTL8169SC does not seem to work when memory mapping
1242	 * is used always activate io mapping.
1243	 */
1244	if (devid == RT_DEVICEID_8169SC)
1245		prefer_iomap = 1;
1246	if (prefer_iomap == 0) {
1247		sc->rl_res_id = PCIR_BAR(1);
1248		sc->rl_res_type = SYS_RES_MEMORY;
1249		/* RTL8168/8101E seems to use different BARs. */
1250		if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1251			sc->rl_res_id = PCIR_BAR(2);
1252	} else {
1253		sc->rl_res_id = PCIR_BAR(0);
1254		sc->rl_res_type = SYS_RES_IOPORT;
1255	}
1256	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1257	    &sc->rl_res_id, RF_ACTIVE);
1258	if (sc->rl_res == NULL && prefer_iomap == 0) {
1259		sc->rl_res_id = PCIR_BAR(0);
1260		sc->rl_res_type = SYS_RES_IOPORT;
1261		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1262		    &sc->rl_res_id, RF_ACTIVE);
1263	}
1264	if (sc->rl_res == NULL) {
1265		device_printf(dev, "couldn't map ports/memory\n");
1266		error = ENXIO;
1267		goto fail;
1268	}
1269
1270	sc->rl_btag = rman_get_bustag(sc->rl_res);
1271	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1272
1273	msic = pci_msi_count(dev);
1274	msixc = pci_msix_count(dev);
1275	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
1276		sc->rl_flags |= RL_FLAG_PCIE;
1277		sc->rl_expcap = reg;
1278	}
1279	if (bootverbose) {
1280		device_printf(dev, "MSI count : %d\n", msic);
1281		device_printf(dev, "MSI-X count : %d\n", msixc);
1282	}
1283	if (msix_disable > 0)
1284		msixc = 0;
1285	if (msi_disable > 0)
1286		msic = 0;
1287	/* Prefer MSI-X to MSI. */
1288	if (msixc > 0) {
1289		msixc = RL_MSI_MESSAGES;
1290		rid = PCIR_BAR(4);
1291		sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1292		    &rid, RF_ACTIVE);
1293		if (sc->rl_res_pba == NULL) {
1294			device_printf(sc->rl_dev,
1295			    "could not allocate MSI-X PBA resource\n");
1296		}
1297		if (sc->rl_res_pba != NULL &&
1298		    pci_alloc_msix(dev, &msixc) == 0) {
1299			if (msixc == RL_MSI_MESSAGES) {
1300				device_printf(dev, "Using %d MSI-X message\n",
1301				    msixc);
1302				sc->rl_flags |= RL_FLAG_MSIX;
1303			} else
1304				pci_release_msi(dev);
1305		}
1306		if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1307			if (sc->rl_res_pba != NULL)
1308				bus_release_resource(dev, SYS_RES_MEMORY, rid,
1309				    sc->rl_res_pba);
1310			sc->rl_res_pba = NULL;
1311			msixc = 0;
1312		}
1313	}
1314	/* Prefer MSI to INTx. */
1315	if (msixc == 0 && msic > 0) {
1316		msic = RL_MSI_MESSAGES;
1317		if (pci_alloc_msi(dev, &msic) == 0) {
1318			if (msic == RL_MSI_MESSAGES) {
1319				device_printf(dev, "Using %d MSI message\n",
1320				    msic);
1321				sc->rl_flags |= RL_FLAG_MSI;
1322				/* Explicitly set MSI enable bit. */
1323				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1324				cfg = CSR_READ_1(sc, RL_CFG2);
1325				cfg |= RL_CFG2_MSI;
1326				CSR_WRITE_1(sc, RL_CFG2, cfg);
1327				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1328			} else
1329				pci_release_msi(dev);
1330		}
1331		if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1332			msic = 0;
1333	}
1334
1335	/* Allocate interrupt */
1336	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1337		rid = 0;
1338		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1339		    RF_SHAREABLE | RF_ACTIVE);
1340		if (sc->rl_irq[0] == NULL) {
1341			device_printf(dev, "couldn't allocate IRQ resources\n");
1342			error = ENXIO;
1343			goto fail;
1344		}
1345	} else {
1346		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1347			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1348			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1349			if (sc->rl_irq[i] == NULL) {
1350				device_printf(dev,
1351				    "couldn't allocate IRQ resources for "
1352				    "message %d\n", rid);
1353				error = ENXIO;
1354				goto fail;
1355			}
1356		}
1357	}
1358
1359	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1360		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1361		cfg = CSR_READ_1(sc, RL_CFG2);
1362		if ((cfg & RL_CFG2_MSI) != 0) {
1363			device_printf(dev, "turning off MSI enable bit.\n");
1364			cfg &= ~RL_CFG2_MSI;
1365			CSR_WRITE_1(sc, RL_CFG2, cfg);
1366		}
1367		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1368	}
1369
1370	/* Disable ASPM L0S/L1 and CLKREQ. */
1371	if (sc->rl_expcap != 0) {
1372		cap = pci_read_config(dev, sc->rl_expcap +
1373		    PCIER_LINK_CAP, 2);
1374		if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
1375			ctl = pci_read_config(dev, sc->rl_expcap +
1376			    PCIER_LINK_CTL, 2);
1377			if ((ctl & (PCIEM_LINK_CTL_ECPM |
1378			    PCIEM_LINK_CTL_ASPMC))!= 0) {
1379				ctl &= ~(PCIEM_LINK_CTL_ECPM |
1380				    PCIEM_LINK_CTL_ASPMC);
1381				pci_write_config(dev, sc->rl_expcap +
1382				    PCIER_LINK_CTL, ctl, 2);
1383				device_printf(dev, "ASPM disabled\n");
1384			}
1385		} else
1386			device_printf(dev, "no ASPM capability\n");
1387	}
1388
1389	hw_rev = re_hwrevs;
1390	hwrev = CSR_READ_4(sc, RL_TXCFG);
1391	switch (hwrev & 0x70000000) {
1392	case 0x00000000:
1393	case 0x10000000:
1394		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1395		hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1396		break;
1397	default:
1398		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1399		sc->rl_macrev = hwrev & 0x00700000;
1400		hwrev &= RL_TXCFG_HWREV;
1401		break;
1402	}
1403	device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev);
1404	while (hw_rev->rl_desc != NULL) {
1405		if (hw_rev->rl_rev == hwrev) {
1406			sc->rl_type = hw_rev->rl_type;
1407			sc->rl_hwrev = hw_rev;
1408			break;
1409		}
1410		hw_rev++;
1411	}
1412	if (hw_rev->rl_desc == NULL) {
1413		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1414		error = ENXIO;
1415		goto fail;
1416	}
1417
1418	switch (hw_rev->rl_rev) {
1419	case RL_HWREV_8139CPLUS:
1420		sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1421		break;
1422	case RL_HWREV_8100E:
1423	case RL_HWREV_8101E:
1424		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1425		break;
1426	case RL_HWREV_8102E:
1427	case RL_HWREV_8102EL:
1428	case RL_HWREV_8102EL_SPIN1:
1429		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1430		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1431		    RL_FLAG_AUTOPAD;
1432		break;
1433	case RL_HWREV_8103E:
1434		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1435		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1436		    RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1437		break;
1438	case RL_HWREV_8401E:
1439	case RL_HWREV_8105E:
1440	case RL_HWREV_8105E_SPIN1:
1441	case RL_HWREV_8106E:
1442		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1443		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1444		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1445		break;
1446	case RL_HWREV_8402:
1447		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1448		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1449		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1450		    RL_FLAG_CMDSTOP_WAIT_TXQ;
1451		break;
1452	case RL_HWREV_8168B_SPIN1:
1453	case RL_HWREV_8168B_SPIN2:
1454		sc->rl_flags |= RL_FLAG_WOLRXENB;
1455		/* FALLTHROUGH */
1456	case RL_HWREV_8168B_SPIN3:
1457		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1458		break;
1459	case RL_HWREV_8168C_SPIN2:
1460		sc->rl_flags |= RL_FLAG_MACSLEEP;
1461		/* FALLTHROUGH */
1462	case RL_HWREV_8168C:
1463		if (sc->rl_macrev == 0x00200000)
1464			sc->rl_flags |= RL_FLAG_MACSLEEP;
1465		/* FALLTHROUGH */
1466	case RL_HWREV_8168CP:
1467		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1468		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1469		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1470		break;
1471	case RL_HWREV_8168D:
1472		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1473		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1474		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1475		    RL_FLAG_WOL_MANLINK;
1476		break;
1477	case RL_HWREV_8168DP:
1478		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1479		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
1480		    RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
1481		break;
1482	case RL_HWREV_8168E:
1483		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1484		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1485		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1486		    RL_FLAG_WOL_MANLINK;
1487		break;
1488	case RL_HWREV_8168E_VL:
1489	case RL_HWREV_8168F:
1490		sc->rl_flags |= RL_FLAG_EARLYOFF;
1491		/* FALLTHROUGH */
1492	case RL_HWREV_8411:
1493		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1494		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1495		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1496		    RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
1497		break;
1498	case RL_HWREV_8168EP:
1499	case RL_HWREV_8168FP:
1500	case RL_HWREV_8168G:
1501	case RL_HWREV_8411B:
1502		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1503		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1504		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1505		    RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK |
1506		    RL_FLAG_8168G_PLUS;
1507		break;
1508	case RL_HWREV_8168GU:
1509	case RL_HWREV_8168H:
1510		if (pci_get_device(dev) == RT_DEVICEID_8101E) {
1511			/* RTL8106E(US), RTL8107E */
1512			sc->rl_flags |= RL_FLAG_FASTETHER;
1513		} else
1514			sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1515
1516		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1517		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1518		    RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ |
1519		    RL_FLAG_8168G_PLUS;
1520		break;
1521	case RL_HWREV_8169_8110SB:
1522	case RL_HWREV_8169_8110SBL:
1523	case RL_HWREV_8169_8110SC:
1524	case RL_HWREV_8169_8110SCE:
1525		sc->rl_flags |= RL_FLAG_PHYWAKE;
1526		/* FALLTHROUGH */
1527	case RL_HWREV_8169:
1528	case RL_HWREV_8169S:
1529	case RL_HWREV_8110S:
1530		sc->rl_flags |= RL_FLAG_MACRESET;
1531		break;
1532	default:
1533		break;
1534	}
1535
1536	if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) {
1537		sc->rl_cfg0 = RL_8139_CFG0;
1538		sc->rl_cfg1 = RL_8139_CFG1;
1539		sc->rl_cfg2 = 0;
1540		sc->rl_cfg3 = RL_8139_CFG3;
1541		sc->rl_cfg4 = RL_8139_CFG4;
1542		sc->rl_cfg5 = RL_8139_CFG5;
1543	} else {
1544		sc->rl_cfg0 = RL_CFG0;
1545		sc->rl_cfg1 = RL_CFG1;
1546		sc->rl_cfg2 = RL_CFG2;
1547		sc->rl_cfg3 = RL_CFG3;
1548		sc->rl_cfg4 = RL_CFG4;
1549		sc->rl_cfg5 = RL_CFG5;
1550	}
1551
1552	/* Reset the adapter. */
1553	RL_LOCK(sc);
1554	re_reset(sc);
1555	RL_UNLOCK(sc);
1556
1557	/* Enable PME. */
1558	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1559	cfg = CSR_READ_1(sc, sc->rl_cfg1);
1560	cfg |= RL_CFG1_PME;
1561	CSR_WRITE_1(sc, sc->rl_cfg1, cfg);
1562	cfg = CSR_READ_1(sc, sc->rl_cfg5);
1563	cfg &= RL_CFG5_PME_STS;
1564	CSR_WRITE_1(sc, sc->rl_cfg5, cfg);
1565	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1566
1567	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1568		/*
1569		 * XXX Should have a better way to extract station
1570		 * address from EEPROM.
1571		 */
1572		for (i = 0; i < ETHER_ADDR_LEN; i++)
1573			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1574	} else {
1575		sc->rl_eewidth = RL_9356_ADDR_LEN;
1576		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1577		if (re_did != 0x8129)
1578			sc->rl_eewidth = RL_9346_ADDR_LEN;
1579
1580		/*
1581		 * Get station address from the EEPROM.
1582		 */
1583		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1584		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1585			as[i] = le16toh(as[i]);
1586		bcopy(as, eaddr, ETHER_ADDR_LEN);
1587	}
1588
1589	if (sc->rl_type == RL_8169) {
1590		/* Set RX length mask and number of descriptors. */
1591		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1592		sc->rl_txstart = RL_GTXSTART;
1593		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1594		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1595	} else {
1596		/* Set RX length mask and number of descriptors. */
1597		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1598		sc->rl_txstart = RL_TXSTART;
1599		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1600		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1601	}
1602
1603	error = re_allocmem(dev, sc);
1604	if (error)
1605		goto fail;
1606	re_add_sysctls(sc);
1607
1608	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1609	if (ifp == NULL) {
1610		device_printf(dev, "can not if_alloc()\n");
1611		error = ENOSPC;
1612		goto fail;
1613	}
1614
1615	/* Take controller out of deep sleep mode. */
1616	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1617		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1618			CSR_WRITE_1(sc, RL_GPIO,
1619			    CSR_READ_1(sc, RL_GPIO) | 0x01);
1620		else
1621			CSR_WRITE_1(sc, RL_GPIO,
1622			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
1623	}
1624
1625	/* Take PHY out of power down mode. */
1626	if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1627		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1628		if (hw_rev->rl_rev == RL_HWREV_8401E)
1629			CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1630	}
1631	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1632		re_gmii_writereg(dev, 1, 0x1f, 0);
1633		re_gmii_writereg(dev, 1, 0x0e, 0);
1634	}
1635
1636	if_setsoftc(ifp, sc);
1637	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1638	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1639	if_setioctlfn(ifp, re_ioctl);
1640	if_setstartfn(ifp, re_start);
1641	/*
1642	 * RTL8168/8111C generates wrong IP checksummed frame if the
1643	 * packet has IP options so disable TX checksum offloading.
1644	 */
1645	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1646	    sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 ||
1647	    sc->rl_hwrev->rl_rev == RL_HWREV_8168CP) {
1648		if_sethwassist(ifp, 0);
1649		if_setcapabilities(ifp, IFCAP_RXCSUM | IFCAP_TSO4);
1650	} else {
1651		if_sethwassist(ifp, CSUM_IP | CSUM_TCP | CSUM_UDP);
1652		if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
1653	}
1654	if_sethwassistbits(ifp, CSUM_TSO, 0);
1655	if_setcapenable(ifp, if_getcapabilities(ifp));
1656	if_setinitfn(ifp, re_init);
1657	if_setsendqlen(ifp, RL_IFQ_MAXLEN);
1658	if_setsendqready(ifp);
1659
1660	NET_TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1661
1662#define	RE_PHYAD_INTERNAL	 0
1663
1664	/* Do MII setup. */
1665	phy = RE_PHYAD_INTERNAL;
1666	if (sc->rl_type == RL_8169)
1667		phy = 1;
1668	capmask = BMSR_DEFCAPMASK;
1669	if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
1670		 capmask &= ~BMSR_EXTSTAT;
1671	error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1672	    re_ifmedia_sts, capmask, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1673	if (error != 0) {
1674		device_printf(dev, "attaching PHYs failed\n");
1675		goto fail;
1676	}
1677
1678	/* If address was not found, create one based on the hostid and name. */
1679	if (ETHER_IS_ZERO(eaddr)) {
1680		ether_gen_addr(ifp, (struct ether_addr *)eaddr);
1681	}
1682
1683	/*
1684	 * Call MI attach routine.
1685	 */
1686	ether_ifattach(ifp, eaddr);
1687
1688	/* VLAN capability setup */
1689	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING, 0);
1690	if (if_getcapabilities(ifp) & IFCAP_HWCSUM)
1691		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
1692	/* Enable WOL if PM is supported. */
1693	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1694		if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
1695	if_setcapenable(ifp, if_getcapabilities(ifp));
1696	if_setcapenablebit(ifp, 0, (IFCAP_WOL_UCAST | IFCAP_WOL_MCAST));
1697	/*
1698	 * Don't enable TSO by default.  It is known to generate
1699	 * corrupted TCP segments(bad TCP options) under certain
1700	 * circumstances.
1701	 */
1702	if_sethwassistbits(ifp, 0, CSUM_TSO);
1703	if_setcapenablebit(ifp, 0, (IFCAP_TSO4 | IFCAP_VLAN_HWTSO));
1704#ifdef DEVICE_POLLING
1705	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
1706#endif
1707	/*
1708	 * Tell the upper layer(s) we support long frames.
1709	 * Must appear after the call to ether_ifattach() because
1710	 * ether_ifattach() sets ifi_hdrlen to the default value.
1711	 */
1712	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1713
1714#ifdef DEV_NETMAP
1715	re_netmap_attach(sc);
1716#endif /* DEV_NETMAP */
1717
1718#ifdef RE_DIAG
1719	/*
1720	 * Perform hardware diagnostic on the original RTL8169.
1721	 * Some 32-bit cards were incorrectly wired and would
1722	 * malfunction if plugged into a 64-bit slot.
1723	 */
1724	if (hwrev == RL_HWREV_8169) {
1725		error = re_diag(sc);
1726		if (error) {
1727			device_printf(dev,
1728		    	"attach aborted due to hardware diag failure\n");
1729			ether_ifdetach(ifp);
1730			goto fail;
1731		}
1732	}
1733#endif
1734
1735#ifdef RE_TX_MODERATION
1736	intr_filter = 1;
1737#endif
1738	/* Hook interrupt last to avoid having to lock softc */
1739	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1740	    intr_filter == 0) {
1741		error = bus_setup_intr(dev, sc->rl_irq[0],
1742		    INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1743		    &sc->rl_intrhand[0]);
1744	} else {
1745		error = bus_setup_intr(dev, sc->rl_irq[0],
1746		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1747		    &sc->rl_intrhand[0]);
1748	}
1749	if (error) {
1750		device_printf(dev, "couldn't set up irq\n");
1751		ether_ifdetach(ifp);
1752		goto fail;
1753	}
1754
1755	DEBUGNET_SET(ifp, re);
1756
1757fail:
1758	if (error)
1759		re_detach(dev);
1760
1761	return (error);
1762}
1763
1764/*
1765 * Shutdown hardware and free up resources. This can be called any
1766 * time after the mutex has been initialized. It is called in both
1767 * the error case in attach and the normal detach case so it needs
1768 * to be careful about only freeing resources that have actually been
1769 * allocated.
1770 */
1771static int
1772re_detach(device_t dev)
1773{
1774	struct rl_softc		*sc;
1775	if_t ifp;
1776	int			i, rid;
1777
1778	sc = device_get_softc(dev);
1779	ifp = sc->rl_ifp;
1780	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1781
1782	/* These should only be active if attach succeeded */
1783	if (device_is_attached(dev)) {
1784#ifdef DEVICE_POLLING
1785		if (if_getcapenable(ifp) & IFCAP_POLLING)
1786			ether_poll_deregister(ifp);
1787#endif
1788		RL_LOCK(sc);
1789#if 0
1790		sc->suspended = 1;
1791#endif
1792		re_stop(sc);
1793		RL_UNLOCK(sc);
1794		callout_drain(&sc->rl_stat_callout);
1795		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1796		/*
1797		 * Force off the IFF_UP flag here, in case someone
1798		 * still had a BPF descriptor attached to this
1799		 * interface. If they do, ether_ifdetach() will cause
1800		 * the BPF code to try and clear the promisc mode
1801		 * flag, which will bubble down to re_ioctl(),
1802		 * which will try to call re_init() again. This will
1803		 * turn the NIC back on and restart the MII ticker,
1804		 * which will panic the system when the kernel tries
1805		 * to invoke the re_tick() function that isn't there
1806		 * anymore.
1807		 */
1808		if_setflagbits(ifp, 0, IFF_UP);
1809		ether_ifdetach(ifp);
1810	}
1811	if (sc->rl_miibus)
1812		device_delete_child(dev, sc->rl_miibus);
1813	bus_generic_detach(dev);
1814
1815	/*
1816	 * The rest is resource deallocation, so we should already be
1817	 * stopped here.
1818	 */
1819
1820	if (sc->rl_intrhand[0] != NULL) {
1821		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1822		sc->rl_intrhand[0] = NULL;
1823	}
1824	if (ifp != NULL) {
1825#ifdef DEV_NETMAP
1826		netmap_detach(ifp);
1827#endif /* DEV_NETMAP */
1828		if_free(ifp);
1829	}
1830	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1831		rid = 0;
1832	else
1833		rid = 1;
1834	if (sc->rl_irq[0] != NULL) {
1835		bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1836		sc->rl_irq[0] = NULL;
1837	}
1838	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1839		pci_release_msi(dev);
1840	if (sc->rl_res_pba) {
1841		rid = PCIR_BAR(4);
1842		bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1843	}
1844	if (sc->rl_res)
1845		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1846		    sc->rl_res);
1847
1848	/* Unload and free the RX DMA ring memory and map */
1849
1850	if (sc->rl_ldata.rl_rx_list_tag) {
1851		if (sc->rl_ldata.rl_rx_list_addr)
1852			bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1853			    sc->rl_ldata.rl_rx_list_map);
1854		if (sc->rl_ldata.rl_rx_list)
1855			bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1856			    sc->rl_ldata.rl_rx_list,
1857			    sc->rl_ldata.rl_rx_list_map);
1858		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1859	}
1860
1861	/* Unload and free the TX DMA ring memory and map */
1862
1863	if (sc->rl_ldata.rl_tx_list_tag) {
1864		if (sc->rl_ldata.rl_tx_list_addr)
1865			bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1866			    sc->rl_ldata.rl_tx_list_map);
1867		if (sc->rl_ldata.rl_tx_list)
1868			bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1869			    sc->rl_ldata.rl_tx_list,
1870			    sc->rl_ldata.rl_tx_list_map);
1871		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1872	}
1873
1874	/* Destroy all the RX and TX buffer maps */
1875
1876	if (sc->rl_ldata.rl_tx_mtag) {
1877		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1878			if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1879				bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1880				    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1881		}
1882		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1883	}
1884	if (sc->rl_ldata.rl_rx_mtag) {
1885		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1886			if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1887				bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1888				    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1889		}
1890		if (sc->rl_ldata.rl_rx_sparemap)
1891			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1892			    sc->rl_ldata.rl_rx_sparemap);
1893		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1894	}
1895	if (sc->rl_ldata.rl_jrx_mtag) {
1896		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1897			if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1898				bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1899				    sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1900		}
1901		if (sc->rl_ldata.rl_jrx_sparemap)
1902			bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1903			    sc->rl_ldata.rl_jrx_sparemap);
1904		bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1905	}
1906	/* Unload and free the stats buffer and map */
1907
1908	if (sc->rl_ldata.rl_stag) {
1909		if (sc->rl_ldata.rl_stats_addr)
1910			bus_dmamap_unload(sc->rl_ldata.rl_stag,
1911			    sc->rl_ldata.rl_smap);
1912		if (sc->rl_ldata.rl_stats)
1913			bus_dmamem_free(sc->rl_ldata.rl_stag,
1914			    sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1915		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1916	}
1917
1918	if (sc->rl_parent_tag)
1919		bus_dma_tag_destroy(sc->rl_parent_tag);
1920
1921	mtx_destroy(&sc->rl_mtx);
1922
1923	return (0);
1924}
1925
1926static __inline void
1927re_discard_rxbuf(struct rl_softc *sc, int idx)
1928{
1929	struct rl_desc		*desc;
1930	struct rl_rxdesc	*rxd;
1931	uint32_t		cmdstat;
1932
1933	if (if_getmtu(sc->rl_ifp) > RL_MTU &&
1934	    (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1935		rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1936	else
1937		rxd = &sc->rl_ldata.rl_rx_desc[idx];
1938	desc = &sc->rl_ldata.rl_rx_list[idx];
1939	desc->rl_vlanctl = 0;
1940	cmdstat = rxd->rx_size;
1941	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1942		cmdstat |= RL_RDESC_CMD_EOR;
1943	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1944}
1945
1946static int
1947re_newbuf(struct rl_softc *sc, int idx)
1948{
1949	struct mbuf		*m;
1950	struct rl_rxdesc	*rxd;
1951	bus_dma_segment_t	segs[1];
1952	bus_dmamap_t		map;
1953	struct rl_desc		*desc;
1954	uint32_t		cmdstat;
1955	int			error, nsegs;
1956
1957	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1958	if (m == NULL)
1959		return (ENOBUFS);
1960
1961	m->m_len = m->m_pkthdr.len = MCLBYTES;
1962#ifdef RE_FIXUP_RX
1963	/*
1964	 * This is part of an evil trick to deal with non-x86 platforms.
1965	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1966	 * boundaries, but that will hose non-x86 machines. To get around
1967	 * this, we leave some empty space at the start of each buffer
1968	 * and for non-x86 hosts, we copy the buffer back six bytes
1969	 * to achieve word alignment. This is slightly more efficient
1970	 * than allocating a new buffer, copying the contents, and
1971	 * discarding the old buffer.
1972	 */
1973	m_adj(m, RE_ETHER_ALIGN);
1974#endif
1975	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1976	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1977	if (error != 0) {
1978		m_freem(m);
1979		return (ENOBUFS);
1980	}
1981	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1982
1983	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1984	if (rxd->rx_m != NULL) {
1985		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1986		    BUS_DMASYNC_POSTREAD);
1987		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1988	}
1989
1990	rxd->rx_m = m;
1991	map = rxd->rx_dmamap;
1992	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1993	rxd->rx_size = segs[0].ds_len;
1994	sc->rl_ldata.rl_rx_sparemap = map;
1995	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1996	    BUS_DMASYNC_PREREAD);
1997
1998	desc = &sc->rl_ldata.rl_rx_list[idx];
1999	desc->rl_vlanctl = 0;
2000	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
2001	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
2002	cmdstat = segs[0].ds_len;
2003	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
2004		cmdstat |= RL_RDESC_CMD_EOR;
2005	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
2006
2007	return (0);
2008}
2009
2010static int
2011re_jumbo_newbuf(struct rl_softc *sc, int idx)
2012{
2013	struct mbuf		*m;
2014	struct rl_rxdesc	*rxd;
2015	bus_dma_segment_t	segs[1];
2016	bus_dmamap_t		map;
2017	struct rl_desc		*desc;
2018	uint32_t		cmdstat;
2019	int			error, nsegs;
2020
2021	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2022	if (m == NULL)
2023		return (ENOBUFS);
2024	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
2025#ifdef RE_FIXUP_RX
2026	m_adj(m, RE_ETHER_ALIGN);
2027#endif
2028	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
2029	    sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
2030	if (error != 0) {
2031		m_freem(m);
2032		return (ENOBUFS);
2033	}
2034	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
2035
2036	rxd = &sc->rl_ldata.rl_jrx_desc[idx];
2037	if (rxd->rx_m != NULL) {
2038		bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2039		    BUS_DMASYNC_POSTREAD);
2040		bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
2041	}
2042
2043	rxd->rx_m = m;
2044	map = rxd->rx_dmamap;
2045	rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
2046	rxd->rx_size = segs[0].ds_len;
2047	sc->rl_ldata.rl_jrx_sparemap = map;
2048	bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2049	    BUS_DMASYNC_PREREAD);
2050
2051	desc = &sc->rl_ldata.rl_rx_list[idx];
2052	desc->rl_vlanctl = 0;
2053	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
2054	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
2055	cmdstat = segs[0].ds_len;
2056	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
2057		cmdstat |= RL_RDESC_CMD_EOR;
2058	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
2059
2060	return (0);
2061}
2062
2063#ifdef RE_FIXUP_RX
2064static __inline void
2065re_fixup_rx(struct mbuf *m)
2066{
2067	int                     i;
2068	uint16_t                *src, *dst;
2069
2070	src = mtod(m, uint16_t *);
2071	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
2072
2073	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2074		*dst++ = *src++;
2075
2076	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
2077}
2078#endif
2079
2080static int
2081re_tx_list_init(struct rl_softc *sc)
2082{
2083	struct rl_desc		*desc;
2084	int			i;
2085
2086	RL_LOCK_ASSERT(sc);
2087
2088	bzero(sc->rl_ldata.rl_tx_list,
2089	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
2090	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
2091		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
2092#ifdef DEV_NETMAP
2093	re_netmap_tx_init(sc);
2094#endif /* DEV_NETMAP */
2095	/* Set EOR. */
2096	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
2097	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
2098
2099	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2100	    sc->rl_ldata.rl_tx_list_map,
2101	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2102
2103	sc->rl_ldata.rl_tx_prodidx = 0;
2104	sc->rl_ldata.rl_tx_considx = 0;
2105	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
2106
2107	return (0);
2108}
2109
2110static int
2111re_rx_list_init(struct rl_softc *sc)
2112{
2113	int			error, i;
2114
2115	bzero(sc->rl_ldata.rl_rx_list,
2116	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2117	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2118		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2119		if ((error = re_newbuf(sc, i)) != 0)
2120			return (error);
2121	}
2122#ifdef DEV_NETMAP
2123	re_netmap_rx_init(sc);
2124#endif /* DEV_NETMAP */
2125
2126	/* Flush the RX descriptors */
2127
2128	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2129	    sc->rl_ldata.rl_rx_list_map,
2130	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2131
2132	sc->rl_ldata.rl_rx_prodidx = 0;
2133	sc->rl_head = sc->rl_tail = NULL;
2134	sc->rl_int_rx_act = 0;
2135
2136	return (0);
2137}
2138
2139static int
2140re_jrx_list_init(struct rl_softc *sc)
2141{
2142	int			error, i;
2143
2144	bzero(sc->rl_ldata.rl_rx_list,
2145	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2146	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2147		sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2148		if ((error = re_jumbo_newbuf(sc, i)) != 0)
2149			return (error);
2150	}
2151
2152	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2153	    sc->rl_ldata.rl_rx_list_map,
2154	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2155
2156	sc->rl_ldata.rl_rx_prodidx = 0;
2157	sc->rl_head = sc->rl_tail = NULL;
2158	sc->rl_int_rx_act = 0;
2159
2160	return (0);
2161}
2162
2163/*
2164 * RX handler for C+ and 8169. For the gigE chips, we support
2165 * the reception of jumbo frames that have been fragmented
2166 * across multiple 2K mbuf cluster buffers.
2167 */
2168static int
2169re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2170{
2171	struct mbuf		*m;
2172	if_t ifp;
2173	int			i, rxerr, total_len;
2174	struct rl_desc		*cur_rx;
2175	u_int32_t		rxstat, rxvlan;
2176	int			jumbo, maxpkt = 16, rx_npkts = 0;
2177
2178	RL_LOCK_ASSERT(sc);
2179
2180	ifp = sc->rl_ifp;
2181#ifdef DEV_NETMAP
2182	if (netmap_rx_irq(ifp, 0, &rx_npkts))
2183		return 0;
2184#endif /* DEV_NETMAP */
2185	if (if_getmtu(ifp) > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2186		jumbo = 1;
2187	else
2188		jumbo = 0;
2189
2190	/* Invalidate the descriptor memory */
2191
2192	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2193	    sc->rl_ldata.rl_rx_list_map,
2194	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2195
2196	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2197	    i = RL_RX_DESC_NXT(sc, i)) {
2198		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2199			break;
2200		cur_rx = &sc->rl_ldata.rl_rx_list[i];
2201		rxstat = le32toh(cur_rx->rl_cmdstat);
2202		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2203			break;
2204		total_len = rxstat & sc->rl_rxlenmask;
2205		rxvlan = le32toh(cur_rx->rl_vlanctl);
2206		if (jumbo != 0)
2207			m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2208		else
2209			m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2210
2211		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2212		    (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2213		    (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2214			/*
2215			 * RTL8168C or later controllers do not
2216			 * support multi-fragment packet.
2217			 */
2218			re_discard_rxbuf(sc, i);
2219			continue;
2220		} else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2221			if (re_newbuf(sc, i) != 0) {
2222				/*
2223				 * If this is part of a multi-fragment packet,
2224				 * discard all the pieces.
2225				 */
2226				if (sc->rl_head != NULL) {
2227					m_freem(sc->rl_head);
2228					sc->rl_head = sc->rl_tail = NULL;
2229				}
2230				re_discard_rxbuf(sc, i);
2231				continue;
2232			}
2233			m->m_len = RE_RX_DESC_BUFLEN;
2234			if (sc->rl_head == NULL)
2235				sc->rl_head = sc->rl_tail = m;
2236			else {
2237				m->m_flags &= ~M_PKTHDR;
2238				sc->rl_tail->m_next = m;
2239				sc->rl_tail = m;
2240			}
2241			continue;
2242		}
2243
2244		/*
2245		 * NOTE: for the 8139C+, the frame length field
2246		 * is always 12 bits in size, but for the gigE chips,
2247		 * it is 13 bits (since the max RX frame length is 16K).
2248		 * Unfortunately, all 32 bits in the status word
2249		 * were already used, so to make room for the extra
2250		 * length bit, RealTek took out the 'frame alignment
2251		 * error' bit and shifted the other status bits
2252		 * over one slot. The OWN, EOR, FS and LS bits are
2253		 * still in the same places. We have already extracted
2254		 * the frame length and checked the OWN bit, so rather
2255		 * than using an alternate bit mapping, we shift the
2256		 * status bits one space to the right so we can evaluate
2257		 * them using the 8169 status as though it was in the
2258		 * same format as that of the 8139C+.
2259		 */
2260		if (sc->rl_type == RL_8169)
2261			rxstat >>= 1;
2262
2263		/*
2264		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2265		 * set, but if CRC is clear, it will still be a valid frame.
2266		 */
2267		if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2268			rxerr = 1;
2269			if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2270			    total_len > 8191 &&
2271			    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2272				rxerr = 0;
2273			if (rxerr != 0) {
2274				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2275				/*
2276				 * If this is part of a multi-fragment packet,
2277				 * discard all the pieces.
2278				 */
2279				if (sc->rl_head != NULL) {
2280					m_freem(sc->rl_head);
2281					sc->rl_head = sc->rl_tail = NULL;
2282				}
2283				re_discard_rxbuf(sc, i);
2284				continue;
2285			}
2286		}
2287
2288		/*
2289		 * If allocating a replacement mbuf fails,
2290		 * reload the current one.
2291		 */
2292		if (jumbo != 0)
2293			rxerr = re_jumbo_newbuf(sc, i);
2294		else
2295			rxerr = re_newbuf(sc, i);
2296		if (rxerr != 0) {
2297			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2298			if (sc->rl_head != NULL) {
2299				m_freem(sc->rl_head);
2300				sc->rl_head = sc->rl_tail = NULL;
2301			}
2302			re_discard_rxbuf(sc, i);
2303			continue;
2304		}
2305
2306		if (sc->rl_head != NULL) {
2307			if (jumbo != 0)
2308				m->m_len = total_len;
2309			else {
2310				m->m_len = total_len % RE_RX_DESC_BUFLEN;
2311				if (m->m_len == 0)
2312					m->m_len = RE_RX_DESC_BUFLEN;
2313			}
2314			/*
2315			 * Special case: if there's 4 bytes or less
2316			 * in this buffer, the mbuf can be discarded:
2317			 * the last 4 bytes is the CRC, which we don't
2318			 * care about anyway.
2319			 */
2320			if (m->m_len <= ETHER_CRC_LEN) {
2321				sc->rl_tail->m_len -=
2322				    (ETHER_CRC_LEN - m->m_len);
2323				m_freem(m);
2324			} else {
2325				m->m_len -= ETHER_CRC_LEN;
2326				m->m_flags &= ~M_PKTHDR;
2327				sc->rl_tail->m_next = m;
2328			}
2329			m = sc->rl_head;
2330			sc->rl_head = sc->rl_tail = NULL;
2331			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2332		} else
2333			m->m_pkthdr.len = m->m_len =
2334			    (total_len - ETHER_CRC_LEN);
2335
2336#ifdef RE_FIXUP_RX
2337		re_fixup_rx(m);
2338#endif
2339		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2340		m->m_pkthdr.rcvif = ifp;
2341
2342		/* Do RX checksumming if enabled */
2343
2344		if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
2345			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2346				/* Check IP header checksum */
2347				if (rxstat & RL_RDESC_STAT_PROTOID)
2348					m->m_pkthdr.csum_flags |=
2349					    CSUM_IP_CHECKED;
2350				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2351					m->m_pkthdr.csum_flags |=
2352					    CSUM_IP_VALID;
2353
2354				/* Check TCP/UDP checksum */
2355				if ((RL_TCPPKT(rxstat) &&
2356				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2357				    (RL_UDPPKT(rxstat) &&
2358				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2359					m->m_pkthdr.csum_flags |=
2360						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2361					m->m_pkthdr.csum_data = 0xffff;
2362				}
2363			} else {
2364				/*
2365				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2366				 */
2367				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2368				    (rxvlan & RL_RDESC_IPV4))
2369					m->m_pkthdr.csum_flags |=
2370					    CSUM_IP_CHECKED;
2371				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2372				    (rxvlan & RL_RDESC_IPV4))
2373					m->m_pkthdr.csum_flags |=
2374					    CSUM_IP_VALID;
2375				if (((rxstat & RL_RDESC_STAT_TCP) &&
2376				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2377				    ((rxstat & RL_RDESC_STAT_UDP) &&
2378				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2379					m->m_pkthdr.csum_flags |=
2380						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2381					m->m_pkthdr.csum_data = 0xffff;
2382				}
2383			}
2384		}
2385		maxpkt--;
2386		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2387			m->m_pkthdr.ether_vtag =
2388			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2389			m->m_flags |= M_VLANTAG;
2390		}
2391		RL_UNLOCK(sc);
2392		if_input(ifp, m);
2393		RL_LOCK(sc);
2394		rx_npkts++;
2395	}
2396
2397	/* Flush the RX DMA ring */
2398
2399	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2400	    sc->rl_ldata.rl_rx_list_map,
2401	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2402
2403	sc->rl_ldata.rl_rx_prodidx = i;
2404
2405	if (rx_npktsp != NULL)
2406		*rx_npktsp = rx_npkts;
2407	if (maxpkt)
2408		return (EAGAIN);
2409
2410	return (0);
2411}
2412
2413static void
2414re_txeof(struct rl_softc *sc)
2415{
2416	if_t ifp;
2417	struct rl_txdesc	*txd;
2418	u_int32_t		txstat;
2419	int			cons;
2420
2421	cons = sc->rl_ldata.rl_tx_considx;
2422	if (cons == sc->rl_ldata.rl_tx_prodidx)
2423		return;
2424
2425	ifp = sc->rl_ifp;
2426#ifdef DEV_NETMAP
2427	if (netmap_tx_irq(ifp, 0))
2428		return;
2429#endif /* DEV_NETMAP */
2430	/* Invalidate the TX descriptor list */
2431	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2432	    sc->rl_ldata.rl_tx_list_map,
2433	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2434
2435	for (; cons != sc->rl_ldata.rl_tx_prodidx;
2436	    cons = RL_TX_DESC_NXT(sc, cons)) {
2437		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2438		if (txstat & RL_TDESC_STAT_OWN)
2439			break;
2440		/*
2441		 * We only stash mbufs in the last descriptor
2442		 * in a fragment chain, which also happens to
2443		 * be the only place where the TX status bits
2444		 * are valid.
2445		 */
2446		if (txstat & RL_TDESC_CMD_EOF) {
2447			txd = &sc->rl_ldata.rl_tx_desc[cons];
2448			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2449			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2450			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2451			    txd->tx_dmamap);
2452			KASSERT(txd->tx_m != NULL,
2453			    ("%s: freeing NULL mbufs!", __func__));
2454			m_freem(txd->tx_m);
2455			txd->tx_m = NULL;
2456			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2457			    RL_TDESC_STAT_COLCNT))
2458				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2459			if (txstat & RL_TDESC_STAT_TXERRSUM)
2460				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2461			else
2462				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2463		}
2464		sc->rl_ldata.rl_tx_free++;
2465		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2466	}
2467	sc->rl_ldata.rl_tx_considx = cons;
2468
2469	/* No changes made to the TX ring, so no flush needed */
2470
2471	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2472#ifdef RE_TX_MODERATION
2473		/*
2474		 * If not all descriptors have been reaped yet, reload
2475		 * the timer so that we will eventually get another
2476		 * interrupt that will cause us to re-enter this routine.
2477		 * This is done in case the transmitter has gone idle.
2478		 */
2479		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2480#endif
2481	} else
2482		sc->rl_watchdog_timer = 0;
2483}
2484
2485static void
2486re_tick(void *xsc)
2487{
2488	struct rl_softc		*sc;
2489	struct mii_data		*mii;
2490
2491	sc = xsc;
2492
2493	RL_LOCK_ASSERT(sc);
2494
2495	mii = device_get_softc(sc->rl_miibus);
2496	mii_tick(mii);
2497	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2498		re_miibus_statchg(sc->rl_dev);
2499	/*
2500	 * Reclaim transmitted frames here. Technically it is not
2501	 * necessary to do here but it ensures periodic reclamation
2502	 * regardless of Tx completion interrupt which seems to be
2503	 * lost on PCIe based controllers under certain situations.
2504	 */
2505	re_txeof(sc);
2506	re_watchdog(sc);
2507	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2508}
2509
2510#ifdef DEVICE_POLLING
2511static int
2512re_poll(if_t ifp, enum poll_cmd cmd, int count)
2513{
2514	struct rl_softc *sc = if_getsoftc(ifp);
2515	int rx_npkts = 0;
2516
2517	RL_LOCK(sc);
2518	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2519		rx_npkts = re_poll_locked(ifp, cmd, count);
2520	RL_UNLOCK(sc);
2521	return (rx_npkts);
2522}
2523
2524static int
2525re_poll_locked(if_t ifp, enum poll_cmd cmd, int count)
2526{
2527	struct rl_softc *sc = if_getsoftc(ifp);
2528	int rx_npkts;
2529
2530	RL_LOCK_ASSERT(sc);
2531
2532	sc->rxcycles = count;
2533	re_rxeof(sc, &rx_npkts);
2534	re_txeof(sc);
2535
2536	if (!if_sendq_empty(ifp))
2537		re_start_locked(ifp);
2538
2539	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2540		u_int16_t       status;
2541
2542		status = CSR_READ_2(sc, RL_ISR);
2543		if (status == 0xffff)
2544			return (rx_npkts);
2545		if (status)
2546			CSR_WRITE_2(sc, RL_ISR, status);
2547		if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2548		    (sc->rl_flags & RL_FLAG_PCIE))
2549			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2550
2551		/*
2552		 * XXX check behaviour on receiver stalls.
2553		 */
2554
2555		if (status & RL_ISR_SYSTEM_ERR) {
2556			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2557			re_init_locked(sc);
2558		}
2559	}
2560	return (rx_npkts);
2561}
2562#endif /* DEVICE_POLLING */
2563
2564static int
2565re_intr(void *arg)
2566{
2567	struct rl_softc		*sc;
2568	uint16_t		status;
2569
2570	sc = arg;
2571
2572	status = CSR_READ_2(sc, RL_ISR);
2573	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2574                return (FILTER_STRAY);
2575	CSR_WRITE_2(sc, RL_IMR, 0);
2576
2577	taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask);
2578
2579	return (FILTER_HANDLED);
2580}
2581
2582static void
2583re_int_task(void *arg, int npending)
2584{
2585	struct rl_softc		*sc;
2586	if_t ifp;
2587	u_int16_t		status;
2588	int			rval = 0;
2589
2590	sc = arg;
2591	ifp = sc->rl_ifp;
2592
2593	RL_LOCK(sc);
2594
2595	status = CSR_READ_2(sc, RL_ISR);
2596        CSR_WRITE_2(sc, RL_ISR, status);
2597
2598	if (sc->suspended ||
2599	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2600		RL_UNLOCK(sc);
2601		return;
2602	}
2603
2604#ifdef DEVICE_POLLING
2605	if  (if_getcapenable(ifp) & IFCAP_POLLING) {
2606		RL_UNLOCK(sc);
2607		return;
2608	}
2609#endif
2610
2611	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2612		rval = re_rxeof(sc, NULL);
2613
2614	/*
2615	 * Some chips will ignore a second TX request issued
2616	 * while an existing transmission is in progress. If
2617	 * the transmitter goes idle but there are still
2618	 * packets waiting to be sent, we need to restart the
2619	 * channel here to flush them out. This only seems to
2620	 * be required with the PCIe devices.
2621	 */
2622	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2623	    (sc->rl_flags & RL_FLAG_PCIE))
2624		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2625	if (status & (
2626#ifdef RE_TX_MODERATION
2627	    RL_ISR_TIMEOUT_EXPIRED|
2628#else
2629	    RL_ISR_TX_OK|
2630#endif
2631	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2632		re_txeof(sc);
2633
2634	if (status & RL_ISR_SYSTEM_ERR) {
2635		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2636		re_init_locked(sc);
2637	}
2638
2639	if (!if_sendq_empty(ifp))
2640		re_start_locked(ifp);
2641
2642	RL_UNLOCK(sc);
2643
2644        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2645		taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask);
2646		return;
2647	}
2648
2649	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2650}
2651
2652static void
2653re_intr_msi(void *xsc)
2654{
2655	struct rl_softc		*sc;
2656	if_t ifp;
2657	uint16_t		intrs, status;
2658
2659	sc = xsc;
2660	RL_LOCK(sc);
2661
2662	ifp = sc->rl_ifp;
2663#ifdef DEVICE_POLLING
2664	if (if_getcapenable(ifp) & IFCAP_POLLING) {
2665		RL_UNLOCK(sc);
2666		return;
2667	}
2668#endif
2669	/* Disable interrupts. */
2670	CSR_WRITE_2(sc, RL_IMR, 0);
2671	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2672		RL_UNLOCK(sc);
2673		return;
2674	}
2675
2676	intrs = RL_INTRS_CPLUS;
2677	status = CSR_READ_2(sc, RL_ISR);
2678        CSR_WRITE_2(sc, RL_ISR, status);
2679	if (sc->rl_int_rx_act > 0) {
2680		intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2681		    RL_ISR_RX_OVERRUN);
2682		status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2683		    RL_ISR_RX_OVERRUN);
2684	}
2685
2686	if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2687	    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2688		re_rxeof(sc, NULL);
2689		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2690			if (sc->rl_int_rx_mod != 0 &&
2691			    (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2692			    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2693				/* Rearm one-shot timer. */
2694				CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2695				intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2696				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2697				sc->rl_int_rx_act = 1;
2698			} else {
2699				intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2700				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2701				sc->rl_int_rx_act = 0;
2702			}
2703		}
2704	}
2705
2706	/*
2707	 * Some chips will ignore a second TX request issued
2708	 * while an existing transmission is in progress. If
2709	 * the transmitter goes idle but there are still
2710	 * packets waiting to be sent, we need to restart the
2711	 * channel here to flush them out. This only seems to
2712	 * be required with the PCIe devices.
2713	 */
2714	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2715	    (sc->rl_flags & RL_FLAG_PCIE))
2716		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2717	if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2718		re_txeof(sc);
2719
2720	if (status & RL_ISR_SYSTEM_ERR) {
2721		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2722		re_init_locked(sc);
2723	}
2724
2725	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2726		if (!if_sendq_empty(ifp))
2727			re_start_locked(ifp);
2728		CSR_WRITE_2(sc, RL_IMR, intrs);
2729	}
2730	RL_UNLOCK(sc);
2731}
2732
2733static int
2734re_encap(struct rl_softc *sc, struct mbuf **m_head)
2735{
2736	struct rl_txdesc	*txd, *txd_last;
2737	bus_dma_segment_t	segs[RL_NTXSEGS];
2738	bus_dmamap_t		map;
2739	struct mbuf		*m_new;
2740	struct rl_desc		*desc;
2741	int			nsegs, prod;
2742	int			i, error, ei, si;
2743	int			padlen;
2744	uint32_t		cmdstat, csum_flags, vlanctl;
2745
2746	RL_LOCK_ASSERT(sc);
2747	M_ASSERTPKTHDR((*m_head));
2748
2749	/*
2750	 * With some of the RealTek chips, using the checksum offload
2751	 * support in conjunction with the autopadding feature results
2752	 * in the transmission of corrupt frames. For example, if we
2753	 * need to send a really small IP fragment that's less than 60
2754	 * bytes in size, and IP header checksumming is enabled, the
2755	 * resulting ethernet frame that appears on the wire will
2756	 * have garbled payload. To work around this, if TX IP checksum
2757	 * offload is enabled, we always manually pad short frames out
2758	 * to the minimum ethernet frame size.
2759	 */
2760	if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2761	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2762	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2763		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2764		if (M_WRITABLE(*m_head) == 0) {
2765			/* Get a writable copy. */
2766			m_new = m_dup(*m_head, M_NOWAIT);
2767			m_freem(*m_head);
2768			if (m_new == NULL) {
2769				*m_head = NULL;
2770				return (ENOBUFS);
2771			}
2772			*m_head = m_new;
2773		}
2774		if ((*m_head)->m_next != NULL ||
2775		    M_TRAILINGSPACE(*m_head) < padlen) {
2776			m_new = m_defrag(*m_head, M_NOWAIT);
2777			if (m_new == NULL) {
2778				m_freem(*m_head);
2779				*m_head = NULL;
2780				return (ENOBUFS);
2781			}
2782		} else
2783			m_new = *m_head;
2784
2785		/*
2786		 * Manually pad short frames, and zero the pad space
2787		 * to avoid leaking data.
2788		 */
2789		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2790		m_new->m_pkthdr.len += padlen;
2791		m_new->m_len = m_new->m_pkthdr.len;
2792		*m_head = m_new;
2793	}
2794
2795	prod = sc->rl_ldata.rl_tx_prodidx;
2796	txd = &sc->rl_ldata.rl_tx_desc[prod];
2797	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2798	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2799	if (error == EFBIG) {
2800		m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS);
2801		if (m_new == NULL) {
2802			m_freem(*m_head);
2803			*m_head = NULL;
2804			return (ENOBUFS);
2805		}
2806		*m_head = m_new;
2807		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2808		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2809		if (error != 0) {
2810			m_freem(*m_head);
2811			*m_head = NULL;
2812			return (error);
2813		}
2814	} else if (error != 0)
2815		return (error);
2816	if (nsegs == 0) {
2817		m_freem(*m_head);
2818		*m_head = NULL;
2819		return (EIO);
2820	}
2821
2822	/* Check for number of available descriptors. */
2823	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2824		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2825		return (ENOBUFS);
2826	}
2827
2828	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2829	    BUS_DMASYNC_PREWRITE);
2830
2831	/*
2832	 * Set up checksum offload. Note: checksum offload bits must
2833	 * appear in all descriptors of a multi-descriptor transmit
2834	 * attempt. This is according to testing done with an 8169
2835	 * chip. This is a requirement.
2836	 */
2837	vlanctl = 0;
2838	csum_flags = 0;
2839	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2840		if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2841			csum_flags |= RL_TDESC_CMD_LGSEND;
2842			vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2843			    RL_TDESC_CMD_MSSVALV2_SHIFT);
2844		} else {
2845			csum_flags |= RL_TDESC_CMD_LGSEND |
2846			    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2847			    RL_TDESC_CMD_MSSVAL_SHIFT);
2848		}
2849	} else {
2850		/*
2851		 * Unconditionally enable IP checksum if TCP or UDP
2852		 * checksum is required. Otherwise, TCP/UDP checksum
2853		 * doesn't make effects.
2854		 */
2855		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2856			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2857				csum_flags |= RL_TDESC_CMD_IPCSUM;
2858				if (((*m_head)->m_pkthdr.csum_flags &
2859				    CSUM_TCP) != 0)
2860					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2861				if (((*m_head)->m_pkthdr.csum_flags &
2862				    CSUM_UDP) != 0)
2863					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2864			} else {
2865				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2866				if (((*m_head)->m_pkthdr.csum_flags &
2867				    CSUM_TCP) != 0)
2868					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2869				if (((*m_head)->m_pkthdr.csum_flags &
2870				    CSUM_UDP) != 0)
2871					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2872			}
2873		}
2874	}
2875
2876	/*
2877	 * Set up hardware VLAN tagging. Note: vlan tag info must
2878	 * appear in all descriptors of a multi-descriptor
2879	 * transmission attempt.
2880	 */
2881	if ((*m_head)->m_flags & M_VLANTAG)
2882		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2883		    RL_TDESC_VLANCTL_TAG;
2884
2885	si = prod;
2886	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2887		desc = &sc->rl_ldata.rl_tx_list[prod];
2888		desc->rl_vlanctl = htole32(vlanctl);
2889		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2890		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2891		cmdstat = segs[i].ds_len;
2892		if (i != 0)
2893			cmdstat |= RL_TDESC_CMD_OWN;
2894		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2895			cmdstat |= RL_TDESC_CMD_EOR;
2896		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2897		sc->rl_ldata.rl_tx_free--;
2898	}
2899	/* Update producer index. */
2900	sc->rl_ldata.rl_tx_prodidx = prod;
2901
2902	/* Set EOF on the last descriptor. */
2903	ei = RL_TX_DESC_PRV(sc, prod);
2904	desc = &sc->rl_ldata.rl_tx_list[ei];
2905	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2906
2907	desc = &sc->rl_ldata.rl_tx_list[si];
2908	/* Set SOF and transfer ownership of packet to the chip. */
2909	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2910
2911	/*
2912	 * Insure that the map for this transmission
2913	 * is placed at the array index of the last descriptor
2914	 * in this chain.  (Swap last and first dmamaps.)
2915	 */
2916	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2917	map = txd->tx_dmamap;
2918	txd->tx_dmamap = txd_last->tx_dmamap;
2919	txd_last->tx_dmamap = map;
2920	txd_last->tx_m = *m_head;
2921
2922	return (0);
2923}
2924
2925static void
2926re_start(if_t ifp)
2927{
2928	struct rl_softc		*sc;
2929
2930	sc = if_getsoftc(ifp);
2931	RL_LOCK(sc);
2932	re_start_locked(ifp);
2933	RL_UNLOCK(sc);
2934}
2935
2936/*
2937 * Main transmit routine for C+ and gigE NICs.
2938 */
2939static void
2940re_start_locked(if_t ifp)
2941{
2942	struct rl_softc		*sc;
2943	struct mbuf		*m_head;
2944	int			queued;
2945
2946	sc = if_getsoftc(ifp);
2947
2948#ifdef DEV_NETMAP
2949	/* XXX is this necessary ? */
2950	if (if_getcapenable(ifp) & IFCAP_NETMAP) {
2951		struct netmap_kring *kring = NA(ifp)->tx_rings[0];
2952		if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) {
2953			/* kick the tx unit */
2954			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2955#ifdef RE_TX_MODERATION
2956			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2957#endif
2958			sc->rl_watchdog_timer = 5;
2959		}
2960		return;
2961	}
2962#endif /* DEV_NETMAP */
2963
2964	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2965	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2966		return;
2967
2968	for (queued = 0; !if_sendq_empty(ifp) &&
2969	    sc->rl_ldata.rl_tx_free > 1;) {
2970		m_head = if_dequeue(ifp);
2971		if (m_head == NULL)
2972			break;
2973
2974		if (re_encap(sc, &m_head) != 0) {
2975			if (m_head == NULL)
2976				break;
2977			if_sendq_prepend(ifp, m_head);
2978			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2979			break;
2980		}
2981
2982		/*
2983		 * If there's a BPF listener, bounce a copy of this frame
2984		 * to him.
2985		 */
2986		ETHER_BPF_MTAP(ifp, m_head);
2987
2988		queued++;
2989	}
2990
2991	if (queued == 0) {
2992#ifdef RE_TX_MODERATION
2993		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2994			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2995#endif
2996		return;
2997	}
2998
2999	re_start_tx(sc);
3000}
3001
3002static void
3003re_start_tx(struct rl_softc *sc)
3004{
3005
3006	/* Flush the TX descriptors */
3007	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
3008	    sc->rl_ldata.rl_tx_list_map,
3009	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
3010
3011	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
3012
3013#ifdef RE_TX_MODERATION
3014	/*
3015	 * Use the countdown timer for interrupt moderation.
3016	 * 'TX done' interrupts are disabled. Instead, we reset the
3017	 * countdown timer, which will begin counting until it hits
3018	 * the value in the TIMERINT register, and then trigger an
3019	 * interrupt. Each time we write to the TIMERCNT register,
3020	 * the timer count is reset to 0.
3021	 */
3022	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
3023#endif
3024
3025	/*
3026	 * Set a timeout in case the chip goes out to lunch.
3027	 */
3028	sc->rl_watchdog_timer = 5;
3029}
3030
3031static void
3032re_set_jumbo(struct rl_softc *sc, int jumbo)
3033{
3034
3035	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
3036		pci_set_max_read_req(sc->rl_dev, 4096);
3037		return;
3038	}
3039
3040	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3041	if (jumbo != 0) {
3042		CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) |
3043		    RL_CFG3_JUMBO_EN0);
3044		switch (sc->rl_hwrev->rl_rev) {
3045		case RL_HWREV_8168DP:
3046			break;
3047		case RL_HWREV_8168E:
3048			CSR_WRITE_1(sc, sc->rl_cfg4,
3049			    CSR_READ_1(sc, sc->rl_cfg4) | 0x01);
3050			break;
3051		default:
3052			CSR_WRITE_1(sc, sc->rl_cfg4,
3053			    CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1);
3054		}
3055	} else {
3056		CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) &
3057		    ~RL_CFG3_JUMBO_EN0);
3058		switch (sc->rl_hwrev->rl_rev) {
3059		case RL_HWREV_8168DP:
3060			break;
3061		case RL_HWREV_8168E:
3062			CSR_WRITE_1(sc, sc->rl_cfg4,
3063			    CSR_READ_1(sc, sc->rl_cfg4) & ~0x01);
3064			break;
3065		default:
3066			CSR_WRITE_1(sc, sc->rl_cfg4,
3067			    CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1);
3068		}
3069	}
3070	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3071
3072	switch (sc->rl_hwrev->rl_rev) {
3073	case RL_HWREV_8168DP:
3074		pci_set_max_read_req(sc->rl_dev, 4096);
3075		break;
3076	default:
3077		if (jumbo != 0)
3078			pci_set_max_read_req(sc->rl_dev, 512);
3079		else
3080			pci_set_max_read_req(sc->rl_dev, 4096);
3081	}
3082}
3083
3084static void
3085re_init(void *xsc)
3086{
3087	struct rl_softc		*sc = xsc;
3088
3089	RL_LOCK(sc);
3090	re_init_locked(sc);
3091	RL_UNLOCK(sc);
3092}
3093
3094static void
3095re_init_locked(struct rl_softc *sc)
3096{
3097	if_t ifp = sc->rl_ifp;
3098	struct mii_data		*mii;
3099	uint32_t		reg;
3100	uint16_t		cfg;
3101	uint32_t		idr[2];
3102
3103	RL_LOCK_ASSERT(sc);
3104
3105	mii = device_get_softc(sc->rl_miibus);
3106
3107	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3108		return;
3109
3110	/*
3111	 * Cancel pending I/O and free all RX/TX buffers.
3112	 */
3113	re_stop(sc);
3114
3115	/* Put controller into known state. */
3116	re_reset(sc);
3117
3118	/*
3119	 * For C+ mode, initialize the RX descriptors and mbufs.
3120	 */
3121	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3122		if (if_getmtu(ifp) > RL_MTU) {
3123			if (re_jrx_list_init(sc) != 0) {
3124				device_printf(sc->rl_dev,
3125				    "no memory for jumbo RX buffers\n");
3126				re_stop(sc);
3127				return;
3128			}
3129			/* Disable checksum offloading for jumbo frames. */
3130			if_setcapenablebit(ifp, 0, (IFCAP_HWCSUM | IFCAP_TSO4));
3131			if_sethwassistbits(ifp, 0, (RE_CSUM_FEATURES | CSUM_TSO));
3132		} else {
3133			if (re_rx_list_init(sc) != 0) {
3134				device_printf(sc->rl_dev,
3135				    "no memory for RX buffers\n");
3136				re_stop(sc);
3137				return;
3138			}
3139		}
3140		re_set_jumbo(sc, if_getmtu(ifp) > RL_MTU);
3141	} else {
3142		if (re_rx_list_init(sc) != 0) {
3143			device_printf(sc->rl_dev, "no memory for RX buffers\n");
3144			re_stop(sc);
3145			return;
3146		}
3147		if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3148		    pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3149			if (if_getmtu(ifp) > RL_MTU)
3150				pci_set_max_read_req(sc->rl_dev, 512);
3151			else
3152				pci_set_max_read_req(sc->rl_dev, 4096);
3153		}
3154	}
3155	re_tx_list_init(sc);
3156
3157	/*
3158	 * Enable C+ RX and TX mode, as well as VLAN stripping and
3159	 * RX checksum offload. We must configure the C+ register
3160	 * before all others.
3161	 */
3162	cfg = RL_CPLUSCMD_PCI_MRW;
3163	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
3164		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3165	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3166		cfg |= RL_CPLUSCMD_VLANSTRIP;
3167	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3168		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3169		/* XXX magic. */
3170		cfg |= 0x0001;
3171	} else
3172		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3173	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3174	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3175	    sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3176		reg = 0x000fff00;
3177		if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0)
3178			reg |= 0x000000ff;
3179		if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3180			reg |= 0x00f00000;
3181		CSR_WRITE_4(sc, 0x7c, reg);
3182		/* Disable interrupt mitigation. */
3183		CSR_WRITE_2(sc, 0xe2, 0);
3184	}
3185	/*
3186	 * Disable TSO if interface MTU size is greater than MSS
3187	 * allowed in controller.
3188	 */
3189	if (if_getmtu(ifp) > RL_TSO_MTU && (if_getcapenable(ifp) & IFCAP_TSO4) != 0) {
3190		if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3191		if_sethwassistbits(ifp, 0, CSUM_TSO);
3192	}
3193
3194	/*
3195	 * Init our MAC address.  Even though the chipset
3196	 * documentation doesn't mention it, we need to enter "Config
3197	 * register write enable" mode to modify the ID registers.
3198	 */
3199	/* Copy MAC address on stack to align. */
3200	bzero(idr, sizeof(idr));
3201	bcopy(if_getlladdr(ifp), idr, ETHER_ADDR_LEN);
3202	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3203	CSR_WRITE_4(sc, RL_IDR0, htole32(idr[0]));
3204	CSR_WRITE_4(sc, RL_IDR4, htole32(idr[1]));
3205	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3206
3207	/*
3208	 * Load the addresses of the RX and TX lists into the chip.
3209	 */
3210
3211	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3212	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3213	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3214	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3215
3216	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3217	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3218	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3219	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3220
3221	if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) {
3222		/* Disable RXDV gate. */
3223		CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
3224		    ~0x00080000);
3225	}
3226
3227	/*
3228	 * Enable transmit and receive for pre-RTL8168G controllers.
3229	 * RX/TX MACs should be enabled before RX/TX configuration.
3230	 */
3231	if ((sc->rl_flags & RL_FLAG_8168G_PLUS) == 0)
3232		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB);
3233
3234	/*
3235	 * Set the initial TX configuration.
3236	 */
3237	if (sc->rl_testmode) {
3238		if (sc->rl_type == RL_8169)
3239			CSR_WRITE_4(sc, RL_TXCFG,
3240			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3241		else
3242			CSR_WRITE_4(sc, RL_TXCFG,
3243			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3244	} else
3245		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3246
3247	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3248
3249	/*
3250	 * Set the initial RX configuration.
3251	 */
3252	re_set_rxmode(sc);
3253
3254	/* Configure interrupt moderation. */
3255	if (sc->rl_type == RL_8169) {
3256		/* Magic from vendor. */
3257		CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3258	}
3259
3260	/*
3261	 * Enable transmit and receive for RTL8168G and later controllers.
3262	 * RX/TX MACs should be enabled after RX/TX configuration.
3263	 */
3264	if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0)
3265		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB);
3266
3267#ifdef DEVICE_POLLING
3268	/*
3269	 * Disable interrupts if we are polling.
3270	 */
3271	if (if_getcapenable(ifp) & IFCAP_POLLING)
3272		CSR_WRITE_2(sc, RL_IMR, 0);
3273	else	/* otherwise ... */
3274#endif
3275
3276	/*
3277	 * Enable interrupts.
3278	 */
3279	if (sc->rl_testmode)
3280		CSR_WRITE_2(sc, RL_IMR, 0);
3281	else
3282		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3283	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3284
3285	/* Set initial TX threshold */
3286	sc->rl_txthresh = RL_TX_THRESH_INIT;
3287
3288	/* Start RX/TX process. */
3289	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3290
3291	/*
3292	 * Initialize the timer interrupt register so that
3293	 * a timer interrupt will be generated once the timer
3294	 * reaches a certain number of ticks. The timer is
3295	 * reloaded on each transmit.
3296	 */
3297#ifdef RE_TX_MODERATION
3298	/*
3299	 * Use timer interrupt register to moderate TX interrupt
3300	 * moderation, which dramatically improves TX frame rate.
3301	 */
3302	if (sc->rl_type == RL_8169)
3303		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3304	else
3305		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3306#else
3307	/*
3308	 * Use timer interrupt register to moderate RX interrupt
3309	 * moderation.
3310	 */
3311	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3312	    intr_filter == 0) {
3313		if (sc->rl_type == RL_8169)
3314			CSR_WRITE_4(sc, RL_TIMERINT_8169,
3315			    RL_USECS(sc->rl_int_rx_mod));
3316	} else {
3317		if (sc->rl_type == RL_8169)
3318			CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3319	}
3320#endif
3321
3322	/*
3323	 * For 8169 gigE NICs, set the max allowed RX packet
3324	 * size so we can receive jumbo frames.
3325	 */
3326	if (sc->rl_type == RL_8169) {
3327		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3328			/*
3329			 * For controllers that use new jumbo frame scheme,
3330			 * set maximum size of jumbo frame depending on
3331			 * controller revisions.
3332			 */
3333			if (if_getmtu(ifp) > RL_MTU)
3334				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3335				    sc->rl_hwrev->rl_max_mtu +
3336				    ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3337				    ETHER_CRC_LEN);
3338			else
3339				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3340				    RE_RX_DESC_BUFLEN);
3341		} else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3342		    sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3343			/* RTL810x has no jumbo frame support. */
3344			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3345		} else
3346			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3347	}
3348
3349	if (sc->rl_testmode)
3350		return;
3351
3352	CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
3353	    RL_CFG1_DRVLOAD);
3354
3355	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3356	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3357
3358	sc->rl_flags &= ~RL_FLAG_LINK;
3359	mii_mediachg(mii);
3360
3361	sc->rl_watchdog_timer = 0;
3362	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3363
3364#ifdef DEV_NETMAP
3365	netmap_enable_all_rings(ifp);
3366#endif /* DEV_NETMAP */
3367}
3368
3369/*
3370 * Set media options.
3371 */
3372static int
3373re_ifmedia_upd(if_t ifp)
3374{
3375	struct rl_softc		*sc;
3376	struct mii_data		*mii;
3377	int			error;
3378
3379	sc = if_getsoftc(ifp);
3380	mii = device_get_softc(sc->rl_miibus);
3381	RL_LOCK(sc);
3382	error = mii_mediachg(mii);
3383	RL_UNLOCK(sc);
3384
3385	return (error);
3386}
3387
3388/*
3389 * Report current media status.
3390 */
3391static void
3392re_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
3393{
3394	struct rl_softc		*sc;
3395	struct mii_data		*mii;
3396
3397	sc = if_getsoftc(ifp);
3398	mii = device_get_softc(sc->rl_miibus);
3399
3400	RL_LOCK(sc);
3401	mii_pollstat(mii);
3402	ifmr->ifm_active = mii->mii_media_active;
3403	ifmr->ifm_status = mii->mii_media_status;
3404	RL_UNLOCK(sc);
3405}
3406
3407static int
3408re_ioctl(if_t ifp, u_long command, caddr_t data)
3409{
3410	struct rl_softc		*sc = if_getsoftc(ifp);
3411	struct ifreq		*ifr = (struct ifreq *) data;
3412	struct mii_data		*mii;
3413	int			error = 0;
3414
3415	switch (command) {
3416	case SIOCSIFMTU:
3417		if (ifr->ifr_mtu < ETHERMIN ||
3418		    ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu ||
3419		    ((sc->rl_flags & RL_FLAG_FASTETHER) != 0 &&
3420		    ifr->ifr_mtu > RL_MTU)) {
3421			error = EINVAL;
3422			break;
3423		}
3424		RL_LOCK(sc);
3425		if (if_getmtu(ifp) != ifr->ifr_mtu) {
3426			if_setmtu(ifp, ifr->ifr_mtu);
3427			if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3428			    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3429				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3430				re_init_locked(sc);
3431			}
3432			if (if_getmtu(ifp) > RL_TSO_MTU &&
3433			    (if_getcapenable(ifp) & IFCAP_TSO4) != 0) {
3434				if_setcapenablebit(ifp, 0,
3435				    IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
3436				if_sethwassistbits(ifp, 0, CSUM_TSO);
3437			}
3438			VLAN_CAPABILITIES(ifp);
3439		}
3440		RL_UNLOCK(sc);
3441		break;
3442	case SIOCSIFFLAGS:
3443		RL_LOCK(sc);
3444		if ((if_getflags(ifp) & IFF_UP) != 0) {
3445			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3446				if (((if_getflags(ifp) ^ sc->rl_if_flags)
3447				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3448					re_set_rxmode(sc);
3449			} else
3450				re_init_locked(sc);
3451		} else {
3452			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3453				re_stop(sc);
3454		}
3455		sc->rl_if_flags = if_getflags(ifp);
3456		RL_UNLOCK(sc);
3457		break;
3458	case SIOCADDMULTI:
3459	case SIOCDELMULTI:
3460		RL_LOCK(sc);
3461		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3462			re_set_rxmode(sc);
3463		RL_UNLOCK(sc);
3464		break;
3465	case SIOCGIFMEDIA:
3466	case SIOCSIFMEDIA:
3467		mii = device_get_softc(sc->rl_miibus);
3468		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3469		break;
3470	case SIOCSIFCAP:
3471	    {
3472		int mask, reinit;
3473
3474		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3475		reinit = 0;
3476#ifdef DEVICE_POLLING
3477		if (mask & IFCAP_POLLING) {
3478			if (ifr->ifr_reqcap & IFCAP_POLLING) {
3479				error = ether_poll_register(re_poll, ifp);
3480				if (error)
3481					return (error);
3482				RL_LOCK(sc);
3483				/* Disable interrupts */
3484				CSR_WRITE_2(sc, RL_IMR, 0x0000);
3485				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
3486				RL_UNLOCK(sc);
3487			} else {
3488				error = ether_poll_deregister(ifp);
3489				/* Enable interrupts. */
3490				RL_LOCK(sc);
3491				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3492				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
3493				RL_UNLOCK(sc);
3494			}
3495		}
3496#endif /* DEVICE_POLLING */
3497		RL_LOCK(sc);
3498		if ((mask & IFCAP_TXCSUM) != 0 &&
3499		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
3500			if_togglecapenable(ifp, IFCAP_TXCSUM);
3501			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
3502				if_sethwassistbits(ifp, RE_CSUM_FEATURES, 0);
3503			else
3504				if_sethwassistbits(ifp, 0, RE_CSUM_FEATURES);
3505			reinit = 1;
3506		}
3507		if ((mask & IFCAP_RXCSUM) != 0 &&
3508		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
3509			if_togglecapenable(ifp, IFCAP_RXCSUM);
3510			reinit = 1;
3511		}
3512		if ((mask & IFCAP_TSO4) != 0 &&
3513		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
3514			if_togglecapenable(ifp, IFCAP_TSO4);
3515			if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
3516				if_sethwassistbits(ifp, CSUM_TSO, 0);
3517			else
3518				if_sethwassistbits(ifp, 0, CSUM_TSO);
3519			if (if_getmtu(ifp) > RL_TSO_MTU &&
3520			    (if_getcapenable(ifp) & IFCAP_TSO4) != 0) {
3521				if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3522				if_sethwassistbits(ifp, 0, CSUM_TSO);
3523			}
3524		}
3525		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3526		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
3527			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3528		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3529		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
3530			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3531			/* TSO over VLAN requires VLAN hardware tagging. */
3532			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
3533				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
3534			reinit = 1;
3535		}
3536		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3537		    (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3538		    IFCAP_VLAN_HWTSO)) != 0)
3539				reinit = 1;
3540		if ((mask & IFCAP_WOL) != 0 &&
3541		    (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
3542			if ((mask & IFCAP_WOL_UCAST) != 0)
3543				if_togglecapenable(ifp, IFCAP_WOL_UCAST);
3544			if ((mask & IFCAP_WOL_MCAST) != 0)
3545				if_togglecapenable(ifp, IFCAP_WOL_MCAST);
3546			if ((mask & IFCAP_WOL_MAGIC) != 0)
3547				if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
3548		}
3549		if (reinit && if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3550			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3551			re_init_locked(sc);
3552		}
3553		RL_UNLOCK(sc);
3554		VLAN_CAPABILITIES(ifp);
3555	    }
3556		break;
3557	default:
3558		error = ether_ioctl(ifp, command, data);
3559		break;
3560	}
3561
3562	return (error);
3563}
3564
3565static void
3566re_watchdog(struct rl_softc *sc)
3567{
3568	if_t ifp;
3569
3570	RL_LOCK_ASSERT(sc);
3571
3572	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3573		return;
3574
3575	ifp = sc->rl_ifp;
3576	re_txeof(sc);
3577	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3578		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3579		    "-- recovering\n");
3580		if (!if_sendq_empty(ifp))
3581			re_start_locked(ifp);
3582		return;
3583	}
3584
3585	if_printf(ifp, "watchdog timeout\n");
3586	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3587
3588	re_rxeof(sc, NULL);
3589	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3590	re_init_locked(sc);
3591	if (!if_sendq_empty(ifp))
3592		re_start_locked(ifp);
3593}
3594
3595/*
3596 * Stop the adapter and free any mbufs allocated to the
3597 * RX and TX lists.
3598 */
3599static void
3600re_stop(struct rl_softc *sc)
3601{
3602	int			i;
3603	if_t ifp;
3604	struct rl_txdesc	*txd;
3605	struct rl_rxdesc	*rxd;
3606
3607	RL_LOCK_ASSERT(sc);
3608
3609	ifp = sc->rl_ifp;
3610
3611	sc->rl_watchdog_timer = 0;
3612	callout_stop(&sc->rl_stat_callout);
3613	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3614
3615#ifdef DEV_NETMAP
3616	netmap_disable_all_rings(ifp);
3617#endif /* DEV_NETMAP */
3618
3619	/*
3620	 * Disable accepting frames to put RX MAC into idle state.
3621	 * Otherwise it's possible to get frames while stop command
3622	 * execution is in progress and controller can DMA the frame
3623	 * to already freed RX buffer during that period.
3624	 */
3625	CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
3626	    ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
3627	    RL_RXCFG_RX_BROAD));
3628
3629	if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) {
3630		/* Enable RXDV gate. */
3631		CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) |
3632		    0x00080000);
3633	}
3634
3635	if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
3636		for (i = RL_TIMEOUT; i > 0; i--) {
3637			if ((CSR_READ_1(sc, sc->rl_txstart) &
3638			    RL_TXSTART_START) == 0)
3639				break;
3640			DELAY(20);
3641		}
3642		if (i == 0)
3643			device_printf(sc->rl_dev,
3644			    "stopping TX poll timed out!\n");
3645		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3646	} else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
3647		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3648		    RL_CMD_RX_ENB);
3649		if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
3650			for (i = RL_TIMEOUT; i > 0; i--) {
3651				if ((CSR_READ_4(sc, RL_TXCFG) &
3652				    RL_TXCFG_QUEUE_EMPTY) != 0)
3653					break;
3654				DELAY(100);
3655			}
3656			if (i == 0)
3657				device_printf(sc->rl_dev,
3658				   "stopping TXQ timed out!\n");
3659		}
3660	} else
3661		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3662	DELAY(1000);
3663	CSR_WRITE_2(sc, RL_IMR, 0x0000);
3664	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3665
3666	if (sc->rl_head != NULL) {
3667		m_freem(sc->rl_head);
3668		sc->rl_head = sc->rl_tail = NULL;
3669	}
3670
3671	/* Free the TX list buffers. */
3672	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3673		txd = &sc->rl_ldata.rl_tx_desc[i];
3674		if (txd->tx_m != NULL) {
3675			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3676			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3677			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3678			    txd->tx_dmamap);
3679			m_freem(txd->tx_m);
3680			txd->tx_m = NULL;
3681		}
3682	}
3683
3684	/* Free the RX list buffers. */
3685	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3686		rxd = &sc->rl_ldata.rl_rx_desc[i];
3687		if (rxd->rx_m != NULL) {
3688			bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
3689			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3690			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3691			    rxd->rx_dmamap);
3692			m_freem(rxd->rx_m);
3693			rxd->rx_m = NULL;
3694		}
3695	}
3696
3697	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3698		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3699			rxd = &sc->rl_ldata.rl_jrx_desc[i];
3700			if (rxd->rx_m != NULL) {
3701				bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag,
3702				    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3703				bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag,
3704				    rxd->rx_dmamap);
3705				m_freem(rxd->rx_m);
3706				rxd->rx_m = NULL;
3707			}
3708		}
3709	}
3710}
3711
3712/*
3713 * Device suspend routine.  Stop the interface and save some PCI
3714 * settings in case the BIOS doesn't restore them properly on
3715 * resume.
3716 */
3717static int
3718re_suspend(device_t dev)
3719{
3720	struct rl_softc		*sc;
3721
3722	sc = device_get_softc(dev);
3723
3724	RL_LOCK(sc);
3725	re_stop(sc);
3726	re_setwol(sc);
3727	sc->suspended = 1;
3728	RL_UNLOCK(sc);
3729
3730	return (0);
3731}
3732
3733/*
3734 * Device resume routine.  Restore some PCI settings in case the BIOS
3735 * doesn't, re-enable busmastering, and restart the interface if
3736 * appropriate.
3737 */
3738static int
3739re_resume(device_t dev)
3740{
3741	struct rl_softc		*sc;
3742	if_t ifp;
3743
3744	sc = device_get_softc(dev);
3745
3746	RL_LOCK(sc);
3747
3748	ifp = sc->rl_ifp;
3749	/* Take controller out of sleep mode. */
3750	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3751		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3752			CSR_WRITE_1(sc, RL_GPIO,
3753			    CSR_READ_1(sc, RL_GPIO) | 0x01);
3754	}
3755
3756	/*
3757	 * Clear WOL matching such that normal Rx filtering
3758	 * wouldn't interfere with WOL patterns.
3759	 */
3760	re_clrwol(sc);
3761
3762	/* reinitialize interface if necessary */
3763	if (if_getflags(ifp) & IFF_UP)
3764		re_init_locked(sc);
3765
3766	sc->suspended = 0;
3767	RL_UNLOCK(sc);
3768
3769	return (0);
3770}
3771
3772/*
3773 * Stop all chip I/O so that the kernel's probe routines don't
3774 * get confused by errant DMAs when rebooting.
3775 */
3776static int
3777re_shutdown(device_t dev)
3778{
3779	struct rl_softc		*sc;
3780
3781	sc = device_get_softc(dev);
3782
3783	RL_LOCK(sc);
3784	re_stop(sc);
3785	/*
3786	 * Mark interface as down since otherwise we will panic if
3787	 * interrupt comes in later on, which can happen in some
3788	 * cases.
3789	 */
3790	if_setflagbits(sc->rl_ifp, 0, IFF_UP);
3791	re_setwol(sc);
3792	RL_UNLOCK(sc);
3793
3794	return (0);
3795}
3796
3797static void
3798re_set_linkspeed(struct rl_softc *sc)
3799{
3800	struct mii_softc *miisc;
3801	struct mii_data *mii;
3802	int aneg, i, phyno;
3803
3804	RL_LOCK_ASSERT(sc);
3805
3806	mii = device_get_softc(sc->rl_miibus);
3807	mii_pollstat(mii);
3808	aneg = 0;
3809	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3810	    (IFM_ACTIVE | IFM_AVALID)) {
3811		switch IFM_SUBTYPE(mii->mii_media_active) {
3812		case IFM_10_T:
3813		case IFM_100_TX:
3814			return;
3815		case IFM_1000_T:
3816			aneg++;
3817			break;
3818		default:
3819			break;
3820		}
3821	}
3822	miisc = LIST_FIRST(&mii->mii_phys);
3823	phyno = miisc->mii_phy;
3824	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3825		PHY_RESET(miisc);
3826	re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
3827	re_miibus_writereg(sc->rl_dev, phyno,
3828	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3829	re_miibus_writereg(sc->rl_dev, phyno,
3830	    MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
3831	DELAY(1000);
3832	if (aneg != 0) {
3833		/*
3834		 * Poll link state until re(4) get a 10/100Mbps link.
3835		 */
3836		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3837			mii_pollstat(mii);
3838			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3839			    == (IFM_ACTIVE | IFM_AVALID)) {
3840				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3841				case IFM_10_T:
3842				case IFM_100_TX:
3843					return;
3844				default:
3845					break;
3846				}
3847			}
3848			RL_UNLOCK(sc);
3849			pause("relnk", hz);
3850			RL_LOCK(sc);
3851		}
3852		if (i == MII_ANEGTICKS_GIGE)
3853			device_printf(sc->rl_dev,
3854			    "establishing a link failed, WOL may not work!");
3855	}
3856	/*
3857	 * No link, force MAC to have 100Mbps, full-duplex link.
3858	 * MAC does not require reprogramming on resolved speed/duplex,
3859	 * so this is just for completeness.
3860	 */
3861	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3862	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3863}
3864
3865static void
3866re_setwol(struct rl_softc *sc)
3867{
3868	if_t ifp;
3869	int			pmc;
3870	uint16_t		pmstat;
3871	uint8_t			v;
3872
3873	RL_LOCK_ASSERT(sc);
3874
3875	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3876		return;
3877
3878	ifp = sc->rl_ifp;
3879	/* Put controller into sleep mode. */
3880	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3881		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3882			CSR_WRITE_1(sc, RL_GPIO,
3883			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
3884	}
3885	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
3886		if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) {
3887			/* Disable RXDV gate. */
3888			CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
3889			    ~0x00080000);
3890		}
3891		re_set_rxmode(sc);
3892		if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
3893			re_set_linkspeed(sc);
3894		if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3895			CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3896	}
3897	/* Enable config register write. */
3898	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3899
3900	/* Enable PME. */
3901	v = CSR_READ_1(sc, sc->rl_cfg1);
3902	v &= ~RL_CFG1_PME;
3903	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3904		v |= RL_CFG1_PME;
3905	CSR_WRITE_1(sc, sc->rl_cfg1, v);
3906
3907	v = CSR_READ_1(sc, sc->rl_cfg3);
3908	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3909	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
3910		v |= RL_CFG3_WOL_MAGIC;
3911	CSR_WRITE_1(sc, sc->rl_cfg3, v);
3912
3913	v = CSR_READ_1(sc, sc->rl_cfg5);
3914	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
3915	    RL_CFG5_WOL_LANWAKE);
3916	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
3917		v |= RL_CFG5_WOL_UCAST;
3918	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
3919		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3920	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3921		v |= RL_CFG5_WOL_LANWAKE;
3922	CSR_WRITE_1(sc, sc->rl_cfg5, v);
3923
3924	/* Config register write done. */
3925	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3926
3927	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0 &&
3928	    (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3929		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3930	/*
3931	 * It seems that hardware resets its link speed to 100Mbps in
3932	 * power down mode so switching to 100Mbps in driver is not
3933	 * needed.
3934	 */
3935
3936	/* Request PME if WOL is requested. */
3937	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3938	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3939	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3940		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3941	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3942}
3943
3944static void
3945re_clrwol(struct rl_softc *sc)
3946{
3947	int			pmc;
3948	uint8_t			v;
3949
3950	RL_LOCK_ASSERT(sc);
3951
3952	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3953		return;
3954
3955	/* Enable config register write. */
3956	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3957
3958	v = CSR_READ_1(sc, sc->rl_cfg3);
3959	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3960	CSR_WRITE_1(sc, sc->rl_cfg3, v);
3961
3962	/* Config register write done. */
3963	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3964
3965	v = CSR_READ_1(sc, sc->rl_cfg5);
3966	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3967	v &= ~RL_CFG5_WOL_LANWAKE;
3968	CSR_WRITE_1(sc, sc->rl_cfg5, v);
3969}
3970
3971static void
3972re_add_sysctls(struct rl_softc *sc)
3973{
3974	struct sysctl_ctx_list	*ctx;
3975	struct sysctl_oid_list	*children;
3976	int			error;
3977
3978	ctx = device_get_sysctl_ctx(sc->rl_dev);
3979	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3980
3981	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3982	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
3983	    re_sysctl_stats, "I", "Statistics Information");
3984	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3985		return;
3986
3987	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3988	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3989	    &sc->rl_int_rx_mod, 0, sysctl_hw_re_int_mod, "I",
3990	    "re RX interrupt moderation");
3991	/* Pull in device tunables. */
3992	sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3993	error = resource_int_value(device_get_name(sc->rl_dev),
3994	    device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3995	if (error == 0) {
3996		if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3997		    sc->rl_int_rx_mod > RL_TIMER_MAX) {
3998			device_printf(sc->rl_dev, "int_rx_mod value out of "
3999			    "range; using default: %d\n",
4000			    RL_TIMER_DEFAULT);
4001			sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
4002		}
4003	}
4004}
4005
4006static int
4007re_sysctl_stats(SYSCTL_HANDLER_ARGS)
4008{
4009	struct rl_softc		*sc;
4010	struct rl_stats		*stats;
4011	int			error, i, result;
4012
4013	result = -1;
4014	error = sysctl_handle_int(oidp, &result, 0, req);
4015	if (error || req->newptr == NULL)
4016		return (error);
4017
4018	if (result == 1) {
4019		sc = (struct rl_softc *)arg1;
4020		RL_LOCK(sc);
4021		if ((if_getdrvflags(sc->rl_ifp) & IFF_DRV_RUNNING) == 0) {
4022			RL_UNLOCK(sc);
4023			goto done;
4024		}
4025		bus_dmamap_sync(sc->rl_ldata.rl_stag,
4026		    sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
4027		CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
4028		    RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
4029		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
4030		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
4031		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
4032		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
4033		    RL_DUMPSTATS_START));
4034		for (i = RL_TIMEOUT; i > 0; i--) {
4035			if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
4036			    RL_DUMPSTATS_START) == 0)
4037				break;
4038			DELAY(1000);
4039		}
4040		bus_dmamap_sync(sc->rl_ldata.rl_stag,
4041		    sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
4042		RL_UNLOCK(sc);
4043		if (i == 0) {
4044			device_printf(sc->rl_dev,
4045			    "DUMP statistics request timed out\n");
4046			return (ETIMEDOUT);
4047		}
4048done:
4049		stats = sc->rl_ldata.rl_stats;
4050		printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
4051		printf("Tx frames : %ju\n",
4052		    (uintmax_t)le64toh(stats->rl_tx_pkts));
4053		printf("Rx frames : %ju\n",
4054		    (uintmax_t)le64toh(stats->rl_rx_pkts));
4055		printf("Tx errors : %ju\n",
4056		    (uintmax_t)le64toh(stats->rl_tx_errs));
4057		printf("Rx errors : %u\n",
4058		    le32toh(stats->rl_rx_errs));
4059		printf("Rx missed frames : %u\n",
4060		    (uint32_t)le16toh(stats->rl_missed_pkts));
4061		printf("Rx frame alignment errs : %u\n",
4062		    (uint32_t)le16toh(stats->rl_rx_framealign_errs));
4063		printf("Tx single collisions : %u\n",
4064		    le32toh(stats->rl_tx_onecoll));
4065		printf("Tx multiple collisions : %u\n",
4066		    le32toh(stats->rl_tx_multicolls));
4067		printf("Rx unicast frames : %ju\n",
4068		    (uintmax_t)le64toh(stats->rl_rx_ucasts));
4069		printf("Rx broadcast frames : %ju\n",
4070		    (uintmax_t)le64toh(stats->rl_rx_bcasts));
4071		printf("Rx multicast frames : %u\n",
4072		    le32toh(stats->rl_rx_mcasts));
4073		printf("Tx aborts : %u\n",
4074		    (uint32_t)le16toh(stats->rl_tx_aborts));
4075		printf("Tx underruns : %u\n",
4076		    (uint32_t)le16toh(stats->rl_rx_underruns));
4077	}
4078
4079	return (error);
4080}
4081
4082static int
4083sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4084{
4085	int error, value;
4086
4087	if (arg1 == NULL)
4088		return (EINVAL);
4089	value = *(int *)arg1;
4090	error = sysctl_handle_int(oidp, &value, 0, req);
4091	if (error || req->newptr == NULL)
4092		return (error);
4093	if (value < low || value > high)
4094		return (EINVAL);
4095	*(int *)arg1 = value;
4096
4097	return (0);
4098}
4099
4100static int
4101sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
4102{
4103
4104	return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
4105	    RL_TIMER_MAX));
4106}
4107
4108#ifdef DEBUGNET
4109static void
4110re_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
4111{
4112	struct rl_softc *sc;
4113
4114	sc = if_getsoftc(ifp);
4115	RL_LOCK(sc);
4116	*nrxr = sc->rl_ldata.rl_rx_desc_cnt;
4117	*ncl = DEBUGNET_MAX_IN_FLIGHT;
4118	*clsize = (if_getmtu(ifp) > RL_MTU &&
4119	    (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) ? MJUM9BYTES : MCLBYTES;
4120	RL_UNLOCK(sc);
4121}
4122
4123static void
4124re_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
4125{
4126}
4127
4128static int
4129re_debugnet_transmit(if_t ifp, struct mbuf *m)
4130{
4131	struct rl_softc *sc;
4132	int error;
4133
4134	sc = if_getsoftc(ifp);
4135	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4136	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
4137		return (EBUSY);
4138
4139	error = re_encap(sc, &m);
4140	if (error == 0)
4141		re_start_tx(sc);
4142	return (error);
4143}
4144
4145static int
4146re_debugnet_poll(if_t ifp, int count)
4147{
4148	struct rl_softc *sc;
4149	int error;
4150
4151	sc = if_getsoftc(ifp);
4152	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
4153	    (sc->rl_flags & RL_FLAG_LINK) == 0)
4154		return (EBUSY);
4155
4156	re_txeof(sc);
4157	error = re_rxeof(sc, NULL);
4158	if (error != 0 && error != EAGAIN)
4159		return (error);
4160	return (0);
4161}
4162#endif /* DEBUGNET */
4163