1/*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions
7 *  are met:
8 *
9 *  1. Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 *  2. Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 *
15 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 *  POSSIBILITY OF SUCH DAMAGE.
26 */
27
28/*
29 * File : ecore_cxt.c
30 */
31#include <sys/cdefs.h>
32#include "bcm_osal.h"
33#include "reg_addr.h"
34#include "common_hsi.h"
35#include "ecore_hsi_common.h"
36#include "ecore_hsi_eth.h"
37#include "tcp_common.h"
38#include "ecore_hsi_iscsi.h"
39#include "ecore_hsi_fcoe.h"
40#include "ecore_hsi_roce.h"
41#include "ecore_hsi_iwarp.h"
42#include "ecore_rt_defs.h"
43#include "ecore_status.h"
44#include "ecore.h"
45#include "ecore_init_ops.h"
46#include "ecore_init_fw_funcs.h"
47#include "ecore_cxt.h"
48#include "ecore_hw.h"
49#include "ecore_dev_api.h"
50#include "ecore_sriov.h"
51#include "ecore_rdma.h"
52#include "ecore_mcp.h"
53
54/* Max number of connection types in HW (DQ/CDU etc.) */
55#define MAX_CONN_TYPES		PROTOCOLID_COMMON
56#define NUM_TASK_TYPES		2
57#define NUM_TASK_PF_SEGMENTS	4
58#define NUM_TASK_VF_SEGMENTS	1
59
60/* Doorbell-Queue constants */
61#define DQ_RANGE_SHIFT	4
62#define DQ_RANGE_ALIGN	(1 << DQ_RANGE_SHIFT)
63
64/* Searcher constants */
65#define SRC_MIN_NUM_ELEMS 256
66
67/* Timers constants */
68#define TM_SHIFT	7
69#define TM_ALIGN	(1 << TM_SHIFT)
70#define TM_ELEM_SIZE	4
71
72/* ILT constants */
73#define ILT_PAGE_IN_BYTES(hw_p_size)	(1U << ((hw_p_size) + 12))
74#define ILT_CFG_REG(cli, reg)		PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
75
76/* ILT entry structure */
77#define ILT_ENTRY_PHY_ADDR_MASK		0x000FFFFFFFFFFFULL
78#define ILT_ENTRY_PHY_ADDR_SHIFT	0
79#define ILT_ENTRY_VALID_MASK		0x1ULL
80#define ILT_ENTRY_VALID_SHIFT		52
81#define ILT_ENTRY_IN_REGS		2
82#define ILT_REG_SIZE_IN_BYTES		4
83
84/* connection context union */
85union conn_context {
86	struct e4_core_conn_context  core_ctx;
87	struct e4_eth_conn_context	  eth_ctx;
88	struct e4_iscsi_conn_context iscsi_ctx;
89	struct e4_fcoe_conn_context  fcoe_ctx;
90	struct e4_roce_conn_context  roce_ctx;
91};
92
93/* TYPE-0 task context - iSCSI, FCOE */
94union type0_task_context {
95	struct e4_iscsi_task_context iscsi_ctx;
96	struct e4_fcoe_task_context  fcoe_ctx;
97};
98
99/* TYPE-1 task context - ROCE */
100union type1_task_context {
101	struct e4_rdma_task_context roce_ctx;
102};
103
104struct src_ent {
105	u8  opaque[56];
106	u64 next;
107};
108
109#define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */
110#define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
111
112#define CONN_CXT_SIZE(p_hwfn) \
113	ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
114
115#define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context))
116#define XRC_SRQ_CXT_SIZE (sizeof(struct rdma_xrc_srq_context))
117
118#define TYPE0_TASK_CXT_SIZE(p_hwfn) \
119	ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
120
121/* Alignment is inherent to the type1_task_context structure */
122#define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
123
124/* PF per protocl configuration object */
125#define TASK_SEGMENTS   (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
126#define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
127
128struct ecore_tid_seg {
129	u32	count;
130	u8	type;
131	bool	has_fl_mem;
132};
133
134struct ecore_conn_type_cfg {
135	u32			cid_count;
136	u32			cids_per_vf;
137	struct ecore_tid_seg	tid_seg[TASK_SEGMENTS];
138};
139
140/* ILT Client configuration,
141 * Per connection type (protocol) resources (cids, tis, vf cids etc.)
142 * 1 - for connection context (CDUC) and for each task context we need two
143 * values, for regular task context and for force load memory
144 */
145#define ILT_CLI_PF_BLOCKS	(1 + NUM_TASK_PF_SEGMENTS * 2)
146#define ILT_CLI_VF_BLOCKS	(1 + NUM_TASK_VF_SEGMENTS * 2)
147#define CDUC_BLK		(0)
148#define SRQ_BLK			(0)
149#define CDUT_SEG_BLK(n)		(1 + (u8)(n))
150#define CDUT_FL_SEG_BLK(n, X)	(1 + (n) + NUM_TASK_##X##_SEGMENTS)
151
152struct ilt_cfg_pair {
153	u32 reg;
154	u32 val;
155};
156
157struct ecore_ilt_cli_blk {
158	u32 total_size; /* 0 means not active */
159	u32 real_size_in_page;
160	u32 start_line;
161	u32 dynamic_line_cnt;
162};
163
164struct ecore_ilt_client_cfg {
165	bool				active;
166
167	/* ILT boundaries */
168	struct ilt_cfg_pair		first;
169	struct ilt_cfg_pair		last;
170	struct ilt_cfg_pair		p_size;
171
172	/* ILT client blocks for PF */
173	struct ecore_ilt_cli_blk	pf_blks[ILT_CLI_PF_BLOCKS];
174	u32				pf_total_lines;
175
176	/* ILT client blocks for VFs */
177	struct ecore_ilt_cli_blk	vf_blks[ILT_CLI_VF_BLOCKS];
178	u32				vf_total_lines;
179};
180
181/* Per Path -
182 *      ILT shadow table
183 *      Protocol acquired CID lists
184 *      PF start line in ILT
185 */
186struct ecore_dma_mem {
187	dma_addr_t	p_phys;
188	void		*p_virt;
189	osal_size_t	size;
190};
191
192#define MAP_WORD_SIZE		sizeof(unsigned long)
193#define BITS_PER_MAP_WORD	(MAP_WORD_SIZE * 8)
194
195struct ecore_cid_acquired_map {
196	u32		start_cid;
197	u32		max_count;
198	unsigned long	*cid_map;
199};
200
201struct ecore_cxt_mngr {
202	/* Per protocl configuration */
203	struct ecore_conn_type_cfg	conn_cfg[MAX_CONN_TYPES];
204
205	/* computed ILT structure */
206	struct ecore_ilt_client_cfg	clients[ILT_CLI_MAX];
207
208	/* Task type sizes */
209	u32				task_type_size[NUM_TASK_TYPES];
210
211	/* total number of VFs for this hwfn -
212	 * ALL VFs are symmetric in terms of HW resources
213	 */
214	u32				vf_count;
215
216	/* Acquired CIDs */
217	struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
218	/* TBD - do we want this allocated to reserve space? */
219	struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
220
221	/* ILT shadow table */
222	struct ecore_dma_mem		*ilt_shadow;
223	u32				pf_start_line;
224
225	/* Mutex for a dynamic ILT allocation */
226	osal_mutex_t			mutex;
227
228	/* SRC T2 */
229	struct ecore_dma_mem		*t2;
230	u32				t2_num_pages;
231	u64				first_free;
232	u64				last_free;
233
234	/* The infrastructure originally was very generic and context/task
235	 * oriented - per connection-type we would set how many of those
236	 * are needed, and later when determining how much memory we're
237	 * needing for a given block we'd iterate over all the relevant
238	 * connection-types.
239	 * But since then we've had some additional resources, some of which
240	 * require memory which is independent of the general context/task
241	 * scheme. We add those here explicitly per-feature.
242	 */
243
244	/* total number of SRQ's for this hwfn */
245	u32				srq_count;
246	u32				xrc_srq_count;
247
248	/* Maximal number of L2 steering filters */
249	u32				arfs_count;
250
251	/* TODO - VF arfs filters ? */
252};
253
254/* check if resources/configuration is required according to protocol type */
255static bool src_proto(enum protocol_type type)
256{
257	return	type == PROTOCOLID_ISCSI	||
258		type == PROTOCOLID_FCOE		||
259		type == PROTOCOLID_IWARP;
260}
261
262static bool tm_cid_proto(enum protocol_type type)
263{
264	return type == PROTOCOLID_ISCSI ||
265	       type == PROTOCOLID_FCOE  ||
266	       type == PROTOCOLID_ROCE  ||
267	       type == PROTOCOLID_IWARP;
268}
269
270static bool tm_tid_proto(enum protocol_type type)
271{
272	return type == PROTOCOLID_FCOE;
273}
274
275/* counts the iids for the CDU/CDUC ILT client configuration */
276struct ecore_cdu_iids {
277	u32 pf_cids;
278	u32 per_vf_cids;
279};
280
281static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr   *p_mngr,
282			       struct ecore_cdu_iids	*iids)
283{
284	u32 type;
285
286	for (type = 0; type < MAX_CONN_TYPES; type++) {
287		iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
288		iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
289	}
290}
291
292/* counts the iids for the Searcher block configuration */
293struct ecore_src_iids {
294	u32			pf_cids;
295	u32			per_vf_cids;
296};
297
298static void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr,
299			       struct ecore_src_iids *iids)
300{
301	u32 i;
302
303	for (i = 0; i < MAX_CONN_TYPES; i++) {
304		if (!src_proto(i))
305			continue;
306
307		iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
308		iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
309	}
310
311	/* Add L2 filtering filters in addition */
312	iids->pf_cids += p_mngr->arfs_count;
313}
314
315/* counts the iids for the Timers block configuration */
316struct ecore_tm_iids {
317	u32 pf_cids;
318	u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */
319	u32 pf_tids_total;
320	u32 per_vf_cids;
321	u32 per_vf_tids;
322};
323
324static void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr,
325			      struct ecore_tm_iids *iids)
326{
327	bool tm_vf_required = false;
328	bool tm_required = false;
329	int i, j;
330
331	/* Timers is a special case -> we don't count how many cids require
332	 * timers but what's the max cid that will be used by the timer block.
333	 * therefore we traverse in reverse order, and once we hit a protocol
334	 * that requires the timers memory, we'll sum all the protocols up
335	 * to that one.
336	 */
337	for (i = MAX_CONN_TYPES - 1; i >= 0; i--) {
338		struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
339
340		if (tm_cid_proto(i) || tm_required) {
341			if (p_cfg->cid_count)
342				tm_required = true;
343
344			iids->pf_cids += p_cfg->cid_count;
345		}
346
347		if (tm_cid_proto(i) || tm_vf_required) {
348			if (p_cfg->cids_per_vf)
349				tm_vf_required = true;
350
351			iids->per_vf_cids += p_cfg->cids_per_vf;
352		}
353
354		if (tm_tid_proto(i)) {
355			struct ecore_tid_seg *segs = p_cfg->tid_seg;
356
357			/* for each segment there is at most one
358			 * protocol for which count is not 0.
359			 */
360			for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
361				iids->pf_tids[j] += segs[j].count;
362
363			/* The last array elelment is for the VFs. As for PF
364			 * segments there can be only one protocol for
365			 * which this value is not 0.
366			 */
367			iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
368		}
369	}
370
371	iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
372	iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
373	iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
374
375	for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
376		iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
377		iids->pf_tids_total += iids->pf_tids[j];
378	}
379}
380
381static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
382			      struct ecore_qm_iids *iids)
383{
384	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
385	struct ecore_tid_seg *segs;
386	u32 vf_cids = 0, type, j;
387	u32 vf_tids = 0;
388
389	for (type = 0; type < MAX_CONN_TYPES; type++) {
390		iids->cids += p_mngr->conn_cfg[type].cid_count;
391		vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
392
393		segs = p_mngr->conn_cfg[type].tid_seg;
394		/* for each segment there is at most one
395		 * protocol for which count is not 0.
396		 */
397		for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
398			iids->tids += segs[j].count;
399
400		/* The last array elelment is for the VFs. As for PF
401		 * segments there can be only one protocol for
402		 * which this value is not 0.
403		 */
404		vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
405	}
406
407	iids->vf_cids += vf_cids * p_mngr->vf_count;
408	iids->tids += vf_tids * p_mngr->vf_count;
409
410	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
411		   "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
412		   iids->cids, iids->vf_cids, iids->tids, vf_tids);
413}
414
415static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn   *p_hwfn,
416						    u32			seg)
417{
418	struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
419	u32 i;
420
421	/* Find the protocol with tid count > 0 for this segment.
422	   Note: there can only be one and this is already validated.
423	 */
424	for (i = 0; i < MAX_CONN_TYPES; i++) {
425		if (p_cfg->conn_cfg[i].tid_seg[seg].count)
426			return &p_cfg->conn_cfg[i].tid_seg[seg];
427	}
428	return OSAL_NULL;
429}
430
431static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn,
432				    u32 num_srqs, u32 num_xrc_srqs)
433{
434	struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
435
436	p_mgr->srq_count = num_srqs;
437	p_mgr->xrc_srq_count = num_xrc_srqs;
438}
439
440u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
441{
442	return p_hwfn->p_cxt_mngr->srq_count;
443}
444
445u32 ecore_cxt_get_xrc_srq_count(struct ecore_hwfn *p_hwfn)
446{
447	return p_hwfn->p_cxt_mngr->xrc_srq_count;
448}
449
450u32 ecore_cxt_get_ilt_page_size(struct ecore_hwfn *p_hwfn,
451				enum ilt_clients ilt_client)
452{
453	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
454	struct ecore_ilt_client_cfg *p_cli = &p_mngr->clients[ilt_client];
455
456	return ILT_PAGE_IN_BYTES(p_cli->p_size.val);
457}
458
459static u32 ecore_cxt_srqs_per_page(struct ecore_hwfn *p_hwfn)
460{
461	u32 page_size;
462
463	page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
464	return page_size / SRQ_CXT_SIZE;
465}
466
467u32 ecore_cxt_get_total_srq_count(struct ecore_hwfn *p_hwfn)
468{
469	struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
470	u32 total_srqs;
471
472	total_srqs = p_mgr->srq_count;
473
474	/* XRC SRQs use the first and only the first SRQ ILT page. So if XRC
475	 * SRQs are requested we need to allocate an extra SRQ ILT page for
476	 * them. For that We increase the number of regular SRQs to cause the
477	 * allocation of that extra page.
478	 */
479	if (p_mgr->xrc_srq_count)
480		total_srqs += ecore_cxt_srqs_per_page(p_hwfn);
481
482	return total_srqs;
483}
484
485/* set the iids (cid/tid) count per protocol */
486static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
487					  enum protocol_type type,
488					  u32 cid_count, u32 vf_cid_cnt)
489{
490	struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
491	struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
492
493	p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
494	p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
495
496	if (type == PROTOCOLID_ROCE) {
497		u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val;
498		u32 cxt_size = CONN_CXT_SIZE(p_hwfn);
499		u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
500		u32 align = elems_per_page * DQ_RANGE_ALIGN;
501
502		p_conn->cid_count = ROUNDUP(p_conn->cid_count, align);
503	}
504}
505
506u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn	*p_hwfn,
507				  enum protocol_type	type,
508				  u32			*vf_cid)
509{
510	if (vf_cid)
511		*vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
512
513	return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
514}
515
516u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn	*p_hwfn,
517				  enum protocol_type	type)
518{
519	return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
520}
521
522u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
523				  enum protocol_type type)
524{
525	u32 cnt = 0;
526	int i;
527
528	for (i = 0; i < TASK_SEGMENTS; i++)
529		cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
530
531	return cnt;
532}
533
534static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
535					  enum protocol_type proto,
536					  u8 seg,
537					  u8 seg_type,
538					  u32 count,
539					  bool has_fl)
540{
541	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
542	struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
543
544	p_seg->count = count;
545	p_seg->has_fl_mem = has_fl;
546	p_seg->type = seg_type;
547}
548
549/* the *p_line parameter must be either 0 for the first invocation or the
550   value returned in the previous invocation.
551 */
552static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg	*p_cli,
553				   struct ecore_ilt_cli_blk	*p_blk,
554				   u32				start_line,
555				   u32				total_size,
556				   u32				elem_size)
557{
558	u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
559
560	/* verify that it's called once for each block */
561	if (p_blk->total_size)
562		return;
563
564	p_blk->total_size = total_size;
565	p_blk->real_size_in_page = 0;
566	if (elem_size)
567		p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
568	p_blk->start_line = start_line;
569}
570
571static void ecore_ilt_cli_adv_line(struct ecore_hwfn		*p_hwfn,
572				    struct ecore_ilt_client_cfg	*p_cli,
573				    struct ecore_ilt_cli_blk	*p_blk,
574				    u32				*p_line,
575				    enum ilt_clients		client_id)
576{
577	if (!p_blk->total_size)
578		return;
579
580	if (!p_cli->active)
581		p_cli->first.val = *p_line;
582
583	p_cli->active = true;
584	*p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
585	p_cli->last.val = *p_line-1;
586
587	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
588		   "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n",
589		   client_id, p_cli->first.val, p_cli->last.val,
590		   p_blk->total_size, p_blk->real_size_in_page,
591		   p_blk->start_line);
592}
593
594static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
595					  enum ilt_clients ilt_client)
596{
597	u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
598	struct ecore_ilt_client_cfg *p_cli;
599	u32 lines_to_skip = 0;
600	u32 cxts_per_p;
601
602	/* TBD MK: ILT code should be simplified once PROTO enum is changed */
603
604	if (ilt_client == ILT_CLI_CDUC) {
605		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
606
607		cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
608			     (u32)CONN_CXT_SIZE(p_hwfn);
609
610		lines_to_skip = cid_count / cxts_per_p;
611	}
612
613	return lines_to_skip;
614}
615
616static struct ecore_ilt_client_cfg *
617ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli)
618{
619	p_cli->active = false;
620	p_cli->first.val = 0;
621	p_cli->last.val = 0;
622	return p_cli;
623}
624
625static struct ecore_ilt_cli_blk *
626ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk)
627{
628	p_blk->total_size = 0;
629	return p_blk;
630}
631
632enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn,
633					       u32 *line_count)
634{
635	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
636	u32 curr_line, total, i, task_size, line;
637	struct ecore_ilt_client_cfg *p_cli;
638	struct ecore_ilt_cli_blk *p_blk;
639	struct ecore_cdu_iids cdu_iids;
640	struct ecore_src_iids src_iids;
641	struct ecore_qm_iids qm_iids;
642	struct ecore_tm_iids tm_iids;
643	struct ecore_tid_seg *p_seg;
644
645	OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
646	OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
647	OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
648	OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
649
650	p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
651
652	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
653		   "hwfn [%d] - Set context manager starting line to be 0x%08x\n",
654		   p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
655
656	/* CDUC */
657	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]);
658
659	curr_line = p_mngr->pf_start_line;
660
661	/* CDUC PF */
662	p_cli->pf_total_lines = 0;
663
664	/* get the counters for the CDUC,CDUC and QM clients  */
665	ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
666
667	p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]);
668
669	total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
670
671	ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
672			       total, CONN_CXT_SIZE(p_hwfn));
673
674	ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
675	p_cli->pf_total_lines = curr_line - p_blk->start_line;
676
677	p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
678								 ILT_CLI_CDUC);
679
680	/* CDUC VF */
681	p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]);
682	total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
683
684	ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
685			       total, CONN_CXT_SIZE(p_hwfn));
686
687	ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
688	p_cli->vf_total_lines = curr_line - p_blk->start_line;
689
690	for (i = 1; i < p_mngr->vf_count; i++)
691		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
692				       ILT_CLI_CDUC);
693
694	/* CDUT PF */
695	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]);
696	p_cli->first.val = curr_line;
697
698	/* first the 'working' task memory */
699	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
700		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
701		if (!p_seg || p_seg->count == 0)
702			continue;
703
704		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]);
705		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
706		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
707				       p_mngr->task_type_size[p_seg->type]);
708
709		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
710				       ILT_CLI_CDUT);
711	}
712
713	/* next the 'init' task memory (forced load memory) */
714	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
715		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
716		if (!p_seg || p_seg->count == 0)
717			continue;
718
719		p_blk = ecore_cxt_set_blk(
720				&p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]);
721
722		if (!p_seg->has_fl_mem) {
723			/* The segment is active (total size pf 'working'
724			 * memory is > 0) but has no FL (forced-load, Init)
725			 * memory. Thus:
726			 *
727			 * 1.   The total-size in the corrsponding FL block of
728			 *      the ILT client is set to 0 - No ILT line are
729			 *      provisioned and no ILT memory allocated.
730			 *
731			 * 2.   The start-line of said block is set to the
732			 *      start line of the matching working memory
733			 *      block in the ILT client. This is later used to
734			 *      configure the CDU segment offset registers and
735			 *      results in an FL command for TIDs of this
736			 *      segement behaves as regular load commands
737			 *      (loading TIDs from the working memory).
738			 */
739			line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
740
741			ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
742			continue;
743		}
744		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
745
746		ecore_ilt_cli_blk_fill(p_cli, p_blk,
747				       curr_line, total,
748				       p_mngr->task_type_size[p_seg->type]);
749
750		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
751				       ILT_CLI_CDUT);
752	}
753	p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
754
755	/* CDUT VF */
756	p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
757	if (p_seg && p_seg->count) {
758		/* Stricly speaking we need to iterate over all VF
759		 * task segment types, but a VF has only 1 segment
760		 */
761
762		/* 'working' memory */
763		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
764
765		p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]);
766		ecore_ilt_cli_blk_fill(p_cli, p_blk,
767				       curr_line, total,
768				       p_mngr->task_type_size[p_seg->type]);
769
770		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
771				       ILT_CLI_CDUT);
772
773		/* 'init' memory */
774		p_blk = ecore_cxt_set_blk(
775				&p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]);
776		if (!p_seg->has_fl_mem) {
777			/* see comment above */
778			line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
779			ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
780		} else {
781			task_size = p_mngr->task_type_size[p_seg->type];
782			ecore_ilt_cli_blk_fill(p_cli, p_blk,
783					       curr_line, total,
784					       task_size);
785			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
786					       ILT_CLI_CDUT);
787		}
788		p_cli->vf_total_lines = curr_line -
789					p_cli->vf_blks[0].start_line;
790
791		/* Now for the rest of the VFs */
792		for (i = 1; i < p_mngr->vf_count; i++) {
793			/* don't set p_blk i.e. don't clear total_size */
794			p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
795			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
796					       ILT_CLI_CDUT);
797
798			/* don't set p_blk i.e. don't clear total_size */
799			p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
800			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
801					       ILT_CLI_CDUT);
802		}
803	}
804
805	/* QM */
806	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]);
807	p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
808
809	ecore_cxt_qm_iids(p_hwfn, &qm_iids);
810	total = ecore_qm_pf_mem_size(qm_iids.cids,
811				     qm_iids.vf_cids, qm_iids.tids,
812				     p_hwfn->qm_info.num_pqs,
813				     p_hwfn->qm_info.num_vf_pqs);
814
815	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
816		   "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n",
817		   qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
818		   p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
819
820	ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
821			       QM_PQ_ELEMENT_SIZE);
822
823	ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
824	p_cli->pf_total_lines = curr_line - p_blk->start_line;
825
826	/* SRC */
827	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]);
828	ecore_cxt_src_iids(p_mngr, &src_iids);
829
830	/* Both the PF and VFs searcher connections are stored in the per PF
831	 * database. Thus sum the PF searcher cids and all the VFs searcher
832	 * cids.
833	 */
834	total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
835	if (total) {
836		u32 local_max = OSAL_MAX_T(u32, total,
837					   SRC_MIN_NUM_ELEMS);
838
839		total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
840
841		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
842		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
843				       total * sizeof(struct src_ent),
844				       sizeof(struct src_ent));
845
846		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
847				       ILT_CLI_SRC);
848		p_cli->pf_total_lines = curr_line - p_blk->start_line;
849	}
850
851	/* TM PF */
852	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]);
853	ecore_cxt_tm_iids(p_mngr, &tm_iids);
854	total = tm_iids.pf_cids + tm_iids.pf_tids_total;
855	if (total) {
856		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
857		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
858				       total * TM_ELEM_SIZE,
859				       TM_ELEM_SIZE);
860
861		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
862				       ILT_CLI_TM);
863		p_cli->pf_total_lines = curr_line - p_blk->start_line;
864	}
865
866	/* TM VF */
867	total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
868	if (total) {
869		p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]);
870		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
871				       total * TM_ELEM_SIZE,
872				       TM_ELEM_SIZE);
873
874		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
875				       ILT_CLI_TM);
876
877		p_cli->vf_total_lines = curr_line - p_blk->start_line;
878		for (i = 1; i < p_mngr->vf_count; i++) {
879			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
880					       ILT_CLI_TM);
881		}
882	}
883
884	/* TSDM (SRQ CONTEXT) */
885	total = ecore_cxt_get_total_srq_count(p_hwfn);
886	if (total) {
887		p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]);
888		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]);
889		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
890				       total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
891
892		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
893				       ILT_CLI_TSDM);
894		p_cli->pf_total_lines = curr_line - p_blk->start_line;
895	}
896
897	*line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line;
898
899	if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
900	    RESC_NUM(p_hwfn, ECORE_ILT)) {
901		return ECORE_INVAL;
902	}
903
904	return ECORE_SUCCESS;
905}
906
907u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines)
908{
909	struct ecore_ilt_client_cfg *p_cli;
910	u32 excess_lines, available_lines;
911	struct ecore_cxt_mngr *p_mngr;
912	u32 ilt_page_size, elem_size;
913	struct ecore_tid_seg *p_seg;
914	int i;
915
916	available_lines = RESC_NUM(p_hwfn, ECORE_ILT);
917	excess_lines = used_lines - available_lines;
918
919	if (!excess_lines)
920		return 0;
921
922	if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn))
923		return 0;
924
925	p_mngr = p_hwfn->p_cxt_mngr;
926	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
927	ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
928
929	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
930		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
931		if (!p_seg || p_seg->count == 0)
932			continue;
933
934		elem_size = p_mngr->task_type_size[p_seg->type];
935		if (!elem_size)
936			continue;
937
938		return (ilt_page_size / elem_size) * excess_lines;
939	}
940
941	DP_ERR(p_hwfn, "failed computing excess ILT lines\n");
942	return 0;
943}
944
945static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
946{
947	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
948	u32 i;
949
950	if (!p_mngr->t2)
951		return;
952
953	for (i = 0; i < p_mngr->t2_num_pages; i++)
954		if (p_mngr->t2[i].p_virt)
955			OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
956					       p_mngr->t2[i].p_virt,
957					       p_mngr->t2[i].p_phys,
958					       p_mngr->t2[i].size);
959
960	OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
961	p_mngr->t2 = OSAL_NULL;
962}
963
964static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
965{
966	struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
967	u32 conn_num, total_size, ent_per_page, psz, i;
968	struct ecore_ilt_client_cfg *p_src;
969	struct ecore_src_iids src_iids;
970	struct ecore_dma_mem *p_t2;
971	enum _ecore_status_t rc;
972
973	OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
974
975	/* if the SRC ILT client is inactive - there are no connection
976	 * requiring the searcer, leave.
977	 */
978	p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
979	if (!p_src->active)
980		return ECORE_SUCCESS;
981
982	ecore_cxt_src_iids(p_mngr, &src_iids);
983	conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
984	total_size = conn_num * sizeof(struct src_ent);
985
986	/* use the same page size as the SRC ILT client */
987	psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
988	p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
989
990	/* allocate t2 */
991	p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
992				 p_mngr->t2_num_pages *
993				 sizeof(struct ecore_dma_mem));
994	if (!p_mngr->t2) {
995		DP_NOTICE(p_hwfn, false, "Failed to allocate t2 table\n");
996		rc = ECORE_NOMEM;
997		goto t2_fail;
998	}
999
1000	/* allocate t2 pages */
1001	for (i = 0; i < p_mngr->t2_num_pages; i++) {
1002		u32 size = OSAL_MIN_T(u32, total_size, psz);
1003		void **p_virt = &p_mngr->t2[i].p_virt;
1004
1005		*p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1006						  &p_mngr->t2[i].p_phys,
1007						  size);
1008		if (!p_mngr->t2[i].p_virt) {
1009			rc = ECORE_NOMEM;
1010			goto t2_fail;
1011		}
1012		OSAL_MEM_ZERO(*p_virt, size);
1013		p_mngr->t2[i].size = size;
1014		total_size -= size;
1015	}
1016
1017	/* Set the t2 pointers */
1018
1019	/* entries per page - must be a power of two */
1020	ent_per_page = psz / sizeof(struct src_ent);
1021
1022	p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
1023
1024	p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
1025	p_mngr->last_free = (u64)p_t2->p_phys +
1026				 ((conn_num - 1) & (ent_per_page - 1)) *
1027				 sizeof(struct src_ent);
1028
1029	for (i = 0; i < p_mngr->t2_num_pages; i++) {
1030		u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
1031		struct src_ent *entries = p_mngr->t2[i].p_virt;
1032		u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
1033		u32 j;
1034
1035		for (j = 0; j < ent_num - 1; j++) {
1036			val = p_ent_phys +
1037			      (j + 1) * sizeof(struct src_ent);
1038			entries[j].next = OSAL_CPU_TO_BE64(val);
1039		}
1040
1041		if (i < p_mngr->t2_num_pages - 1)
1042			val = (u64)p_mngr->t2[i + 1].p_phys;
1043		else
1044			val = 0;
1045		entries[j].next = OSAL_CPU_TO_BE64(val);
1046
1047		conn_num -= ent_num;
1048	}
1049
1050	return ECORE_SUCCESS;
1051
1052t2_fail:
1053	ecore_cxt_src_t2_free(p_hwfn);
1054	return rc;
1055}
1056
1057#define for_each_ilt_valid_client(pos, clients)	\
1058	for (pos = 0; pos < ILT_CLI_MAX; pos++)	\
1059		if (!clients[pos].active) {	\
1060			continue;		\
1061		} else				\
1062
1063/* Total number of ILT lines used by this PF */
1064static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
1065{
1066	u32 size = 0;
1067	u32 i;
1068
1069	for_each_ilt_valid_client(i, ilt_clients)
1070		size += (ilt_clients[i].last.val -
1071			 ilt_clients[i].first.val + 1);
1072
1073	return size;
1074}
1075
1076static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
1077{
1078	struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
1079	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1080	u32 ilt_size, i;
1081
1082	if (p_mngr->ilt_shadow == OSAL_NULL)
1083		return;
1084
1085	ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
1086
1087	for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
1088		struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
1089
1090		if (p_dma->p_virt)
1091			OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1092					       p_dma->p_virt,
1093					       p_dma->p_phys,
1094					       p_dma->size);
1095		p_dma->p_virt = OSAL_NULL;
1096	}
1097	OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
1098	p_mngr->ilt_shadow = OSAL_NULL;
1099}
1100
1101static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
1102						struct ecore_ilt_cli_blk *p_blk,
1103						enum ilt_clients ilt_client,
1104						u32 start_line_offset)
1105{
1106	struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
1107	u32 lines, line, sz_left, lines_to_skip = 0;
1108
1109	/* Special handling for RoCE that supports dynamic allocation */
1110	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) &&
1111	    ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM))
1112		return ECORE_SUCCESS;
1113
1114	lines_to_skip = p_blk->dynamic_line_cnt;
1115
1116	if (!p_blk->total_size)
1117		return ECORE_SUCCESS;
1118
1119	sz_left = p_blk->total_size;
1120	lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) -
1121		lines_to_skip;
1122	line = p_blk->start_line + start_line_offset -
1123	       p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
1124
1125	for (; lines; lines--) {
1126		dma_addr_t p_phys;
1127		void *p_virt;
1128		u32 size;
1129
1130		size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
1131		p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1132						 &p_phys, size);
1133		if (!p_virt)
1134			return ECORE_NOMEM;
1135		OSAL_MEM_ZERO(p_virt, size);
1136
1137		ilt_shadow[line].p_phys = p_phys;
1138		ilt_shadow[line].p_virt = p_virt;
1139		ilt_shadow[line].size = size;
1140
1141		DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1142			   "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n",
1143			   line, (unsigned long long)p_phys, p_virt, size);
1144
1145		sz_left -= size;
1146		line++;
1147	}
1148
1149	return ECORE_SUCCESS;
1150}
1151
1152static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
1153{
1154	struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
1155	struct ecore_ilt_client_cfg *clients = p_mngr->clients;
1156	struct ecore_ilt_cli_blk *p_blk;
1157	u32 size, i, j, k;
1158	enum _ecore_status_t rc;
1159
1160	size = ecore_cxt_ilt_shadow_size(clients);
1161	p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1162					 size * sizeof(struct ecore_dma_mem));
1163
1164	if (p_mngr->ilt_shadow == OSAL_NULL) {
1165		DP_NOTICE(p_hwfn, false, "Failed to allocate ilt shadow table\n");
1166		rc = ECORE_NOMEM;
1167		goto ilt_shadow_fail;
1168	}
1169
1170	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1171		   "Allocated 0x%x bytes for ilt shadow\n",
1172		   (u32)(size * sizeof(struct ecore_dma_mem)));
1173
1174	for_each_ilt_valid_client(i, clients) {
1175		for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
1176			p_blk = &clients[i].pf_blks[j];
1177			rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
1178			if (rc != ECORE_SUCCESS)
1179				goto ilt_shadow_fail;
1180		}
1181		for (k = 0; k < p_mngr->vf_count; k++) {
1182			for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
1183				u32 lines = clients[i].vf_total_lines * k;
1184
1185				p_blk = &clients[i].vf_blks[j];
1186				rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
1187							 i, lines);
1188				if (rc != ECORE_SUCCESS)
1189					goto ilt_shadow_fail;
1190			}
1191		}
1192	}
1193
1194	return ECORE_SUCCESS;
1195
1196ilt_shadow_fail:
1197	ecore_ilt_shadow_free(p_hwfn);
1198	return rc;
1199}
1200
1201static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
1202{
1203	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1204	u32 type, vf;
1205
1206	for (type = 0; type < MAX_CONN_TYPES; type++) {
1207		OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
1208		p_mngr->acquired[type].cid_map = OSAL_NULL;
1209		p_mngr->acquired[type].max_count = 0;
1210		p_mngr->acquired[type].start_cid = 0;
1211
1212		for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1213			OSAL_FREE(p_hwfn->p_dev,
1214				  p_mngr->acquired_vf[type][vf].cid_map);
1215			p_mngr->acquired_vf[type][vf].cid_map = OSAL_NULL;
1216			p_mngr->acquired_vf[type][vf].max_count = 0;
1217			p_mngr->acquired_vf[type][vf].start_cid = 0;
1218		}
1219	}
1220}
1221
1222static enum _ecore_status_t
1223ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
1224			   u32 cid_start, u32 cid_count,
1225			   struct ecore_cid_acquired_map *p_map)
1226{
1227	u32 size;
1228
1229	if (!cid_count)
1230		return ECORE_SUCCESS;
1231
1232	size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
1233	p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
1234	if (p_map->cid_map == OSAL_NULL)
1235		return ECORE_NOMEM;
1236
1237	p_map->max_count = cid_count;
1238	p_map->start_cid = cid_start;
1239
1240	DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1241		   "Type %08x start: %08x count %08x\n",
1242		   type, p_map->start_cid, p_map->max_count);
1243
1244	return ECORE_SUCCESS;
1245}
1246
1247static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
1248{
1249	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1250	u32 start_cid = 0, vf_start_cid = 0;
1251	u32 type, vf;
1252
1253	for (type = 0; type < MAX_CONN_TYPES; type++) {
1254		struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
1255		struct ecore_cid_acquired_map *p_map;
1256
1257		/* Handle PF maps */
1258		p_map = &p_mngr->acquired[type];
1259		if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
1260					       p_cfg->cid_count, p_map))
1261			goto cid_map_fail;
1262
1263		/* Handle VF maps */
1264		for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1265			p_map = &p_mngr->acquired_vf[type][vf];
1266			if (ecore_cid_map_alloc_single(p_hwfn, type,
1267						       vf_start_cid,
1268						       p_cfg->cids_per_vf,
1269						       p_map))
1270				goto cid_map_fail;
1271		}
1272
1273		start_cid += p_cfg->cid_count;
1274		vf_start_cid += p_cfg->cids_per_vf;
1275	}
1276
1277	return ECORE_SUCCESS;
1278
1279cid_map_fail:
1280	ecore_cid_map_free(p_hwfn);
1281	return ECORE_NOMEM;
1282}
1283
1284enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
1285{
1286	struct ecore_ilt_client_cfg *clients;
1287	struct ecore_cxt_mngr *p_mngr;
1288	u32 i;
1289
1290	p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
1291	if (!p_mngr) {
1292		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_cxt_mngr'\n");
1293		return ECORE_NOMEM;
1294	}
1295
1296	/* Initialize ILT client registers */
1297	clients = p_mngr->clients;
1298	clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1299	clients[ILT_CLI_CDUC].last.reg  = ILT_CFG_REG(CDUC, LAST_ILT);
1300	clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1301
1302	clients[ILT_CLI_QM].first.reg   = ILT_CFG_REG(QM, FIRST_ILT);
1303	clients[ILT_CLI_QM].last.reg    = ILT_CFG_REG(QM, LAST_ILT);
1304	clients[ILT_CLI_QM].p_size.reg  = ILT_CFG_REG(QM, P_SIZE);
1305
1306	clients[ILT_CLI_TM].first.reg   = ILT_CFG_REG(TM, FIRST_ILT);
1307	clients[ILT_CLI_TM].last.reg    = ILT_CFG_REG(TM, LAST_ILT);
1308	clients[ILT_CLI_TM].p_size.reg  = ILT_CFG_REG(TM, P_SIZE);
1309
1310	clients[ILT_CLI_SRC].first.reg  = ILT_CFG_REG(SRC, FIRST_ILT);
1311	clients[ILT_CLI_SRC].last.reg   = ILT_CFG_REG(SRC, LAST_ILT);
1312	clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1313
1314	clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1315	clients[ILT_CLI_CDUT].last.reg  = ILT_CFG_REG(CDUT, LAST_ILT);
1316	clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1317
1318	clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1319	clients[ILT_CLI_TSDM].last.reg  = ILT_CFG_REG(TSDM, LAST_ILT);
1320	clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1321
1322	/* default ILT page size for all clients is 64K */
1323	for (i = 0; i < ILT_CLI_MAX; i++)
1324		p_mngr->clients[i].p_size.val = p_hwfn->p_dev->ilt_page_size;
1325
1326	/* Initialize task sizes */
1327	p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn);
1328	p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn);
1329
1330	if (p_hwfn->p_dev->p_iov_info)
1331		p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
1332
1333	/* Initialize the dynamic ILT allocation mutex */
1334#ifdef CONFIG_ECORE_LOCK_ALLOC
1335	OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
1336#endif
1337	OSAL_MUTEX_INIT(&p_mngr->mutex);
1338
1339	/* Set the cxt mangr pointer priori to further allocations */
1340	p_hwfn->p_cxt_mngr = p_mngr;
1341
1342	return ECORE_SUCCESS;
1343}
1344
1345enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
1346{
1347	enum _ecore_status_t    rc;
1348
1349	/* Allocate the ILT shadow table */
1350	rc = ecore_ilt_shadow_alloc(p_hwfn);
1351	if (rc) {
1352		DP_NOTICE(p_hwfn, false, "Failed to allocate ilt memory\n");
1353		goto tables_alloc_fail;
1354	}
1355
1356	/* Allocate the T2  table */
1357	rc = ecore_cxt_src_t2_alloc(p_hwfn);
1358	if (rc) {
1359		DP_NOTICE(p_hwfn, false, "Failed to allocate T2 memory\n");
1360		goto tables_alloc_fail;
1361	}
1362
1363	/* Allocate and initialize the acquired cids bitmaps */
1364	rc = ecore_cid_map_alloc(p_hwfn);
1365	if (rc) {
1366		DP_NOTICE(p_hwfn, false, "Failed to allocate cid maps\n");
1367		goto tables_alloc_fail;
1368	}
1369
1370	return ECORE_SUCCESS;
1371
1372tables_alloc_fail:
1373	ecore_cxt_mngr_free(p_hwfn);
1374	return rc;
1375}
1376void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
1377{
1378	if (!p_hwfn->p_cxt_mngr)
1379		return;
1380
1381	ecore_cid_map_free(p_hwfn);
1382	ecore_cxt_src_t2_free(p_hwfn);
1383	ecore_ilt_shadow_free(p_hwfn);
1384#ifdef CONFIG_ECORE_LOCK_ALLOC
1385	OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
1386#endif
1387	OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
1388
1389	p_hwfn->p_cxt_mngr = OSAL_NULL;
1390}
1391
1392void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
1393{
1394	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1395	struct ecore_cid_acquired_map *p_map;
1396	struct ecore_conn_type_cfg *p_cfg;
1397	int type;
1398	u32 len;
1399
1400	/* Reset acquired cids */
1401	for (type = 0; type < MAX_CONN_TYPES; type++) {
1402		u32 vf;
1403
1404		p_cfg = &p_mngr->conn_cfg[type];
1405		if (p_cfg->cid_count) {
1406			p_map = &p_mngr->acquired[type];
1407			len = DIV_ROUND_UP(p_map->max_count,
1408					   BITS_PER_MAP_WORD) *
1409			      MAP_WORD_SIZE;
1410			OSAL_MEM_ZERO(p_map->cid_map, len);
1411		}
1412
1413		if (!p_cfg->cids_per_vf)
1414			continue;
1415
1416		for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1417			p_map = &p_mngr->acquired_vf[type][vf];
1418			len = DIV_ROUND_UP(p_map->max_count,
1419					   BITS_PER_MAP_WORD) *
1420			      MAP_WORD_SIZE;
1421			OSAL_MEM_ZERO(p_map->cid_map, len);
1422		}
1423	}
1424}
1425
1426/* HW initialization helper (per Block, per phase) */
1427
1428/* CDU Common */
1429#define CDUC_CXT_SIZE_SHIFT						\
1430	CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1431
1432#define CDUC_CXT_SIZE_MASK						\
1433	(CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1434
1435#define CDUC_BLOCK_WASTE_SHIFT						\
1436	CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1437
1438#define CDUC_BLOCK_WASTE_MASK						\
1439	(CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1440
1441#define CDUC_NCIB_SHIFT							\
1442	CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1443
1444#define CDUC_NCIB_MASK							\
1445	(CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1446
1447#define CDUT_TYPE0_CXT_SIZE_SHIFT					\
1448	CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1449
1450#define CDUT_TYPE0_CXT_SIZE_MASK					\
1451	(CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >>				\
1452	CDUT_TYPE0_CXT_SIZE_SHIFT)
1453
1454#define CDUT_TYPE0_BLOCK_WASTE_SHIFT					\
1455	CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1456
1457#define CDUT_TYPE0_BLOCK_WASTE_MASK					\
1458	(CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >>			\
1459	CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1460
1461#define CDUT_TYPE0_NCIB_SHIFT						\
1462	CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1463
1464#define CDUT_TYPE0_NCIB_MASK						\
1465	(CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >>		\
1466	CDUT_TYPE0_NCIB_SHIFT)
1467
1468#define CDUT_TYPE1_CXT_SIZE_SHIFT					\
1469	CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1470
1471#define CDUT_TYPE1_CXT_SIZE_MASK					\
1472	(CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >>				\
1473	CDUT_TYPE1_CXT_SIZE_SHIFT)
1474
1475#define CDUT_TYPE1_BLOCK_WASTE_SHIFT					\
1476	CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1477
1478#define CDUT_TYPE1_BLOCK_WASTE_MASK					\
1479	(CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >>			\
1480	CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1481
1482#define CDUT_TYPE1_NCIB_SHIFT						\
1483	CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1484
1485#define CDUT_TYPE1_NCIB_MASK						\
1486	(CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >>		\
1487	CDUT_TYPE1_NCIB_SHIFT)
1488
1489static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
1490{
1491	u32 page_sz, elems_per_page, block_waste,  cxt_size, cdu_params = 0;
1492
1493	/* CDUC - connection configuration */
1494	page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1495	cxt_size = CONN_CXT_SIZE(p_hwfn);
1496	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1497	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1498
1499	SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1500	SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1501	SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page);
1502	STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1503
1504	/* CDUT - type-0 tasks configuration */
1505	page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1506	cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1507	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1508	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1509
1510	/* cxt size and block-waste are multipes of 8 */
1511	cdu_params = 0;
1512	SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1513	SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1514	SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1515	STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1516
1517	/* CDUT - type-1 tasks configuration */
1518	cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1519	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1520	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1521
1522	/* cxt size and block-waste are multipes of 8 */
1523	cdu_params = 0;
1524	SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1525	SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1526	SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1527	STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1528}
1529
1530/* CDU PF */
1531#define CDU_SEG_REG_TYPE_SHIFT		CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1532#define CDU_SEG_REG_TYPE_MASK		0x1
1533#define CDU_SEG_REG_OFFSET_SHIFT	0
1534#define CDU_SEG_REG_OFFSET_MASK		CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1535
1536static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
1537{
1538	struct ecore_ilt_client_cfg *p_cli;
1539	struct ecore_tid_seg *p_seg;
1540	u32 cdu_seg_params, offset;
1541	int i;
1542
1543	static const u32 rt_type_offset_arr[] = {
1544		CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1545		CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1546		CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1547		CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1548	};
1549
1550	static const u32 rt_type_offset_fl_arr[] = {
1551		CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1552		CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1553		CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1554		CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1555	};
1556
1557	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1558
1559	/* There are initializations only for CDUT during pf Phase */
1560	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1561		/* Segment 0*/
1562		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
1563		if (!p_seg)
1564			continue;
1565
1566		/* Note: start_line is already adjusted for the CDU
1567		 * segment register granularity, so we just need to
1568		 * divide. Adjustment is implicit as we assume ILT
1569		 * Page size is larger than 32K!
1570		 */
1571		offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1572			 (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1573			  p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1574
1575		cdu_seg_params = 0;
1576		SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1577		SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1578		STORE_RT_REG(p_hwfn, rt_type_offset_arr[i],
1579			     cdu_seg_params);
1580
1581		offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1582			 (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1583			  p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1584
1585		cdu_seg_params = 0;
1586		SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1587		SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1588		STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i],
1589			     cdu_seg_params);
1590	}
1591}
1592
1593void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1594		      bool is_pf_loading)
1595{
1596	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1597	struct ecore_mcp_link_state *p_link;
1598	struct ecore_qm_iids iids;
1599
1600	OSAL_MEM_ZERO(&iids, sizeof(iids));
1601	ecore_cxt_qm_iids(p_hwfn, &iids);
1602
1603	p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output;
1604
1605	ecore_qm_pf_rt_init(p_hwfn, p_ptt, p_hwfn->port_id,
1606			    p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
1607			    is_pf_loading,
1608			    iids.cids, iids.vf_cids, iids.tids,
1609			    qm_info->start_pq,
1610			    qm_info->num_pqs - qm_info->num_vf_pqs,
1611			    qm_info->num_vf_pqs,
1612			    qm_info->start_vport,
1613			    qm_info->num_vports, qm_info->pf_wfq,
1614			    qm_info->pf_rl, p_link->speed,
1615			    p_hwfn->qm_info.qm_pq_params,
1616			    p_hwfn->qm_info.qm_vport_params);
1617}
1618
1619/* CM PF */
1620static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
1621{
1622	STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
1623}
1624
1625/* DQ PF */
1626static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
1627{
1628	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1629	u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1630
1631	dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1632	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1633
1634	dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1635	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1636
1637	dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1638	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1639
1640	dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1641	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1642
1643	dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1644	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1645
1646	dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1647	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1648
1649	dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1650	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1651
1652	dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1653	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1654
1655	dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1656	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1657
1658	dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1659	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1660
1661	dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1662	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1663
1664	dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1665	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1666
1667	/* Connection types 6 & 7 are not in use, yet they must be configured
1668	 * as the highest possible connection. Not configuring them means the
1669	 * defaults will be  used, and with a large number of cids a bug may
1670	 * occur, if the defaults will be smaller than dq_pf_max_cid /
1671	 * dq_vf_max_cid.
1672	 */
1673	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1674	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1675
1676	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1677	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1678}
1679
1680static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
1681{
1682	struct ecore_ilt_client_cfg *ilt_clients;
1683	int i;
1684
1685	ilt_clients = p_hwfn->p_cxt_mngr->clients;
1686	for_each_ilt_valid_client(i, ilt_clients) {
1687		STORE_RT_REG(p_hwfn,
1688			     ilt_clients[i].first.reg,
1689			     ilt_clients[i].first.val);
1690		STORE_RT_REG(p_hwfn,
1691			     ilt_clients[i].last.reg,
1692			     ilt_clients[i].last.val);
1693		STORE_RT_REG(p_hwfn,
1694			     ilt_clients[i].p_size.reg,
1695			     ilt_clients[i].p_size.val);
1696	}
1697}
1698
1699static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
1700{
1701	struct ecore_ilt_client_cfg *p_cli;
1702	u32 blk_factor;
1703
1704	/* For simplicty  we set the 'block' to be an ILT page */
1705	if (p_hwfn->p_dev->p_iov_info) {
1706		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1707
1708		STORE_RT_REG(p_hwfn,
1709			     PSWRQ2_REG_VF_BASE_RT_OFFSET,
1710			     p_iov->first_vf_in_pf);
1711		STORE_RT_REG(p_hwfn,
1712			     PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1713			     p_iov->first_vf_in_pf + p_iov->total_vfs);
1714	}
1715
1716	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1717	blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1718	if (p_cli->active) {
1719		STORE_RT_REG(p_hwfn,
1720			     PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1721			     blk_factor);
1722		STORE_RT_REG(p_hwfn,
1723			     PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1724			     p_cli->pf_total_lines);
1725		STORE_RT_REG(p_hwfn,
1726			     PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1727			     p_cli->vf_total_lines);
1728	}
1729
1730	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1731	blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1732	if (p_cli->active) {
1733		STORE_RT_REG(p_hwfn,
1734			     PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1735			     blk_factor);
1736		STORE_RT_REG(p_hwfn,
1737			     PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1738			     p_cli->pf_total_lines);
1739		STORE_RT_REG(p_hwfn,
1740			     PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1741			     p_cli->vf_total_lines);
1742	}
1743
1744	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1745	blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1746	if (p_cli->active) {
1747		STORE_RT_REG(p_hwfn,
1748			     PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET,
1749			     blk_factor);
1750		STORE_RT_REG(p_hwfn,
1751			     PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1752			     p_cli->pf_total_lines);
1753		STORE_RT_REG(p_hwfn,
1754			     PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1755			     p_cli->vf_total_lines);
1756	}
1757}
1758
1759/* ILT (PSWRQ2) PF */
1760static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
1761{
1762	struct ecore_ilt_client_cfg *clients;
1763	struct ecore_cxt_mngr *p_mngr;
1764	struct ecore_dma_mem *p_shdw;
1765	u32 line, rt_offst, i;
1766
1767	ecore_ilt_bounds_init(p_hwfn);
1768	ecore_ilt_vf_bounds_init(p_hwfn);
1769
1770	p_mngr  = p_hwfn->p_cxt_mngr;
1771	p_shdw  = p_mngr->ilt_shadow;
1772	clients = p_hwfn->p_cxt_mngr->clients;
1773
1774	for_each_ilt_valid_client(i, clients) {
1775		/* Client's 1st val and RT array are absolute, ILT shadows'
1776		 * lines are relative.
1777		 */
1778		line = clients[i].first.val - p_mngr->pf_start_line;
1779		rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1780			   clients[i].first.val * ILT_ENTRY_IN_REGS;
1781
1782		for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1783		     line++, rt_offst += ILT_ENTRY_IN_REGS) {
1784			u64 ilt_hw_entry = 0;
1785
1786			/** p_virt could be OSAL_NULL incase of dynamic
1787			 *  allocation
1788			 */
1789			if (p_shdw[line].p_virt != OSAL_NULL) {
1790				SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1791				SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1792					  (unsigned long long)(p_shdw[line].p_phys >> 12));
1793
1794				DP_VERBOSE(
1795					p_hwfn, ECORE_MSG_ILT,
1796					"Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n",
1797					rt_offst, line, i,
1798					(unsigned long long)(p_shdw[line].p_phys >> 12));
1799			}
1800
1801			STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1802		}
1803	}
1804}
1805
1806/* SRC (Searcher) PF */
1807static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
1808{
1809	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1810	u32 rounded_conn_num, conn_num, conn_max;
1811	struct ecore_src_iids src_iids;
1812
1813	OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
1814	ecore_cxt_src_iids(p_mngr, &src_iids);
1815	conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1816	if (!conn_num)
1817		return;
1818
1819	conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
1820	rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
1821
1822	STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1823	STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1824		     OSAL_LOG2(rounded_conn_num));
1825
1826	STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1827			 p_hwfn->p_cxt_mngr->first_free);
1828	STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1829			 p_hwfn->p_cxt_mngr->last_free);
1830	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1831		   "Configured SEARCHER for 0x%08x connections\n",
1832		   conn_num);
1833}
1834
1835/* Timers PF */
1836#define TM_CFG_NUM_IDS_SHIFT		0
1837#define TM_CFG_NUM_IDS_MASK		0xFFFFULL
1838#define TM_CFG_PRE_SCAN_OFFSET_SHIFT	16
1839#define TM_CFG_PRE_SCAN_OFFSET_MASK	0x1FFULL
1840#define TM_CFG_PARENT_PF_SHIFT		25
1841#define TM_CFG_PARENT_PF_MASK		0x7ULL
1842
1843#define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT	30
1844#define TM_CFG_CID_PRE_SCAN_ROWS_MASK	0x1FFULL
1845
1846#define TM_CFG_TID_OFFSET_SHIFT		30
1847#define TM_CFG_TID_OFFSET_MASK		0x7FFFFULL
1848#define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT	49
1849#define TM_CFG_TID_PRE_SCAN_ROWS_MASK	0x1FFULL
1850
1851static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
1852{
1853	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1854	u32 active_seg_mask = 0, tm_offset, rt_reg;
1855	struct ecore_tm_iids tm_iids;
1856	u64 cfg_word;
1857	u8 i;
1858
1859	OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
1860	ecore_cxt_tm_iids(p_mngr, &tm_iids);
1861
1862	/* @@@TBD No pre-scan for now */
1863
1864	/* Note: We assume consecutive VFs for a PF */
1865	for (i = 0; i < p_mngr->vf_count; i++) {
1866		cfg_word = 0;
1867		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1868		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1869		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1870		SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1871
1872		rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1873			 (sizeof(cfg_word) / sizeof(u32)) *
1874			 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1875		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1876	}
1877
1878	cfg_word = 0;
1879	SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1880	SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1881	SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);	  /* n/a for PF */
1882	SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all   */
1883
1884	rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1885		 (sizeof(cfg_word) / sizeof(u32)) *
1886		 (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
1887	STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1888
1889	/* enale scan */
1890	STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1891		     tm_iids.pf_cids  ? 0x1 : 0x0);
1892
1893	/* @@@TBD how to enable the scan for the VFs */
1894
1895	tm_offset = tm_iids.per_vf_cids;
1896
1897	/* Note: We assume consecutive VFs for a PF */
1898	for (i = 0; i < p_mngr->vf_count; i++) {
1899		cfg_word = 0;
1900		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1901		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1902		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1903		SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1904		SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1905
1906		rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1907			 (sizeof(cfg_word) / sizeof(u32)) *
1908			 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1909
1910		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1911	}
1912
1913	tm_offset = tm_iids.pf_cids;
1914	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1915		cfg_word = 0;
1916		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1917		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1918		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1919		SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1920		SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1921
1922		rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1923			 (sizeof(cfg_word) / sizeof(u32)) *
1924			 (NUM_OF_VFS(p_hwfn->p_dev) +
1925			 p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1926
1927		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1928		active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
1929
1930		tm_offset += tm_iids.pf_tids[i];
1931	}
1932
1933	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1934		active_seg_mask = 0;
1935
1936	STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1937
1938	/* @@@TBD how to enable the scan for the VFs */
1939}
1940
1941static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn)
1942{
1943	if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) &&
1944	    p_hwfn->pf_params.fcoe_pf_params.is_target)
1945		STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0);
1946}
1947
1948static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
1949{
1950	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1951	struct ecore_conn_type_cfg *p_fcoe;
1952	struct ecore_tid_seg *p_tid;
1953
1954	p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1955
1956	/* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1957	if (!p_fcoe->cid_count)
1958		return;
1959
1960	p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
1961	if (p_hwfn->pf_params.fcoe_pf_params.is_target) {
1962		STORE_RT_REG_AGG(p_hwfn,
1963				 PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET,
1964				 p_tid->count);
1965	} else {
1966		STORE_RT_REG_AGG(p_hwfn,
1967				PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1968				p_tid->count);
1969	}
1970}
1971
1972void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
1973{
1974	/* CDU configuration */
1975	ecore_cdu_init_common(p_hwfn);
1976	ecore_prs_init_common(p_hwfn);
1977}
1978
1979void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
1980{
1981	ecore_qm_init_pf(p_hwfn, p_ptt, true);
1982	ecore_cm_init_pf(p_hwfn);
1983	ecore_dq_init_pf(p_hwfn);
1984	ecore_cdu_init_pf(p_hwfn);
1985	ecore_ilt_init_pf(p_hwfn);
1986	ecore_src_init_pf(p_hwfn);
1987	ecore_tm_init_pf(p_hwfn);
1988	ecore_prs_init_pf(p_hwfn);
1989}
1990
1991enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1992					    enum protocol_type type,
1993					    u32 *p_cid, u8 vfid)
1994{
1995	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1996	struct ecore_cid_acquired_map *p_map;
1997	u32 rel_cid;
1998
1999	if (type >= MAX_CONN_TYPES) {
2000		DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
2001		return ECORE_INVAL;
2002	}
2003
2004	if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
2005		DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
2006		return ECORE_INVAL;
2007	}
2008
2009	/* Determine the right map to take this CID from */
2010	if (vfid == ECORE_CXT_PF_CID)
2011		p_map = &p_mngr->acquired[type];
2012	else
2013		p_map = &p_mngr->acquired_vf[type][vfid];
2014
2015	if (p_map->cid_map == OSAL_NULL) {
2016		DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
2017		return ECORE_INVAL;
2018	}
2019
2020	rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
2021					   p_map->max_count);
2022
2023	if (rel_cid >= p_map->max_count) {
2024		DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
2025			  type);
2026		return ECORE_NORESOURCES;
2027	}
2028
2029	OSAL_SET_BIT(rel_cid, p_map->cid_map);
2030
2031	*p_cid = rel_cid + p_map->start_cid;
2032
2033	DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2034		   "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
2035		   *p_cid, rel_cid, vfid, type);
2036
2037	return ECORE_SUCCESS;
2038}
2039
2040enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
2041					   enum protocol_type type,
2042					   u32 *p_cid)
2043{
2044	return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
2045}
2046
2047static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
2048					u32 cid, u8 vfid,
2049					enum protocol_type *p_type,
2050					struct ecore_cid_acquired_map **pp_map)
2051{
2052	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2053	u32 rel_cid;
2054
2055	/* Iterate over protocols and find matching cid range */
2056	for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
2057		if (vfid == ECORE_CXT_PF_CID)
2058			*pp_map = &p_mngr->acquired[*p_type];
2059		else
2060			*pp_map = &p_mngr->acquired_vf[*p_type][vfid];
2061
2062		if (!((*pp_map)->cid_map))
2063			continue;
2064		if (cid >= (*pp_map)->start_cid &&
2065		    cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
2066			break;
2067		}
2068	}
2069
2070	if (*p_type == MAX_CONN_TYPES) {
2071		DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
2072		goto fail;
2073	}
2074
2075	rel_cid = cid - (*pp_map)->start_cid;
2076	if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
2077		DP_NOTICE(p_hwfn, true,
2078			  "CID %d [vifd %02x] not acquired", cid, vfid);
2079		goto fail;
2080	}
2081
2082	return true;
2083fail:
2084	*p_type = MAX_CONN_TYPES;
2085	*pp_map = OSAL_NULL;
2086	return false;
2087}
2088
2089void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
2090{
2091	struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2092	enum protocol_type type;
2093	bool b_acquired;
2094	u32 rel_cid;
2095
2096	if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
2097		DP_NOTICE(p_hwfn, true,
2098			  "Trying to return incorrect CID belonging to VF %02x\n",
2099			  vfid);
2100		return;
2101	}
2102
2103	/* Test acquired and find matching per-protocol map */
2104	b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
2105						 &type, &p_map);
2106
2107	if (!b_acquired)
2108		return;
2109
2110	rel_cid = cid - p_map->start_cid;
2111	OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
2112
2113	DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2114		   "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
2115		   cid, rel_cid, vfid, type);
2116}
2117
2118void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
2119{
2120	_ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
2121}
2122
2123enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
2124					    struct ecore_cxt_info *p_info)
2125{
2126	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2127	struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2128	u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
2129	enum protocol_type type;
2130	bool b_acquired;
2131
2132	/* Test acquired and find matching per-protocol map */
2133	b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
2134						 ECORE_CXT_PF_CID,
2135						 &type, &p_map);
2136
2137	if (!b_acquired)
2138		return ECORE_INVAL;
2139
2140	/* set the protocl type */
2141	p_info->type = type;
2142
2143	/* compute context virtual pointer */
2144	hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
2145
2146	conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
2147	cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
2148	line = p_info->iid / cxts_per_p;
2149
2150	/* Make sure context is allocated (dynamic allocation) */
2151	if (!p_mngr->ilt_shadow[line].p_virt)
2152		return ECORE_INVAL;
2153
2154	p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
2155			      p_info->iid % cxts_per_p * conn_cxt_size;
2156
2157	DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
2158		   "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
2159		   (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
2160
2161	return ECORE_SUCCESS;
2162}
2163
2164static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn,
2165				     struct ecore_rdma_pf_params *p_params,
2166				     u32 num_tasks)
2167{
2168	u32 num_cons, num_qps;
2169	enum protocol_type proto;
2170
2171	/* The only case RDMA personality can be overriden is if NVRAM is
2172	 * configured with ETH_RDMA or if no rdma protocol was requested
2173	 */
2174	switch (p_params->rdma_protocol) {
2175	case ECORE_RDMA_PROTOCOL_DEFAULT:
2176		if (p_hwfn->mcp_info->func_info.protocol ==
2177		    ECORE_PCI_ETH_RDMA) {
2178			DP_NOTICE(p_hwfn, false,
2179				  "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n");
2180			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2181		}
2182		break;
2183	case ECORE_RDMA_PROTOCOL_NONE:
2184		p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2185		return; /* intentional... nothing left to do... */
2186	case ECORE_RDMA_PROTOCOL_ROCE:
2187		if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2188			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2189		break;
2190	case ECORE_RDMA_PROTOCOL_IWARP:
2191		if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2192			p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP;
2193		break;
2194	}
2195
2196	switch (p_hwfn->hw_info.personality) {
2197	case ECORE_PCI_ETH_IWARP:
2198		/* Each QP requires one connection */
2199		num_cons = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps);
2200#ifdef CONFIG_ECORE_IWARP /* required for the define */
2201		/* additional connections required for passive tcp handling */
2202		num_cons += ECORE_IWARP_PREALLOC_CNT;
2203#endif
2204		proto = PROTOCOLID_IWARP;
2205		break;
2206	case ECORE_PCI_ETH_ROCE:
2207		num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps);
2208		num_cons = num_qps * 2; /* each QP requires two connections */
2209		proto = PROTOCOLID_ROCE;
2210		break;
2211	default:
2212		return;
2213	}
2214
2215	if (num_cons && num_tasks) {
2216		u32 num_srqs, num_xrc_srqs, max_xrc_srqs, page_size;
2217
2218		ecore_cxt_set_proto_cid_count(p_hwfn, proto,
2219					      num_cons, 0);
2220
2221		/* Deliberatly passing ROCE for tasks id. This is because
2222		 * iWARP / RoCE share the task id.
2223		 */
2224		ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE,
2225					      ECORE_CXT_ROCE_TID_SEG,
2226					      1, /* RoCE segment type */
2227					      num_tasks,
2228					      false); /* !force load */
2229
2230		num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS,
2231				      p_params->num_srqs);
2232
2233		/* XRC SRQs populate a single ILT page */
2234		page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
2235		max_xrc_srqs =  page_size / XRC_SRQ_CXT_SIZE;
2236		max_xrc_srqs = OSAL_MIN_T(u32, max_xrc_srqs, ECORE_RDMA_MAX_XRC_SRQS);
2237
2238		num_xrc_srqs = OSAL_MIN_T(u32, p_params->num_xrc_srqs,
2239					  max_xrc_srqs);
2240		ecore_cxt_set_srq_count(p_hwfn, num_srqs, num_xrc_srqs);
2241
2242	} else {
2243		DP_INFO(p_hwfn->p_dev,
2244			"RDMA personality used without setting params!\n");
2245	}
2246}
2247
2248enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn,
2249					     u32 rdma_tasks)
2250{
2251	/* Set the number of required CORE connections */
2252	u32 core_cids = 1; /* SPQ */
2253
2254	if (p_hwfn->using_ll2)
2255		core_cids += 4; /* @@@TBD Use the proper #define */
2256
2257	ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
2258
2259	switch (p_hwfn->hw_info.personality) {
2260	case ECORE_PCI_ETH_RDMA:
2261	case ECORE_PCI_ETH_IWARP:
2262	case ECORE_PCI_ETH_ROCE:
2263	{
2264		ecore_rdma_set_pf_params(p_hwfn,
2265					 &p_hwfn->pf_params.rdma_pf_params,
2266					 rdma_tasks);
2267
2268		/* no need for break since RoCE coexist with Ethernet */
2269	}
2270	case ECORE_PCI_ETH:
2271	{
2272		u32 count = 0;
2273
2274		struct ecore_eth_pf_params *p_params =
2275					&p_hwfn->pf_params.eth_pf_params;
2276
2277		if (!p_params->num_vf_cons)
2278			p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
2279		ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2280					      p_params->num_cons,
2281					      p_params->num_vf_cons);
2282
2283		count = p_params->num_arfs_filters;
2284
2285		if (!OSAL_TEST_BIT(ECORE_MF_DISABLE_ARFS,
2286				   &p_hwfn->p_dev->mf_bits))
2287			p_hwfn->p_cxt_mngr->arfs_count = count;
2288
2289		break;
2290	}
2291	case ECORE_PCI_FCOE:
2292	{
2293		struct ecore_fcoe_pf_params *p_params;
2294
2295		p_params = &p_hwfn->pf_params.fcoe_pf_params;
2296
2297		if (p_params->num_cons && p_params->num_tasks) {
2298			ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE,
2299						      p_params->num_cons, 0);
2300
2301			ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE,
2302						      ECORE_CXT_FCOE_TID_SEG,
2303						      0, /* segment type */
2304						      p_params->num_tasks,
2305						      true);
2306		} else {
2307			DP_INFO(p_hwfn->p_dev,
2308				"Fcoe personality used without setting params!\n");
2309		}
2310		break;
2311	}
2312	case ECORE_PCI_ISCSI:
2313	{
2314		struct ecore_iscsi_pf_params *p_params;
2315
2316		p_params = &p_hwfn->pf_params.iscsi_pf_params;
2317
2318		if (p_params->num_cons && p_params->num_tasks) {
2319			ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI,
2320						      p_params->num_cons, 0);
2321
2322			ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI,
2323						      ECORE_CXT_ISCSI_TID_SEG,
2324						      0, /* segment type */
2325						      p_params->num_tasks,
2326						      true);
2327		} else {
2328			DP_INFO(p_hwfn->p_dev,
2329				"Iscsi personality used without setting params!\n");
2330		}
2331		break;
2332	}
2333	default:
2334		return ECORE_INVAL;
2335	}
2336
2337	return ECORE_SUCCESS;
2338}
2339
2340enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn,
2341						struct ecore_tid_mem *p_info)
2342{
2343	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2344	u32 proto, seg, total_lines, i, shadow_line;
2345	struct ecore_ilt_client_cfg *p_cli;
2346	struct ecore_ilt_cli_blk *p_fl_seg;
2347	struct ecore_tid_seg *p_seg_info;
2348
2349	/* Verify the personality */
2350	switch (p_hwfn->hw_info.personality) {
2351	case ECORE_PCI_FCOE:
2352		proto = PROTOCOLID_FCOE;
2353		seg = ECORE_CXT_FCOE_TID_SEG;
2354		break;
2355	case ECORE_PCI_ISCSI:
2356		proto = PROTOCOLID_ISCSI;
2357		seg = ECORE_CXT_ISCSI_TID_SEG;
2358		break;
2359	default:
2360		return ECORE_INVAL;
2361	}
2362
2363	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2364	if (!p_cli->active) {
2365		return ECORE_INVAL;
2366	}
2367
2368	p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2369	if (!p_seg_info->has_fl_mem)
2370		return ECORE_INVAL;
2371
2372	p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2373	total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
2374				   p_fl_seg->real_size_in_page);
2375
2376	for (i = 0; i < total_lines; i++) {
2377		shadow_line = i + p_fl_seg->start_line -
2378			      p_hwfn->p_cxt_mngr->pf_start_line;
2379		p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt;
2380	}
2381	p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
2382			p_fl_seg->real_size_in_page;
2383	p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
2384	p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
2385				     p_info->tid_size;
2386
2387	return ECORE_SUCCESS;
2388}
2389
2390/* This function is very RoCE oriented, if another protocol in the future
2391 * will want this feature we'll need to modify the function to be more generic
2392 */
2393enum _ecore_status_t
2394ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
2395			    enum ecore_cxt_elem_type elem_type,
2396			    u32 iid)
2397{
2398	u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
2399	struct ecore_ilt_client_cfg *p_cli;
2400	struct ecore_ilt_cli_blk *p_blk;
2401	struct ecore_ptt *p_ptt;
2402	dma_addr_t p_phys;
2403	u64 ilt_hw_entry;
2404	void *p_virt;
2405	enum _ecore_status_t rc = ECORE_SUCCESS;
2406
2407	switch (elem_type) {
2408	case ECORE_ELEM_CXT:
2409		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2410		elem_size = CONN_CXT_SIZE(p_hwfn);
2411		p_blk = &p_cli->pf_blks[CDUC_BLK];
2412		break;
2413	case ECORE_ELEM_SRQ:
2414		/* The first ILT page is not used for regular SRQs. Skip it. */
2415		iid += ecore_cxt_srqs_per_page(p_hwfn);
2416		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2417		elem_size = SRQ_CXT_SIZE;
2418		p_blk = &p_cli->pf_blks[SRQ_BLK];
2419		break;
2420	case ECORE_ELEM_XRC_SRQ:
2421		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2422		elem_size = XRC_SRQ_CXT_SIZE;
2423		p_blk = &p_cli->pf_blks[SRQ_BLK];
2424		break;
2425	case ECORE_ELEM_TASK:
2426		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2427		elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2428		p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2429		break;
2430	default:
2431		DP_NOTICE(p_hwfn, false,
2432			  "ECORE_INVALID elem type = %d", elem_type);
2433		return ECORE_INVAL;
2434	}
2435
2436	/* Calculate line in ilt */
2437	hw_p_size = p_cli->p_size.val;
2438	elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2439	line = p_blk->start_line + (iid / elems_per_p);
2440	shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
2441
2442	/* If line is already allocated, do nothing, otherwise allocate it and
2443	 * write it to the PSWRQ2 registers.
2444	 * This section can be run in parallel from different contexts and thus
2445	 * a mutex protection is needed.
2446	 */
2447#ifdef _NTDDK_
2448#pragma warning(suppress : 28121)
2449#endif
2450	OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
2451
2452	if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
2453		goto out0;
2454
2455	p_ptt = ecore_ptt_acquire(p_hwfn);
2456	if (!p_ptt) {
2457		DP_NOTICE(p_hwfn, false,
2458			  "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2459		rc = ECORE_TIMEOUT;
2460		goto out0;
2461	}
2462
2463	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
2464					 &p_phys,
2465					 p_blk->real_size_in_page);
2466	if (!p_virt) {
2467		rc = ECORE_NOMEM;
2468		goto out1;
2469	}
2470	OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
2471
2472	/* configuration of refTagMask to 0xF is required for RoCE DIF MR only,
2473	 * to compensate for a HW bug, but it is configured even if DIF is not
2474	 * enabled. This is harmless and allows us to avoid a dedicated API. We
2475	 * configure the field for all of the contexts on the newly allocated
2476	 * page.
2477	 */
2478	if (elem_type == ECORE_ELEM_TASK) {
2479		u32 elem_i;
2480		u8 *elem_start = (u8 *)p_virt;
2481		union type1_task_context *elem;
2482
2483		for (elem_i = 0; elem_i < elems_per_p; elem_i++) {
2484			elem = (union type1_task_context *)elem_start;
2485			SET_FIELD(elem->roce_ctx.tdif_context.flags1,
2486				  TDIF_TASK_CONTEXT_REF_TAG_MASK , 0xf);
2487			elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn);
2488		}
2489	}
2490
2491	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
2492	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
2493	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
2494		p_blk->real_size_in_page;
2495
2496	/* compute absolute offset */
2497	reg_offset = PSWRQ2_REG_ILT_MEMORY +
2498		     (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2499
2500	ilt_hw_entry = 0;
2501	SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2502	SET_FIELD(ilt_hw_entry,
2503		  ILT_ENTRY_PHY_ADDR,
2504		  (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
2505
2506	/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2507	ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
2508			    reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2509			    OSAL_NULL /* default parameters */);
2510
2511	if (elem_type == ECORE_ELEM_CXT) {
2512		u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2513					 elems_per_p;
2514
2515		/* Update the relevant register in the parser */
2516		ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2517			 last_cid_allocated - 1);
2518
2519		/* RoCE w/a -> we don't write to the prs search reg until first
2520		 * cid is allocated. This is because the prs checks
2521		 * last_cid-1 >=0 making 0 a valid value... this will cause
2522		 * the a context load to occur on a RoCE packet received with
2523		 * cid=0 even before context was initialized, can happen with a
2524		 * stray packet from switch or a packet with crc-error
2525		 */
2526
2527		if (!p_hwfn->b_rdma_enabled_in_prs) {
2528			/* Enable Rdma search */
2529			ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2530			p_hwfn->b_rdma_enabled_in_prs = true;
2531		}
2532	}
2533
2534out1:
2535	ecore_ptt_release(p_hwfn, p_ptt);
2536out0:
2537	OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
2538
2539	return rc;
2540}
2541
2542/* This function is very RoCE oriented, if another protocol in the future
2543 * will want this feature we'll need to modify the function to be more generic
2544 */
2545enum _ecore_status_t
2546ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
2547			 enum ecore_cxt_elem_type elem_type,
2548			 u32 start_iid, u32 count)
2549{
2550	u32 start_line, end_line, shadow_start_line, shadow_end_line;
2551	u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2552	struct ecore_ilt_client_cfg *p_cli;
2553	struct ecore_ilt_cli_blk *p_blk;
2554	u32 end_iid = start_iid + count;
2555	struct ecore_ptt *p_ptt;
2556	u64 ilt_hw_entry = 0;
2557	u32 i;
2558
2559	switch (elem_type) {
2560	case ECORE_ELEM_CXT:
2561		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2562		elem_size = CONN_CXT_SIZE(p_hwfn);
2563		p_blk = &p_cli->pf_blks[CDUC_BLK];
2564		break;
2565	case ECORE_ELEM_SRQ:
2566		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2567		elem_size = SRQ_CXT_SIZE;
2568		p_blk = &p_cli->pf_blks[SRQ_BLK];
2569		break;
2570	case ECORE_ELEM_TASK:
2571		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2572		elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2573		p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2574		break;
2575	default:
2576		DP_NOTICE(p_hwfn, false,
2577			  "ECORE_INVALID elem type = %d", elem_type);
2578		return ECORE_INVAL;
2579	}
2580
2581	/* Calculate line in ilt */
2582	hw_p_size = p_cli->p_size.val;
2583	elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2584	start_line = p_blk->start_line + (start_iid / elems_per_p);
2585	end_line = p_blk->start_line + (end_iid / elems_per_p);
2586	if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2587		end_line--;
2588
2589	shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2590	shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2591
2592	p_ptt = ecore_ptt_acquire(p_hwfn);
2593	if (!p_ptt) {
2594		DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2595		return ECORE_TIMEOUT;
2596	}
2597
2598	for (i = shadow_start_line; i < shadow_end_line; i++) {
2599		if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
2600			continue;
2601
2602		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
2603				       p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
2604				       p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
2605				       p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
2606
2607		p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
2608		p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
2609		p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2610
2611		/* compute absolute offset */
2612		reg_offset = PSWRQ2_REG_ILT_MEMORY +
2613			     ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2614			      ILT_ENTRY_IN_REGS);
2615
2616		/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2617		 * wide-bus.
2618		 */
2619		ecore_dmae_host2grc(p_hwfn, p_ptt,
2620				    (u64)(osal_uintptr_t)&ilt_hw_entry,
2621				    reg_offset,
2622				    sizeof(ilt_hw_entry) / sizeof(u32),
2623				    OSAL_NULL /* default parameters */);
2624	}
2625
2626	ecore_ptt_release(p_hwfn, p_ptt);
2627
2628	return ECORE_SUCCESS;
2629}
2630
2631enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn,
2632					    u32 tid,
2633					    u8 ctx_type,
2634					    void **pp_task_ctx)
2635{
2636	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2637	struct ecore_ilt_client_cfg *p_cli;
2638	struct ecore_tid_seg *p_seg_info;
2639	struct ecore_ilt_cli_blk *p_seg;
2640	u32 num_tids_per_block;
2641	u32 tid_size, ilt_idx;
2642	u32 total_lines;
2643	u32 proto, seg;
2644
2645	/* Verify the personality */
2646	switch (p_hwfn->hw_info.personality) {
2647	case ECORE_PCI_FCOE:
2648		proto = PROTOCOLID_FCOE;
2649		seg = ECORE_CXT_FCOE_TID_SEG;
2650		break;
2651	case ECORE_PCI_ISCSI:
2652		proto = PROTOCOLID_ISCSI;
2653		seg = ECORE_CXT_ISCSI_TID_SEG;
2654		break;
2655	default:
2656		return ECORE_INVAL;
2657	}
2658
2659	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2660	if (!p_cli->active) {
2661		return ECORE_INVAL;
2662	}
2663
2664	p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2665
2666	if (ctx_type == ECORE_CTX_WORKING_MEM) {
2667		p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
2668	} else if (ctx_type == ECORE_CTX_FL_MEM) {
2669		if (!p_seg_info->has_fl_mem) {
2670			return ECORE_INVAL;
2671		}
2672		p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2673	} else {
2674		return ECORE_INVAL;
2675	}
2676	total_lines = DIV_ROUND_UP(p_seg->total_size,
2677				   p_seg->real_size_in_page);
2678	tid_size = p_mngr->task_type_size[p_seg_info->type];
2679	num_tids_per_block = p_seg->real_size_in_page / tid_size;
2680
2681	if (total_lines < tid/num_tids_per_block)
2682		return ECORE_INVAL;
2683
2684	ilt_idx = tid / num_tids_per_block + p_seg->start_line -
2685		  p_mngr->pf_start_line;
2686	*pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt +
2687			     (tid % num_tids_per_block) * tid_size;
2688
2689	return ECORE_SUCCESS;
2690}
2691