1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2009 Yahoo! Inc.
5 * Copyright (c) 2011-2015 LSI Corp.
6 * Copyright (c) 2013-2015 Avago Technologies
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
31 */
32
33#include <sys/cdefs.h>
34/* Communications core for Avago Technologies (LSI) MPT2 */
35
36/* TODO Move headers to mpsvar */
37#include <sys/types.h>
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/selinfo.h>
42#include <sys/lock.h>
43#include <sys/mutex.h>
44#include <sys/module.h>
45#include <sys/bus.h>
46#include <sys/conf.h>
47#include <sys/bio.h>
48#include <sys/malloc.h>
49#include <sys/uio.h>
50#include <sys/sysctl.h>
51#include <sys/smp.h>
52#include <sys/queue.h>
53#include <sys/kthread.h>
54#include <sys/taskqueue.h>
55#include <sys/endian.h>
56#include <sys/eventhandler.h>
57#include <sys/sbuf.h>
58#include <sys/priv.h>
59
60#include <machine/bus.h>
61#include <machine/resource.h>
62#include <sys/rman.h>
63#include <sys/proc.h>
64
65#include <dev/pci/pcivar.h>
66
67#include <cam/cam.h>
68#include <cam/scsi/scsi_all.h>
69
70#include <dev/mps/mpi/mpi2_type.h>
71#include <dev/mps/mpi/mpi2.h>
72#include <dev/mps/mpi/mpi2_ioc.h>
73#include <dev/mps/mpi/mpi2_sas.h>
74#include <dev/mps/mpi/mpi2_cnfg.h>
75#include <dev/mps/mpi/mpi2_init.h>
76#include <dev/mps/mpi/mpi2_tool.h>
77#include <dev/mps/mps_ioctl.h>
78#include <dev/mps/mpsvar.h>
79#include <dev/mps/mps_table.h>
80
81static int mps_diag_reset(struct mps_softc *sc, int sleep_flag);
82static int mps_init_queues(struct mps_softc *sc);
83static void mps_resize_queues(struct mps_softc *sc);
84static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag);
85static int mps_transition_operational(struct mps_softc *sc);
86static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching);
87static void mps_iocfacts_free(struct mps_softc *sc);
88static void mps_startup(void *arg);
89static int mps_send_iocinit(struct mps_softc *sc);
90static int mps_alloc_queues(struct mps_softc *sc);
91static int mps_alloc_hw_queues(struct mps_softc *sc);
92static int mps_alloc_replies(struct mps_softc *sc);
93static int mps_alloc_requests(struct mps_softc *sc);
94static int mps_attach_log(struct mps_softc *sc);
95static __inline void mps_complete_command(struct mps_softc *sc,
96    struct mps_command *cm);
97static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
98    MPI2_EVENT_NOTIFICATION_REPLY *reply);
99static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
100static void mps_periodic(void *);
101static int mps_reregister_events(struct mps_softc *sc);
102static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
103static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
104static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag);
105static int mps_debug_sysctl(SYSCTL_HANDLER_ARGS);
106static int mps_dump_reqs(SYSCTL_HANDLER_ARGS);
107static void mps_parse_debug(struct mps_softc *sc, char *list);
108
109SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
110    "MPS Driver Parameters");
111
112MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
113MALLOC_DECLARE(M_MPSUSER);
114
115/*
116 * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
117 * any state and back to its initialization state machine.
118 */
119static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
120
121/* Added this union to smoothly convert le64toh cm->cm_desc.Words.
122 * Compiler only support unint64_t to be passed as argument.
123 * Otherwise it will throw below error
124 * "aggregate value used where an integer was expected"
125 */
126
127typedef union {
128        u64 word;
129        struct {
130                u32 low;
131                u32 high;
132        } u;
133} request_descriptor_t;
134
135/* Rate limit chain-fail messages to 1 per minute */
136static struct timeval mps_chainfail_interval = { 60, 0 };
137
138/*
139 * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
140 * If this function is called from process context, it can sleep
141 * and there is no harm to sleep, in case if this fuction is called
142 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
143 * based on sleep flags driver will call either msleep, pause or DELAY.
144 * msleep and pause are of same variant, but pause is used when mps_mtx
145 * is not hold by driver.
146 *
147 */
148static int
149mps_diag_reset(struct mps_softc *sc,int sleep_flag)
150{
151	uint32_t reg;
152	int i, error, tries = 0;
153	uint8_t first_wait_done = FALSE;
154
155	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
156
157	/* Clear any pending interrupts */
158	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
159
160	/*
161	 * Force NO_SLEEP for threads prohibited to sleep
162 	 * e.a Thread from interrupt handler are prohibited to sleep.
163 	 */
164	if (curthread->td_no_sleeping != 0)
165		sleep_flag = NO_SLEEP;
166
167	mps_dprint(sc, MPS_INIT, "sequence start, sleep_flag= %d\n", sleep_flag);
168
169	/* Push the magic sequence */
170	error = ETIMEDOUT;
171	while (tries++ < 20) {
172		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
173			mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
174			    mpt2_reset_magic[i]);
175		/* wait 100 msec */
176		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
177			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
178			    "mpsdiag", hz/10);
179		else if (sleep_flag == CAN_SLEEP)
180			pause("mpsdiag", hz/10);
181		else
182			DELAY(100 * 1000);
183
184		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
185		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
186			error = 0;
187			break;
188		}
189	}
190	if (error) {
191		mps_dprint(sc, MPS_INIT, "sequence failed, error=%d, exit\n",
192		    error);
193		return (error);
194	}
195
196	/* Send the actual reset.  XXX need to refresh the reg? */
197	reg |= MPI2_DIAG_RESET_ADAPTER;
198	mps_dprint(sc, MPS_INIT, "sequence success, sending reset, reg= 0x%x\n",
199		reg);
200	mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
201
202	/* Wait up to 300 seconds in 50ms intervals */
203	error = ETIMEDOUT;
204	for (i = 0; i < 6000; i++) {
205		/*
206		 * Wait 50 msec. If this is the first time through, wait 256
207		 * msec to satisfy Diag Reset timing requirements.
208		 */
209		if (first_wait_done) {
210			if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
211				msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
212				    "mpsdiag", hz/20);
213			else if (sleep_flag == CAN_SLEEP)
214				pause("mpsdiag", hz/20);
215			else
216				DELAY(50 * 1000);
217		} else {
218			DELAY(256 * 1000);
219			first_wait_done = TRUE;
220		}
221		/*
222		 * Check for the RESET_ADAPTER bit to be cleared first, then
223		 * wait for the RESET state to be cleared, which takes a little
224		 * longer.
225		 */
226		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
227		if (reg & MPI2_DIAG_RESET_ADAPTER) {
228			continue;
229		}
230		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
231		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
232			error = 0;
233			break;
234		}
235	}
236	if (error) {
237		mps_dprint(sc, MPS_INIT, "reset failed, error= %d, exit\n",
238		    error);
239		return (error);
240	}
241
242	mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
243	mps_dprint(sc, MPS_INIT, "diag reset success, exit\n");
244
245	return (0);
246}
247
248static int
249mps_message_unit_reset(struct mps_softc *sc, int sleep_flag)
250{
251	int error;
252
253	MPS_FUNCTRACE(sc);
254
255	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
256
257	error = 0;
258	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
259	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
260	    MPI2_DOORBELL_FUNCTION_SHIFT);
261
262	if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) {
263		mps_dprint(sc, MPS_INIT|MPS_FAULT,
264		    "Doorbell handshake failed\n");
265		error = ETIMEDOUT;
266	}
267
268	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
269	return (error);
270}
271
272static int
273mps_transition_ready(struct mps_softc *sc)
274{
275	uint32_t reg, state;
276	int error, tries = 0;
277	int sleep_flags;
278
279	MPS_FUNCTRACE(sc);
280	/* If we are in attach call, do not sleep */
281	sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE)
282					? CAN_SLEEP:NO_SLEEP;
283	error = 0;
284
285	mps_dprint(sc, MPS_INIT, "%s entered, sleep_flags= %d\n",
286	   __func__, sleep_flags);
287
288	while (tries++ < 1200) {
289		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
290		mps_dprint(sc, MPS_INIT, "  Doorbell= 0x%x\n", reg);
291
292		/*
293		 * Ensure the IOC is ready to talk.  If it's not, try
294		 * resetting it.
295		 */
296		if (reg & MPI2_DOORBELL_USED) {
297			mps_dprint(sc, MPS_INIT, "  Not ready, sending diag "
298			    "reset\n");
299			mps_diag_reset(sc, sleep_flags);
300			DELAY(50000);
301			continue;
302		}
303
304		/* Is the adapter owned by another peer? */
305		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
306		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
307			mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC is under the "
308			    "control of another peer host, aborting "
309			    "initialization.\n");
310			error = ENXIO;
311			break;
312		}
313
314		state = reg & MPI2_IOC_STATE_MASK;
315		if (state == MPI2_IOC_STATE_READY) {
316			/* Ready to go! */
317			error = 0;
318			break;
319		} else if (state == MPI2_IOC_STATE_FAULT) {
320			mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC in fault "
321			    "state 0x%x, resetting\n",
322			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
323			mps_diag_reset(sc, sleep_flags);
324		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
325			/* Need to take ownership */
326			mps_message_unit_reset(sc, sleep_flags);
327		} else if (state == MPI2_IOC_STATE_RESET) {
328			/* Wait a bit, IOC might be in transition */
329			mps_dprint(sc, MPS_INIT|MPS_FAULT,
330			    "IOC in unexpected reset state\n");
331		} else {
332			mps_dprint(sc, MPS_INIT|MPS_FAULT,
333			    "IOC in unknown state 0x%x\n", state);
334			error = EINVAL;
335			break;
336		}
337
338		/* Wait 50ms for things to settle down. */
339		DELAY(50000);
340	}
341
342	if (error)
343		mps_dprint(sc, MPS_INIT|MPS_FAULT,
344		    "Cannot transition IOC to ready\n");
345	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
346
347	return (error);
348}
349
350static int
351mps_transition_operational(struct mps_softc *sc)
352{
353	uint32_t reg, state;
354	int error;
355
356	MPS_FUNCTRACE(sc);
357
358	error = 0;
359	reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
360	mps_dprint(sc, MPS_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
361
362	state = reg & MPI2_IOC_STATE_MASK;
363	if (state != MPI2_IOC_STATE_READY) {
364		mps_dprint(sc, MPS_INIT, "IOC not ready\n");
365		if ((error = mps_transition_ready(sc)) != 0) {
366			mps_dprint(sc, MPS_INIT|MPS_FAULT,
367			    "failed to transition ready, exit\n");
368			return (error);
369		}
370	}
371
372	error = mps_send_iocinit(sc);
373	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
374
375	return (error);
376}
377
378static void
379mps_resize_queues(struct mps_softc *sc)
380{
381	u_int reqcr, prireqcr, maxio, sges_per_frame;
382
383	/*
384	 * Size the queues. Since the reply queues always need one free
385	 * entry, we'll deduct one reply message here.  The LSI documents
386	 * suggest instead to add a count to the request queue, but I think
387	 * that it's better to deduct from reply queue.
388	 */
389	prireqcr = MAX(1, sc->max_prireqframes);
390	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
391
392	reqcr = MAX(2, sc->max_reqframes);
393	reqcr = MIN(reqcr, sc->facts->RequestCredit);
394
395	sc->num_reqs = prireqcr + reqcr;
396	sc->num_prireqs = prireqcr;
397	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
398	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
399
400	/* Store the request frame size in bytes rather than as 32bit words */
401	sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
402
403	/*
404	 * Max IO Size is Page Size * the following:
405	 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
406	 * + 1 for no chain needed in last frame
407	 *
408	 * If user suggests a Max IO size to use, use the smaller of the
409	 * user's value and the calculated value as long as the user's
410	 * value is larger than 0. The user's value is in pages.
411	 */
412	sges_per_frame = sc->reqframesz / sizeof(MPI2_SGE_SIMPLE64) - 1;
413	maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
414
415	/*
416	 * If I/O size limitation requested, then use it and pass up to CAM.
417	 * If not, use maxphys as an optimization hint, but report HW limit.
418	 */
419	if (sc->max_io_pages > 0) {
420		maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
421		sc->maxio = maxio;
422	} else {
423		sc->maxio = maxio;
424		maxio = min(maxio, maxphys);
425	}
426
427	sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
428	    sges_per_frame * reqcr;
429	if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
430		sc->num_chains = sc->max_chains;
431
432	/*
433	 * Figure out the number of MSIx-based queues.  If the firmware or
434	 * user has done something crazy and not allowed enough credit for
435	 * the queues to be useful then don't enable multi-queue.
436	 */
437	if (sc->facts->MaxMSIxVectors < 2)
438		sc->msi_msgs = 1;
439
440	if (sc->msi_msgs > 1) {
441		sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
442		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
443		if (sc->num_reqs / sc->msi_msgs < 2)
444			sc->msi_msgs = 1;
445	}
446
447	mps_dprint(sc, MPS_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
448	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
449}
450
451/*
452 * This is called during attach and when re-initializing due to a Diag Reset.
453 * IOC Facts is used to allocate many of the structures needed by the driver.
454 * If called from attach, de-allocation is not required because the driver has
455 * not allocated any structures yet, but if called from a Diag Reset, previously
456 * allocated structures based on IOC Facts will need to be freed and re-
457 * allocated bases on the latest IOC Facts.
458 */
459static int
460mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching)
461{
462	int error;
463	Mpi2IOCFactsReply_t saved_facts;
464	uint8_t saved_mode, reallocating;
465
466	mps_dprint(sc, MPS_INIT|MPS_TRACE, "%s entered\n", __func__);
467
468	/* Save old IOC Facts and then only reallocate if Facts have changed */
469	if (!attaching) {
470		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
471	}
472
473	/*
474	 * Get IOC Facts.  In all cases throughout this function, panic if doing
475	 * a re-initialization and only return the error if attaching so the OS
476	 * can handle it.
477	 */
478	if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) {
479		if (attaching) {
480			mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to get "
481			    "IOC Facts with error %d, exit\n", error);
482			return (error);
483		} else {
484			panic("%s failed to get IOC Facts with error %d\n",
485			    __func__, error);
486		}
487	}
488
489	MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts);
490
491	snprintf(sc->fw_version, sizeof(sc->fw_version),
492	    "%02d.%02d.%02d.%02d",
493	    sc->facts->FWVersion.Struct.Major,
494	    sc->facts->FWVersion.Struct.Minor,
495	    sc->facts->FWVersion.Struct.Unit,
496	    sc->facts->FWVersion.Struct.Dev);
497
498	snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d",
499	    (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >>
500	    MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT,
501	    (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >>
502	    MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT);
503
504	mps_dprint(sc, MPS_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
505	    MPS_DRIVER_VERSION);
506	mps_dprint(sc, MPS_INFO, "IOCCapabilities: %b\n",
507	     sc->facts->IOCCapabilities,
508	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
509	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
510	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
511
512	/*
513	 * If the chip doesn't support event replay then a hard reset will be
514	 * required to trigger a full discovery.  Do the reset here then
515	 * retransition to Ready.  A hard reset might have already been done,
516	 * but it doesn't hurt to do it again.  Only do this if attaching, not
517	 * for a Diag Reset.
518	 */
519	if (attaching && ((sc->facts->IOCCapabilities &
520	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
521		mps_dprint(sc, MPS_INIT, "No event replay, reseting\n");
522		mps_diag_reset(sc, NO_SLEEP);
523		if ((error = mps_transition_ready(sc)) != 0) {
524			mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
525			    "transition to ready with error %d, exit\n",
526			    error);
527			return (error);
528		}
529	}
530
531	/*
532	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
533	 * changed from the previous IOC Facts, log a warning, but only if
534	 * checking this after a Diag Reset and not during attach.
535	 */
536	saved_mode = sc->ir_firmware;
537	if (sc->facts->IOCCapabilities &
538	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
539		sc->ir_firmware = 1;
540	if (!attaching) {
541		if (sc->ir_firmware != saved_mode) {
542			mps_dprint(sc, MPS_INIT|MPS_FAULT, "new IR/IT mode "
543			    "in IOC Facts does not match previous mode\n");
544		}
545	}
546
547	/* Only deallocate and reallocate if relevant IOC Facts have changed */
548	reallocating = FALSE;
549	sc->mps_flags &= ~MPS_FLAGS_REALLOCATED;
550
551	if ((!attaching) &&
552	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
553	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
554	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
555	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
556	    (saved_facts.ProductID != sc->facts->ProductID) ||
557	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
558	    (saved_facts.IOCRequestFrameSize !=
559	    sc->facts->IOCRequestFrameSize) ||
560	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
561	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
562	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
563	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
564	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
565	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
566	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
567	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
568	    (saved_facts.MaxPersistentEntries !=
569	    sc->facts->MaxPersistentEntries))) {
570		reallocating = TRUE;
571
572		/* Record that we reallocated everything */
573		sc->mps_flags |= MPS_FLAGS_REALLOCATED;
574	}
575
576	/*
577	 * Some things should be done if attaching or re-allocating after a Diag
578	 * Reset, but are not needed after a Diag Reset if the FW has not
579	 * changed.
580	 */
581	if (attaching || reallocating) {
582		/*
583		 * Check if controller supports FW diag buffers and set flag to
584		 * enable each type.
585		 */
586		if (sc->facts->IOCCapabilities &
587		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
588			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
589			    enabled = TRUE;
590		if (sc->facts->IOCCapabilities &
591		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
592			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
593			    enabled = TRUE;
594		if (sc->facts->IOCCapabilities &
595		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
596			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
597			    enabled = TRUE;
598
599		/*
600		 * Set flag if EEDP is supported and if TLR is supported.
601		 */
602		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
603			sc->eedp_enabled = TRUE;
604		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
605			sc->control_TLR = TRUE;
606
607		mps_resize_queues(sc);
608
609		/*
610		 * Initialize all Tail Queues
611		 */
612		TAILQ_INIT(&sc->req_list);
613		TAILQ_INIT(&sc->high_priority_req_list);
614		TAILQ_INIT(&sc->chain_list);
615		TAILQ_INIT(&sc->tm_list);
616	}
617
618	/*
619	 * If doing a Diag Reset and the FW is significantly different
620	 * (reallocating will be set above in IOC Facts comparison), then all
621	 * buffers based on the IOC Facts will need to be freed before they are
622	 * reallocated.
623	 */
624	if (reallocating) {
625		mps_iocfacts_free(sc);
626		mpssas_realloc_targets(sc, saved_facts.MaxTargets +
627		    saved_facts.MaxVolumes);
628	}
629
630	/*
631	 * Any deallocation has been completed.  Now start reallocating
632	 * if needed.  Will only need to reallocate if attaching or if the new
633	 * IOC Facts are different from the previous IOC Facts after a Diag
634	 * Reset. Targets have already been allocated above if needed.
635	 */
636	error = 0;
637	while (attaching || reallocating) {
638		if ((error = mps_alloc_hw_queues(sc)) != 0)
639			break;
640		if ((error = mps_alloc_replies(sc)) != 0)
641			break;
642		if ((error = mps_alloc_requests(sc)) != 0)
643			break;
644		if ((error = mps_alloc_queues(sc)) != 0)
645			break;
646
647		break;
648	}
649	if (error) {
650		mps_dprint(sc, MPS_INIT|MPS_FAULT,
651		    "Failed to alloc queues with error %d\n", error);
652		mps_free(sc);
653		return (error);
654	}
655
656	/* Always initialize the queues */
657	bzero(sc->free_queue, sc->fqdepth * 4);
658	mps_init_queues(sc);
659
660	/*
661	 * Always get the chip out of the reset state, but only panic if not
662	 * attaching.  If attaching and there is an error, that is handled by
663	 * the OS.
664	 */
665	error = mps_transition_operational(sc);
666	if (error != 0) {
667		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
668		    "transition to operational with error %d\n", error);
669		mps_free(sc);
670		return (error);
671	}
672
673	/*
674	 * Finish the queue initialization.
675	 * These are set here instead of in mps_init_queues() because the
676	 * IOC resets these values during the state transition in
677	 * mps_transition_operational().  The free index is set to 1
678	 * because the corresponding index in the IOC is set to 0, and the
679	 * IOC treats the queues as full if both are set to the same value.
680	 * Hence the reason that the queue can't hold all of the possible
681	 * replies.
682	 */
683	sc->replypostindex = 0;
684	mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
685	mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
686
687	/*
688	 * Attach the subsystems so they can prepare their event masks.
689	 * XXX Should be dynamic so that IM/IR and user modules can attach
690	 */
691	error = 0;
692	while (attaching) {
693		mps_dprint(sc, MPS_INIT, "Attaching subsystems\n");
694		if ((error = mps_attach_log(sc)) != 0)
695			break;
696		if ((error = mps_attach_sas(sc)) != 0)
697			break;
698		if ((error = mps_attach_user(sc)) != 0)
699			break;
700		break;
701	}
702	if (error) {
703		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to attach all "
704		    "subsystems: error %d\n", error);
705		mps_free(sc);
706		return (error);
707	}
708
709	/*
710	 * XXX If the number of MSI-X vectors changes during re-init, this
711	 * won't see it and adjust.
712	 */
713	if (attaching && (error = mps_pci_setup_interrupts(sc)) != 0) {
714		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to setup "
715		    "interrupts\n");
716		mps_free(sc);
717		return (error);
718	}
719
720	/*
721	 * Set flag if this is a WD controller.  This shouldn't ever change, but
722	 * reset it after a Diag Reset, just in case.
723	 */
724	sc->WD_available = FALSE;
725	if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200)
726		sc->WD_available = TRUE;
727
728	return (error);
729}
730
731/*
732 * This is called if memory is being free (during detach for example) and when
733 * buffers need to be reallocated due to a Diag Reset.
734 */
735static void
736mps_iocfacts_free(struct mps_softc *sc)
737{
738	struct mps_command *cm;
739	int i;
740
741	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
742
743	if (sc->free_busaddr != 0)
744		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
745	if (sc->free_queue != NULL)
746		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
747		    sc->queues_map);
748	if (sc->queues_dmat != NULL)
749		bus_dma_tag_destroy(sc->queues_dmat);
750
751	if (sc->chain_frames != NULL) {
752		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
753		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
754		    sc->chain_map);
755	}
756	if (sc->chain_dmat != NULL)
757		bus_dma_tag_destroy(sc->chain_dmat);
758
759	if (sc->sense_busaddr != 0)
760		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
761	if (sc->sense_frames != NULL)
762		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
763		    sc->sense_map);
764	if (sc->sense_dmat != NULL)
765		bus_dma_tag_destroy(sc->sense_dmat);
766
767	if (sc->reply_busaddr != 0)
768		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
769	if (sc->reply_frames != NULL)
770		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
771		    sc->reply_map);
772	if (sc->reply_dmat != NULL)
773		bus_dma_tag_destroy(sc->reply_dmat);
774
775	if (sc->req_busaddr != 0)
776		bus_dmamap_unload(sc->req_dmat, sc->req_map);
777	if (sc->req_frames != NULL)
778		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
779	if (sc->req_dmat != NULL)
780		bus_dma_tag_destroy(sc->req_dmat);
781
782	if (sc->chains != NULL)
783		free(sc->chains, M_MPT2);
784	if (sc->commands != NULL) {
785		for (i = 1; i < sc->num_reqs; i++) {
786			cm = &sc->commands[i];
787			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
788		}
789		free(sc->commands, M_MPT2);
790	}
791	if (sc->buffer_dmat != NULL)
792		bus_dma_tag_destroy(sc->buffer_dmat);
793
794	mps_pci_free_interrupts(sc);
795	free(sc->queues, M_MPT2);
796	sc->queues = NULL;
797}
798
799/*
800 * The terms diag reset and hard reset are used interchangeably in the MPI
801 * docs to mean resetting the controller chip.  In this code diag reset
802 * cleans everything up, and the hard reset function just sends the reset
803 * sequence to the chip.  This should probably be refactored so that every
804 * subsystem gets a reset notification of some sort, and can clean up
805 * appropriately.
806 */
807int
808mps_reinit(struct mps_softc *sc)
809{
810	int error;
811	struct mpssas_softc *sassc;
812
813	sassc = sc->sassc;
814
815	MPS_FUNCTRACE(sc);
816
817	mtx_assert(&sc->mps_mtx, MA_OWNED);
818
819	mps_dprint(sc, MPS_INIT|MPS_INFO, "Reinitializing controller\n");
820	if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
821		mps_dprint(sc, MPS_INIT, "Reset already in progress\n");
822		return 0;
823	}
824
825	/* make sure the completion callbacks can recognize they're getting
826	 * a NULL cm_reply due to a reset.
827	 */
828	sc->mps_flags |= MPS_FLAGS_DIAGRESET;
829
830	/*
831	 * Mask interrupts here.
832	 */
833	mps_dprint(sc, MPS_INIT, "masking interrupts and resetting\n");
834	mps_mask_intr(sc);
835
836	error = mps_diag_reset(sc, CAN_SLEEP);
837	if (error != 0) {
838		/* XXXSL No need to panic here */
839		panic("%s hard reset failed with error %d\n",
840		    __func__, error);
841	}
842
843	/* Restore the PCI state, including the MSI-X registers */
844	mps_pci_restore(sc);
845
846	/* Give the I/O subsystem special priority to get itself prepared */
847	mpssas_handle_reinit(sc);
848
849	/*
850	 * Get IOC Facts and allocate all structures based on this information.
851	 * The attach function will also call mps_iocfacts_allocate at startup.
852	 * If relevant values have changed in IOC Facts, this function will free
853	 * all of the memory based on IOC Facts and reallocate that memory.
854	 */
855	if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) {
856		panic("%s IOC Facts based allocation failed with error %d\n",
857		    __func__, error);
858	}
859
860	/*
861	 * Mapping structures will be re-allocated after getting IOC Page8, so
862	 * free these structures here.
863	 */
864	mps_mapping_exit(sc);
865
866	/*
867	 * The static page function currently read is IOC Page8.  Others can be
868	 * added in future.  It's possible that the values in IOC Page8 have
869	 * changed after a Diag Reset due to user modification, so always read
870	 * these.  Interrupts are masked, so unmask them before getting config
871	 * pages.
872	 */
873	mps_unmask_intr(sc);
874	sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
875	mps_base_static_config_pages(sc);
876
877	/*
878	 * Some mapping info is based in IOC Page8 data, so re-initialize the
879	 * mapping tables.
880	 */
881	mps_mapping_initialize(sc);
882
883	/*
884	 * Restart will reload the event masks clobbered by the reset, and
885	 * then enable the port.
886	 */
887	mps_reregister_events(sc);
888
889	/* the end of discovery will release the simq, so we're done. */
890	mps_dprint(sc, MPS_INIT|MPS_XINFO, "Finished sc %p post %u free %u\n",
891	    sc, sc->replypostindex, sc->replyfreeindex);
892
893	mpssas_release_simq_reinit(sassc);
894	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
895
896	return 0;
897}
898
899/* Wait for the chip to ACK a word that we've put into its FIFO
900 * Wait for <timeout> seconds. In single loop wait for busy loop
901 * for 500 microseconds.
902 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
903 * */
904static int
905mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag)
906{
907
908	u32 cntdn, count;
909	u32 int_status;
910	u32 doorbell;
911
912	count = 0;
913	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
914	do {
915		int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
916		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
917			mps_dprint(sc, MPS_TRACE,
918			"%s: successful count(%d), timeout(%d)\n",
919			__func__, count, timeout);
920		return 0;
921		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
922			doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET);
923			if ((doorbell & MPI2_IOC_STATE_MASK) ==
924				MPI2_IOC_STATE_FAULT) {
925				mps_dprint(sc, MPS_FAULT,
926					"fault_state(0x%04x)!\n", doorbell);
927				return (EFAULT);
928			}
929		} else if (int_status == 0xFFFFFFFF)
930			goto out;
931
932		/* If it can sleep, sleep for 1 milisecond, else busy loop for
933		* 0.5 milisecond */
934		if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
935			msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
936			"mpsdba", hz/1000);
937		else if (sleep_flag == CAN_SLEEP)
938			pause("mpsdba", hz/1000);
939		else
940			DELAY(500);
941		count++;
942	} while (--cntdn);
943
944	out:
945	mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), "
946		"int_status(%x)!\n", __func__, count, int_status);
947	return (ETIMEDOUT);
948
949}
950
951/* Wait for the chip to signal that the next word in its FIFO can be fetched */
952static int
953mps_wait_db_int(struct mps_softc *sc)
954{
955	int retry;
956
957	for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
958		if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
959		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
960			return (0);
961		DELAY(2000);
962	}
963	return (ETIMEDOUT);
964}
965
966/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
967static int
968mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
969    int req_sz, int reply_sz, int timeout)
970{
971	uint32_t *data32;
972	uint16_t *data16;
973	int i, count, ioc_sz, residual;
974	int sleep_flags = CAN_SLEEP;
975
976	if (curthread->td_no_sleeping != 0)
977		sleep_flags = NO_SLEEP;
978
979	/* Step 1 */
980	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
981
982	/* Step 2 */
983	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
984		return (EBUSY);
985
986	/* Step 3
987	 * Announce that a message is coming through the doorbell.  Messages
988	 * are pushed at 32bit words, so round up if needed.
989	 */
990	count = (req_sz + 3) / 4;
991	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
992	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
993	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
994
995	/* Step 4 */
996	if (mps_wait_db_int(sc) ||
997	    (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
998		mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
999		return (ENXIO);
1000	}
1001	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1002	if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
1003		mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
1004		return (ENXIO);
1005	}
1006
1007	/* Step 5 */
1008	/* Clock out the message data synchronously in 32-bit dwords*/
1009	data32 = (uint32_t *)req;
1010	for (i = 0; i < count; i++) {
1011		mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1012		if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
1013			mps_dprint(sc, MPS_FAULT,
1014			    "Timeout while writing doorbell\n");
1015			return (ENXIO);
1016		}
1017	}
1018
1019	/* Step 6 */
1020	/* Clock in the reply in 16-bit words.  The total length of the
1021	 * message is always in the 4th byte, so clock out the first 2 words
1022	 * manually, then loop the rest.
1023	 */
1024	data16 = (uint16_t *)reply;
1025	if (mps_wait_db_int(sc) != 0) {
1026		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
1027		return (ENXIO);
1028	}
1029	data16[0] =
1030	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1031	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1032	if (mps_wait_db_int(sc) != 0) {
1033		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
1034		return (ENXIO);
1035	}
1036	data16[1] =
1037	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1038	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1039
1040	/* Number of 32bit words in the message */
1041	ioc_sz = reply->MsgLength;
1042
1043	/*
1044	 * Figure out how many 16bit words to clock in without overrunning.
1045	 * The precision loss with dividing reply_sz can safely be
1046	 * ignored because the messages can only be multiples of 32bits.
1047	 */
1048	residual = 0;
1049	count = MIN((reply_sz / 4), ioc_sz) * 2;
1050	if (count < ioc_sz * 2) {
1051		residual = ioc_sz * 2 - count;
1052		mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d "
1053		    "residual message words\n", residual);
1054	}
1055
1056	for (i = 2; i < count; i++) {
1057		if (mps_wait_db_int(sc) != 0) {
1058			mps_dprint(sc, MPS_FAULT,
1059			    "Timeout reading doorbell %d\n", i);
1060			return (ENXIO);
1061		}
1062		data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
1063		    MPI2_DOORBELL_DATA_MASK;
1064		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1065	}
1066
1067	/*
1068	 * Pull out residual words that won't fit into the provided buffer.
1069	 * This keeps the chip from hanging due to a driver programming
1070	 * error.
1071	 */
1072	while (residual--) {
1073		if (mps_wait_db_int(sc) != 0) {
1074			mps_dprint(sc, MPS_FAULT,
1075			    "Timeout reading doorbell\n");
1076			return (ENXIO);
1077		}
1078		(void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
1079		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1080	}
1081
1082	/* Step 7 */
1083	if (mps_wait_db_int(sc) != 0) {
1084		mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
1085		return (ENXIO);
1086	}
1087	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1088		mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
1089	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1090
1091	return (0);
1092}
1093
1094static void
1095mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
1096{
1097	request_descriptor_t rd;
1098	MPS_FUNCTRACE(sc);
1099	mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n",
1100	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1101
1102	if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN))
1103		mtx_assert(&sc->mps_mtx, MA_OWNED);
1104
1105	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1106		sc->io_cmds_highwater++;
1107	rd.u.low = cm->cm_desc.Words.Low;
1108	rd.u.high = cm->cm_desc.Words.High;
1109	rd.word = htole64(rd.word);
1110
1111	KASSERT(cm->cm_state == MPS_CM_STATE_BUSY,
1112	    ("command not busy, state = %u\n", cm->cm_state));
1113	cm->cm_state = MPS_CM_STATE_INQUEUE;
1114
1115	/* TODO-We may need to make below regwrite atomic */
1116	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1117	    rd.u.low);
1118	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1119	    rd.u.high);
1120}
1121
1122/*
1123 * Just the FACTS, ma'am.
1124 */
1125static int
1126mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1127{
1128	MPI2_DEFAULT_REPLY *reply;
1129	MPI2_IOC_FACTS_REQUEST request;
1130	int error, req_sz, reply_sz;
1131
1132	MPS_FUNCTRACE(sc);
1133	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1134
1135	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1136	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1137	reply = (MPI2_DEFAULT_REPLY *)facts;
1138
1139	bzero(&request, req_sz);
1140	request.Function = MPI2_FUNCTION_IOC_FACTS;
1141	error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1142	mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
1143
1144	return (error);
1145}
1146
1147static int
1148mps_send_iocinit(struct mps_softc *sc)
1149{
1150	MPI2_IOC_INIT_REQUEST	init;
1151	MPI2_DEFAULT_REPLY	reply;
1152	int req_sz, reply_sz, error;
1153	struct timeval now;
1154	uint64_t time_in_msec;
1155
1156	MPS_FUNCTRACE(sc);
1157	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1158
1159	/* Do a quick sanity check on proper initialization */
1160	if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1161	    || (sc->replyframesz == 0)) {
1162		mps_dprint(sc, MPS_INIT|MPS_ERROR,
1163		    "Driver not fully initialized for IOCInit\n");
1164		return (EINVAL);
1165	}
1166
1167	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1168	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1169	bzero(&init, req_sz);
1170	bzero(&reply, reply_sz);
1171
1172	/*
1173	 * Fill in the init block.  Note that most addresses are
1174	 * deliberately in the lower 32bits of memory.  This is a micro-
1175	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1176	 */
1177	init.Function = MPI2_FUNCTION_IOC_INIT;
1178	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1179	init.MsgVersion = htole16(MPI2_VERSION);
1180	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1181	init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1182	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1183	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1184	init.SenseBufferAddressHigh = 0;
1185	init.SystemReplyAddressHigh = 0;
1186	init.SystemRequestFrameBaseAddress.High = 0;
1187	init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr);
1188	init.ReplyDescriptorPostQueueAddress.High = 0;
1189	init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr);
1190	init.ReplyFreeQueueAddress.High = 0;
1191	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1192	getmicrotime(&now);
1193	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1194	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1195	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1196
1197	error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1198	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1199		error = ENXIO;
1200
1201	mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1202	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
1203	return (error);
1204}
1205
1206void
1207mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1208{
1209	bus_addr_t *addr;
1210
1211	addr = arg;
1212	*addr = segs[0].ds_addr;
1213}
1214
1215void
1216mps_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1217{
1218	struct mps_busdma_context *ctx;
1219	int need_unload, need_free;
1220
1221	ctx = (struct mps_busdma_context *)arg;
1222	need_unload = 0;
1223	need_free = 0;
1224
1225	mps_lock(ctx->softc);
1226	ctx->error = error;
1227	ctx->completed = 1;
1228	if ((error == 0) && (ctx->abandoned == 0)) {
1229		*ctx->addr = segs[0].ds_addr;
1230	} else {
1231		if (nsegs != 0)
1232			need_unload = 1;
1233		if (ctx->abandoned != 0)
1234			need_free = 1;
1235	}
1236	if (need_free == 0)
1237		wakeup(ctx);
1238
1239	mps_unlock(ctx->softc);
1240
1241	if (need_unload != 0) {
1242		bus_dmamap_unload(ctx->buffer_dmat,
1243				  ctx->buffer_dmamap);
1244		*ctx->addr = 0;
1245	}
1246
1247	if (need_free != 0)
1248		free(ctx, M_MPSUSER);
1249}
1250
1251static int
1252mps_alloc_queues(struct mps_softc *sc)
1253{
1254	struct mps_queue *q;
1255	u_int nq, i;
1256
1257	nq = sc->msi_msgs;
1258	mps_dprint(sc, MPS_INIT|MPS_XINFO, "Allocating %d I/O queues\n", nq);
1259
1260	sc->queues = malloc(sizeof(struct mps_queue) * nq, M_MPT2,
1261	    M_NOWAIT|M_ZERO);
1262	if (sc->queues == NULL)
1263		return (ENOMEM);
1264
1265	for (i = 0; i < nq; i++) {
1266		q = &sc->queues[i];
1267		mps_dprint(sc, MPS_INIT, "Configuring queue %d %p\n", i, q);
1268		q->sc = sc;
1269		q->qnum = i;
1270	}
1271
1272	return (0);
1273}
1274
1275static int
1276mps_alloc_hw_queues(struct mps_softc *sc)
1277{
1278	bus_dma_template_t t;
1279	bus_addr_t queues_busaddr;
1280	uint8_t *queues;
1281	int qsize, fqsize, pqsize;
1282
1283	/*
1284	 * The reply free queue contains 4 byte entries in multiples of 16 and
1285	 * aligned on a 16 byte boundary. There must always be an unused entry.
1286	 * This queue supplies fresh reply frames for the firmware to use.
1287	 *
1288	 * The reply descriptor post queue contains 8 byte entries in
1289	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1290	 * contains filled-in reply frames sent from the firmware to the host.
1291	 *
1292	 * These two queues are allocated together for simplicity.
1293	 */
1294	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1295	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1296	fqsize= sc->fqdepth * 4;
1297	pqsize = sc->pqdepth * 8;
1298	qsize = fqsize + pqsize;
1299
1300	bus_dma_template_init(&t, sc->mps_parent_dmat);
1301	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize),
1302	    BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1),
1303	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1304	if (bus_dma_template_tag(&t, &sc->queues_dmat)) {
1305		mps_dprint(sc, MPS_ERROR, "Cannot allocate queues DMA tag\n");
1306		return (ENOMEM);
1307        }
1308        if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1309	    &sc->queues_map)) {
1310		mps_dprint(sc, MPS_ERROR, "Cannot allocate queues memory\n");
1311		return (ENOMEM);
1312        }
1313        bzero(queues, qsize);
1314        bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1315	    mps_memaddr_cb, &queues_busaddr, 0);
1316
1317	sc->free_queue = (uint32_t *)queues;
1318	sc->free_busaddr = queues_busaddr;
1319	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1320	sc->post_busaddr = queues_busaddr + fqsize;
1321	mps_dprint(sc, MPS_INIT, "free queue busaddr= %#016jx size= %d\n",
1322	    (uintmax_t)sc->free_busaddr, fqsize);
1323	mps_dprint(sc, MPS_INIT, "reply queue busaddr= %#016jx size= %d\n",
1324	    (uintmax_t)sc->post_busaddr, pqsize);
1325
1326	return (0);
1327}
1328
1329static int
1330mps_alloc_replies(struct mps_softc *sc)
1331{
1332	bus_dma_template_t t;
1333	int rsize, num_replies;
1334
1335	/* Store the reply frame size in bytes rather than as 32bit words */
1336	sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1337
1338	/*
1339	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1340	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1341	 * replies can be used at once.
1342	 */
1343	num_replies = max(sc->fqdepth, sc->num_replies);
1344
1345	rsize = sc->replyframesz * num_replies;
1346	bus_dma_template_init(&t, sc->mps_parent_dmat);
1347	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
1348	    BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1349	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1350	if (bus_dma_template_tag(&t, &sc->reply_dmat)) {
1351		mps_dprint(sc, MPS_ERROR, "Cannot allocate replies DMA tag\n");
1352		return (ENOMEM);
1353        }
1354        if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1355	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1356		mps_dprint(sc, MPS_ERROR, "Cannot allocate replies memory\n");
1357		return (ENOMEM);
1358        }
1359        bzero(sc->reply_frames, rsize);
1360        bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1361	    mps_memaddr_cb, &sc->reply_busaddr, 0);
1362
1363	mps_dprint(sc, MPS_INIT, "reply frames busaddr= %#016jx size= %d\n",
1364	    (uintmax_t)sc->reply_busaddr, rsize);
1365
1366	return (0);
1367}
1368
1369static void
1370mps_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1371{
1372	struct mps_softc *sc = arg;
1373	struct mps_chain *chain;
1374	bus_size_t bo;
1375	int i, o, s;
1376
1377	if (error != 0)
1378		return;
1379
1380	for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1381		KASSERT(segs[s].ds_addr + segs[s].ds_len - 1 <= BUS_SPACE_MAXADDR_32BIT,
1382		    ("mps: Bad segment address %#jx len %#jx\n", (uintmax_t)segs[s].ds_addr,
1383			(uintmax_t)segs[s].ds_len));
1384		for (bo = 0; bo + sc->reqframesz <= segs[s].ds_len;
1385		    bo += sc->reqframesz) {
1386			chain = &sc->chains[i++];
1387			chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1388			chain->chain_busaddr = segs[s].ds_addr + bo;
1389			o += sc->reqframesz;
1390			mps_free_chain(sc, chain);
1391		}
1392		if (bo != segs[s].ds_len)
1393			o += segs[s].ds_len - bo;
1394	}
1395	sc->chain_free_lowwater = i;
1396}
1397
1398static int
1399mps_alloc_requests(struct mps_softc *sc)
1400{
1401	bus_dma_template_t t;
1402	struct mps_command *cm;
1403	int i, rsize, nsegs;
1404
1405	rsize = sc->reqframesz * sc->num_reqs;
1406	bus_dma_template_init(&t, sc->mps_parent_dmat);
1407	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
1408	    BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1409	    BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1410        if (bus_dma_template_tag(&t, &sc->req_dmat)) {
1411		mps_dprint(sc, MPS_ERROR, "Cannot allocate request DMA tag\n");
1412		return (ENOMEM);
1413        }
1414        if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1415	    BUS_DMA_NOWAIT, &sc->req_map)) {
1416		mps_dprint(sc, MPS_ERROR, "Cannot allocate request memory\n");
1417		return (ENOMEM);
1418        }
1419        bzero(sc->req_frames, rsize);
1420        bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1421	    mps_memaddr_cb, &sc->req_busaddr, 0);
1422	mps_dprint(sc, MPS_INIT, "request frames busaddr= %#016jx size= %d\n",
1423	    (uintmax_t)sc->req_busaddr, rsize);
1424
1425	sc->chains = malloc(sizeof(struct mps_chain) * sc->num_chains, M_MPT2,
1426	    M_NOWAIT | M_ZERO);
1427	if (!sc->chains) {
1428		mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
1429		return (ENOMEM);
1430	}
1431	rsize = sc->reqframesz * sc->num_chains;
1432	bus_dma_template_clone(&t, sc->req_dmat);
1433	BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(rsize), BD_MAXSEGSIZE(rsize),
1434	    BD_NSEGMENTS(howmany(rsize, PAGE_SIZE)),
1435	    BD_BOUNDARY(BUS_SPACE_MAXSIZE_32BIT+1));
1436	if (bus_dma_template_tag(&t, &sc->chain_dmat)) {
1437		mps_dprint(sc, MPS_ERROR, "Cannot allocate chain DMA tag\n");
1438		return (ENOMEM);
1439	}
1440	if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1441	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1442		mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
1443		return (ENOMEM);
1444	}
1445	if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1446	    rsize, mps_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1447		mps_dprint(sc, MPS_ERROR, "Cannot load chain memory\n");
1448		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1449		    sc->chain_map);
1450		return (ENOMEM);
1451	}
1452
1453	rsize = MPS_SENSE_LEN * sc->num_reqs;
1454	bus_dma_template_clone(&t, sc->req_dmat);
1455	BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize),
1456	    BD_MAXSEGSIZE(rsize));
1457        if (bus_dma_template_tag(&t, &sc->sense_dmat)) {
1458		mps_dprint(sc, MPS_ERROR, "Cannot allocate sense DMA tag\n");
1459		return (ENOMEM);
1460        }
1461        if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1462	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1463		mps_dprint(sc, MPS_ERROR, "Cannot allocate sense memory\n");
1464		return (ENOMEM);
1465        }
1466        bzero(sc->sense_frames, rsize);
1467        bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1468	    mps_memaddr_cb, &sc->sense_busaddr, 0);
1469	mps_dprint(sc, MPS_INIT, "sense frames busaddr= %#016jx size= %d\n",
1470	    (uintmax_t)sc->sense_busaddr, rsize);
1471
1472	nsegs = (sc->maxio / PAGE_SIZE) + 1;
1473	bus_dma_template_init(&t, sc->mps_parent_dmat);
1474	BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT),
1475	    BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_24BIT),
1476	    BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex),
1477	    BD_LOCKFUNCARG(&sc->mps_mtx),
1478	    BD_BOUNDARY(BUS_SPACE_MAXSIZE_32BIT+1));
1479        if (bus_dma_template_tag(&t, &sc->buffer_dmat)) {
1480		mps_dprint(sc, MPS_ERROR, "Cannot allocate buffer DMA tag\n");
1481		return (ENOMEM);
1482        }
1483
1484	/*
1485	 * SMID 0 cannot be used as a free command per the firmware spec.
1486	 * Just drop that command instead of risking accounting bugs.
1487	 */
1488	sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs,
1489	    M_MPT2, M_WAITOK | M_ZERO);
1490	for (i = 1; i < sc->num_reqs; i++) {
1491		cm = &sc->commands[i];
1492		cm->cm_req = sc->req_frames + i * sc->reqframesz;
1493		cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1494		cm->cm_sense = &sc->sense_frames[i];
1495		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
1496		cm->cm_desc.Default.SMID = i;
1497		cm->cm_sc = sc;
1498		cm->cm_state = MPS_CM_STATE_BUSY;
1499		TAILQ_INIT(&cm->cm_chain_list);
1500		callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0);
1501
1502		/* XXX Is a failure here a critical problem? */
1503		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
1504			if (i <= sc->num_prireqs)
1505				mps_free_high_priority_command(sc, cm);
1506			else
1507				mps_free_command(sc, cm);
1508		else {
1509			panic("failed to allocate command %d\n", i);
1510			sc->num_reqs = i;
1511			break;
1512		}
1513	}
1514
1515	return (0);
1516}
1517
1518static int
1519mps_init_queues(struct mps_softc *sc)
1520{
1521	int i;
1522
1523	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1524
1525	/*
1526	 * According to the spec, we need to use one less reply than we
1527	 * have space for on the queue.  So sc->num_replies (the number we
1528	 * use) should be less than sc->fqdepth (allocated size).
1529	 */
1530	if (sc->num_replies >= sc->fqdepth)
1531		return (EINVAL);
1532
1533	/*
1534	 * Initialize all of the free queue entries.
1535	 */
1536	for (i = 0; i < sc->fqdepth; i++)
1537		sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
1538	sc->replyfreeindex = sc->num_replies;
1539
1540	return (0);
1541}
1542
1543/* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1544 * Next are the global settings, if they exist.  Highest are the per-unit
1545 * settings, if they exist.
1546 */
1547void
1548mps_get_tunables(struct mps_softc *sc)
1549{
1550	char tmpstr[80], mps_debug[80];
1551
1552	/* XXX default to some debugging for now */
1553	sc->mps_debug = MPS_INFO|MPS_FAULT;
1554	sc->disable_msix = 0;
1555	sc->disable_msi = 0;
1556	sc->max_msix = MPS_MSIX_MAX;
1557	sc->max_chains = MPS_CHAIN_FRAMES;
1558	sc->max_io_pages = MPS_MAXIO_PAGES;
1559	sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD;
1560	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1561	sc->use_phynum = 1;
1562	sc->max_reqframes = MPS_REQ_FRAMES;
1563	sc->max_prireqframes = MPS_PRI_REQ_FRAMES;
1564	sc->max_replyframes = MPS_REPLY_FRAMES;
1565	sc->max_evtframes = MPS_EVT_REPLY_FRAMES;
1566
1567	/*
1568	 * Grab the global variables.
1569	 */
1570	bzero(mps_debug, 80);
1571	if (TUNABLE_STR_FETCH("hw.mps.debug_level", mps_debug, 80) != 0)
1572		mps_parse_debug(sc, mps_debug);
1573	TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
1574	TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi);
1575	TUNABLE_INT_FETCH("hw.mps.max_msix", &sc->max_msix);
1576	TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
1577	TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages);
1578	TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu);
1579	TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time);
1580	TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum);
1581	TUNABLE_INT_FETCH("hw.mps.max_reqframes", &sc->max_reqframes);
1582	TUNABLE_INT_FETCH("hw.mps.max_prireqframes", &sc->max_prireqframes);
1583	TUNABLE_INT_FETCH("hw.mps.max_replyframes", &sc->max_replyframes);
1584	TUNABLE_INT_FETCH("hw.mps.max_evtframes", &sc->max_evtframes);
1585
1586	/* Grab the unit-instance variables */
1587	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
1588	    device_get_unit(sc->mps_dev));
1589	bzero(mps_debug, 80);
1590	if (TUNABLE_STR_FETCH(tmpstr, mps_debug, 80) != 0)
1591		mps_parse_debug(sc, mps_debug);
1592
1593	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
1594	    device_get_unit(sc->mps_dev));
1595	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1596
1597	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi",
1598	    device_get_unit(sc->mps_dev));
1599	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1600
1601	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_msix",
1602	    device_get_unit(sc->mps_dev));
1603	TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1604
1605	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
1606	    device_get_unit(sc->mps_dev));
1607	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1608
1609	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages",
1610	    device_get_unit(sc->mps_dev));
1611	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1612
1613	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1614	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids",
1615	    device_get_unit(sc->mps_dev));
1616	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1617
1618	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu",
1619	    device_get_unit(sc->mps_dev));
1620	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1621
1622	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time",
1623	    device_get_unit(sc->mps_dev));
1624	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1625
1626	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num",
1627	    device_get_unit(sc->mps_dev));
1628	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1629
1630	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_reqframes",
1631	    device_get_unit(sc->mps_dev));
1632	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1633
1634	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_prireqframes",
1635	    device_get_unit(sc->mps_dev));
1636	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1637
1638	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_replyframes",
1639	    device_get_unit(sc->mps_dev));
1640	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1641
1642	snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_evtframes",
1643	    device_get_unit(sc->mps_dev));
1644	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1645
1646}
1647
1648static void
1649mps_setup_sysctl(struct mps_softc *sc)
1650{
1651	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1652	struct sysctl_oid	*sysctl_tree = NULL;
1653	char tmpstr[80], tmpstr2[80];
1654
1655	/*
1656	 * Setup the sysctl variable so the user can change the debug level
1657	 * on the fly.
1658	 */
1659	snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
1660	    device_get_unit(sc->mps_dev));
1661	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
1662
1663	sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev);
1664	if (sysctl_ctx != NULL)
1665		sysctl_tree = device_get_sysctl_tree(sc->mps_dev);
1666
1667	if (sysctl_tree == NULL) {
1668		sysctl_ctx_init(&sc->sysctl_ctx);
1669		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1670		    SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
1671		    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr);
1672		if (sc->sysctl_tree == NULL)
1673			return;
1674		sysctl_ctx = &sc->sysctl_ctx;
1675		sysctl_tree = sc->sysctl_tree;
1676	}
1677
1678	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1679	    OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW |CTLFLAG_MPSAFE,
1680	    sc, 0, mps_debug_sysctl, "A", "mps debug level");
1681
1682	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1683	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1684	    "Disable the use of MSI-X interrupts");
1685
1686	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1687	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1688	    "Disable the use of MSI interrupts");
1689
1690	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1691	    OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1692	    "User-defined maximum number of MSIX queues");
1693
1694	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1695	    OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1696	    "Negotiated number of MSIX queues");
1697
1698	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1699	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1700	    "Total number of allocated request frames");
1701
1702	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1703	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1704	    "Total number of allocated high priority request frames");
1705
1706	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1707	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1708	    "Total number of allocated reply frames");
1709
1710	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1711	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1712	    "Total number of event frames allocated");
1713
1714	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1715	    OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version,
1716	    strlen(sc->fw_version), "firmware version");
1717
1718	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1719	    OID_AUTO, "driver_version", CTLFLAG_RD, MPS_DRIVER_VERSION,
1720	    strlen(MPS_DRIVER_VERSION), "driver version");
1721
1722	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1723	    OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version,
1724	    strlen(sc->msg_version), "message interface version (deprecated)");
1725
1726	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1727	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1728	    &sc->io_cmds_active, 0, "number of currently active commands");
1729
1730	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1731	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1732	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1733
1734	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1735	    OID_AUTO, "chain_free", CTLFLAG_RD,
1736	    &sc->chain_free, 0, "number of free chain elements");
1737
1738	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1739	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1740	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1741
1742	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1743	    OID_AUTO, "max_chains", CTLFLAG_RD,
1744	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1745
1746	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1747	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1748	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1749	    "IOCFacts)");
1750
1751	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1752	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1753	    "enable SSU to SATA SSD/HDD at shutdown");
1754
1755	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1756	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1757	    &sc->chain_alloc_fail, "chain allocation failures");
1758
1759	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1760	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1761	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1762	    "spinup after SATA ID error");
1763
1764	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1765	    OID_AUTO, "mapping_table_dump",
1766	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1767	    mps_mapping_dump, "A", "Mapping Table Dump");
1768
1769	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1770	    OID_AUTO, "encl_table_dump",
1771	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1772	    mps_mapping_encl_dump, "A", "Enclosure Table Dump");
1773
1774	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1775	    OID_AUTO, "dump_reqs",
1776	    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE,
1777	    sc, 0, mps_dump_reqs, "I", "Dump Active Requests");
1778
1779	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1780	    OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW,
1781	    &sc->dump_reqs_alltypes, 0,
1782	    "dump all request types not just inqueue");
1783
1784	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1785	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1786	    "Use the phy number for enumeration");
1787}
1788
1789static struct mps_debug_string {
1790	char	*name;
1791	int	flag;
1792} mps_debug_strings[] = {
1793	{"info", MPS_INFO},
1794	{"fault", MPS_FAULT},
1795	{"event", MPS_EVENT},
1796	{"log", MPS_LOG},
1797	{"recovery", MPS_RECOVERY},
1798	{"error", MPS_ERROR},
1799	{"init", MPS_INIT},
1800	{"xinfo", MPS_XINFO},
1801	{"user", MPS_USER},
1802	{"mapping", MPS_MAPPING},
1803	{"trace", MPS_TRACE}
1804};
1805
1806enum mps_debug_level_combiner {
1807	COMB_NONE,
1808	COMB_ADD,
1809	COMB_SUB
1810};
1811
1812static int
1813mps_debug_sysctl(SYSCTL_HANDLER_ARGS)
1814{
1815	struct mps_softc *sc;
1816	struct mps_debug_string *string;
1817	struct sbuf *sbuf;
1818	char *buffer;
1819	size_t sz;
1820	int i, len, debug, error;
1821
1822	sc = (struct mps_softc *)arg1;
1823
1824	error = sysctl_wire_old_buffer(req, 0);
1825	if (error != 0)
1826		return (error);
1827
1828	sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1829	debug = sc->mps_debug;
1830
1831	sbuf_printf(sbuf, "%#x", debug);
1832
1833	sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
1834	for (i = 0; i < sz; i++) {
1835		string = &mps_debug_strings[i];
1836		if (debug & string->flag)
1837			sbuf_printf(sbuf, ",%s", string->name);
1838	}
1839
1840	error = sbuf_finish(sbuf);
1841	sbuf_delete(sbuf);
1842
1843	if (error || req->newptr == NULL)
1844		return (error);
1845
1846	len = req->newlen - req->newidx;
1847	if (len == 0)
1848		return (0);
1849
1850	buffer = malloc(len, M_MPT2, M_ZERO|M_WAITOK);
1851	error = SYSCTL_IN(req, buffer, len);
1852
1853	mps_parse_debug(sc, buffer);
1854
1855	free(buffer, M_MPT2);
1856	return (error);
1857}
1858
1859static void
1860mps_parse_debug(struct mps_softc *sc, char *list)
1861{
1862	struct mps_debug_string *string;
1863	enum mps_debug_level_combiner op;
1864	char *token, *endtoken;
1865	size_t sz;
1866	int flags, i;
1867
1868	if (list == NULL || *list == '\0')
1869		return;
1870
1871	if (*list == '+') {
1872		op = COMB_ADD;
1873		list++;
1874	} else if (*list == '-') {
1875		op = COMB_SUB;
1876		list++;
1877	} else
1878		op = COMB_NONE;
1879	if (*list == '\0')
1880		return;
1881
1882	flags = 0;
1883	sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
1884	while ((token = strsep(&list, ":,")) != NULL) {
1885		/* Handle integer flags */
1886		flags |= strtol(token, &endtoken, 0);
1887		if (token != endtoken)
1888			continue;
1889
1890		/* Handle text flags */
1891		for (i = 0; i < sz; i++) {
1892			string = &mps_debug_strings[i];
1893			if (strcasecmp(token, string->name) == 0) {
1894				flags |= string->flag;
1895				break;
1896			}
1897		}
1898	}
1899
1900	switch (op) {
1901	case COMB_NONE:
1902		sc->mps_debug = flags;
1903		break;
1904	case COMB_ADD:
1905		sc->mps_debug |= flags;
1906		break;
1907	case COMB_SUB:
1908		sc->mps_debug &= (~flags);
1909		break;
1910	}
1911
1912	return;
1913}
1914
1915struct mps_dumpreq_hdr {
1916	uint32_t	smid;
1917	uint32_t	state;
1918	uint32_t	numframes;
1919	uint32_t	deschi;
1920	uint32_t	desclo;
1921};
1922
1923static int
1924mps_dump_reqs(SYSCTL_HANDLER_ARGS)
1925{
1926	struct mps_softc *sc;
1927	struct mps_chain *chain, *chain1;
1928	struct mps_command *cm;
1929	struct mps_dumpreq_hdr hdr;
1930	struct sbuf *sb;
1931	uint32_t smid, state;
1932	int i, numreqs, error = 0;
1933
1934	sc = (struct mps_softc *)arg1;
1935
1936	if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
1937		printf("priv check error %d\n", error);
1938		return (error);
1939	}
1940
1941	state = MPS_CM_STATE_INQUEUE;
1942	smid = 1;
1943	numreqs = sc->num_reqs;
1944
1945	if (req->newptr != NULL)
1946		return (EINVAL);
1947
1948	if (smid == 0 || smid > sc->num_reqs)
1949		return (EINVAL);
1950	if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
1951		numreqs = sc->num_reqs;
1952	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
1953
1954	/* Best effort, no locking */
1955	for (i = smid; i < numreqs; i++) {
1956		cm = &sc->commands[i];
1957		if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state))
1958			continue;
1959		hdr.smid = i;
1960		hdr.state = cm->cm_state;
1961		hdr.numframes = 1;
1962		hdr.deschi = cm->cm_desc.Words.High;
1963		hdr.desclo = cm->cm_desc.Words.Low;
1964		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
1965		   chain1)
1966			hdr.numframes++;
1967		sbuf_bcat(sb, &hdr, sizeof(hdr));
1968		sbuf_bcat(sb, cm->cm_req, 128);
1969		TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
1970		    chain1)
1971			sbuf_bcat(sb, chain->chain, 128);
1972	}
1973
1974	error = sbuf_finish(sb);
1975	sbuf_delete(sb);
1976	return (error);
1977}
1978
1979int
1980mps_attach(struct mps_softc *sc)
1981{
1982	int error;
1983
1984	MPS_FUNCTRACE(sc);
1985	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1986
1987	mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF);
1988	callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0);
1989	callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0);
1990	TAILQ_INIT(&sc->event_list);
1991	timevalclear(&sc->lastfail);
1992
1993	if ((error = mps_transition_ready(sc)) != 0) {
1994		mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to transition "
1995		    "ready\n");
1996		return (error);
1997	}
1998
1999	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
2000	    M_ZERO|M_NOWAIT);
2001	if(!sc->facts) {
2002		mps_dprint(sc, MPS_INIT|MPS_FAULT, "Cannot allocate memory, "
2003		    "exit\n");
2004		return (ENOMEM);
2005	}
2006
2007	/*
2008	 * Get IOC Facts and allocate all structures based on this information.
2009	 * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC
2010	 * Facts. If relevant values have changed in IOC Facts, this function
2011	 * will free all of the memory based on IOC Facts and reallocate that
2012	 * memory.  If this fails, any allocated memory should already be freed.
2013	 */
2014	if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) {
2015		mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC Facts based allocation "
2016		    "failed with error %d, exit\n", error);
2017		return (error);
2018	}
2019
2020	/* Start the periodic watchdog check on the IOC Doorbell */
2021	mps_periodic(sc);
2022
2023	/*
2024	 * The portenable will kick off discovery events that will drive the
2025	 * rest of the initialization process.  The CAM/SAS module will
2026	 * hold up the boot sequence until discovery is complete.
2027	 */
2028	sc->mps_ich.ich_func = mps_startup;
2029	sc->mps_ich.ich_arg = sc;
2030	if (config_intrhook_establish(&sc->mps_ich) != 0) {
2031		mps_dprint(sc, MPS_INIT|MPS_ERROR,
2032		    "Cannot establish MPS config hook\n");
2033		error = EINVAL;
2034	}
2035
2036	/*
2037	 * Allow IR to shutdown gracefully when shutdown occurs.
2038	 */
2039	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2040	    mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2041
2042	if (sc->shutdown_eh == NULL)
2043		mps_dprint(sc, MPS_INIT|MPS_ERROR,
2044		    "shutdown event registration failed\n");
2045
2046	mps_setup_sysctl(sc);
2047
2048	sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
2049	mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
2050
2051	return (error);
2052}
2053
2054/* Run through any late-start handlers. */
2055static void
2056mps_startup(void *arg)
2057{
2058	struct mps_softc *sc;
2059
2060	sc = (struct mps_softc *)arg;
2061	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
2062
2063	mps_lock(sc);
2064	mps_unmask_intr(sc);
2065
2066	/* initialize device mapping tables */
2067	mps_base_static_config_pages(sc);
2068	mps_mapping_initialize(sc);
2069	mpssas_startup(sc);
2070	mps_unlock(sc);
2071
2072	mps_dprint(sc, MPS_INIT, "disestablish config intrhook\n");
2073	config_intrhook_disestablish(&sc->mps_ich);
2074	sc->mps_ich.ich_arg = NULL;
2075
2076	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
2077}
2078
2079/* Periodic watchdog.  Is called with the driver lock already held. */
2080static void
2081mps_periodic(void *arg)
2082{
2083	struct mps_softc *sc;
2084	uint32_t db;
2085
2086	sc = (struct mps_softc *)arg;
2087	if (sc->mps_flags & MPS_FLAGS_SHUTDOWN)
2088		return;
2089
2090	db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
2091	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2092		mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2093		mps_reinit(sc);
2094	}
2095
2096	callout_reset_sbt(&sc->periodic, MPS_PERIODIC_DELAY * SBT_1S, 0,
2097	    mps_periodic, sc, C_PREL(1));
2098}
2099
2100static void
2101mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
2102    MPI2_EVENT_NOTIFICATION_REPLY *event)
2103{
2104	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2105
2106	MPS_DPRINT_EVENT(sc, generic, event);
2107
2108	switch (event->Event) {
2109	case MPI2_EVENT_LOG_DATA:
2110		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2111		if (sc->mps_debug & MPS_EVENT)
2112			hexdump(event->EventData, event->EventDataLength, NULL, 0);
2113		break;
2114	case MPI2_EVENT_LOG_ENTRY_ADDED:
2115		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2116		mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2117		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2118		     entry->LogSequence);
2119		break;
2120	default:
2121		break;
2122	}
2123	return;
2124}
2125
2126static int
2127mps_attach_log(struct mps_softc *sc)
2128{
2129	u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];
2130
2131	bzero(events, 16);
2132	setbit(events, MPI2_EVENT_LOG_DATA);
2133	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2134
2135	mps_register_events(sc, events, mps_log_evt_handler, NULL,
2136	    &sc->mps_log_eh);
2137
2138	return (0);
2139}
2140
2141static int
2142mps_detach_log(struct mps_softc *sc)
2143{
2144
2145	if (sc->mps_log_eh != NULL)
2146		mps_deregister_events(sc, sc->mps_log_eh);
2147	return (0);
2148}
2149
2150/*
2151 * Free all of the driver resources and detach submodules.  Should be called
2152 * without the lock held.
2153 */
2154int
2155mps_free(struct mps_softc *sc)
2156{
2157	int error;
2158
2159	mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
2160	/* Turn off the watchdog */
2161	mps_lock(sc);
2162	sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
2163	mps_unlock(sc);
2164	/* Lock must not be held for this */
2165	callout_drain(&sc->periodic);
2166	callout_drain(&sc->device_check_callout);
2167
2168	if (((error = mps_detach_log(sc)) != 0) ||
2169	    ((error = mps_detach_sas(sc)) != 0)) {
2170		mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to detach "
2171		    "subsystems, exit\n");
2172		return (error);
2173	}
2174
2175	mps_detach_user(sc);
2176
2177	/* Put the IOC back in the READY state. */
2178	mps_lock(sc);
2179	if ((error = mps_transition_ready(sc)) != 0) {
2180		mps_unlock(sc);
2181		return (error);
2182	}
2183	mps_unlock(sc);
2184
2185	if (sc->facts != NULL)
2186		free(sc->facts, M_MPT2);
2187
2188	/*
2189	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2190	 * to free these buffers too.
2191	 */
2192	mps_iocfacts_free(sc);
2193
2194	if (sc->sysctl_tree != NULL)
2195		sysctl_ctx_free(&sc->sysctl_ctx);
2196
2197	/* Deregister the shutdown function */
2198	if (sc->shutdown_eh != NULL)
2199		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2200
2201	mtx_destroy(&sc->mps_mtx);
2202	mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
2203
2204	return (0);
2205}
2206
2207static __inline void
2208mps_complete_command(struct mps_softc *sc, struct mps_command *cm)
2209{
2210	MPS_FUNCTRACE(sc);
2211
2212	if (cm == NULL) {
2213		mps_dprint(sc, MPS_ERROR, "Completing NULL command\n");
2214		return;
2215	}
2216
2217	KASSERT(cm->cm_state == MPS_CM_STATE_INQUEUE,
2218	    ("command not inqueue, state = %u\n", cm->cm_state));
2219	cm->cm_state = MPS_CM_STATE_BUSY;
2220	if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
2221		cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
2222
2223	if (cm->cm_complete != NULL) {
2224		mps_dprint(sc, MPS_TRACE,
2225			   "%s cm %p calling cm_complete %p data %p reply %p\n",
2226			   __func__, cm, cm->cm_complete, cm->cm_complete_data,
2227			   cm->cm_reply);
2228		cm->cm_complete(sc, cm);
2229	}
2230
2231	if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
2232		mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm);
2233		wakeup(cm);
2234	}
2235
2236	if (cm->cm_sc->io_cmds_active != 0) {
2237		cm->cm_sc->io_cmds_active--;
2238	} else {
2239		mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is "
2240		    "out of sync - resynching to 0\n");
2241	}
2242}
2243
2244static void
2245mps_sas_log_info(struct mps_softc *sc , u32 log_info)
2246{
2247	union loginfo_type {
2248		u32     loginfo;
2249		struct {
2250			u32     subcode:16;
2251			u32     code:8;
2252			u32     originator:4;
2253			u32     bus_type:4;
2254		} dw;
2255	};
2256	union loginfo_type sas_loginfo;
2257	char *originator_str = NULL;
2258
2259	sas_loginfo.loginfo = log_info;
2260	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2261		return;
2262
2263	/* each nexus loss loginfo */
2264	if (log_info == 0x31170000)
2265		return;
2266
2267	/* eat the loginfos associated with task aborts */
2268	if ((log_info == 30050000 || log_info ==
2269	    0x31140000 || log_info == 0x31130000))
2270		return;
2271
2272	switch (sas_loginfo.dw.originator) {
2273	case 0:
2274		originator_str = "IOP";
2275		break;
2276	case 1:
2277		originator_str = "PL";
2278		break;
2279	case 2:
2280		originator_str = "IR";
2281		break;
2282}
2283
2284	mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), "
2285	"code(0x%02x), sub_code(0x%04x)\n", log_info,
2286	originator_str, sas_loginfo.dw.code,
2287	sas_loginfo.dw.subcode);
2288}
2289
2290static void
2291mps_display_reply_info(struct mps_softc *sc, uint8_t *reply)
2292{
2293	MPI2DefaultReply_t *mpi_reply;
2294	u16 sc_status;
2295
2296	mpi_reply = (MPI2DefaultReply_t*)reply;
2297	sc_status = le16toh(mpi_reply->IOCStatus);
2298	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2299		mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2300}
2301void
2302mps_intr(void *data)
2303{
2304	struct mps_softc *sc;
2305	uint32_t status;
2306
2307	sc = (struct mps_softc *)data;
2308	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2309
2310	/*
2311	 * Check interrupt status register to flush the bus.  This is
2312	 * needed for both INTx interrupts and driver-driven polling
2313	 */
2314	status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2315	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2316		return;
2317
2318	mps_lock(sc);
2319	mps_intr_locked(data);
2320	mps_unlock(sc);
2321	return;
2322}
2323
2324/*
2325 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2326 * chip.  Hopefully this theory is correct.
2327 */
2328void
2329mps_intr_msi(void *data)
2330{
2331	struct mps_softc *sc;
2332
2333	sc = (struct mps_softc *)data;
2334	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2335	mps_lock(sc);
2336	mps_intr_locked(data);
2337	mps_unlock(sc);
2338	return;
2339}
2340
2341/*
2342 * The locking is overly broad and simplistic, but easy to deal with for now.
2343 */
2344void
2345mps_intr_locked(void *data)
2346{
2347	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2348	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2349	mps_fw_diagnostic_buffer_t *pBuffer;
2350	struct mps_softc *sc;
2351	struct mps_command *cm = NULL;
2352	uint64_t tdesc;
2353	uint8_t flags;
2354	u_int pq;
2355
2356	sc = (struct mps_softc *)data;
2357
2358	pq = sc->replypostindex;
2359	mps_dprint(sc, MPS_TRACE,
2360	    "%s sc %p starting with replypostindex %u\n",
2361	    __func__, sc, sc->replypostindex);
2362
2363	for ( ;; ) {
2364		cm = NULL;
2365		desc = &sc->post_queue[sc->replypostindex];
2366
2367		/*
2368		 * Copy and clear out the descriptor so that any reentry will
2369		 * immediately know that this descriptor has already been
2370		 * looked at.  There is unfortunate casting magic because the
2371		 * MPI API doesn't have a cardinal 64bit type.
2372		 */
2373		tdesc = 0xffffffffffffffff;
2374		tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
2375		desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
2376
2377		flags = desc->Default.ReplyFlags &
2378		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2379		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
2380		 || (le32toh(desc->Words.High) == 0xffffffff))
2381			break;
2382
2383		/* increment the replypostindex now, so that event handlers
2384		 * and cm completion handlers which decide to do a diag
2385		 * reset can zero it without it getting incremented again
2386		 * afterwards, and we break out of this loop on the next
2387		 * iteration since the reply post queue has been cleared to
2388		 * 0xFF and all descriptors look unused (which they are).
2389		 */
2390		if (++sc->replypostindex >= sc->pqdepth)
2391			sc->replypostindex = 0;
2392
2393		switch (flags) {
2394		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2395			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2396			cm->cm_reply = NULL;
2397			break;
2398		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2399		{
2400			uint32_t baddr;
2401			uint8_t *reply;
2402
2403			/*
2404			 * Re-compose the reply address from the address
2405			 * sent back from the chip.  The ReplyFrameAddress
2406			 * is the lower 32 bits of the physical address of
2407			 * particular reply frame.  Convert that address to
2408			 * host format, and then use that to provide the
2409			 * offset against the virtual address base
2410			 * (sc->reply_frames).
2411			 */
2412			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2413			reply = sc->reply_frames +
2414				(baddr - ((uint32_t)sc->reply_busaddr));
2415			/*
2416			 * Make sure the reply we got back is in a valid
2417			 * range.  If not, go ahead and panic here, since
2418			 * we'll probably panic as soon as we deference the
2419			 * reply pointer anyway.
2420			 */
2421			if ((reply < sc->reply_frames)
2422			 || (reply > (sc->reply_frames +
2423			     (sc->fqdepth * sc->replyframesz)))) {
2424				printf("%s: WARNING: reply %p out of range!\n",
2425				       __func__, reply);
2426				printf("%s: reply_frames %p, fqdepth %d, "
2427				       "frame size %d\n", __func__,
2428				       sc->reply_frames, sc->fqdepth,
2429				       sc->replyframesz);
2430				printf("%s: baddr %#x,\n", __func__, baddr);
2431				/* LSI-TODO. See Linux Code for Graceful exit */
2432				panic("Reply address out of range");
2433			}
2434			if (le16toh(desc->AddressReply.SMID) == 0) {
2435				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2436				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2437					/*
2438					 * If SMID is 0 for Diag Buffer Post,
2439					 * this implies that the reply is due to
2440					 * a release function with a status that
2441					 * the buffer has been released.  Set
2442					 * the buffer flags accordingly.
2443					 */
2444					rel_rep =
2445					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2446					if ((le16toh(rel_rep->IOCStatus) &
2447					    MPI2_IOCSTATUS_MASK) ==
2448					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2449					{
2450						pBuffer =
2451						    &sc->fw_diag_buffer_list[
2452						    rel_rep->BufferType];
2453						pBuffer->valid_data = TRUE;
2454						pBuffer->owned_by_firmware =
2455						    FALSE;
2456						pBuffer->immediate = FALSE;
2457					}
2458				} else
2459					mps_dispatch_event(sc, baddr,
2460					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2461					    reply);
2462			} else {
2463				/*
2464				 * Ignore commands not in INQUEUE state
2465				 * since they've already been completed
2466				 * via another path.
2467				 */
2468				cm = &sc->commands[
2469				    le16toh(desc->AddressReply.SMID)];
2470				if (cm->cm_state == MPS_CM_STATE_INQUEUE) {
2471					cm->cm_reply = reply;
2472					cm->cm_reply_data = le32toh(
2473					    desc->AddressReply.ReplyFrameAddress);
2474				} else {
2475					mps_dprint(sc, MPS_RECOVERY,
2476					    "Bad state for ADDRESS_REPLY status,"
2477					    " ignoring state %d cm %p\n",
2478					    cm->cm_state, cm);
2479				}
2480			}
2481			break;
2482		}
2483		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2484		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2485		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2486		default:
2487			/* Unhandled */
2488			mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n",
2489			    desc->Default.ReplyFlags);
2490			cm = NULL;
2491			break;
2492		}
2493
2494
2495		if (cm != NULL) {
2496			// Print Error reply frame
2497			if (cm->cm_reply)
2498				mps_display_reply_info(sc,cm->cm_reply);
2499			mps_complete_command(sc, cm);
2500		}
2501	}
2502
2503	if (pq != sc->replypostindex) {
2504		mps_dprint(sc, MPS_TRACE, "%s sc %p writing postindex %d\n",
2505		    __func__, sc, sc->replypostindex);
2506		mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2507		    sc->replypostindex);
2508	}
2509
2510	return;
2511}
2512
2513static void
2514mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
2515    MPI2_EVENT_NOTIFICATION_REPLY *reply)
2516{
2517	struct mps_event_handle *eh;
2518	int event, handled = 0;
2519
2520	event = le16toh(reply->Event);
2521	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2522		if (isset(eh->mask, event)) {
2523			eh->callback(sc, data, reply);
2524			handled++;
2525		}
2526	}
2527
2528	if (handled == 0)
2529		mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event));
2530
2531	/*
2532	 * This is the only place that the event/reply should be freed.
2533	 * Anything wanting to hold onto the event data should have
2534	 * already copied it into their own storage.
2535	 */
2536	mps_free_reply(sc, data);
2537}
2538
2539static void
2540mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
2541{
2542	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2543
2544	if (cm->cm_reply)
2545		MPS_DPRINT_EVENT(sc, generic,
2546			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2547
2548	mps_free_command(sc, cm);
2549
2550	/* next, send a port enable */
2551	mpssas_startup(sc);
2552}
2553
2554/*
2555 * For both register_events and update_events, the caller supplies a bitmap
2556 * of events that it _wants_.  These functions then turn that into a bitmask
2557 * suitable for the controller.
2558 */
2559int
2560mps_register_events(struct mps_softc *sc, u32 *mask,
2561    mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
2562{
2563	struct mps_event_handle *eh;
2564	int error = 0;
2565
2566	eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
2567	eh->callback = cb;
2568	eh->data = data;
2569	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2570	if (mask != NULL)
2571		error = mps_update_events(sc, eh, mask);
2572	*handle = eh;
2573
2574	return (error);
2575}
2576
2577int
2578mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
2579    u32 *mask)
2580{
2581	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2582	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2583	struct mps_command *cm;
2584	int error, i;
2585
2586	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2587
2588	if ((mask != NULL) && (handle != NULL))
2589		bcopy(mask, &handle->mask[0], sizeof(u32) *
2590				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2591
2592	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2593		sc->event_mask[i] = -1;
2594
2595	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2596		sc->event_mask[i] &= ~handle->mask[i];
2597
2598	if ((cm = mps_alloc_command(sc)) == NULL)
2599		return (EBUSY);
2600	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2601	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2602	evtreq->MsgFlags = 0;
2603	evtreq->SASBroadcastPrimitiveMasks = 0;
2604#ifdef MPS_DEBUG_ALL_EVENTS
2605	{
2606		u_char fullmask[16];
2607		memset(fullmask, 0x00, 16);
2608		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2609				MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2610	}
2611#else
2612        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2613                evtreq->EventMasks[i] =
2614                    htole32(sc->event_mask[i]);
2615#endif
2616	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2617	cm->cm_data = NULL;
2618
2619	error = mps_wait_command(sc, &cm, 60, 0);
2620	if (cm != NULL)
2621		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2622	if ((reply == NULL) ||
2623	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2624		error = ENXIO;
2625
2626	if (reply)
2627		MPS_DPRINT_EVENT(sc, generic, reply);
2628
2629	mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
2630
2631	if (cm != NULL)
2632		mps_free_command(sc, cm);
2633	return (error);
2634}
2635
2636static int
2637mps_reregister_events(struct mps_softc *sc)
2638{
2639	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2640	struct mps_command *cm;
2641	struct mps_event_handle *eh;
2642	int error, i;
2643
2644	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2645
2646	/* first, reregister events */
2647
2648	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2649		sc->event_mask[i] = -1;
2650
2651	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2652		for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2653			sc->event_mask[i] &= ~eh->mask[i];
2654	}
2655
2656	if ((cm = mps_alloc_command(sc)) == NULL)
2657		return (EBUSY);
2658	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2659	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2660	evtreq->MsgFlags = 0;
2661	evtreq->SASBroadcastPrimitiveMasks = 0;
2662#ifdef MPS_DEBUG_ALL_EVENTS
2663	{
2664		u_char fullmask[16];
2665		memset(fullmask, 0x00, 16);
2666		bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2667			MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2668	}
2669#else
2670        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2671                evtreq->EventMasks[i] =
2672                    htole32(sc->event_mask[i]);
2673#endif
2674	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2675	cm->cm_data = NULL;
2676	cm->cm_complete = mps_reregister_events_complete;
2677
2678	error = mps_map_command(sc, cm);
2679
2680	mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__,
2681	    error);
2682	return (error);
2683}
2684
2685void
2686mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
2687{
2688
2689	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2690	free(handle, M_MPT2);
2691}
2692
2693/*
2694 * Add a chain element as the next SGE for the specified command.
2695 * Reset cm_sge and cm_sgesize to indicate all the available space.
2696 */
2697static int
2698mps_add_chain(struct mps_command *cm)
2699{
2700	MPI2_SGE_CHAIN64 *sgc;
2701	struct mps_chain *chain;
2702	u_int space;
2703
2704	if (cm->cm_sglsize < MPS_SGC_SIZE)
2705		panic("MPS: Need SGE Error Code\n");
2706
2707	chain = mps_alloc_chain(cm->cm_sc);
2708	if (chain == NULL)
2709		return (ENOBUFS);
2710
2711	space = cm->cm_sc->reqframesz;
2712
2713	/*
2714	 * Note: a double-linked list is used to make it easier to
2715	 * walk for debugging.
2716	 */
2717	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2718
2719	sgc = (MPI2_SGE_CHAIN64 *)&cm->cm_sge->MpiChain;
2720	sgc->Length = htole16(space);
2721	sgc->NextChainOffset = 0;
2722	/* TODO Looks like bug in Setting sgc->Flags.
2723	 *	sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2724	 *	            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT
2725	 *	This is fine.. because we are not using simple element. In case of
2726	 *	MPI2_SGE_CHAIN64, we have separate Length and Flags field.
2727 	 */
2728	sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2729	sgc->Address.High = htole32(chain->chain_busaddr >> 32);
2730	sgc->Address.Low = htole32(chain->chain_busaddr);
2731
2732	cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
2733	cm->cm_sglsize = space;
2734	return (0);
2735}
2736
2737/*
2738 * Add one scatter-gather element (chain, simple, transaction context)
2739 * to the scatter-gather list for a command.  Maintain cm_sglsize and
2740 * cm_sge as the remaining size and pointer to the next SGE to fill
2741 * in, respectively.
2742 */
2743int
2744mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
2745{
2746	MPI2_SGE_TRANSACTION_UNION *tc = sgep;
2747	MPI2_SGE_SIMPLE64 *sge = sgep;
2748	int error, type;
2749	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2750
2751	type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
2752
2753#ifdef INVARIANTS
2754	switch (type) {
2755	case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
2756		if (len != tc->DetailsLength + 4)
2757			panic("TC %p length %u or %zu?", tc,
2758			    tc->DetailsLength + 4, len);
2759		}
2760		break;
2761	case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
2762		/* Driver only uses 64-bit chain elements */
2763		if (len != MPS_SGC_SIZE)
2764			panic("CHAIN %p length %u or %zu?", sgep,
2765			    MPS_SGC_SIZE, len);
2766		break;
2767	case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
2768		/* Driver only uses 64-bit SGE simple elements */
2769		if (len != MPS_SGE64_SIZE)
2770			panic("SGE simple %p length %u or %zu?", sge,
2771			    MPS_SGE64_SIZE, len);
2772		if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
2773		    MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
2774			panic("SGE simple %p not marked 64-bit?", sge);
2775
2776		break;
2777	default:
2778		panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
2779	}
2780#endif
2781
2782	/*
2783	 * case 1: 1 more segment, enough room for it
2784	 * case 2: 2 more segments, enough room for both
2785	 * case 3: >=2 more segments, only enough room for 1 and a chain
2786	 * case 4: >=1 more segment, enough room for only a chain
2787	 * case 5: >=1 more segment, no room for anything (error)
2788         */
2789
2790	/*
2791	 * There should be room for at least a chain element, or this
2792	 * code is buggy.  Case (5).
2793	 */
2794	if (cm->cm_sglsize < MPS_SGC_SIZE)
2795		panic("MPS: Need SGE Error Code\n");
2796
2797	if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
2798		/*
2799		 * 1 or more segment, enough room for only a chain.
2800		 * Hope the previous element wasn't a Simple entry
2801		 * that needed to be marked with
2802		 * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
2803		 */
2804		if ((error = mps_add_chain(cm)) != 0)
2805			return (error);
2806	}
2807
2808	if (segsleft >= 2 &&
2809	    cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
2810		/*
2811		 * There are 2 or more segments left to add, and only
2812		 * enough room for 1 and a chain.  Case (3).
2813		 *
2814		 * Mark as last element in this chain if necessary.
2815		 */
2816		if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2817			sge->FlagsLength |= htole32(
2818			    MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
2819		}
2820
2821		/*
2822		 * Add the item then a chain.  Do the chain now,
2823		 * rather than on the next iteration, to simplify
2824		 * understanding the code.
2825		 */
2826		cm->cm_sglsize -= len;
2827		bcopy(sgep, cm->cm_sge, len);
2828		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2829		return (mps_add_chain(cm));
2830	}
2831
2832#ifdef INVARIANTS
2833	/* Case 1: 1 more segment, enough room for it. */
2834	if (segsleft == 1 && cm->cm_sglsize < len)
2835		panic("1 seg left and no room? %u versus %zu",
2836		    cm->cm_sglsize, len);
2837
2838	/* Case 2: 2 more segments, enough room for both */
2839	if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
2840		panic("2 segs left and no room? %u versus %zu",
2841		    cm->cm_sglsize, len);
2842#endif
2843
2844	if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2845		/*
2846		 * If this is a bi-directional request, need to account for that
2847		 * here.  Save the pre-filled sge values.  These will be used
2848		 * either for the 2nd SGL or for a single direction SGL.  If
2849		 * cm_out_len is non-zero, this is a bi-directional request, so
2850		 * fill in the OUT SGL first, then the IN SGL, otherwise just
2851		 * fill in the IN SGL.  Note that at this time, when filling in
2852		 * 2 SGL's for a bi-directional request, they both use the same
2853		 * DMA buffer (same cm command).
2854		 */
2855		saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
2856		saved_address_low = sge->Address.Low;
2857		saved_address_high = sge->Address.High;
2858		if (cm->cm_out_len) {
2859			sge->FlagsLength = htole32(cm->cm_out_len |
2860			    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2861			    MPI2_SGE_FLAGS_END_OF_BUFFER |
2862			    MPI2_SGE_FLAGS_HOST_TO_IOC |
2863			    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2864			    MPI2_SGE_FLAGS_SHIFT));
2865			cm->cm_sglsize -= len;
2866			bcopy(sgep, cm->cm_sge, len);
2867			cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
2868			    + len);
2869		}
2870		saved_buf_len |=
2871		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2872		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2873		    MPI2_SGE_FLAGS_LAST_ELEMENT |
2874		    MPI2_SGE_FLAGS_END_OF_LIST |
2875		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2876		    MPI2_SGE_FLAGS_SHIFT);
2877		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
2878			saved_buf_len |=
2879			    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
2880			    MPI2_SGE_FLAGS_SHIFT);
2881		} else {
2882			saved_buf_len |=
2883			    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
2884			    MPI2_SGE_FLAGS_SHIFT);
2885		}
2886		sge->FlagsLength = htole32(saved_buf_len);
2887		sge->Address.Low = saved_address_low;
2888		sge->Address.High = saved_address_high;
2889	}
2890
2891	cm->cm_sglsize -= len;
2892	bcopy(sgep, cm->cm_sge, len);
2893	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2894	return (0);
2895}
2896
2897/*
2898 * Add one dma segment to the scatter-gather list for a command.
2899 */
2900int
2901mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
2902    int segsleft)
2903{
2904	MPI2_SGE_SIMPLE64 sge;
2905
2906	/*
2907	 * This driver always uses 64-bit address elements for simplicity.
2908	 */
2909	bzero(&sge, sizeof(sge));
2910	flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2911	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2912	sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
2913	mps_from_u64(pa, &sge.Address);
2914
2915	return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2916}
2917
2918static void
2919mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2920{
2921	struct mps_softc *sc;
2922	struct mps_command *cm;
2923	u_int i, dir, sflags;
2924
2925	cm = (struct mps_command *)arg;
2926	sc = cm->cm_sc;
2927
2928	/*
2929	 * In this case, just print out a warning and let the chip tell the
2930	 * user they did the wrong thing.
2931	 */
2932	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2933		mps_dprint(sc, MPS_ERROR,
2934			   "%s: warning: busdma returned %d segments, "
2935			   "more than the %d allowed\n", __func__, nsegs,
2936			   cm->cm_max_segs);
2937	}
2938
2939	/*
2940	 * Set up DMA direction flags.  Bi-directional requests are also handled
2941	 * here.  In that case, both direction flags will be set.
2942	 */
2943	sflags = 0;
2944	if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2945		/*
2946		 * We have to add a special case for SMP passthrough, there
2947		 * is no easy way to generically handle it.  The first
2948		 * S/G element is used for the command (therefore the
2949		 * direction bit needs to be set).  The second one is used
2950		 * for the reply.  We'll leave it to the caller to make
2951		 * sure we only have two buffers.
2952		 */
2953		/*
2954		 * Even though the busdma man page says it doesn't make
2955		 * sense to have both direction flags, it does in this case.
2956		 * We have one s/g element being accessed in each direction.
2957		 */
2958		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2959
2960		/*
2961		 * Set the direction flag on the first buffer in the SMP
2962		 * passthrough request.  We'll clear it for the second one.
2963		 */
2964		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2965			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2966	} else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2967		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2968		dir = BUS_DMASYNC_PREWRITE;
2969	} else
2970		dir = BUS_DMASYNC_PREREAD;
2971
2972	for (i = 0; i < nsegs; i++) {
2973		if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2974			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2975		}
2976		error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2977		    sflags, nsegs - i);
2978		if (error != 0) {
2979			/* Resource shortage, roll back! */
2980			if (ratecheck(&sc->lastfail, &mps_chainfail_interval))
2981				mps_dprint(sc, MPS_INFO, "Out of chain frames, "
2982				    "consider increasing hw.mps.max_chains.\n");
2983			cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2984			/*
2985			 * mpr_complete_command can only be called on commands
2986			 * that are in the queue. Since this is an error path
2987			 * which gets called before we enqueue, update the state
2988			 * to meet this requirement before we complete it.
2989			 */
2990			cm->cm_state = MPS_CM_STATE_INQUEUE;
2991			mps_complete_command(sc, cm);
2992			return;
2993		}
2994	}
2995
2996	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2997	mps_enqueue_request(sc, cm);
2998
2999	return;
3000}
3001
3002static void
3003mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3004	     int error)
3005{
3006	mps_data_cb(arg, segs, nsegs, error);
3007}
3008
3009/*
3010 * This is the routine to enqueue commands ansynchronously.
3011 * Note that the only error path here is from bus_dmamap_load(), which can
3012 * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3013 * assumed that if you have a command in-hand, then you have enough credits
3014 * to use it.
3015 */
3016int
3017mps_map_command(struct mps_softc *sc, struct mps_command *cm)
3018{
3019	int error = 0;
3020
3021	if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
3022		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3023		    &cm->cm_uio, mps_data_cb2, cm, 0);
3024	} else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) {
3025		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3026		    cm->cm_data, mps_data_cb, cm, 0);
3027	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3028		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3029		    cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
3030	} else {
3031		/* Add a zero-length element as needed */
3032		if (cm->cm_sge != NULL)
3033			mps_add_dmaseg(cm, 0, 0, 0, 1);
3034		mps_enqueue_request(sc, cm);
3035	}
3036
3037	return (error);
3038}
3039
3040/*
3041 * This is the routine to enqueue commands synchronously.  An error of
3042 * EINPROGRESS from mps_map_command() is ignored since the command will
3043 * be executed and enqueued automatically.  Other errors come from msleep().
3044 */
3045int
3046mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout,
3047    int sleep_flag)
3048{
3049	int error, rc;
3050	struct timeval cur_time, start_time;
3051	struct mps_command *cm = *cmp;
3052
3053	if (sc->mps_flags & MPS_FLAGS_DIAGRESET)
3054		return  EBUSY;
3055
3056	cm->cm_complete = NULL;
3057	cm->cm_flags |= MPS_CM_FLAGS_POLLED;
3058	error = mps_map_command(sc, cm);
3059	if ((error != 0) && (error != EINPROGRESS))
3060		return (error);
3061
3062	/*
3063	 * Check for context and wait for 50 mSec at a time until time has
3064	 * expired or the command has finished.  If msleep can't be used, need
3065	 * to poll.
3066	 */
3067	if (curthread->td_no_sleeping != 0)
3068		sleep_flag = NO_SLEEP;
3069	getmicrouptime(&start_time);
3070	if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) {
3071		cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
3072		error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz);
3073		if (error == EWOULDBLOCK) {
3074			/*
3075			 * Record the actual elapsed time in the case of a
3076			 * timeout for the message below.
3077			 */
3078			getmicrouptime(&cur_time);
3079			timevalsub(&cur_time, &start_time);
3080		}
3081	} else {
3082		while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
3083			mps_intr_locked(sc);
3084			if (sleep_flag == CAN_SLEEP)
3085				pause("mpswait", hz/20);
3086			else
3087				DELAY(50000);
3088
3089			getmicrouptime(&cur_time);
3090			timevalsub(&cur_time, &start_time);
3091			if (cur_time.tv_sec > timeout) {
3092				error = EWOULDBLOCK;
3093				break;
3094			}
3095		}
3096	}
3097
3098	if (error == EWOULDBLOCK) {
3099		if (cm->cm_timeout_handler == NULL) {
3100			mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d,"
3101			    " elapsed=%jd\n", __func__, timeout,
3102			    (intmax_t)cur_time.tv_sec);
3103			rc = mps_reinit(sc);
3104			mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3105			    "failed");
3106		} else
3107			cm->cm_timeout_handler(sc, cm);
3108		if (sc->mps_flags & MPS_FLAGS_REALLOCATED) {
3109			/*
3110			 * Tell the caller that we freed the command in a
3111			 * reinit.
3112			 */
3113			*cmp = NULL;
3114		}
3115		error = ETIMEDOUT;
3116	}
3117	return (error);
3118}
3119
3120/*
3121 * The MPT driver had a verbose interface for config pages.  In this driver,
3122 * reduce it to much simpler terms, similar to the Linux driver.
3123 */
3124int
3125mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
3126{
3127	MPI2_CONFIG_REQUEST *req;
3128	struct mps_command *cm;
3129	int error;
3130
3131	if (sc->mps_flags & MPS_FLAGS_BUSY) {
3132		return (EBUSY);
3133	}
3134
3135	cm = mps_alloc_command(sc);
3136	if (cm == NULL) {
3137		return (EBUSY);
3138	}
3139
3140	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3141	req->Function = MPI2_FUNCTION_CONFIG;
3142	req->Action = params->action;
3143	req->SGLFlags = 0;
3144	req->ChainOffset = 0;
3145	req->PageAddress = params->page_address;
3146	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3147		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3148
3149		hdr = &params->hdr.Ext;
3150		req->ExtPageType = hdr->ExtPageType;
3151		req->ExtPageLength = hdr->ExtPageLength;
3152		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3153		req->Header.PageLength = 0; /* Must be set to zero */
3154		req->Header.PageNumber = hdr->PageNumber;
3155		req->Header.PageVersion = hdr->PageVersion;
3156	} else {
3157		MPI2_CONFIG_PAGE_HEADER *hdr;
3158
3159		hdr = &params->hdr.Struct;
3160		req->Header.PageType = hdr->PageType;
3161		req->Header.PageNumber = hdr->PageNumber;
3162		req->Header.PageLength = hdr->PageLength;
3163		req->Header.PageVersion = hdr->PageVersion;
3164	}
3165
3166	cm->cm_data = params->buffer;
3167	cm->cm_length = params->length;
3168	if (cm->cm_data != NULL) {
3169		cm->cm_sge = &req->PageBufferSGE;
3170		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3171		cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
3172	} else
3173		cm->cm_sge = NULL;
3174	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3175
3176	cm->cm_complete_data = params;
3177	if (params->callback != NULL) {
3178		cm->cm_complete = mps_config_complete;
3179		return (mps_map_command(sc, cm));
3180	} else {
3181		error = mps_wait_command(sc, &cm, 0, CAN_SLEEP);
3182		if (error) {
3183			mps_dprint(sc, MPS_FAULT,
3184			    "Error %d reading config page\n", error);
3185			if (cm != NULL)
3186				mps_free_command(sc, cm);
3187			return (error);
3188		}
3189		mps_config_complete(sc, cm);
3190	}
3191
3192	return (0);
3193}
3194
3195int
3196mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
3197{
3198	return (EINVAL);
3199}
3200
3201static void
3202mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
3203{
3204	MPI2_CONFIG_REPLY *reply;
3205	struct mps_config_params *params;
3206
3207	MPS_FUNCTRACE(sc);
3208	params = cm->cm_complete_data;
3209
3210	if (cm->cm_data != NULL) {
3211		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3212		    BUS_DMASYNC_POSTREAD);
3213		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3214	}
3215
3216	/*
3217	 * XXX KDM need to do more error recovery?  This results in the
3218	 * device in question not getting probed.
3219	 */
3220	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
3221		params->status = MPI2_IOCSTATUS_BUSY;
3222		goto done;
3223	}
3224
3225	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3226	if (reply == NULL) {
3227		params->status = MPI2_IOCSTATUS_BUSY;
3228		goto done;
3229	}
3230	params->status = reply->IOCStatus;
3231	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3232		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3233		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3234		params->hdr.Ext.PageType = reply->Header.PageType;
3235		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3236		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3237	} else {
3238		params->hdr.Struct.PageType = reply->Header.PageType;
3239		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3240		params->hdr.Struct.PageLength = reply->Header.PageLength;
3241		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3242	}
3243
3244done:
3245	mps_free_command(sc, cm);
3246	if (params->callback != NULL)
3247		params->callback(sc, params);
3248
3249	return;
3250}
3251