1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bus.h>
33#include <sys/endian.h>
34#include <sys/kernel.h>
35#include <sys/malloc.h>
36#include <sys/mbuf.h>
37#include <sys/rman.h>
38#include <sys/module.h>
39#include <sys/proc.h>
40#include <sys/queue.h>
41#include <sys/socket.h>
42#include <sys/sockio.h>
43#include <sys/sysctl.h>
44#include <sys/taskqueue.h>
45
46#include <net/bpf.h>
47#include <net/if.h>
48#include <net/if_var.h>
49#include <net/if_arp.h>
50#include <net/ethernet.h>
51#include <net/if_dl.h>
52#include <net/if_media.h>
53#include <net/if_types.h>
54#include <net/if_vlan_var.h>
55
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/ip.h>
59#include <netinet/tcp.h>
60
61#include <dev/mii/mii.h>
62#include <dev/mii/miivar.h>
63
64#include <dev/pci/pcireg.h>
65#include <dev/pci/pcivar.h>
66
67#include <machine/bus.h>
68#include <machine/in_cksum.h>
69
70#include <dev/jme/if_jmereg.h>
71#include <dev/jme/if_jmevar.h>
72
73/* "device miibus" required.  See GENERIC if you get errors here. */
74#include "miibus_if.h"
75
76/* Define the following to disable printing Rx errors. */
77#undef	JME_SHOW_ERRORS
78
79#define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80
81MODULE_DEPEND(jme, pci, 1, 1, 1);
82MODULE_DEPEND(jme, ether, 1, 1, 1);
83MODULE_DEPEND(jme, miibus, 1, 1, 1);
84
85/* Tunables. */
86static int msi_disable = 0;
87static int msix_disable = 0;
88TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
89TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
90
91/*
92 * Devices supported by this driver.
93 */
94static struct jme_dev {
95	uint16_t	jme_vendorid;
96	uint16_t	jme_deviceid;
97	const char	*jme_name;
98} jme_devs[] = {
99	{ VENDORID_JMICRON, DEVICEID_JMC250,
100	    "JMicron Inc, JMC25x Gigabit Ethernet" },
101	{ VENDORID_JMICRON, DEVICEID_JMC260,
102	    "JMicron Inc, JMC26x Fast Ethernet" },
103};
104
105static int jme_miibus_readreg(device_t, int, int);
106static int jme_miibus_writereg(device_t, int, int, int);
107static void jme_miibus_statchg(device_t);
108static void jme_mediastatus(if_t, struct ifmediareq *);
109static int jme_mediachange(if_t);
110static int jme_probe(device_t);
111static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
112static int jme_eeprom_macaddr(struct jme_softc *);
113static int jme_efuse_macaddr(struct jme_softc *);
114static void jme_reg_macaddr(struct jme_softc *);
115static void jme_set_macaddr(struct jme_softc *, uint8_t *);
116static void jme_map_intr_vector(struct jme_softc *);
117static int jme_attach(device_t);
118static int jme_detach(device_t);
119static void jme_sysctl_node(struct jme_softc *);
120static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
121static int jme_dma_alloc(struct jme_softc *);
122static void jme_dma_free(struct jme_softc *);
123static int jme_shutdown(device_t);
124static void jme_setlinkspeed(struct jme_softc *);
125static void jme_setwol(struct jme_softc *);
126static int jme_suspend(device_t);
127static int jme_resume(device_t);
128static int jme_encap(struct jme_softc *, struct mbuf **);
129static void jme_start(if_t);
130static void jme_start_locked(if_t);
131static void jme_watchdog(struct jme_softc *);
132static int jme_ioctl(if_t, u_long, caddr_t);
133static void jme_mac_config(struct jme_softc *);
134static void jme_link_task(void *, int);
135static int jme_intr(void *);
136static void jme_int_task(void *, int);
137static void jme_txeof(struct jme_softc *);
138static __inline void jme_discard_rxbuf(struct jme_softc *, int);
139static void jme_rxeof(struct jme_softc *);
140static int jme_rxintr(struct jme_softc *, int);
141static void jme_tick(void *);
142static void jme_reset(struct jme_softc *);
143static void jme_init(void *);
144static void jme_init_locked(struct jme_softc *);
145static void jme_stop(struct jme_softc *);
146static void jme_stop_tx(struct jme_softc *);
147static void jme_stop_rx(struct jme_softc *);
148static int jme_init_rx_ring(struct jme_softc *);
149static void jme_init_tx_ring(struct jme_softc *);
150static void jme_init_ssb(struct jme_softc *);
151static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
152static void jme_set_vlan(struct jme_softc *);
153static void jme_set_filter(struct jme_softc *);
154static void jme_stats_clear(struct jme_softc *);
155static void jme_stats_save(struct jme_softc *);
156static void jme_stats_update(struct jme_softc *);
157static void jme_phy_down(struct jme_softc *);
158static void jme_phy_up(struct jme_softc *);
159static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
160static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
161static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
162static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
163static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
164static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
165
166
167static device_method_t jme_methods[] = {
168	/* Device interface. */
169	DEVMETHOD(device_probe,		jme_probe),
170	DEVMETHOD(device_attach,	jme_attach),
171	DEVMETHOD(device_detach,	jme_detach),
172	DEVMETHOD(device_shutdown,	jme_shutdown),
173	DEVMETHOD(device_suspend,	jme_suspend),
174	DEVMETHOD(device_resume,	jme_resume),
175
176	/* MII interface. */
177	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
178	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
179	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
180
181	{ NULL, NULL }
182};
183
184static driver_t jme_driver = {
185	"jme",
186	jme_methods,
187	sizeof(struct jme_softc)
188};
189
190DRIVER_MODULE(jme, pci, jme_driver, 0, 0);
191DRIVER_MODULE(miibus, jme, miibus_driver, 0, 0);
192
193static struct resource_spec jme_res_spec_mem[] = {
194	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
195	{ -1,			0,		0 }
196};
197
198static struct resource_spec jme_irq_spec_legacy[] = {
199	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
200	{ -1,			0,		0 }
201};
202
203static struct resource_spec jme_irq_spec_msi[] = {
204	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
205	{ -1,			0,		0 }
206};
207
208/*
209 *	Read a PHY register on the MII of the JMC250.
210 */
211static int
212jme_miibus_readreg(device_t dev, int phy, int reg)
213{
214	struct jme_softc *sc;
215	uint32_t val;
216	int i;
217
218	sc = device_get_softc(dev);
219
220	/* For FPGA version, PHY address 0 should be ignored. */
221	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
222		return (0);
223
224	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
225	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
226	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
227		DELAY(1);
228		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
229			break;
230	}
231
232	if (i == 0) {
233		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
234		return (0);
235	}
236
237	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
238}
239
240/*
241 *	Write a PHY register on the MII of the JMC250.
242 */
243static int
244jme_miibus_writereg(device_t dev, int phy, int reg, int val)
245{
246	struct jme_softc *sc;
247	int i;
248
249	sc = device_get_softc(dev);
250
251	/* For FPGA version, PHY address 0 should be ignored. */
252	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
253		return (0);
254
255	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
256	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
257	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
258	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
259		DELAY(1);
260		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
261			break;
262	}
263
264	if (i == 0)
265		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
266
267	return (0);
268}
269
270/*
271 *	Callback from MII layer when media changes.
272 */
273static void
274jme_miibus_statchg(device_t dev)
275{
276	struct jme_softc *sc;
277
278	sc = device_get_softc(dev);
279	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
280}
281
282/*
283 *	Get the current interface media status.
284 */
285static void
286jme_mediastatus(if_t ifp, struct ifmediareq *ifmr)
287{
288	struct jme_softc *sc;
289	struct mii_data *mii;
290
291	sc = if_getsoftc(ifp);
292	JME_LOCK(sc);
293	if ((if_getflags(ifp) & IFF_UP) == 0) {
294		JME_UNLOCK(sc);
295		return;
296	}
297	mii = device_get_softc(sc->jme_miibus);
298
299	mii_pollstat(mii);
300	ifmr->ifm_status = mii->mii_media_status;
301	ifmr->ifm_active = mii->mii_media_active;
302	JME_UNLOCK(sc);
303}
304
305/*
306 *	Set hardware to newly-selected media.
307 */
308static int
309jme_mediachange(if_t ifp)
310{
311	struct jme_softc *sc;
312	struct mii_data *mii;
313	struct mii_softc *miisc;
314	int error;
315
316	sc = if_getsoftc(ifp);
317	JME_LOCK(sc);
318	mii = device_get_softc(sc->jme_miibus);
319	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
320		PHY_RESET(miisc);
321	error = mii_mediachg(mii);
322	JME_UNLOCK(sc);
323
324	return (error);
325}
326
327static int
328jme_probe(device_t dev)
329{
330	struct jme_dev *sp;
331	int i;
332	uint16_t vendor, devid;
333
334	vendor = pci_get_vendor(dev);
335	devid = pci_get_device(dev);
336	sp = jme_devs;
337	for (i = 0; i < nitems(jme_devs); i++, sp++) {
338		if (vendor == sp->jme_vendorid &&
339		    devid == sp->jme_deviceid) {
340			device_set_desc(dev, sp->jme_name);
341			return (BUS_PROBE_DEFAULT);
342		}
343	}
344
345	return (ENXIO);
346}
347
348static int
349jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
350{
351	uint32_t reg;
352	int i;
353
354	*val = 0;
355	for (i = JME_TIMEOUT; i > 0; i--) {
356		reg = CSR_READ_4(sc, JME_SMBCSR);
357		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
358			break;
359		DELAY(1);
360	}
361
362	if (i == 0) {
363		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
364		return (ETIMEDOUT);
365	}
366
367	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
368	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
369	for (i = JME_TIMEOUT; i > 0; i--) {
370		DELAY(1);
371		reg = CSR_READ_4(sc, JME_SMBINTF);
372		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
373			break;
374	}
375
376	if (i == 0) {
377		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
378		return (ETIMEDOUT);
379	}
380
381	reg = CSR_READ_4(sc, JME_SMBINTF);
382	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
383
384	return (0);
385}
386
387static int
388jme_eeprom_macaddr(struct jme_softc *sc)
389{
390	uint8_t eaddr[ETHER_ADDR_LEN];
391	uint8_t fup, reg, val;
392	uint32_t offset;
393	int match;
394
395	offset = 0;
396	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
397	    fup != JME_EEPROM_SIG0)
398		return (ENOENT);
399	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
400	    fup != JME_EEPROM_SIG1)
401		return (ENOENT);
402	match = 0;
403	do {
404		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
405			break;
406		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
407		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
408			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
409				break;
410			if (reg >= JME_PAR0 &&
411			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
412				if (jme_eeprom_read_byte(sc, offset + 2,
413				    &val) != 0)
414					break;
415				eaddr[reg - JME_PAR0] = val;
416				match++;
417			}
418		}
419		/* Check for the end of EEPROM descriptor. */
420		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
421			break;
422		/* Try next eeprom descriptor. */
423		offset += JME_EEPROM_DESC_BYTES;
424	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
425
426	if (match == ETHER_ADDR_LEN) {
427		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
428		return (0);
429	}
430
431	return (ENOENT);
432}
433
434static int
435jme_efuse_macaddr(struct jme_softc *sc)
436{
437	uint32_t reg;
438	int i;
439
440	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
441	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
442	    EFUSE_CTL1_AUTOLAOD_DONE)
443		return (ENOENT);
444	/* Reset eFuse controller. */
445	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
446	reg |= EFUSE_CTL2_RESET;
447	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
448	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
449	reg &= ~EFUSE_CTL2_RESET;
450	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
451
452	/* Have eFuse reload station address to MAC controller. */
453	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
454	reg &= ~EFUSE_CTL1_CMD_MASK;
455	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
456	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
457
458	/*
459	 * Verify completion of eFuse autload command.  It should be
460	 * completed within 108us.
461	 */
462	DELAY(110);
463	for (i = 10; i > 0; i--) {
464		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
465		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
466		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
467			DELAY(20);
468			continue;
469		}
470		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
471			break;
472		/* Station address loading is still in progress. */
473		DELAY(20);
474	}
475	if (i == 0) {
476		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
477		return (ETIMEDOUT);
478	}
479
480	return (0);
481}
482
483static void
484jme_reg_macaddr(struct jme_softc *sc)
485{
486	uint32_t par0, par1;
487
488	/* Read station address. */
489	par0 = CSR_READ_4(sc, JME_PAR0);
490	par1 = CSR_READ_4(sc, JME_PAR1);
491	par1 &= 0xFFFF;
492	if ((par0 == 0 && par1 == 0) ||
493	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
494		device_printf(sc->jme_dev,
495		    "Failed to retrieve Ethernet address.\n");
496	} else {
497		/*
498		 * For controllers that use eFuse, the station address
499		 * could also be extracted from JME_PCI_PAR0 and
500		 * JME_PCI_PAR1 registers in PCI configuration space.
501		 * Each register holds exactly half of station address(24bits)
502		 * so use JME_PAR0, JME_PAR1 registers instead.
503		 */
504		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
505		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
506		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
507		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
508		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
509		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
510	}
511}
512
513static void
514jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
515{
516	uint32_t val;
517	int i;
518
519	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
520		/*
521		 * Avoid reprogramming station address if the address
522		 * is the same as previous one.  Note, reprogrammed
523		 * station address is permanent as if it was written
524		 * to EEPROM. So if station address was changed by
525		 * admistrator it's possible to lose factory configured
526		 * address when driver fails to restore its address.
527		 * (e.g. reboot or system crash)
528		 */
529		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
530			for (i = 0; i < ETHER_ADDR_LEN; i++) {
531				val = JME_EFUSE_EEPROM_FUNC0 <<
532				    JME_EFUSE_EEPROM_FUNC_SHIFT;
533				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
534				    JME_EFUSE_EEPROM_PAGE_SHIFT;
535				val |= (JME_PAR0 + i) <<
536				    JME_EFUSE_EEPROM_ADDR_SHIFT;
537				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
538				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
539				    val | JME_EFUSE_EEPROM_WRITE, 4);
540			}
541		}
542	} else {
543		CSR_WRITE_4(sc, JME_PAR0,
544		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
545		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
546	}
547}
548
549static void
550jme_map_intr_vector(struct jme_softc *sc)
551{
552	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
553
554	bzero(map, sizeof(map));
555
556	/* Map Tx interrupts source to MSI/MSIX vector 2. */
557	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
558	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
559	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
560	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
561	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
562	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
563	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
564	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
565	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
566	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
567	map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
568	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
569	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
570	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
571	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
572	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
573	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
574	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
575	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
576	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
577
578	/* Map Rx interrupts source to MSI/MSIX vector 1. */
579	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
580	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
581	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
582	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
583	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
584	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
585	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
586	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
587	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
588	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
589	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
590	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
591	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
592	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
593	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
594	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
595	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
596	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
597	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
598	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
599	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
600	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
601	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
602	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
603	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
604	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
605	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
606	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
607	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
608	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
609	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
610	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
611
612	/* Map all other interrupts source to MSI/MSIX vector 0. */
613	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
614	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
615	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
616	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
617}
618
619static int
620jme_attach(device_t dev)
621{
622	struct jme_softc *sc;
623	if_t ifp;
624	struct mii_softc *miisc;
625	struct mii_data *mii;
626	uint32_t reg;
627	uint16_t burst;
628	int error, i, mii_flags, msic, msixc, pmc;
629
630	error = 0;
631	sc = device_get_softc(dev);
632	sc->jme_dev = dev;
633
634	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
635	    MTX_DEF);
636	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
637	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
638	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
639
640	/*
641	 * Map the device. JMC250 supports both memory mapped and I/O
642	 * register space access. Because I/O register access should
643	 * use different BARs to access registers it's waste of time
644	 * to use I/O register spce access. JMC250 uses 16K to map
645	 * entire memory space.
646	 */
647	pci_enable_busmaster(dev);
648	sc->jme_res_spec = jme_res_spec_mem;
649	sc->jme_irq_spec = jme_irq_spec_legacy;
650	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
651	if (error != 0) {
652		device_printf(dev, "cannot allocate memory resources.\n");
653		goto fail;
654	}
655
656	/* Allocate IRQ resources. */
657	msixc = pci_msix_count(dev);
658	msic = pci_msi_count(dev);
659	if (bootverbose) {
660		device_printf(dev, "MSIX count : %d\n", msixc);
661		device_printf(dev, "MSI count : %d\n", msic);
662	}
663
664	/* Use 1 MSI/MSI-X. */
665	if (msixc > 1)
666		msixc = 1;
667	if (msic > 1)
668		msic = 1;
669	/* Prefer MSIX over MSI. */
670	if (msix_disable == 0 || msi_disable == 0) {
671		if (msix_disable == 0 && msixc > 0 &&
672		    pci_alloc_msix(dev, &msixc) == 0) {
673			if (msixc == 1) {
674				device_printf(dev, "Using %d MSIX messages.\n",
675				    msixc);
676				sc->jme_flags |= JME_FLAG_MSIX;
677				sc->jme_irq_spec = jme_irq_spec_msi;
678			} else
679				pci_release_msi(dev);
680		}
681		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
682		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
683			if (msic == 1) {
684				device_printf(dev, "Using %d MSI messages.\n",
685				    msic);
686				sc->jme_flags |= JME_FLAG_MSI;
687				sc->jme_irq_spec = jme_irq_spec_msi;
688			} else
689				pci_release_msi(dev);
690		}
691		/* Map interrupt vector 0, 1 and 2. */
692		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
693		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
694			jme_map_intr_vector(sc);
695	}
696
697	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
698	if (error != 0) {
699		device_printf(dev, "cannot allocate IRQ resources.\n");
700		goto fail;
701	}
702
703	sc->jme_rev = pci_get_device(dev);
704	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
705		sc->jme_flags |= JME_FLAG_FASTETH;
706		sc->jme_flags |= JME_FLAG_NOJUMBO;
707	}
708	reg = CSR_READ_4(sc, JME_CHIPMODE);
709	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
710	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
711	    CHIPMODE_NOT_FPGA)
712		sc->jme_flags |= JME_FLAG_FPGA;
713	if (bootverbose) {
714		device_printf(dev, "PCI device revision : 0x%04x\n",
715		    sc->jme_rev);
716		device_printf(dev, "Chip revision : 0x%02x\n",
717		    sc->jme_chip_rev);
718		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
719			device_printf(dev, "FPGA revision : 0x%04x\n",
720			    (reg & CHIPMODE_FPGA_REV_MASK) >>
721			    CHIPMODE_FPGA_REV_SHIFT);
722	}
723	if (sc->jme_chip_rev == 0xFF) {
724		device_printf(dev, "Unknown chip revision : 0x%02x\n",
725		    sc->jme_rev);
726		error = ENXIO;
727		goto fail;
728	}
729
730	/* Identify controller features and bugs. */
731	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
732		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
733		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
734			sc->jme_flags |= JME_FLAG_DMA32BIT;
735		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
736			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
737		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
738		sc->jme_flags |= JME_FLAG_HWMIB;
739	}
740
741	/* Reset the ethernet controller. */
742	jme_reset(sc);
743
744	/* Get station address. */
745	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
746		error = jme_efuse_macaddr(sc);
747		if (error == 0)
748			jme_reg_macaddr(sc);
749	} else {
750		error = ENOENT;
751		reg = CSR_READ_4(sc, JME_SMBCSR);
752		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
753			error = jme_eeprom_macaddr(sc);
754		if (error != 0 && bootverbose)
755			device_printf(sc->jme_dev,
756			    "ethernet hardware address not found in EEPROM.\n");
757		if (error != 0)
758			jme_reg_macaddr(sc);
759	}
760
761	/*
762	 * Save PHY address.
763	 * Integrated JR0211 has fixed PHY address whereas FPGA version
764	 * requires PHY probing to get correct PHY address.
765	 */
766	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
767		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
768		    GPREG0_PHY_ADDR_MASK;
769		if (bootverbose)
770			device_printf(dev, "PHY is at address %d.\n",
771			    sc->jme_phyaddr);
772	} else
773		sc->jme_phyaddr = 0;
774
775	/* Set max allowable DMA size. */
776	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
777		sc->jme_flags |= JME_FLAG_PCIE;
778		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
779		if (bootverbose) {
780			device_printf(dev, "Read request size : %d bytes.\n",
781			    128 << ((burst >> 12) & 0x07));
782			device_printf(dev, "TLP payload size : %d bytes.\n",
783			    128 << ((burst >> 5) & 0x07));
784		}
785		switch ((burst >> 12) & 0x07) {
786		case 0:
787			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
788			break;
789		case 1:
790			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
791			break;
792		default:
793			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
794			break;
795		}
796		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
797	} else {
798		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
799		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
800	}
801	/* Create coalescing sysctl node. */
802	jme_sysctl_node(sc);
803	if ((error = jme_dma_alloc(sc)) != 0)
804		goto fail;
805
806	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
807	if (ifp == NULL) {
808		device_printf(dev, "cannot allocate ifnet structure.\n");
809		error = ENXIO;
810		goto fail;
811	}
812
813	if_setsoftc(ifp, sc);
814	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
815	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
816	if_setioctlfn(ifp, jme_ioctl);
817	if_setstartfn(ifp, jme_start);
818	if_setinitfn(ifp, jme_init);
819	if_setsendqlen(ifp, JME_TX_RING_CNT - 1);
820	if_setsendqready(ifp);
821	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
822	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
823	if_sethwassist(ifp, JME_CSUM_FEATURES | CSUM_TSO);
824	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
825		sc->jme_flags |= JME_FLAG_PMCAP;
826		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
827	}
828	if_setcapenable(ifp, if_getcapabilities(ifp));
829
830	/* Wakeup PHY. */
831	jme_phy_up(sc);
832	mii_flags = MIIF_DOPAUSE;
833	/* Ask PHY calibration to PHY driver. */
834	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
835		mii_flags |= MIIF_MACPRIV0;
836	/* Set up MII bus. */
837	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
838	    jme_mediastatus, BMSR_DEFCAPMASK,
839	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
840	    MII_OFFSET_ANY, mii_flags);
841	if (error != 0) {
842		device_printf(dev, "attaching PHYs failed\n");
843		goto fail;
844	}
845
846	/*
847	 * Force PHY to FPGA mode.
848	 */
849	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
850		mii = device_get_softc(sc->jme_miibus);
851		if (mii->mii_instance != 0) {
852			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
853				if (miisc->mii_phy != 0) {
854					sc->jme_phyaddr = miisc->mii_phy;
855					break;
856				}
857			}
858			if (sc->jme_phyaddr != 0) {
859				device_printf(sc->jme_dev,
860				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
861				/* vendor magic. */
862				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
863				    0x0004);
864			}
865		}
866	}
867
868	ether_ifattach(ifp, sc->jme_eaddr);
869
870	/* VLAN capability setup */
871	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
872	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
873	if_setcapenable(ifp, if_getcapabilities(ifp));
874
875	/* Tell the upper layer(s) we support long frames. */
876	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
877
878	/* Create local taskq. */
879	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
880	    taskqueue_thread_enqueue, &sc->jme_tq);
881	if (sc->jme_tq == NULL) {
882		device_printf(dev, "could not create taskqueue.\n");
883		ether_ifdetach(ifp);
884		error = ENXIO;
885		goto fail;
886	}
887	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
888	    device_get_nameunit(sc->jme_dev));
889
890	for (i = 0; i < 1; i++) {
891		error = bus_setup_intr(dev, sc->jme_irq[i],
892		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
893		    &sc->jme_intrhand[i]);
894		if (error != 0)
895			break;
896	}
897
898	if (error != 0) {
899		device_printf(dev, "could not set up interrupt handler.\n");
900		taskqueue_free(sc->jme_tq);
901		sc->jme_tq = NULL;
902		ether_ifdetach(ifp);
903		goto fail;
904	}
905
906fail:
907	if (error != 0)
908		jme_detach(dev);
909
910	return (error);
911}
912
913static int
914jme_detach(device_t dev)
915{
916	struct jme_softc *sc;
917	if_t ifp;
918	int i;
919
920	sc = device_get_softc(dev);
921
922	ifp = sc->jme_ifp;
923	if (device_is_attached(dev)) {
924		JME_LOCK(sc);
925		sc->jme_flags |= JME_FLAG_DETACH;
926		jme_stop(sc);
927		JME_UNLOCK(sc);
928		callout_drain(&sc->jme_tick_ch);
929		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
930		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
931		/* Restore possibly modified station address. */
932		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
933			jme_set_macaddr(sc, sc->jme_eaddr);
934		ether_ifdetach(ifp);
935	}
936
937	if (sc->jme_tq != NULL) {
938		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
939		taskqueue_free(sc->jme_tq);
940		sc->jme_tq = NULL;
941	}
942
943	if (sc->jme_miibus != NULL) {
944		device_delete_child(dev, sc->jme_miibus);
945		sc->jme_miibus = NULL;
946	}
947	bus_generic_detach(dev);
948	jme_dma_free(sc);
949
950	if (ifp != NULL) {
951		if_free(ifp);
952		sc->jme_ifp = NULL;
953	}
954
955	for (i = 0; i < 1; i++) {
956		if (sc->jme_intrhand[i] != NULL) {
957			bus_teardown_intr(dev, sc->jme_irq[i],
958			    sc->jme_intrhand[i]);
959			sc->jme_intrhand[i] = NULL;
960		}
961	}
962
963	if (sc->jme_irq[0] != NULL)
964		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
965	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
966		pci_release_msi(dev);
967	if (sc->jme_res[0] != NULL)
968		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
969	mtx_destroy(&sc->jme_mtx);
970
971	return (0);
972}
973
974#define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
975	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
976
977static void
978jme_sysctl_node(struct jme_softc *sc)
979{
980	struct sysctl_ctx_list *ctx;
981	struct sysctl_oid_list *child, *parent;
982	struct sysctl_oid *tree;
983	struct jme_hw_stats *stats;
984	int error;
985
986	stats = &sc->jme_stats;
987	ctx = device_get_sysctl_ctx(sc->jme_dev);
988	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
989
990	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
991	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_to,
992	    0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
993
994	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
995	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_pkt,
996	    0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
997
998	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
999	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_to,
1000	    0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1001
1002	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1003	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_pkt,
1004	    0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1005
1006	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1007	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1008	    &sc->jme_process_limit, 0, sysctl_hw_jme_proc_limit, "I",
1009	    "max number of Rx events to process");
1010
1011	/* Pull in device tunables. */
1012	sc->jme_process_limit = JME_PROC_DEFAULT;
1013	error = resource_int_value(device_get_name(sc->jme_dev),
1014	    device_get_unit(sc->jme_dev), "process_limit",
1015	    &sc->jme_process_limit);
1016	if (error == 0) {
1017		if (sc->jme_process_limit < JME_PROC_MIN ||
1018		    sc->jme_process_limit > JME_PROC_MAX) {
1019			device_printf(sc->jme_dev,
1020			    "process_limit value out of range; "
1021			    "using default: %d\n", JME_PROC_DEFAULT);
1022			sc->jme_process_limit = JME_PROC_DEFAULT;
1023		}
1024	}
1025
1026	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1027	error = resource_int_value(device_get_name(sc->jme_dev),
1028	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1029	if (error == 0) {
1030		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1031		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1032			device_printf(sc->jme_dev,
1033			    "tx_coal_to value out of range; "
1034			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1035			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1036		}
1037	}
1038
1039	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1040	error = resource_int_value(device_get_name(sc->jme_dev),
1041	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1042	if (error == 0) {
1043		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1044		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1045			device_printf(sc->jme_dev,
1046			    "tx_coal_pkt value out of range; "
1047			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1048			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1049		}
1050	}
1051
1052	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1053	error = resource_int_value(device_get_name(sc->jme_dev),
1054	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1055	if (error == 0) {
1056		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1057		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1058			device_printf(sc->jme_dev,
1059			    "rx_coal_to value out of range; "
1060			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1061			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1062		}
1063	}
1064
1065	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1066	error = resource_int_value(device_get_name(sc->jme_dev),
1067	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1068	if (error == 0) {
1069		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1070		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1071			device_printf(sc->jme_dev,
1072			    "tx_coal_pkt value out of range; "
1073			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1074			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1075		}
1076	}
1077
1078	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1079		return;
1080
1081	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1082	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "JME statistics");
1083	parent = SYSCTL_CHILDREN(tree);
1084
1085	/* Rx statistics. */
1086	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
1087	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
1088	child = SYSCTL_CHILDREN(tree);
1089	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1090	    &stats->rx_good_frames, "Good frames");
1091	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1092	    &stats->rx_crc_errs, "CRC errors");
1093	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1094	    &stats->rx_mii_errs, "MII errors");
1095	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1096	    &stats->rx_fifo_oflows, "FIFO overflows");
1097	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1098	    &stats->rx_desc_empty, "Descriptor empty");
1099	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1100	    &stats->rx_bad_frames, "Bad frames");
1101
1102	/* Tx statistics. */
1103	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
1104	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
1105	child = SYSCTL_CHILDREN(tree);
1106	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1107	    &stats->tx_good_frames, "Good frames");
1108	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1109	    &stats->tx_bad_frames, "Bad frames");
1110}
1111
1112#undef	JME_SYSCTL_STAT_ADD32
1113
1114struct jme_dmamap_arg {
1115	bus_addr_t	jme_busaddr;
1116};
1117
1118static void
1119jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1120{
1121	struct jme_dmamap_arg *ctx;
1122
1123	if (error != 0)
1124		return;
1125
1126	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1127
1128	ctx = (struct jme_dmamap_arg *)arg;
1129	ctx->jme_busaddr = segs[0].ds_addr;
1130}
1131
1132static int
1133jme_dma_alloc(struct jme_softc *sc)
1134{
1135	struct jme_dmamap_arg ctx;
1136	struct jme_txdesc *txd;
1137	struct jme_rxdesc *rxd;
1138	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1139	int error, i;
1140
1141	lowaddr = BUS_SPACE_MAXADDR;
1142	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1143		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1144
1145again:
1146	/* Create parent ring tag. */
1147	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1148	    1, 0,			/* algnmnt, boundary */
1149	    lowaddr,			/* lowaddr */
1150	    BUS_SPACE_MAXADDR,		/* highaddr */
1151	    NULL, NULL,			/* filter, filterarg */
1152	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1153	    0,				/* nsegments */
1154	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1155	    0,				/* flags */
1156	    NULL, NULL,			/* lockfunc, lockarg */
1157	    &sc->jme_cdata.jme_ring_tag);
1158	if (error != 0) {
1159		device_printf(sc->jme_dev,
1160		    "could not create parent ring DMA tag.\n");
1161		goto fail;
1162	}
1163	/* Create tag for Tx ring. */
1164	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1165	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1166	    BUS_SPACE_MAXADDR,		/* lowaddr */
1167	    BUS_SPACE_MAXADDR,		/* highaddr */
1168	    NULL, NULL,			/* filter, filterarg */
1169	    JME_TX_RING_SIZE,		/* maxsize */
1170	    1,				/* nsegments */
1171	    JME_TX_RING_SIZE,		/* maxsegsize */
1172	    0,				/* flags */
1173	    NULL, NULL,			/* lockfunc, lockarg */
1174	    &sc->jme_cdata.jme_tx_ring_tag);
1175	if (error != 0) {
1176		device_printf(sc->jme_dev,
1177		    "could not allocate Tx ring DMA tag.\n");
1178		goto fail;
1179	}
1180
1181	/* Create tag for Rx ring. */
1182	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1183	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1184	    lowaddr,			/* lowaddr */
1185	    BUS_SPACE_MAXADDR,		/* highaddr */
1186	    NULL, NULL,			/* filter, filterarg */
1187	    JME_RX_RING_SIZE,		/* maxsize */
1188	    1,				/* nsegments */
1189	    JME_RX_RING_SIZE,		/* maxsegsize */
1190	    0,				/* flags */
1191	    NULL, NULL,			/* lockfunc, lockarg */
1192	    &sc->jme_cdata.jme_rx_ring_tag);
1193	if (error != 0) {
1194		device_printf(sc->jme_dev,
1195		    "could not allocate Rx ring DMA tag.\n");
1196		goto fail;
1197	}
1198
1199	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1200	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1201	    (void **)&sc->jme_rdata.jme_tx_ring,
1202	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1203	    &sc->jme_cdata.jme_tx_ring_map);
1204	if (error != 0) {
1205		device_printf(sc->jme_dev,
1206		    "could not allocate DMA'able memory for Tx ring.\n");
1207		goto fail;
1208	}
1209
1210	ctx.jme_busaddr = 0;
1211	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1212	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1213	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1214	if (error != 0 || ctx.jme_busaddr == 0) {
1215		device_printf(sc->jme_dev,
1216		    "could not load DMA'able memory for Tx ring.\n");
1217		goto fail;
1218	}
1219	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1220
1221	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1222	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1223	    (void **)&sc->jme_rdata.jme_rx_ring,
1224	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1225	    &sc->jme_cdata.jme_rx_ring_map);
1226	if (error != 0) {
1227		device_printf(sc->jme_dev,
1228		    "could not allocate DMA'able memory for Rx ring.\n");
1229		goto fail;
1230	}
1231
1232	ctx.jme_busaddr = 0;
1233	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1234	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1235	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1236	if (error != 0 || ctx.jme_busaddr == 0) {
1237		device_printf(sc->jme_dev,
1238		    "could not load DMA'able memory for Rx ring.\n");
1239		goto fail;
1240	}
1241	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1242
1243	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1244		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1245		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1246		    JME_TX_RING_SIZE;
1247		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1248		    JME_RX_RING_SIZE;
1249		if ((JME_ADDR_HI(tx_ring_end) !=
1250		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1251		    (JME_ADDR_HI(rx_ring_end) !=
1252		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1253			device_printf(sc->jme_dev, "4GB boundary crossed, "
1254			    "switching to 32bit DMA address mode.\n");
1255			jme_dma_free(sc);
1256			/* Limit DMA address space to 32bit and try again. */
1257			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1258			goto again;
1259		}
1260	}
1261
1262	lowaddr = BUS_SPACE_MAXADDR;
1263	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1264		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1265	/* Create parent buffer tag. */
1266	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1267	    1, 0,			/* algnmnt, boundary */
1268	    lowaddr,			/* lowaddr */
1269	    BUS_SPACE_MAXADDR,		/* highaddr */
1270	    NULL, NULL,			/* filter, filterarg */
1271	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1272	    0,				/* nsegments */
1273	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1274	    0,				/* flags */
1275	    NULL, NULL,			/* lockfunc, lockarg */
1276	    &sc->jme_cdata.jme_buffer_tag);
1277	if (error != 0) {
1278		device_printf(sc->jme_dev,
1279		    "could not create parent buffer DMA tag.\n");
1280		goto fail;
1281	}
1282
1283	/* Create shadow status block tag. */
1284	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1285	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1286	    BUS_SPACE_MAXADDR,		/* lowaddr */
1287	    BUS_SPACE_MAXADDR,		/* highaddr */
1288	    NULL, NULL,			/* filter, filterarg */
1289	    JME_SSB_SIZE,		/* maxsize */
1290	    1,				/* nsegments */
1291	    JME_SSB_SIZE,		/* maxsegsize */
1292	    0,				/* flags */
1293	    NULL, NULL,			/* lockfunc, lockarg */
1294	    &sc->jme_cdata.jme_ssb_tag);
1295	if (error != 0) {
1296		device_printf(sc->jme_dev,
1297		    "could not create shared status block DMA tag.\n");
1298		goto fail;
1299	}
1300
1301	/* Create tag for Tx buffers. */
1302	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1303	    1, 0,			/* algnmnt, boundary */
1304	    BUS_SPACE_MAXADDR,		/* lowaddr */
1305	    BUS_SPACE_MAXADDR,		/* highaddr */
1306	    NULL, NULL,			/* filter, filterarg */
1307	    JME_TSO_MAXSIZE,		/* maxsize */
1308	    JME_MAXTXSEGS,		/* nsegments */
1309	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1310	    0,				/* flags */
1311	    NULL, NULL,			/* lockfunc, lockarg */
1312	    &sc->jme_cdata.jme_tx_tag);
1313	if (error != 0) {
1314		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1315		goto fail;
1316	}
1317
1318	/* Create tag for Rx buffers. */
1319	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1320	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1321	    BUS_SPACE_MAXADDR,		/* lowaddr */
1322	    BUS_SPACE_MAXADDR,		/* highaddr */
1323	    NULL, NULL,			/* filter, filterarg */
1324	    MCLBYTES,			/* maxsize */
1325	    1,				/* nsegments */
1326	    MCLBYTES,			/* maxsegsize */
1327	    0,				/* flags */
1328	    NULL, NULL,			/* lockfunc, lockarg */
1329	    &sc->jme_cdata.jme_rx_tag);
1330	if (error != 0) {
1331		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1332		goto fail;
1333	}
1334
1335	/*
1336	 * Allocate DMA'able memory and load the DMA map for shared
1337	 * status block.
1338	 */
1339	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1340	    (void **)&sc->jme_rdata.jme_ssb_block,
1341	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1342	    &sc->jme_cdata.jme_ssb_map);
1343	if (error != 0) {
1344		device_printf(sc->jme_dev, "could not allocate DMA'able "
1345		    "memory for shared status block.\n");
1346		goto fail;
1347	}
1348
1349	ctx.jme_busaddr = 0;
1350	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1351	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1352	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1353	if (error != 0 || ctx.jme_busaddr == 0) {
1354		device_printf(sc->jme_dev, "could not load DMA'able memory "
1355		    "for shared status block.\n");
1356		goto fail;
1357	}
1358	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1359
1360	/* Create DMA maps for Tx buffers. */
1361	for (i = 0; i < JME_TX_RING_CNT; i++) {
1362		txd = &sc->jme_cdata.jme_txdesc[i];
1363		txd->tx_m = NULL;
1364		txd->tx_dmamap = NULL;
1365		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1366		    &txd->tx_dmamap);
1367		if (error != 0) {
1368			device_printf(sc->jme_dev,
1369			    "could not create Tx dmamap.\n");
1370			goto fail;
1371		}
1372	}
1373	/* Create DMA maps for Rx buffers. */
1374	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1375	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1376		device_printf(sc->jme_dev,
1377		    "could not create spare Rx dmamap.\n");
1378		goto fail;
1379	}
1380	for (i = 0; i < JME_RX_RING_CNT; i++) {
1381		rxd = &sc->jme_cdata.jme_rxdesc[i];
1382		rxd->rx_m = NULL;
1383		rxd->rx_dmamap = NULL;
1384		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1385		    &rxd->rx_dmamap);
1386		if (error != 0) {
1387			device_printf(sc->jme_dev,
1388			    "could not create Rx dmamap.\n");
1389			goto fail;
1390		}
1391	}
1392
1393fail:
1394	return (error);
1395}
1396
1397static void
1398jme_dma_free(struct jme_softc *sc)
1399{
1400	struct jme_txdesc *txd;
1401	struct jme_rxdesc *rxd;
1402	int i;
1403
1404	/* Tx ring */
1405	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1406		if (sc->jme_rdata.jme_tx_ring_paddr)
1407			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1408			    sc->jme_cdata.jme_tx_ring_map);
1409		if (sc->jme_rdata.jme_tx_ring)
1410			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1411			    sc->jme_rdata.jme_tx_ring,
1412			    sc->jme_cdata.jme_tx_ring_map);
1413		sc->jme_rdata.jme_tx_ring = NULL;
1414		sc->jme_rdata.jme_tx_ring_paddr = 0;
1415		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1416		sc->jme_cdata.jme_tx_ring_tag = NULL;
1417	}
1418	/* Rx ring */
1419	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1420		if (sc->jme_rdata.jme_rx_ring_paddr)
1421			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1422			    sc->jme_cdata.jme_rx_ring_map);
1423		if (sc->jme_rdata.jme_rx_ring)
1424			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1425			    sc->jme_rdata.jme_rx_ring,
1426			    sc->jme_cdata.jme_rx_ring_map);
1427		sc->jme_rdata.jme_rx_ring = NULL;
1428		sc->jme_rdata.jme_rx_ring_paddr = 0;
1429		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1430		sc->jme_cdata.jme_rx_ring_tag = NULL;
1431	}
1432	/* Tx buffers */
1433	if (sc->jme_cdata.jme_tx_tag != NULL) {
1434		for (i = 0; i < JME_TX_RING_CNT; i++) {
1435			txd = &sc->jme_cdata.jme_txdesc[i];
1436			if (txd->tx_dmamap != NULL) {
1437				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1438				    txd->tx_dmamap);
1439				txd->tx_dmamap = NULL;
1440			}
1441		}
1442		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1443		sc->jme_cdata.jme_tx_tag = NULL;
1444	}
1445	/* Rx buffers */
1446	if (sc->jme_cdata.jme_rx_tag != NULL) {
1447		for (i = 0; i < JME_RX_RING_CNT; i++) {
1448			rxd = &sc->jme_cdata.jme_rxdesc[i];
1449			if (rxd->rx_dmamap != NULL) {
1450				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1451				    rxd->rx_dmamap);
1452				rxd->rx_dmamap = NULL;
1453			}
1454		}
1455		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1456			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1457			    sc->jme_cdata.jme_rx_sparemap);
1458			sc->jme_cdata.jme_rx_sparemap = NULL;
1459		}
1460		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1461		sc->jme_cdata.jme_rx_tag = NULL;
1462	}
1463
1464	/* Shared status block. */
1465	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1466		if (sc->jme_rdata.jme_ssb_block_paddr)
1467			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1468			    sc->jme_cdata.jme_ssb_map);
1469		if (sc->jme_rdata.jme_ssb_block)
1470			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1471			    sc->jme_rdata.jme_ssb_block,
1472			    sc->jme_cdata.jme_ssb_map);
1473		sc->jme_rdata.jme_ssb_block = NULL;
1474		sc->jme_rdata.jme_ssb_block_paddr = 0;
1475		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1476		sc->jme_cdata.jme_ssb_tag = NULL;
1477	}
1478
1479	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1480		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1481		sc->jme_cdata.jme_buffer_tag = NULL;
1482	}
1483	if (sc->jme_cdata.jme_ring_tag != NULL) {
1484		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1485		sc->jme_cdata.jme_ring_tag = NULL;
1486	}
1487}
1488
1489/*
1490 *	Make sure the interface is stopped at reboot time.
1491 */
1492static int
1493jme_shutdown(device_t dev)
1494{
1495
1496	return (jme_suspend(dev));
1497}
1498
1499/*
1500 * Unlike other ethernet controllers, JMC250 requires
1501 * explicit resetting link speed to 10/100Mbps as gigabit
1502 * link will cunsume more power than 375mA.
1503 * Note, we reset the link speed to 10/100Mbps with
1504 * auto-negotiation but we don't know whether that operation
1505 * would succeed or not as we have no control after powering
1506 * off. If the renegotiation fail WOL may not work. Running
1507 * at 1Gbps draws more power than 375mA at 3.3V which is
1508 * specified in PCI specification and that would result in
1509 * complete shutdowning power to ethernet controller.
1510 *
1511 * TODO
1512 *  Save current negotiated media speed/duplex/flow-control
1513 *  to softc and restore the same link again after resuming.
1514 *  PHY handling such as power down/resetting to 100Mbps
1515 *  may be better handled in suspend method in phy driver.
1516 */
1517static void
1518jme_setlinkspeed(struct jme_softc *sc)
1519{
1520	struct mii_data *mii;
1521	int aneg, i;
1522
1523	JME_LOCK_ASSERT(sc);
1524
1525	mii = device_get_softc(sc->jme_miibus);
1526	mii_pollstat(mii);
1527	aneg = 0;
1528	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1529		switch IFM_SUBTYPE(mii->mii_media_active) {
1530		case IFM_10_T:
1531		case IFM_100_TX:
1532			return;
1533		case IFM_1000_T:
1534			aneg++;
1535		default:
1536			break;
1537		}
1538	}
1539	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1540	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1541	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1542	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1543	    BMCR_AUTOEN | BMCR_STARTNEG);
1544	DELAY(1000);
1545	if (aneg != 0) {
1546		/* Poll link state until jme(4) get a 10/100 link. */
1547		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1548			mii_pollstat(mii);
1549			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1550				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1551				case IFM_10_T:
1552				case IFM_100_TX:
1553					jme_mac_config(sc);
1554					return;
1555				default:
1556					break;
1557				}
1558			}
1559			JME_UNLOCK(sc);
1560			pause("jmelnk", hz);
1561			JME_LOCK(sc);
1562		}
1563		if (i == MII_ANEGTICKS_GIGE)
1564			device_printf(sc->jme_dev, "establishing link failed, "
1565			    "WOL may not work!");
1566	}
1567	/*
1568	 * No link, force MAC to have 100Mbps, full-duplex link.
1569	 * This is the last resort and may/may not work.
1570	 */
1571	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1572	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1573	jme_mac_config(sc);
1574}
1575
1576static void
1577jme_setwol(struct jme_softc *sc)
1578{
1579	if_t ifp;
1580	uint32_t gpr, pmcs;
1581	uint16_t pmstat;
1582	int pmc;
1583
1584	JME_LOCK_ASSERT(sc);
1585
1586	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1587		/* Remove Tx MAC/offload clock to save more power. */
1588		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1589			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1590			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1591			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1592		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1593			CSR_WRITE_4(sc, JME_GPREG1,
1594			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1595		/* No PME capability, PHY power down. */
1596		jme_phy_down(sc);
1597		return;
1598	}
1599
1600	ifp = sc->jme_ifp;
1601	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1602	pmcs = CSR_READ_4(sc, JME_PMCS);
1603	pmcs &= ~PMCS_WOL_ENB_MASK;
1604	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1605		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1606		/* Enable PME message. */
1607		gpr |= GPREG0_PME_ENB;
1608		/* For gigabit controllers, reset link speed to 10/100. */
1609		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1610			jme_setlinkspeed(sc);
1611	}
1612
1613	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1614	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1615	/* Remove Tx MAC/offload clock to save more power. */
1616	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1617		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1618		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1619		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1620	/* Request PME. */
1621	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1622	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1623	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1624		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1625	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1626	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1627		/* No WOL, PHY power down. */
1628		jme_phy_down(sc);
1629	}
1630}
1631
1632static int
1633jme_suspend(device_t dev)
1634{
1635	struct jme_softc *sc;
1636
1637	sc = device_get_softc(dev);
1638
1639	JME_LOCK(sc);
1640	jme_stop(sc);
1641	jme_setwol(sc);
1642	JME_UNLOCK(sc);
1643
1644	return (0);
1645}
1646
1647static int
1648jme_resume(device_t dev)
1649{
1650	struct jme_softc *sc;
1651	if_t ifp;
1652	uint16_t pmstat;
1653	int pmc;
1654
1655	sc = device_get_softc(dev);
1656
1657	JME_LOCK(sc);
1658	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1659		pmstat = pci_read_config(sc->jme_dev,
1660		    pmc + PCIR_POWER_STATUS, 2);
1661		/* Disable PME clear PME status. */
1662		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1663		pci_write_config(sc->jme_dev,
1664		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1665	}
1666	/* Wakeup PHY. */
1667	jme_phy_up(sc);
1668	ifp = sc->jme_ifp;
1669	if ((if_getflags(ifp) & IFF_UP) != 0) {
1670		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1671		jme_init_locked(sc);
1672	}
1673
1674	JME_UNLOCK(sc);
1675
1676	return (0);
1677}
1678
1679static int
1680jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1681{
1682	struct jme_txdesc *txd;
1683	struct jme_desc *desc;
1684	struct mbuf *m;
1685	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1686	int error, i, nsegs, prod;
1687	uint32_t cflags, tsosegsz;
1688
1689	JME_LOCK_ASSERT(sc);
1690
1691	M_ASSERTPKTHDR((*m_head));
1692
1693	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1694		/*
1695		 * Due to the adherence to NDIS specification JMC250
1696		 * assumes upper stack computed TCP pseudo checksum
1697		 * without including payload length. This breaks
1698		 * checksum offload for TSO case so recompute TCP
1699		 * pseudo checksum for JMC250. Hopefully this wouldn't
1700		 * be much burden on modern CPUs.
1701		 */
1702		struct ether_header *eh;
1703		struct ip *ip;
1704		struct tcphdr *tcp;
1705		uint32_t ip_off, poff;
1706
1707		if (M_WRITABLE(*m_head) == 0) {
1708			/* Get a writable copy. */
1709			m = m_dup(*m_head, M_NOWAIT);
1710			m_freem(*m_head);
1711			if (m == NULL) {
1712				*m_head = NULL;
1713				return (ENOBUFS);
1714			}
1715			*m_head = m;
1716		}
1717		ip_off = sizeof(struct ether_header);
1718		m = m_pullup(*m_head, ip_off);
1719		if (m == NULL) {
1720			*m_head = NULL;
1721			return (ENOBUFS);
1722		}
1723		eh = mtod(m, struct ether_header *);
1724		/* Check the existence of VLAN tag. */
1725		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1726			ip_off = sizeof(struct ether_vlan_header);
1727			m = m_pullup(m, ip_off);
1728			if (m == NULL) {
1729				*m_head = NULL;
1730				return (ENOBUFS);
1731			}
1732		}
1733		m = m_pullup(m, ip_off + sizeof(struct ip));
1734		if (m == NULL) {
1735			*m_head = NULL;
1736			return (ENOBUFS);
1737		}
1738		ip = (struct ip *)(mtod(m, char *) + ip_off);
1739		poff = ip_off + (ip->ip_hl << 2);
1740		m = m_pullup(m, poff + sizeof(struct tcphdr));
1741		if (m == NULL) {
1742			*m_head = NULL;
1743			return (ENOBUFS);
1744		}
1745		/*
1746		 * Reset IP checksum and recompute TCP pseudo
1747		 * checksum that NDIS specification requires.
1748		 */
1749		ip = (struct ip *)(mtod(m, char *) + ip_off);
1750		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1751		ip->ip_sum = 0;
1752		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1753			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1754			    ip->ip_dst.s_addr,
1755			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1756			/* No need to TSO, force IP checksum offload. */
1757			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1758			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1759		} else
1760			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1761			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1762		*m_head = m;
1763	}
1764
1765	prod = sc->jme_cdata.jme_tx_prod;
1766	txd = &sc->jme_cdata.jme_txdesc[prod];
1767
1768	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1769	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1770	if (error == EFBIG) {
1771		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1772		if (m == NULL) {
1773			m_freem(*m_head);
1774			*m_head = NULL;
1775			return (ENOMEM);
1776		}
1777		*m_head = m;
1778		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1779		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1780		if (error != 0) {
1781			m_freem(*m_head);
1782			*m_head = NULL;
1783			return (error);
1784		}
1785	} else if (error != 0)
1786		return (error);
1787	if (nsegs == 0) {
1788		m_freem(*m_head);
1789		*m_head = NULL;
1790		return (EIO);
1791	}
1792
1793	/*
1794	 * Check descriptor overrun. Leave one free descriptor.
1795	 * Since we always use 64bit address mode for transmitting,
1796	 * each Tx request requires one more dummy descriptor.
1797	 */
1798	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1799		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1800		return (ENOBUFS);
1801	}
1802
1803	m = *m_head;
1804	cflags = 0;
1805	tsosegsz = 0;
1806	/* Configure checksum offload and TSO. */
1807	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1808		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1809		    JME_TD_MSS_SHIFT;
1810		cflags |= JME_TD_TSO;
1811	} else {
1812		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1813			cflags |= JME_TD_IPCSUM;
1814		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1815			cflags |= JME_TD_TCPCSUM;
1816		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1817			cflags |= JME_TD_UDPCSUM;
1818	}
1819	/* Configure VLAN. */
1820	if ((m->m_flags & M_VLANTAG) != 0) {
1821		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1822		cflags |= JME_TD_VLAN_TAG;
1823	}
1824
1825	desc = &sc->jme_rdata.jme_tx_ring[prod];
1826	desc->flags = htole32(cflags);
1827	desc->buflen = htole32(tsosegsz);
1828	desc->addr_hi = htole32(m->m_pkthdr.len);
1829	desc->addr_lo = 0;
1830	sc->jme_cdata.jme_tx_cnt++;
1831	JME_DESC_INC(prod, JME_TX_RING_CNT);
1832	for (i = 0; i < nsegs; i++) {
1833		desc = &sc->jme_rdata.jme_tx_ring[prod];
1834		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1835		desc->buflen = htole32(txsegs[i].ds_len);
1836		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1837		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1838		sc->jme_cdata.jme_tx_cnt++;
1839		JME_DESC_INC(prod, JME_TX_RING_CNT);
1840	}
1841
1842	/* Update producer index. */
1843	sc->jme_cdata.jme_tx_prod = prod;
1844	/*
1845	 * Finally request interrupt and give the first descriptor
1846	 * owenership to hardware.
1847	 */
1848	desc = txd->tx_desc;
1849	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1850
1851	txd->tx_m = m;
1852	txd->tx_ndesc = nsegs + 1;
1853
1854	/* Sync descriptors. */
1855	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1856	    BUS_DMASYNC_PREWRITE);
1857	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1858	    sc->jme_cdata.jme_tx_ring_map,
1859	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1860
1861	return (0);
1862}
1863
1864static void
1865jme_start(if_t ifp)
1866{
1867        struct jme_softc *sc;
1868
1869	sc = if_getsoftc(ifp);
1870	JME_LOCK(sc);
1871	jme_start_locked(ifp);
1872	JME_UNLOCK(sc);
1873}
1874
1875static void
1876jme_start_locked(if_t ifp)
1877{
1878        struct jme_softc *sc;
1879        struct mbuf *m_head;
1880	int enq;
1881
1882	sc = if_getsoftc(ifp);
1883
1884	JME_LOCK_ASSERT(sc);
1885
1886	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1887		jme_txeof(sc);
1888
1889	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1890	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1891		return;
1892
1893	for (enq = 0; !if_sendq_empty(ifp); ) {
1894		m_head = if_dequeue(ifp);
1895		if (m_head == NULL)
1896			break;
1897		/*
1898		 * Pack the data into the transmit ring. If we
1899		 * don't have room, set the OACTIVE flag and wait
1900		 * for the NIC to drain the ring.
1901		 */
1902		if (jme_encap(sc, &m_head)) {
1903			if (m_head == NULL)
1904				break;
1905			if_sendq_prepend(ifp, m_head);
1906			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1907			break;
1908		}
1909
1910		enq++;
1911		/*
1912		 * If there's a BPF listener, bounce a copy of this frame
1913		 * to him.
1914		 */
1915		ETHER_BPF_MTAP(ifp, m_head);
1916	}
1917
1918	if (enq > 0) {
1919		/*
1920		 * Reading TXCSR takes very long time under heavy load
1921		 * so cache TXCSR value and writes the ORed value with
1922		 * the kick command to the TXCSR. This saves one register
1923		 * access cycle.
1924		 */
1925		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1926		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1927		/* Set a timeout in case the chip goes out to lunch. */
1928		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1929	}
1930}
1931
1932static void
1933jme_watchdog(struct jme_softc *sc)
1934{
1935	if_t ifp;
1936
1937	JME_LOCK_ASSERT(sc);
1938
1939	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1940		return;
1941
1942	ifp = sc->jme_ifp;
1943	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1944		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1945		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1946		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1947		jme_init_locked(sc);
1948		return;
1949	}
1950	jme_txeof(sc);
1951	if (sc->jme_cdata.jme_tx_cnt == 0) {
1952		if_printf(sc->jme_ifp,
1953		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1954		if (!if_sendq_empty(ifp))
1955			jme_start_locked(ifp);
1956		return;
1957	}
1958
1959	if_printf(sc->jme_ifp, "watchdog timeout\n");
1960	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1961	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1962	jme_init_locked(sc);
1963	if (!if_sendq_empty(ifp))
1964		jme_start_locked(ifp);
1965}
1966
1967static int
1968jme_ioctl(if_t ifp, u_long cmd, caddr_t data)
1969{
1970	struct jme_softc *sc;
1971	struct ifreq *ifr;
1972	struct mii_data *mii;
1973	uint32_t reg;
1974	int error, mask;
1975
1976	sc = if_getsoftc(ifp);
1977	ifr = (struct ifreq *)data;
1978	error = 0;
1979	switch (cmd) {
1980	case SIOCSIFMTU:
1981		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1982		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1983		    ifr->ifr_mtu > JME_MAX_MTU)) {
1984			error = EINVAL;
1985			break;
1986		}
1987
1988		if (if_getmtu(ifp) != ifr->ifr_mtu) {
1989			/*
1990			 * No special configuration is required when interface
1991			 * MTU is changed but availability of TSO/Tx checksum
1992			 * offload should be chcked against new MTU size as
1993			 * FIFO size is just 2K.
1994			 */
1995			JME_LOCK(sc);
1996			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1997				if_setcapenablebit(ifp, 0,
1998				    IFCAP_TXCSUM | IFCAP_TSO4);
1999				if_sethwassistbits(ifp, 0,
2000				    JME_CSUM_FEATURES | CSUM_TSO);
2001				VLAN_CAPABILITIES(ifp);
2002			}
2003			if_setmtu(ifp, ifr->ifr_mtu);
2004			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2005				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2006				jme_init_locked(sc);
2007			}
2008			JME_UNLOCK(sc);
2009		}
2010		break;
2011	case SIOCSIFFLAGS:
2012		JME_LOCK(sc);
2013		if ((if_getflags(ifp) & IFF_UP) != 0) {
2014			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2015				if (((if_getflags(ifp) ^ sc->jme_if_flags)
2016				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2017					jme_set_filter(sc);
2018			} else {
2019				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2020					jme_init_locked(sc);
2021			}
2022		} else {
2023			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2024				jme_stop(sc);
2025		}
2026		sc->jme_if_flags = if_getflags(ifp);
2027		JME_UNLOCK(sc);
2028		break;
2029	case SIOCADDMULTI:
2030	case SIOCDELMULTI:
2031		JME_LOCK(sc);
2032		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2033			jme_set_filter(sc);
2034		JME_UNLOCK(sc);
2035		break;
2036	case SIOCSIFMEDIA:
2037	case SIOCGIFMEDIA:
2038		mii = device_get_softc(sc->jme_miibus);
2039		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2040		break;
2041	case SIOCSIFCAP:
2042		JME_LOCK(sc);
2043		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2044		if ((mask & IFCAP_TXCSUM) != 0 &&
2045		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2046			if ((IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2047				if_togglecapenable(ifp, IFCAP_TXCSUM);
2048				if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2049					if_sethwassistbits(ifp, JME_CSUM_FEATURES, 0);
2050				else
2051					if_sethwassistbits(ifp, 0, JME_CSUM_FEATURES);
2052			}
2053		}
2054		if ((mask & IFCAP_RXCSUM) != 0 &&
2055		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
2056			if_togglecapenable(ifp, IFCAP_RXCSUM);
2057			reg = CSR_READ_4(sc, JME_RXMAC);
2058			reg &= ~RXMAC_CSUM_ENB;
2059			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2060				reg |= RXMAC_CSUM_ENB;
2061			CSR_WRITE_4(sc, JME_RXMAC, reg);
2062		}
2063		if ((mask & IFCAP_TSO4) != 0 &&
2064		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2065			if ((IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
2066				if_togglecapenable(ifp, IFCAP_TSO4);
2067				if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
2068					if_sethwassistbits(ifp, CSUM_TSO, 0);
2069				else
2070					if_sethwassistbits(ifp, 0, CSUM_TSO);
2071			}
2072		}
2073		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2074		    (IFCAP_WOL_MAGIC & if_getcapabilities(ifp)) != 0)
2075			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2076		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2077		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2078			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2079		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2080		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2081			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2082		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2083		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2084			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2085			jme_set_vlan(sc);
2086		}
2087		JME_UNLOCK(sc);
2088		VLAN_CAPABILITIES(ifp);
2089		break;
2090	default:
2091		error = ether_ioctl(ifp, cmd, data);
2092		break;
2093	}
2094
2095	return (error);
2096}
2097
2098static void
2099jme_mac_config(struct jme_softc *sc)
2100{
2101	struct mii_data *mii;
2102	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2103	uint32_t txclk;
2104
2105	JME_LOCK_ASSERT(sc);
2106
2107	mii = device_get_softc(sc->jme_miibus);
2108
2109	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2110	DELAY(10);
2111	CSR_WRITE_4(sc, JME_GHC, 0);
2112	ghc = 0;
2113	txclk = 0;
2114	rxmac = CSR_READ_4(sc, JME_RXMAC);
2115	rxmac &= ~RXMAC_FC_ENB;
2116	txmac = CSR_READ_4(sc, JME_TXMAC);
2117	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2118	txpause = CSR_READ_4(sc, JME_TXPFC);
2119	txpause &= ~TXPFC_PAUSE_ENB;
2120	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2121		ghc |= GHC_FULL_DUPLEX;
2122		rxmac &= ~RXMAC_COLL_DET_ENB;
2123		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2124		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2125		    TXMAC_FRAME_BURST);
2126		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2127			txpause |= TXPFC_PAUSE_ENB;
2128		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2129			rxmac |= RXMAC_FC_ENB;
2130		/* Disable retry transmit timer/retry limit. */
2131		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2132		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2133	} else {
2134		rxmac |= RXMAC_COLL_DET_ENB;
2135		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2136		/* Enable retry transmit timer/retry limit. */
2137		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2138		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2139	}
2140		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2141	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2142	case IFM_10_T:
2143		ghc |= GHC_SPEED_10;
2144		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2145		break;
2146	case IFM_100_TX:
2147		ghc |= GHC_SPEED_100;
2148		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2149		break;
2150	case IFM_1000_T:
2151		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2152			break;
2153		ghc |= GHC_SPEED_1000;
2154		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2155		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2156			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2157		break;
2158	default:
2159		break;
2160	}
2161	if (sc->jme_rev == DEVICEID_JMC250 &&
2162	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2163		/*
2164		 * Workaround occasional packet loss issue of JMC250 A2
2165		 * when it runs on half-duplex media.
2166		 */
2167		gpreg = CSR_READ_4(sc, JME_GPREG1);
2168		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2169			gpreg &= ~GPREG1_HDPX_FIX;
2170		else
2171			gpreg |= GPREG1_HDPX_FIX;
2172		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2173		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2174		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2175			/* Extend interface FIFO depth. */
2176			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2177			    0x1B, 0x0000);
2178		} else {
2179			/* Select default interface FIFO depth. */
2180			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2181			    0x1B, 0x0004);
2182		}
2183	}
2184	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2185		ghc |= txclk;
2186	CSR_WRITE_4(sc, JME_GHC, ghc);
2187	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2188	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2189	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2190}
2191
2192static void
2193jme_link_task(void *arg, int pending)
2194{
2195	struct jme_softc *sc;
2196	struct mii_data *mii;
2197	if_t ifp;
2198	struct jme_txdesc *txd;
2199	bus_addr_t paddr;
2200	int i;
2201
2202	sc = (struct jme_softc *)arg;
2203
2204	JME_LOCK(sc);
2205	mii = device_get_softc(sc->jme_miibus);
2206	ifp = sc->jme_ifp;
2207	if (mii == NULL || ifp == NULL ||
2208	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2209		JME_UNLOCK(sc);
2210		return;
2211	}
2212
2213	sc->jme_flags &= ~JME_FLAG_LINK;
2214	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2215		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2216		case IFM_10_T:
2217		case IFM_100_TX:
2218			sc->jme_flags |= JME_FLAG_LINK;
2219			break;
2220		case IFM_1000_T:
2221			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2222				break;
2223			sc->jme_flags |= JME_FLAG_LINK;
2224			break;
2225		default:
2226			break;
2227		}
2228	}
2229
2230	/*
2231	 * Disabling Rx/Tx MACs have a side-effect of resetting
2232	 * JME_TXNDA/JME_RXNDA register to the first address of
2233	 * Tx/Rx descriptor address. So driver should reset its
2234	 * internal procucer/consumer pointer and reclaim any
2235	 * allocated resources. Note, just saving the value of
2236	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2237	 * and restoring JME_TXNDA/JME_RXNDA register is not
2238	 * sufficient to make sure correct MAC state because
2239	 * stopping MAC operation can take a while and hardware
2240	 * might have updated JME_TXNDA/JME_RXNDA registers
2241	 * during the stop operation.
2242	 */
2243	/* Block execution of task. */
2244	taskqueue_block(sc->jme_tq);
2245	/* Disable interrupts and stop driver. */
2246	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2247	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2248	callout_stop(&sc->jme_tick_ch);
2249	sc->jme_watchdog_timer = 0;
2250
2251	/* Stop receiver/transmitter. */
2252	jme_stop_rx(sc);
2253	jme_stop_tx(sc);
2254
2255	/* XXX Drain all queued tasks. */
2256	JME_UNLOCK(sc);
2257	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2258	JME_LOCK(sc);
2259
2260	if (sc->jme_cdata.jme_rxhead != NULL)
2261		m_freem(sc->jme_cdata.jme_rxhead);
2262	JME_RXCHAIN_RESET(sc);
2263	jme_txeof(sc);
2264	if (sc->jme_cdata.jme_tx_cnt != 0) {
2265		/* Remove queued packets for transmit. */
2266		for (i = 0; i < JME_TX_RING_CNT; i++) {
2267			txd = &sc->jme_cdata.jme_txdesc[i];
2268			if (txd->tx_m != NULL) {
2269				bus_dmamap_sync(
2270				    sc->jme_cdata.jme_tx_tag,
2271				    txd->tx_dmamap,
2272				    BUS_DMASYNC_POSTWRITE);
2273				bus_dmamap_unload(
2274				    sc->jme_cdata.jme_tx_tag,
2275				    txd->tx_dmamap);
2276				m_freem(txd->tx_m);
2277				txd->tx_m = NULL;
2278				txd->tx_ndesc = 0;
2279				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2280			}
2281		}
2282	}
2283
2284	/*
2285	 * Reuse configured Rx descriptors and reset
2286	 * producer/consumer index.
2287	 */
2288	sc->jme_cdata.jme_rx_cons = 0;
2289	sc->jme_morework = 0;
2290	jme_init_tx_ring(sc);
2291	/* Initialize shadow status block. */
2292	jme_init_ssb(sc);
2293
2294	/* Program MAC with resolved speed/duplex/flow-control. */
2295	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2296		jme_mac_config(sc);
2297		jme_stats_clear(sc);
2298
2299		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2300		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2301
2302		/* Set Tx ring address to the hardware. */
2303		paddr = JME_TX_RING_ADDR(sc, 0);
2304		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2305		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2306
2307		/* Set Rx ring address to the hardware. */
2308		paddr = JME_RX_RING_ADDR(sc, 0);
2309		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2310		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2311
2312		/* Restart receiver/transmitter. */
2313		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2314		    RXCSR_RXQ_START);
2315		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2316		/* Lastly enable TX/RX clock. */
2317		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2318			CSR_WRITE_4(sc, JME_GHC,
2319			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2320		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2321			CSR_WRITE_4(sc, JME_GPREG1,
2322			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2323	}
2324
2325	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2326	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2327	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2328	/* Unblock execution of task. */
2329	taskqueue_unblock(sc->jme_tq);
2330	/* Reenable interrupts. */
2331	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2332
2333	JME_UNLOCK(sc);
2334}
2335
2336static int
2337jme_intr(void *arg)
2338{
2339	struct jme_softc *sc;
2340	uint32_t status;
2341
2342	sc = (struct jme_softc *)arg;
2343
2344	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2345	if (status == 0 || status == 0xFFFFFFFF)
2346		return (FILTER_STRAY);
2347	/* Disable interrupts. */
2348	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2349	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2350
2351	return (FILTER_HANDLED);
2352}
2353
2354static void
2355jme_int_task(void *arg, int pending)
2356{
2357	struct jme_softc *sc;
2358	if_t ifp;
2359	uint32_t status;
2360	int more;
2361
2362	sc = (struct jme_softc *)arg;
2363	ifp = sc->jme_ifp;
2364
2365	JME_LOCK(sc);
2366	status = CSR_READ_4(sc, JME_INTR_STATUS);
2367	if (sc->jme_morework != 0) {
2368		sc->jme_morework = 0;
2369		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2370	}
2371	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2372		goto done;
2373	/* Reset PCC counter/timer and Ack interrupts. */
2374	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2375	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2376		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2377	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2378		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2379	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2380	more = 0;
2381	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2382		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2383			more = jme_rxintr(sc, sc->jme_process_limit);
2384			if (more != 0)
2385				sc->jme_morework = 1;
2386		}
2387		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2388			/*
2389			 * Notify hardware availability of new Rx
2390			 * buffers.
2391			 * Reading RXCSR takes very long time under
2392			 * heavy load so cache RXCSR value and writes
2393			 * the ORed value with the kick command to
2394			 * the RXCSR. This saves one register access
2395			 * cycle.
2396			 */
2397			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2398			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2399		}
2400		if (!if_sendq_empty(ifp))
2401			jme_start_locked(ifp);
2402	}
2403
2404	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2405		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2406		JME_UNLOCK(sc);
2407		return;
2408	}
2409done:
2410	JME_UNLOCK(sc);
2411
2412	/* Reenable interrupts. */
2413	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2414}
2415
2416static void
2417jme_txeof(struct jme_softc *sc)
2418{
2419	if_t ifp;
2420	struct jme_txdesc *txd;
2421	uint32_t status;
2422	int cons, nsegs;
2423
2424	JME_LOCK_ASSERT(sc);
2425
2426	ifp = sc->jme_ifp;
2427
2428	cons = sc->jme_cdata.jme_tx_cons;
2429	if (cons == sc->jme_cdata.jme_tx_prod)
2430		return;
2431
2432	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2433	    sc->jme_cdata.jme_tx_ring_map,
2434	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2435
2436	/*
2437	 * Go through our Tx list and free mbufs for those
2438	 * frames which have been transmitted.
2439	 */
2440	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2441		txd = &sc->jme_cdata.jme_txdesc[cons];
2442		status = le32toh(txd->tx_desc->flags);
2443		if ((status & JME_TD_OWN) == JME_TD_OWN)
2444			break;
2445
2446		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2447			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2448		else {
2449			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2450			if ((status & JME_TD_COLLISION) != 0)
2451				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2452				    le32toh(txd->tx_desc->buflen) &
2453				    JME_TD_BUF_LEN_MASK);
2454		}
2455		/*
2456		 * Only the first descriptor of multi-descriptor
2457		 * transmission is updated so driver have to skip entire
2458		 * chained buffers for the transmiited frame. In other
2459		 * words, JME_TD_OWN bit is valid only at the first
2460		 * descriptor of a multi-descriptor transmission.
2461		 */
2462		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2463			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2464			JME_DESC_INC(cons, JME_TX_RING_CNT);
2465		}
2466
2467		/* Reclaim transferred mbufs. */
2468		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2469		    BUS_DMASYNC_POSTWRITE);
2470		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2471
2472		KASSERT(txd->tx_m != NULL,
2473		    ("%s: freeing NULL mbuf!\n", __func__));
2474		m_freem(txd->tx_m);
2475		txd->tx_m = NULL;
2476		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2477		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2478		    ("%s: Active Tx desc counter was garbled\n", __func__));
2479		txd->tx_ndesc = 0;
2480		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2481	}
2482	sc->jme_cdata.jme_tx_cons = cons;
2483	/* Unarm watchdog timer when there is no pending descriptors in queue. */
2484	if (sc->jme_cdata.jme_tx_cnt == 0)
2485		sc->jme_watchdog_timer = 0;
2486
2487	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2488	    sc->jme_cdata.jme_tx_ring_map,
2489	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2490}
2491
2492static __inline void
2493jme_discard_rxbuf(struct jme_softc *sc, int cons)
2494{
2495	struct jme_desc *desc;
2496
2497	desc = &sc->jme_rdata.jme_rx_ring[cons];
2498	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2499	desc->buflen = htole32(MCLBYTES);
2500}
2501
2502/* Receive a frame. */
2503static void
2504jme_rxeof(struct jme_softc *sc)
2505{
2506	if_t ifp;
2507	struct jme_desc *desc;
2508	struct jme_rxdesc *rxd;
2509	struct mbuf *mp, *m;
2510	uint32_t flags, status;
2511	int cons, count, nsegs;
2512
2513	JME_LOCK_ASSERT(sc);
2514
2515	ifp = sc->jme_ifp;
2516
2517	cons = sc->jme_cdata.jme_rx_cons;
2518	desc = &sc->jme_rdata.jme_rx_ring[cons];
2519	flags = le32toh(desc->flags);
2520	status = le32toh(desc->buflen);
2521	nsegs = JME_RX_NSEGS(status);
2522	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2523	if ((status & JME_RX_ERR_STAT) != 0) {
2524		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2525		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2526#ifdef JME_SHOW_ERRORS
2527		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2528		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2529#endif
2530		sc->jme_cdata.jme_rx_cons += nsegs;
2531		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2532		return;
2533	}
2534
2535	for (count = 0; count < nsegs; count++,
2536	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2537		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2538		mp = rxd->rx_m;
2539		/* Add a new receive buffer to the ring. */
2540		if (jme_newbuf(sc, rxd) != 0) {
2541			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2542			/* Reuse buffer. */
2543			for (; count < nsegs; count++) {
2544				jme_discard_rxbuf(sc, cons);
2545				JME_DESC_INC(cons, JME_RX_RING_CNT);
2546			}
2547			if (sc->jme_cdata.jme_rxhead != NULL) {
2548				m_freem(sc->jme_cdata.jme_rxhead);
2549				JME_RXCHAIN_RESET(sc);
2550			}
2551			break;
2552		}
2553
2554		/*
2555		 * Assume we've received a full sized frame.
2556		 * Actual size is fixed when we encounter the end of
2557		 * multi-segmented frame.
2558		 */
2559		mp->m_len = MCLBYTES;
2560
2561		/* Chain received mbufs. */
2562		if (sc->jme_cdata.jme_rxhead == NULL) {
2563			sc->jme_cdata.jme_rxhead = mp;
2564			sc->jme_cdata.jme_rxtail = mp;
2565		} else {
2566			/*
2567			 * Receive processor can receive a maximum frame
2568			 * size of 65535 bytes.
2569			 */
2570			mp->m_flags &= ~M_PKTHDR;
2571			sc->jme_cdata.jme_rxtail->m_next = mp;
2572			sc->jme_cdata.jme_rxtail = mp;
2573		}
2574
2575		if (count == nsegs - 1) {
2576			/* Last desc. for this frame. */
2577			m = sc->jme_cdata.jme_rxhead;
2578			m->m_flags |= M_PKTHDR;
2579			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2580			if (nsegs > 1) {
2581				/* Set first mbuf size. */
2582				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2583				/* Set last mbuf size. */
2584				mp->m_len = sc->jme_cdata.jme_rxlen -
2585				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2586				    (MCLBYTES * (nsegs - 2)));
2587			} else
2588				m->m_len = sc->jme_cdata.jme_rxlen;
2589			m->m_pkthdr.rcvif = ifp;
2590
2591			/*
2592			 * Account for 10bytes auto padding which is used
2593			 * to align IP header on 32bit boundary. Also note,
2594			 * CRC bytes is automatically removed by the
2595			 * hardware.
2596			 */
2597			m->m_data += JME_RX_PAD_BYTES;
2598
2599			/* Set checksum information. */
2600			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2601			    (flags & JME_RD_IPV4) != 0) {
2602				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2603				if ((flags & JME_RD_IPCSUM) != 0)
2604					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2605				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2606				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2607				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2608				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2609				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2610					m->m_pkthdr.csum_flags |=
2611					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2612					m->m_pkthdr.csum_data = 0xffff;
2613				}
2614			}
2615
2616			/* Check for VLAN tagged packets. */
2617			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2618			    (flags & JME_RD_VLAN_TAG) != 0) {
2619				m->m_pkthdr.ether_vtag =
2620				    flags & JME_RD_VLAN_MASK;
2621				m->m_flags |= M_VLANTAG;
2622			}
2623
2624			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2625			/* Pass it on. */
2626			JME_UNLOCK(sc);
2627			if_input(ifp, m);
2628			JME_LOCK(sc);
2629
2630			/* Reset mbuf chains. */
2631			JME_RXCHAIN_RESET(sc);
2632		}
2633	}
2634
2635	sc->jme_cdata.jme_rx_cons += nsegs;
2636	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2637}
2638
2639static int
2640jme_rxintr(struct jme_softc *sc, int count)
2641{
2642	struct jme_desc *desc;
2643	int nsegs, prog, pktlen;
2644
2645	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2646	    sc->jme_cdata.jme_rx_ring_map,
2647	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2648
2649	for (prog = 0; count > 0; prog++) {
2650		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2651		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2652			break;
2653		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2654			break;
2655		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2656		/*
2657		 * Check number of segments against received bytes.
2658		 * Non-matching value would indicate that hardware
2659		 * is still trying to update Rx descriptors. I'm not
2660		 * sure whether this check is needed.
2661		 */
2662		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2663		if (nsegs != howmany(pktlen, MCLBYTES))
2664			break;
2665		prog++;
2666		/* Received a frame. */
2667		jme_rxeof(sc);
2668		count -= nsegs;
2669	}
2670
2671	if (prog > 0)
2672		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2673		    sc->jme_cdata.jme_rx_ring_map,
2674		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2675
2676	return (count > 0 ? 0 : EAGAIN);
2677}
2678
2679static void
2680jme_tick(void *arg)
2681{
2682	struct jme_softc *sc;
2683	struct mii_data *mii;
2684
2685	sc = (struct jme_softc *)arg;
2686
2687	JME_LOCK_ASSERT(sc);
2688
2689	mii = device_get_softc(sc->jme_miibus);
2690	mii_tick(mii);
2691	/*
2692	 * Reclaim Tx buffers that have been completed. It's not
2693	 * needed here but it would release allocated mbuf chains
2694	 * faster and limit the maximum delay to a hz.
2695	 */
2696	jme_txeof(sc);
2697	jme_stats_update(sc);
2698	jme_watchdog(sc);
2699	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2700}
2701
2702static void
2703jme_reset(struct jme_softc *sc)
2704{
2705	uint32_t ghc, gpreg;
2706
2707	/* Stop receiver, transmitter. */
2708	jme_stop_rx(sc);
2709	jme_stop_tx(sc);
2710
2711	/* Reset controller. */
2712	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2713	CSR_READ_4(sc, JME_GHC);
2714	DELAY(10);
2715	/*
2716	 * Workaround Rx FIFO overruns seen under certain conditions.
2717	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2718	 * enabled only after enabling TX/RX MACs.
2719	 */
2720	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2721		/* Disable TX clock. */
2722		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2723		/* Disable RX clock. */
2724		gpreg = CSR_READ_4(sc, JME_GPREG1);
2725		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2726		gpreg = CSR_READ_4(sc, JME_GPREG1);
2727		/* De-assert RESET but still disable TX clock. */
2728		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2729		ghc = CSR_READ_4(sc, JME_GHC);
2730
2731		/* Enable TX clock. */
2732		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2733		/* Enable RX clock. */
2734		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2735		CSR_READ_4(sc, JME_GPREG1);
2736
2737		/* Disable TX/RX clock again. */
2738		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2739		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2740	} else
2741		CSR_WRITE_4(sc, JME_GHC, 0);
2742	CSR_READ_4(sc, JME_GHC);
2743	DELAY(10);
2744}
2745
2746static void
2747jme_init(void *xsc)
2748{
2749	struct jme_softc *sc;
2750
2751	sc = (struct jme_softc *)xsc;
2752	JME_LOCK(sc);
2753	jme_init_locked(sc);
2754	JME_UNLOCK(sc);
2755}
2756
2757static void
2758jme_init_locked(struct jme_softc *sc)
2759{
2760	if_t ifp;
2761	struct mii_data *mii;
2762	bus_addr_t paddr;
2763	uint32_t reg;
2764	int error;
2765
2766	JME_LOCK_ASSERT(sc);
2767
2768	ifp = sc->jme_ifp;
2769	mii = device_get_softc(sc->jme_miibus);
2770
2771	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2772		return;
2773	/*
2774	 * Cancel any pending I/O.
2775	 */
2776	jme_stop(sc);
2777
2778	/*
2779	 * Reset the chip to a known state.
2780	 */
2781	jme_reset(sc);
2782
2783	/* Init descriptors. */
2784	error = jme_init_rx_ring(sc);
2785        if (error != 0) {
2786                device_printf(sc->jme_dev,
2787                    "%s: initialization failed: no memory for Rx buffers.\n",
2788		    __func__);
2789                jme_stop(sc);
2790		return;
2791        }
2792	jme_init_tx_ring(sc);
2793	/* Initialize shadow status block. */
2794	jme_init_ssb(sc);
2795
2796	/* Reprogram the station address. */
2797	jme_set_macaddr(sc, if_getlladdr(sc->jme_ifp));
2798
2799	/*
2800	 * Configure Tx queue.
2801	 *  Tx priority queue weight value : 0
2802	 *  Tx FIFO threshold for processing next packet : 16QW
2803	 *  Maximum Tx DMA length : 512
2804	 *  Allow Tx DMA burst.
2805	 */
2806	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2807	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2808	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2809	sc->jme_txcsr |= sc->jme_tx_dma_size;
2810	sc->jme_txcsr |= TXCSR_DMA_BURST;
2811	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2812
2813	/* Set Tx descriptor counter. */
2814	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2815
2816	/* Set Tx ring address to the hardware. */
2817	paddr = JME_TX_RING_ADDR(sc, 0);
2818	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2819	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2820
2821	/* Configure TxMAC parameters. */
2822	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2823	reg |= TXMAC_THRESH_1_PKT;
2824	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2825	CSR_WRITE_4(sc, JME_TXMAC, reg);
2826
2827	/*
2828	 * Configure Rx queue.
2829	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2830	 *  FIFO threshold for processing next packet : 128QW
2831	 *  Rx queue 0 select
2832	 *  Max Rx DMA length : 128
2833	 *  Rx descriptor retry : 32
2834	 *  Rx descriptor retry time gap : 256ns
2835	 *  Don't receive runt/bad frame.
2836	 */
2837	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2838	/*
2839	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2840	 * than 4K bytes will suffer from Rx FIFO overruns. So
2841	 * decrease FIFO threshold to reduce the FIFO overruns for
2842	 * frames larger than 4000 bytes.
2843	 * For best performance of standard MTU sized frames use
2844	 * maximum allowable FIFO threshold, 128QW. Note these do
2845	 * not hold on chip full mask version >=2. For these
2846	 * controllers 64QW and 128QW are not valid value.
2847	 */
2848	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2849		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2850	else {
2851		if ((if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2852		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2853			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2854		else
2855			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2856	}
2857	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2858	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2859	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2860	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2861
2862	/* Set Rx descriptor counter. */
2863	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2864
2865	/* Set Rx ring address to the hardware. */
2866	paddr = JME_RX_RING_ADDR(sc, 0);
2867	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2868	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2869
2870	/* Clear receive filter. */
2871	CSR_WRITE_4(sc, JME_RXMAC, 0);
2872	/* Set up the receive filter. */
2873	jme_set_filter(sc);
2874	jme_set_vlan(sc);
2875
2876	/*
2877	 * Disable all WOL bits as WOL can interfere normal Rx
2878	 * operation. Also clear WOL detection status bits.
2879	 */
2880	reg = CSR_READ_4(sc, JME_PMCS);
2881	reg &= ~PMCS_WOL_ENB_MASK;
2882	CSR_WRITE_4(sc, JME_PMCS, reg);
2883
2884	reg = CSR_READ_4(sc, JME_RXMAC);
2885	/*
2886	 * Pad 10bytes right before received frame. This will greatly
2887	 * help Rx performance on strict-alignment architectures as
2888	 * it does not need to copy the frame to align the payload.
2889	 */
2890	reg |= RXMAC_PAD_10BYTES;
2891	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2892		reg |= RXMAC_CSUM_ENB;
2893	CSR_WRITE_4(sc, JME_RXMAC, reg);
2894
2895	/* Configure general purpose reg0 */
2896	reg = CSR_READ_4(sc, JME_GPREG0);
2897	reg &= ~GPREG0_PCC_UNIT_MASK;
2898	/* Set PCC timer resolution to micro-seconds unit. */
2899	reg |= GPREG0_PCC_UNIT_US;
2900	/*
2901	 * Disable all shadow register posting as we have to read
2902	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2903	 * that it's hard to synchronize interrupt status between
2904	 * hardware and software with shadow posting due to
2905	 * requirements of bus_dmamap_sync(9).
2906	 */
2907	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2908	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2909	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2910	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2911	/* Disable posting of DW0. */
2912	reg &= ~GPREG0_POST_DW0_ENB;
2913	/* Clear PME message. */
2914	reg &= ~GPREG0_PME_ENB;
2915	/* Set PHY address. */
2916	reg &= ~GPREG0_PHY_ADDR_MASK;
2917	reg |= sc->jme_phyaddr;
2918	CSR_WRITE_4(sc, JME_GPREG0, reg);
2919
2920	/* Configure Tx queue 0 packet completion coalescing. */
2921	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2922	    PCCTX_COAL_TO_MASK;
2923	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2924	    PCCTX_COAL_PKT_MASK;
2925	reg |= PCCTX_COAL_TXQ0;
2926	CSR_WRITE_4(sc, JME_PCCTX, reg);
2927
2928	/* Configure Rx queue 0 packet completion coalescing. */
2929	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2930	    PCCRX_COAL_TO_MASK;
2931	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2932	    PCCRX_COAL_PKT_MASK;
2933	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2934
2935	/*
2936	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2937	 * generates an interrupt when the time interval between two
2938	 * back-to-back incoming/outgoing packet is long enough for
2939	 * it to reach its timer value 0. The arrival of new packets
2940	 * after timer has started causes the PCD timer to restart.
2941	 * Unfortunately, it's not clear how PCD is useful at this
2942	 * moment, so just use the same of PCC parameters.
2943	 */
2944	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2945		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2946		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2947			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2948		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2949		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2950			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2951		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2952		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2953		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2954		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2955		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2956		CSR_WRITE_4(sc, JME_PCDTX, reg);
2957	}
2958
2959	/* Configure shadow status block but don't enable posting. */
2960	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2961	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2962	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2963
2964	/* Disable Timer 1 and Timer 2. */
2965	CSR_WRITE_4(sc, JME_TIMER1, 0);
2966	CSR_WRITE_4(sc, JME_TIMER2, 0);
2967
2968	/* Configure retry transmit period, retry limit value. */
2969	CSR_WRITE_4(sc, JME_TXTRHD,
2970	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2971	    TXTRHD_RT_PERIOD_MASK) |
2972	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2973	    TXTRHD_RT_LIMIT_SHIFT));
2974
2975	/* Disable RSS. */
2976	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2977
2978	/* Initialize the interrupt mask. */
2979	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2980	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2981
2982	/*
2983	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2984	 * done after detection of valid link in jme_link_task.
2985	 */
2986
2987	sc->jme_flags &= ~JME_FLAG_LINK;
2988	/* Set the current media. */
2989	mii_mediachg(mii);
2990
2991	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2992
2993	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2994	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2995}
2996
2997static void
2998jme_stop(struct jme_softc *sc)
2999{
3000	if_t ifp;
3001	struct jme_txdesc *txd;
3002	struct jme_rxdesc *rxd;
3003	int i;
3004
3005	JME_LOCK_ASSERT(sc);
3006	/*
3007	 * Mark the interface down and cancel the watchdog timer.
3008	 */
3009	ifp = sc->jme_ifp;
3010	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3011	sc->jme_flags &= ~JME_FLAG_LINK;
3012	callout_stop(&sc->jme_tick_ch);
3013	sc->jme_watchdog_timer = 0;
3014
3015	/*
3016	 * Disable interrupts.
3017	 */
3018	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3019	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3020
3021	/* Disable updating shadow status block. */
3022	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3023	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3024
3025	/* Stop receiver, transmitter. */
3026	jme_stop_rx(sc);
3027	jme_stop_tx(sc);
3028
3029	 /* Reclaim Rx/Tx buffers that have been completed. */
3030	jme_rxintr(sc, JME_RX_RING_CNT);
3031	if (sc->jme_cdata.jme_rxhead != NULL)
3032		m_freem(sc->jme_cdata.jme_rxhead);
3033	JME_RXCHAIN_RESET(sc);
3034	jme_txeof(sc);
3035	/*
3036	 * Free RX and TX mbufs still in the queues.
3037	 */
3038	for (i = 0; i < JME_RX_RING_CNT; i++) {
3039		rxd = &sc->jme_cdata.jme_rxdesc[i];
3040		if (rxd->rx_m != NULL) {
3041			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3042			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3043			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3044			    rxd->rx_dmamap);
3045			m_freem(rxd->rx_m);
3046			rxd->rx_m = NULL;
3047		}
3048        }
3049	for (i = 0; i < JME_TX_RING_CNT; i++) {
3050		txd = &sc->jme_cdata.jme_txdesc[i];
3051		if (txd->tx_m != NULL) {
3052			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3053			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3054			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3055			    txd->tx_dmamap);
3056			m_freem(txd->tx_m);
3057			txd->tx_m = NULL;
3058			txd->tx_ndesc = 0;
3059		}
3060        }
3061	jme_stats_update(sc);
3062	jme_stats_save(sc);
3063}
3064
3065static void
3066jme_stop_tx(struct jme_softc *sc)
3067{
3068	uint32_t reg;
3069	int i;
3070
3071	reg = CSR_READ_4(sc, JME_TXCSR);
3072	if ((reg & TXCSR_TX_ENB) == 0)
3073		return;
3074	reg &= ~TXCSR_TX_ENB;
3075	CSR_WRITE_4(sc, JME_TXCSR, reg);
3076	for (i = JME_TIMEOUT; i > 0; i--) {
3077		DELAY(1);
3078		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3079			break;
3080	}
3081	if (i == 0)
3082		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3083}
3084
3085static void
3086jme_stop_rx(struct jme_softc *sc)
3087{
3088	uint32_t reg;
3089	int i;
3090
3091	reg = CSR_READ_4(sc, JME_RXCSR);
3092	if ((reg & RXCSR_RX_ENB) == 0)
3093		return;
3094	reg &= ~RXCSR_RX_ENB;
3095	CSR_WRITE_4(sc, JME_RXCSR, reg);
3096	for (i = JME_TIMEOUT; i > 0; i--) {
3097		DELAY(1);
3098		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3099			break;
3100	}
3101	if (i == 0)
3102		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3103}
3104
3105static void
3106jme_init_tx_ring(struct jme_softc *sc)
3107{
3108	struct jme_ring_data *rd;
3109	struct jme_txdesc *txd;
3110	int i;
3111
3112	sc->jme_cdata.jme_tx_prod = 0;
3113	sc->jme_cdata.jme_tx_cons = 0;
3114	sc->jme_cdata.jme_tx_cnt = 0;
3115
3116	rd = &sc->jme_rdata;
3117	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3118	for (i = 0; i < JME_TX_RING_CNT; i++) {
3119		txd = &sc->jme_cdata.jme_txdesc[i];
3120		txd->tx_m = NULL;
3121		txd->tx_desc = &rd->jme_tx_ring[i];
3122		txd->tx_ndesc = 0;
3123	}
3124
3125	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3126	    sc->jme_cdata.jme_tx_ring_map,
3127	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3128}
3129
3130static void
3131jme_init_ssb(struct jme_softc *sc)
3132{
3133	struct jme_ring_data *rd;
3134
3135	rd = &sc->jme_rdata;
3136	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3137	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3138	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3139}
3140
3141static int
3142jme_init_rx_ring(struct jme_softc *sc)
3143{
3144	struct jme_ring_data *rd;
3145	struct jme_rxdesc *rxd;
3146	int i;
3147
3148	sc->jme_cdata.jme_rx_cons = 0;
3149	JME_RXCHAIN_RESET(sc);
3150	sc->jme_morework = 0;
3151
3152	rd = &sc->jme_rdata;
3153	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3154	for (i = 0; i < JME_RX_RING_CNT; i++) {
3155		rxd = &sc->jme_cdata.jme_rxdesc[i];
3156		rxd->rx_m = NULL;
3157		rxd->rx_desc = &rd->jme_rx_ring[i];
3158		if (jme_newbuf(sc, rxd) != 0)
3159			return (ENOBUFS);
3160	}
3161
3162	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3163	    sc->jme_cdata.jme_rx_ring_map,
3164	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3165
3166	return (0);
3167}
3168
3169static int
3170jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3171{
3172	struct jme_desc *desc;
3173	struct mbuf *m;
3174	bus_dma_segment_t segs[1];
3175	bus_dmamap_t map;
3176	int nsegs;
3177
3178	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3179	if (m == NULL)
3180		return (ENOBUFS);
3181	/*
3182	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3183	 * takes advantage of 10 bytes padding feature of hardware
3184	 * in order not to copy entire frame to align IP header on
3185	 * 32bit boundary.
3186	 */
3187	m->m_len = m->m_pkthdr.len = MCLBYTES;
3188
3189	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3190	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3191		m_freem(m);
3192		return (ENOBUFS);
3193	}
3194	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3195
3196	if (rxd->rx_m != NULL) {
3197		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3198		    BUS_DMASYNC_POSTREAD);
3199		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3200	}
3201	map = rxd->rx_dmamap;
3202	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3203	sc->jme_cdata.jme_rx_sparemap = map;
3204	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3205	    BUS_DMASYNC_PREREAD);
3206	rxd->rx_m = m;
3207
3208	desc = rxd->rx_desc;
3209	desc->buflen = htole32(segs[0].ds_len);
3210	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3211	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3212	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3213
3214	return (0);
3215}
3216
3217static void
3218jme_set_vlan(struct jme_softc *sc)
3219{
3220	if_t ifp;
3221	uint32_t reg;
3222
3223	JME_LOCK_ASSERT(sc);
3224
3225	ifp = sc->jme_ifp;
3226	reg = CSR_READ_4(sc, JME_RXMAC);
3227	reg &= ~RXMAC_VLAN_ENB;
3228	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3229		reg |= RXMAC_VLAN_ENB;
3230	CSR_WRITE_4(sc, JME_RXMAC, reg);
3231}
3232
3233static u_int
3234jme_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3235{
3236	uint32_t crc, *mchash = arg;
3237
3238	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3239
3240	/* Just want the 6 least significant bits. */
3241	crc &= 0x3f;
3242
3243	/* Set the corresponding bit in the hash table. */
3244	mchash[crc >> 5] |= 1 << (crc & 0x1f);
3245
3246	return (1);
3247}
3248
3249static void
3250jme_set_filter(struct jme_softc *sc)
3251{
3252	if_t ifp;
3253	uint32_t mchash[2];
3254	uint32_t rxcfg;
3255
3256	JME_LOCK_ASSERT(sc);
3257
3258	ifp = sc->jme_ifp;
3259
3260	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3261	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3262	    RXMAC_ALLMULTI);
3263	/* Always accept frames destined to our station address. */
3264	rxcfg |= RXMAC_UNICAST;
3265	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3266		rxcfg |= RXMAC_BROADCAST;
3267	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3268		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3269			rxcfg |= RXMAC_PROMISC;
3270		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3271			rxcfg |= RXMAC_ALLMULTI;
3272		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3273		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3274		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3275		return;
3276	}
3277
3278	/*
3279	 * Set up the multicast address filter by passing all multicast
3280	 * addresses through a CRC generator, and then using the low-order
3281	 * 6 bits as an index into the 64 bit multicast hash table.  The
3282	 * high order bits select the register, while the rest of the bits
3283	 * select the bit within the register.
3284	 */
3285	rxcfg |= RXMAC_MULTICAST;
3286	bzero(mchash, sizeof(mchash));
3287	if_foreach_llmaddr(ifp, jme_hash_maddr, &mchash);
3288
3289	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3290	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3291	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3292}
3293
3294static void
3295jme_stats_clear(struct jme_softc *sc)
3296{
3297
3298	JME_LOCK_ASSERT(sc);
3299
3300	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3301		return;
3302
3303	/* Disable and clear counters. */
3304	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3305	/* Activate hw counters. */
3306	CSR_WRITE_4(sc, JME_STATCSR, 0);
3307	CSR_READ_4(sc, JME_STATCSR);
3308	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3309}
3310
3311static void
3312jme_stats_save(struct jme_softc *sc)
3313{
3314
3315	JME_LOCK_ASSERT(sc);
3316
3317	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3318		return;
3319	/* Save current counters. */
3320	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3321	/* Disable and clear counters. */
3322	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3323}
3324
3325static void
3326jme_stats_update(struct jme_softc *sc)
3327{
3328	struct jme_hw_stats *stat, *ostat;
3329	uint32_t reg;
3330
3331	JME_LOCK_ASSERT(sc);
3332
3333	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3334		return;
3335	stat = &sc->jme_stats;
3336	ostat = &sc->jme_ostats;
3337	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3338	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3339	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3340	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3341	    STAT_RX_CRC_ERR_SHIFT;
3342	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3343	    STAT_RX_MII_ERR_SHIFT;
3344	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3345	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3346	    STAT_RXERR_OFLOW_SHIFT;
3347	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3348	    STAT_RXERR_MPTY_SHIFT;
3349	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3350	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3351	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3352
3353	/* Account for previous counters. */
3354	stat->rx_good_frames += ostat->rx_good_frames;
3355	stat->rx_crc_errs += ostat->rx_crc_errs;
3356	stat->rx_mii_errs += ostat->rx_mii_errs;
3357	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3358	stat->rx_desc_empty += ostat->rx_desc_empty;
3359	stat->rx_bad_frames += ostat->rx_bad_frames;
3360	stat->tx_good_frames += ostat->tx_good_frames;
3361	stat->tx_bad_frames += ostat->tx_bad_frames;
3362}
3363
3364static void
3365jme_phy_down(struct jme_softc *sc)
3366{
3367	uint32_t reg;
3368
3369	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3370	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3371		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3372		reg |= 0x0000000F;
3373		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3374		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3375		reg &= ~PE1_GIGA_PDOWN_MASK;
3376		reg |= PE1_GIGA_PDOWN_D3;
3377		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3378	}
3379}
3380
3381static void
3382jme_phy_up(struct jme_softc *sc)
3383{
3384	uint32_t reg;
3385	uint16_t bmcr;
3386
3387	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3388	bmcr &= ~BMCR_PDOWN;
3389	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3390	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3391		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3392		reg &= ~0x0000000F;
3393		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3394		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3395		reg &= ~PE1_GIGA_PDOWN_MASK;
3396		reg |= PE1_GIGA_PDOWN_DIS;
3397		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3398	}
3399}
3400
3401static int
3402sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3403{
3404	int error, value;
3405
3406	if (arg1 == NULL)
3407		return (EINVAL);
3408	value = *(int *)arg1;
3409	error = sysctl_handle_int(oidp, &value, 0, req);
3410	if (error || req->newptr == NULL)
3411		return (error);
3412	if (value < low || value > high)
3413		return (EINVAL);
3414        *(int *)arg1 = value;
3415
3416        return (0);
3417}
3418
3419static int
3420sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3421{
3422	return (sysctl_int_range(oidp, arg1, arg2, req,
3423	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3424}
3425
3426static int
3427sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3428{
3429	return (sysctl_int_range(oidp, arg1, arg2, req,
3430	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3431}
3432
3433static int
3434sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3435{
3436	return (sysctl_int_range(oidp, arg1, arg2, req,
3437	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3438}
3439
3440static int
3441sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3442{
3443	return (sysctl_int_range(oidp, arg1, arg2, req,
3444	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3445}
3446
3447static int
3448sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3449{
3450	return (sysctl_int_range(oidp, arg1, arg2, req,
3451	    JME_PROC_MIN, JME_PROC_MAX));
3452}
3453