1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2017 Ian Lepore <ian@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29/*
30 * Driver for NXP real-time clock/calendar chips:
31 *  - PCF8563 = low power, countdown timer
32 *  - PCA8565 = like PCF8563, automotive temperature range
33 *  - PCF8523 = low power, countdown timer, oscillator freq tuning, 2 timers
34 *  - PCF2127 = like PCF8523, industrial, tcxo, tamper/ts, i2c & spi, 512B ram
35 *  - PCA2129 = like PCF8523, automotive, tcxo, tamper/ts, i2c & spi, (note 1)
36 *  - PCF2129 = like PCF8523, industrial, tcxo, tamper/ts, i2c & spi, (note 1)
37 *
38 *  Most chips have a countdown timer, ostensibly intended to generate periodic
39 *  interrupt signals on an output pin.  The timer is driven from the same
40 *  divider chain that clocks the time of day registers, and they start counting
41 *  in sync when the STOP bit is cleared after the time and timer registers are
42 *  set.  The timer register can also be read on the fly, so we use it to count
43 *  fractional seconds and get a resolution of ~15ms.
44 *
45 *  [1] Note that the datasheets for the PCx2129 chips state that they have only
46 *  a watchdog timer, not a countdown timer.  Empirical testing shows that the
47 *  countdown timer is actually there and it works fine, except that it can't
48 *  trigger an interrupt or toggle an output pin like it can on other chips.  We
49 *  don't care about interrupts and output pins, we just read the timer register
50 *  to get better resolution.
51 */
52
53#include "opt_platform.h"
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/bus.h>
58#include <sys/clock.h>
59#include <sys/kernel.h>
60#include <sys/libkern.h>
61#include <sys/module.h>
62#include <sys/sysctl.h>
63
64#include <dev/iicbus/iicbus.h>
65#include <dev/iicbus/iiconf.h>
66#ifdef FDT
67#include <dev/ofw/openfirm.h>
68#include <dev/ofw/ofw_bus.h>
69#include <dev/ofw/ofw_bus_subr.h>
70#endif
71
72#include "clock_if.h"
73#include "iicbus_if.h"
74
75/*
76 * I2C address 1010 001x : PCA2129 PCF2127 PCF2129 PCF8563 PCF8565
77 * I2C address 1101 000x : PCF8523
78 */
79#define	PCF8563_ADDR		0xa2
80#define	PCF8523_ADDR		0xd0
81
82/*
83 * Registers, bits within them, and masks that are common to all chip types.
84 */
85#define	PCF85xx_R_CS1		0x00	/* CS1 and CS2 control regs are in */
86#define	PCF85xx_R_CS2		0x01	/* the same location on all chips. */
87
88#define	PCF85xx_B_CS1_STOP	0x20	/* Stop time incrementing bit */
89#define	PCF85xx_B_SECOND_OS	0x80	/* Oscillator Stopped bit */
90
91#define	PCF85xx_M_SECOND	0x7f	/* Masks for all BCD time regs... */
92#define	PCF85xx_M_MINUTE	0x7f
93#define	PCF85xx_M_12HOUR	0x1f
94#define	PCF85xx_M_24HOUR	0x3f
95#define	PCF85xx_M_DAY		0x3f
96#define	PCF85xx_M_MONTH		0x1f
97#define	PCF85xx_M_YEAR		0xff
98
99/*
100 * PCF2127-specific registers, bits, and masks.
101 */
102#define	PCF2127_R_TMR_CTL	0x10	/* Timer/watchdog control */
103
104#define	PCF2127_M_TMR_CTRL	0xe3	/* Mask off undef bits */
105
106#define	PCF2127_B_TMR_CD	0x40	/* Run in countdown mode */
107#define	PCF2127_B_TMR_64HZ	0x01	/* Timer frequency 64Hz */
108
109#define	PCF2127_R_TS_CTL	0x12	/* Timestamp control */
110#define	PCF2127_B_TSOFF		0x40	/* Turn off timestamp function */
111
112#define	PCF2127_R_AGING_OFFSET	0x19	/* Frequency aging offset in PPM */
113
114/*
115 * PCA/PCF2129-specific registers, bits, and masks.
116 */
117#define	PCF2129_B_CS1_12HR	0x04	/* Use 12-hour (AM/PM) mode bit */
118#define	PCF2129_B_CLKOUT_OTPR	0x20	/* OTP refresh command */
119#define	PCF2129_B_CLKOUT_HIGHZ	0x07	/* Clock Out Freq = disable */
120
121/*
122 * PCF8523-specific registers, bits, and masks.
123 */
124#define	PCF8523_R_CS3		0x02	/* Control and status reg 3 */
125#define	PCF8523_R_SECOND	0x03	/* Seconds */
126#define	PCF8523_R_TMR_CLKOUT	0x0F	/* Timer and clockout control */
127#define	PCF8523_R_TMR_A_FREQ	0x10	/* Timer A frequency control */
128#define	PCF8523_R_TMR_A_COUNT	0x11	/* Timer A count */
129
130#define	PCF8523_M_TMR_A_FREQ	0x07	/* Mask off undef bits */
131
132#define	PCF8523_B_HOUR_PM	0x20	/* PM bit */
133#define	PCF8523_B_CS1_SOFTRESET	0x58	/* Initiate Soft Reset bits */
134#define	PCF8523_B_CS1_12HR	0x08	/* Use 12-hour (AM/PM) mode bit */
135#define	PCF8523_B_CLKOUT_TACD	0x02	/* TimerA runs in CountDown mode */
136#define	PCF8523_B_CLKOUT_HIGHZ	0x38	/* Clock Out Freq = disable */
137#define	PCF8523_B_TMR_A_64HZ	0x01	/* Timer A freq 64Hz */
138
139#define	PCF8523_M_CS3_PM	0xE0	/* Power mode mask */
140#define	PCF8523_B_CS3_PM_NOBAT	0xE0	/* PM bits: no battery usage */
141#define	PCF8523_B_CS3_PM_STD	0x00	/* PM bits: standard */
142#define	PCF8523_B_CS3_PM_DSNBM	0xa0	/* PM bits: direct switch, no bat mon */
143#define	PCF8523_B_CS3_BLF	0x04	/* Battery Low Flag bit */
144
145/*
146 * PCF8563-specific registers, bits, and masks.
147 */
148#define	PCF8563_R_SECOND	0x02	/* Seconds */
149
150#define	PCF8563_R_CLKOUT	0x0d	/* Clock output control */
151
152#define	PCF8563_R_TMR_CTRL	0x0e	/* Timer control */
153#define	PCF8563_R_TMR_COUNT	0x0f	/* Timer count */
154
155#define	PCF8563_M_TMR_CTRL	0x93	/* Mask off undef bits */
156
157#define	PCF8563_B_TMR_ENABLE	0x80	/* Enable countdown timer */
158#define	PCF8563_B_TMR_64HZ	0x01	/* Timer frequency 64Hz */
159
160#define	PCF8563_B_MONTH_C	0x80	/* Century bit */
161
162/*
163 * We use the countdown timer for fractional seconds.  We program it for 64 Hz,
164 * the fastest available rate that doesn't roll over in less than a second.
165 */
166#define	TMR_TICKS_SEC		64
167#define	TMR_TICKS_HALFSEC	32
168
169/*
170 * The chip types we support.
171 */
172enum {
173	TYPE_NONE,
174	TYPE_PCA2129,
175	TYPE_PCA8565,
176	TYPE_PCF2127,
177	TYPE_PCF2129,
178	TYPE_PCF8523,
179	TYPE_PCF8563,
180
181	TYPE_COUNT
182};
183static const char *desc_strings[] = {
184	"",
185	"NXP PCA2129 RTC",
186	"NXP PCA8565 RTC",
187	"NXP PCF2127 RTC",
188	"NXP PCF2129 RTC",
189	"NXP PCF8523 RTC",
190	"NXP PCF8563 RTC",
191};
192CTASSERT(nitems(desc_strings) == TYPE_COUNT);
193
194/*
195 * The time registers in the order they are laid out in hardware.
196 */
197struct time_regs {
198	uint8_t sec, min, hour, day, wday, month, year;
199};
200
201struct nxprtc_softc {
202	device_t	dev;
203	device_t	busdev;
204	struct intr_config_hook
205			config_hook;
206	u_int		flags;		/* SC_F_* flags */
207	u_int		chiptype;	/* Type of PCF85xx chip */
208	time_t		bat_time;	/* Next time to check battery */
209	int		freqadj;	/* Current freq adj in PPM */
210	uint8_t		secaddr;	/* Address of seconds register */
211	uint8_t		tmcaddr;	/* Address of timer count register */
212	bool		use_timer;	/* Use timer for fractional sec */
213	bool		use_ampm;	/* Chip is set to use am/pm mode */
214	bool		is212x;		/* Chip type is 2127 or 2129 */
215};
216
217#define	SC_F_CPOL	(1 << 0)	/* Century bit means 19xx */
218
219/*
220 * When doing i2c IO, indicate that we need to wait for exclusive bus ownership,
221 * but that we should not wait if we already own the bus.  This lets us put
222 * iicbus_acquire_bus() calls with a non-recursive wait at the entry of our API
223 * functions to ensure that only one client at a time accesses the hardware for
224 * the entire series of operations it takes to read or write the clock.
225 */
226#define	WAITFLAGS	(IIC_WAIT | IIC_RECURSIVE)
227
228/*
229 * We use the compat_data table to look up hint strings in the non-FDT case, so
230 * define the struct locally when we don't get it from ofw_bus_subr.h.
231 */
232#ifdef FDT
233typedef struct ofw_compat_data nxprtc_compat_data;
234#else
235typedef struct {
236	const char *ocd_str;
237	uintptr_t  ocd_data;
238} nxprtc_compat_data;
239#endif
240
241static nxprtc_compat_data compat_data[] = {
242	{"nxp,pca2129",     TYPE_PCA2129},
243	{"nxp,pca8565",     TYPE_PCA8565},
244	{"nxp,pcf2127",     TYPE_PCF2127},
245	{"nxp,pcf2129",     TYPE_PCF2129},
246	{"nxp,pcf8523",     TYPE_PCF8523},
247	{"nxp,pcf8563",     TYPE_PCF8563},
248
249	/* Undocumented compat strings known to exist in the wild... */
250	{"pcf8563",         TYPE_PCF8563},
251	{"phg,pcf8563",     TYPE_PCF8563},
252	{"philips,pcf8563", TYPE_PCF8563},
253
254	{NULL,              TYPE_NONE},
255};
256
257static int
258nxprtc_readfrom(device_t slavedev, uint8_t regaddr, void *buffer,
259    uint16_t buflen, int waithow)
260{
261	struct iic_msg msg;
262	int err;
263	uint8_t slaveaddr;
264
265	/*
266	 * Two transfers back to back with a stop and start between them; first we
267	 * write the address-within-device, then we read from the device.  This
268	 * is used instead of the standard iicdev_readfrom() because some of the
269	 * chips we service don't support i2c repeat-start operations (grrrrr)
270	 * so we do two completely separate transfers with a full stop between.
271	 */
272	slaveaddr = iicbus_get_addr(slavedev);
273
274	msg.slave = slaveaddr;
275	msg.flags = IIC_M_WR;
276	msg.len   = 1;
277	msg.buf   = &regaddr;
278
279	if ((err = iicbus_transfer_excl(slavedev, &msg, 1, waithow)) != 0)
280		return (err);
281
282	msg.slave = slaveaddr;
283	msg.flags = IIC_M_RD;
284	msg.len   = buflen;
285	msg.buf   = buffer;
286
287	return (iicbus_transfer_excl(slavedev, &msg, 1, waithow));
288}
289
290static int
291read_reg(struct nxprtc_softc *sc, uint8_t reg, uint8_t *val)
292{
293
294	return (nxprtc_readfrom(sc->dev, reg, val, sizeof(*val), WAITFLAGS));
295}
296
297static int
298write_reg(struct nxprtc_softc *sc, uint8_t reg, uint8_t val)
299{
300
301	return (iicdev_writeto(sc->dev, reg, &val, sizeof(val), WAITFLAGS));
302}
303
304static int
305read_timeregs(struct nxprtc_softc *sc, struct time_regs *tregs, uint8_t *tmr)
306{
307	int err;
308	uint8_t sec, tmr1, tmr2;
309
310	/*
311	 * The datasheet says loop to read the same timer value twice because it
312	 * does not freeze while reading.  To that we add our own logic that
313	 * the seconds register must be the same before and after reading the
314	 * timer, ensuring the fractional part is from the same second as tregs.
315	 */
316	do {
317		if (sc->use_timer) {
318			if ((err = read_reg(sc, sc->secaddr, &sec)) != 0)
319				break;
320			if ((err = read_reg(sc, sc->tmcaddr, &tmr1)) != 0)
321				break;
322			if ((err = read_reg(sc, sc->tmcaddr, &tmr2)) != 0)
323				break;
324			if (tmr1 != tmr2)
325				continue;
326		}
327		if ((err = nxprtc_readfrom(sc->dev, sc->secaddr, tregs,
328		    sizeof(*tregs), WAITFLAGS)) != 0)
329			break;
330	} while (sc->use_timer && tregs->sec != sec);
331
332	/*
333	 * If the timer value is greater than our hz rate (or is zero),
334	 * something is wrong.  Maybe some other OS used the timer differently?
335	 * Just set it to zero.  Likewise if we're not using the timer.  After
336	 * the offset calc below, the zero turns into 32, the mid-second point,
337	 * which in effect performs 4/5 rounding, which is just the right thing
338	 * to do if we don't have fine-grained time.
339	 */
340	if (!sc->use_timer || tmr1 > TMR_TICKS_SEC)
341		tmr1 = 0;
342
343	/*
344	 * Turn the downcounter into an upcounter.  The timer starts counting at
345	 * and rolls over at mid-second, so add half a second worth of ticks to
346	 * get its zero point back in sync with the tregs.sec rollover.
347	 */
348	*tmr = (TMR_TICKS_SEC - tmr1 + TMR_TICKS_HALFSEC) % TMR_TICKS_SEC;
349
350	return (err);
351}
352
353static int
354write_timeregs(struct nxprtc_softc *sc, struct time_regs *tregs)
355{
356
357	return (iicdev_writeto(sc->dev, sc->secaddr, tregs,
358	    sizeof(*tregs), WAITFLAGS));
359}
360
361static int
362freqadj_sysctl(SYSCTL_HANDLER_ARGS)
363{
364	struct nxprtc_softc *sc;
365	int err, freqppm, newppm;
366
367	sc = arg1;
368
369	/* PPM range [-7,8] maps to reg value range [0,15] */
370	freqppm = newppm = 8 - sc->freqadj;
371
372	err = sysctl_handle_int(oidp, &newppm, 0, req);
373	if (err != 0 || req->newptr == NULL)
374		return (err);
375	if (freqppm != newppm) {
376		if (newppm < -7 || newppm > 8)
377			return (EINVAL);
378		sc->freqadj = 8 - newppm;
379		err = write_reg(sc, PCF2127_R_AGING_OFFSET, sc->freqadj);
380	}
381
382	return (err);
383}
384
385static int
386pcf8523_battery_check(struct nxprtc_softc *sc)
387{
388	struct timespec ts;
389	int err;
390	uint8_t cs3;
391
392	/* We check the battery when starting up, and then only once a day. */
393	getnanouptime(&ts);
394	if (ts.tv_sec < sc->bat_time)
395		return (0);
396	sc->bat_time = ts.tv_sec + (60 * 60 * 24);
397
398	/*
399	 * The 8523, 2127, and 2129 chips have a "power manager" which includes
400	 * an optional battery voltage monitor and several choices for power
401	 * switching modes.  The battery monitor uses a lot of current and it
402	 * remains active when running from battery, making it the "drain my
403	 * battery twice as fast" mode.  So, we run the chip in direct-switching
404	 * mode with the battery monitor disabled, reducing the current draw
405	 * when running on battery from 1930nA to 880nA.  While it's not clear
406	 * from the datasheets, empirical testing shows that both disabling the
407	 * battery monitor and using direct-switch mode are required to get the
408	 * full power savings.
409	 *
410	 * There isn't any need to continuously monitor the battery voltage, so
411	 * this function is used to periodically enable the monitor, check the
412	 * voltage, then return to the low-power monitor-disabled mode.
413	 */
414	err = write_reg(sc, PCF8523_R_CS3, PCF8523_B_CS3_PM_STD);
415	if (err != 0) {
416		device_printf(sc->dev, "cannot write CS3 reg\n");
417		return (err);
418	}
419	pause_sbt("nxpbat", mstosbt(100), 0, 0);
420	if ((err = read_reg(sc, PCF8523_R_CS3, &cs3)) != 0) {
421		device_printf(sc->dev, "cannot read CS3 reg\n");
422		return (err);
423	}
424	err = write_reg(sc, PCF8523_R_CS3, PCF8523_B_CS3_PM_DSNBM);
425	if (err != 0) {
426		device_printf(sc->dev, "cannot write CS3 reg\n");
427		return (err);
428	}
429
430	if (cs3 & PCF8523_B_CS3_BLF)
431		device_printf(sc->dev, "WARNING: RTC battery is low\n");
432
433	return (0);
434}
435
436static int
437pcf8523_start(struct nxprtc_softc *sc)
438{
439	struct sysctl_ctx_list *ctx;
440	struct sysctl_oid_list *tree;
441	struct csr {
442		uint8_t	cs1;
443		uint8_t	cs2;
444		uint8_t cs3;
445		uint8_t sec;
446	} csr;
447	int err;
448	uint8_t clkout, freqadj;
449
450	/* Read the control and status registers. */
451	if ((err = nxprtc_readfrom(sc->dev, PCF85xx_R_CS1, &csr,
452	    sizeof(csr), WAITFLAGS)) != 0){
453		device_printf(sc->dev, "cannot read RTC control regs\n");
454		return (err);
455	}
456
457	/*
458	 * Do a full init if...
459	 *  - The chip power manager is in battery-disable mode.
460	 *  - The OS (oscillator stopped) bit is set (all power was lost).
461	 *  - The clock-increment STOP flag is set (this is just insane).
462	 */
463	if ((csr.cs3 & PCF8523_M_CS3_PM) == PCF8523_B_CS3_PM_NOBAT ||
464	    (csr.cs1 & PCF85xx_B_CS1_STOP) || (csr.sec & PCF85xx_B_SECOND_OS)) {
465		device_printf(sc->dev,
466		    "WARNING: RTC battery failed; time is invalid\n");
467
468		/*
469		 * For 212x series...
470		 * - Turn off the POR-Override bit (used for mfg test only),
471		 *   by writing zero to cs 1 (all other bits power on as zero).
472		 * - Turn off the timestamp option to save the power used to
473		 *   monitor that input pin.
474		 * - Trigger OTP refresh by forcing the OTPR bit to zero then
475		 *   back to 1, then wait 100ms for the refresh.
476		 */
477		if (sc->is212x) {
478			err = write_reg(sc, PCF85xx_R_CS1, 0);
479			if (err != 0) {
480				device_printf(sc->dev,
481				    "cannot write CS1 reg\n");
482				return (err);
483			}
484
485			err = write_reg(sc, PCF2127_R_TS_CTL, PCF2127_B_TSOFF);
486			if (err != 0) {
487				device_printf(sc->dev,
488				    "cannot write timestamp control\n");
489				return (err);
490			}
491
492			clkout = PCF2129_B_CLKOUT_HIGHZ;
493			err = write_reg(sc, PCF8523_R_TMR_CLKOUT, clkout);
494			if (err == 0)
495				err = write_reg(sc, PCF8523_R_TMR_CLKOUT,
496				    clkout | PCF2129_B_CLKOUT_OTPR);
497			if (err != 0) {
498				device_printf(sc->dev,
499				    "cannot write CLKOUT control\n");
500				return (err);
501			}
502			pause_sbt("nxpotp", mstosbt(100), mstosbt(10), 0);
503		} else
504			clkout = PCF8523_B_CLKOUT_HIGHZ;
505
506		/* All chips: set clock output pin to high-z to save power */
507		if ((err = write_reg(sc, PCF8523_R_TMR_CLKOUT, clkout)) != 0) {
508			device_printf(sc->dev, "cannot write CLKOUT control\n");
509			return (err);
510		}
511	}
512
513	/*
514	 * Check the battery voltage and report if it's low.  This also has the
515	 * side effect of (re-)initializing the power manager to low-power mode
516	 * when we come up after a power fail.
517	 */
518	pcf8523_battery_check(sc);
519
520	/*
521	 * Remember whether we're running in AM/PM mode.  The chip default is
522	 * 24-hour mode, but if we're co-existing with some other OS that
523	 * prefers AM/PM we can run that way too.
524	 *
525	 * Also, for 212x chips, retrieve the current frequency aging offset,
526	 * and set up the sysctl handler for reading/setting it.
527	 */
528	if (sc->is212x) {
529		if (csr.cs1 & PCF2129_B_CS1_12HR)
530			sc->use_ampm = true;
531
532		err = read_reg(sc, PCF2127_R_AGING_OFFSET, &freqadj);
533		if (err != 0) {
534			device_printf(sc->dev,
535			    "cannot read AGINGOFFSET register\n");
536			return (err);
537		}
538		sc->freqadj = (int8_t)freqadj;
539
540		ctx = device_get_sysctl_ctx(sc->dev);
541		tree = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
542
543		SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "freqadj",
544		    CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, sc, 0,
545		    freqadj_sysctl, "I", "Frequency adjust in PPM, range [-7,+8]");
546	} else {
547		if (csr.cs1 & PCF8523_B_CS1_12HR)
548			sc->use_ampm = true;
549	}
550
551	return (0);
552}
553static int
554pcf8523_start_timer(struct nxprtc_softc *sc)
555{
556	int err;
557	uint8_t clkout, stdclk, stdfreq, tmrfreq;
558
559	/*
560	 * Read the timer control and frequency regs.  If they don't have the
561	 * values we normally program into them then the timer count doesn't
562	 * contain a valid fractional second, so zero it to prevent using a bad
563	 * value.  Then program the normal timer values so that on the first
564	 * settime call we'll begin to use fractional time.
565	 */
566	if ((err = read_reg(sc, PCF8523_R_TMR_A_FREQ, &tmrfreq)) != 0)
567		return (err);
568	if ((err = read_reg(sc, PCF8523_R_TMR_CLKOUT, &clkout)) != 0)
569		return (err);
570
571	stdfreq = PCF8523_B_TMR_A_64HZ;
572	stdclk = PCF8523_B_CLKOUT_TACD | PCF8523_B_CLKOUT_HIGHZ;
573
574	if (clkout != stdclk || (tmrfreq & PCF8523_M_TMR_A_FREQ) != stdfreq) {
575		if ((err = write_reg(sc, sc->tmcaddr, 0)) != 0)
576			return (err);
577		if ((err = write_reg(sc, PCF8523_R_TMR_A_FREQ, stdfreq)) != 0)
578			return (err);
579		if ((err = write_reg(sc, PCF8523_R_TMR_CLKOUT, stdclk)) != 0)
580			return (err);
581	}
582	return (0);
583}
584
585static int
586pcf2127_start_timer(struct nxprtc_softc *sc)
587{
588	int err;
589	uint8_t stdctl, tmrctl;
590
591	/*
592	 * Set up timer if it's not already in the mode we normally run it.  See
593	 * the comment in pcf8523_start_timer() for more details.
594	 *
595	 * Note that the PCF2129 datasheet says it has no countdown timer, but
596	 * empirical testing shows that it works just fine for our purposes.
597	 */
598	if ((err = read_reg(sc, PCF2127_R_TMR_CTL, &tmrctl)) != 0)
599		return (err);
600
601	stdctl = PCF2127_B_TMR_CD | PCF8523_B_TMR_A_64HZ;
602
603	if ((tmrctl & PCF2127_M_TMR_CTRL) != stdctl) {
604		if ((err = write_reg(sc, sc->tmcaddr, 0)) != 0)
605			return (err);
606		if ((err = write_reg(sc, PCF2127_R_TMR_CTL, stdctl)) != 0)
607			return (err);
608	}
609	return (0);
610}
611
612static int
613pcf8563_start(struct nxprtc_softc *sc)
614{
615	struct csr {
616		uint8_t	cs1;
617		uint8_t	cs2;
618		uint8_t sec;
619	} csr;
620	int err;
621
622	/* Read the control and status registers. */
623	if ((err = nxprtc_readfrom(sc->dev, PCF85xx_R_CS1, &csr,
624	    sizeof(csr), WAITFLAGS)) != 0){
625		device_printf(sc->dev, "cannot read RTC control regs\n");
626		return (err);
627	}
628
629	/*
630	 * Do a full init if...
631	 *  - The OS (oscillator stopped) bit is set (all power was lost).  This
632	 *    bit is called VL (Voltage Low) in the 8563 datasheet.
633	 *  - The clock-increment STOP flag is set (this is just insane).
634	 */
635	if ((csr.cs1 & PCF85xx_B_CS1_STOP) || (csr.sec & PCF85xx_B_SECOND_OS)) {
636		device_printf(sc->dev,
637		    "WARNING: RTC battery failed; time is invalid\n");
638		/*
639		 * - Turn off the POR-Override bit (used for mfg test only), by
640		 *   writing zero to cs 1 (all other bits power on as zero).
641		 * - Turn off the clock output pin (to save battery power), by
642		 *   writing zero to the clkout control reg.
643		 */
644		if ((err = write_reg(sc, PCF85xx_R_CS1, 0)) != 0) {
645			device_printf(sc->dev, "cannot write CS1 reg\n");
646			return (err);
647		}
648
649		if ((err = write_reg(sc, PCF8563_R_CLKOUT, 0)) != 0) {
650			device_printf(sc->dev, "cannot write CS1 reg\n");
651			return (err);
652		}
653	}
654
655	return (0);
656}
657
658static int
659pcf8563_start_timer(struct nxprtc_softc *sc)
660{
661	int err;
662	uint8_t stdctl, tmrctl;
663
664	/* See comment in pcf8523_start_timer().  */
665	if ((err = read_reg(sc, PCF8563_R_TMR_CTRL, &tmrctl)) != 0)
666		return (err);
667
668	stdctl = PCF8563_B_TMR_ENABLE | PCF8563_B_TMR_64HZ;
669
670	if ((tmrctl & PCF8563_M_TMR_CTRL) != stdctl) {
671		if ((err = write_reg(sc, sc->tmcaddr, 0)) != 0)
672			return (err);
673		if ((err = write_reg(sc, PCF8563_R_TMR_CTRL, stdctl)) != 0)
674			return (err);
675	}
676	return (0);
677}
678
679static void
680nxprtc_start(void *dev)
681{
682	struct nxprtc_softc *sc;
683	int clockflags, resolution;
684
685	sc = device_get_softc((device_t)dev);
686	config_intrhook_disestablish(&sc->config_hook);
687
688	/* First do chip-specific inits. */
689	switch (sc->chiptype) {
690	case TYPE_PCA2129:
691	case TYPE_PCF2129:
692	case TYPE_PCF2127:
693		sc->is212x = true;
694		if (pcf8523_start(sc) != 0)
695			return;
696		if (pcf2127_start_timer(sc) != 0) {
697			device_printf(sc->dev, "cannot set up timer\n");
698			return;
699		}
700		break;
701	case TYPE_PCF8523:
702		if (pcf8523_start(sc) != 0)
703			return;
704		if (pcf8523_start_timer(sc) != 0) {
705			device_printf(sc->dev, "cannot set up timer\n");
706			return;
707		}
708		break;
709	case TYPE_PCA8565:
710	case TYPE_PCF8563:
711		if (pcf8563_start(sc) != 0)
712			return;
713		if (pcf8563_start_timer(sc) != 0) {
714			device_printf(sc->dev, "cannot set up timer\n");
715			return;
716		}
717		break;
718	default:
719		device_printf(sc->dev, "missing init code for this chiptype\n");
720		return;
721	}
722
723	/*
724	 * Everything looks good if we make it to here; register as an RTC.  If
725	 * we're using the timer to count fractional seconds, our resolution is
726	 * 1e6/64, about 15.6ms.  Without the timer we still align the RTC clock
727	 * when setting it so our error is an average .5s when reading it.
728	 * Schedule our clock_settime() method to be called at a .495ms offset
729	 * into the second, because the clock hardware resets the divider chain
730	 * to the mid-second point when you set the time and it takes about 5ms
731	 * of i2c bus activity to set the clock.
732	 */
733	resolution = sc->use_timer ? 1000000 / TMR_TICKS_SEC : 1000000 / 2;
734	clockflags = CLOCKF_GETTIME_NO_ADJ | CLOCKF_SETTIME_NO_TS;
735	clock_register_flags(sc->dev, resolution, clockflags);
736	clock_schedule(sc->dev, 495000000);
737}
738
739static int
740nxprtc_gettime(device_t dev, struct timespec *ts)
741{
742	struct bcd_clocktime bct;
743	struct time_regs tregs;
744	struct nxprtc_softc *sc;
745	int err;
746	uint8_t cs1, hourmask, tmrcount;
747
748	sc = device_get_softc(dev);
749
750	/*
751	 * Read the time, but before using it, validate that the oscillator-
752	 * stopped/power-fail bit is not set, and that the time-increment STOP
753	 * bit is not set in the control reg.  The latter can happen if there
754	 * was an error when setting the time.
755	 */
756	if ((err = iicbus_request_bus(sc->busdev, sc->dev, IIC_WAIT)) == 0) {
757		if ((err = read_timeregs(sc, &tregs, &tmrcount)) == 0) {
758			err = read_reg(sc, PCF85xx_R_CS1, &cs1);
759		}
760		iicbus_release_bus(sc->busdev, sc->dev);
761	}
762	if (err != 0)
763		return (err);
764
765	if ((tregs.sec & PCF85xx_B_SECOND_OS) || (cs1 & PCF85xx_B_CS1_STOP)) {
766		device_printf(dev, "RTC clock not running\n");
767		return (EINVAL); /* hardware is good, time is not. */
768	}
769
770	if (sc->use_ampm)
771		hourmask = PCF85xx_M_12HOUR;
772	else
773		hourmask = PCF85xx_M_24HOUR;
774
775	bct.nsec = ((uint64_t)tmrcount * 1000000000) / TMR_TICKS_SEC;
776	bct.ispm = (tregs.hour & PCF8523_B_HOUR_PM) != 0;
777	bct.sec  = tregs.sec   & PCF85xx_M_SECOND;
778	bct.min  = tregs.min   & PCF85xx_M_MINUTE;
779	bct.hour = tregs.hour  & hourmask;
780	bct.day  = tregs.day   & PCF85xx_M_DAY;
781	bct.mon  = tregs.month & PCF85xx_M_MONTH;
782	bct.year = tregs.year  & PCF85xx_M_YEAR;
783
784	/*
785	 * Old PCF8563 datasheets recommended that the C bit be 1 for 19xx and 0
786	 * for 20xx; newer datasheets don't recommend that.  We don't care,
787	 * but we may co-exist with other OSes sharing the hardware. Determine
788	 * existing polarity on a read so that we can preserve it on a write.
789	 */
790	if (sc->chiptype == TYPE_PCF8563) {
791		if (tregs.month & PCF8563_B_MONTH_C) {
792			if (bct.year < 0x70)
793				sc->flags |= SC_F_CPOL;
794		} else if (bct.year >= 0x70)
795				sc->flags |= SC_F_CPOL;
796	}
797
798	clock_dbgprint_bcd(sc->dev, CLOCK_DBG_READ, &bct);
799	err = clock_bcd_to_ts(&bct, ts, sc->use_ampm);
800	ts->tv_sec += utc_offset();
801
802	return (err);
803}
804
805static int
806nxprtc_settime(device_t dev, struct timespec *ts)
807{
808	struct bcd_clocktime bct;
809	struct time_regs tregs;
810	struct nxprtc_softc *sc;
811	int err;
812	uint8_t cflag, cs1;
813
814	sc = device_get_softc(dev);
815
816	/*
817	 * We stop the clock, set the time, then restart the clock.  Half a
818	 * second after restarting the clock it ticks over to the next second.
819	 * So to align the RTC, we schedule this function to be called when
820	 * system time is roughly halfway (.495) through the current second.
821	 *
822	 * Reserve use of the i2c bus and stop the RTC clock.  Note that if
823	 * anything goes wrong from this point on, we leave the clock stopped,
824	 * because we don't really know what state it's in.
825	 */
826	if ((err = iicbus_request_bus(sc->busdev, sc->dev, IIC_WAIT)) != 0)
827		return (err);
828	if ((err = read_reg(sc, PCF85xx_R_CS1, &cs1)) != 0)
829		goto errout;
830	cs1 |= PCF85xx_B_CS1_STOP;
831	if ((err = write_reg(sc, PCF85xx_R_CS1, cs1)) != 0)
832		goto errout;
833
834	/* Grab a fresh post-sleep idea of what time it is. */
835	getnanotime(ts);
836	ts->tv_sec -= utc_offset();
837	ts->tv_nsec = 0;
838	clock_ts_to_bcd(ts, &bct, sc->use_ampm);
839	clock_dbgprint_bcd(sc->dev, CLOCK_DBG_WRITE, &bct);
840
841	/* On 8563 set the century based on the polarity seen when reading. */
842	cflag = 0;
843	if (sc->chiptype == TYPE_PCF8563) {
844		if ((sc->flags & SC_F_CPOL) != 0) {
845			if (bct.year >= 0x2000)
846				cflag = PCF8563_B_MONTH_C;
847		} else if (bct.year < 0x2000)
848				cflag = PCF8563_B_MONTH_C;
849	}
850
851	tregs.sec   = bct.sec;
852	tregs.min   = bct.min;
853	tregs.hour  = bct.hour | (bct.ispm ? PCF8523_B_HOUR_PM : 0);
854	tregs.day   = bct.day;
855	tregs.month = bct.mon;
856	tregs.year  = (bct.year & 0xff) | cflag;
857	tregs.wday  = bct.dow;
858
859	/*
860	 * Set the time, reset the timer count register, then start the clocks.
861	 */
862	if ((err = write_timeregs(sc, &tregs)) != 0)
863		goto errout;
864
865	if ((err = write_reg(sc, sc->tmcaddr, TMR_TICKS_SEC)) != 0)
866		return (err);
867
868	cs1 &= ~PCF85xx_B_CS1_STOP;
869	err = write_reg(sc, PCF85xx_R_CS1, cs1);
870
871	/*
872	 * Check for battery-low.  The actual check is throttled to only occur
873	 * once a day, mostly to avoid spamming the user with frequent warnings.
874	 */
875	pcf8523_battery_check(sc);
876
877errout:
878
879	iicbus_release_bus(sc->busdev, sc->dev);
880
881	if (err != 0)
882		device_printf(dev, "cannot write RTC time\n");
883
884	return (err);
885}
886
887static int
888nxprtc_get_chiptype(device_t dev)
889{
890#ifdef FDT
891
892	return (ofw_bus_search_compatible(dev, compat_data)->ocd_data);
893#else
894	nxprtc_compat_data *cdata;
895	const char *htype;
896	int chiptype;
897
898	/*
899	 * If given a chiptype hint string, loop through the ofw compat data
900	 * comparing the hinted chip type to the compat strings.  The table end
901	 * marker ocd_data is TYPE_NONE.
902	 */
903	if (resource_string_value(device_get_name(dev),
904	    device_get_unit(dev), "compatible", &htype) == 0) {
905		for (cdata = compat_data; cdata->ocd_str != NULL; ++cdata) {
906			if (strcmp(htype, cdata->ocd_str) == 0)
907				break;
908		}
909		chiptype = cdata->ocd_data;
910	} else
911		chiptype = TYPE_NONE;
912
913	/*
914	 * On non-FDT systems the historical behavior of this driver was to
915	 * assume a PCF8563; keep doing that for compatibility.
916	 */
917	if (chiptype == TYPE_NONE)
918		return (TYPE_PCF8563);
919	else
920		return (chiptype);
921#endif
922}
923
924static int
925nxprtc_probe(device_t dev)
926{
927	int chiptype, rv;
928
929#ifdef FDT
930	if (!ofw_bus_status_okay(dev))
931		return (ENXIO);
932	rv = BUS_PROBE_GENERIC;
933#else
934	rv = BUS_PROBE_NOWILDCARD;
935#endif
936	if ((chiptype = nxprtc_get_chiptype(dev)) == TYPE_NONE)
937		return (ENXIO);
938
939	device_set_desc(dev, desc_strings[chiptype]);
940	return (rv);
941}
942
943static int
944nxprtc_attach(device_t dev)
945{
946	struct nxprtc_softc *sc;
947
948	sc = device_get_softc(dev);
949	sc->dev = dev;
950	sc->busdev = device_get_parent(dev);
951
952	/* We need to know what kind of chip we're driving. */
953	sc->chiptype = nxprtc_get_chiptype(dev);
954
955	/* The features and some register addresses vary by chip type. */
956	switch (sc->chiptype) {
957	case TYPE_PCA2129:
958	case TYPE_PCF2129:
959	case TYPE_PCF2127:
960	case TYPE_PCF8523:
961		sc->secaddr = PCF8523_R_SECOND;
962		sc->tmcaddr = PCF8523_R_TMR_A_COUNT;
963		sc->use_timer = true;
964		break;
965	case TYPE_PCA8565:
966	case TYPE_PCF8563:
967		sc->secaddr = PCF8563_R_SECOND;
968		sc->tmcaddr = PCF8563_R_TMR_COUNT;
969		sc->use_timer = true;
970		break;
971	default:
972		device_printf(dev, "impossible: cannot determine chip type\n");
973		return (ENXIO);
974	}
975
976	/*
977	 * We have to wait until interrupts are enabled.  Sometimes I2C read
978	 * and write only works when the interrupts are available.
979	 */
980	sc->config_hook.ich_func = nxprtc_start;
981	sc->config_hook.ich_arg = dev;
982	if (config_intrhook_establish(&sc->config_hook) != 0)
983		return (ENOMEM);
984
985	return (0);
986}
987
988static int
989nxprtc_detach(device_t dev)
990{
991
992	clock_unregister(dev);
993	return (0);
994}
995
996static device_method_t nxprtc_methods[] = {
997	DEVMETHOD(device_probe,		nxprtc_probe),
998	DEVMETHOD(device_attach,	nxprtc_attach),
999	DEVMETHOD(device_detach,	nxprtc_detach),
1000
1001	DEVMETHOD(clock_gettime,	nxprtc_gettime),
1002	DEVMETHOD(clock_settime,	nxprtc_settime),
1003
1004	DEVMETHOD_END
1005};
1006
1007static driver_t nxprtc_driver = {
1008	"nxprtc",
1009	nxprtc_methods,
1010	sizeof(struct nxprtc_softc),
1011};
1012
1013DRIVER_MODULE(nxprtc, iicbus, nxprtc_driver, NULL, NULL);
1014MODULE_VERSION(nxprtc, 1);
1015MODULE_DEPEND(nxprtc, iicbus, IICBUS_MINVER, IICBUS_PREFVER, IICBUS_MAXVER);
1016IICBUS_FDT_PNP_INFO(compat_data);
1017