1/*-
2 * Copyright 2021 Intel Corp
3 * Copyright 2021 Rubicon Communications, LLC (Netgate)
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <sys/cdefs.h>
8#include "igc_api.h"
9
10static void igc_reload_nvm_generic(struct igc_hw *hw);
11
12/**
13 *  igc_init_nvm_ops_generic - Initialize NVM function pointers
14 *  @hw: pointer to the HW structure
15 *
16 *  Setups up the function pointers to no-op functions
17 **/
18void igc_init_nvm_ops_generic(struct igc_hw *hw)
19{
20	struct igc_nvm_info *nvm = &hw->nvm;
21	DEBUGFUNC("igc_init_nvm_ops_generic");
22
23	/* Initialize function pointers */
24	nvm->ops.init_params = igc_null_ops_generic;
25	nvm->ops.acquire = igc_null_ops_generic;
26	nvm->ops.read = igc_null_read_nvm;
27	nvm->ops.release = igc_null_nvm_generic;
28	nvm->ops.reload = igc_reload_nvm_generic;
29	nvm->ops.update = igc_null_ops_generic;
30	nvm->ops.validate = igc_null_ops_generic;
31	nvm->ops.write = igc_null_write_nvm;
32}
33
34/**
35 *  igc_null_nvm_read - No-op function, return 0
36 *  @hw: pointer to the HW structure
37 *  @a: dummy variable
38 *  @b: dummy variable
39 *  @c: dummy variable
40 **/
41s32 igc_null_read_nvm(struct igc_hw IGC_UNUSEDARG *hw,
42			u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
43			u16 IGC_UNUSEDARG *c)
44{
45	DEBUGFUNC("igc_null_read_nvm");
46	return IGC_SUCCESS;
47}
48
49/**
50 *  igc_null_nvm_generic - No-op function, return void
51 *  @hw: pointer to the HW structure
52 **/
53void igc_null_nvm_generic(struct igc_hw IGC_UNUSEDARG *hw)
54{
55	DEBUGFUNC("igc_null_nvm_generic");
56	return;
57}
58
59/**
60 *  igc_null_write_nvm - No-op function, return 0
61 *  @hw: pointer to the HW structure
62 *  @a: dummy variable
63 *  @b: dummy variable
64 *  @c: dummy variable
65 **/
66s32 igc_null_write_nvm(struct igc_hw IGC_UNUSEDARG *hw,
67			 u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
68			 u16 IGC_UNUSEDARG *c)
69{
70	DEBUGFUNC("igc_null_write_nvm");
71	return IGC_SUCCESS;
72}
73
74/**
75 *  igc_raise_eec_clk - Raise EEPROM clock
76 *  @hw: pointer to the HW structure
77 *  @eecd: pointer to the EEPROM
78 *
79 *  Enable/Raise the EEPROM clock bit.
80 **/
81static void igc_raise_eec_clk(struct igc_hw *hw, u32 *eecd)
82{
83	*eecd = *eecd | IGC_EECD_SK;
84	IGC_WRITE_REG(hw, IGC_EECD, *eecd);
85	IGC_WRITE_FLUSH(hw);
86	usec_delay(hw->nvm.delay_usec);
87}
88
89/**
90 *  igc_lower_eec_clk - Lower EEPROM clock
91 *  @hw: pointer to the HW structure
92 *  @eecd: pointer to the EEPROM
93 *
94 *  Clear/Lower the EEPROM clock bit.
95 **/
96static void igc_lower_eec_clk(struct igc_hw *hw, u32 *eecd)
97{
98	*eecd = *eecd & ~IGC_EECD_SK;
99	IGC_WRITE_REG(hw, IGC_EECD, *eecd);
100	IGC_WRITE_FLUSH(hw);
101	usec_delay(hw->nvm.delay_usec);
102}
103
104/**
105 *  igc_shift_out_eec_bits - Shift data bits our to the EEPROM
106 *  @hw: pointer to the HW structure
107 *  @data: data to send to the EEPROM
108 *  @count: number of bits to shift out
109 *
110 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
111 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
112 *  In order to do this, "data" must be broken down into bits.
113 **/
114static void igc_shift_out_eec_bits(struct igc_hw *hw, u16 data, u16 count)
115{
116	struct igc_nvm_info *nvm = &hw->nvm;
117	u32 eecd = IGC_READ_REG(hw, IGC_EECD);
118	u32 mask;
119
120	DEBUGFUNC("igc_shift_out_eec_bits");
121
122	mask = 0x01 << (count - 1);
123	if (nvm->type == igc_nvm_eeprom_spi)
124		eecd |= IGC_EECD_DO;
125
126	do {
127		eecd &= ~IGC_EECD_DI;
128
129		if (data & mask)
130			eecd |= IGC_EECD_DI;
131
132		IGC_WRITE_REG(hw, IGC_EECD, eecd);
133		IGC_WRITE_FLUSH(hw);
134
135		usec_delay(nvm->delay_usec);
136
137		igc_raise_eec_clk(hw, &eecd);
138		igc_lower_eec_clk(hw, &eecd);
139
140		mask >>= 1;
141	} while (mask);
142
143	eecd &= ~IGC_EECD_DI;
144	IGC_WRITE_REG(hw, IGC_EECD, eecd);
145}
146
147/**
148 *  igc_shift_in_eec_bits - Shift data bits in from the EEPROM
149 *  @hw: pointer to the HW structure
150 *  @count: number of bits to shift in
151 *
152 *  In order to read a register from the EEPROM, we need to shift 'count' bits
153 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
154 *  the EEPROM (setting the SK bit), and then reading the value of the data out
155 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
156 *  always be clear.
157 **/
158static u16 igc_shift_in_eec_bits(struct igc_hw *hw, u16 count)
159{
160	u32 eecd;
161	u32 i;
162	u16 data;
163
164	DEBUGFUNC("igc_shift_in_eec_bits");
165
166	eecd = IGC_READ_REG(hw, IGC_EECD);
167
168	eecd &= ~(IGC_EECD_DO | IGC_EECD_DI);
169	data = 0;
170
171	for (i = 0; i < count; i++) {
172		data <<= 1;
173		igc_raise_eec_clk(hw, &eecd);
174
175		eecd = IGC_READ_REG(hw, IGC_EECD);
176
177		eecd &= ~IGC_EECD_DI;
178		if (eecd & IGC_EECD_DO)
179			data |= 1;
180
181		igc_lower_eec_clk(hw, &eecd);
182	}
183
184	return data;
185}
186
187/**
188 *  igc_poll_eerd_eewr_done - Poll for EEPROM read/write completion
189 *  @hw: pointer to the HW structure
190 *  @ee_reg: EEPROM flag for polling
191 *
192 *  Polls the EEPROM status bit for either read or write completion based
193 *  upon the value of 'ee_reg'.
194 **/
195s32 igc_poll_eerd_eewr_done(struct igc_hw *hw, int ee_reg)
196{
197	u32 attempts = 100000;
198	u32 i, reg = 0;
199
200	DEBUGFUNC("igc_poll_eerd_eewr_done");
201
202	for (i = 0; i < attempts; i++) {
203		if (ee_reg == IGC_NVM_POLL_READ)
204			reg = IGC_READ_REG(hw, IGC_EERD);
205		else
206			reg = IGC_READ_REG(hw, IGC_EEWR);
207
208		if (reg & IGC_NVM_RW_REG_DONE)
209			return IGC_SUCCESS;
210
211		usec_delay(5);
212	}
213
214	return -IGC_ERR_NVM;
215}
216
217/**
218 *  igc_acquire_nvm_generic - Generic request for access to EEPROM
219 *  @hw: pointer to the HW structure
220 *
221 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
222 *  Return successful if access grant bit set, else clear the request for
223 *  EEPROM access and return -IGC_ERR_NVM (-1).
224 **/
225s32 igc_acquire_nvm_generic(struct igc_hw *hw)
226{
227	u32 eecd = IGC_READ_REG(hw, IGC_EECD);
228	s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
229
230	DEBUGFUNC("igc_acquire_nvm_generic");
231
232	IGC_WRITE_REG(hw, IGC_EECD, eecd | IGC_EECD_REQ);
233	eecd = IGC_READ_REG(hw, IGC_EECD);
234
235	while (timeout) {
236		if (eecd & IGC_EECD_GNT)
237			break;
238		usec_delay(5);
239		eecd = IGC_READ_REG(hw, IGC_EECD);
240		timeout--;
241	}
242
243	if (!timeout) {
244		eecd &= ~IGC_EECD_REQ;
245		IGC_WRITE_REG(hw, IGC_EECD, eecd);
246		DEBUGOUT("Could not acquire NVM grant\n");
247		return -IGC_ERR_NVM;
248	}
249
250	return IGC_SUCCESS;
251}
252
253/**
254 *  igc_standby_nvm - Return EEPROM to standby state
255 *  @hw: pointer to the HW structure
256 *
257 *  Return the EEPROM to a standby state.
258 **/
259static void igc_standby_nvm(struct igc_hw *hw)
260{
261	struct igc_nvm_info *nvm = &hw->nvm;
262	u32 eecd = IGC_READ_REG(hw, IGC_EECD);
263
264	DEBUGFUNC("igc_standby_nvm");
265
266	if (nvm->type == igc_nvm_eeprom_spi) {
267		/* Toggle CS to flush commands */
268		eecd |= IGC_EECD_CS;
269		IGC_WRITE_REG(hw, IGC_EECD, eecd);
270		IGC_WRITE_FLUSH(hw);
271		usec_delay(nvm->delay_usec);
272		eecd &= ~IGC_EECD_CS;
273		IGC_WRITE_REG(hw, IGC_EECD, eecd);
274		IGC_WRITE_FLUSH(hw);
275		usec_delay(nvm->delay_usec);
276	}
277}
278
279/**
280 *  igc_stop_nvm - Terminate EEPROM command
281 *  @hw: pointer to the HW structure
282 *
283 *  Terminates the current command by inverting the EEPROM's chip select pin.
284 **/
285static void igc_stop_nvm(struct igc_hw *hw)
286{
287	u32 eecd;
288
289	DEBUGFUNC("igc_stop_nvm");
290
291	eecd = IGC_READ_REG(hw, IGC_EECD);
292	if (hw->nvm.type == igc_nvm_eeprom_spi) {
293		/* Pull CS high */
294		eecd |= IGC_EECD_CS;
295		igc_lower_eec_clk(hw, &eecd);
296	}
297}
298
299/**
300 *  igc_release_nvm_generic - Release exclusive access to EEPROM
301 *  @hw: pointer to the HW structure
302 *
303 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
304 **/
305void igc_release_nvm_generic(struct igc_hw *hw)
306{
307	u32 eecd;
308
309	DEBUGFUNC("igc_release_nvm_generic");
310
311	igc_stop_nvm(hw);
312
313	eecd = IGC_READ_REG(hw, IGC_EECD);
314	eecd &= ~IGC_EECD_REQ;
315	IGC_WRITE_REG(hw, IGC_EECD, eecd);
316}
317
318/**
319 *  igc_ready_nvm_eeprom - Prepares EEPROM for read/write
320 *  @hw: pointer to the HW structure
321 *
322 *  Setups the EEPROM for reading and writing.
323 **/
324static s32 igc_ready_nvm_eeprom(struct igc_hw *hw)
325{
326	struct igc_nvm_info *nvm = &hw->nvm;
327	u32 eecd = IGC_READ_REG(hw, IGC_EECD);
328	u8 spi_stat_reg;
329
330	DEBUGFUNC("igc_ready_nvm_eeprom");
331
332	if (nvm->type == igc_nvm_eeprom_spi) {
333		u16 timeout = NVM_MAX_RETRY_SPI;
334
335		/* Clear SK and CS */
336		eecd &= ~(IGC_EECD_CS | IGC_EECD_SK);
337		IGC_WRITE_REG(hw, IGC_EECD, eecd);
338		IGC_WRITE_FLUSH(hw);
339		usec_delay(1);
340
341		/* Read "Status Register" repeatedly until the LSB is cleared.
342		 * The EEPROM will signal that the command has been completed
343		 * by clearing bit 0 of the internal status register.  If it's
344		 * not cleared within 'timeout', then error out.
345		 */
346		while (timeout) {
347			igc_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
348						 hw->nvm.opcode_bits);
349			spi_stat_reg = (u8)igc_shift_in_eec_bits(hw, 8);
350			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
351				break;
352
353			usec_delay(5);
354			igc_standby_nvm(hw);
355			timeout--;
356		}
357
358		if (!timeout) {
359			DEBUGOUT("SPI NVM Status error\n");
360			return -IGC_ERR_NVM;
361		}
362	}
363
364	return IGC_SUCCESS;
365}
366
367/**
368 *  igc_read_nvm_eerd - Reads EEPROM using EERD register
369 *  @hw: pointer to the HW structure
370 *  @offset: offset of word in the EEPROM to read
371 *  @words: number of words to read
372 *  @data: word read from the EEPROM
373 *
374 *  Reads a 16 bit word from the EEPROM using the EERD register.
375 **/
376s32 igc_read_nvm_eerd(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
377{
378	struct igc_nvm_info *nvm = &hw->nvm;
379	u32 i, eerd = 0;
380	s32 ret_val = IGC_SUCCESS;
381
382	DEBUGFUNC("igc_read_nvm_eerd");
383
384	/* A check for invalid values:  offset too large, too many words,
385	 * too many words for the offset, and not enough words.
386	 */
387	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
388	    (words == 0)) {
389		DEBUGOUT("nvm parameter(s) out of bounds\n");
390		return -IGC_ERR_NVM;
391	}
392
393	for (i = 0; i < words; i++) {
394		eerd = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) +
395		       IGC_NVM_RW_REG_START;
396
397		IGC_WRITE_REG(hw, IGC_EERD, eerd);
398		ret_val = igc_poll_eerd_eewr_done(hw, IGC_NVM_POLL_READ);
399		if (ret_val)
400			break;
401
402		data[i] = (IGC_READ_REG(hw, IGC_EERD) >>
403			   IGC_NVM_RW_REG_DATA);
404	}
405
406	if (ret_val)
407		DEBUGOUT1("NVM read error: %d\n", ret_val);
408
409	return ret_val;
410}
411
412/**
413 *  igc_write_nvm_spi - Write to EEPROM using SPI
414 *  @hw: pointer to the HW structure
415 *  @offset: offset within the EEPROM to be written to
416 *  @words: number of words to write
417 *  @data: 16 bit word(s) to be written to the EEPROM
418 *
419 *  Writes data to EEPROM at offset using SPI interface.
420 *
421 *  If igc_update_nvm_checksum is not called after this function , the
422 *  EEPROM will most likely contain an invalid checksum.
423 **/
424s32 igc_write_nvm_spi(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
425{
426	struct igc_nvm_info *nvm = &hw->nvm;
427	s32 ret_val = -IGC_ERR_NVM;
428	u16 widx = 0;
429
430	DEBUGFUNC("igc_write_nvm_spi");
431
432	/* A check for invalid values:  offset too large, too many words,
433	 * and not enough words.
434	 */
435	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
436	    (words == 0)) {
437		DEBUGOUT("nvm parameter(s) out of bounds\n");
438		return -IGC_ERR_NVM;
439	}
440
441	while (widx < words) {
442		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
443
444		ret_val = nvm->ops.acquire(hw);
445		if (ret_val)
446			return ret_val;
447
448		ret_val = igc_ready_nvm_eeprom(hw);
449		if (ret_val) {
450			nvm->ops.release(hw);
451			return ret_val;
452		}
453
454		igc_standby_nvm(hw);
455
456		/* Send the WRITE ENABLE command (8 bit opcode) */
457		igc_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
458					 nvm->opcode_bits);
459
460		igc_standby_nvm(hw);
461
462		/* Some SPI eeproms use the 8th address bit embedded in the
463		 * opcode
464		 */
465		if ((nvm->address_bits == 8) && (offset >= 128))
466			write_opcode |= NVM_A8_OPCODE_SPI;
467
468		/* Send the Write command (8-bit opcode + addr) */
469		igc_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
470		igc_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
471					 nvm->address_bits);
472
473		/* Loop to allow for up to whole page write of eeprom */
474		while (widx < words) {
475			u16 word_out = data[widx];
476			word_out = (word_out >> 8) | (word_out << 8);
477			igc_shift_out_eec_bits(hw, word_out, 16);
478			widx++;
479
480			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
481				igc_standby_nvm(hw);
482				break;
483			}
484		}
485		msec_delay(10);
486		nvm->ops.release(hw);
487	}
488
489	return ret_val;
490}
491
492/**
493 *  igc_read_pba_string_generic - Read device part number
494 *  @hw: pointer to the HW structure
495 *  @pba_num: pointer to device part number
496 *  @pba_num_size: size of part number buffer
497 *
498 *  Reads the product board assembly (PBA) number from the EEPROM and stores
499 *  the value in pba_num.
500 **/
501s32 igc_read_pba_string_generic(struct igc_hw *hw, u8 *pba_num,
502				  u32 pba_num_size)
503{
504	s32 ret_val;
505	u16 nvm_data;
506	u16 pba_ptr;
507	u16 offset;
508	u16 length;
509
510	DEBUGFUNC("igc_read_pba_string_generic");
511
512	if (pba_num == NULL) {
513		DEBUGOUT("PBA string buffer was null\n");
514		return -IGC_ERR_INVALID_ARGUMENT;
515	}
516
517	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
518	if (ret_val) {
519		DEBUGOUT("NVM Read Error\n");
520		return ret_val;
521	}
522
523	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
524	if (ret_val) {
525		DEBUGOUT("NVM Read Error\n");
526		return ret_val;
527	}
528
529	/* if nvm_data is not ptr guard the PBA must be in legacy format which
530	 * means pba_ptr is actually our second data word for the PBA number
531	 * and we can decode it into an ascii string
532	 */
533	if (nvm_data != NVM_PBA_PTR_GUARD) {
534		DEBUGOUT("NVM PBA number is not stored as string\n");
535
536		/* make sure callers buffer is big enough to store the PBA */
537		if (pba_num_size < IGC_PBANUM_LENGTH) {
538			DEBUGOUT("PBA string buffer too small\n");
539			return IGC_ERR_NO_SPACE;
540		}
541
542		/* extract hex string from data and pba_ptr */
543		pba_num[0] = (nvm_data >> 12) & 0xF;
544		pba_num[1] = (nvm_data >> 8) & 0xF;
545		pba_num[2] = (nvm_data >> 4) & 0xF;
546		pba_num[3] = nvm_data & 0xF;
547		pba_num[4] = (pba_ptr >> 12) & 0xF;
548		pba_num[5] = (pba_ptr >> 8) & 0xF;
549		pba_num[6] = '-';
550		pba_num[7] = 0;
551		pba_num[8] = (pba_ptr >> 4) & 0xF;
552		pba_num[9] = pba_ptr & 0xF;
553
554		/* put a null character on the end of our string */
555		pba_num[10] = '\0';
556
557		/* switch all the data but the '-' to hex char */
558		for (offset = 0; offset < 10; offset++) {
559			if (pba_num[offset] < 0xA)
560				pba_num[offset] += '0';
561			else if (pba_num[offset] < 0x10)
562				pba_num[offset] += 'A' - 0xA;
563		}
564
565		return IGC_SUCCESS;
566	}
567
568	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
569	if (ret_val) {
570		DEBUGOUT("NVM Read Error\n");
571		return ret_val;
572	}
573
574	if (length == 0xFFFF || length == 0) {
575		DEBUGOUT("NVM PBA number section invalid length\n");
576		return -IGC_ERR_NVM_PBA_SECTION;
577	}
578	/* check if pba_num buffer is big enough */
579	if (pba_num_size < (((u32)length * 2) - 1)) {
580		DEBUGOUT("PBA string buffer too small\n");
581		return -IGC_ERR_NO_SPACE;
582	}
583
584	/* trim pba length from start of string */
585	pba_ptr++;
586	length--;
587
588	for (offset = 0; offset < length; offset++) {
589		ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
590		if (ret_val) {
591			DEBUGOUT("NVM Read Error\n");
592			return ret_val;
593		}
594		pba_num[offset * 2] = (u8)(nvm_data >> 8);
595		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
596	}
597	pba_num[offset * 2] = '\0';
598
599	return IGC_SUCCESS;
600}
601
602
603
604
605
606/**
607 *  igc_read_mac_addr_generic - Read device MAC address
608 *  @hw: pointer to the HW structure
609 *
610 *  Reads the device MAC address from the EEPROM and stores the value.
611 *  Since devices with two ports use the same EEPROM, we increment the
612 *  last bit in the MAC address for the second port.
613 **/
614s32 igc_read_mac_addr_generic(struct igc_hw *hw)
615{
616	u32 rar_high;
617	u32 rar_low;
618	u16 i;
619
620	rar_high = IGC_READ_REG(hw, IGC_RAH(0));
621	rar_low = IGC_READ_REG(hw, IGC_RAL(0));
622
623	for (i = 0; i < IGC_RAL_MAC_ADDR_LEN; i++)
624		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
625
626	for (i = 0; i < IGC_RAH_MAC_ADDR_LEN; i++)
627		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
628
629	for (i = 0; i < ETH_ADDR_LEN; i++)
630		hw->mac.addr[i] = hw->mac.perm_addr[i];
631
632	return IGC_SUCCESS;
633}
634
635/**
636 *  igc_validate_nvm_checksum_generic - Validate EEPROM checksum
637 *  @hw: pointer to the HW structure
638 *
639 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
640 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
641 **/
642s32 igc_validate_nvm_checksum_generic(struct igc_hw *hw)
643{
644	s32 ret_val;
645	u16 checksum = 0;
646	u16 i, nvm_data;
647
648	DEBUGFUNC("igc_validate_nvm_checksum_generic");
649
650	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
651		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
652		if (ret_val) {
653			DEBUGOUT("NVM Read Error\n");
654			return ret_val;
655		}
656		checksum += nvm_data;
657	}
658
659	if (checksum != (u16) NVM_SUM) {
660		DEBUGOUT("NVM Checksum Invalid\n");
661		return -IGC_ERR_NVM;
662	}
663
664	return IGC_SUCCESS;
665}
666
667/**
668 *  igc_update_nvm_checksum_generic - Update EEPROM checksum
669 *  @hw: pointer to the HW structure
670 *
671 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
672 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
673 *  value to the EEPROM.
674 **/
675s32 igc_update_nvm_checksum_generic(struct igc_hw *hw)
676{
677	s32 ret_val;
678	u16 checksum = 0;
679	u16 i, nvm_data;
680
681	DEBUGFUNC("igc_update_nvm_checksum");
682
683	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
684		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
685		if (ret_val) {
686			DEBUGOUT("NVM Read Error while updating checksum.\n");
687			return ret_val;
688		}
689		checksum += nvm_data;
690	}
691	checksum = (u16) NVM_SUM - checksum;
692	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
693	if (ret_val)
694		DEBUGOUT("NVM Write Error while updating checksum.\n");
695
696	return ret_val;
697}
698
699/**
700 *  igc_reload_nvm_generic - Reloads EEPROM
701 *  @hw: pointer to the HW structure
702 *
703 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
704 *  extended control register.
705 **/
706static void igc_reload_nvm_generic(struct igc_hw *hw)
707{
708	u32 ctrl_ext;
709
710	DEBUGFUNC("igc_reload_nvm_generic");
711
712	usec_delay(10);
713	ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
714	ctrl_ext |= IGC_CTRL_EXT_EE_RST;
715	IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
716	IGC_WRITE_FLUSH(hw);
717}
718
719
720