1/*-
2 * Copyright 2021 Intel Corp
3 * Copyright 2021 Rubicon Communications, LLC (Netgate)
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <sys/cdefs.h>
8#include "igc_api.h"
9
10static void igc_config_collision_dist_generic(struct igc_hw *hw);
11
12/**
13 *  igc_init_mac_ops_generic - Initialize MAC function pointers
14 *  @hw: pointer to the HW structure
15 *
16 *  Setups up the function pointers to no-op functions
17 **/
18void igc_init_mac_ops_generic(struct igc_hw *hw)
19{
20	struct igc_mac_info *mac = &hw->mac;
21	DEBUGFUNC("igc_init_mac_ops_generic");
22
23	/* General Setup */
24	mac->ops.init_params = igc_null_ops_generic;
25	mac->ops.config_collision_dist = igc_config_collision_dist_generic;
26	mac->ops.rar_set = igc_rar_set_generic;
27}
28
29/**
30 *  igc_null_ops_generic - No-op function, returns 0
31 *  @hw: pointer to the HW structure
32 **/
33s32 igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw)
34{
35	DEBUGFUNC("igc_null_ops_generic");
36	return IGC_SUCCESS;
37}
38
39/**
40 *  igc_null_mac_generic - No-op function, return void
41 *  @hw: pointer to the HW structure
42 **/
43void igc_null_mac_generic(struct igc_hw IGC_UNUSEDARG *hw)
44{
45	DEBUGFUNC("igc_null_mac_generic");
46	return;
47}
48
49/**
50 *  igc_null_link_info - No-op function, return 0
51 *  @hw: pointer to the HW structure
52 *  @s: dummy variable
53 *  @d: dummy variable
54 **/
55s32 igc_null_link_info(struct igc_hw IGC_UNUSEDARG *hw,
56			 u16 IGC_UNUSEDARG *s, u16 IGC_UNUSEDARG *d)
57{
58	DEBUGFUNC("igc_null_link_info");
59	return IGC_SUCCESS;
60}
61
62/**
63 *  igc_null_mng_mode - No-op function, return false
64 *  @hw: pointer to the HW structure
65 **/
66bool igc_null_mng_mode(struct igc_hw IGC_UNUSEDARG *hw)
67{
68	DEBUGFUNC("igc_null_mng_mode");
69	return false;
70}
71
72/**
73 *  igc_null_update_mc - No-op function, return void
74 *  @hw: pointer to the HW structure
75 *  @h: dummy variable
76 *  @a: dummy variable
77 **/
78void igc_null_update_mc(struct igc_hw IGC_UNUSEDARG *hw,
79			  u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
80{
81	DEBUGFUNC("igc_null_update_mc");
82	return;
83}
84
85/**
86 *  igc_null_write_vfta - No-op function, return void
87 *  @hw: pointer to the HW structure
88 *  @a: dummy variable
89 *  @b: dummy variable
90 **/
91void igc_null_write_vfta(struct igc_hw IGC_UNUSEDARG *hw,
92			   u32 IGC_UNUSEDARG a, u32 IGC_UNUSEDARG b)
93{
94	DEBUGFUNC("igc_null_write_vfta");
95	return;
96}
97
98/**
99 *  igc_null_rar_set - No-op function, return 0
100 *  @hw: pointer to the HW structure
101 *  @h: dummy variable
102 *  @a: dummy variable
103 **/
104int igc_null_rar_set(struct igc_hw IGC_UNUSEDARG *hw,
105			u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
106{
107	DEBUGFUNC("igc_null_rar_set");
108	return IGC_SUCCESS;
109}
110
111/**
112 *  igc_set_lan_id_single_port - Set LAN id for a single port device
113 *  @hw: pointer to the HW structure
114 *
115 *  Sets the LAN function id to zero for a single port device.
116 **/
117void igc_set_lan_id_single_port(struct igc_hw *hw)
118{
119	struct igc_bus_info *bus = &hw->bus;
120
121	bus->func = 0;
122}
123
124/**
125 *  igc_clear_vfta_generic - Clear VLAN filter table
126 *  @hw: pointer to the HW structure
127 *
128 *  Clears the register array which contains the VLAN filter table by
129 *  setting all the values to 0.
130 **/
131void igc_clear_vfta_generic(struct igc_hw *hw)
132{
133	u32 offset;
134
135	DEBUGFUNC("igc_clear_vfta_generic");
136
137	for (offset = 0; offset < IGC_VLAN_FILTER_TBL_SIZE; offset++) {
138		IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, 0);
139		IGC_WRITE_FLUSH(hw);
140	}
141}
142
143/**
144 *  igc_write_vfta_generic - Write value to VLAN filter table
145 *  @hw: pointer to the HW structure
146 *  @offset: register offset in VLAN filter table
147 *  @value: register value written to VLAN filter table
148 *
149 *  Writes value at the given offset in the register array which stores
150 *  the VLAN filter table.
151 **/
152void igc_write_vfta_generic(struct igc_hw *hw, u32 offset, u32 value)
153{
154	DEBUGFUNC("igc_write_vfta_generic");
155
156	IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
157	IGC_WRITE_FLUSH(hw);
158}
159
160/**
161 *  igc_init_rx_addrs_generic - Initialize receive address's
162 *  @hw: pointer to the HW structure
163 *  @rar_count: receive address registers
164 *
165 *  Setup the receive address registers by setting the base receive address
166 *  register to the devices MAC address and clearing all the other receive
167 *  address registers to 0.
168 **/
169void igc_init_rx_addrs_generic(struct igc_hw *hw, u16 rar_count)
170{
171	u32 i;
172	u8 mac_addr[ETH_ADDR_LEN] = {0};
173
174	DEBUGFUNC("igc_init_rx_addrs_generic");
175
176	/* Setup the receive address */
177	DEBUGOUT("Programming MAC Address into RAR[0]\n");
178
179	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
180
181	/* Zero out the other (rar_entry_count - 1) receive addresses */
182	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
183	for (i = 1; i < rar_count; i++)
184		hw->mac.ops.rar_set(hw, mac_addr, i);
185}
186
187/**
188 *  igc_check_alt_mac_addr_generic - Check for alternate MAC addr
189 *  @hw: pointer to the HW structure
190 *
191 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
192 *  can be setup by pre-boot software and must be treated like a permanent
193 *  address and must override the actual permanent MAC address. If an
194 *  alternate MAC address is found it is programmed into RAR0, replacing
195 *  the permanent address that was installed into RAR0 by the Si on reset.
196 *  This function will return SUCCESS unless it encounters an error while
197 *  reading the EEPROM.
198 **/
199s32 igc_check_alt_mac_addr_generic(struct igc_hw *hw)
200{
201	u32 i;
202	s32 ret_val;
203	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
204	u8 alt_mac_addr[ETH_ADDR_LEN];
205
206	DEBUGFUNC("igc_check_alt_mac_addr_generic");
207
208	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
209	if (ret_val)
210		return ret_val;
211
212
213	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
214				   &nvm_alt_mac_addr_offset);
215	if (ret_val) {
216		DEBUGOUT("NVM Read Error\n");
217		return ret_val;
218	}
219
220	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
221	    (nvm_alt_mac_addr_offset == 0x0000))
222		/* There is no Alternate MAC Address */
223		return IGC_SUCCESS;
224
225	if (hw->bus.func == IGC_FUNC_1)
226		nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
227	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
228		offset = nvm_alt_mac_addr_offset + (i >> 1);
229		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
230		if (ret_val) {
231			DEBUGOUT("NVM Read Error\n");
232			return ret_val;
233		}
234
235		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
236		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
237	}
238
239	/* if multicast bit is set, the alternate address will not be used */
240	if (alt_mac_addr[0] & 0x01) {
241		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
242		return IGC_SUCCESS;
243	}
244
245	/* We have a valid alternate MAC address, and we want to treat it the
246	 * same as the normal permanent MAC address stored by the HW into the
247	 * RAR. Do this by mapping this address into RAR0.
248	 */
249	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
250
251	return IGC_SUCCESS;
252}
253
254/**
255 *  igc_rar_set_generic - Set receive address register
256 *  @hw: pointer to the HW structure
257 *  @addr: pointer to the receive address
258 *  @index: receive address array register
259 *
260 *  Sets the receive address array register at index to the address passed
261 *  in by addr.
262 **/
263int igc_rar_set_generic(struct igc_hw *hw, u8 *addr, u32 index)
264{
265	u32 rar_low, rar_high;
266
267	DEBUGFUNC("igc_rar_set_generic");
268
269	/* HW expects these in little endian so we reverse the byte order
270	 * from network order (big endian) to little endian
271	 */
272	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
273		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
274
275	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
276
277	/* If MAC address zero, no need to set the AV bit */
278	if (rar_low || rar_high)
279		rar_high |= IGC_RAH_AV;
280
281	/* Some bridges will combine consecutive 32-bit writes into
282	 * a single burst write, which will malfunction on some parts.
283	 * The flushes avoid this.
284	 */
285	IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
286	IGC_WRITE_FLUSH(hw);
287	IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
288	IGC_WRITE_FLUSH(hw);
289
290	return IGC_SUCCESS;
291}
292
293/**
294 *  igc_hash_mc_addr_generic - Generate a multicast hash value
295 *  @hw: pointer to the HW structure
296 *  @mc_addr: pointer to a multicast address
297 *
298 *  Generates a multicast address hash value which is used to determine
299 *  the multicast filter table array address and new table value.
300 **/
301u32 igc_hash_mc_addr_generic(struct igc_hw *hw, u8 *mc_addr)
302{
303	u32 hash_value, hash_mask;
304	u8 bit_shift = 0;
305
306	DEBUGFUNC("igc_hash_mc_addr_generic");
307
308	/* Register count multiplied by bits per register */
309	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
310
311	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
312	 * where 0xFF would still fall within the hash mask.
313	 */
314	while (hash_mask >> bit_shift != 0xFF)
315		bit_shift++;
316
317	/* The portion of the address that is used for the hash table
318	 * is determined by the mc_filter_type setting.
319	 * The algorithm is such that there is a total of 8 bits of shifting.
320	 * The bit_shift for a mc_filter_type of 0 represents the number of
321	 * left-shifts where the MSB of mc_addr[5] would still fall within
322	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
323	 * of 8 bits of shifting, then mc_addr[4] will shift right the
324	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
325	 * cases are a variation of this algorithm...essentially raising the
326	 * number of bits to shift mc_addr[5] left, while still keeping the
327	 * 8-bit shifting total.
328	 *
329	 * For example, given the following Destination MAC Address and an
330	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
331	 * we can see that the bit_shift for case 0 is 4.  These are the hash
332	 * values resulting from each mc_filter_type...
333	 * [0] [1] [2] [3] [4] [5]
334	 * 01  AA  00  12  34  56
335	 * LSB		 MSB
336	 *
337	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
338	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
339	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
340	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
341	 */
342	switch (hw->mac.mc_filter_type) {
343	default:
344	case 0:
345		break;
346	case 1:
347		bit_shift += 1;
348		break;
349	case 2:
350		bit_shift += 2;
351		break;
352	case 3:
353		bit_shift += 4;
354		break;
355	}
356
357	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
358				  (((u16) mc_addr[5]) << bit_shift)));
359
360	return hash_value;
361}
362
363/**
364 *  igc_update_mc_addr_list_generic - Update Multicast addresses
365 *  @hw: pointer to the HW structure
366 *  @mc_addr_list: array of multicast addresses to program
367 *  @mc_addr_count: number of multicast addresses to program
368 *
369 *  Updates entire Multicast Table Array.
370 *  The caller must have a packed mc_addr_list of multicast addresses.
371 **/
372void igc_update_mc_addr_list_generic(struct igc_hw *hw,
373				       u8 *mc_addr_list, u32 mc_addr_count)
374{
375	u32 hash_value, hash_bit, hash_reg;
376	int i;
377
378	DEBUGFUNC("igc_update_mc_addr_list_generic");
379
380	/* clear mta_shadow */
381	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
382
383	/* update mta_shadow from mc_addr_list */
384	for (i = 0; (u32) i < mc_addr_count; i++) {
385		hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
386
387		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
388		hash_bit = hash_value & 0x1F;
389
390		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
391		mc_addr_list += (ETH_ADDR_LEN);
392	}
393
394	/* replace the entire MTA table */
395	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
396		IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
397	IGC_WRITE_FLUSH(hw);
398}
399
400/**
401 *  igc_clear_hw_cntrs_base_generic - Clear base hardware counters
402 *  @hw: pointer to the HW structure
403 *
404 *  Clears the base hardware counters by reading the counter registers.
405 **/
406void igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
407{
408	DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
409
410	IGC_READ_REG(hw, IGC_CRCERRS);
411	IGC_READ_REG(hw, IGC_MPC);
412	IGC_READ_REG(hw, IGC_SCC);
413	IGC_READ_REG(hw, IGC_ECOL);
414	IGC_READ_REG(hw, IGC_MCC);
415	IGC_READ_REG(hw, IGC_LATECOL);
416	IGC_READ_REG(hw, IGC_COLC);
417	IGC_READ_REG(hw, IGC_RERC);
418	IGC_READ_REG(hw, IGC_DC);
419	IGC_READ_REG(hw, IGC_RLEC);
420	IGC_READ_REG(hw, IGC_XONRXC);
421	IGC_READ_REG(hw, IGC_XONTXC);
422	IGC_READ_REG(hw, IGC_XOFFRXC);
423	IGC_READ_REG(hw, IGC_XOFFTXC);
424	IGC_READ_REG(hw, IGC_FCRUC);
425	IGC_READ_REG(hw, IGC_GPRC);
426	IGC_READ_REG(hw, IGC_BPRC);
427	IGC_READ_REG(hw, IGC_MPRC);
428	IGC_READ_REG(hw, IGC_GPTC);
429	IGC_READ_REG(hw, IGC_GORCL);
430	IGC_READ_REG(hw, IGC_GORCH);
431	IGC_READ_REG(hw, IGC_GOTCL);
432	IGC_READ_REG(hw, IGC_GOTCH);
433	IGC_READ_REG(hw, IGC_RNBC);
434	IGC_READ_REG(hw, IGC_RUC);
435	IGC_READ_REG(hw, IGC_RFC);
436	IGC_READ_REG(hw, IGC_ROC);
437	IGC_READ_REG(hw, IGC_RJC);
438	IGC_READ_REG(hw, IGC_TORL);
439	IGC_READ_REG(hw, IGC_TORH);
440	IGC_READ_REG(hw, IGC_TOTL);
441	IGC_READ_REG(hw, IGC_TOTH);
442	IGC_READ_REG(hw, IGC_TPR);
443	IGC_READ_REG(hw, IGC_TPT);
444	IGC_READ_REG(hw, IGC_MPTC);
445	IGC_READ_REG(hw, IGC_BPTC);
446	IGC_READ_REG(hw, IGC_TLPIC);
447	IGC_READ_REG(hw, IGC_RLPIC);
448	IGC_READ_REG(hw, IGC_RXDMTC);
449}
450
451/**
452 *  igc_check_for_copper_link_generic - Check for link (Copper)
453 *  @hw: pointer to the HW structure
454 *
455 *  Checks to see of the link status of the hardware has changed.  If a
456 *  change in link status has been detected, then we read the PHY registers
457 *  to get the current speed/duplex if link exists.
458 **/
459s32 igc_check_for_copper_link_generic(struct igc_hw *hw)
460{
461	struct igc_mac_info *mac = &hw->mac;
462	s32 ret_val;
463	bool link = false;
464
465	DEBUGFUNC("igc_check_for_copper_link");
466
467	/* We only want to go out to the PHY registers to see if Auto-Neg
468	 * has completed and/or if our link status has changed.  The
469	 * get_link_status flag is set upon receiving a Link Status
470	 * Change or Rx Sequence Error interrupt.
471	 */
472	if (!mac->get_link_status)
473		return IGC_SUCCESS;
474
475	/* First we want to see if the MII Status Register reports
476	 * link.  If so, then we want to get the current speed/duplex
477	 * of the PHY.
478	 */
479	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
480	if (ret_val)
481		return ret_val;
482
483	if (!link)
484		return IGC_SUCCESS; /* No link detected */
485
486	mac->get_link_status = false;
487
488	/* Check if there was DownShift, must be checked
489	 * immediately after link-up
490	 */
491	igc_check_downshift_generic(hw);
492
493	/* If we are forcing speed/duplex, then we simply return since
494	 * we have already determined whether we have link or not.
495	 */
496	if (!mac->autoneg)
497		return -IGC_ERR_CONFIG;
498
499	/* Auto-Neg is enabled.  Auto Speed Detection takes care
500	 * of MAC speed/duplex configuration.  So we only need to
501	 * configure Collision Distance in the MAC.
502	 */
503	mac->ops.config_collision_dist(hw);
504
505	/* Configure Flow Control now that Auto-Neg has completed.
506	 * First, we need to restore the desired flow control
507	 * settings because we may have had to re-autoneg with a
508	 * different link partner.
509	 */
510	ret_val = igc_config_fc_after_link_up_generic(hw);
511	if (ret_val)
512		DEBUGOUT("Error configuring flow control\n");
513
514	return ret_val;
515}
516
517/**
518 *  igc_setup_link_generic - Setup flow control and link settings
519 *  @hw: pointer to the HW structure
520 *
521 *  Determines which flow control settings to use, then configures flow
522 *  control.  Calls the appropriate media-specific link configuration
523 *  function.  Assuming the adapter has a valid link partner, a valid link
524 *  should be established.  Assumes the hardware has previously been reset
525 *  and the transmitter and receiver are not enabled.
526 **/
527s32 igc_setup_link_generic(struct igc_hw *hw)
528{
529	s32 ret_val;
530
531	DEBUGFUNC("igc_setup_link_generic");
532
533	/* In the case of the phy reset being blocked, we already have a link.
534	 * We do not need to set it up again.
535	 */
536	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
537		return IGC_SUCCESS;
538
539	/* If requested flow control is set to default, set flow control
540	 * for both 'rx' and 'tx' pause frames.
541	 */
542	if (hw->fc.requested_mode == igc_fc_default) {
543		hw->fc.requested_mode = igc_fc_full;
544	}
545
546	/* Save off the requested flow control mode for use later.  Depending
547	 * on the link partner's capabilities, we may or may not use this mode.
548	 */
549	hw->fc.current_mode = hw->fc.requested_mode;
550
551	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
552		hw->fc.current_mode);
553
554	/* Call the necessary media_type subroutine to configure the link. */
555	ret_val = hw->mac.ops.setup_physical_interface(hw);
556	if (ret_val)
557		return ret_val;
558
559	/* Initialize the flow control address, type, and PAUSE timer
560	 * registers to their default values.  This is done even if flow
561	 * control is disabled, because it does not hurt anything to
562	 * initialize these registers.
563	 */
564	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
565	IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
566	IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
567	IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
568
569	IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
570
571	return igc_set_fc_watermarks_generic(hw);
572}
573
574/**
575 *  igc_config_collision_dist_generic - Configure collision distance
576 *  @hw: pointer to the HW structure
577 *
578 *  Configures the collision distance to the default value and is used
579 *  during link setup.
580 **/
581static void igc_config_collision_dist_generic(struct igc_hw *hw)
582{
583	u32 tctl;
584
585	DEBUGFUNC("igc_config_collision_dist_generic");
586
587	tctl = IGC_READ_REG(hw, IGC_TCTL);
588
589	tctl &= ~IGC_TCTL_COLD;
590	tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
591
592	IGC_WRITE_REG(hw, IGC_TCTL, tctl);
593	IGC_WRITE_FLUSH(hw);
594}
595
596/**
597 *  igc_set_fc_watermarks_generic - Set flow control high/low watermarks
598 *  @hw: pointer to the HW structure
599 *
600 *  Sets the flow control high/low threshold (watermark) registers.  If
601 *  flow control XON frame transmission is enabled, then set XON frame
602 *  transmission as well.
603 **/
604s32 igc_set_fc_watermarks_generic(struct igc_hw *hw)
605{
606	u32 fcrtl = 0, fcrth = 0;
607
608	DEBUGFUNC("igc_set_fc_watermarks_generic");
609
610	/* Set the flow control receive threshold registers.  Normally,
611	 * these registers will be set to a default threshold that may be
612	 * adjusted later by the driver's runtime code.  However, if the
613	 * ability to transmit pause frames is not enabled, then these
614	 * registers will be set to 0.
615	 */
616	if (hw->fc.current_mode & igc_fc_tx_pause) {
617		/* We need to set up the Receive Threshold high and low water
618		 * marks as well as (optionally) enabling the transmission of
619		 * XON frames.
620		 */
621		fcrtl = hw->fc.low_water;
622		if (hw->fc.send_xon)
623			fcrtl |= IGC_FCRTL_XONE;
624
625		fcrth = hw->fc.high_water;
626	}
627	IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
628	IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
629
630	return IGC_SUCCESS;
631}
632
633/**
634 *  igc_force_mac_fc_generic - Force the MAC's flow control settings
635 *  @hw: pointer to the HW structure
636 *
637 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
638 *  device control register to reflect the adapter settings.  TFCE and RFCE
639 *  need to be explicitly set by software when a copper PHY is used because
640 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
641 *  also configure these bits when link is forced on a fiber connection.
642 **/
643s32 igc_force_mac_fc_generic(struct igc_hw *hw)
644{
645	u32 ctrl;
646
647	DEBUGFUNC("igc_force_mac_fc_generic");
648
649	ctrl = IGC_READ_REG(hw, IGC_CTRL);
650
651	/* Because we didn't get link via the internal auto-negotiation
652	 * mechanism (we either forced link or we got link via PHY
653	 * auto-neg), we have to manually enable/disable transmit an
654	 * receive flow control.
655	 *
656	 * The "Case" statement below enables/disable flow control
657	 * according to the "hw->fc.current_mode" parameter.
658	 *
659	 * The possible values of the "fc" parameter are:
660	 *      0:  Flow control is completely disabled
661	 *      1:  Rx flow control is enabled (we can receive pause
662	 *          frames but not send pause frames).
663	 *      2:  Tx flow control is enabled (we can send pause frames
664	 *          frames but we do not receive pause frames).
665	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
666	 *  other:  No other values should be possible at this point.
667	 */
668	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
669
670	switch (hw->fc.current_mode) {
671	case igc_fc_none:
672		ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
673		break;
674	case igc_fc_rx_pause:
675		ctrl &= (~IGC_CTRL_TFCE);
676		ctrl |= IGC_CTRL_RFCE;
677		break;
678	case igc_fc_tx_pause:
679		ctrl &= (~IGC_CTRL_RFCE);
680		ctrl |= IGC_CTRL_TFCE;
681		break;
682	case igc_fc_full:
683		ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
684		break;
685	default:
686		DEBUGOUT("Flow control param set incorrectly\n");
687		return -IGC_ERR_CONFIG;
688	}
689
690	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
691
692	return IGC_SUCCESS;
693}
694
695/**
696 *  igc_config_fc_after_link_up_generic - Configures flow control after link
697 *  @hw: pointer to the HW structure
698 *
699 *  Checks the status of auto-negotiation after link up to ensure that the
700 *  speed and duplex were not forced.  If the link needed to be forced, then
701 *  flow control needs to be forced also.  If auto-negotiation is enabled
702 *  and did not fail, then we configure flow control based on our link
703 *  partner.
704 **/
705s32 igc_config_fc_after_link_up_generic(struct igc_hw *hw)
706{
707	struct igc_mac_info *mac = &hw->mac;
708	s32 ret_val = IGC_SUCCESS;
709	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
710	u16 speed, duplex;
711
712	DEBUGFUNC("igc_config_fc_after_link_up_generic");
713
714	if (ret_val) {
715		DEBUGOUT("Error forcing flow control settings\n");
716		return ret_val;
717	}
718
719	/* Check for the case where we have copper media and auto-neg is
720	 * enabled.  In this case, we need to check and see if Auto-Neg
721	 * has completed, and if so, how the PHY and link partner has
722	 * flow control configured.
723	 */
724	if (mac->autoneg) {
725		/* Read the MII Status Register and check to see if AutoNeg
726		 * has completed.  We read this twice because this reg has
727		 * some "sticky" (latched) bits.
728		 */
729		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
730		if (ret_val)
731			return ret_val;
732		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
733		if (ret_val)
734			return ret_val;
735
736		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
737			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
738			return ret_val;
739		}
740
741		/* The AutoNeg process has completed, so we now need to
742		 * read both the Auto Negotiation Advertisement
743		 * Register (Address 4) and the Auto_Negotiation Base
744		 * Page Ability Register (Address 5) to determine how
745		 * flow control was negotiated.
746		 */
747		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
748					       &mii_nway_adv_reg);
749		if (ret_val)
750			return ret_val;
751		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
752					       &mii_nway_lp_ability_reg);
753		if (ret_val)
754			return ret_val;
755
756		/* Two bits in the Auto Negotiation Advertisement Register
757		 * (Address 4) and two bits in the Auto Negotiation Base
758		 * Page Ability Register (Address 5) determine flow control
759		 * for both the PHY and the link partner.  The following
760		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
761		 * 1999, describes these PAUSE resolution bits and how flow
762		 * control is determined based upon these settings.
763		 * NOTE:  DC = Don't Care
764		 *
765		 *   LOCAL DEVICE  |   LINK PARTNER
766		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
767		 *-------|---------|-------|---------|--------------------
768		 *   0   |    0    |  DC   |   DC    | igc_fc_none
769		 *   0   |    1    |   0   |   DC    | igc_fc_none
770		 *   0   |    1    |   1   |    0    | igc_fc_none
771		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
772		 *   1   |    0    |   0   |   DC    | igc_fc_none
773		 *   1   |   DC    |   1   |   DC    | igc_fc_full
774		 *   1   |    1    |   0   |    0    | igc_fc_none
775		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
776		 *
777		 * Are both PAUSE bits set to 1?  If so, this implies
778		 * Symmetric Flow Control is enabled at both ends.  The
779		 * ASM_DIR bits are irrelevant per the spec.
780		 *
781		 * For Symmetric Flow Control:
782		 *
783		 *   LOCAL DEVICE  |   LINK PARTNER
784		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
785		 *-------|---------|-------|---------|--------------------
786		 *   1   |   DC    |   1   |   DC    | IGC_fc_full
787		 *
788		 */
789		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
790		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
791			/* Now we need to check if the user selected Rx ONLY
792			 * of pause frames.  In this case, we had to advertise
793			 * FULL flow control because we could not advertise Rx
794			 * ONLY. Hence, we must now check to see if we need to
795			 * turn OFF the TRANSMISSION of PAUSE frames.
796			 */
797			if (hw->fc.requested_mode == igc_fc_full) {
798				hw->fc.current_mode = igc_fc_full;
799				DEBUGOUT("Flow Control = FULL.\n");
800			} else {
801				hw->fc.current_mode = igc_fc_rx_pause;
802				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
803			}
804		}
805		/* For receiving PAUSE frames ONLY.
806		 *
807		 *   LOCAL DEVICE  |   LINK PARTNER
808		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
809		 *-------|---------|-------|---------|--------------------
810		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
811		 */
812		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
813			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
814			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
815			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
816			hw->fc.current_mode = igc_fc_tx_pause;
817			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
818		}
819		/* For transmitting PAUSE frames ONLY.
820		 *
821		 *   LOCAL DEVICE  |   LINK PARTNER
822		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
823		 *-------|---------|-------|---------|--------------------
824		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
825		 */
826		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
827			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
828			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
829			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
830			hw->fc.current_mode = igc_fc_rx_pause;
831			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
832		} else {
833			/* Per the IEEE spec, at this point flow control
834			 * should be disabled.
835			 */
836			hw->fc.current_mode = igc_fc_none;
837			DEBUGOUT("Flow Control = NONE.\n");
838		}
839
840		/* Now we need to do one last check...  If we auto-
841		 * negotiated to HALF DUPLEX, flow control should not be
842		 * enabled per IEEE 802.3 spec.
843		 */
844		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
845		if (ret_val) {
846			DEBUGOUT("Error getting link speed and duplex\n");
847			return ret_val;
848		}
849
850		if (duplex == HALF_DUPLEX)
851			hw->fc.current_mode = igc_fc_none;
852
853		/* Now we call a subroutine to actually force the MAC
854		 * controller to use the correct flow control settings.
855		 */
856		ret_val = igc_force_mac_fc_generic(hw);
857		if (ret_val) {
858			DEBUGOUT("Error forcing flow control settings\n");
859			return ret_val;
860		}
861	}
862
863	return IGC_SUCCESS;
864}
865
866/**
867 *  igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
868 *  @hw: pointer to the HW structure
869 *  @speed: stores the current speed
870 *  @duplex: stores the current duplex
871 *
872 *  Read the status register for the current speed/duplex and store the current
873 *  speed and duplex for copper connections.
874 **/
875s32 igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, u16 *speed,
876					      u16 *duplex)
877{
878	u32 status;
879
880	DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
881
882	status = IGC_READ_REG(hw, IGC_STATUS);
883	if (status & IGC_STATUS_SPEED_1000) {
884		/* For I225, STATUS will indicate 1G speed in both 1 Gbps
885		 * and 2.5 Gbps link modes. An additional bit is used
886		 * to differentiate between 1 Gbps and 2.5 Gbps.
887		 */
888		if ((hw->mac.type == igc_i225) &&
889		    (status & IGC_STATUS_SPEED_2500)) {
890			*speed = SPEED_2500;
891			DEBUGOUT("2500 Mbs, ");
892		} else {
893			*speed = SPEED_1000;
894			DEBUGOUT("1000 Mbs, ");
895		}
896	} else if (status & IGC_STATUS_SPEED_100) {
897		*speed = SPEED_100;
898		DEBUGOUT("100 Mbs, ");
899	} else {
900		*speed = SPEED_10;
901		DEBUGOUT("10 Mbs, ");
902	}
903
904	if (status & IGC_STATUS_FD) {
905		*duplex = FULL_DUPLEX;
906		DEBUGOUT("Full Duplex\n");
907	} else {
908		*duplex = HALF_DUPLEX;
909		DEBUGOUT("Half Duplex\n");
910	}
911
912	return IGC_SUCCESS;
913}
914
915/**
916 *  igc_get_hw_semaphore_generic - Acquire hardware semaphore
917 *  @hw: pointer to the HW structure
918 *
919 *  Acquire the HW semaphore to access the PHY or NVM
920 **/
921s32 igc_get_hw_semaphore_generic(struct igc_hw *hw)
922{
923	u32 swsm;
924	s32 timeout = hw->nvm.word_size + 1;
925	s32 i = 0;
926
927	DEBUGFUNC("igc_get_hw_semaphore_generic");
928
929	/* Get the SW semaphore */
930	while (i < timeout) {
931		swsm = IGC_READ_REG(hw, IGC_SWSM);
932		if (!(swsm & IGC_SWSM_SMBI))
933			break;
934
935		usec_delay(50);
936		i++;
937	}
938
939	if (i == timeout) {
940		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
941		return -IGC_ERR_NVM;
942	}
943
944	/* Get the FW semaphore. */
945	for (i = 0; i < timeout; i++) {
946		swsm = IGC_READ_REG(hw, IGC_SWSM);
947		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
948
949		/* Semaphore acquired if bit latched */
950		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
951			break;
952
953		usec_delay(50);
954	}
955
956	if (i == timeout) {
957		/* Release semaphores */
958		igc_put_hw_semaphore_generic(hw);
959		DEBUGOUT("Driver can't access the NVM\n");
960		return -IGC_ERR_NVM;
961	}
962
963	return IGC_SUCCESS;
964}
965
966/**
967 *  igc_put_hw_semaphore_generic - Release hardware semaphore
968 *  @hw: pointer to the HW structure
969 *
970 *  Release hardware semaphore used to access the PHY or NVM
971 **/
972void igc_put_hw_semaphore_generic(struct igc_hw *hw)
973{
974	u32 swsm;
975
976	DEBUGFUNC("igc_put_hw_semaphore_generic");
977
978	swsm = IGC_READ_REG(hw, IGC_SWSM);
979
980	swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
981
982	IGC_WRITE_REG(hw, IGC_SWSM, swsm);
983}
984
985/**
986 *  igc_get_auto_rd_done_generic - Check for auto read completion
987 *  @hw: pointer to the HW structure
988 *
989 *  Check EEPROM for Auto Read done bit.
990 **/
991s32 igc_get_auto_rd_done_generic(struct igc_hw *hw)
992{
993	s32 i = 0;
994
995	DEBUGFUNC("igc_get_auto_rd_done_generic");
996
997	while (i < AUTO_READ_DONE_TIMEOUT) {
998		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
999			break;
1000		msec_delay(1);
1001		i++;
1002	}
1003
1004	if (i == AUTO_READ_DONE_TIMEOUT) {
1005		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1006		return -IGC_ERR_RESET;
1007	}
1008
1009	return IGC_SUCCESS;
1010}
1011
1012/**
1013 *  igc_disable_pcie_master_generic - Disables PCI-express master access
1014 *  @hw: pointer to the HW structure
1015 *
1016 *  Returns IGC_SUCCESS if successful, else returns -10
1017 *  (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1018 *  the master requests to be disabled.
1019 *
1020 *  Disables PCI-Express master access and verifies there are no pending
1021 *  requests.
1022 **/
1023s32 igc_disable_pcie_master_generic(struct igc_hw *hw)
1024{
1025	u32 ctrl;
1026	s32 timeout = MASTER_DISABLE_TIMEOUT;
1027
1028	DEBUGFUNC("igc_disable_pcie_master_generic");
1029
1030	ctrl = IGC_READ_REG(hw, IGC_CTRL);
1031	ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
1032	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
1033
1034	while (timeout) {
1035		if (!(IGC_READ_REG(hw, IGC_STATUS) &
1036		      IGC_STATUS_GIO_MASTER_ENABLE))
1037			break;
1038		usec_delay(100);
1039		timeout--;
1040	}
1041
1042	if (!timeout) {
1043		DEBUGOUT("Master requests are pending.\n");
1044		return -IGC_ERR_MASTER_REQUESTS_PENDING;
1045	}
1046
1047	return IGC_SUCCESS;
1048}
1049