1/* SPDX-License-Identifier: BSD-3-Clause */
2/*  Copyright (c) 2024, Intel Corporation
3 *  All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions are met:
7 *
8 *   1. Redistributions of source code must retain the above copyright notice,
9 *      this list of conditions and the following disclaimer.
10 *
11 *   2. Redistributions in binary form must reproduce the above copyright
12 *      notice, this list of conditions and the following disclaimer in the
13 *      documentation and/or other materials provided with the distribution.
14 *
15 *   3. Neither the name of the Intel Corporation nor the names of its
16 *      contributors may be used to endorse or promote products derived from
17 *      this software without specific prior written permission.
18 *
19 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 *  POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#include "ice_common.h"
33#include "ice_sched.h"
34#include "ice_adminq_cmd.h"
35
36#include "ice_flow.h"
37#include "ice_switch.h"
38
39#define ICE_PF_RESET_WAIT_COUNT	500
40
41static const char * const ice_link_mode_str_low[] = {
42	ice_arr_elem_idx(0, "100BASE_TX"),
43	ice_arr_elem_idx(1, "100M_SGMII"),
44	ice_arr_elem_idx(2, "1000BASE_T"),
45	ice_arr_elem_idx(3, "1000BASE_SX"),
46	ice_arr_elem_idx(4, "1000BASE_LX"),
47	ice_arr_elem_idx(5, "1000BASE_KX"),
48	ice_arr_elem_idx(6, "1G_SGMII"),
49	ice_arr_elem_idx(7, "2500BASE_T"),
50	ice_arr_elem_idx(8, "2500BASE_X"),
51	ice_arr_elem_idx(9, "2500BASE_KX"),
52	ice_arr_elem_idx(10, "5GBASE_T"),
53	ice_arr_elem_idx(11, "5GBASE_KR"),
54	ice_arr_elem_idx(12, "10GBASE_T"),
55	ice_arr_elem_idx(13, "10G_SFI_DA"),
56	ice_arr_elem_idx(14, "10GBASE_SR"),
57	ice_arr_elem_idx(15, "10GBASE_LR"),
58	ice_arr_elem_idx(16, "10GBASE_KR_CR1"),
59	ice_arr_elem_idx(17, "10G_SFI_AOC_ACC"),
60	ice_arr_elem_idx(18, "10G_SFI_C2C"),
61	ice_arr_elem_idx(19, "25GBASE_T"),
62	ice_arr_elem_idx(20, "25GBASE_CR"),
63	ice_arr_elem_idx(21, "25GBASE_CR_S"),
64	ice_arr_elem_idx(22, "25GBASE_CR1"),
65	ice_arr_elem_idx(23, "25GBASE_SR"),
66	ice_arr_elem_idx(24, "25GBASE_LR"),
67	ice_arr_elem_idx(25, "25GBASE_KR"),
68	ice_arr_elem_idx(26, "25GBASE_KR_S"),
69	ice_arr_elem_idx(27, "25GBASE_KR1"),
70	ice_arr_elem_idx(28, "25G_AUI_AOC_ACC"),
71	ice_arr_elem_idx(29, "25G_AUI_C2C"),
72	ice_arr_elem_idx(30, "40GBASE_CR4"),
73	ice_arr_elem_idx(31, "40GBASE_SR4"),
74	ice_arr_elem_idx(32, "40GBASE_LR4"),
75	ice_arr_elem_idx(33, "40GBASE_KR4"),
76	ice_arr_elem_idx(34, "40G_XLAUI_AOC_ACC"),
77	ice_arr_elem_idx(35, "40G_XLAUI"),
78	ice_arr_elem_idx(36, "50GBASE_CR2"),
79	ice_arr_elem_idx(37, "50GBASE_SR2"),
80	ice_arr_elem_idx(38, "50GBASE_LR2"),
81	ice_arr_elem_idx(39, "50GBASE_KR2"),
82	ice_arr_elem_idx(40, "50G_LAUI2_AOC_ACC"),
83	ice_arr_elem_idx(41, "50G_LAUI2"),
84	ice_arr_elem_idx(42, "50G_AUI2_AOC_ACC"),
85	ice_arr_elem_idx(43, "50G_AUI2"),
86	ice_arr_elem_idx(44, "50GBASE_CP"),
87	ice_arr_elem_idx(45, "50GBASE_SR"),
88	ice_arr_elem_idx(46, "50GBASE_FR"),
89	ice_arr_elem_idx(47, "50GBASE_LR"),
90	ice_arr_elem_idx(48, "50GBASE_KR_PAM4"),
91	ice_arr_elem_idx(49, "50G_AUI1_AOC_ACC"),
92	ice_arr_elem_idx(50, "50G_AUI1"),
93	ice_arr_elem_idx(51, "100GBASE_CR4"),
94	ice_arr_elem_idx(52, "100GBASE_SR4"),
95	ice_arr_elem_idx(53, "100GBASE_LR4"),
96	ice_arr_elem_idx(54, "100GBASE_KR4"),
97	ice_arr_elem_idx(55, "100G_CAUI4_AOC_ACC"),
98	ice_arr_elem_idx(56, "100G_CAUI4"),
99	ice_arr_elem_idx(57, "100G_AUI4_AOC_ACC"),
100	ice_arr_elem_idx(58, "100G_AUI4"),
101	ice_arr_elem_idx(59, "100GBASE_CR_PAM4"),
102	ice_arr_elem_idx(60, "100GBASE_KR_PAM4"),
103	ice_arr_elem_idx(61, "100GBASE_CP2"),
104	ice_arr_elem_idx(62, "100GBASE_SR2"),
105	ice_arr_elem_idx(63, "100GBASE_DR"),
106};
107
108static const char * const ice_link_mode_str_high[] = {
109	ice_arr_elem_idx(0, "100GBASE_KR2_PAM4"),
110	ice_arr_elem_idx(1, "100G_CAUI2_AOC_ACC"),
111	ice_arr_elem_idx(2, "100G_CAUI2"),
112	ice_arr_elem_idx(3, "100G_AUI2_AOC_ACC"),
113	ice_arr_elem_idx(4, "100G_AUI2"),
114};
115
116/**
117 * ice_dump_phy_type - helper function to dump phy_type
118 * @hw: pointer to the HW structure
119 * @low: 64 bit value for phy_type_low
120 * @high: 64 bit value for phy_type_high
121 * @prefix: prefix string to differentiate multiple dumps
122 */
123static void
124ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
125{
126	u32 i;
127
128	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix,
129		  (unsigned long long)low);
130
131	for (i = 0; i < ARRAY_SIZE(ice_link_mode_str_low); i++) {
132		if (low & BIT_ULL(i))
133			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
134				  prefix, i, ice_link_mode_str_low[i]);
135	}
136
137	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix,
138		  (unsigned long long)high);
139
140	for (i = 0; i < ARRAY_SIZE(ice_link_mode_str_high); i++) {
141		if (high & BIT_ULL(i))
142			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
143				  prefix, i, ice_link_mode_str_high[i]);
144	}
145}
146
147/**
148 * ice_set_mac_type - Sets MAC type
149 * @hw: pointer to the HW structure
150 *
151 * This function sets the MAC type of the adapter based on the
152 * vendor ID and device ID stored in the HW structure.
153 */
154enum ice_status ice_set_mac_type(struct ice_hw *hw)
155{
156	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
157
158	if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
159		return ICE_ERR_DEVICE_NOT_SUPPORTED;
160
161	switch (hw->device_id) {
162	case ICE_DEV_ID_E810C_BACKPLANE:
163	case ICE_DEV_ID_E810C_QSFP:
164	case ICE_DEV_ID_E810C_SFP:
165	case ICE_DEV_ID_E810_XXV_BACKPLANE:
166	case ICE_DEV_ID_E810_XXV_QSFP:
167	case ICE_DEV_ID_E810_XXV_SFP:
168		hw->mac_type = ICE_MAC_E810;
169		break;
170	case ICE_DEV_ID_E822C_10G_BASE_T:
171	case ICE_DEV_ID_E822C_BACKPLANE:
172	case ICE_DEV_ID_E822C_QSFP:
173	case ICE_DEV_ID_E822C_SFP:
174	case ICE_DEV_ID_E822C_SGMII:
175	case ICE_DEV_ID_E822L_10G_BASE_T:
176	case ICE_DEV_ID_E822L_BACKPLANE:
177	case ICE_DEV_ID_E822L_SFP:
178	case ICE_DEV_ID_E822L_SGMII:
179	case ICE_DEV_ID_E823L_10G_BASE_T:
180	case ICE_DEV_ID_E823L_1GBE:
181	case ICE_DEV_ID_E823L_BACKPLANE:
182	case ICE_DEV_ID_E823L_QSFP:
183	case ICE_DEV_ID_E823L_SFP:
184	case ICE_DEV_ID_E823C_10G_BASE_T:
185	case ICE_DEV_ID_E823C_BACKPLANE:
186	case ICE_DEV_ID_E823C_QSFP:
187	case ICE_DEV_ID_E823C_SFP:
188	case ICE_DEV_ID_E823C_SGMII:
189		hw->mac_type = ICE_MAC_GENERIC;
190		break;
191	default:
192		hw->mac_type = ICE_MAC_UNKNOWN;
193		break;
194	}
195
196	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
197	return ICE_SUCCESS;
198}
199
200/**
201 * ice_is_e810
202 * @hw: pointer to the hardware structure
203 *
204 * returns true if the device is E810 based, false if not.
205 */
206bool ice_is_e810(struct ice_hw *hw)
207{
208	return hw->mac_type == ICE_MAC_E810;
209}
210
211/**
212 * ice_is_e810t
213 * @hw: pointer to the hardware structure
214 *
215 * returns true if the device is E810T based, false if not.
216 */
217bool ice_is_e810t(struct ice_hw *hw)
218{
219	switch (hw->device_id) {
220	case ICE_DEV_ID_E810C_SFP:
221		switch (hw->subsystem_device_id) {
222		case ICE_SUBDEV_ID_E810T:
223		case ICE_SUBDEV_ID_E810T2:
224		case ICE_SUBDEV_ID_E810T3:
225		case ICE_SUBDEV_ID_E810T4:
226		case ICE_SUBDEV_ID_E810T5:
227		case ICE_SUBDEV_ID_E810T7:
228			return true;
229		}
230		break;
231	case ICE_DEV_ID_E810C_QSFP:
232		switch (hw->subsystem_device_id) {
233		case ICE_SUBDEV_ID_E810T2:
234		case ICE_SUBDEV_ID_E810T5:
235		case ICE_SUBDEV_ID_E810T6:
236			return true;
237		}
238		break;
239	default:
240		break;
241	}
242
243	return false;
244}
245
246/**
247 * ice_is_e823
248 * @hw: pointer to the hardware structure
249 *
250 * returns true if the device is E823-L or E823-C based, false if not.
251 */
252bool ice_is_e823(struct ice_hw *hw)
253{
254	switch (hw->device_id) {
255	case ICE_DEV_ID_E823L_BACKPLANE:
256	case ICE_DEV_ID_E823L_SFP:
257	case ICE_DEV_ID_E823L_10G_BASE_T:
258	case ICE_DEV_ID_E823L_1GBE:
259	case ICE_DEV_ID_E823L_QSFP:
260	case ICE_DEV_ID_E823C_BACKPLANE:
261	case ICE_DEV_ID_E823C_QSFP:
262	case ICE_DEV_ID_E823C_SFP:
263	case ICE_DEV_ID_E823C_10G_BASE_T:
264	case ICE_DEV_ID_E823C_SGMII:
265		return true;
266	default:
267		return false;
268	}
269}
270
271/**
272 * ice_clear_pf_cfg - Clear PF configuration
273 * @hw: pointer to the hardware structure
274 *
275 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
276 * configuration, flow director filters, etc.).
277 */
278enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
279{
280	struct ice_aq_desc desc;
281
282	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
283
284	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
285}
286
287/**
288 * ice_aq_manage_mac_read - manage MAC address read command
289 * @hw: pointer to the HW struct
290 * @buf: a virtual buffer to hold the manage MAC read response
291 * @buf_size: Size of the virtual buffer
292 * @cd: pointer to command details structure or NULL
293 *
294 * This function is used to return per PF station MAC address (0x0107).
295 * NOTE: Upon successful completion of this command, MAC address information
296 * is returned in user specified buffer. Please interpret user specified
297 * buffer as "manage_mac_read" response.
298 * Response such as various MAC addresses are stored in HW struct (port.mac)
299 * ice_discover_dev_caps is expected to be called before this function is
300 * called.
301 */
302enum ice_status
303ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
304		       struct ice_sq_cd *cd)
305{
306	struct ice_aqc_manage_mac_read_resp *resp;
307	struct ice_aqc_manage_mac_read *cmd;
308	struct ice_aq_desc desc;
309	enum ice_status status;
310	u16 flags;
311	u8 i;
312
313	cmd = &desc.params.mac_read;
314
315	if (buf_size < sizeof(*resp))
316		return ICE_ERR_BUF_TOO_SHORT;
317
318	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
319
320	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
321	if (status)
322		return status;
323
324	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
325	flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
326
327	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
328		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
329		return ICE_ERR_CFG;
330	}
331
332	/* A single port can report up to two (LAN and WoL) addresses */
333	for (i = 0; i < cmd->num_addr; i++)
334		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
335			ice_memcpy(hw->port_info->mac.lan_addr,
336				   resp[i].mac_addr, ETH_ALEN,
337				   ICE_NONDMA_TO_NONDMA);
338			ice_memcpy(hw->port_info->mac.perm_addr,
339				   resp[i].mac_addr,
340				   ETH_ALEN, ICE_NONDMA_TO_NONDMA);
341			break;
342		}
343	return ICE_SUCCESS;
344}
345
346/**
347 * ice_phy_maps_to_media
348 * @phy_type_low: PHY type low bits
349 * @phy_type_high: PHY type high bits
350 * @media_mask_low: media type PHY type low bitmask
351 * @media_mask_high: media type PHY type high bitmask
352 *
353 * Return true if PHY type [low|high] bits are only of media type PHY types
354 * [low|high] bitmask.
355 */
356static bool
357ice_phy_maps_to_media(u64 phy_type_low, u64 phy_type_high,
358		      u64 media_mask_low, u64 media_mask_high)
359{
360	/* check if a PHY type exist for media type */
361	if (!(phy_type_low & media_mask_low ||
362	      phy_type_high & media_mask_high))
363		return false;
364
365	/* check that PHY types are only of media type */
366	if (!(phy_type_low & ~media_mask_low) &&
367	    !(phy_type_high & ~media_mask_high))
368		return true;
369
370	return false;
371}
372
373/**
374 * ice_set_media_type - Sets media type
375 * @pi: port information structure
376 *
377 * Set ice_port_info PHY media type based on PHY type. This should be called
378 * from Get PHY caps with media.
379 */
380static void ice_set_media_type(struct ice_port_info *pi)
381{
382	enum ice_media_type *media_type;
383	u64 phy_type_high, phy_type_low;
384
385	phy_type_high = pi->phy.phy_type_high;
386	phy_type_low = pi->phy.phy_type_low;
387	media_type = &pi->phy.media_type;
388
389	/* if no media, then media type is NONE */
390	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
391		*media_type = ICE_MEDIA_NONE;
392	/* else if PHY types are only BASE-T, then media type is BASET */
393	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
394				       ICE_MEDIA_BASET_PHY_TYPE_LOW_M, 0))
395		*media_type = ICE_MEDIA_BASET;
396	/* else if any PHY type is BACKPLANE, then media type is BACKPLANE */
397	else if (phy_type_low & ICE_MEDIA_BP_PHY_TYPE_LOW_M ||
398		 phy_type_high & ICE_MEDIA_BP_PHY_TYPE_HIGH_M)
399		*media_type = ICE_MEDIA_BACKPLANE;
400	/* else if PHY types are only optical, or optical and C2M, then media
401	 * type is FIBER
402	 */
403	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
404				       ICE_MEDIA_OPT_PHY_TYPE_LOW_M, 0) ||
405		 (phy_type_low & ICE_MEDIA_OPT_PHY_TYPE_LOW_M &&
406		  phy_type_low & ICE_MEDIA_C2M_PHY_TYPE_LOW_M))
407		*media_type = ICE_MEDIA_FIBER;
408	/* else if PHY types are only DA, or DA and C2C, then media type DA */
409	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
410				       ICE_MEDIA_DAC_PHY_TYPE_LOW_M, 0) ||
411		 (phy_type_low & ICE_MEDIA_DAC_PHY_TYPE_LOW_M &&
412		 (phy_type_low & ICE_MEDIA_C2C_PHY_TYPE_LOW_M ||
413		  phy_type_high & ICE_MEDIA_C2C_PHY_TYPE_HIGH_M)))
414		*media_type = ICE_MEDIA_DA;
415	/* else if PHY types are only C2M or only C2C, then media is AUI */
416	else if (ice_phy_maps_to_media(phy_type_low, phy_type_high,
417				       ICE_MEDIA_C2M_PHY_TYPE_LOW_M,
418				       ICE_MEDIA_C2M_PHY_TYPE_HIGH_M) ||
419		 ice_phy_maps_to_media(phy_type_low, phy_type_high,
420				       ICE_MEDIA_C2C_PHY_TYPE_LOW_M,
421				       ICE_MEDIA_C2C_PHY_TYPE_HIGH_M))
422		*media_type = ICE_MEDIA_AUI;
423
424	else
425		*media_type = ICE_MEDIA_UNKNOWN;
426}
427
428/**
429 * ice_aq_get_phy_caps - returns PHY capabilities
430 * @pi: port information structure
431 * @qual_mods: report qualified modules
432 * @report_mode: report mode capabilities
433 * @pcaps: structure for PHY capabilities to be filled
434 * @cd: pointer to command details structure or NULL
435 *
436 * Returns the various PHY capabilities supported on the Port (0x0600)
437 */
438enum ice_status
439ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
440		    struct ice_aqc_get_phy_caps_data *pcaps,
441		    struct ice_sq_cd *cd)
442{
443	struct ice_aqc_get_phy_caps *cmd;
444	u16 pcaps_size = sizeof(*pcaps);
445	struct ice_aq_desc desc;
446	enum ice_status status;
447	const char *prefix;
448	struct ice_hw *hw;
449
450	cmd = &desc.params.get_phy;
451
452	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
453		return ICE_ERR_PARAM;
454	hw = pi->hw;
455
456	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
457	    !ice_fw_supports_report_dflt_cfg(hw))
458		return ICE_ERR_PARAM;
459
460	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
461
462	if (qual_mods)
463		cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
464
465	cmd->param0 |= CPU_TO_LE16(report_mode);
466
467	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
468
469	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
470
471	switch (report_mode) {
472	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
473		prefix = "phy_caps_media";
474		break;
475	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
476		prefix = "phy_caps_no_media";
477		break;
478	case ICE_AQC_REPORT_ACTIVE_CFG:
479		prefix = "phy_caps_active";
480		break;
481	case ICE_AQC_REPORT_DFLT_CFG:
482		prefix = "phy_caps_default";
483		break;
484	default:
485		prefix = "phy_caps_invalid";
486	}
487
488	ice_dump_phy_type(hw, LE64_TO_CPU(pcaps->phy_type_low),
489			  LE64_TO_CPU(pcaps->phy_type_high), prefix);
490
491	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
492		  prefix, report_mode);
493	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
494	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
495		  pcaps->low_power_ctrl_an);
496	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
497		  pcaps->eee_cap);
498	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
499		  pcaps->eeer_value);
500	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
501		  pcaps->link_fec_options);
502	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
503		  prefix, pcaps->module_compliance_enforcement);
504	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
505		  prefix, pcaps->extended_compliance_code);
506	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
507		  pcaps->module_type[0]);
508	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
509		  pcaps->module_type[1]);
510	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
511		  pcaps->module_type[2]);
512
513	if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
514		pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
515		pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
516		ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
517			   sizeof(pi->phy.link_info.module_type),
518			   ICE_NONDMA_TO_NONDMA);
519		ice_set_media_type(pi);
520		ice_debug(hw, ICE_DBG_LINK, "%s: media_type = 0x%x\n", prefix,
521			  pi->phy.media_type);
522	}
523
524	return status;
525}
526
527/**
528 * ice_aq_get_netlist_node
529 * @hw: pointer to the hw struct
530 * @cmd: get_link_topo AQ structure
531 * @node_part_number: output node part number if node found
532 * @node_handle: output node handle parameter if node found
533 */
534enum ice_status
535ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
536			u8 *node_part_number, u16 *node_handle)
537{
538	struct ice_aq_desc desc;
539
540	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
541	desc.params.get_link_topo = *cmd;
542
543	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
544		return ICE_ERR_NOT_SUPPORTED;
545
546	if (node_handle)
547		*node_handle =
548			LE16_TO_CPU(desc.params.get_link_topo.addr.handle);
549	if (node_part_number)
550		*node_part_number = desc.params.get_link_topo.node_part_num;
551
552	return ICE_SUCCESS;
553}
554
555#define MAX_NETLIST_SIZE 10
556/**
557 * ice_find_netlist_node
558 * @hw: pointer to the hw struct
559 * @node_type_ctx: type of netlist node to look for
560 * @node_part_number: node part number to look for
561 * @node_handle: output parameter if node found - optional
562 *
563 * Find and return the node handle for a given node type and part number in the
564 * netlist. When found ICE_SUCCESS is returned, ICE_ERR_DOES_NOT_EXIST
565 * otherwise. If node_handle provided, it would be set to found node handle.
566 */
567enum ice_status
568ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx, u8 node_part_number,
569		      u16 *node_handle)
570{
571	struct ice_aqc_get_link_topo cmd;
572	u8 rec_node_part_number;
573	u16 rec_node_handle;
574	u8 idx;
575
576	for (idx = 0; idx < MAX_NETLIST_SIZE; idx++) {
577		enum ice_status status;
578
579		memset(&cmd, 0, sizeof(cmd));
580
581		cmd.addr.topo_params.node_type_ctx =
582			(node_type_ctx << ICE_AQC_LINK_TOPO_NODE_TYPE_S);
583		cmd.addr.topo_params.index = idx;
584
585		status = ice_aq_get_netlist_node(hw, &cmd,
586						 &rec_node_part_number,
587						 &rec_node_handle);
588		if (status)
589			return status;
590
591		if (rec_node_part_number == node_part_number) {
592			if (node_handle)
593				*node_handle = rec_node_handle;
594			return ICE_SUCCESS;
595		}
596	}
597
598	return ICE_ERR_DOES_NOT_EXIST;
599}
600
601#define ice_get_link_status_datalen(hw)	ICE_GET_LINK_STATUS_DATALEN_V1
602
603/**
604 * ice_aq_get_link_info
605 * @pi: port information structure
606 * @ena_lse: enable/disable LinkStatusEvent reporting
607 * @link: pointer to link status structure - optional
608 * @cd: pointer to command details structure or NULL
609 *
610 * Get Link Status (0x607). Returns the link status of the adapter.
611 */
612enum ice_status
613ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
614		     struct ice_link_status *link, struct ice_sq_cd *cd)
615{
616	struct ice_aqc_get_link_status_data link_data = { 0 };
617	struct ice_aqc_get_link_status *resp;
618	struct ice_link_status *li_old, *li;
619	struct ice_fc_info *hw_fc_info;
620	bool tx_pause, rx_pause;
621	struct ice_aq_desc desc;
622	enum ice_status status;
623	struct ice_hw *hw;
624	u16 cmd_flags;
625
626	if (!pi)
627		return ICE_ERR_PARAM;
628	hw = pi->hw;
629
630	li_old = &pi->phy.link_info_old;
631	li = &pi->phy.link_info;
632	hw_fc_info = &pi->fc;
633
634	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
635	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
636	resp = &desc.params.get_link_status;
637	resp->cmd_flags = CPU_TO_LE16(cmd_flags);
638	resp->lport_num = pi->lport;
639
640	status = ice_aq_send_cmd(hw, &desc, &link_data,
641				 ice_get_link_status_datalen(hw), cd);
642	if (status != ICE_SUCCESS)
643		return status;
644
645	/* save off old link status information */
646	*li_old = *li;
647
648	/* update current link status information */
649	li->link_speed = LE16_TO_CPU(link_data.link_speed);
650	li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
651	li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
652	li->link_info = link_data.link_info;
653	li->link_cfg_err = link_data.link_cfg_err;
654	li->an_info = link_data.an_info;
655	li->ext_info = link_data.ext_info;
656	li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
657	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
658	li->topo_media_conflict = link_data.topo_media_conflict;
659	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
660				      ICE_AQ_CFG_PACING_TYPE_M);
661
662	/* update fc info */
663	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
664	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
665	if (tx_pause && rx_pause)
666		hw_fc_info->current_mode = ICE_FC_FULL;
667	else if (tx_pause)
668		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
669	else if (rx_pause)
670		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
671	else
672		hw_fc_info->current_mode = ICE_FC_NONE;
673
674	li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
675
676	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
677	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
678	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
679		  (unsigned long long)li->phy_type_low);
680	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
681		  (unsigned long long)li->phy_type_high);
682	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
683	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
684	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
685	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
686	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
687	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
688	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
689		  li->max_frame_size);
690	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
691
692	/* save link status information */
693	if (link)
694		*link = *li;
695
696	/* flag cleared so calling functions don't call AQ again */
697	pi->phy.get_link_info = false;
698
699	return ICE_SUCCESS;
700}
701
702/**
703 * ice_fill_tx_timer_and_fc_thresh
704 * @hw: pointer to the HW struct
705 * @cmd: pointer to MAC cfg structure
706 *
707 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
708 * descriptor
709 */
710static void
711ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
712				struct ice_aqc_set_mac_cfg *cmd)
713{
714	u16 fc_thres_val, tx_timer_val;
715	u32 val;
716
717	/* We read back the transmit timer and fc threshold value of
718	 * LFC. Thus, we will use index =
719	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
720	 *
721	 * Also, because we are operating on transmit timer and fc
722	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
723	 */
724#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
725
726	/* Retrieve the transmit timer */
727	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
728	tx_timer_val = val &
729		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
730	cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
731
732	/* Retrieve the fc threshold */
733	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
734	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
735
736	cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
737}
738
739/**
740 * ice_aq_set_mac_cfg
741 * @hw: pointer to the HW struct
742 * @max_frame_size: Maximum Frame Size to be supported
743 * @auto_drop: Tell HW to drop packets if TC queue is blocked
744 * @cd: pointer to command details structure or NULL
745 *
746 * Set MAC configuration (0x0603)
747 */
748enum ice_status
749ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, bool auto_drop,
750		   struct ice_sq_cd *cd)
751{
752	struct ice_aqc_set_mac_cfg *cmd;
753	struct ice_aq_desc desc;
754
755	cmd = &desc.params.set_mac_cfg;
756
757	if (max_frame_size == 0)
758		return ICE_ERR_PARAM;
759
760	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
761
762	cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
763
764	if (ice_is_fw_auto_drop_supported(hw) && auto_drop)
765		cmd->drop_opts |= ICE_AQ_SET_MAC_AUTO_DROP_BLOCKING_PKTS;
766	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
767
768	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
769}
770
771/**
772 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
773 * @hw: pointer to the HW struct
774 */
775static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
776{
777	struct ice_switch_info *sw;
778	enum ice_status status;
779
780	hw->switch_info = (struct ice_switch_info *)
781			  ice_malloc(hw, sizeof(*hw->switch_info));
782
783	sw = hw->switch_info;
784
785	if (!sw)
786		return ICE_ERR_NO_MEMORY;
787
788	INIT_LIST_HEAD(&sw->vsi_list_map_head);
789	sw->prof_res_bm_init = 0;
790
791	status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
792	if (status) {
793		ice_free(hw, hw->switch_info);
794		return status;
795	}
796	return ICE_SUCCESS;
797}
798
799/**
800 * ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
801 * @hw: pointer to the HW struct
802 * @sw: pointer to switch info struct for which function clears filters
803 */
804static void
805ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
806{
807	struct ice_vsi_list_map_info *v_pos_map;
808	struct ice_vsi_list_map_info *v_tmp_map;
809	struct ice_sw_recipe *recps;
810	u8 i;
811
812	if (!sw)
813		return;
814
815	LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
816				 ice_vsi_list_map_info, list_entry) {
817		LIST_DEL(&v_pos_map->list_entry);
818		ice_free(hw, v_pos_map);
819	}
820	recps = sw->recp_list;
821	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
822		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
823
824		recps[i].root_rid = i;
825		LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
826					 &recps[i].rg_list, ice_recp_grp_entry,
827					 l_entry) {
828			LIST_DEL(&rg_entry->l_entry);
829			ice_free(hw, rg_entry);
830		}
831
832		if (recps[i].adv_rule) {
833			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
834			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
835
836			ice_destroy_lock(&recps[i].filt_rule_lock);
837			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
838						 &recps[i].filt_rules,
839						 ice_adv_fltr_mgmt_list_entry,
840						 list_entry) {
841				LIST_DEL(&lst_itr->list_entry);
842				ice_free(hw, lst_itr->lkups);
843				ice_free(hw, lst_itr);
844			}
845		} else {
846			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
847
848			ice_destroy_lock(&recps[i].filt_rule_lock);
849			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
850						 &recps[i].filt_rules,
851						 ice_fltr_mgmt_list_entry,
852						 list_entry) {
853				LIST_DEL(&lst_itr->list_entry);
854				ice_free(hw, lst_itr);
855			}
856		}
857		if (recps[i].root_buf)
858			ice_free(hw, recps[i].root_buf);
859	}
860	ice_rm_sw_replay_rule_info(hw, sw);
861	ice_free(hw, sw->recp_list);
862	ice_free(hw, sw);
863}
864
865/**
866 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
867 * @hw: pointer to the HW struct
868 */
869static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
870{
871	ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
872}
873
874/**
875 * ice_get_itr_intrl_gran
876 * @hw: pointer to the HW struct
877 *
878 * Determines the ITR/INTRL granularities based on the maximum aggregate
879 * bandwidth according to the device's configuration during power-on.
880 */
881static void ice_get_itr_intrl_gran(struct ice_hw *hw)
882{
883	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
884			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
885			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
886
887	switch (max_agg_bw) {
888	case ICE_MAX_AGG_BW_200G:
889	case ICE_MAX_AGG_BW_100G:
890	case ICE_MAX_AGG_BW_50G:
891		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
892		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
893		break;
894	case ICE_MAX_AGG_BW_25G:
895		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
896		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
897		break;
898	}
899}
900
901/**
902 * ice_print_rollback_msg - print FW rollback message
903 * @hw: pointer to the hardware structure
904 */
905void ice_print_rollback_msg(struct ice_hw *hw)
906{
907	char nvm_str[ICE_NVM_VER_LEN] = { 0 };
908	struct ice_orom_info *orom;
909	struct ice_nvm_info *nvm;
910
911	orom = &hw->flash.orom;
912	nvm = &hw->flash.nvm;
913
914	SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
915		 nvm->major, nvm->minor, nvm->eetrack, orom->major,
916		 orom->build, orom->patch);
917	ice_warn(hw,
918		 "Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
919		 nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
920}
921
922/**
923 * ice_set_umac_shared
924 * @hw: pointer to the hw struct
925 *
926 * Set boolean flag to allow unicast MAC sharing
927 */
928void ice_set_umac_shared(struct ice_hw *hw)
929{
930	hw->umac_shared = true;
931}
932
933/**
934 * ice_init_hw - main hardware initialization routine
935 * @hw: pointer to the hardware structure
936 */
937enum ice_status ice_init_hw(struct ice_hw *hw)
938{
939	struct ice_aqc_get_phy_caps_data *pcaps;
940	enum ice_status status;
941	u16 mac_buf_len;
942	void *mac_buf;
943
944	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
945
946	/* Set MAC type based on DeviceID */
947	status = ice_set_mac_type(hw);
948	if (status)
949		return status;
950
951	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
952			 PF_FUNC_RID_FUNCTION_NUMBER_M) >>
953		PF_FUNC_RID_FUNCTION_NUMBER_S;
954
955	status = ice_reset(hw, ICE_RESET_PFR);
956	if (status)
957		return status;
958	ice_get_itr_intrl_gran(hw);
959
960	status = ice_create_all_ctrlq(hw);
961	if (status)
962		goto err_unroll_cqinit;
963
964	ice_fwlog_set_support_ena(hw);
965	status = ice_fwlog_set(hw, &hw->fwlog_cfg);
966	if (status) {
967		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging, status %d.\n",
968			  status);
969	} else {
970		if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_REGISTER_ON_INIT) {
971			status = ice_fwlog_register(hw);
972			if (status)
973				ice_debug(hw, ICE_DBG_INIT, "Failed to register for FW logging events, status %d.\n",
974					  status);
975		} else {
976			status = ice_fwlog_unregister(hw);
977			if (status)
978				ice_debug(hw, ICE_DBG_INIT, "Failed to unregister for FW logging events, status %d.\n",
979					  status);
980		}
981	}
982
983	status = ice_init_nvm(hw);
984	if (status)
985		goto err_unroll_cqinit;
986
987	if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
988		ice_print_rollback_msg(hw);
989
990	status = ice_clear_pf_cfg(hw);
991	if (status)
992		goto err_unroll_cqinit;
993
994	ice_clear_pxe_mode(hw);
995
996	status = ice_get_caps(hw);
997	if (status)
998		goto err_unroll_cqinit;
999
1000	if (!hw->port_info)
1001		hw->port_info = (struct ice_port_info *)
1002			ice_malloc(hw, sizeof(*hw->port_info));
1003	if (!hw->port_info) {
1004		status = ICE_ERR_NO_MEMORY;
1005		goto err_unroll_cqinit;
1006	}
1007
1008	/* set the back pointer to HW */
1009	hw->port_info->hw = hw;
1010
1011	/* Initialize port_info struct with switch configuration data */
1012	status = ice_get_initial_sw_cfg(hw);
1013	if (status)
1014		goto err_unroll_alloc;
1015
1016	hw->evb_veb = true;
1017	/* Query the allocated resources for Tx scheduler */
1018	status = ice_sched_query_res_alloc(hw);
1019	if (status) {
1020		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1021		goto err_unroll_alloc;
1022	}
1023	ice_sched_get_psm_clk_freq(hw);
1024
1025	/* Initialize port_info struct with scheduler data */
1026	status = ice_sched_init_port(hw->port_info);
1027	if (status)
1028		goto err_unroll_sched;
1029	pcaps = (struct ice_aqc_get_phy_caps_data *)
1030		ice_malloc(hw, sizeof(*pcaps));
1031	if (!pcaps) {
1032		status = ICE_ERR_NO_MEMORY;
1033		goto err_unroll_sched;
1034	}
1035
1036	/* Initialize port_info struct with PHY capabilities */
1037	status = ice_aq_get_phy_caps(hw->port_info, false,
1038				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL);
1039	ice_free(hw, pcaps);
1040	if (status)
1041		ice_warn(hw, "Get PHY capabilities failed status = %d, continuing anyway\n",
1042			 status);
1043
1044	/* Initialize port_info struct with link information */
1045	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1046	if (status)
1047		goto err_unroll_sched;
1048	/* need a valid SW entry point to build a Tx tree */
1049	if (!hw->sw_entry_point_layer) {
1050		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1051		status = ICE_ERR_CFG;
1052		goto err_unroll_sched;
1053	}
1054	INIT_LIST_HEAD(&hw->agg_list);
1055	/* Initialize max burst size */
1056	if (!hw->max_burst_size)
1057		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1058	status = ice_init_fltr_mgmt_struct(hw);
1059	if (status)
1060		goto err_unroll_sched;
1061
1062	/* Get MAC information */
1063
1064	/* A single port can report up to two (LAN and WoL) addresses */
1065	mac_buf = ice_calloc(hw, 2,
1066			     sizeof(struct ice_aqc_manage_mac_read_resp));
1067	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1068
1069	if (!mac_buf) {
1070		status = ICE_ERR_NO_MEMORY;
1071		goto err_unroll_fltr_mgmt_struct;
1072	}
1073
1074	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1075	ice_free(hw, mac_buf);
1076
1077	if (status)
1078		goto err_unroll_fltr_mgmt_struct;
1079
1080	/* enable jumbo frame support at MAC level */
1081	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, false,
1082				    NULL);
1083	if (status)
1084		goto err_unroll_fltr_mgmt_struct;
1085
1086	status = ice_init_hw_tbls(hw);
1087	if (status)
1088		goto err_unroll_fltr_mgmt_struct;
1089	ice_init_lock(&hw->tnl_lock);
1090
1091	return ICE_SUCCESS;
1092
1093err_unroll_fltr_mgmt_struct:
1094	ice_cleanup_fltr_mgmt_struct(hw);
1095err_unroll_sched:
1096	ice_sched_cleanup_all(hw);
1097err_unroll_alloc:
1098	ice_free(hw, hw->port_info);
1099	hw->port_info = NULL;
1100err_unroll_cqinit:
1101	ice_destroy_all_ctrlq(hw);
1102	return status;
1103}
1104
1105/**
1106 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1107 * @hw: pointer to the hardware structure
1108 *
1109 * This should be called only during nominal operation, not as a result of
1110 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1111 * applicable initializations if it fails for any reason.
1112 */
1113void ice_deinit_hw(struct ice_hw *hw)
1114{
1115	ice_cleanup_fltr_mgmt_struct(hw);
1116
1117	ice_sched_cleanup_all(hw);
1118	ice_sched_clear_agg(hw);
1119	ice_free_seg(hw);
1120	ice_free_hw_tbls(hw);
1121	ice_destroy_lock(&hw->tnl_lock);
1122
1123	if (hw->port_info) {
1124		ice_free(hw, hw->port_info);
1125		hw->port_info = NULL;
1126	}
1127
1128	ice_destroy_all_ctrlq(hw);
1129
1130	/* Clear VSI contexts if not already cleared */
1131	ice_clear_all_vsi_ctx(hw);
1132}
1133
1134/**
1135 * ice_check_reset - Check to see if a global reset is complete
1136 * @hw: pointer to the hardware structure
1137 */
1138enum ice_status ice_check_reset(struct ice_hw *hw)
1139{
1140	u32 cnt, reg = 0, grst_timeout, uld_mask, reset_wait_cnt;
1141
1142	/* Poll for Device Active state in case a recent CORER, GLOBR,
1143	 * or EMPR has occurred. The grst delay value is in 100ms units.
1144	 * Add 1sec for outstanding AQ commands that can take a long time.
1145	 */
1146	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1147			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1148
1149	for (cnt = 0; cnt < grst_timeout; cnt++) {
1150		ice_msec_delay(100, true);
1151		reg = rd32(hw, GLGEN_RSTAT);
1152		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1153			break;
1154	}
1155
1156	if (cnt == grst_timeout) {
1157		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1158		return ICE_ERR_RESET_FAILED;
1159	}
1160
1161#define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1162				 GLNVM_ULD_PCIER_DONE_1_M |\
1163				 GLNVM_ULD_CORER_DONE_M |\
1164				 GLNVM_ULD_GLOBR_DONE_M |\
1165				 GLNVM_ULD_POR_DONE_M |\
1166				 GLNVM_ULD_POR_DONE_1_M |\
1167				 GLNVM_ULD_PCIER_DONE_2_M)
1168
1169	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.iwarp ?
1170					  GLNVM_ULD_PE_DONE_M : 0);
1171
1172	reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
1173
1174	/* Device is Active; check Global Reset processes are done */
1175	for (cnt = 0; cnt < reset_wait_cnt; cnt++) {
1176		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1177		if (reg == uld_mask) {
1178			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1179			break;
1180		}
1181		ice_msec_delay(10, true);
1182	}
1183
1184	if (cnt == reset_wait_cnt) {
1185		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1186			  reg);
1187		return ICE_ERR_RESET_FAILED;
1188	}
1189
1190	return ICE_SUCCESS;
1191}
1192
1193/**
1194 * ice_pf_reset - Reset the PF
1195 * @hw: pointer to the hardware structure
1196 *
1197 * If a global reset has been triggered, this function checks
1198 * for its completion and then issues the PF reset
1199 */
1200static enum ice_status ice_pf_reset(struct ice_hw *hw)
1201{
1202	u32 cnt, reg, reset_wait_cnt, cfg_lock_timeout;
1203
1204	/* If at function entry a global reset was already in progress, i.e.
1205	 * state is not 'device active' or any of the reset done bits are not
1206	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1207	 * global reset is done.
1208	 */
1209	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1210	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1211		/* poll on global reset currently in progress until done */
1212		if (ice_check_reset(hw))
1213			return ICE_ERR_RESET_FAILED;
1214
1215		return ICE_SUCCESS;
1216	}
1217
1218	/* Reset the PF */
1219	reg = rd32(hw, PFGEN_CTRL);
1220
1221	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1222
1223	/* Wait for the PFR to complete. The wait time is the global config lock
1224	 * timeout plus the PFR timeout which will account for a possible reset
1225	 * that is occurring during a download package operation.
1226	 */
1227	reset_wait_cnt = ICE_PF_RESET_WAIT_COUNT;
1228	cfg_lock_timeout = ICE_GLOBAL_CFG_LOCK_TIMEOUT;
1229
1230	for (cnt = 0; cnt < cfg_lock_timeout + reset_wait_cnt; cnt++) {
1231		reg = rd32(hw, PFGEN_CTRL);
1232		if (!(reg & PFGEN_CTRL_PFSWR_M))
1233			break;
1234
1235		ice_msec_delay(1, true);
1236	}
1237
1238	if (cnt == cfg_lock_timeout + reset_wait_cnt) {
1239		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1240		return ICE_ERR_RESET_FAILED;
1241	}
1242
1243	return ICE_SUCCESS;
1244}
1245
1246/**
1247 * ice_reset - Perform different types of reset
1248 * @hw: pointer to the hardware structure
1249 * @req: reset request
1250 *
1251 * This function triggers a reset as specified by the req parameter.
1252 *
1253 * Note:
1254 * If anything other than a PF reset is triggered, PXE mode is restored.
1255 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1256 * interface has been restored in the rebuild flow.
1257 */
1258enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1259{
1260	u32 val = 0;
1261
1262	switch (req) {
1263	case ICE_RESET_PFR:
1264		return ice_pf_reset(hw);
1265	case ICE_RESET_CORER:
1266		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1267		val = GLGEN_RTRIG_CORER_M;
1268		break;
1269	case ICE_RESET_GLOBR:
1270		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1271		val = GLGEN_RTRIG_GLOBR_M;
1272		break;
1273	default:
1274		return ICE_ERR_PARAM;
1275	}
1276
1277	val |= rd32(hw, GLGEN_RTRIG);
1278	wr32(hw, GLGEN_RTRIG, val);
1279	ice_flush(hw);
1280
1281	/* wait for the FW to be ready */
1282	return ice_check_reset(hw);
1283}
1284
1285/**
1286 * ice_copy_rxq_ctx_to_hw
1287 * @hw: pointer to the hardware structure
1288 * @ice_rxq_ctx: pointer to the rxq context
1289 * @rxq_index: the index of the Rx queue
1290 *
1291 * Copies rxq context from dense structure to HW register space
1292 */
1293static enum ice_status
1294ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1295{
1296	u8 i;
1297
1298	if (!ice_rxq_ctx)
1299		return ICE_ERR_BAD_PTR;
1300
1301	if (rxq_index > QRX_CTRL_MAX_INDEX)
1302		return ICE_ERR_PARAM;
1303
1304	/* Copy each dword separately to HW */
1305	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1306		wr32(hw, QRX_CONTEXT(i, rxq_index),
1307		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1308
1309		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1310			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1311	}
1312
1313	return ICE_SUCCESS;
1314}
1315
1316/**
1317 * ice_copy_rxq_ctx_from_hw - Copy rxq context register from HW
1318 * @hw: pointer to the hardware structure
1319 * @ice_rxq_ctx: pointer to the rxq context
1320 * @rxq_index: the index of the Rx queue
1321 *
1322 * Copies rxq context from HW register space to dense structure
1323 */
1324static enum ice_status
1325ice_copy_rxq_ctx_from_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1326{
1327	u8 i;
1328
1329	if (!ice_rxq_ctx)
1330		return ICE_ERR_BAD_PTR;
1331
1332	if (rxq_index > QRX_CTRL_MAX_INDEX)
1333		return ICE_ERR_PARAM;
1334
1335	/* Copy each dword separately from HW */
1336	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1337		u32 *ctx = (u32 *)(ice_rxq_ctx + (i * sizeof(u32)));
1338
1339		*ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1340
1341		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1342	}
1343
1344	return ICE_SUCCESS;
1345}
1346
1347/* LAN Rx Queue Context */
1348static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1349	/* Field		Width	LSB */
1350	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1351	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1352	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1353	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1354	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1355	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1356	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1357	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1358	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1359	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1360	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1361	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1362	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1363	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1364	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1365	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1366	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1367	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1368	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1369	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1370	{ 0 }
1371};
1372
1373/**
1374 * ice_write_rxq_ctx
1375 * @hw: pointer to the hardware structure
1376 * @rlan_ctx: pointer to the rxq context
1377 * @rxq_index: the index of the Rx queue
1378 *
1379 * Converts rxq context from sparse to dense structure and then writes
1380 * it to HW register space and enables the hardware to prefetch descriptors
1381 * instead of only fetching them on demand
1382 */
1383enum ice_status
1384ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1385		  u32 rxq_index)
1386{
1387	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1388
1389	if (!rlan_ctx)
1390		return ICE_ERR_BAD_PTR;
1391
1392	rlan_ctx->prefena = 1;
1393
1394	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1395	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1396}
1397
1398/**
1399 * ice_read_rxq_ctx - Read rxq context from HW
1400 * @hw: pointer to the hardware structure
1401 * @rlan_ctx: pointer to the rxq context
1402 * @rxq_index: the index of the Rx queue
1403 *
1404 * Read rxq context from HW register space and then converts it from dense
1405 * structure to sparse
1406 */
1407enum ice_status
1408ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1409		 u32 rxq_index)
1410{
1411	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1412	enum ice_status status;
1413
1414	if (!rlan_ctx)
1415		return ICE_ERR_BAD_PTR;
1416
1417	status = ice_copy_rxq_ctx_from_hw(hw, ctx_buf, rxq_index);
1418	if (status)
1419		return status;
1420
1421	return ice_get_ctx(ctx_buf, (u8 *)rlan_ctx, ice_rlan_ctx_info);
1422}
1423
1424/**
1425 * ice_clear_rxq_ctx
1426 * @hw: pointer to the hardware structure
1427 * @rxq_index: the index of the Rx queue to clear
1428 *
1429 * Clears rxq context in HW register space
1430 */
1431enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
1432{
1433	u8 i;
1434
1435	if (rxq_index > QRX_CTRL_MAX_INDEX)
1436		return ICE_ERR_PARAM;
1437
1438	/* Clear each dword register separately */
1439	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
1440		wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
1441
1442	return ICE_SUCCESS;
1443}
1444
1445/* LAN Tx Queue Context used for set Tx config by ice_aqc_opc_add_txqs,
1446 * Bit[0-175] is valid
1447 */
1448const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1449				    /* Field			Width	LSB */
1450	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1451	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1452	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1453	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1454	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1455	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1456	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1457	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1458	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1459	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1460	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1461	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1462	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1463	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1464	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1465	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1466	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1467	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1468	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1469	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1470	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1471	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1472	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1473	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1474	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1475	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1476	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1477	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1478	{ 0 }
1479};
1480
1481/**
1482 * ice_copy_tx_cmpltnq_ctx_to_hw
1483 * @hw: pointer to the hardware structure
1484 * @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
1485 * @tx_cmpltnq_index: the index of the completion queue
1486 *
1487 * Copies Tx completion queue context from dense structure to HW register space
1488 */
1489static enum ice_status
1490ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
1491			      u32 tx_cmpltnq_index)
1492{
1493	u8 i;
1494
1495	if (!ice_tx_cmpltnq_ctx)
1496		return ICE_ERR_BAD_PTR;
1497
1498	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1499		return ICE_ERR_PARAM;
1500
1501	/* Copy each dword separately to HW */
1502	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
1503		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
1504		     *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1505
1506		ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
1507			  *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1508	}
1509
1510	return ICE_SUCCESS;
1511}
1512
1513/* LAN Tx Completion Queue Context */
1514static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
1515				       /* Field			Width   LSB */
1516	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base,			57,	0),
1517	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len,		18,	64),
1518	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation,		1,	96),
1519	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr,		22,	97),
1520	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num,		3,	128),
1521	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num,		10,	131),
1522	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type,		2,	141),
1523	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr,		1,	160),
1524	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid,		8,	161),
1525	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache,		512,	192),
1526	{ 0 }
1527};
1528
1529/**
1530 * ice_write_tx_cmpltnq_ctx
1531 * @hw: pointer to the hardware structure
1532 * @tx_cmpltnq_ctx: pointer to the completion queue context
1533 * @tx_cmpltnq_index: the index of the completion queue
1534 *
1535 * Converts completion queue context from sparse to dense structure and then
1536 * writes it to HW register space
1537 */
1538enum ice_status
1539ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
1540			 struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
1541			 u32 tx_cmpltnq_index)
1542{
1543	u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1544
1545	ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
1546	return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
1547}
1548
1549/**
1550 * ice_clear_tx_cmpltnq_ctx
1551 * @hw: pointer to the hardware structure
1552 * @tx_cmpltnq_index: the index of the completion queue to clear
1553 *
1554 * Clears Tx completion queue context in HW register space
1555 */
1556enum ice_status
1557ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
1558{
1559	u8 i;
1560
1561	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1562		return ICE_ERR_PARAM;
1563
1564	/* Clear each dword register separately */
1565	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
1566		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
1567
1568	return ICE_SUCCESS;
1569}
1570
1571/**
1572 * ice_copy_tx_drbell_q_ctx_to_hw
1573 * @hw: pointer to the hardware structure
1574 * @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
1575 * @tx_drbell_q_index: the index of the doorbell queue
1576 *
1577 * Copies doorbell queue context from dense structure to HW register space
1578 */
1579static enum ice_status
1580ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
1581			       u32 tx_drbell_q_index)
1582{
1583	u8 i;
1584
1585	if (!ice_tx_drbell_q_ctx)
1586		return ICE_ERR_BAD_PTR;
1587
1588	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1589		return ICE_ERR_PARAM;
1590
1591	/* Copy each dword separately to HW */
1592	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
1593		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
1594		     *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1595
1596		ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
1597			  *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1598	}
1599
1600	return ICE_SUCCESS;
1601}
1602
1603/* LAN Tx Doorbell Queue Context info */
1604static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
1605					/* Field		Width   LSB */
1606	ICE_CTX_STORE(ice_tx_drbell_q_ctx, base,		57,	0),
1607	ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len,		13,	64),
1608	ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num,		3,	80),
1609	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num,		8,	84),
1610	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type,		2,	94),
1611	ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid,		8,	96),
1612	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd,		1,	104),
1613	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr,		1,	108),
1614	ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en,		1,	112),
1615	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head,		13,	128),
1616	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail,		13,	144),
1617	{ 0 }
1618};
1619
1620/**
1621 * ice_write_tx_drbell_q_ctx
1622 * @hw: pointer to the hardware structure
1623 * @tx_drbell_q_ctx: pointer to the doorbell queue context
1624 * @tx_drbell_q_index: the index of the doorbell queue
1625 *
1626 * Converts doorbell queue context from sparse to dense structure and then
1627 * writes it to HW register space
1628 */
1629enum ice_status
1630ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
1631			  struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
1632			  u32 tx_drbell_q_index)
1633{
1634	u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1635
1636	ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
1637		    ice_tx_drbell_q_ctx_info);
1638	return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
1639}
1640
1641/**
1642 * ice_clear_tx_drbell_q_ctx
1643 * @hw: pointer to the hardware structure
1644 * @tx_drbell_q_index: the index of the doorbell queue to clear
1645 *
1646 * Clears doorbell queue context in HW register space
1647 */
1648enum ice_status
1649ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
1650{
1651	u8 i;
1652
1653	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1654		return ICE_ERR_PARAM;
1655
1656	/* Clear each dword register separately */
1657	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
1658		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
1659
1660	return ICE_SUCCESS;
1661}
1662
1663/* FW Admin Queue command wrappers */
1664
1665/**
1666 * ice_should_retry_sq_send_cmd
1667 * @opcode: AQ opcode
1668 *
1669 * Decide if we should retry the send command routine for the ATQ, depending
1670 * on the opcode.
1671 */
1672static bool ice_should_retry_sq_send_cmd(u16 opcode)
1673{
1674	switch (opcode) {
1675	case ice_aqc_opc_dnl_get_status:
1676	case ice_aqc_opc_dnl_run:
1677	case ice_aqc_opc_dnl_call:
1678	case ice_aqc_opc_dnl_read_sto:
1679	case ice_aqc_opc_dnl_write_sto:
1680	case ice_aqc_opc_dnl_set_breakpoints:
1681	case ice_aqc_opc_dnl_read_log:
1682	case ice_aqc_opc_get_link_topo:
1683	case ice_aqc_opc_done_alt_write:
1684	case ice_aqc_opc_lldp_stop:
1685	case ice_aqc_opc_lldp_start:
1686	case ice_aqc_opc_lldp_filter_ctrl:
1687		return true;
1688	}
1689
1690	return false;
1691}
1692
1693/**
1694 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1695 * @hw: pointer to the HW struct
1696 * @cq: pointer to the specific Control queue
1697 * @desc: prefilled descriptor describing the command
1698 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1699 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1700 * @cd: pointer to command details structure
1701 *
1702 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1703 * Queue if the EBUSY AQ error is returned.
1704 */
1705static enum ice_status
1706ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1707		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1708		      struct ice_sq_cd *cd)
1709{
1710	struct ice_aq_desc desc_cpy;
1711	enum ice_status status;
1712	bool is_cmd_for_retry;
1713	u8 *buf_cpy = NULL;
1714	u8 idx = 0;
1715	u16 opcode;
1716
1717	opcode = LE16_TO_CPU(desc->opcode);
1718	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1719	ice_memset(&desc_cpy, 0, sizeof(desc_cpy), ICE_NONDMA_MEM);
1720
1721	if (is_cmd_for_retry) {
1722		if (buf) {
1723			buf_cpy = (u8 *)ice_malloc(hw, buf_size);
1724			if (!buf_cpy)
1725				return ICE_ERR_NO_MEMORY;
1726		}
1727
1728		ice_memcpy(&desc_cpy, desc, sizeof(desc_cpy),
1729			   ICE_NONDMA_TO_NONDMA);
1730	}
1731
1732	do {
1733		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1734
1735		if (!is_cmd_for_retry || status == ICE_SUCCESS ||
1736		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1737			break;
1738
1739		if (buf_cpy)
1740			ice_memcpy(buf, buf_cpy, buf_size,
1741				   ICE_NONDMA_TO_NONDMA);
1742
1743		ice_memcpy(desc, &desc_cpy, sizeof(desc_cpy),
1744			   ICE_NONDMA_TO_NONDMA);
1745
1746		ice_msec_delay(ICE_SQ_SEND_DELAY_TIME_MS, false);
1747
1748	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1749
1750	if (buf_cpy)
1751		ice_free(hw, buf_cpy);
1752
1753	return status;
1754}
1755
1756/**
1757 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1758 * @hw: pointer to the HW struct
1759 * @desc: descriptor describing the command
1760 * @buf: buffer to use for indirect commands (NULL for direct commands)
1761 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1762 * @cd: pointer to command details structure
1763 *
1764 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1765 */
1766enum ice_status
1767ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1768		u16 buf_size, struct ice_sq_cd *cd)
1769{
1770	return ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1771}
1772
1773/**
1774 * ice_aq_get_fw_ver
1775 * @hw: pointer to the HW struct
1776 * @cd: pointer to command details structure or NULL
1777 *
1778 * Get the firmware version (0x0001) from the admin queue commands
1779 */
1780enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1781{
1782	struct ice_aqc_get_ver *resp;
1783	struct ice_aq_desc desc;
1784	enum ice_status status;
1785
1786	resp = &desc.params.get_ver;
1787
1788	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1789
1790	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1791
1792	if (!status) {
1793		hw->fw_branch = resp->fw_branch;
1794		hw->fw_maj_ver = resp->fw_major;
1795		hw->fw_min_ver = resp->fw_minor;
1796		hw->fw_patch = resp->fw_patch;
1797		hw->fw_build = LE32_TO_CPU(resp->fw_build);
1798		hw->api_branch = resp->api_branch;
1799		hw->api_maj_ver = resp->api_major;
1800		hw->api_min_ver = resp->api_minor;
1801		hw->api_patch = resp->api_patch;
1802	}
1803
1804	return status;
1805}
1806
1807/**
1808 * ice_aq_send_driver_ver
1809 * @hw: pointer to the HW struct
1810 * @dv: driver's major, minor version
1811 * @cd: pointer to command details structure or NULL
1812 *
1813 * Send the driver version (0x0002) to the firmware
1814 */
1815enum ice_status
1816ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1817		       struct ice_sq_cd *cd)
1818{
1819	struct ice_aqc_driver_ver *cmd;
1820	struct ice_aq_desc desc;
1821	u16 len;
1822
1823	cmd = &desc.params.driver_ver;
1824
1825	if (!dv)
1826		return ICE_ERR_PARAM;
1827
1828	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1829
1830	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1831	cmd->major_ver = dv->major_ver;
1832	cmd->minor_ver = dv->minor_ver;
1833	cmd->build_ver = dv->build_ver;
1834	cmd->subbuild_ver = dv->subbuild_ver;
1835
1836	len = 0;
1837	while (len < sizeof(dv->driver_string) &&
1838	       IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
1839		len++;
1840
1841	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1842}
1843
1844/**
1845 * ice_aq_q_shutdown
1846 * @hw: pointer to the HW struct
1847 * @unloading: is the driver unloading itself
1848 *
1849 * Tell the Firmware that we're shutting down the AdminQ and whether
1850 * or not the driver is unloading as well (0x0003).
1851 */
1852enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1853{
1854	struct ice_aqc_q_shutdown *cmd;
1855	struct ice_aq_desc desc;
1856
1857	cmd = &desc.params.q_shutdown;
1858
1859	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1860
1861	if (unloading)
1862		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1863
1864	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1865}
1866
1867/**
1868 * ice_aq_req_res
1869 * @hw: pointer to the HW struct
1870 * @res: resource ID
1871 * @access: access type
1872 * @sdp_number: resource number
1873 * @timeout: the maximum time in ms that the driver may hold the resource
1874 * @cd: pointer to command details structure or NULL
1875 *
1876 * Requests common resource using the admin queue commands (0x0008).
1877 * When attempting to acquire the Global Config Lock, the driver can
1878 * learn of three states:
1879 *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1880 *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1881 *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1882 *                          successfully downloaded the package; the driver does
1883 *                          not have to download the package and can continue
1884 *                          loading
1885 *
1886 * Note that if the caller is in an acquire lock, perform action, release lock
1887 * phase of operation, it is possible that the FW may detect a timeout and issue
1888 * a CORER. In this case, the driver will receive a CORER interrupt and will
1889 * have to determine its cause. The calling thread that is handling this flow
1890 * will likely get an error propagated back to it indicating the Download
1891 * Package, Update Package or the Release Resource AQ commands timed out.
1892 */
1893static enum ice_status
1894ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1895	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1896	       struct ice_sq_cd *cd)
1897{
1898	struct ice_aqc_req_res *cmd_resp;
1899	struct ice_aq_desc desc;
1900	enum ice_status status;
1901
1902	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1903
1904	cmd_resp = &desc.params.res_owner;
1905
1906	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1907
1908	cmd_resp->res_id = CPU_TO_LE16(res);
1909	cmd_resp->access_type = CPU_TO_LE16(access);
1910	cmd_resp->res_number = CPU_TO_LE32(sdp_number);
1911	cmd_resp->timeout = CPU_TO_LE32(*timeout);
1912	*timeout = 0;
1913
1914	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1915
1916	/* The completion specifies the maximum time in ms that the driver
1917	 * may hold the resource in the Timeout field.
1918	 */
1919
1920	/* Global config lock response utilizes an additional status field.
1921	 *
1922	 * If the Global config lock resource is held by some other driver, the
1923	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1924	 * and the timeout field indicates the maximum time the current owner
1925	 * of the resource has to free it.
1926	 */
1927	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1928		if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1929			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1930			return ICE_SUCCESS;
1931		} else if (LE16_TO_CPU(cmd_resp->status) ==
1932			   ICE_AQ_RES_GLBL_IN_PROG) {
1933			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1934			return ICE_ERR_AQ_ERROR;
1935		} else if (LE16_TO_CPU(cmd_resp->status) ==
1936			   ICE_AQ_RES_GLBL_DONE) {
1937			return ICE_ERR_AQ_NO_WORK;
1938		}
1939
1940		/* invalid FW response, force a timeout immediately */
1941		*timeout = 0;
1942		return ICE_ERR_AQ_ERROR;
1943	}
1944
1945	/* If the resource is held by some other driver, the command completes
1946	 * with a busy return value and the timeout field indicates the maximum
1947	 * time the current owner of the resource has to free it.
1948	 */
1949	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1950		*timeout = LE32_TO_CPU(cmd_resp->timeout);
1951
1952	return status;
1953}
1954
1955/**
1956 * ice_aq_release_res
1957 * @hw: pointer to the HW struct
1958 * @res: resource ID
1959 * @sdp_number: resource number
1960 * @cd: pointer to command details structure or NULL
1961 *
1962 * release common resource using the admin queue commands (0x0009)
1963 */
1964static enum ice_status
1965ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1966		   struct ice_sq_cd *cd)
1967{
1968	struct ice_aqc_req_res *cmd;
1969	struct ice_aq_desc desc;
1970
1971	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1972
1973	cmd = &desc.params.res_owner;
1974
1975	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1976
1977	cmd->res_id = CPU_TO_LE16(res);
1978	cmd->res_number = CPU_TO_LE32(sdp_number);
1979
1980	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1981}
1982
1983/**
1984 * ice_acquire_res
1985 * @hw: pointer to the HW structure
1986 * @res: resource ID
1987 * @access: access type (read or write)
1988 * @timeout: timeout in milliseconds
1989 *
1990 * This function will attempt to acquire the ownership of a resource.
1991 */
1992enum ice_status
1993ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1994		enum ice_aq_res_access_type access, u32 timeout)
1995{
1996#define ICE_RES_POLLING_DELAY_MS	10
1997	u32 delay = ICE_RES_POLLING_DELAY_MS;
1998	u32 time_left = timeout;
1999	enum ice_status status;
2000
2001	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2002
2003	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2004
2005	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
2006	 * previously acquired the resource and performed any necessary updates;
2007	 * in this case the caller does not obtain the resource and has no
2008	 * further work to do.
2009	 */
2010	if (status == ICE_ERR_AQ_NO_WORK)
2011		goto ice_acquire_res_exit;
2012
2013	if (status)
2014		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2015
2016	/* If necessary, poll until the current lock owner timeouts */
2017	timeout = time_left;
2018	while (status && timeout && time_left) {
2019		ice_msec_delay(delay, true);
2020		timeout = (timeout > delay) ? timeout - delay : 0;
2021		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2022
2023		if (status == ICE_ERR_AQ_NO_WORK)
2024			/* lock free, but no work to do */
2025			break;
2026
2027		if (!status)
2028			/* lock acquired */
2029			break;
2030	}
2031	if (status && status != ICE_ERR_AQ_NO_WORK)
2032		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2033
2034ice_acquire_res_exit:
2035	if (status == ICE_ERR_AQ_NO_WORK) {
2036		if (access == ICE_RES_WRITE)
2037			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2038		else
2039			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
2040	}
2041	return status;
2042}
2043
2044/**
2045 * ice_release_res
2046 * @hw: pointer to the HW structure
2047 * @res: resource ID
2048 *
2049 * This function will release a resource using the proper Admin Command.
2050 */
2051void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2052{
2053	enum ice_status status;
2054	u32 total_delay = 0;
2055
2056	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2057
2058	status = ice_aq_release_res(hw, res, 0, NULL);
2059
2060	/* there are some rare cases when trying to release the resource
2061	 * results in an admin queue timeout, so handle them correctly
2062	 */
2063	while ((status == ICE_ERR_AQ_TIMEOUT) &&
2064	       (total_delay < hw->adminq.sq_cmd_timeout)) {
2065		ice_msec_delay(1, true);
2066		status = ice_aq_release_res(hw, res, 0, NULL);
2067		total_delay++;
2068	}
2069}
2070
2071/**
2072 * ice_aq_alloc_free_res - command to allocate/free resources
2073 * @hw: pointer to the HW struct
2074 * @num_entries: number of resource entries in buffer
2075 * @buf: Indirect buffer to hold data parameters and response
2076 * @buf_size: size of buffer for indirect commands
2077 * @opc: pass in the command opcode
2078 * @cd: pointer to command details structure or NULL
2079 *
2080 * Helper function to allocate/free resources using the admin queue commands
2081 */
2082enum ice_status
2083ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
2084		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2085		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2086{
2087	struct ice_aqc_alloc_free_res_cmd *cmd;
2088	struct ice_aq_desc desc;
2089
2090	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2091
2092	cmd = &desc.params.sw_res_ctrl;
2093
2094	if (!buf)
2095		return ICE_ERR_PARAM;
2096
2097	if (buf_size < FLEX_ARRAY_SIZE(buf, elem, num_entries))
2098		return ICE_ERR_PARAM;
2099
2100	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2101
2102	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2103
2104	cmd->num_entries = CPU_TO_LE16(num_entries);
2105
2106	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2107}
2108
2109/**
2110 * ice_alloc_hw_res - allocate resource
2111 * @hw: pointer to the HW struct
2112 * @type: type of resource
2113 * @num: number of resources to allocate
2114 * @btm: allocate from bottom
2115 * @res: pointer to array that will receive the resources
2116 */
2117enum ice_status
2118ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2119{
2120	struct ice_aqc_alloc_free_res_elem *buf;
2121	enum ice_status status;
2122	u16 buf_len;
2123
2124	buf_len = ice_struct_size(buf, elem, num);
2125	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2126	if (!buf)
2127		return ICE_ERR_NO_MEMORY;
2128
2129	/* Prepare buffer to allocate resource. */
2130	buf->num_elems = CPU_TO_LE16(num);
2131	buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2132				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2133	if (btm)
2134		buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2135
2136	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
2137				       ice_aqc_opc_alloc_res, NULL);
2138	if (status)
2139		goto ice_alloc_res_exit;
2140
2141	ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
2142		   ICE_NONDMA_TO_NONDMA);
2143
2144ice_alloc_res_exit:
2145	ice_free(hw, buf);
2146	return status;
2147}
2148
2149/**
2150 * ice_free_hw_res - free allocated HW resource
2151 * @hw: pointer to the HW struct
2152 * @type: type of resource to free
2153 * @num: number of resources
2154 * @res: pointer to array that contains the resources to free
2155 */
2156enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2157{
2158	struct ice_aqc_alloc_free_res_elem *buf;
2159	enum ice_status status;
2160	u16 buf_len;
2161
2162	buf_len = ice_struct_size(buf, elem, num);
2163	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2164	if (!buf)
2165		return ICE_ERR_NO_MEMORY;
2166
2167	/* Prepare buffer to free resource. */
2168	buf->num_elems = CPU_TO_LE16(num);
2169	buf->res_type = CPU_TO_LE16(type);
2170	ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
2171		   ICE_NONDMA_TO_NONDMA);
2172
2173	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
2174				       ice_aqc_opc_free_res, NULL);
2175	if (status)
2176		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2177
2178	ice_free(hw, buf);
2179	return status;
2180}
2181
2182/**
2183 * ice_get_num_per_func - determine number of resources per PF
2184 * @hw: pointer to the HW structure
2185 * @max: value to be evenly split between each PF
2186 *
2187 * Determine the number of valid functions by going through the bitmap returned
2188 * from parsing capabilities and use this to calculate the number of resources
2189 * per PF based on the max value passed in.
2190 */
2191static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2192{
2193	u8 funcs;
2194
2195#define ICE_CAPS_VALID_FUNCS_M	0xFF
2196	funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
2197			     ICE_CAPS_VALID_FUNCS_M);
2198
2199	if (!funcs)
2200		return 0;
2201
2202	return max / funcs;
2203}
2204
2205/**
2206 * ice_print_led_caps - print LED capabilities
2207 * @hw: pointer to the ice_hw instance
2208 * @caps: pointer to common caps instance
2209 * @prefix: string to prefix when printing
2210 * @dbg: set to indicate debug print
2211 */
2212static void
2213ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2214		   char const *prefix, bool dbg)
2215{
2216	u8 i;
2217
2218	if (dbg)
2219		ice_debug(hw, ICE_DBG_INIT, "%s: led_pin_num = %d\n", prefix,
2220			  caps->led_pin_num);
2221	else
2222		ice_info(hw, "%s: led_pin_num = %d\n", prefix,
2223			 caps->led_pin_num);
2224
2225	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
2226		if (!caps->led[i])
2227			continue;
2228
2229		if (dbg)
2230			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = %d\n",
2231				  prefix, i, caps->led[i]);
2232		else
2233			ice_info(hw, "%s: led[%d] = %d\n", prefix, i,
2234				 caps->led[i]);
2235	}
2236}
2237
2238/**
2239 * ice_print_sdp_caps - print SDP capabilities
2240 * @hw: pointer to the ice_hw instance
2241 * @caps: pointer to common caps instance
2242 * @prefix: string to prefix when printing
2243 * @dbg: set to indicate debug print
2244 */
2245static void
2246ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2247		   char const *prefix, bool dbg)
2248{
2249	u8 i;
2250
2251	if (dbg)
2252		ice_debug(hw, ICE_DBG_INIT, "%s: sdp_pin_num = %d\n", prefix,
2253			  caps->sdp_pin_num);
2254	else
2255		ice_info(hw, "%s: sdp_pin_num = %d\n", prefix,
2256			 caps->sdp_pin_num);
2257
2258	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
2259		if (!caps->sdp[i])
2260			continue;
2261
2262		if (dbg)
2263			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = %d\n",
2264				  prefix, i, caps->sdp[i]);
2265		else
2266			ice_info(hw, "%s: sdp[%d] = %d\n", prefix,
2267				 i, caps->sdp[i]);
2268	}
2269}
2270
2271/**
2272 * ice_parse_common_caps - parse common device/function capabilities
2273 * @hw: pointer to the HW struct
2274 * @caps: pointer to common capabilities structure
2275 * @elem: the capability element to parse
2276 * @prefix: message prefix for tracing capabilities
2277 *
2278 * Given a capability element, extract relevant details into the common
2279 * capability structure.
2280 *
2281 * Returns: true if the capability matches one of the common capability ids,
2282 * false otherwise.
2283 */
2284static bool
2285ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2286		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2287{
2288	u32 logical_id = LE32_TO_CPU(elem->logical_id);
2289	u32 phys_id = LE32_TO_CPU(elem->phys_id);
2290	u32 number = LE32_TO_CPU(elem->number);
2291	u16 cap = LE16_TO_CPU(elem->cap);
2292	bool found = true;
2293
2294	switch (cap) {
2295	case ICE_AQC_CAPS_SWITCHING_MODE:
2296		caps->switching_mode = number;
2297		ice_debug(hw, ICE_DBG_INIT, "%s: switching_mode = %d\n", prefix,
2298			  caps->switching_mode);
2299		break;
2300	case ICE_AQC_CAPS_MANAGEABILITY_MODE:
2301		caps->mgmt_mode = number;
2302		caps->mgmt_protocols_mctp = logical_id;
2303		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_mode = %d\n", prefix,
2304			  caps->mgmt_mode);
2305		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_protocols_mctp = %d\n", prefix,
2306			  caps->mgmt_protocols_mctp);
2307		break;
2308	case ICE_AQC_CAPS_OS2BMC:
2309		caps->os2bmc = number;
2310		ice_debug(hw, ICE_DBG_INIT, "%s: os2bmc = %d\n", prefix, caps->os2bmc);
2311		break;
2312	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2313		caps->valid_functions = number;
2314		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2315			  caps->valid_functions);
2316		break;
2317	case ICE_AQC_CAPS_SRIOV:
2318		caps->sr_iov_1_1 = (number == 1);
2319		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2320			  caps->sr_iov_1_1);
2321		break;
2322	case ICE_AQC_CAPS_VMDQ:
2323		caps->vmdq = (number == 1);
2324		ice_debug(hw, ICE_DBG_INIT, "%s: vmdq = %d\n", prefix, caps->vmdq);
2325		break;
2326	case ICE_AQC_CAPS_802_1QBG:
2327		caps->evb_802_1_qbg = (number == 1);
2328		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbg = %d\n", prefix, number);
2329		break;
2330	case ICE_AQC_CAPS_802_1BR:
2331		caps->evb_802_1_qbh = (number == 1);
2332		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbh = %d\n", prefix, number);
2333		break;
2334	case ICE_AQC_CAPS_DCB:
2335		caps->dcb = (number == 1);
2336		caps->active_tc_bitmap = logical_id;
2337		caps->maxtc = phys_id;
2338		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2339		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2340			  caps->active_tc_bitmap);
2341		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2342		break;
2343	case ICE_AQC_CAPS_ISCSI:
2344		caps->iscsi = (number == 1);
2345		ice_debug(hw, ICE_DBG_INIT, "%s: iscsi = %d\n", prefix, caps->iscsi);
2346		break;
2347	case ICE_AQC_CAPS_RSS:
2348		caps->rss_table_size = number;
2349		caps->rss_table_entry_width = logical_id;
2350		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2351			  caps->rss_table_size);
2352		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2353			  caps->rss_table_entry_width);
2354		break;
2355	case ICE_AQC_CAPS_RXQS:
2356		caps->num_rxq = number;
2357		caps->rxq_first_id = phys_id;
2358		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2359			  caps->num_rxq);
2360		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2361			  caps->rxq_first_id);
2362		break;
2363	case ICE_AQC_CAPS_TXQS:
2364		caps->num_txq = number;
2365		caps->txq_first_id = phys_id;
2366		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2367			  caps->num_txq);
2368		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2369			  caps->txq_first_id);
2370		break;
2371	case ICE_AQC_CAPS_MSIX:
2372		caps->num_msix_vectors = number;
2373		caps->msix_vector_first_id = phys_id;
2374		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2375			  caps->num_msix_vectors);
2376		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2377			  caps->msix_vector_first_id);
2378		break;
2379	case ICE_AQC_CAPS_NVM_MGMT:
2380		caps->sec_rev_disabled =
2381			(number & ICE_NVM_MGMT_SEC_REV_DISABLED) ?
2382			true : false;
2383		ice_debug(hw, ICE_DBG_INIT, "%s: sec_rev_disabled = %d\n", prefix,
2384			  caps->sec_rev_disabled);
2385		caps->update_disabled =
2386			(number & ICE_NVM_MGMT_UPDATE_DISABLED) ?
2387			true : false;
2388		ice_debug(hw, ICE_DBG_INIT, "%s: update_disabled = %d\n", prefix,
2389			  caps->update_disabled);
2390		caps->nvm_unified_update =
2391			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2392			true : false;
2393		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2394			  caps->nvm_unified_update);
2395		caps->netlist_auth =
2396			(number & ICE_NVM_MGMT_NETLIST_AUTH_SUPPORT) ?
2397			true : false;
2398		ice_debug(hw, ICE_DBG_INIT, "%s: netlist_auth = %d\n", prefix,
2399			  caps->netlist_auth);
2400		break;
2401	case ICE_AQC_CAPS_CEM:
2402		caps->mgmt_cem = (number == 1);
2403		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_cem = %d\n", prefix,
2404			  caps->mgmt_cem);
2405		break;
2406	case ICE_AQC_CAPS_IWARP:
2407		caps->iwarp = (number == 1);
2408		ice_debug(hw, ICE_DBG_INIT, "%s: iwarp = %d\n", prefix, caps->iwarp);
2409		break;
2410	case ICE_AQC_CAPS_ROCEV2_LAG:
2411		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2412		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %d\n",
2413			  prefix, caps->roce_lag);
2414		break;
2415	case ICE_AQC_CAPS_LED:
2416		if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
2417			caps->led[phys_id] = true;
2418			caps->led_pin_num++;
2419			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = 1\n", prefix, phys_id);
2420		}
2421		break;
2422	case ICE_AQC_CAPS_SDP:
2423		if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
2424			caps->sdp[phys_id] = true;
2425			caps->sdp_pin_num++;
2426			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = 1\n", prefix, phys_id);
2427		}
2428		break;
2429	case ICE_AQC_CAPS_WR_CSR_PROT:
2430		caps->wr_csr_prot = number;
2431		caps->wr_csr_prot |= (u64)logical_id << 32;
2432		ice_debug(hw, ICE_DBG_INIT, "%s: wr_csr_prot = 0x%llX\n", prefix,
2433			  (unsigned long long)caps->wr_csr_prot);
2434		break;
2435	case ICE_AQC_CAPS_WOL_PROXY:
2436		caps->num_wol_proxy_fltr = number;
2437		caps->wol_proxy_vsi_seid = logical_id;
2438		caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
2439		caps->acpi_prog_mthd = !!(phys_id &
2440					  ICE_ACPI_PROG_MTHD_M);
2441		caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
2442		ice_debug(hw, ICE_DBG_INIT, "%s: num_wol_proxy_fltr = %d\n", prefix,
2443			  caps->num_wol_proxy_fltr);
2444		ice_debug(hw, ICE_DBG_INIT, "%s: wol_proxy_vsi_seid = %d\n", prefix,
2445			  caps->wol_proxy_vsi_seid);
2446		ice_debug(hw, ICE_DBG_INIT, "%s: apm_wol_support = %d\n",
2447			  prefix, caps->apm_wol_support);
2448		break;
2449	case ICE_AQC_CAPS_MAX_MTU:
2450		caps->max_mtu = number;
2451		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2452			  prefix, caps->max_mtu);
2453		break;
2454	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2455		caps->pcie_reset_avoidance = (number > 0);
2456		ice_debug(hw, ICE_DBG_INIT,
2457			  "%s: pcie_reset_avoidance = %d\n", prefix,
2458			  caps->pcie_reset_avoidance);
2459		break;
2460	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2461		caps->reset_restrict_support = (number == 1);
2462		ice_debug(hw, ICE_DBG_INIT,
2463			  "%s: reset_restrict_support = %d\n", prefix,
2464			  caps->reset_restrict_support);
2465		break;
2466	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0:
2467	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG1:
2468	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG2:
2469	case ICE_AQC_CAPS_EXT_TOPO_DEV_IMG3:
2470	{
2471		u8 index = (u8)(cap - ICE_AQC_CAPS_EXT_TOPO_DEV_IMG0);
2472
2473		caps->ext_topo_dev_img_ver_high[index] = number;
2474		caps->ext_topo_dev_img_ver_low[index] = logical_id;
2475		caps->ext_topo_dev_img_part_num[index] =
2476			(phys_id & ICE_EXT_TOPO_DEV_IMG_PART_NUM_M) >>
2477			ICE_EXT_TOPO_DEV_IMG_PART_NUM_S;
2478		caps->ext_topo_dev_img_load_en[index] =
2479			(phys_id & ICE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
2480		caps->ext_topo_dev_img_prog_en[index] =
2481			(phys_id & ICE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
2482		caps->ext_topo_dev_img_ver_schema[index] =
2483			(phys_id & ICE_EXT_TOPO_DEV_IMG_VER_SCHEMA) != 0;
2484		ice_debug(hw, ICE_DBG_INIT,
2485			  "%s: ext_topo_dev_img_ver_high[%d] = %d\n",
2486			  prefix, index,
2487			  caps->ext_topo_dev_img_ver_high[index]);
2488		ice_debug(hw, ICE_DBG_INIT,
2489			  "%s: ext_topo_dev_img_ver_low[%d] = %d\n",
2490			  prefix, index,
2491			  caps->ext_topo_dev_img_ver_low[index]);
2492		ice_debug(hw, ICE_DBG_INIT,
2493			  "%s: ext_topo_dev_img_part_num[%d] = %d\n",
2494			  prefix, index,
2495			  caps->ext_topo_dev_img_part_num[index]);
2496		ice_debug(hw, ICE_DBG_INIT,
2497			  "%s: ext_topo_dev_img_load_en[%d] = %d\n",
2498			  prefix, index,
2499			  caps->ext_topo_dev_img_load_en[index]);
2500		ice_debug(hw, ICE_DBG_INIT,
2501			  "%s: ext_topo_dev_img_prog_en[%d] = %d\n",
2502			  prefix, index,
2503			  caps->ext_topo_dev_img_prog_en[index]);
2504		ice_debug(hw, ICE_DBG_INIT,
2505			  "%s: ext_topo_dev_img_ver_schema[%d] = %d\n",
2506			  prefix, index,
2507			  caps->ext_topo_dev_img_ver_schema[index]);
2508		break;
2509	}
2510	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2511		caps->tx_sched_topo_comp_mode_en = (number == 1);
2512		break;
2513	case ICE_AQC_CAPS_DYN_FLATTENING:
2514		caps->dyn_flattening_en = (number == 1);
2515		ice_debug(hw, ICE_DBG_INIT, "%s: dyn_flattening_en = %d\n",
2516			  prefix, caps->dyn_flattening_en);
2517		break;
2518	case ICE_AQC_CAPS_OROM_RECOVERY_UPDATE:
2519		caps->orom_recovery_update = (number == 1);
2520		ice_debug(hw, ICE_DBG_INIT, "%s: orom_recovery_update = %d\n",
2521			  prefix, caps->orom_recovery_update);
2522		break;
2523	default:
2524		/* Not one of the recognized common capabilities */
2525		found = false;
2526	}
2527
2528	return found;
2529}
2530
2531/**
2532 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2533 * @hw: pointer to the HW structure
2534 * @caps: pointer to capabilities structure to fix
2535 *
2536 * Re-calculate the capabilities that are dependent on the number of physical
2537 * ports; i.e. some features are not supported or function differently on
2538 * devices with more than 4 ports.
2539 */
2540static void
2541ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2542{
2543	/* This assumes device capabilities are always scanned before function
2544	 * capabilities during the initialization flow.
2545	 */
2546	if (hw->dev_caps.num_funcs > 4) {
2547		/* Max 4 TCs per port */
2548		caps->maxtc = 4;
2549		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2550			  caps->maxtc);
2551		if (caps->iwarp) {
2552			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2553			caps->iwarp = 0;
2554		}
2555
2556		/* print message only when processing device capabilities
2557		 * during initialization.
2558		 */
2559		if (caps == &hw->dev_caps.common_cap)
2560			ice_info(hw, "RDMA functionality is not available with the current device configuration.\n");
2561	}
2562}
2563
2564/**
2565 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2566 * @hw: pointer to the HW struct
2567 * @func_p: pointer to function capabilities structure
2568 * @cap: pointer to the capability element to parse
2569 *
2570 * Extract function capabilities for ICE_AQC_CAPS_VF.
2571 */
2572static void
2573ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2574		       struct ice_aqc_list_caps_elem *cap)
2575{
2576	u32 number = LE32_TO_CPU(cap->number);
2577	u32 logical_id = LE32_TO_CPU(cap->logical_id);
2578
2579	func_p->num_allocd_vfs = number;
2580	func_p->vf_base_id = logical_id;
2581	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2582		  func_p->num_allocd_vfs);
2583	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2584		  func_p->vf_base_id);
2585}
2586
2587/**
2588 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2589 * @hw: pointer to the HW struct
2590 * @func_p: pointer to function capabilities structure
2591 * @cap: pointer to the capability element to parse
2592 *
2593 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2594 */
2595static void
2596ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2597			struct ice_aqc_list_caps_elem *cap)
2598{
2599	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2600	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2601		  LE32_TO_CPU(cap->number));
2602	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2603		  func_p->guar_num_vsi);
2604}
2605
2606/**
2607 * ice_parse_func_caps - Parse function capabilities
2608 * @hw: pointer to the HW struct
2609 * @func_p: pointer to function capabilities structure
2610 * @buf: buffer containing the function capability records
2611 * @cap_count: the number of capabilities
2612 *
2613 * Helper function to parse function (0x000A) capabilities list. For
2614 * capabilities shared between device and function, this relies on
2615 * ice_parse_common_caps.
2616 *
2617 * Loop through the list of provided capabilities and extract the relevant
2618 * data into the function capabilities structured.
2619 */
2620static void
2621ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2622		    void *buf, u32 cap_count)
2623{
2624	struct ice_aqc_list_caps_elem *cap_resp;
2625	u32 i;
2626
2627	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2628
2629	ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
2630
2631	for (i = 0; i < cap_count; i++) {
2632		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2633		bool found;
2634
2635		found = ice_parse_common_caps(hw, &func_p->common_cap,
2636					      &cap_resp[i], "func caps");
2637
2638		switch (cap) {
2639		case ICE_AQC_CAPS_VF:
2640			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2641			break;
2642		case ICE_AQC_CAPS_VSI:
2643			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2644			break;
2645		default:
2646			/* Don't list common capabilities as unknown */
2647			if (!found)
2648				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2649					  i, cap);
2650			break;
2651		}
2652	}
2653
2654	ice_print_led_caps(hw, &func_p->common_cap, "func caps", true);
2655	ice_print_sdp_caps(hw, &func_p->common_cap, "func caps", true);
2656
2657	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2658}
2659
2660/**
2661 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2662 * @hw: pointer to the HW struct
2663 * @dev_p: pointer to device capabilities structure
2664 * @cap: capability element to parse
2665 *
2666 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2667 */
2668static void
2669ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2670			      struct ice_aqc_list_caps_elem *cap)
2671{
2672	u32 number = LE32_TO_CPU(cap->number);
2673
2674	dev_p->num_funcs = ice_hweight32(number);
2675	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2676		  dev_p->num_funcs);
2677
2678}
2679
2680/**
2681 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2682 * @hw: pointer to the HW struct
2683 * @dev_p: pointer to device capabilities structure
2684 * @cap: capability element to parse
2685 *
2686 * Parse ICE_AQC_CAPS_VF for device capabilities.
2687 */
2688static void
2689ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2690		      struct ice_aqc_list_caps_elem *cap)
2691{
2692	u32 number = LE32_TO_CPU(cap->number);
2693
2694	dev_p->num_vfs_exposed = number;
2695	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2696		  dev_p->num_vfs_exposed);
2697}
2698
2699/**
2700 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2701 * @hw: pointer to the HW struct
2702 * @dev_p: pointer to device capabilities structure
2703 * @cap: capability element to parse
2704 *
2705 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2706 */
2707static void
2708ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2709		       struct ice_aqc_list_caps_elem *cap)
2710{
2711	u32 number = LE32_TO_CPU(cap->number);
2712
2713	dev_p->num_vsi_allocd_to_host = number;
2714	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2715		  dev_p->num_vsi_allocd_to_host);
2716}
2717
2718/**
2719 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2720 * @hw: pointer to the HW struct
2721 * @dev_p: pointer to device capabilities structure
2722 * @cap: capability element to parse
2723 *
2724 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2725 */
2726static void
2727ice_parse_nac_topo_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2728			    struct ice_aqc_list_caps_elem *cap)
2729{
2730	dev_p->nac_topo.mode = LE32_TO_CPU(cap->number);
2731	dev_p->nac_topo.id = LE32_TO_CPU(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2732
2733	ice_info(hw, "PF is configured in %s mode with IP instance ID %d\n",
2734		 (dev_p->nac_topo.mode == 0) ? "primary" : "secondary",
2735		 dev_p->nac_topo.id);
2736
2737	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2738		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2739	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2740		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2741	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2742		  dev_p->nac_topo.id);
2743}
2744
2745/**
2746 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2747 * @hw: pointer to the HW struct
2748 * @dev_p: pointer to device capabilities structure
2749 * @cap: capability element to parse
2750 *
2751 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2752 * enabled sensors.
2753 */
2754static void
2755ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2756			     struct ice_aqc_list_caps_elem *cap)
2757{
2758	dev_p->supported_sensors = LE32_TO_CPU(cap->number);
2759
2760	ice_debug(hw, ICE_DBG_INIT,
2761		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2762		  dev_p->supported_sensors);
2763}
2764
2765/**
2766 * ice_parse_dev_caps - Parse device capabilities
2767 * @hw: pointer to the HW struct
2768 * @dev_p: pointer to device capabilities structure
2769 * @buf: buffer containing the device capability records
2770 * @cap_count: the number of capabilities
2771 *
2772 * Helper device to parse device (0x000B) capabilities list. For
2773 * capabilities shared between device and function, this relies on
2774 * ice_parse_common_caps.
2775 *
2776 * Loop through the list of provided capabilities and extract the relevant
2777 * data into the device capabilities structured.
2778 */
2779static void
2780ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2781		   void *buf, u32 cap_count)
2782{
2783	struct ice_aqc_list_caps_elem *cap_resp;
2784	u32 i;
2785
2786	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2787
2788	ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
2789
2790	for (i = 0; i < cap_count; i++) {
2791		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2792		bool found;
2793
2794		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2795					      &cap_resp[i], "dev caps");
2796
2797		switch (cap) {
2798		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2799			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2800			break;
2801		case ICE_AQC_CAPS_VF:
2802			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2803			break;
2804		case ICE_AQC_CAPS_VSI:
2805			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2806			break;
2807		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2808			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2809			break;
2810		case ICE_AQC_CAPS_SENSOR_READING:
2811			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2812			break;
2813		default:
2814			/* Don't list common capabilities as unknown */
2815			if (!found)
2816				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2817					  i, cap);
2818			break;
2819		}
2820	}
2821
2822	ice_print_led_caps(hw, &dev_p->common_cap, "dev caps", true);
2823	ice_print_sdp_caps(hw, &dev_p->common_cap, "dev caps", true);
2824
2825	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2826}
2827
2828/**
2829 * ice_aq_list_caps - query function/device capabilities
2830 * @hw: pointer to the HW struct
2831 * @buf: a buffer to hold the capabilities
2832 * @buf_size: size of the buffer
2833 * @cap_count: if not NULL, set to the number of capabilities reported
2834 * @opc: capabilities type to discover, device or function
2835 * @cd: pointer to command details structure or NULL
2836 *
2837 * Get the function (0x000A) or device (0x000B) capabilities description from
2838 * firmware and store it in the buffer.
2839 *
2840 * If the cap_count pointer is not NULL, then it is set to the number of
2841 * capabilities firmware will report. Note that if the buffer size is too
2842 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2843 * cap_count will still be updated in this case. It is recommended that the
2844 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2845 * firmware could return) to avoid this.
2846 */
2847static enum ice_status
2848ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2849		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2850{
2851	struct ice_aqc_list_caps *cmd;
2852	struct ice_aq_desc desc;
2853	enum ice_status status;
2854
2855	cmd = &desc.params.get_cap;
2856
2857	if (opc != ice_aqc_opc_list_func_caps &&
2858	    opc != ice_aqc_opc_list_dev_caps)
2859		return ICE_ERR_PARAM;
2860
2861	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2862	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2863
2864	if (cap_count)
2865		*cap_count = LE32_TO_CPU(cmd->count);
2866
2867	return status;
2868}
2869
2870/**
2871 * ice_discover_dev_caps - Read and extract device capabilities
2872 * @hw: pointer to the hardware structure
2873 * @dev_caps: pointer to device capabilities structure
2874 *
2875 * Read the device capabilities and extract them into the dev_caps structure
2876 * for later use.
2877 */
2878static enum ice_status
2879ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2880{
2881	enum ice_status status;
2882	u32 cap_count = 0;
2883	void *cbuf;
2884
2885	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2886	if (!cbuf)
2887		return ICE_ERR_NO_MEMORY;
2888
2889	/* Although the driver doesn't know the number of capabilities the
2890	 * device will return, we can simply send a 4KB buffer, the maximum
2891	 * possible size that firmware can return.
2892	 */
2893	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2894
2895	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2896				  ice_aqc_opc_list_dev_caps, NULL);
2897	if (!status)
2898		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2899	ice_free(hw, cbuf);
2900
2901	return status;
2902}
2903
2904/**
2905 * ice_discover_func_caps - Read and extract function capabilities
2906 * @hw: pointer to the hardware structure
2907 * @func_caps: pointer to function capabilities structure
2908 *
2909 * Read the function capabilities and extract them into the func_caps structure
2910 * for later use.
2911 */
2912static enum ice_status
2913ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2914{
2915	enum ice_status status;
2916	u32 cap_count = 0;
2917	void *cbuf;
2918
2919	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2920	if (!cbuf)
2921		return ICE_ERR_NO_MEMORY;
2922
2923	/* Although the driver doesn't know the number of capabilities the
2924	 * device will return, we can simply send a 4KB buffer, the maximum
2925	 * possible size that firmware can return.
2926	 */
2927	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2928
2929	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2930				  ice_aqc_opc_list_func_caps, NULL);
2931	if (!status)
2932		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2933	ice_free(hw, cbuf);
2934
2935	return status;
2936}
2937
2938/**
2939 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2940 * @hw: pointer to the hardware structure
2941 */
2942void ice_set_safe_mode_caps(struct ice_hw *hw)
2943{
2944	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2945	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2946	struct ice_hw_common_caps cached_caps;
2947	u32 num_funcs;
2948
2949	/* cache some func_caps values that should be restored after memset */
2950	cached_caps = func_caps->common_cap;
2951
2952	/* unset func capabilities */
2953	memset(func_caps, 0, sizeof(*func_caps));
2954
2955#define ICE_RESTORE_FUNC_CAP(name) \
2956	func_caps->common_cap.name = cached_caps.name
2957
2958	/* restore cached values */
2959	ICE_RESTORE_FUNC_CAP(valid_functions);
2960	ICE_RESTORE_FUNC_CAP(txq_first_id);
2961	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2962	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2963	ICE_RESTORE_FUNC_CAP(max_mtu);
2964	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2965
2966	/* one Tx and one Rx queue in safe mode */
2967	func_caps->common_cap.num_rxq = 1;
2968	func_caps->common_cap.num_txq = 1;
2969
2970	/* two MSIX vectors, one for traffic and one for misc causes */
2971	func_caps->common_cap.num_msix_vectors = 2;
2972	func_caps->guar_num_vsi = 1;
2973
2974	/* cache some dev_caps values that should be restored after memset */
2975	cached_caps = dev_caps->common_cap;
2976	num_funcs = dev_caps->num_funcs;
2977
2978	/* unset dev capabilities */
2979	memset(dev_caps, 0, sizeof(*dev_caps));
2980
2981#define ICE_RESTORE_DEV_CAP(name) \
2982	dev_caps->common_cap.name = cached_caps.name
2983
2984	/* restore cached values */
2985	ICE_RESTORE_DEV_CAP(valid_functions);
2986	ICE_RESTORE_DEV_CAP(txq_first_id);
2987	ICE_RESTORE_DEV_CAP(rxq_first_id);
2988	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2989	ICE_RESTORE_DEV_CAP(max_mtu);
2990	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2991	dev_caps->num_funcs = num_funcs;
2992
2993	/* one Tx and one Rx queue per function in safe mode */
2994	dev_caps->common_cap.num_rxq = num_funcs;
2995	dev_caps->common_cap.num_txq = num_funcs;
2996
2997	/* two MSIX vectors per function */
2998	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2999}
3000
3001/**
3002 * ice_get_caps - get info about the HW
3003 * @hw: pointer to the hardware structure
3004 */
3005enum ice_status ice_get_caps(struct ice_hw *hw)
3006{
3007	enum ice_status status;
3008
3009	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3010	if (status)
3011		return status;
3012
3013	return ice_discover_func_caps(hw, &hw->func_caps);
3014}
3015
3016/**
3017 * ice_aq_manage_mac_write - manage MAC address write command
3018 * @hw: pointer to the HW struct
3019 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3020 * @flags: flags to control write behavior
3021 * @cd: pointer to command details structure or NULL
3022 *
3023 * This function is used to write MAC address to the NVM (0x0108).
3024 */
3025enum ice_status
3026ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3027			struct ice_sq_cd *cd)
3028{
3029	struct ice_aqc_manage_mac_write *cmd;
3030	struct ice_aq_desc desc;
3031
3032	cmd = &desc.params.mac_write;
3033	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3034
3035	cmd->flags = flags;
3036	ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
3037
3038	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3039}
3040
3041/**
3042 * ice_aq_clear_pxe_mode
3043 * @hw: pointer to the HW struct
3044 *
3045 * Tell the firmware that the driver is taking over from PXE (0x0110).
3046 */
3047static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
3048{
3049	struct ice_aq_desc desc;
3050
3051	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3052	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3053
3054	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3055}
3056
3057/**
3058 * ice_clear_pxe_mode - clear pxe operations mode
3059 * @hw: pointer to the HW struct
3060 *
3061 * Make sure all PXE mode settings are cleared, including things
3062 * like descriptor fetch/write-back mode.
3063 */
3064void ice_clear_pxe_mode(struct ice_hw *hw)
3065{
3066	if (ice_check_sq_alive(hw, &hw->adminq))
3067		ice_aq_clear_pxe_mode(hw);
3068}
3069
3070/**
3071 * ice_aq_set_port_params - set physical port parameters
3072 * @pi: pointer to the port info struct
3073 * @bad_frame_vsi: defines the VSI to which bad frames are forwarded
3074 * @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
3075 * @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
3076 * @double_vlan: if set double VLAN is enabled
3077 * @cd: pointer to command details structure or NULL
3078 *
3079 * Set Physical port parameters (0x0203)
3080 */
3081enum ice_status
3082ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
3083		       bool save_bad_pac, bool pad_short_pac, bool double_vlan,
3084		       struct ice_sq_cd *cd)
3085{
3086	struct ice_aqc_set_port_params *cmd;
3087	struct ice_hw *hw = pi->hw;
3088	struct ice_aq_desc desc;
3089	u16 cmd_flags = 0;
3090
3091	cmd = &desc.params.set_port_params;
3092
3093	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3094	cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
3095	if (save_bad_pac)
3096		cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
3097	if (pad_short_pac)
3098		cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
3099	if (double_vlan)
3100		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3101	cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
3102
3103	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3104}
3105
3106/**
3107 * ice_is_100m_speed_supported
3108 * @hw: pointer to the HW struct
3109 *
3110 * returns true if 100M speeds are supported by the device,
3111 * false otherwise.
3112 */
3113bool ice_is_100m_speed_supported(struct ice_hw *hw)
3114{
3115	switch (hw->device_id) {
3116	case ICE_DEV_ID_E822C_SGMII:
3117	case ICE_DEV_ID_E822L_SGMII:
3118	case ICE_DEV_ID_E823L_1GBE:
3119	case ICE_DEV_ID_E823C_SGMII:
3120		return true;
3121	default:
3122		return false;
3123	}
3124}
3125
3126/**
3127 * ice_get_link_speed_based_on_phy_type - returns link speed
3128 * @phy_type_low: lower part of phy_type
3129 * @phy_type_high: higher part of phy_type
3130 *
3131 * This helper function will convert an entry in PHY type structure
3132 * [phy_type_low, phy_type_high] to its corresponding link speed.
3133 * Note: In the structure of [phy_type_low, phy_type_high], there should
3134 * be one bit set, as this function will convert one PHY type to its
3135 * speed.
3136 * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3137 * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3138 */
3139static u16
3140ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3141{
3142	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3143	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3144
3145	switch (phy_type_low) {
3146	case ICE_PHY_TYPE_LOW_100BASE_TX:
3147	case ICE_PHY_TYPE_LOW_100M_SGMII:
3148		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3149		break;
3150	case ICE_PHY_TYPE_LOW_1000BASE_T:
3151	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3152	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3153	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3154	case ICE_PHY_TYPE_LOW_1G_SGMII:
3155		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3156		break;
3157	case ICE_PHY_TYPE_LOW_2500BASE_T:
3158	case ICE_PHY_TYPE_LOW_2500BASE_X:
3159	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3160		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3161		break;
3162	case ICE_PHY_TYPE_LOW_5GBASE_T:
3163	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3164		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3165		break;
3166	case ICE_PHY_TYPE_LOW_10GBASE_T:
3167	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3168	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3169	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3170	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3171	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3172	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3173		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3174		break;
3175	case ICE_PHY_TYPE_LOW_25GBASE_T:
3176	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3177	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3178	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3179	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3180	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3181	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3182	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3183	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3184	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3185	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3186		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3187		break;
3188	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3189	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3190	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3191	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3192	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3193	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3194		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3195		break;
3196	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3197	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3198	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3199	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3200	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3201	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3202	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3203	case ICE_PHY_TYPE_LOW_50G_AUI2:
3204	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3205	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3206	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3207	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3208	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3209	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3210	case ICE_PHY_TYPE_LOW_50G_AUI1:
3211		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3212		break;
3213	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3214	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3215	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3216	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3217	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3218	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3219	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3220	case ICE_PHY_TYPE_LOW_100G_AUI4:
3221	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3222	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3223	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3224	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3225	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3226		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3227		break;
3228	default:
3229		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3230		break;
3231	}
3232
3233	switch (phy_type_high) {
3234	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3235	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3236	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3237	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3238	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3239		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3240		break;
3241	default:
3242		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3243		break;
3244	}
3245
3246	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3247	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3248		return ICE_AQ_LINK_SPEED_UNKNOWN;
3249	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3250		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3251		return ICE_AQ_LINK_SPEED_UNKNOWN;
3252	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3253		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3254		return speed_phy_type_low;
3255	else
3256		return speed_phy_type_high;
3257}
3258
3259/**
3260 * ice_update_phy_type
3261 * @phy_type_low: pointer to the lower part of phy_type
3262 * @phy_type_high: pointer to the higher part of phy_type
3263 * @link_speeds_bitmap: targeted link speeds bitmap
3264 *
3265 * Note: For the link_speeds_bitmap structure, you can check it at
3266 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3267 * link_speeds_bitmap include multiple speeds.
3268 *
3269 * Each entry in this [phy_type_low, phy_type_high] structure will
3270 * present a certain link speed. This helper function will turn on bits
3271 * in [phy_type_low, phy_type_high] structure based on the value of
3272 * link_speeds_bitmap input parameter.
3273 */
3274void
3275ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3276		    u16 link_speeds_bitmap)
3277{
3278	u64 pt_high;
3279	u64 pt_low;
3280	int index;
3281	u16 speed;
3282
3283	/* We first check with low part of phy_type */
3284	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3285		pt_low = BIT_ULL(index);
3286		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3287
3288		if (link_speeds_bitmap & speed)
3289			*phy_type_low |= BIT_ULL(index);
3290	}
3291
3292	/* We then check with high part of phy_type */
3293	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3294		pt_high = BIT_ULL(index);
3295		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3296
3297		if (link_speeds_bitmap & speed)
3298			*phy_type_high |= BIT_ULL(index);
3299	}
3300}
3301
3302/**
3303 * ice_aq_set_phy_cfg
3304 * @hw: pointer to the HW struct
3305 * @pi: port info structure of the interested logical port
3306 * @cfg: structure with PHY configuration data to be set
3307 * @cd: pointer to command details structure or NULL
3308 *
3309 * Set the various PHY configuration parameters supported on the Port.
3310 * One or more of the Set PHY config parameters may be ignored in an MFP
3311 * mode as the PF may not have the privilege to set some of the PHY Config
3312 * parameters. This status will be indicated by the command response (0x0601).
3313 */
3314enum ice_status
3315ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3316		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3317{
3318	struct ice_aq_desc desc;
3319	enum ice_status status;
3320
3321	if (!cfg)
3322		return ICE_ERR_PARAM;
3323
3324	/* Ensure that only valid bits of cfg->caps can be turned on. */
3325	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3326		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3327			  cfg->caps);
3328
3329		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3330	}
3331
3332	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3333	desc.params.set_phy.lport_num = pi->lport;
3334	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3335
3336	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3337	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3338		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
3339	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3340		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
3341	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3342	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3343		  cfg->low_power_ctrl_an);
3344	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3345	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3346	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3347		  cfg->link_fec_opt);
3348
3349	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3350
3351	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3352		status = ICE_SUCCESS;
3353
3354	if (!status)
3355		pi->phy.curr_user_phy_cfg = *cfg;
3356
3357	return status;
3358}
3359
3360/**
3361 * ice_update_link_info - update status of the HW network link
3362 * @pi: port info structure of the interested logical port
3363 */
3364enum ice_status ice_update_link_info(struct ice_port_info *pi)
3365{
3366	struct ice_link_status *li;
3367	enum ice_status status;
3368
3369	if (!pi)
3370		return ICE_ERR_PARAM;
3371
3372	li = &pi->phy.link_info;
3373
3374	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3375	if (status)
3376		return status;
3377
3378	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3379		struct ice_aqc_get_phy_caps_data *pcaps;
3380		struct ice_hw *hw;
3381
3382		hw = pi->hw;
3383		pcaps = (struct ice_aqc_get_phy_caps_data *)
3384			ice_malloc(hw, sizeof(*pcaps));
3385		if (!pcaps)
3386			return ICE_ERR_NO_MEMORY;
3387
3388		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3389					     pcaps, NULL);
3390
3391		if (status == ICE_SUCCESS)
3392			ice_memcpy(li->module_type, &pcaps->module_type,
3393				   sizeof(li->module_type),
3394				   ICE_NONDMA_TO_NONDMA);
3395
3396		ice_free(hw, pcaps);
3397	}
3398
3399	return status;
3400}
3401
3402/**
3403 * ice_cache_phy_user_req
3404 * @pi: port information structure
3405 * @cache_data: PHY logging data
3406 * @cache_mode: PHY logging mode
3407 *
3408 * Log the user request on (FC, FEC, SPEED) for later user.
3409 */
3410static void
3411ice_cache_phy_user_req(struct ice_port_info *pi,
3412		       struct ice_phy_cache_mode_data cache_data,
3413		       enum ice_phy_cache_mode cache_mode)
3414{
3415	if (!pi)
3416		return;
3417
3418	switch (cache_mode) {
3419	case ICE_FC_MODE:
3420		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3421		break;
3422	case ICE_SPEED_MODE:
3423		pi->phy.curr_user_speed_req =
3424			cache_data.data.curr_user_speed_req;
3425		break;
3426	case ICE_FEC_MODE:
3427		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3428		break;
3429	default:
3430		break;
3431	}
3432}
3433
3434/**
3435 * ice_caps_to_fc_mode
3436 * @caps: PHY capabilities
3437 *
3438 * Convert PHY FC capabilities to ice FC mode
3439 */
3440enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3441{
3442	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3443	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3444		return ICE_FC_FULL;
3445
3446	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3447		return ICE_FC_TX_PAUSE;
3448
3449	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3450		return ICE_FC_RX_PAUSE;
3451
3452	return ICE_FC_NONE;
3453}
3454
3455/**
3456 * ice_caps_to_fec_mode
3457 * @caps: PHY capabilities
3458 * @fec_options: Link FEC options
3459 *
3460 * Convert PHY FEC capabilities to ice FEC mode
3461 */
3462enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3463{
3464	if (caps & ICE_AQC_PHY_EN_AUTO_FEC) {
3465		if (fec_options & ICE_AQC_PHY_FEC_DIS)
3466			return ICE_FEC_DIS_AUTO;
3467		else
3468			return ICE_FEC_AUTO;
3469	}
3470
3471	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3472			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3473			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3474			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3475		return ICE_FEC_BASER;
3476
3477	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3478			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3479			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3480		return ICE_FEC_RS;
3481
3482	return ICE_FEC_NONE;
3483}
3484
3485/**
3486 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3487 * @pi: port information structure
3488 * @cfg: PHY configuration data to set FC mode
3489 * @req_mode: FC mode to configure
3490 */
3491static enum ice_status
3492ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3493	       enum ice_fc_mode req_mode)
3494{
3495	struct ice_phy_cache_mode_data cache_data;
3496	u8 pause_mask = 0x0;
3497
3498	if (!pi || !cfg)
3499		return ICE_ERR_BAD_PTR;
3500	switch (req_mode) {
3501	case ICE_FC_AUTO:
3502	{
3503		struct ice_aqc_get_phy_caps_data *pcaps;
3504		enum ice_status status;
3505
3506		pcaps = (struct ice_aqc_get_phy_caps_data *)
3507			ice_malloc(pi->hw, sizeof(*pcaps));
3508		if (!pcaps)
3509			return ICE_ERR_NO_MEMORY;
3510		/* Query the value of FC that both the NIC and attached media
3511		 * can do.
3512		 */
3513		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3514					     pcaps, NULL);
3515		if (status) {
3516			ice_free(pi->hw, pcaps);
3517			return status;
3518		}
3519
3520		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3521		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3522
3523		ice_free(pi->hw, pcaps);
3524		break;
3525	}
3526	case ICE_FC_FULL:
3527		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3528		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3529		break;
3530	case ICE_FC_RX_PAUSE:
3531		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3532		break;
3533	case ICE_FC_TX_PAUSE:
3534		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3535		break;
3536	default:
3537		break;
3538	}
3539
3540	/* clear the old pause settings */
3541	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3542		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3543
3544	/* set the new capabilities */
3545	cfg->caps |= pause_mask;
3546
3547	/* Cache user FC request */
3548	cache_data.data.curr_user_fc_req = req_mode;
3549	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3550
3551	return ICE_SUCCESS;
3552}
3553
3554/**
3555 * ice_set_fc
3556 * @pi: port information structure
3557 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3558 * @ena_auto_link_update: enable automatic link update
3559 *
3560 * Set the requested flow control mode.
3561 */
3562enum ice_status
3563ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3564{
3565	struct ice_aqc_set_phy_cfg_data  cfg = { 0 };
3566	struct ice_aqc_get_phy_caps_data *pcaps;
3567	enum ice_status status;
3568	struct ice_hw *hw;
3569
3570	if (!pi || !aq_failures)
3571		return ICE_ERR_BAD_PTR;
3572
3573	*aq_failures = 0;
3574	hw = pi->hw;
3575
3576	pcaps = (struct ice_aqc_get_phy_caps_data *)
3577		ice_malloc(hw, sizeof(*pcaps));
3578	if (!pcaps)
3579		return ICE_ERR_NO_MEMORY;
3580
3581	/* Get the current PHY config */
3582	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3583				     pcaps, NULL);
3584
3585	if (status) {
3586		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3587		goto out;
3588	}
3589
3590	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3591
3592	/* Configure the set PHY data */
3593	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3594	if (status) {
3595		if (status != ICE_ERR_BAD_PTR)
3596			*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3597
3598		goto out;
3599	}
3600
3601	/* If the capabilities have changed, then set the new config */
3602	if (cfg.caps != pcaps->caps) {
3603		int retry_count, retry_max = 10;
3604
3605		/* Auto restart link so settings take effect */
3606		if (ena_auto_link_update)
3607			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3608
3609		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3610		if (status) {
3611			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3612			goto out;
3613		}
3614
3615		/* Update the link info
3616		 * It sometimes takes a really long time for link to
3617		 * come back from the atomic reset. Thus, we wait a
3618		 * little bit.
3619		 */
3620		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3621			status = ice_update_link_info(pi);
3622
3623			if (status == ICE_SUCCESS)
3624				break;
3625
3626			ice_msec_delay(100, true);
3627		}
3628
3629		if (status)
3630			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3631	}
3632
3633out:
3634	ice_free(hw, pcaps);
3635	return status;
3636}
3637
3638/**
3639 * ice_phy_caps_equals_cfg
3640 * @phy_caps: PHY capabilities
3641 * @phy_cfg: PHY configuration
3642 *
3643 * Helper function to determine if PHY capabilities matches PHY
3644 * configuration
3645 */
3646bool
3647ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3648			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3649{
3650	u8 caps_mask, cfg_mask;
3651
3652	if (!phy_caps || !phy_cfg)
3653		return false;
3654
3655	/* These bits are not common between capabilities and configuration.
3656	 * Do not use them to determine equality.
3657	 */
3658	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3659					      ICE_AQC_PHY_EN_MOD_QUAL);
3660	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3661
3662	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3663	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3664	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3665	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3666	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3667	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3668	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3669		return false;
3670
3671	return true;
3672}
3673
3674/**
3675 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3676 * @pi: port information structure
3677 * @caps: PHY ability structure to copy data from
3678 * @cfg: PHY configuration structure to copy data to
3679 *
3680 * Helper function to copy AQC PHY get ability data to PHY set configuration
3681 * data structure
3682 */
3683void
3684ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3685			 struct ice_aqc_get_phy_caps_data *caps,
3686			 struct ice_aqc_set_phy_cfg_data *cfg)
3687{
3688	if (!pi || !caps || !cfg)
3689		return;
3690
3691	ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
3692	cfg->phy_type_low = caps->phy_type_low;
3693	cfg->phy_type_high = caps->phy_type_high;
3694	cfg->caps = caps->caps;
3695	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3696	cfg->eee_cap = caps->eee_cap;
3697	cfg->eeer_value = caps->eeer_value;
3698	cfg->link_fec_opt = caps->link_fec_options;
3699	cfg->module_compliance_enforcement =
3700		caps->module_compliance_enforcement;
3701}
3702
3703/**
3704 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3705 * @pi: port information structure
3706 * @cfg: PHY configuration data to set FEC mode
3707 * @fec: FEC mode to configure
3708 */
3709enum ice_status
3710ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3711		enum ice_fec_mode fec)
3712{
3713	struct ice_aqc_get_phy_caps_data *pcaps;
3714	enum ice_status status = ICE_SUCCESS;
3715	struct ice_hw *hw;
3716
3717	if (!pi || !cfg)
3718		return ICE_ERR_BAD_PTR;
3719
3720	hw = pi->hw;
3721
3722	pcaps = (struct ice_aqc_get_phy_caps_data *)
3723		ice_malloc(hw, sizeof(*pcaps));
3724	if (!pcaps)
3725		return ICE_ERR_NO_MEMORY;
3726
3727	status = ice_aq_get_phy_caps(pi, false,
3728				     (ice_fw_supports_report_dflt_cfg(hw) ?
3729				      ICE_AQC_REPORT_DFLT_CFG :
3730				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3731
3732	if (status)
3733		goto out;
3734
3735	cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
3736	cfg->link_fec_opt = pcaps->link_fec_options;
3737
3738	switch (fec) {
3739	case ICE_FEC_BASER:
3740		/* Clear RS bits, and AND BASE-R ability
3741		 * bits and OR request bits.
3742		 */
3743		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3744			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3745		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3746			ICE_AQC_PHY_FEC_25G_KR_REQ;
3747		break;
3748	case ICE_FEC_RS:
3749		/* Clear BASE-R bits, and AND RS ability
3750		 * bits and OR request bits.
3751		 */
3752		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3753		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3754			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3755		break;
3756	case ICE_FEC_NONE:
3757		/* Clear all FEC option bits. */
3758		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3759		break;
3760	case ICE_FEC_DIS_AUTO:
3761		/* Set No FEC and auto FEC */
3762		if (!ice_fw_supports_fec_dis_auto(hw)) {
3763			status = ICE_ERR_NOT_SUPPORTED;
3764			goto out;
3765		}
3766		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_DIS;
3767		/* fall-through */
3768	case ICE_FEC_AUTO:
3769		/* AND auto FEC bit, and all caps bits. */
3770		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3771		cfg->link_fec_opt |= pcaps->link_fec_options;
3772		break;
3773	default:
3774		status = ICE_ERR_PARAM;
3775		break;
3776	}
3777
3778	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw) &&
3779	    !ice_fw_supports_report_dflt_cfg(pi->hw)) {
3780		struct ice_link_default_override_tlv tlv;
3781
3782		if (ice_get_link_default_override(&tlv, pi))
3783			goto out;
3784
3785		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3786		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3787			cfg->link_fec_opt = tlv.fec_options;
3788	}
3789
3790out:
3791	ice_free(hw, pcaps);
3792
3793	return status;
3794}
3795
3796/**
3797 * ice_get_link_status - get status of the HW network link
3798 * @pi: port information structure
3799 * @link_up: pointer to bool (true/false = linkup/linkdown)
3800 *
3801 * Variable link_up is true if link is up, false if link is down.
3802 * The variable link_up is invalid if status is non zero. As a
3803 * result of this call, link status reporting becomes enabled
3804 */
3805enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3806{
3807	struct ice_phy_info *phy_info;
3808	enum ice_status status = ICE_SUCCESS;
3809
3810	if (!pi || !link_up)
3811		return ICE_ERR_PARAM;
3812
3813	phy_info = &pi->phy;
3814
3815	if (phy_info->get_link_info) {
3816		status = ice_update_link_info(pi);
3817
3818		if (status)
3819			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3820				  status);
3821	}
3822
3823	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3824
3825	return status;
3826}
3827
3828/**
3829 * ice_aq_set_link_restart_an
3830 * @pi: pointer to the port information structure
3831 * @ena_link: if true: enable link, if false: disable link
3832 * @cd: pointer to command details structure or NULL
3833 *
3834 * Sets up the link and restarts the Auto-Negotiation over the link.
3835 */
3836enum ice_status
3837ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3838			   struct ice_sq_cd *cd)
3839{
3840	enum ice_status status = ICE_ERR_AQ_ERROR;
3841	struct ice_aqc_restart_an *cmd;
3842	struct ice_aq_desc desc;
3843
3844	cmd = &desc.params.restart_an;
3845
3846	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3847
3848	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3849	cmd->lport_num = pi->lport;
3850	if (ena_link)
3851		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3852	else
3853		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3854
3855	status = ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3856	if (status)
3857		return status;
3858
3859	if (ena_link)
3860		pi->phy.curr_user_phy_cfg.caps |= ICE_AQC_PHY_EN_LINK;
3861	else
3862		pi->phy.curr_user_phy_cfg.caps &= ~ICE_AQC_PHY_EN_LINK;
3863
3864	return ICE_SUCCESS;
3865}
3866
3867/**
3868 * ice_aq_set_event_mask
3869 * @hw: pointer to the HW struct
3870 * @port_num: port number of the physical function
3871 * @mask: event mask to be set
3872 * @cd: pointer to command details structure or NULL
3873 *
3874 * Set event mask (0x0613)
3875 */
3876enum ice_status
3877ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3878		      struct ice_sq_cd *cd)
3879{
3880	struct ice_aqc_set_event_mask *cmd;
3881	struct ice_aq_desc desc;
3882
3883	cmd = &desc.params.set_event_mask;
3884
3885	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3886
3887	cmd->lport_num = port_num;
3888
3889	cmd->event_mask = CPU_TO_LE16(mask);
3890	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3891}
3892
3893/**
3894 * ice_aq_set_mac_loopback
3895 * @hw: pointer to the HW struct
3896 * @ena_lpbk: Enable or Disable loopback
3897 * @cd: pointer to command details structure or NULL
3898 *
3899 * Enable/disable loopback on a given port
3900 */
3901enum ice_status
3902ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3903{
3904	struct ice_aqc_set_mac_lb *cmd;
3905	struct ice_aq_desc desc;
3906
3907	cmd = &desc.params.set_mac_lb;
3908
3909	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3910	if (ena_lpbk)
3911		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3912
3913	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3914}
3915
3916/**
3917 * ice_aq_set_port_id_led
3918 * @pi: pointer to the port information
3919 * @is_orig_mode: is this LED set to original mode (by the net-list)
3920 * @cd: pointer to command details structure or NULL
3921 *
3922 * Set LED value for the given port (0x06e9)
3923 */
3924enum ice_status
3925ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3926		       struct ice_sq_cd *cd)
3927{
3928	struct ice_aqc_set_port_id_led *cmd;
3929	struct ice_hw *hw = pi->hw;
3930	struct ice_aq_desc desc;
3931
3932	cmd = &desc.params.set_port_id_led;
3933
3934	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3935
3936	if (is_orig_mode)
3937		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3938	else
3939		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3940
3941	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3942}
3943
3944/**
3945 * ice_aq_sff_eeprom
3946 * @hw: pointer to the HW struct
3947 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3948 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3949 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3950 * @page: QSFP page
3951 * @set_page: set or ignore the page
3952 * @data: pointer to data buffer to be read/written to the I2C device.
3953 * @length: 1-16 for read, 1 for write.
3954 * @write: 0 read, 1 for write.
3955 * @cd: pointer to command details structure or NULL
3956 *
3957 * Read/Write SFF EEPROM (0x06EE)
3958 */
3959enum ice_status
3960ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3961		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3962		  bool write, struct ice_sq_cd *cd)
3963{
3964	struct ice_aqc_sff_eeprom *cmd;
3965	struct ice_aq_desc desc;
3966	enum ice_status status;
3967
3968	if (!data || (mem_addr & 0xff00))
3969		return ICE_ERR_PARAM;
3970
3971	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3972	cmd = &desc.params.read_write_sff_param;
3973	desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD);
3974	cmd->lport_num = (u8)(lport & 0xff);
3975	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3976	cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
3977					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3978					((set_page <<
3979					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3980					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3981	cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
3982	cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3983	if (write)
3984		cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
3985
3986	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3987	return status;
3988}
3989
3990/**
3991 * ice_aq_prog_topo_dev_nvm
3992 * @hw: pointer to the hardware structure
3993 * @topo_params: pointer to structure storing topology parameters for a device
3994 * @cd: pointer to command details structure or NULL
3995 *
3996 * Program Topology Device NVM (0x06F2)
3997 *
3998 */
3999enum ice_status
4000ice_aq_prog_topo_dev_nvm(struct ice_hw *hw,
4001			 struct ice_aqc_link_topo_params *topo_params,
4002			 struct ice_sq_cd *cd)
4003{
4004	struct ice_aqc_prog_topo_dev_nvm *cmd;
4005	struct ice_aq_desc desc;
4006
4007	cmd = &desc.params.prog_topo_dev_nvm;
4008
4009	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_prog_topo_dev_nvm);
4010
4011	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
4012		   ICE_NONDMA_TO_NONDMA);
4013
4014	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4015}
4016
4017/**
4018 * ice_aq_read_topo_dev_nvm
4019 * @hw: pointer to the hardware structure
4020 * @topo_params: pointer to structure storing topology parameters for a device
4021 * @start_address: byte offset in the topology device NVM
4022 * @data: pointer to data buffer
4023 * @data_size: number of bytes to be read from the topology device NVM
4024 * @cd: pointer to command details structure or NULL
4025 * Read Topology Device NVM (0x06F3)
4026 *
4027 */
4028enum ice_status
4029ice_aq_read_topo_dev_nvm(struct ice_hw *hw,
4030			 struct ice_aqc_link_topo_params *topo_params,
4031			 u32 start_address, u8 *data, u8 data_size,
4032			 struct ice_sq_cd *cd)
4033{
4034	struct ice_aqc_read_topo_dev_nvm *cmd;
4035	struct ice_aq_desc desc;
4036	enum ice_status status;
4037
4038	if (!data || data_size == 0 ||
4039	    data_size > ICE_AQC_READ_TOPO_DEV_NVM_DATA_READ_SIZE)
4040		return ICE_ERR_PARAM;
4041
4042	cmd = &desc.params.read_topo_dev_nvm;
4043
4044	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_topo_dev_nvm);
4045
4046	desc.datalen = CPU_TO_LE16(data_size);
4047	ice_memcpy(&cmd->topo_params, topo_params, sizeof(*topo_params),
4048		   ICE_NONDMA_TO_NONDMA);
4049	cmd->start_address = CPU_TO_LE32(start_address);
4050
4051	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4052	if (status)
4053		return status;
4054
4055	ice_memcpy(data, cmd->data_read, data_size, ICE_NONDMA_TO_NONDMA);
4056
4057	return ICE_SUCCESS;
4058}
4059
4060static u16 ice_lut_type_to_size(u16 lut_type)
4061{
4062	switch (lut_type) {
4063	case ICE_LUT_VSI:
4064		return ICE_LUT_VSI_SIZE;
4065	case ICE_LUT_GLOBAL:
4066		return ICE_LUT_GLOBAL_SIZE;
4067	case ICE_LUT_PF:
4068		return ICE_LUT_PF_SIZE;
4069	case ICE_LUT_PF_SMALL:
4070		return ICE_LUT_PF_SMALL_SIZE;
4071	default:
4072		return 0;
4073	}
4074}
4075
4076static u16 ice_lut_size_to_flag(u16 lut_size)
4077{
4078	u16 f = 0;
4079
4080	switch (lut_size) {
4081	case ICE_LUT_GLOBAL_SIZE:
4082		f = ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG;
4083		break;
4084	case ICE_LUT_PF_SIZE:
4085		f = ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG;
4086		break;
4087	default:
4088		break;
4089	}
4090	return f << ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S;
4091}
4092
4093int ice_lut_size_to_type(int lut_size)
4094{
4095	switch (lut_size) {
4096	case ICE_LUT_VSI_SIZE:
4097		return ICE_LUT_VSI;
4098	case ICE_LUT_GLOBAL_SIZE:
4099		return ICE_LUT_GLOBAL;
4100	case ICE_LUT_PF_SIZE:
4101		return ICE_LUT_PF;
4102	case ICE_LUT_PF_SMALL_SIZE:
4103		return ICE_LUT_PF_SMALL;
4104	default:
4105		return -1;
4106	}
4107}
4108
4109/**
4110 * __ice_aq_get_set_rss_lut
4111 * @hw: pointer to the hardware structure
4112 * @params: RSS LUT parameters
4113 * @set: set true to set the table, false to get the table
4114 *
4115 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4116 */
4117static enum ice_status
4118__ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
4119{
4120	u16 flags, vsi_id, lut_type, lut_size, glob_lut_idx = 0, vsi_handle;
4121	struct ice_aqc_get_set_rss_lut *cmd_resp;
4122	struct ice_aq_desc desc;
4123	enum ice_status status;
4124	u8 *lut;
4125
4126	if (!params)
4127		return ICE_ERR_PARAM;
4128
4129	vsi_handle = params->vsi_handle;
4130	lut = params->lut;
4131	lut_size = ice_lut_type_to_size(params->lut_type);
4132	lut_type = params->lut_type & ICE_LUT_TYPE_MASK;
4133	cmd_resp = &desc.params.get_set_rss_lut;
4134	if (lut_type == ICE_LUT_GLOBAL)
4135		glob_lut_idx = params->global_lut_id;
4136
4137	if (!lut || !lut_size || !ice_is_vsi_valid(hw, vsi_handle))
4138		return ICE_ERR_PARAM;
4139
4140	if (lut_size > params->lut_size)
4141		return ICE_ERR_INVAL_SIZE;
4142
4143	if (set && lut_size != params->lut_size)
4144		return ICE_ERR_PARAM;
4145
4146	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4147
4148	if (set) {
4149		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
4150		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4151	} else {
4152		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
4153	}
4154
4155	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
4156					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
4157					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
4158				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
4159
4160	flags = ice_lut_size_to_flag(lut_size) |
4161		 ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
4162		  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M) |
4163		 ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
4164		  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
4165
4166	cmd_resp->flags = CPU_TO_LE16(flags);
4167	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4168	params->lut_size = LE16_TO_CPU(desc.datalen);
4169	return status;
4170}
4171
4172/**
4173 * ice_aq_get_rss_lut
4174 * @hw: pointer to the hardware structure
4175 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4176 *
4177 * get the RSS lookup table, PF or VSI type
4178 */
4179enum ice_status
4180ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4181{
4182	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4183}
4184
4185/**
4186 * ice_aq_set_rss_lut
4187 * @hw: pointer to the hardware structure
4188 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4189 *
4190 * set the RSS lookup table, PF or VSI type
4191 */
4192enum ice_status
4193ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4194{
4195	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4196}
4197
4198/**
4199 * __ice_aq_get_set_rss_key
4200 * @hw: pointer to the HW struct
4201 * @vsi_id: VSI FW index
4202 * @key: pointer to key info struct
4203 * @set: set true to set the key, false to get the key
4204 *
4205 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4206 */
4207static enum
4208ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4209				    struct ice_aqc_get_set_rss_keys *key,
4210				    bool set)
4211{
4212	struct ice_aqc_get_set_rss_key *cmd_resp;
4213	u16 key_size = sizeof(*key);
4214	struct ice_aq_desc desc;
4215
4216	cmd_resp = &desc.params.get_set_rss_key;
4217
4218	if (set) {
4219		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4220		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4221	} else {
4222		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4223	}
4224
4225	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
4226					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
4227					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
4228				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
4229
4230	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4231}
4232
4233/**
4234 * ice_aq_get_rss_key
4235 * @hw: pointer to the HW struct
4236 * @vsi_handle: software VSI handle
4237 * @key: pointer to key info struct
4238 *
4239 * get the RSS key per VSI
4240 */
4241enum ice_status
4242ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4243		   struct ice_aqc_get_set_rss_keys *key)
4244{
4245	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4246		return ICE_ERR_PARAM;
4247
4248	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4249					key, false);
4250}
4251
4252/**
4253 * ice_aq_set_rss_key
4254 * @hw: pointer to the HW struct
4255 * @vsi_handle: software VSI handle
4256 * @keys: pointer to key info struct
4257 *
4258 * set the RSS key per VSI
4259 */
4260enum ice_status
4261ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4262		   struct ice_aqc_get_set_rss_keys *keys)
4263{
4264	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4265		return ICE_ERR_PARAM;
4266
4267	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4268					keys, true);
4269}
4270
4271/**
4272 * ice_aq_add_lan_txq
4273 * @hw: pointer to the hardware structure
4274 * @num_qgrps: Number of added queue groups
4275 * @qg_list: list of queue groups to be added
4276 * @buf_size: size of buffer for indirect command
4277 * @cd: pointer to command details structure or NULL
4278 *
4279 * Add Tx LAN queue (0x0C30)
4280 *
4281 * NOTE:
4282 * Prior to calling add Tx LAN queue:
4283 * Initialize the following as part of the Tx queue context:
4284 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4285 * Cache profile and Packet shaper profile.
4286 *
4287 * After add Tx LAN queue AQ command is completed:
4288 * Interrupts should be associated with specific queues,
4289 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4290 * flow.
4291 */
4292enum ice_status
4293ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4294		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4295		   struct ice_sq_cd *cd)
4296{
4297	struct ice_aqc_add_tx_qgrp *list;
4298	struct ice_aqc_add_txqs *cmd;
4299	struct ice_aq_desc desc;
4300	u16 i, sum_size = 0;
4301
4302	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4303
4304	cmd = &desc.params.add_txqs;
4305
4306	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4307
4308	if (!qg_list)
4309		return ICE_ERR_PARAM;
4310
4311	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4312		return ICE_ERR_PARAM;
4313
4314	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4315		sum_size += ice_struct_size(list, txqs, list->num_txqs);
4316		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4317						      list->num_txqs);
4318	}
4319
4320	if (buf_size != sum_size)
4321		return ICE_ERR_PARAM;
4322
4323	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4324
4325	cmd->num_qgrps = num_qgrps;
4326
4327	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4328}
4329
4330/**
4331 * ice_aq_dis_lan_txq
4332 * @hw: pointer to the hardware structure
4333 * @num_qgrps: number of groups in the list
4334 * @qg_list: the list of groups to disable
4335 * @buf_size: the total size of the qg_list buffer in bytes
4336 * @rst_src: if called due to reset, specifies the reset source
4337 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4338 * @cd: pointer to command details structure or NULL
4339 *
4340 * Disable LAN Tx queue (0x0C31)
4341 */
4342static enum ice_status
4343ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4344		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4345		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4346		   struct ice_sq_cd *cd)
4347{
4348	struct ice_aqc_dis_txq_item *item;
4349	struct ice_aqc_dis_txqs *cmd;
4350	struct ice_aq_desc desc;
4351	enum ice_status status;
4352	u16 i, sz = 0;
4353
4354	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4355	cmd = &desc.params.dis_txqs;
4356	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4357
4358	/* qg_list can be NULL only in VM/VF reset flow */
4359	if (!qg_list && !rst_src)
4360		return ICE_ERR_PARAM;
4361
4362	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4363		return ICE_ERR_PARAM;
4364
4365	cmd->num_entries = num_qgrps;
4366
4367	cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4368					    ICE_AQC_Q_DIS_TIMEOUT_M);
4369
4370	switch (rst_src) {
4371	case ICE_VM_RESET:
4372		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4373		cmd->vmvf_and_timeout |=
4374			CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4375		break;
4376	case ICE_VF_RESET:
4377		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4378		/* In this case, FW expects vmvf_num to be absolute VF ID */
4379		cmd->vmvf_and_timeout |=
4380			CPU_TO_LE16((vmvf_num + hw->func_caps.vf_base_id) &
4381				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4382		break;
4383	case ICE_NO_RESET:
4384	default:
4385		break;
4386	}
4387
4388	/* flush pipe on time out */
4389	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4390	/* If no queue group info, we are in a reset flow. Issue the AQ */
4391	if (!qg_list)
4392		goto do_aq;
4393
4394	/* set RD bit to indicate that command buffer is provided by the driver
4395	 * and it needs to be read by the firmware
4396	 */
4397	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4398
4399	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4400		u16 item_size = ice_struct_size(item, q_id, item->num_qs);
4401
4402		/* If the num of queues is even, add 2 bytes of padding */
4403		if ((item->num_qs % 2) == 0)
4404			item_size += 2;
4405
4406		sz += item_size;
4407
4408		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4409	}
4410
4411	if (buf_size != sz)
4412		return ICE_ERR_PARAM;
4413
4414do_aq:
4415	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4416	if (status) {
4417		if (!qg_list)
4418			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4419				  vmvf_num, hw->adminq.sq_last_status);
4420		else
4421			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4422				  LE16_TO_CPU(qg_list[0].q_id[0]),
4423				  hw->adminq.sq_last_status);
4424	}
4425	return status;
4426}
4427
4428/**
4429 * ice_aq_move_recfg_lan_txq
4430 * @hw: pointer to the hardware structure
4431 * @num_qs: number of queues to move/reconfigure
4432 * @is_move: true if this operation involves node movement
4433 * @is_tc_change: true if this operation involves a TC change
4434 * @subseq_call: true if this operation is a subsequent call
4435 * @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
4436 * @timeout: timeout in units of 100 usec (valid values 0-50)
4437 * @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
4438 * @buf: struct containing src/dest TEID and per-queue info
4439 * @buf_size: size of buffer for indirect command
4440 * @txqs_moved: out param, number of queues successfully moved
4441 * @cd: pointer to command details structure or NULL
4442 *
4443 * Move / Reconfigure Tx LAN queues (0x0C32)
4444 */
4445enum ice_status
4446ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
4447			  bool is_tc_change, bool subseq_call, bool flush_pipe,
4448			  u8 timeout, u32 *blocked_cgds,
4449			  struct ice_aqc_move_txqs_data *buf, u16 buf_size,
4450			  u8 *txqs_moved, struct ice_sq_cd *cd)
4451{
4452	struct ice_aqc_move_txqs *cmd;
4453	struct ice_aq_desc desc;
4454	enum ice_status status;
4455
4456	cmd = &desc.params.move_txqs;
4457	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
4458
4459#define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
4460	if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
4461		return ICE_ERR_PARAM;
4462
4463	if (is_tc_change && !flush_pipe && !blocked_cgds)
4464		return ICE_ERR_PARAM;
4465
4466	if (!is_move && !is_tc_change)
4467		return ICE_ERR_PARAM;
4468
4469	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4470
4471	if (is_move)
4472		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
4473
4474	if (is_tc_change)
4475		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
4476
4477	if (subseq_call)
4478		cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
4479
4480	if (flush_pipe)
4481		cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
4482
4483	cmd->num_qs = num_qs;
4484	cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
4485			ICE_AQC_Q_CMD_TIMEOUT_M);
4486
4487	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4488
4489	if (!status && txqs_moved)
4490		*txqs_moved = cmd->num_qs;
4491
4492	if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
4493	    is_tc_change && !flush_pipe)
4494		*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
4495
4496	return status;
4497}
4498
4499/**
4500 * ice_aq_add_rdma_qsets
4501 * @hw: pointer to the hardware structure
4502 * @num_qset_grps: Number of RDMA Qset groups
4503 * @qset_list: list of qset groups to be added
4504 * @buf_size: size of buffer for indirect command
4505 * @cd: pointer to command details structure or NULL
4506 *
4507 * Add Tx RDMA Qsets (0x0C33)
4508 */
4509enum ice_status
4510ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4511		      struct ice_aqc_add_rdma_qset_data *qset_list,
4512		      u16 buf_size, struct ice_sq_cd *cd)
4513{
4514	struct ice_aqc_add_rdma_qset_data *list;
4515	struct ice_aqc_add_rdma_qset *cmd;
4516	struct ice_aq_desc desc;
4517	u16 i, sum_size = 0;
4518
4519	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
4520
4521	cmd = &desc.params.add_rdma_qset;
4522
4523	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4524
4525	if (!qset_list)
4526		return ICE_ERR_PARAM;
4527
4528	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4529		return ICE_ERR_PARAM;
4530
4531	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4532		u16 num_qsets = LE16_TO_CPU(list->num_qsets);
4533
4534		sum_size += ice_struct_size(list, rdma_qsets, num_qsets);
4535		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4536							     num_qsets);
4537	}
4538
4539	if (buf_size != sum_size)
4540		return ICE_ERR_PARAM;
4541
4542	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
4543
4544	cmd->num_qset_grps = num_qset_grps;
4545
4546	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4547}
4548
4549/* End of FW Admin Queue command wrappers */
4550
4551/**
4552 * ice_write_byte - write a byte to a packed context structure
4553 * @src_ctx:  the context structure to read from
4554 * @dest_ctx: the context to be written to
4555 * @ce_info:  a description of the struct to be filled
4556 */
4557static void
4558ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4559{
4560	u8 src_byte, dest_byte, mask;
4561	u8 *from, *dest;
4562	u16 shift_width;
4563
4564	/* copy from the next struct field */
4565	from = src_ctx + ce_info->offset;
4566
4567	/* prepare the bits and mask */
4568	shift_width = ce_info->lsb % 8;
4569	mask = (u8)(BIT(ce_info->width) - 1);
4570
4571	src_byte = *from;
4572	src_byte &= mask;
4573
4574	/* shift to correct alignment */
4575	mask <<= shift_width;
4576	src_byte <<= shift_width;
4577
4578	/* get the current bits from the target bit string */
4579	dest = dest_ctx + (ce_info->lsb / 8);
4580
4581	ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4582
4583	dest_byte &= ~mask;	/* get the bits not changing */
4584	dest_byte |= src_byte;	/* add in the new bits */
4585
4586	/* put it all back */
4587	ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4588}
4589
4590/**
4591 * ice_write_word - write a word to a packed context structure
4592 * @src_ctx:  the context structure to read from
4593 * @dest_ctx: the context to be written to
4594 * @ce_info:  a description of the struct to be filled
4595 */
4596static void
4597ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4598{
4599	u16 src_word, mask;
4600	__le16 dest_word;
4601	u8 *from, *dest;
4602	u16 shift_width;
4603
4604	/* copy from the next struct field */
4605	from = src_ctx + ce_info->offset;
4606
4607	/* prepare the bits and mask */
4608	shift_width = ce_info->lsb % 8;
4609	mask = BIT(ce_info->width) - 1;
4610
4611	/* don't swizzle the bits until after the mask because the mask bits
4612	 * will be in a different bit position on big endian machines
4613	 */
4614	src_word = *(u16 *)from;
4615	src_word &= mask;
4616
4617	/* shift to correct alignment */
4618	mask <<= shift_width;
4619	src_word <<= shift_width;
4620
4621	/* get the current bits from the target bit string */
4622	dest = dest_ctx + (ce_info->lsb / 8);
4623
4624	ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
4625
4626	dest_word &= ~(CPU_TO_LE16(mask));	/* get the bits not changing */
4627	dest_word |= CPU_TO_LE16(src_word);	/* add in the new bits */
4628
4629	/* put it all back */
4630	ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4631}
4632
4633/**
4634 * ice_write_dword - write a dword to a packed context structure
4635 * @src_ctx:  the context structure to read from
4636 * @dest_ctx: the context to be written to
4637 * @ce_info:  a description of the struct to be filled
4638 */
4639static void
4640ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4641{
4642	u32 src_dword, mask;
4643	__le32 dest_dword;
4644	u8 *from, *dest;
4645	u16 shift_width;
4646
4647	/* copy from the next struct field */
4648	from = src_ctx + ce_info->offset;
4649
4650	/* prepare the bits and mask */
4651	shift_width = ce_info->lsb % 8;
4652
4653	/* if the field width is exactly 32 on an x86 machine, then the shift
4654	 * operation will not work because the SHL instructions count is masked
4655	 * to 5 bits so the shift will do nothing
4656	 */
4657	if (ce_info->width < 32)
4658		mask = BIT(ce_info->width) - 1;
4659	else
4660		mask = (u32)~0;
4661
4662	/* don't swizzle the bits until after the mask because the mask bits
4663	 * will be in a different bit position on big endian machines
4664	 */
4665	src_dword = *(u32 *)from;
4666	src_dword &= mask;
4667
4668	/* shift to correct alignment */
4669	mask <<= shift_width;
4670	src_dword <<= shift_width;
4671
4672	/* get the current bits from the target bit string */
4673	dest = dest_ctx + (ce_info->lsb / 8);
4674
4675	ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
4676
4677	dest_dword &= ~(CPU_TO_LE32(mask));	/* get the bits not changing */
4678	dest_dword |= CPU_TO_LE32(src_dword);	/* add in the new bits */
4679
4680	/* put it all back */
4681	ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4682}
4683
4684/**
4685 * ice_write_qword - write a qword to a packed context structure
4686 * @src_ctx:  the context structure to read from
4687 * @dest_ctx: the context to be written to
4688 * @ce_info:  a description of the struct to be filled
4689 */
4690static void
4691ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4692{
4693	u64 src_qword, mask;
4694	__le64 dest_qword;
4695	u8 *from, *dest;
4696	u16 shift_width;
4697
4698	/* copy from the next struct field */
4699	from = src_ctx + ce_info->offset;
4700
4701	/* prepare the bits and mask */
4702	shift_width = ce_info->lsb % 8;
4703
4704	/* if the field width is exactly 64 on an x86 machine, then the shift
4705	 * operation will not work because the SHL instructions count is masked
4706	 * to 6 bits so the shift will do nothing
4707	 */
4708	if (ce_info->width < 64)
4709		mask = BIT_ULL(ce_info->width) - 1;
4710	else
4711		mask = (u64)~0;
4712
4713	/* don't swizzle the bits until after the mask because the mask bits
4714	 * will be in a different bit position on big endian machines
4715	 */
4716	src_qword = *(u64 *)from;
4717	src_qword &= mask;
4718
4719	/* shift to correct alignment */
4720	mask <<= shift_width;
4721	src_qword <<= shift_width;
4722
4723	/* get the current bits from the target bit string */
4724	dest = dest_ctx + (ce_info->lsb / 8);
4725
4726	ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
4727
4728	dest_qword &= ~(CPU_TO_LE64(mask));	/* get the bits not changing */
4729	dest_qword |= CPU_TO_LE64(src_qword);	/* add in the new bits */
4730
4731	/* put it all back */
4732	ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4733}
4734
4735/**
4736 * ice_set_ctx - set context bits in packed structure
4737 * @hw: pointer to the hardware structure
4738 * @src_ctx:  pointer to a generic non-packed context structure
4739 * @dest_ctx: pointer to memory for the packed structure
4740 * @ce_info:  a description of the structure to be transformed
4741 */
4742enum ice_status
4743ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4744	    const struct ice_ctx_ele *ce_info)
4745{
4746	int f;
4747
4748	for (f = 0; ce_info[f].width; f++) {
4749		/* We have to deal with each element of the FW response
4750		 * using the correct size so that we are correct regardless
4751		 * of the endianness of the machine.
4752		 */
4753		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4754			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4755				  f, ce_info[f].width, ce_info[f].size_of);
4756			continue;
4757		}
4758		switch (ce_info[f].size_of) {
4759		case sizeof(u8):
4760			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4761			break;
4762		case sizeof(u16):
4763			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4764			break;
4765		case sizeof(u32):
4766			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4767			break;
4768		case sizeof(u64):
4769			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4770			break;
4771		default:
4772			return ICE_ERR_INVAL_SIZE;
4773		}
4774	}
4775
4776	return ICE_SUCCESS;
4777}
4778
4779/**
4780 * ice_aq_get_internal_data
4781 * @hw: pointer to the hardware structure
4782 * @cluster_id: specific cluster to dump
4783 * @table_id: table ID within cluster
4784 * @start: index of line in the block to read
4785 * @buf: dump buffer
4786 * @buf_size: dump buffer size
4787 * @ret_buf_size: return buffer size (returned by FW)
4788 * @ret_next_cluster: next cluster to read (returned by FW)
4789 * @ret_next_table: next block to read (returned by FW)
4790 * @ret_next_index: next index to read (returned by FW)
4791 * @cd: pointer to command details structure
4792 *
4793 * Get internal FW/HW data (0xFF08) for debug purposes.
4794 */
4795enum ice_status
4796ice_aq_get_internal_data(struct ice_hw *hw, u16 cluster_id, u16 table_id,
4797			 u32 start, void *buf, u16 buf_size, u16 *ret_buf_size,
4798			 u16 *ret_next_cluster, u16 *ret_next_table,
4799			 u32 *ret_next_index, struct ice_sq_cd *cd)
4800{
4801	struct ice_aqc_debug_dump_internals *cmd;
4802	struct ice_aq_desc desc;
4803	enum ice_status status;
4804
4805	cmd = &desc.params.debug_dump;
4806
4807	if (buf_size == 0 || !buf)
4808		return ICE_ERR_PARAM;
4809
4810	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_debug_dump_internals);
4811
4812	cmd->cluster_id = CPU_TO_LE16(cluster_id);
4813	cmd->table_id = CPU_TO_LE16(table_id);
4814	cmd->idx = CPU_TO_LE32(start);
4815
4816	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4817
4818	if (!status) {
4819		if (ret_buf_size)
4820			*ret_buf_size = LE16_TO_CPU(desc.datalen);
4821		if (ret_next_cluster)
4822			*ret_next_cluster = LE16_TO_CPU(cmd->cluster_id);
4823		if (ret_next_table)
4824			*ret_next_table = LE16_TO_CPU(cmd->table_id);
4825		if (ret_next_index)
4826			*ret_next_index = LE32_TO_CPU(cmd->idx);
4827	}
4828
4829	return status;
4830}
4831
4832/**
4833 * ice_read_byte - read context byte into struct
4834 * @src_ctx:  the context structure to read from
4835 * @dest_ctx: the context to be written to
4836 * @ce_info:  a description of the struct to be filled
4837 */
4838static void
4839ice_read_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4840{
4841	u8 dest_byte, mask;
4842	u8 *src, *target;
4843	u16 shift_width;
4844
4845	/* prepare the bits and mask */
4846	shift_width = ce_info->lsb % 8;
4847	mask = (u8)(BIT(ce_info->width) - 1);
4848
4849	/* shift to correct alignment */
4850	mask <<= shift_width;
4851
4852	/* get the current bits from the src bit string */
4853	src = src_ctx + (ce_info->lsb / 8);
4854
4855	ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4856
4857	dest_byte &= mask;
4858
4859	dest_byte >>= shift_width;
4860
4861	/* get the address from the struct field */
4862	target = dest_ctx + ce_info->offset;
4863
4864	/* put it back in the struct */
4865	ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4866}
4867
4868/**
4869 * ice_read_word - read context word into struct
4870 * @src_ctx:  the context structure to read from
4871 * @dest_ctx: the context to be written to
4872 * @ce_info:  a description of the struct to be filled
4873 */
4874static void
4875ice_read_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4876{
4877	u16 dest_word, mask;
4878	u8 *src, *target;
4879	__le16 src_word;
4880	u16 shift_width;
4881
4882	/* prepare the bits and mask */
4883	shift_width = ce_info->lsb % 8;
4884	mask = BIT(ce_info->width) - 1;
4885
4886	/* shift to correct alignment */
4887	mask <<= shift_width;
4888
4889	/* get the current bits from the src bit string */
4890	src = src_ctx + (ce_info->lsb / 8);
4891
4892	ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
4893
4894	/* the data in the memory is stored as little endian so mask it
4895	 * correctly
4896	 */
4897	src_word &= CPU_TO_LE16(mask);
4898
4899	/* get the data back into host order before shifting */
4900	dest_word = LE16_TO_CPU(src_word);
4901
4902	dest_word >>= shift_width;
4903
4904	/* get the address from the struct field */
4905	target = dest_ctx + ce_info->offset;
4906
4907	/* put it back in the struct */
4908	ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4909}
4910
4911/**
4912 * ice_read_dword - read context dword into struct
4913 * @src_ctx:  the context structure to read from
4914 * @dest_ctx: the context to be written to
4915 * @ce_info:  a description of the struct to be filled
4916 */
4917static void
4918ice_read_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4919{
4920	u32 dest_dword, mask;
4921	__le32 src_dword;
4922	u8 *src, *target;
4923	u16 shift_width;
4924
4925	/* prepare the bits and mask */
4926	shift_width = ce_info->lsb % 8;
4927
4928	/* if the field width is exactly 32 on an x86 machine, then the shift
4929	 * operation will not work because the SHL instructions count is masked
4930	 * to 5 bits so the shift will do nothing
4931	 */
4932	if (ce_info->width < 32)
4933		mask = BIT(ce_info->width) - 1;
4934	else
4935		mask = (u32)~0;
4936
4937	/* shift to correct alignment */
4938	mask <<= shift_width;
4939
4940	/* get the current bits from the src bit string */
4941	src = src_ctx + (ce_info->lsb / 8);
4942
4943	ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
4944
4945	/* the data in the memory is stored as little endian so mask it
4946	 * correctly
4947	 */
4948	src_dword &= CPU_TO_LE32(mask);
4949
4950	/* get the data back into host order before shifting */
4951	dest_dword = LE32_TO_CPU(src_dword);
4952
4953	dest_dword >>= shift_width;
4954
4955	/* get the address from the struct field */
4956	target = dest_ctx + ce_info->offset;
4957
4958	/* put it back in the struct */
4959	ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4960}
4961
4962/**
4963 * ice_read_qword - read context qword into struct
4964 * @src_ctx:  the context structure to read from
4965 * @dest_ctx: the context to be written to
4966 * @ce_info:  a description of the struct to be filled
4967 */
4968static void
4969ice_read_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4970{
4971	u64 dest_qword, mask;
4972	__le64 src_qword;
4973	u8 *src, *target;
4974	u16 shift_width;
4975
4976	/* prepare the bits and mask */
4977	shift_width = ce_info->lsb % 8;
4978
4979	/* if the field width is exactly 64 on an x86 machine, then the shift
4980	 * operation will not work because the SHL instructions count is masked
4981	 * to 6 bits so the shift will do nothing
4982	 */
4983	if (ce_info->width < 64)
4984		mask = BIT_ULL(ce_info->width) - 1;
4985	else
4986		mask = (u64)~0;
4987
4988	/* shift to correct alignment */
4989	mask <<= shift_width;
4990
4991	/* get the current bits from the src bit string */
4992	src = src_ctx + (ce_info->lsb / 8);
4993
4994	ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
4995
4996	/* the data in the memory is stored as little endian so mask it
4997	 * correctly
4998	 */
4999	src_qword &= CPU_TO_LE64(mask);
5000
5001	/* get the data back into host order before shifting */
5002	dest_qword = LE64_TO_CPU(src_qword);
5003
5004	dest_qword >>= shift_width;
5005
5006	/* get the address from the struct field */
5007	target = dest_ctx + ce_info->offset;
5008
5009	/* put it back in the struct */
5010	ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
5011}
5012
5013/**
5014 * ice_get_ctx - extract context bits from a packed structure
5015 * @src_ctx:  pointer to a generic packed context structure
5016 * @dest_ctx: pointer to a generic non-packed context structure
5017 * @ce_info:  a description of the structure to be read from
5018 */
5019enum ice_status
5020ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
5021{
5022	int f;
5023
5024	for (f = 0; ce_info[f].width; f++) {
5025		switch (ce_info[f].size_of) {
5026		case 1:
5027			ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
5028			break;
5029		case 2:
5030			ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
5031			break;
5032		case 4:
5033			ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
5034			break;
5035		case 8:
5036			ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
5037			break;
5038		default:
5039			/* nothing to do, just keep going */
5040			break;
5041		}
5042	}
5043
5044	return ICE_SUCCESS;
5045}
5046
5047/**
5048 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
5049 * @hw: pointer to the HW struct
5050 * @vsi_handle: software VSI handle
5051 * @tc: TC number
5052 * @q_handle: software queue handle
5053 */
5054struct ice_q_ctx *
5055ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
5056{
5057	struct ice_vsi_ctx *vsi;
5058	struct ice_q_ctx *q_ctx;
5059
5060	vsi = ice_get_vsi_ctx(hw, vsi_handle);
5061	if (!vsi)
5062		return NULL;
5063	if (q_handle >= vsi->num_lan_q_entries[tc])
5064		return NULL;
5065	if (!vsi->lan_q_ctx[tc])
5066		return NULL;
5067	q_ctx = vsi->lan_q_ctx[tc];
5068	return &q_ctx[q_handle];
5069}
5070
5071/**
5072 * ice_ena_vsi_txq
5073 * @pi: port information structure
5074 * @vsi_handle: software VSI handle
5075 * @tc: TC number
5076 * @q_handle: software queue handle
5077 * @num_qgrps: Number of added queue groups
5078 * @buf: list of queue groups to be added
5079 * @buf_size: size of buffer for indirect command
5080 * @cd: pointer to command details structure or NULL
5081 *
5082 * This function adds one LAN queue
5083 */
5084enum ice_status
5085ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
5086		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
5087		struct ice_sq_cd *cd)
5088{
5089	struct ice_aqc_txsched_elem_data node = { 0 };
5090	struct ice_sched_node *parent;
5091	struct ice_q_ctx *q_ctx;
5092	enum ice_status status;
5093	struct ice_hw *hw;
5094
5095	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5096		return ICE_ERR_CFG;
5097
5098	if (num_qgrps > 1 || buf->num_txqs > 1)
5099		return ICE_ERR_MAX_LIMIT;
5100
5101	hw = pi->hw;
5102
5103	if (!ice_is_vsi_valid(hw, vsi_handle))
5104		return ICE_ERR_PARAM;
5105
5106	ice_acquire_lock(&pi->sched_lock);
5107
5108	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
5109	if (!q_ctx) {
5110		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
5111			  q_handle);
5112		status = ICE_ERR_PARAM;
5113		goto ena_txq_exit;
5114	}
5115
5116	/* find a parent node */
5117	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5118					    ICE_SCHED_NODE_OWNER_LAN);
5119	if (!parent) {
5120		status = ICE_ERR_PARAM;
5121		goto ena_txq_exit;
5122	}
5123
5124	buf->parent_teid = parent->info.node_teid;
5125	node.parent_teid = parent->info.node_teid;
5126	/* Mark that the values in the "generic" section as valid. The default
5127	 * value in the "generic" section is zero. This means that :
5128	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
5129	 * - 0 priority among siblings, indicated by Bit 1-3.
5130	 * - WFQ, indicated by Bit 4.
5131	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
5132	 * Bit 5-6.
5133	 * - Bit 7 is reserved.
5134	 * Without setting the generic section as valid in valid_sections, the
5135	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
5136	 */
5137	buf->txqs[0].info.valid_sections =
5138		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5139		ICE_AQC_ELEM_VALID_EIR;
5140	buf->txqs[0].info.generic = 0;
5141	buf->txqs[0].info.cir_bw.bw_profile_idx =
5142		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5143	buf->txqs[0].info.cir_bw.bw_alloc =
5144		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5145	buf->txqs[0].info.eir_bw.bw_profile_idx =
5146		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5147	buf->txqs[0].info.eir_bw.bw_alloc =
5148		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5149
5150	/* add the LAN queue */
5151	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
5152	if (status != ICE_SUCCESS) {
5153		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
5154			  LE16_TO_CPU(buf->txqs[0].txq_id),
5155			  hw->adminq.sq_last_status);
5156		goto ena_txq_exit;
5157	}
5158
5159	node.node_teid = buf->txqs[0].q_teid;
5160	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5161	q_ctx->q_handle = q_handle;
5162	q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
5163
5164	/* add a leaf node into scheduler tree queue layer */
5165	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
5166	if (!status)
5167		status = ice_sched_replay_q_bw(pi, q_ctx);
5168
5169ena_txq_exit:
5170	ice_release_lock(&pi->sched_lock);
5171	return status;
5172}
5173
5174/**
5175 * ice_dis_vsi_txq
5176 * @pi: port information structure
5177 * @vsi_handle: software VSI handle
5178 * @tc: TC number
5179 * @num_queues: number of queues
5180 * @q_handles: pointer to software queue handle array
5181 * @q_ids: pointer to the q_id array
5182 * @q_teids: pointer to queue node teids
5183 * @rst_src: if called due to reset, specifies the reset source
5184 * @vmvf_num: the relative VM or VF number that is undergoing the reset
5185 * @cd: pointer to command details structure or NULL
5186 *
5187 * This function removes queues and their corresponding nodes in SW DB
5188 */
5189enum ice_status
5190ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
5191		u16 *q_handles, u16 *q_ids, u32 *q_teids,
5192		enum ice_disq_rst_src rst_src, u16 vmvf_num,
5193		struct ice_sq_cd *cd)
5194{
5195	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
5196	struct ice_aqc_dis_txq_item *qg_list;
5197	struct ice_q_ctx *q_ctx;
5198	struct ice_hw *hw;
5199	u16 i, buf_size;
5200
5201	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5202		return ICE_ERR_CFG;
5203
5204	hw = pi->hw;
5205
5206	if (!num_queues) {
5207		/* if queue is disabled already yet the disable queue command
5208		 * has to be sent to complete the VF reset, then call
5209		 * ice_aq_dis_lan_txq without any queue information
5210		 */
5211		if (rst_src)
5212			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5213						  vmvf_num, NULL);
5214		return ICE_ERR_CFG;
5215	}
5216
5217	buf_size = ice_struct_size(qg_list, q_id, 1);
5218	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
5219	if (!qg_list)
5220		return ICE_ERR_NO_MEMORY;
5221
5222	ice_acquire_lock(&pi->sched_lock);
5223
5224	for (i = 0; i < num_queues; i++) {
5225		struct ice_sched_node *node;
5226
5227		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5228		if (!node)
5229			continue;
5230		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5231		if (!q_ctx) {
5232			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5233				  q_handles[i]);
5234			continue;
5235		}
5236		if (q_ctx->q_handle != q_handles[i]) {
5237			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5238				  q_ctx->q_handle, q_handles[i]);
5239			continue;
5240		}
5241		qg_list->parent_teid = node->info.parent_teid;
5242		qg_list->num_qs = 1;
5243		qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
5244		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5245					    vmvf_num, cd);
5246
5247		if (status != ICE_SUCCESS)
5248			break;
5249		ice_free_sched_node(pi, node);
5250		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5251	}
5252	ice_release_lock(&pi->sched_lock);
5253	ice_free(hw, qg_list);
5254	return status;
5255}
5256
5257/**
5258 * ice_cfg_vsi_qs - configure the new/existing VSI queues
5259 * @pi: port information structure
5260 * @vsi_handle: software VSI handle
5261 * @tc_bitmap: TC bitmap
5262 * @maxqs: max queues array per TC
5263 * @owner: LAN or RDMA
5264 *
5265 * This function adds/updates the VSI queues per TC.
5266 */
5267static enum ice_status
5268ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5269	       u16 *maxqs, u8 owner)
5270{
5271	enum ice_status status = ICE_SUCCESS;
5272	u8 i;
5273
5274	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5275		return ICE_ERR_CFG;
5276
5277	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5278		return ICE_ERR_PARAM;
5279
5280	ice_acquire_lock(&pi->sched_lock);
5281
5282	ice_for_each_traffic_class(i) {
5283		/* configuration is possible only if TC node is present */
5284		if (!ice_sched_get_tc_node(pi, i))
5285			continue;
5286
5287		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5288					   ice_is_tc_ena(tc_bitmap, i));
5289		if (status)
5290			break;
5291	}
5292
5293	ice_release_lock(&pi->sched_lock);
5294	return status;
5295}
5296
5297/**
5298 * ice_cfg_vsi_lan - configure VSI LAN queues
5299 * @pi: port information structure
5300 * @vsi_handle: software VSI handle
5301 * @tc_bitmap: TC bitmap
5302 * @max_lanqs: max LAN queues array per TC
5303 *
5304 * This function adds/updates the VSI LAN queues per TC.
5305 */
5306enum ice_status
5307ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5308		u16 *max_lanqs)
5309{
5310	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5311			      ICE_SCHED_NODE_OWNER_LAN);
5312}
5313
5314/**
5315 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5316 * @pi: port information structure
5317 * @vsi_handle: software VSI handle
5318 * @tc_bitmap: TC bitmap
5319 * @max_rdmaqs: max RDMA queues array per TC
5320 *
5321 * This function adds/updates the VSI RDMA queues per TC.
5322 */
5323enum ice_status
5324ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5325		 u16 *max_rdmaqs)
5326{
5327	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5328			      ICE_SCHED_NODE_OWNER_RDMA);
5329}
5330
5331/**
5332 * ice_ena_vsi_rdma_qset
5333 * @pi: port information structure
5334 * @vsi_handle: software VSI handle
5335 * @tc: TC number
5336 * @rdma_qset: pointer to RDMA qset
5337 * @num_qsets: number of RDMA qsets
5338 * @qset_teid: pointer to qset node teids
5339 *
5340 * This function adds RDMA qset
5341 */
5342enum ice_status
5343ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5344		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5345{
5346	struct ice_aqc_txsched_elem_data node = { 0 };
5347	struct ice_aqc_add_rdma_qset_data *buf;
5348	struct ice_sched_node *parent;
5349	enum ice_status status;
5350	struct ice_hw *hw;
5351	u16 i, buf_size;
5352
5353	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5354		return ICE_ERR_CFG;
5355	hw = pi->hw;
5356
5357	if (!ice_is_vsi_valid(hw, vsi_handle))
5358		return ICE_ERR_PARAM;
5359
5360	buf_size = ice_struct_size(buf, rdma_qsets, num_qsets);
5361	buf = (struct ice_aqc_add_rdma_qset_data *)ice_malloc(hw, buf_size);
5362	if (!buf)
5363		return ICE_ERR_NO_MEMORY;
5364	ice_acquire_lock(&pi->sched_lock);
5365
5366	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5367					    ICE_SCHED_NODE_OWNER_RDMA);
5368	if (!parent) {
5369		status = ICE_ERR_PARAM;
5370		goto rdma_error_exit;
5371	}
5372	buf->parent_teid = parent->info.node_teid;
5373	node.parent_teid = parent->info.node_teid;
5374
5375	buf->num_qsets = CPU_TO_LE16(num_qsets);
5376	for (i = 0; i < num_qsets; i++) {
5377		buf->rdma_qsets[i].tx_qset_id = CPU_TO_LE16(rdma_qset[i]);
5378		buf->rdma_qsets[i].info.valid_sections =
5379			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5380			ICE_AQC_ELEM_VALID_EIR;
5381		buf->rdma_qsets[i].info.generic = 0;
5382		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5383			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5384		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5385			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5386		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5387			CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
5388		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5389			CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
5390	}
5391	status = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5392	if (status != ICE_SUCCESS) {
5393		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5394		goto rdma_error_exit;
5395	}
5396	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5397	for (i = 0; i < num_qsets; i++) {
5398		node.node_teid = buf->rdma_qsets[i].qset_teid;
5399		status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5400					    &node, NULL);
5401		if (status)
5402			break;
5403		qset_teid[i] = LE32_TO_CPU(node.node_teid);
5404	}
5405rdma_error_exit:
5406	ice_release_lock(&pi->sched_lock);
5407	ice_free(hw, buf);
5408	return status;
5409}
5410
5411/**
5412 * ice_dis_vsi_rdma_qset - free RDMA resources
5413 * @pi: port_info struct
5414 * @count: number of RDMA qsets to free
5415 * @qset_teid: TEID of qset node
5416 * @q_id: list of queue IDs being disabled
5417 */
5418enum ice_status
5419ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5420		      u16 *q_id)
5421{
5422	struct ice_aqc_dis_txq_item *qg_list;
5423	enum ice_status status = ICE_SUCCESS;
5424	struct ice_hw *hw;
5425	u16 qg_size;
5426	int i;
5427
5428	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5429		return ICE_ERR_CFG;
5430
5431	hw = pi->hw;
5432
5433	qg_size = ice_struct_size(qg_list, q_id, 1);
5434	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, qg_size);
5435	if (!qg_list)
5436		return ICE_ERR_NO_MEMORY;
5437
5438	ice_acquire_lock(&pi->sched_lock);
5439
5440	for (i = 0; i < count; i++) {
5441		struct ice_sched_node *node;
5442
5443		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5444		if (!node)
5445			continue;
5446
5447		qg_list->parent_teid = node->info.parent_teid;
5448		qg_list->num_qs = 1;
5449		qg_list->q_id[0] =
5450			CPU_TO_LE16(q_id[i] |
5451				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5452
5453		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5454					    ICE_NO_RESET, 0, NULL);
5455		if (status)
5456			break;
5457
5458		ice_free_sched_node(pi, node);
5459	}
5460
5461	ice_release_lock(&pi->sched_lock);
5462	ice_free(hw, qg_list);
5463	return status;
5464}
5465
5466/**
5467 * ice_aq_get_sensor_reading
5468 * @hw: pointer to the HW struct
5469 * @sensor: sensor type
5470 * @format: requested response format
5471 * @data: pointer to data to be read from the sensor
5472 * @cd: pointer to command details structure or NULL
5473 *
5474 * Get sensor reading (0x0632)
5475 */
5476enum ice_status
5477ice_aq_get_sensor_reading(struct ice_hw *hw, u8 sensor, u8 format,
5478			  struct ice_aqc_get_sensor_reading_resp *data,
5479			  struct ice_sq_cd *cd)
5480{
5481	struct ice_aqc_get_sensor_reading *cmd;
5482	struct ice_aq_desc desc;
5483	enum ice_status status;
5484
5485	if (!data)
5486		return ICE_ERR_PARAM;
5487
5488	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5489	cmd = &desc.params.get_sensor_reading;
5490	cmd->sensor = sensor;
5491	cmd->format = format;
5492
5493	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5494
5495	if (!status)
5496		ice_memcpy(data, &desc.params.get_sensor_reading_resp,
5497			   sizeof(*data), ICE_NONDMA_TO_NONDMA);
5498
5499	return status;
5500}
5501
5502/**
5503 * ice_is_main_vsi - checks whether the VSI is main VSI
5504 * @hw: pointer to the HW struct
5505 * @vsi_handle: VSI handle
5506 *
5507 * Checks whether the VSI is the main VSI (the first PF VSI created on
5508 * given PF).
5509 */
5510static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
5511{
5512	return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
5513}
5514
5515/**
5516 * ice_replay_pre_init - replay pre initialization
5517 * @hw: pointer to the HW struct
5518 * @sw: pointer to switch info struct for which function initializes filters
5519 *
5520 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5521 */
5522enum ice_status
5523ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
5524{
5525	enum ice_status status;
5526	u8 i;
5527
5528	/* Delete old entries from replay filter list head if there is any */
5529	ice_rm_sw_replay_rule_info(hw, sw);
5530	/* In start of replay, move entries into replay_rules list, it
5531	 * will allow adding rules entries back to filt_rules list,
5532	 * which is operational list.
5533	 */
5534	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5535		LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
5536				  &sw->recp_list[i].filt_replay_rules);
5537	ice_sched_replay_agg_vsi_preinit(hw);
5538
5539	status = ice_sched_replay_root_node_bw(hw->port_info);
5540	if (status)
5541		return status;
5542
5543	return ice_sched_replay_tc_node_bw(hw->port_info);
5544}
5545
5546/**
5547 * ice_replay_vsi - replay VSI configuration
5548 * @hw: pointer to the HW struct
5549 * @vsi_handle: driver VSI handle
5550 *
5551 * Restore all VSI configuration after reset. It is required to call this
5552 * function with main VSI first.
5553 */
5554enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5555{
5556	struct ice_switch_info *sw = hw->switch_info;
5557	struct ice_port_info *pi = hw->port_info;
5558	enum ice_status status;
5559
5560	if (!ice_is_vsi_valid(hw, vsi_handle))
5561		return ICE_ERR_PARAM;
5562
5563	/* Replay pre-initialization if there is any */
5564	if (ice_is_main_vsi(hw, vsi_handle)) {
5565		status = ice_replay_pre_init(hw, sw);
5566		if (status)
5567			return status;
5568	}
5569	/* Replay per VSI all RSS configurations */
5570	status = ice_replay_rss_cfg(hw, vsi_handle);
5571	if (status)
5572		return status;
5573	/* Replay per VSI all filters */
5574	status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
5575	if (!status)
5576		status = ice_replay_vsi_agg(hw, vsi_handle);
5577	return status;
5578}
5579
5580/**
5581 * ice_replay_post - post replay configuration cleanup
5582 * @hw: pointer to the HW struct
5583 *
5584 * Post replay cleanup.
5585 */
5586void ice_replay_post(struct ice_hw *hw)
5587{
5588	/* Delete old entries from replay filter list head */
5589	ice_rm_all_sw_replay_rule_info(hw);
5590	ice_sched_replay_agg(hw);
5591}
5592
5593/**
5594 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5595 * @hw: ptr to the hardware info
5596 * @reg: offset of 64 bit HW register to read from
5597 * @prev_stat_loaded: bool to specify if previous stats are loaded
5598 * @prev_stat: ptr to previous loaded stat value
5599 * @cur_stat: ptr to current stat value
5600 */
5601void
5602ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5603		  u64 *prev_stat, u64 *cur_stat)
5604{
5605	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5606
5607	/* device stats are not reset at PFR, they likely will not be zeroed
5608	 * when the driver starts. Thus, save the value from the first read
5609	 * without adding to the statistic value so that we report stats which
5610	 * count up from zero.
5611	 */
5612	if (!prev_stat_loaded) {
5613		*prev_stat = new_data;
5614		return;
5615	}
5616
5617	/* Calculate the difference between the new and old values, and then
5618	 * add it to the software stat value.
5619	 */
5620	if (new_data >= *prev_stat)
5621		*cur_stat += new_data - *prev_stat;
5622	else
5623		/* to manage the potential roll-over */
5624		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5625
5626	/* Update the previously stored value to prepare for next read */
5627	*prev_stat = new_data;
5628}
5629
5630/**
5631 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5632 * @hw: ptr to the hardware info
5633 * @reg: offset of HW register to read from
5634 * @prev_stat_loaded: bool to specify if previous stats are loaded
5635 * @prev_stat: ptr to previous loaded stat value
5636 * @cur_stat: ptr to current stat value
5637 */
5638void
5639ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5640		  u64 *prev_stat, u64 *cur_stat)
5641{
5642	u32 new_data;
5643
5644	new_data = rd32(hw, reg);
5645
5646	/* device stats are not reset at PFR, they likely will not be zeroed
5647	 * when the driver starts. Thus, save the value from the first read
5648	 * without adding to the statistic value so that we report stats which
5649	 * count up from zero.
5650	 */
5651	if (!prev_stat_loaded) {
5652		*prev_stat = new_data;
5653		return;
5654	}
5655
5656	/* Calculate the difference between the new and old values, and then
5657	 * add it to the software stat value.
5658	 */
5659	if (new_data >= *prev_stat)
5660		*cur_stat += new_data - *prev_stat;
5661	else
5662		/* to manage the potential roll-over */
5663		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5664
5665	/* Update the previously stored value to prepare for next read */
5666	*prev_stat = new_data;
5667}
5668
5669/**
5670 * ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
5671 * @hw: ptr to the hardware info
5672 * @vsi_handle: VSI handle
5673 * @prev_stat_loaded: bool to specify if the previous stat values are loaded
5674 * @cur_stats: ptr to current stats structure
5675 *
5676 * The GLV_REPC statistic register actually tracks two 16bit statistics, and
5677 * thus cannot be read using the normal ice_stat_update32 function.
5678 *
5679 * Read the GLV_REPC register associated with the given VSI, and update the
5680 * rx_no_desc and rx_error values in the ice_eth_stats structure.
5681 *
5682 * Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
5683 * cleared each time it's read.
5684 *
5685 * Note that the GLV_RDPC register also counts the causes that would trigger
5686 * GLV_REPC. However, it does not give the finer grained detail about why the
5687 * packets are being dropped. The GLV_REPC values can be used to distinguish
5688 * whether Rx packets are dropped due to errors or due to no available
5689 * descriptors.
5690 */
5691void
5692ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
5693		     struct ice_eth_stats *cur_stats)
5694{
5695	u16 vsi_num, no_desc, error_cnt;
5696	u32 repc;
5697
5698	if (!ice_is_vsi_valid(hw, vsi_handle))
5699		return;
5700
5701	vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
5702
5703	/* If we haven't loaded stats yet, just clear the current value */
5704	if (!prev_stat_loaded) {
5705		wr32(hw, GLV_REPC(vsi_num), 0);
5706		return;
5707	}
5708
5709	repc = rd32(hw, GLV_REPC(vsi_num));
5710	no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
5711	error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
5712
5713	/* Clear the count by writing to the stats register */
5714	wr32(hw, GLV_REPC(vsi_num), 0);
5715
5716	cur_stats->rx_no_desc += no_desc;
5717	cur_stats->rx_errors += error_cnt;
5718}
5719
5720/**
5721 * ice_aq_alternate_write
5722 * @hw: pointer to the hardware structure
5723 * @reg_addr0: address of first dword to be written
5724 * @reg_val0: value to be written under 'reg_addr0'
5725 * @reg_addr1: address of second dword to be written
5726 * @reg_val1: value to be written under 'reg_addr1'
5727 *
5728 * Write one or two dwords to alternate structure. Fields are indicated
5729 * by 'reg_addr0' and 'reg_addr1' register numbers.
5730 */
5731enum ice_status
5732ice_aq_alternate_write(struct ice_hw *hw, u32 reg_addr0, u32 reg_val0,
5733		       u32 reg_addr1, u32 reg_val1)
5734{
5735	struct ice_aqc_read_write_alt_direct *cmd;
5736	struct ice_aq_desc desc;
5737	enum ice_status status;
5738
5739	cmd = &desc.params.read_write_alt_direct;
5740
5741	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_alt_direct);
5742	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
5743	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
5744	cmd->dword0_value = CPU_TO_LE32(reg_val0);
5745	cmd->dword1_value = CPU_TO_LE32(reg_val1);
5746
5747	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5748
5749	return status;
5750}
5751
5752/**
5753 * ice_aq_alternate_read
5754 * @hw: pointer to the hardware structure
5755 * @reg_addr0: address of first dword to be read
5756 * @reg_val0: pointer for data read from 'reg_addr0'
5757 * @reg_addr1: address of second dword to be read
5758 * @reg_val1: pointer for data read from 'reg_addr1'
5759 *
5760 * Read one or two dwords from alternate structure. Fields are indicated
5761 * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
5762 * is not passed then only register at 'reg_addr0' is read.
5763 */
5764enum ice_status
5765ice_aq_alternate_read(struct ice_hw *hw, u32 reg_addr0, u32 *reg_val0,
5766		      u32 reg_addr1, u32 *reg_val1)
5767{
5768	struct ice_aqc_read_write_alt_direct *cmd;
5769	struct ice_aq_desc desc;
5770	enum ice_status status;
5771
5772	cmd = &desc.params.read_write_alt_direct;
5773
5774	if (!reg_val0)
5775		return ICE_ERR_PARAM;
5776
5777	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_alt_direct);
5778	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
5779	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
5780
5781	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5782
5783	if (status == ICE_SUCCESS) {
5784		*reg_val0 = LE32_TO_CPU(cmd->dword0_value);
5785
5786		if (reg_val1)
5787			*reg_val1 = LE32_TO_CPU(cmd->dword1_value);
5788	}
5789
5790	return status;
5791}
5792
5793/**
5794 *  ice_aq_alternate_write_done
5795 *  @hw: pointer to the HW structure.
5796 *  @bios_mode: indicates whether the command is executed by UEFI or legacy BIOS
5797 *  @reset_needed: indicates the SW should trigger GLOBAL reset
5798 *
5799 *  Indicates to the FW that alternate structures have been changed.
5800 */
5801enum ice_status
5802ice_aq_alternate_write_done(struct ice_hw *hw, u8 bios_mode, bool *reset_needed)
5803{
5804	struct ice_aqc_done_alt_write *cmd;
5805	struct ice_aq_desc desc;
5806	enum ice_status status;
5807
5808	cmd = &desc.params.done_alt_write;
5809
5810	if (!reset_needed)
5811		return ICE_ERR_PARAM;
5812
5813	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_done_alt_write);
5814	cmd->flags = bios_mode;
5815
5816	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5817	if (!status)
5818		*reset_needed = (LE16_TO_CPU(cmd->flags) &
5819				 ICE_AQC_RESP_RESET_NEEDED) != 0;
5820
5821	return status;
5822}
5823
5824/**
5825 *  ice_aq_alternate_clear
5826 *  @hw: pointer to the HW structure.
5827 *
5828 *  Clear the alternate structures of the port from which the function
5829 *  is called.
5830 */
5831enum ice_status ice_aq_alternate_clear(struct ice_hw *hw)
5832{
5833	struct ice_aq_desc desc;
5834	enum ice_status status;
5835
5836	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_port_alt_write);
5837
5838	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5839
5840	return status;
5841}
5842
5843/**
5844 * ice_sched_query_elem - query element information from HW
5845 * @hw: pointer to the HW struct
5846 * @node_teid: node TEID to be queried
5847 * @buf: buffer to element information
5848 *
5849 * This function queries HW element information
5850 */
5851enum ice_status
5852ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5853		     struct ice_aqc_txsched_elem_data *buf)
5854{
5855	u16 buf_size, num_elem_ret = 0;
5856	enum ice_status status;
5857
5858	buf_size = sizeof(*buf);
5859	ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
5860	buf->node_teid = CPU_TO_LE32(node_teid);
5861	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5862					  NULL);
5863	if (status != ICE_SUCCESS || num_elem_ret != 1)
5864		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5865	return status;
5866}
5867
5868/**
5869 * ice_get_fw_mode - returns FW mode
5870 * @hw: pointer to the HW struct
5871 */
5872enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
5873{
5874#define ICE_FW_MODE_DBG_M BIT(0)
5875#define ICE_FW_MODE_REC_M BIT(1)
5876#define ICE_FW_MODE_ROLLBACK_M BIT(2)
5877	u32 fw_mode;
5878
5879	/* check the current FW mode */
5880	fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
5881	if (fw_mode & ICE_FW_MODE_DBG_M)
5882		return ICE_FW_MODE_DBG;
5883	else if (fw_mode & ICE_FW_MODE_REC_M)
5884		return ICE_FW_MODE_REC;
5885	else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
5886		return ICE_FW_MODE_ROLLBACK;
5887	else
5888		return ICE_FW_MODE_NORMAL;
5889}
5890
5891/**
5892 * ice_get_cur_lldp_persist_status
5893 * @hw: pointer to the HW struct
5894 * @lldp_status: return value of LLDP persistent status
5895 *
5896 * Get the current status of LLDP persistent
5897 */
5898enum ice_status
5899ice_get_cur_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
5900{
5901	struct ice_port_info *pi = hw->port_info;
5902	enum ice_status ret;
5903	__le32 raw_data;
5904	u32 data, mask;
5905
5906	if (!lldp_status)
5907		return ICE_ERR_BAD_PTR;
5908
5909	ret = ice_acquire_nvm(hw, ICE_RES_READ);
5910	if (ret)
5911		return ret;
5912
5913	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LLDP_PRESERVED_MOD_ID,
5914			      ICE_AQC_NVM_CUR_LLDP_PERSIST_RD_OFFSET,
5915			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data,
5916			      false, true, NULL);
5917	if (!ret) {
5918		data = LE32_TO_CPU(raw_data);
5919		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5920			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5921		data = data & mask;
5922		*lldp_status = data >>
5923			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5924	}
5925
5926	ice_release_nvm(hw);
5927
5928	return ret;
5929}
5930
5931/**
5932 * ice_get_dflt_lldp_persist_status
5933 * @hw: pointer to the HW struct
5934 * @lldp_status: return value of LLDP persistent status
5935 *
5936 * Get the default status of LLDP persistent
5937 */
5938enum ice_status
5939ice_get_dflt_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
5940{
5941	struct ice_port_info *pi = hw->port_info;
5942	u32 data, mask, loc_data, loc_data_tmp;
5943	enum ice_status ret;
5944	__le16 loc_raw_data;
5945	__le32 raw_data;
5946
5947	if (!lldp_status)
5948		return ICE_ERR_BAD_PTR;
5949
5950	ret = ice_acquire_nvm(hw, ICE_RES_READ);
5951	if (ret)
5952		return ret;
5953
5954	/* Read the offset of EMP_SR_PTR */
5955	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
5956			      ICE_AQC_NVM_EMP_SR_PTR_OFFSET,
5957			      ICE_AQC_NVM_EMP_SR_PTR_RD_LEN,
5958			      &loc_raw_data, false, true, NULL);
5959	if (ret)
5960		goto exit;
5961
5962	loc_data = LE16_TO_CPU(loc_raw_data);
5963	if (loc_data & ICE_AQC_NVM_EMP_SR_PTR_TYPE_M) {
5964		loc_data &= ICE_AQC_NVM_EMP_SR_PTR_M;
5965		loc_data *= ICE_AQC_NVM_SECTOR_UNIT;
5966	} else {
5967		loc_data *= ICE_AQC_NVM_WORD_UNIT;
5968	}
5969
5970	/* Read the offset of LLDP configuration pointer */
5971	loc_data += ICE_AQC_NVM_LLDP_CFG_PTR_OFFSET;
5972	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5973			      ICE_AQC_NVM_LLDP_CFG_PTR_RD_LEN, &loc_raw_data,
5974			      false, true, NULL);
5975	if (ret)
5976		goto exit;
5977
5978	loc_data_tmp = LE16_TO_CPU(loc_raw_data);
5979	loc_data_tmp *= ICE_AQC_NVM_WORD_UNIT;
5980	loc_data += loc_data_tmp;
5981
5982	/* We need to skip LLDP configuration section length (2 bytes) */
5983	loc_data += ICE_AQC_NVM_LLDP_CFG_HEADER_LEN;
5984
5985	/* Read the LLDP Default Configure */
5986	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5987			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data, false,
5988			      true, NULL);
5989	if (!ret) {
5990		data = LE32_TO_CPU(raw_data);
5991		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5992			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5993		data = data & mask;
5994		*lldp_status = data >>
5995			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5996	}
5997
5998exit:
5999	ice_release_nvm(hw);
6000
6001	return ret;
6002}
6003
6004/**
6005 * ice_aq_read_i2c
6006 * @hw: pointer to the hw struct
6007 * @topo_addr: topology address for a device to communicate with
6008 * @bus_addr: 7-bit I2C bus address
6009 * @addr: I2C memory address (I2C offset) with up to 16 bits
6010 * @params: I2C parameters: bit [7] - Repeated start, bits [6:5] data offset size,
6011 *			    bit [4] - I2C address type, bits [3:0] - data size to read (0-16 bytes)
6012 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
6013 * @cd: pointer to command details structure or NULL
6014 *
6015 * Read I2C (0x06E2)
6016 */
6017enum ice_status
6018ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6019		u16 bus_addr, __le16 addr, u8 params, u8 *data,
6020		struct ice_sq_cd *cd)
6021{
6022	struct ice_aq_desc desc = { 0 };
6023	struct ice_aqc_i2c *cmd;
6024	enum ice_status status;
6025	u8 data_size;
6026
6027	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
6028	cmd = &desc.params.read_write_i2c;
6029
6030	if (!data)
6031		return ICE_ERR_PARAM;
6032
6033	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
6034
6035	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
6036	cmd->topo_addr = topo_addr;
6037	cmd->i2c_params = params;
6038	cmd->i2c_addr = addr;
6039
6040	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6041	if (!status) {
6042		struct ice_aqc_read_i2c_resp *resp;
6043		u8 i;
6044
6045		resp = &desc.params.read_i2c_resp;
6046		for (i = 0; i < data_size; i++) {
6047			*data = resp->i2c_data[i];
6048			data++;
6049		}
6050	}
6051
6052	return status;
6053}
6054
6055/**
6056 * ice_aq_write_i2c
6057 * @hw: pointer to the hw struct
6058 * @topo_addr: topology address for a device to communicate with
6059 * @bus_addr: 7-bit I2C bus address
6060 * @addr: I2C memory address (I2C offset) with up to 16 bits
6061 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
6062 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
6063 * @cd: pointer to command details structure or NULL
6064 *
6065 * Write I2C (0x06E3)
6066 */
6067enum ice_status
6068ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6069		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
6070		 struct ice_sq_cd *cd)
6071{
6072	struct ice_aq_desc desc = { 0 };
6073	struct ice_aqc_i2c *cmd;
6074	u8 i, data_size;
6075
6076	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
6077	cmd = &desc.params.read_write_i2c;
6078
6079	data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
6080
6081	/* data_size limited to 4 */
6082	if (data_size > 4)
6083		return ICE_ERR_PARAM;
6084
6085	cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
6086	cmd->topo_addr = topo_addr;
6087	cmd->i2c_params = params;
6088	cmd->i2c_addr = addr;
6089
6090	for (i = 0; i < data_size; i++) {
6091		cmd->i2c_data[i] = *data;
6092		data++;
6093	}
6094
6095	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6096}
6097
6098/**
6099 * ice_aq_set_gpio
6100 * @hw: pointer to the hw struct
6101 * @gpio_ctrl_handle: GPIO controller node handle
6102 * @pin_idx: IO Number of the GPIO that needs to be set
6103 * @value: SW provide IO value to set in the LSB
6104 * @cd: pointer to command details structure or NULL
6105 *
6106 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6107 */
6108enum ice_status
6109ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6110		struct ice_sq_cd *cd)
6111{
6112	struct ice_aqc_gpio *cmd;
6113	struct ice_aq_desc desc;
6114
6115	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6116	cmd = &desc.params.read_write_gpio;
6117	cmd->gpio_ctrl_handle = CPU_TO_LE16(gpio_ctrl_handle);
6118	cmd->gpio_num = pin_idx;
6119	cmd->gpio_val = value ? 1 : 0;
6120
6121	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6122}
6123
6124/**
6125 * ice_aq_get_gpio
6126 * @hw: pointer to the hw struct
6127 * @gpio_ctrl_handle: GPIO controller node handle
6128 * @pin_idx: IO Number of the GPIO that needs to be set
6129 * @value: IO value read
6130 * @cd: pointer to command details structure or NULL
6131 *
6132 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6133 * the topology
6134 */
6135enum ice_status
6136ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6137		bool *value, struct ice_sq_cd *cd)
6138{
6139	struct ice_aqc_gpio *cmd;
6140	struct ice_aq_desc desc;
6141	enum ice_status status;
6142
6143	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6144	cmd = &desc.params.read_write_gpio;
6145	cmd->gpio_ctrl_handle = CPU_TO_LE16(gpio_ctrl_handle);
6146	cmd->gpio_num = pin_idx;
6147
6148	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6149	if (status)
6150		return status;
6151
6152	*value = !!cmd->gpio_val;
6153	return ICE_SUCCESS;
6154}
6155
6156/**
6157 * ice_is_fw_api_min_ver
6158 * @hw: pointer to the hardware structure
6159 * @maj: major version
6160 * @min: minor version
6161 * @patch: patch version
6162 *
6163 * Checks if the firmware is minimum version
6164 */
6165static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6166{
6167	if (hw->api_maj_ver == maj) {
6168		if (hw->api_min_ver > min)
6169			return true;
6170		if (hw->api_min_ver == min && hw->api_patch >= patch)
6171			return true;
6172	} else if (hw->api_maj_ver > maj) {
6173		return true;
6174	}
6175
6176	return false;
6177}
6178
6179/**
6180 * ice_is_fw_min_ver
6181 * @hw: pointer to the hardware structure
6182 * @branch: branch version
6183 * @maj: major version
6184 * @min: minor version
6185 * @patch: patch version
6186 *
6187 * Checks if the firmware is minimum version
6188 */
6189static bool ice_is_fw_min_ver(struct ice_hw *hw, u8 branch, u8 maj, u8 min,
6190			      u8 patch)
6191{
6192	if (hw->fw_branch == branch) {
6193		if (hw->fw_maj_ver > maj)
6194			return true;
6195		if (hw->fw_maj_ver == maj) {
6196			if (hw->fw_min_ver > min)
6197				return true;
6198			if (hw->fw_min_ver == min && hw->fw_patch >= patch)
6199				return true;
6200		}
6201	}
6202
6203	return false;
6204}
6205
6206/**
6207 * ice_fw_supports_link_override
6208 * @hw: pointer to the hardware structure
6209 *
6210 * Checks if the firmware supports link override
6211 */
6212bool ice_fw_supports_link_override(struct ice_hw *hw)
6213{
6214	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6215				     ICE_FW_API_LINK_OVERRIDE_MIN,
6216				     ICE_FW_API_LINK_OVERRIDE_PATCH);
6217}
6218
6219/**
6220 * ice_get_link_default_override
6221 * @ldo: pointer to the link default override struct
6222 * @pi: pointer to the port info struct
6223 *
6224 * Gets the link default override for a port
6225 */
6226enum ice_status
6227ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6228			      struct ice_port_info *pi)
6229{
6230	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6231	struct ice_hw *hw = pi->hw;
6232	enum ice_status status;
6233
6234	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6235					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6236	if (status) {
6237		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6238		return status;
6239	}
6240
6241	/* Each port has its own config; calculate for our port */
6242	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6243		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6244
6245	/* link options first */
6246	status = ice_read_sr_word(hw, tlv_start, &buf);
6247	if (status) {
6248		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6249		return status;
6250	}
6251	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
6252	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6253		ICE_LINK_OVERRIDE_PHY_CFG_S;
6254
6255	/* link PHY config */
6256	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6257	status = ice_read_sr_word(hw, offset, &buf);
6258	if (status) {
6259		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6260		return status;
6261	}
6262	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6263
6264	/* PHY types low */
6265	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6266	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6267		status = ice_read_sr_word(hw, (offset + i), &buf);
6268		if (status) {
6269			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6270			return status;
6271		}
6272		/* shift 16 bits at a time to fill 64 bits */
6273		ldo->phy_type_low |= ((u64)buf << (i * 16));
6274	}
6275
6276	/* PHY types high */
6277	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6278		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6279	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6280		status = ice_read_sr_word(hw, (offset + i), &buf);
6281		if (status) {
6282			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6283			return status;
6284		}
6285		/* shift 16 bits at a time to fill 64 bits */
6286		ldo->phy_type_high |= ((u64)buf << (i * 16));
6287	}
6288
6289	return status;
6290}
6291
6292/**
6293 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6294 * @caps: get PHY capability data
6295 */
6296bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6297{
6298	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6299	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6300				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6301				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6302		return true;
6303
6304	return false;
6305}
6306
6307/**
6308 * ice_is_fw_health_report_supported
6309 * @hw: pointer to the hardware structure
6310 *
6311 * Return true if firmware supports health status reports,
6312 * false otherwise
6313 */
6314bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6315{
6316	if (hw->api_maj_ver > ICE_FW_API_HEALTH_REPORT_MAJ)
6317		return true;
6318
6319	if (hw->api_maj_ver == ICE_FW_API_HEALTH_REPORT_MAJ) {
6320		if (hw->api_min_ver > ICE_FW_API_HEALTH_REPORT_MIN)
6321			return true;
6322		if (hw->api_min_ver == ICE_FW_API_HEALTH_REPORT_MIN &&
6323		    hw->api_patch >= ICE_FW_API_HEALTH_REPORT_PATCH)
6324			return true;
6325	}
6326
6327	return false;
6328}
6329
6330/**
6331 * ice_aq_set_health_status_config - Configure FW health events
6332 * @hw: pointer to the HW struct
6333 * @event_source: type of diagnostic events to enable
6334 * @cd: pointer to command details structure or NULL
6335 *
6336 * Configure the health status event types that the firmware will send to this
6337 * PF. The supported event types are: PF-specific, all PFs, and global
6338 */
6339enum ice_status
6340ice_aq_set_health_status_config(struct ice_hw *hw, u8 event_source,
6341				struct ice_sq_cd *cd)
6342{
6343	struct ice_aqc_set_health_status_config *cmd;
6344	struct ice_aq_desc desc;
6345
6346	cmd = &desc.params.set_health_status_config;
6347
6348	ice_fill_dflt_direct_cmd_desc(&desc,
6349				      ice_aqc_opc_set_health_status_config);
6350
6351	cmd->event_source = event_source;
6352
6353	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6354}
6355
6356/**
6357 * ice_aq_get_port_options
6358 * @hw: pointer to the hw struct
6359 * @options: buffer for the resultant port options
6360 * @option_count: input - size of the buffer in port options structures,
6361 *                output - number of returned port options
6362 * @lport: logical port to call the command with (optional)
6363 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
6364 *               when PF owns more than 1 port it must be true
6365 * @active_option_idx: index of active port option in returned buffer
6366 * @active_option_valid: active option in returned buffer is valid
6367 * @pending_option_idx: index of pending port option in returned buffer
6368 * @pending_option_valid: pending option in returned buffer is valid
6369 *
6370 * Calls Get Port Options AQC (0x06ea) and verifies result.
6371 */
6372enum ice_status
6373ice_aq_get_port_options(struct ice_hw *hw,
6374			struct ice_aqc_get_port_options_elem *options,
6375			u8 *option_count, u8 lport, bool lport_valid,
6376			u8 *active_option_idx, bool *active_option_valid,
6377			u8 *pending_option_idx, bool *pending_option_valid)
6378{
6379	struct ice_aqc_get_port_options *cmd;
6380	struct ice_aq_desc desc;
6381	enum ice_status status;
6382	u8 i;
6383
6384	/* options buffer shall be able to hold max returned options */
6385	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
6386		return ICE_ERR_PARAM;
6387
6388	cmd = &desc.params.get_port_options;
6389	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
6390
6391	cmd->lport_num = lport;
6392	cmd->lport_num_valid = lport_valid;
6393
6394	status = ice_aq_send_cmd(hw, &desc, options,
6395				 *option_count * sizeof(*options), NULL);
6396	if (status != ICE_SUCCESS)
6397		return status;
6398
6399	/* verify direct FW response & set output parameters */
6400	*option_count = cmd->port_options_count & ICE_AQC_PORT_OPT_COUNT_M;
6401	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
6402	*active_option_valid = cmd->port_options & ICE_AQC_PORT_OPT_VALID;
6403	if (*active_option_valid) {
6404		*active_option_idx = cmd->port_options &
6405				     ICE_AQC_PORT_OPT_ACTIVE_M;
6406		if (*active_option_idx > (*option_count - 1))
6407			return ICE_ERR_OUT_OF_RANGE;
6408		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
6409			  *active_option_idx);
6410	}
6411
6412	*pending_option_valid = cmd->pending_port_option_status &
6413				ICE_AQC_PENDING_PORT_OPT_VALID;
6414	if (*pending_option_valid) {
6415		*pending_option_idx = cmd->pending_port_option_status &
6416				      ICE_AQC_PENDING_PORT_OPT_IDX_M;
6417		if (*pending_option_idx > (*option_count - 1))
6418			return ICE_ERR_OUT_OF_RANGE;
6419		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
6420			  *pending_option_idx);
6421	}
6422
6423	/* mask output options fields */
6424	for (i = 0; i < *option_count; i++) {
6425		options[i].pmd &= ICE_AQC_PORT_OPT_PMD_COUNT_M;
6426		options[i].max_lane_speed &= ICE_AQC_PORT_OPT_MAX_LANE_M;
6427		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
6428			  options[i].pmd, options[i].max_lane_speed);
6429	}
6430
6431	return ICE_SUCCESS;
6432}
6433
6434/**
6435 * ice_aq_set_port_option
6436 * @hw: pointer to the hw struct
6437 * @lport: logical port to call the command with
6438 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
6439 *               when PF owns more than 1 port it must be true
6440 * @new_option: new port option to be written
6441 *
6442 * Calls Set Port Options AQC (0x06eb).
6443 */
6444enum ice_status
6445ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
6446		       u8 new_option)
6447{
6448	struct ice_aqc_set_port_option *cmd;
6449	struct ice_aq_desc desc;
6450
6451	if (new_option >= ICE_AQC_PORT_OPT_COUNT_M)
6452		return ICE_ERR_PARAM;
6453
6454	cmd = &desc.params.set_port_option;
6455	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
6456
6457	cmd->lport_num = lport;
6458
6459	cmd->lport_num_valid = lport_valid;
6460	cmd->selected_port_option = new_option;
6461
6462	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6463}
6464
6465/**
6466 * ice_aq_set_lldp_mib - Set the LLDP MIB
6467 * @hw: pointer to the HW struct
6468 * @mib_type: Local, Remote or both Local and Remote MIBs
6469 * @buf: pointer to the caller-supplied buffer to store the MIB block
6470 * @buf_size: size of the buffer (in bytes)
6471 * @cd: pointer to command details structure or NULL
6472 *
6473 * Set the LLDP MIB. (0x0A08)
6474 */
6475enum ice_status
6476ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6477		    struct ice_sq_cd *cd)
6478{
6479	struct ice_aqc_lldp_set_local_mib *cmd;
6480	struct ice_aq_desc desc;
6481
6482	cmd = &desc.params.lldp_set_mib;
6483
6484	if (buf_size == 0 || !buf)
6485		return ICE_ERR_PARAM;
6486
6487	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6488
6489	desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
6490	desc.datalen = CPU_TO_LE16(buf_size);
6491
6492	cmd->type = mib_type;
6493	cmd->length = CPU_TO_LE16(buf_size);
6494
6495	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6496}
6497
6498/**
6499 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6500 * @hw: pointer to HW struct
6501 */
6502bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6503{
6504	if (hw->mac_type != ICE_MAC_E810 && hw->mac_type != ICE_MAC_GENERIC)
6505		return false;
6506
6507	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6508				     ICE_FW_API_LLDP_FLTR_MIN,
6509				     ICE_FW_API_LLDP_FLTR_PATCH);
6510}
6511
6512/**
6513 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6514 * @hw: pointer to HW struct
6515 * @vsi_num: absolute HW index for VSI
6516 * @add: boolean for if adding or removing a filter
6517 */
6518enum ice_status
6519ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6520{
6521	struct ice_aqc_lldp_filter_ctrl *cmd;
6522	struct ice_aq_desc desc;
6523
6524	cmd = &desc.params.lldp_filter_ctrl;
6525
6526	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6527
6528	if (add)
6529		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6530	else
6531		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6532
6533	cmd->vsi_num = CPU_TO_LE16(vsi_num);
6534
6535	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6536}
6537
6538/**
6539 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6540 * @hw: pointer to HW struct
6541 */
6542enum ice_status ice_lldp_execute_pending_mib(struct ice_hw *hw)
6543{
6544	struct ice_aq_desc desc;
6545
6546	ice_fill_dflt_direct_cmd_desc(&desc, ice_execute_pending_lldp_mib);
6547
6548	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6549}
6550
6551/**
6552 * ice_fw_supports_report_dflt_cfg
6553 * @hw: pointer to the hardware structure
6554 *
6555 * Checks if the firmware supports report default configuration
6556 */
6557bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6558{
6559	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6560				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6561				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6562}
6563
6564/* each of the indexes into the following array match the speed of a return
6565 * value from the list of AQ returned speeds like the range:
6566 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6567 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) The array is defined as 15
6568 * elements long because the link_speed returned by the firmware is a 16 bit
6569 * value, but is indexed by [fls(speed) - 1]
6570 */
6571static const u32 ice_aq_to_link_speed[] = {
6572	ICE_LINK_SPEED_10MBPS,	/* BIT(0) */
6573	ICE_LINK_SPEED_100MBPS,
6574	ICE_LINK_SPEED_1000MBPS,
6575	ICE_LINK_SPEED_2500MBPS,
6576	ICE_LINK_SPEED_5000MBPS,
6577	ICE_LINK_SPEED_10000MBPS,
6578	ICE_LINK_SPEED_20000MBPS,
6579	ICE_LINK_SPEED_25000MBPS,
6580	ICE_LINK_SPEED_40000MBPS,
6581	ICE_LINK_SPEED_50000MBPS,
6582	ICE_LINK_SPEED_100000MBPS,	/* BIT(10) */
6583};
6584
6585/**
6586 * ice_get_link_speed - get integer speed from table
6587 * @index: array index from fls(aq speed) - 1
6588 *
6589 * Returns: u32 value containing integer speed
6590 */
6591u32 ice_get_link_speed(u16 index)
6592{
6593	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6594		return ICE_LINK_SPEED_UNKNOWN;
6595
6596	return ice_aq_to_link_speed[index];
6597}
6598
6599/**
6600 * ice_fw_supports_fec_dis_auto
6601 * @hw: pointer to the hardware structure
6602 *
6603 * Checks if the firmware supports FEC disable in Auto FEC mode
6604 */
6605bool ice_fw_supports_fec_dis_auto(struct ice_hw *hw)
6606{
6607	return ice_is_fw_min_ver(hw, ICE_FW_VER_BRANCH_E810,
6608				 ICE_FW_FEC_DIS_AUTO_MAJ,
6609				 ICE_FW_FEC_DIS_AUTO_MIN,
6610				 ICE_FW_FEC_DIS_AUTO_PATCH) ||
6611	       ice_is_fw_min_ver(hw, ICE_FW_VER_BRANCH_E82X,
6612				 ICE_FW_FEC_DIS_AUTO_MAJ_E82X,
6613				 ICE_FW_FEC_DIS_AUTO_MIN_E82X,
6614				 ICE_FW_FEC_DIS_AUTO_PATCH_E82X);
6615}
6616
6617/**
6618 * ice_is_fw_auto_drop_supported
6619 * @hw: pointer to the hardware structure
6620 *
6621 * Checks if the firmware supports auto drop feature
6622 */
6623bool ice_is_fw_auto_drop_supported(struct ice_hw *hw)
6624{
6625	if (hw->api_maj_ver >= ICE_FW_API_AUTO_DROP_MAJ &&
6626	    hw->api_min_ver >= ICE_FW_API_AUTO_DROP_MIN)
6627		return true;
6628	return false;
6629}
6630
6631