1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1995, David Greenman
5 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32#include <sys/cdefs.h>
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#ifdef HAVE_KERNEL_OPTION_HEADERS
38#include "opt_device_polling.h"
39#endif
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/bus.h>
44#include <sys/endian.h>
45#include <sys/kernel.h>
46#include <sys/mbuf.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/module.h>
50#include <sys/mutex.h>
51#include <sys/rman.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/sysctl.h>
55
56#include <net/bpf.h>
57#include <net/ethernet.h>
58#include <net/if.h>
59#include <net/if_var.h>
60#include <net/if_arp.h>
61#include <net/if_dl.h>
62#include <net/if_media.h>
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/tcp.h>
70#include <netinet/udp.h>
71
72#include <machine/bus.h>
73#include <machine/in_cksum.h>
74#include <machine/resource.h>
75
76#include <dev/pci/pcivar.h>
77#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
78
79#include <dev/mii/mii.h>
80#include <dev/mii/miivar.h>
81
82#include <dev/fxp/if_fxpreg.h>
83#include <dev/fxp/if_fxpvar.h>
84#include <dev/fxp/rcvbundl.h>
85
86MODULE_DEPEND(fxp, pci, 1, 1, 1);
87MODULE_DEPEND(fxp, ether, 1, 1, 1);
88MODULE_DEPEND(fxp, miibus, 1, 1, 1);
89#include "miibus_if.h"
90
91/*
92 * NOTE!  On !x86 we typically have an alignment constraint.  The
93 * card DMAs the packet immediately following the RFA.  However,
94 * the first thing in the packet is a 14-byte Ethernet header.
95 * This means that the packet is misaligned.  To compensate,
96 * we actually offset the RFA 2 bytes into the cluster.  This
97 * alignes the packet after the Ethernet header at a 32-bit
98 * boundary.  HOWEVER!  This means that the RFA is misaligned!
99 */
100#define	RFA_ALIGNMENT_FUDGE	2
101
102/*
103 * Set initial transmit threshold at 64 (512 bytes). This is
104 * increased by 64 (512 bytes) at a time, to maximum of 192
105 * (1536 bytes), if an underrun occurs.
106 */
107static int tx_threshold = 64;
108
109/*
110 * The configuration byte map has several undefined fields which
111 * must be one or must be zero.  Set up a template for these bits.
112 * The actual configuration is performed in fxp_init_body.
113 *
114 * See struct fxp_cb_config for the bit definitions.
115 */
116static const u_char fxp_cb_config_template[] = {
117	0x0, 0x0,		/* cb_status */
118	0x0, 0x0,		/* cb_command */
119	0x0, 0x0, 0x0, 0x0,	/* link_addr */
120	0x0,	/*  0 */
121	0x0,	/*  1 */
122	0x0,	/*  2 */
123	0x0,	/*  3 */
124	0x0,	/*  4 */
125	0x0,	/*  5 */
126	0x32,	/*  6 */
127	0x0,	/*  7 */
128	0x0,	/*  8 */
129	0x0,	/*  9 */
130	0x6,	/* 10 */
131	0x0,	/* 11 */
132	0x0,	/* 12 */
133	0x0,	/* 13 */
134	0xf2,	/* 14 */
135	0x48,	/* 15 */
136	0x0,	/* 16 */
137	0x40,	/* 17 */
138	0xf0,	/* 18 */
139	0x0,	/* 19 */
140	0x3f,	/* 20 */
141	0x5,	/* 21 */
142	0x0,	/* 22 */
143	0x0,	/* 23 */
144	0x0,	/* 24 */
145	0x0,	/* 25 */
146	0x0,	/* 26 */
147	0x0,	/* 27 */
148	0x0,	/* 28 */
149	0x0,	/* 29 */
150	0x0,	/* 30 */
151	0x0	/* 31 */
152};
153
154/*
155 * Claim various Intel PCI device identifiers for this driver.  The
156 * sub-vendor and sub-device field are extensively used to identify
157 * particular variants, but we don't currently differentiate between
158 * them.
159 */
160static const struct fxp_ident fxp_ident_table[] = {
161    { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
162    { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
163    { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
164    { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
165    { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
166    { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
167    { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168    { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
169    { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170    { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
171    { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
172    { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173    { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
174    { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175    { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
176    { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
177    { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
178    { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
179    { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
180    { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
181    { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
182    { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
183    { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
184    { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
185    { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
186    { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
187    { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
188    { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
189    { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
190    { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
191    { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
192    { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
193    { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
194    { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
195    { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
196    { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
197    { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
198    { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
199    { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
200    { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
201    { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
202    { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
203    { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
204    { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
205    { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
206    { 0,      0,	-1,	0, NULL },
207};
208
209#ifdef FXP_IP_CSUM_WAR
210#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
211#else
212#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
213#endif
214
215static int		fxp_probe(device_t dev);
216static int		fxp_attach(device_t dev);
217static int		fxp_detach(device_t dev);
218static int		fxp_shutdown(device_t dev);
219static int		fxp_suspend(device_t dev);
220static int		fxp_resume(device_t dev);
221
222static const struct fxp_ident *fxp_find_ident(device_t dev);
223static void		fxp_intr(void *xsc);
224static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
225			    struct mbuf *m, uint16_t status, int pos);
226static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
227			    uint8_t statack, int count);
228static void 		fxp_init(void *xsc);
229static void 		fxp_init_body(struct fxp_softc *sc, int);
230static void 		fxp_tick(void *xsc);
231static void 		fxp_start(if_t ifp);
232static void 		fxp_start_body(if_t ifp);
233static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
234static void		fxp_txeof(struct fxp_softc *sc);
235static void		fxp_stop(struct fxp_softc *sc);
236static void 		fxp_release(struct fxp_softc *sc);
237static int		fxp_ioctl(if_t ifp, u_long command,
238			    caddr_t data);
239static void 		fxp_watchdog(struct fxp_softc *sc);
240static void		fxp_add_rfabuf(struct fxp_softc *sc,
241			    struct fxp_rx *rxp);
242static void		fxp_discard_rfabuf(struct fxp_softc *sc,
243			    struct fxp_rx *rxp);
244static int		fxp_new_rfabuf(struct fxp_softc *sc,
245			    struct fxp_rx *rxp);
246static void		fxp_mc_addrs(struct fxp_softc *sc);
247static void		fxp_mc_setup(struct fxp_softc *sc);
248static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
249			    int autosize);
250static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
251			    uint16_t data);
252static void		fxp_autosize_eeprom(struct fxp_softc *sc);
253static void		fxp_load_eeprom(struct fxp_softc *sc);
254static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
255			    int offset, int words);
256static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
257			    int offset, int words);
258static int		fxp_ifmedia_upd(if_t ifp);
259static void		fxp_ifmedia_sts(if_t ifp,
260			    struct ifmediareq *ifmr);
261static int		fxp_serial_ifmedia_upd(if_t ifp);
262static void		fxp_serial_ifmedia_sts(if_t ifp,
263			    struct ifmediareq *ifmr);
264static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
265static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
266			    int value);
267static void		fxp_miibus_statchg(device_t dev);
268static void		fxp_load_ucode(struct fxp_softc *sc);
269static void		fxp_update_stats(struct fxp_softc *sc);
270static void		fxp_sysctl_node(struct fxp_softc *sc);
271static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
272			    int low, int high);
273static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
274static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
275static void 		fxp_scb_wait(struct fxp_softc *sc);
276static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
277static void		fxp_dma_wait(struct fxp_softc *sc,
278			    volatile uint16_t *status, bus_dma_tag_t dmat,
279			    bus_dmamap_t map);
280
281static device_method_t fxp_methods[] = {
282	/* Device interface */
283	DEVMETHOD(device_probe,		fxp_probe),
284	DEVMETHOD(device_attach,	fxp_attach),
285	DEVMETHOD(device_detach,	fxp_detach),
286	DEVMETHOD(device_shutdown,	fxp_shutdown),
287	DEVMETHOD(device_suspend,	fxp_suspend),
288	DEVMETHOD(device_resume,	fxp_resume),
289
290	/* MII interface */
291	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
292	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
293	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
294
295	DEVMETHOD_END
296};
297
298static driver_t fxp_driver = {
299	"fxp",
300	fxp_methods,
301	sizeof(struct fxp_softc),
302};
303
304DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, NULL, NULL, SI_ORDER_ANY);
305MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table,
306    nitems(fxp_ident_table) - 1);
307DRIVER_MODULE(miibus, fxp, miibus_driver, NULL, NULL);
308
309static struct resource_spec fxp_res_spec_mem[] = {
310	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
311	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
312	{ -1, 0 }
313};
314
315static struct resource_spec fxp_res_spec_io[] = {
316	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
317	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
318	{ -1, 0 }
319};
320
321/*
322 * Wait for the previous command to be accepted (but not necessarily
323 * completed).
324 */
325static void
326fxp_scb_wait(struct fxp_softc *sc)
327{
328	union {
329		uint16_t w;
330		uint8_t b[2];
331	} flowctl;
332	int i = 10000;
333
334	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
335		DELAY(2);
336	if (i == 0) {
337		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
338		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
339		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
340		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
341		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
342		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
343	}
344}
345
346static void
347fxp_scb_cmd(struct fxp_softc *sc, int cmd)
348{
349
350	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
351		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
352		fxp_scb_wait(sc);
353	}
354	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
355}
356
357static void
358fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
359    bus_dma_tag_t dmat, bus_dmamap_t map)
360{
361	int i;
362
363	for (i = 10000; i > 0; i--) {
364		DELAY(2);
365		bus_dmamap_sync(dmat, map,
366		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
367		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
368			break;
369	}
370	if (i == 0)
371		device_printf(sc->dev, "DMA timeout\n");
372}
373
374static const struct fxp_ident *
375fxp_find_ident(device_t dev)
376{
377	uint16_t vendor;
378	uint16_t device;
379	uint8_t revid;
380	const struct fxp_ident *ident;
381
382	vendor = pci_get_vendor(dev);
383	device = pci_get_device(dev);
384	revid = pci_get_revid(dev);
385	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
386		if (ident->vendor == vendor && ident->device == device &&
387		    (ident->revid == revid || ident->revid == -1)) {
388			return (ident);
389		}
390	}
391	return (NULL);
392}
393
394/*
395 * Return identification string if this device is ours.
396 */
397static int
398fxp_probe(device_t dev)
399{
400	const struct fxp_ident *ident;
401
402	ident = fxp_find_ident(dev);
403	if (ident != NULL) {
404		device_set_desc(dev, ident->name);
405		return (BUS_PROBE_DEFAULT);
406	}
407	return (ENXIO);
408}
409
410static void
411fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
412{
413	uint32_t *addr;
414
415	if (error)
416		return;
417
418	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
419	addr = arg;
420	*addr = segs->ds_addr;
421}
422
423static int
424fxp_attach(device_t dev)
425{
426	struct fxp_softc *sc;
427	struct fxp_cb_tx *tcbp;
428	struct fxp_tx *txp;
429	struct fxp_rx *rxp;
430	if_t ifp;
431	uint32_t val;
432	uint16_t data;
433	u_char eaddr[ETHER_ADDR_LEN];
434	int error, flags, i, pmc, prefer_iomap;
435
436	error = 0;
437	sc = device_get_softc(dev);
438	sc->dev = dev;
439	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
440	    MTX_DEF);
441	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
442	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
443	    fxp_serial_ifmedia_sts);
444
445	ifp = sc->ifp = if_gethandle(IFT_ETHER);
446	if (ifp == (void *)NULL) {
447		device_printf(dev, "can not if_alloc()\n");
448		error = ENOSPC;
449		goto fail;
450	}
451
452	/*
453	 * Enable bus mastering.
454	 */
455	pci_enable_busmaster(dev);
456
457	/*
458	 * Figure out which we should try first - memory mapping or i/o mapping?
459	 * We default to memory mapping. Then we accept an override from the
460	 * command line. Then we check to see which one is enabled.
461	 */
462	prefer_iomap = 0;
463	resource_int_value(device_get_name(dev), device_get_unit(dev),
464	    "prefer_iomap", &prefer_iomap);
465	if (prefer_iomap)
466		sc->fxp_spec = fxp_res_spec_io;
467	else
468		sc->fxp_spec = fxp_res_spec_mem;
469
470	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
471	if (error) {
472		if (sc->fxp_spec == fxp_res_spec_mem)
473			sc->fxp_spec = fxp_res_spec_io;
474		else
475			sc->fxp_spec = fxp_res_spec_mem;
476		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
477	}
478	if (error) {
479		device_printf(dev, "could not allocate resources\n");
480		error = ENXIO;
481		goto fail;
482	}
483
484	if (bootverbose) {
485		device_printf(dev, "using %s space register mapping\n",
486		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
487	}
488
489	/*
490	 * Put CU/RU idle state and prepare full reset.
491	 */
492	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
493	DELAY(10);
494	/* Full reset and disable interrupts. */
495	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
496	DELAY(10);
497	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
498
499	/*
500	 * Find out how large of an SEEPROM we have.
501	 */
502	fxp_autosize_eeprom(sc);
503	fxp_load_eeprom(sc);
504
505	/*
506	 * Find out the chip revision; lump all 82557 revs together.
507	 */
508	sc->ident = fxp_find_ident(dev);
509	if (sc->ident->ich > 0) {
510		/* Assume ICH controllers are 82559. */
511		sc->revision = FXP_REV_82559_A0;
512	} else {
513		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
514		if ((data >> 8) == 1)
515			sc->revision = FXP_REV_82557;
516		else
517			sc->revision = pci_get_revid(dev);
518	}
519
520	/*
521	 * Check availability of WOL. 82559ER does not support WOL.
522	 */
523	if (sc->revision >= FXP_REV_82558_A4 &&
524	    sc->revision != FXP_REV_82559S_A) {
525		data = sc->eeprom[FXP_EEPROM_MAP_ID];
526		if ((data & 0x20) != 0 &&
527		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
528			sc->flags |= FXP_FLAG_WOLCAP;
529	}
530
531	if (sc->revision == FXP_REV_82550_C) {
532		/*
533		 * 82550C with server extension requires microcode to
534		 * receive fragmented UDP datagrams.  However if the
535		 * microcode is used for client-only featured 82550C
536		 * it locks up controller.
537		 */
538		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
539		if ((data & 0x0400) == 0)
540			sc->flags |= FXP_FLAG_NO_UCODE;
541	}
542
543	/* Receiver lock-up workaround detection. */
544	if (sc->revision < FXP_REV_82558_A4) {
545		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
546		if ((data & 0x03) != 0x03) {
547			sc->flags |= FXP_FLAG_RXBUG;
548			device_printf(dev, "Enabling Rx lock-up workaround\n");
549		}
550	}
551
552	/*
553	 * Determine whether we must use the 503 serial interface.
554	 */
555	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
556	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
557	    && (data & FXP_PHY_SERIAL_ONLY))
558		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
559
560	fxp_sysctl_node(sc);
561	/*
562	 * Enable workarounds for certain chip revision deficiencies.
563	 *
564	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
565	 * some systems based a normal 82559 design, have a defect where
566	 * the chip can cause a PCI protocol violation if it receives
567	 * a CU_RESUME command when it is entering the IDLE state.  The
568	 * workaround is to disable Dynamic Standby Mode, so the chip never
569	 * deasserts CLKRUN#, and always remains in an active state.
570	 *
571	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
572	 */
573	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
574	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
575		data = sc->eeprom[FXP_EEPROM_MAP_ID];
576		if (data & 0x02) {			/* STB enable */
577			uint16_t cksum;
578			int i;
579
580			device_printf(dev,
581			    "Disabling dynamic standby mode in EEPROM\n");
582			data &= ~0x02;
583			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
584			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
585			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
586			cksum = 0;
587			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
588				cksum += sc->eeprom[i];
589			i = (1 << sc->eeprom_size) - 1;
590			cksum = 0xBABA - cksum;
591			fxp_write_eeprom(sc, &cksum, i, 1);
592			device_printf(dev,
593			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
594			    i, sc->eeprom[i], cksum);
595			sc->eeprom[i] = cksum;
596			/*
597			 * If the user elects to continue, try the software
598			 * workaround, as it is better than nothing.
599			 */
600			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
601		}
602	}
603
604	/*
605	 * If we are not a 82557 chip, we can enable extended features.
606	 */
607	if (sc->revision != FXP_REV_82557) {
608		/*
609		 * If MWI is enabled in the PCI configuration, and there
610		 * is a valid cacheline size (8 or 16 dwords), then tell
611		 * the board to turn on MWI.
612		 */
613		val = pci_read_config(dev, PCIR_COMMAND, 2);
614		if (val & PCIM_CMD_MWRICEN &&
615		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
616			sc->flags |= FXP_FLAG_MWI_ENABLE;
617
618		/* turn on the extended TxCB feature */
619		sc->flags |= FXP_FLAG_EXT_TXCB;
620
621		/* enable reception of long frames for VLAN */
622		sc->flags |= FXP_FLAG_LONG_PKT_EN;
623	} else {
624		/* a hack to get long VLAN frames on a 82557 */
625		sc->flags |= FXP_FLAG_SAVE_BAD;
626	}
627
628	/* For 82559 or later chips, Rx checksum offload is supported. */
629	if (sc->revision >= FXP_REV_82559_A0) {
630		/* 82559ER does not support Rx checksum offloading. */
631		if (sc->ident->device != 0x1209)
632			sc->flags |= FXP_FLAG_82559_RXCSUM;
633	}
634	/*
635	 * Enable use of extended RFDs and TCBs for 82550
636	 * and later chips. Note: we need extended TXCB support
637	 * too, but that's already enabled by the code above.
638	 * Be careful to do this only on the right devices.
639	 */
640	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
641	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
642	    || sc->revision == FXP_REV_82551_10) {
643		sc->rfa_size = sizeof (struct fxp_rfa);
644		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
645		sc->flags |= FXP_FLAG_EXT_RFA;
646		/* Use extended RFA instead of 82559 checksum mode. */
647		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
648	} else {
649		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
650		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
651	}
652
653	/*
654	 * Allocate DMA tags and DMA safe memory.
655	 */
656	sc->maxtxseg = FXP_NTXSEG;
657	sc->maxsegsize = MCLBYTES;
658	if (sc->flags & FXP_FLAG_EXT_RFA) {
659		sc->maxtxseg--;
660		sc->maxsegsize = FXP_TSO_SEGSIZE;
661	}
662	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
663	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
664	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
665	    sc->maxtxseg, sc->maxsegsize, 0, NULL, NULL, &sc->fxp_txmtag);
666	if (error) {
667		device_printf(dev, "could not create TX DMA tag\n");
668		goto fail;
669	}
670
671	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
672	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
673	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->fxp_rxmtag);
674	if (error) {
675		device_printf(dev, "could not create RX DMA tag\n");
676		goto fail;
677	}
678
679	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
680	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
681	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
682	    NULL, NULL, &sc->fxp_stag);
683	if (error) {
684		device_printf(dev, "could not create stats DMA tag\n");
685		goto fail;
686	}
687
688	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
689	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
690	if (error) {
691		device_printf(dev, "could not allocate stats DMA memory\n");
692		goto fail;
693	}
694	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
695	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
696	    BUS_DMA_NOWAIT);
697	if (error) {
698		device_printf(dev, "could not load the stats DMA buffer\n");
699		goto fail;
700	}
701
702	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
703	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
704	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, NULL, NULL, &sc->cbl_tag);
705	if (error) {
706		device_printf(dev, "could not create TxCB DMA tag\n");
707		goto fail;
708	}
709
710	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
711	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
712	if (error) {
713		device_printf(dev, "could not allocate TxCB DMA memory\n");
714		goto fail;
715	}
716
717	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
718	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
719	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
720	if (error) {
721		device_printf(dev, "could not load TxCB DMA buffer\n");
722		goto fail;
723	}
724
725	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
726	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
727	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
728	    NULL, NULL, &sc->mcs_tag);
729	if (error) {
730		device_printf(dev,
731		    "could not create multicast setup DMA tag\n");
732		goto fail;
733	}
734
735	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
736	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
737	if (error) {
738		device_printf(dev,
739		    "could not allocate multicast setup DMA memory\n");
740		goto fail;
741	}
742	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
743	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
744	    BUS_DMA_NOWAIT);
745	if (error) {
746		device_printf(dev,
747		    "can't load the multicast setup DMA buffer\n");
748		goto fail;
749	}
750
751	/*
752	 * Pre-allocate the TX DMA maps and setup the pointers to
753	 * the TX command blocks.
754	 */
755	txp = sc->fxp_desc.tx_list;
756	tcbp = sc->fxp_desc.cbl_list;
757	for (i = 0; i < FXP_NTXCB; i++) {
758		txp[i].tx_cb = tcbp + i;
759		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
760		if (error) {
761			device_printf(dev, "can't create DMA map for TX\n");
762			goto fail;
763		}
764	}
765	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
766	if (error) {
767		device_printf(dev, "can't create spare DMA map\n");
768		goto fail;
769	}
770
771	/*
772	 * Pre-allocate our receive buffers.
773	 */
774	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
775	for (i = 0; i < FXP_NRFABUFS; i++) {
776		rxp = &sc->fxp_desc.rx_list[i];
777		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
778		if (error) {
779			device_printf(dev, "can't create DMA map for RX\n");
780			goto fail;
781		}
782		if (fxp_new_rfabuf(sc, rxp) != 0) {
783			error = ENOMEM;
784			goto fail;
785		}
786		fxp_add_rfabuf(sc, rxp);
787	}
788
789	/*
790	 * Read MAC address.
791	 */
792	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
793	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
794	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
795	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
796	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
797	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
798	if (bootverbose) {
799		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
800		    pci_get_vendor(dev), pci_get_device(dev),
801		    pci_get_subvendor(dev), pci_get_subdevice(dev),
802		    pci_get_revid(dev));
803		device_printf(dev, "Dynamic Standby mode is %s\n",
804		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
805		    "disabled");
806	}
807
808	/*
809	 * If this is only a 10Mbps device, then there is no MII, and
810	 * the PHY will use a serial interface instead.
811	 *
812	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
813	 * doesn't have a programming interface of any sort.  The
814	 * media is sensed automatically based on how the link partner
815	 * is configured.  This is, in essence, manual configuration.
816	 */
817	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
818		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
819		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
820	} else {
821		/*
822		 * i82557 wedge when isolating all of their PHYs.
823		 */
824		flags = MIIF_NOISOLATE;
825		if (sc->revision >= FXP_REV_82558_A4)
826			flags |= MIIF_DOPAUSE;
827		error = mii_attach(dev, &sc->miibus, ifp,
828		    (ifm_change_cb_t)fxp_ifmedia_upd,
829		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
830		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
831		if (error != 0) {
832			device_printf(dev, "attaching PHYs failed\n");
833			goto fail;
834		}
835	}
836
837	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
838	if_setdev(ifp, dev);
839	if_setinitfn(ifp, fxp_init);
840	if_setsoftc(ifp, sc);
841	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
842	if_setioctlfn(ifp, fxp_ioctl);
843	if_setstartfn(ifp, fxp_start);
844
845	if_setcapabilities(ifp, 0);
846	if_setcapenable(ifp, 0);
847
848	/* Enable checksum offload/TSO for 82550 or better chips */
849	if (sc->flags & FXP_FLAG_EXT_RFA) {
850		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
851		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
852		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
853	}
854
855	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
856		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
857		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
858	}
859
860	if (sc->flags & FXP_FLAG_WOLCAP) {
861		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
862		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
863	}
864
865#ifdef DEVICE_POLLING
866	/* Inform the world we support polling. */
867	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
868#endif
869
870	/*
871	 * Attach the interface.
872	 */
873	ether_ifattach(ifp, eaddr);
874
875	/*
876	 * Tell the upper layer(s) we support long frames.
877	 * Must appear after the call to ether_ifattach() because
878	 * ether_ifattach() sets ifi_hdrlen to the default value.
879	 */
880	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
881	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
882	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
883	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
884		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
885		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
886		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
887		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
888	}
889
890	/*
891	 * Let the system queue as many packets as we have available
892	 * TX descriptors.
893	 */
894	if_setsendqlen(ifp, FXP_NTXCB - 1);
895	if_setsendqready(ifp);
896
897	/*
898	 * Hook our interrupt after all initialization is complete.
899	 */
900	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
901			       NULL, fxp_intr, sc, &sc->ih);
902	if (error) {
903		device_printf(dev, "could not setup irq\n");
904		ether_ifdetach(sc->ifp);
905		goto fail;
906	}
907
908	/*
909	 * Configure hardware to reject magic frames otherwise
910	 * system will hang on recipt of magic frames.
911	 */
912	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
913		FXP_LOCK(sc);
914		/* Clear wakeup events. */
915		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
916		fxp_init_body(sc, 0);
917		fxp_stop(sc);
918		FXP_UNLOCK(sc);
919	}
920
921fail:
922	if (error)
923		fxp_release(sc);
924	return (error);
925}
926
927/*
928 * Release all resources.  The softc lock should not be held and the
929 * interrupt should already be torn down.
930 */
931static void
932fxp_release(struct fxp_softc *sc)
933{
934	struct fxp_rx *rxp;
935	struct fxp_tx *txp;
936	int i;
937
938	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
939	KASSERT(sc->ih == NULL,
940	    ("fxp_release() called with intr handle still active"));
941	if (sc->miibus)
942		device_delete_child(sc->dev, sc->miibus);
943	bus_generic_detach(sc->dev);
944	ifmedia_removeall(&sc->sc_media);
945	if (sc->fxp_desc.cbl_list) {
946		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
947		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
948		    sc->cbl_map);
949	}
950	if (sc->fxp_stats) {
951		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
952		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
953	}
954	if (sc->mcsp) {
955		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
956		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
957	}
958	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
959	if (sc->fxp_rxmtag) {
960		for (i = 0; i < FXP_NRFABUFS; i++) {
961			rxp = &sc->fxp_desc.rx_list[i];
962			if (rxp->rx_mbuf != NULL) {
963				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
964				    BUS_DMASYNC_POSTREAD);
965				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
966				m_freem(rxp->rx_mbuf);
967			}
968			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
969		}
970		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
971		bus_dma_tag_destroy(sc->fxp_rxmtag);
972	}
973	if (sc->fxp_txmtag) {
974		for (i = 0; i < FXP_NTXCB; i++) {
975			txp = &sc->fxp_desc.tx_list[i];
976			if (txp->tx_mbuf != NULL) {
977				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
978				    BUS_DMASYNC_POSTWRITE);
979				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
980				m_freem(txp->tx_mbuf);
981			}
982			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
983		}
984		bus_dma_tag_destroy(sc->fxp_txmtag);
985	}
986	if (sc->fxp_stag)
987		bus_dma_tag_destroy(sc->fxp_stag);
988	if (sc->cbl_tag)
989		bus_dma_tag_destroy(sc->cbl_tag);
990	if (sc->mcs_tag)
991		bus_dma_tag_destroy(sc->mcs_tag);
992	if (sc->ifp)
993		if_free(sc->ifp);
994
995	mtx_destroy(&sc->sc_mtx);
996}
997
998/*
999 * Detach interface.
1000 */
1001static int
1002fxp_detach(device_t dev)
1003{
1004	struct fxp_softc *sc = device_get_softc(dev);
1005
1006#ifdef DEVICE_POLLING
1007	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1008		ether_poll_deregister(sc->ifp);
1009#endif
1010
1011	FXP_LOCK(sc);
1012	/*
1013	 * Stop DMA and drop transmit queue, but disable interrupts first.
1014	 */
1015	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1016	fxp_stop(sc);
1017	FXP_UNLOCK(sc);
1018	callout_drain(&sc->stat_ch);
1019
1020	/*
1021	 * Close down routes etc.
1022	 */
1023	ether_ifdetach(sc->ifp);
1024
1025	/*
1026	 * Unhook interrupt before dropping lock. This is to prevent
1027	 * races with fxp_intr().
1028	 */
1029	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1030	sc->ih = NULL;
1031
1032	/* Release our allocated resources. */
1033	fxp_release(sc);
1034	return (0);
1035}
1036
1037/*
1038 * Device shutdown routine. Called at system shutdown after sync. The
1039 * main purpose of this routine is to shut off receiver DMA so that
1040 * kernel memory doesn't get clobbered during warmboot.
1041 */
1042static int
1043fxp_shutdown(device_t dev)
1044{
1045
1046	/*
1047	 * Make sure that DMA is disabled prior to reboot. Not doing
1048	 * do could allow DMA to corrupt kernel memory during the
1049	 * reboot before the driver initializes.
1050	 */
1051	return (fxp_suspend(dev));
1052}
1053
1054/*
1055 * Device suspend routine.  Stop the interface and save some PCI
1056 * settings in case the BIOS doesn't restore them properly on
1057 * resume.
1058 */
1059static int
1060fxp_suspend(device_t dev)
1061{
1062	struct fxp_softc *sc = device_get_softc(dev);
1063	if_t ifp;
1064	int pmc;
1065	uint16_t pmstat;
1066
1067	FXP_LOCK(sc);
1068
1069	ifp = sc->ifp;
1070	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1071		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1072		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1073		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1074			/* Request PME. */
1075			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1076			sc->flags |= FXP_FLAG_WOL;
1077			/* Reconfigure hardware to accept magic frames. */
1078			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1079			fxp_init_body(sc, 0);
1080		}
1081		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1082	}
1083	fxp_stop(sc);
1084
1085	sc->suspended = 1;
1086
1087	FXP_UNLOCK(sc);
1088	return (0);
1089}
1090
1091/*
1092 * Device resume routine. re-enable busmastering, and restart the interface if
1093 * appropriate.
1094 */
1095static int
1096fxp_resume(device_t dev)
1097{
1098	struct fxp_softc *sc = device_get_softc(dev);
1099	if_t ifp = sc->ifp;
1100	int pmc;
1101	uint16_t pmstat;
1102
1103	FXP_LOCK(sc);
1104
1105	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1106		sc->flags &= ~FXP_FLAG_WOL;
1107		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1108		/* Disable PME and clear PME status. */
1109		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1110		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1111		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1112			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1113			    CSR_READ_1(sc, FXP_CSR_PMDR));
1114	}
1115
1116	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1117	DELAY(10);
1118
1119	/* reinitialize interface if necessary */
1120	if (if_getflags(ifp) & IFF_UP)
1121		fxp_init_body(sc, 1);
1122
1123	sc->suspended = 0;
1124
1125	FXP_UNLOCK(sc);
1126	return (0);
1127}
1128
1129static void
1130fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1131{
1132	uint16_t reg;
1133	int x;
1134
1135	/*
1136	 * Shift in data.
1137	 */
1138	for (x = 1 << (length - 1); x; x >>= 1) {
1139		if (data & x)
1140			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1141		else
1142			reg = FXP_EEPROM_EECS;
1143		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1144		DELAY(1);
1145		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1146		DELAY(1);
1147		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1148		DELAY(1);
1149	}
1150}
1151
1152/*
1153 * Read from the serial EEPROM. Basically, you manually shift in
1154 * the read opcode (one bit at a time) and then shift in the address,
1155 * and then you shift out the data (all of this one bit at a time).
1156 * The word size is 16 bits, so you have to provide the address for
1157 * every 16 bits of data.
1158 */
1159static uint16_t
1160fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1161{
1162	uint16_t reg, data;
1163	int x;
1164
1165	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1166	/*
1167	 * Shift in read opcode.
1168	 */
1169	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1170	/*
1171	 * Shift in address.
1172	 */
1173	data = 0;
1174	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1175		if (offset & x)
1176			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1177		else
1178			reg = FXP_EEPROM_EECS;
1179		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1180		DELAY(1);
1181		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1182		DELAY(1);
1183		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1184		DELAY(1);
1185		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1186		data++;
1187		if (autosize && reg == 0) {
1188			sc->eeprom_size = data;
1189			break;
1190		}
1191	}
1192	/*
1193	 * Shift out data.
1194	 */
1195	data = 0;
1196	reg = FXP_EEPROM_EECS;
1197	for (x = 1 << 15; x; x >>= 1) {
1198		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1199		DELAY(1);
1200		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1201			data |= x;
1202		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1203		DELAY(1);
1204	}
1205	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1206	DELAY(1);
1207
1208	return (data);
1209}
1210
1211static void
1212fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1213{
1214	int i;
1215
1216	/*
1217	 * Erase/write enable.
1218	 */
1219	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1220	fxp_eeprom_shiftin(sc, 0x4, 3);
1221	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1222	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1223	DELAY(1);
1224	/*
1225	 * Shift in write opcode, address, data.
1226	 */
1227	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1228	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1229	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1230	fxp_eeprom_shiftin(sc, data, 16);
1231	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1232	DELAY(1);
1233	/*
1234	 * Wait for EEPROM to finish up.
1235	 */
1236	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1237	DELAY(1);
1238	for (i = 0; i < 1000; i++) {
1239		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1240			break;
1241		DELAY(50);
1242	}
1243	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1244	DELAY(1);
1245	/*
1246	 * Erase/write disable.
1247	 */
1248	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1249	fxp_eeprom_shiftin(sc, 0x4, 3);
1250	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1251	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1252	DELAY(1);
1253}
1254
1255/*
1256 * From NetBSD:
1257 *
1258 * Figure out EEPROM size.
1259 *
1260 * 559's can have either 64-word or 256-word EEPROMs, the 558
1261 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1262 * talks about the existence of 16 to 256 word EEPROMs.
1263 *
1264 * The only known sizes are 64 and 256, where the 256 version is used
1265 * by CardBus cards to store CIS information.
1266 *
1267 * The address is shifted in msb-to-lsb, and after the last
1268 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1269 * after which follows the actual data. We try to detect this zero, by
1270 * probing the data-out bit in the EEPROM control register just after
1271 * having shifted in a bit. If the bit is zero, we assume we've
1272 * shifted enough address bits. The data-out should be tri-state,
1273 * before this, which should translate to a logical one.
1274 */
1275static void
1276fxp_autosize_eeprom(struct fxp_softc *sc)
1277{
1278
1279	/* guess maximum size of 256 words */
1280	sc->eeprom_size = 8;
1281
1282	/* autosize */
1283	(void) fxp_eeprom_getword(sc, 0, 1);
1284}
1285
1286static void
1287fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1288{
1289	int i;
1290
1291	for (i = 0; i < words; i++)
1292		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1293}
1294
1295static void
1296fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1297{
1298	int i;
1299
1300	for (i = 0; i < words; i++)
1301		fxp_eeprom_putword(sc, offset + i, data[i]);
1302}
1303
1304static void
1305fxp_load_eeprom(struct fxp_softc *sc)
1306{
1307	int i;
1308	uint16_t cksum;
1309
1310	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1311	cksum = 0;
1312	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1313		cksum += sc->eeprom[i];
1314	cksum = 0xBABA - cksum;
1315	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1316		device_printf(sc->dev,
1317		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1318		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1319}
1320
1321/*
1322 * Grab the softc lock and call the real fxp_start_body() routine
1323 */
1324static void
1325fxp_start(if_t ifp)
1326{
1327	struct fxp_softc *sc = if_getsoftc(ifp);
1328
1329	FXP_LOCK(sc);
1330	fxp_start_body(ifp);
1331	FXP_UNLOCK(sc);
1332}
1333
1334/*
1335 * Start packet transmission on the interface.
1336 * This routine must be called with the softc lock held, and is an
1337 * internal entry point only.
1338 */
1339static void
1340fxp_start_body(if_t ifp)
1341{
1342	struct fxp_softc *sc = if_getsoftc(ifp);
1343	struct mbuf *mb_head;
1344	int txqueued;
1345
1346	FXP_LOCK_ASSERT(sc, MA_OWNED);
1347
1348	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1349	    IFF_DRV_RUNNING)
1350		return;
1351
1352	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1353		fxp_txeof(sc);
1354	/*
1355	 * We're finished if there is nothing more to add to the list or if
1356	 * we're all filled up with buffers to transmit.
1357	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1358	 *       a NOP command when needed.
1359	 */
1360	txqueued = 0;
1361	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1362
1363		/*
1364		 * Grab a packet to transmit.
1365		 */
1366		mb_head = if_dequeue(ifp);
1367		if (mb_head == NULL)
1368			break;
1369
1370		if (fxp_encap(sc, &mb_head)) {
1371			if (mb_head == NULL)
1372				break;
1373			if_sendq_prepend(ifp, mb_head);
1374			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1375		}
1376		txqueued++;
1377		/*
1378		 * Pass packet to bpf if there is a listener.
1379		 */
1380		bpf_mtap_if(ifp, mb_head);
1381	}
1382
1383	/*
1384	 * We're finished. If we added to the list, issue a RESUME to get DMA
1385	 * going again if suspended.
1386	 */
1387	if (txqueued > 0) {
1388		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1389		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1390		fxp_scb_wait(sc);
1391		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1392		/*
1393		 * Set a 5 second timer just in case we don't hear
1394		 * from the card again.
1395		 */
1396		sc->watchdog_timer = 5;
1397	}
1398}
1399
1400static int
1401fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1402{
1403	struct mbuf *m;
1404	struct fxp_tx *txp;
1405	struct fxp_cb_tx *cbp;
1406	struct tcphdr *tcp;
1407	bus_dma_segment_t segs[FXP_NTXSEG];
1408	int error, i, nseg, tcp_payload;
1409
1410	FXP_LOCK_ASSERT(sc, MA_OWNED);
1411
1412	tcp_payload = 0;
1413	tcp = NULL;
1414	/*
1415	 * Get pointer to next available tx desc.
1416	 */
1417	txp = sc->fxp_desc.tx_last->tx_next;
1418
1419	/*
1420	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1421	 * Ethernet Controller Family Open Source Software
1422	 * Developer Manual says:
1423	 *   Using software parsing is only allowed with legal
1424	 *   TCP/IP or UDP/IP packets.
1425	 *   ...
1426	 *   For all other datagrams, hardware parsing must
1427	 *   be used.
1428	 * Software parsing appears to truncate ICMP and
1429	 * fragmented UDP packets that contain one to three
1430	 * bytes in the second (and final) mbuf of the packet.
1431	 */
1432	if (sc->flags & FXP_FLAG_EXT_RFA)
1433		txp->tx_cb->ipcb_ip_activation_high =
1434		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1435
1436	m = *m_head;
1437	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1438		/*
1439		 * 82550/82551 requires ethernet/IP/TCP headers must be
1440		 * contained in the first active transmit buffer.
1441		 */
1442		struct ether_header *eh;
1443		struct ip *ip;
1444		uint32_t ip_off, poff;
1445
1446		if (M_WRITABLE(*m_head) == 0) {
1447			/* Get a writable copy. */
1448			m = m_dup(*m_head, M_NOWAIT);
1449			m_freem(*m_head);
1450			if (m == NULL) {
1451				*m_head = NULL;
1452				return (ENOBUFS);
1453			}
1454			*m_head = m;
1455		}
1456		ip_off = sizeof(struct ether_header);
1457		m = m_pullup(*m_head, ip_off);
1458		if (m == NULL) {
1459			*m_head = NULL;
1460			return (ENOBUFS);
1461		}
1462		eh = mtod(m, struct ether_header *);
1463		/* Check the existence of VLAN tag. */
1464		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1465			ip_off = sizeof(struct ether_vlan_header);
1466			m = m_pullup(m, ip_off);
1467			if (m == NULL) {
1468				*m_head = NULL;
1469				return (ENOBUFS);
1470			}
1471		}
1472		m = m_pullup(m, ip_off + sizeof(struct ip));
1473		if (m == NULL) {
1474			*m_head = NULL;
1475			return (ENOBUFS);
1476		}
1477		ip = (struct ip *)(mtod(m, char *) + ip_off);
1478		poff = ip_off + (ip->ip_hl << 2);
1479		m = m_pullup(m, poff + sizeof(struct tcphdr));
1480		if (m == NULL) {
1481			*m_head = NULL;
1482			return (ENOBUFS);
1483		}
1484		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1485		m = m_pullup(m, poff + (tcp->th_off << 2));
1486		if (m == NULL) {
1487			*m_head = NULL;
1488			return (ENOBUFS);
1489		}
1490
1491		/*
1492		 * Since 82550/82551 doesn't modify IP length and pseudo
1493		 * checksum in the first frame driver should compute it.
1494		 */
1495		ip = (struct ip *)(mtod(m, char *) + ip_off);
1496		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1497		ip->ip_sum = 0;
1498		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1499		    (tcp->th_off << 2));
1500		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1501		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1502		    m->m_pkthdr.tso_segsz));
1503		/* Compute total TCP payload. */
1504		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1505		tcp_payload -= tcp->th_off << 2;
1506		*m_head = m;
1507	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1508		/*
1509		 * Deal with TCP/IP checksum offload. Note that
1510		 * in order for TCP checksum offload to work,
1511		 * the pseudo header checksum must have already
1512		 * been computed and stored in the checksum field
1513		 * in the TCP header. The stack should have
1514		 * already done this for us.
1515		 */
1516		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1517		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1518			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1519
1520#ifdef FXP_IP_CSUM_WAR
1521		/*
1522		 * XXX The 82550 chip appears to have trouble
1523		 * dealing with IP header checksums in very small
1524		 * datagrams, namely fragments from 1 to 3 bytes
1525		 * in size. For example, say you want to transmit
1526		 * a UDP packet of 1473 bytes. The packet will be
1527		 * fragmented over two IP datagrams, the latter
1528		 * containing only one byte of data. The 82550 will
1529		 * botch the header checksum on the 1-byte fragment.
1530		 * As long as the datagram contains 4 or more bytes
1531		 * of data, you're ok.
1532		 *
1533                 * The following code attempts to work around this
1534		 * problem: if the datagram is less than 38 bytes
1535		 * in size (14 bytes ether header, 20 bytes IP header,
1536		 * plus 4 bytes of data), we punt and compute the IP
1537		 * header checksum by hand. This workaround doesn't
1538		 * work very well, however, since it can be fooled
1539		 * by things like VLAN tags and IP options that make
1540		 * the header sizes/offsets vary.
1541		 */
1542
1543		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1544			if (m->m_pkthdr.len < 38) {
1545				struct ip *ip;
1546				m->m_data += ETHER_HDR_LEN;
1547				ip = mtod(m, struct ip *);
1548				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1549				m->m_data -= ETHER_HDR_LEN;
1550				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1551			} else {
1552				txp->tx_cb->ipcb_ip_activation_high =
1553				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1554				txp->tx_cb->ipcb_ip_schedule |=
1555				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1556			}
1557		}
1558#endif
1559	}
1560
1561	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1562	    segs, &nseg, 0);
1563	if (error == EFBIG) {
1564		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1565		if (m == NULL) {
1566			m_freem(*m_head);
1567			*m_head = NULL;
1568			return (ENOMEM);
1569		}
1570		*m_head = m;
1571		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1572		    *m_head, segs, &nseg, 0);
1573		if (error != 0) {
1574			m_freem(*m_head);
1575			*m_head = NULL;
1576			return (ENOMEM);
1577		}
1578	} else if (error != 0)
1579		return (error);
1580	if (nseg == 0) {
1581		m_freem(*m_head);
1582		*m_head = NULL;
1583		return (EIO);
1584	}
1585
1586	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1587	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1588
1589	cbp = txp->tx_cb;
1590	for (i = 0; i < nseg; i++) {
1591		/*
1592		 * If this is an 82550/82551, then we're using extended
1593		 * TxCBs _and_ we're using checksum offload. This means
1594		 * that the TxCB is really an IPCB. One major difference
1595		 * between the two is that with plain extended TxCBs,
1596		 * the bottom half of the TxCB contains two entries from
1597		 * the TBD array, whereas IPCBs contain just one entry:
1598		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1599		 * checksum offload control bits. So to make things work
1600		 * right, we have to start filling in the TBD array
1601		 * starting from a different place depending on whether
1602		 * the chip is an 82550/82551 or not.
1603		 */
1604		if (sc->flags & FXP_FLAG_EXT_RFA) {
1605			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1606			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1607		} else {
1608			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1609			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1610		}
1611	}
1612	if (sc->flags & FXP_FLAG_EXT_RFA) {
1613		/* Configure dynamic TBD for 82550/82551. */
1614		cbp->tbd_number = 0xFF;
1615		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1616	} else
1617		cbp->tbd_number = nseg;
1618	/* Configure TSO. */
1619	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1620		cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1621		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1622		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1623		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1624		    FXP_IPCB_TCP_PACKET |
1625		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1626	}
1627	/* Configure VLAN hardware tag insertion. */
1628	if ((m->m_flags & M_VLANTAG) != 0) {
1629		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1630		txp->tx_cb->ipcb_ip_activation_high |=
1631		    FXP_IPCB_INSERTVLAN_ENABLE;
1632	}
1633
1634	txp->tx_mbuf = m;
1635	txp->tx_cb->cb_status = 0;
1636	txp->tx_cb->byte_count = 0;
1637	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1638		txp->tx_cb->cb_command =
1639		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1640		    FXP_CB_COMMAND_S);
1641	else
1642		txp->tx_cb->cb_command =
1643		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1644		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1645	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1646		txp->tx_cb->tx_threshold = tx_threshold;
1647
1648	/*
1649	 * Advance the end of list forward.
1650	 */
1651	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1652	sc->fxp_desc.tx_last = txp;
1653
1654	/*
1655	 * Advance the beginning of the list forward if there are
1656	 * no other packets queued (when nothing is queued, tx_first
1657	 * sits on the last TxCB that was sent out).
1658	 */
1659	if (sc->tx_queued == 0)
1660		sc->fxp_desc.tx_first = txp;
1661
1662	sc->tx_queued++;
1663
1664	return (0);
1665}
1666
1667#ifdef DEVICE_POLLING
1668static poll_handler_t fxp_poll;
1669
1670static int
1671fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1672{
1673	struct fxp_softc *sc = if_getsoftc(ifp);
1674	uint8_t statack;
1675	int rx_npkts = 0;
1676
1677	FXP_LOCK(sc);
1678	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1679		FXP_UNLOCK(sc);
1680		return (rx_npkts);
1681	}
1682
1683	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1684	    FXP_SCB_STATACK_FR;
1685	if (cmd == POLL_AND_CHECK_STATUS) {
1686		uint8_t tmp;
1687
1688		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1689		if (tmp == 0xff || tmp == 0) {
1690			FXP_UNLOCK(sc);
1691			return (rx_npkts); /* nothing to do */
1692		}
1693		tmp &= ~statack;
1694		/* ack what we can */
1695		if (tmp != 0)
1696			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1697		statack |= tmp;
1698	}
1699	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1700	FXP_UNLOCK(sc);
1701	return (rx_npkts);
1702}
1703#endif /* DEVICE_POLLING */
1704
1705/*
1706 * Process interface interrupts.
1707 */
1708static void
1709fxp_intr(void *xsc)
1710{
1711	struct fxp_softc *sc = xsc;
1712	if_t ifp = sc->ifp;
1713	uint8_t statack;
1714
1715	FXP_LOCK(sc);
1716	if (sc->suspended) {
1717		FXP_UNLOCK(sc);
1718		return;
1719	}
1720
1721#ifdef DEVICE_POLLING
1722	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1723		FXP_UNLOCK(sc);
1724		return;
1725	}
1726#endif
1727	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1728		/*
1729		 * It should not be possible to have all bits set; the
1730		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1731		 * all bits are set, this may indicate that the card has
1732		 * been physically ejected, so ignore it.
1733		 */
1734		if (statack == 0xff) {
1735			FXP_UNLOCK(sc);
1736			return;
1737		}
1738
1739		/*
1740		 * First ACK all the interrupts in this pass.
1741		 */
1742		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1743		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1744			fxp_intr_body(sc, ifp, statack, -1);
1745	}
1746	FXP_UNLOCK(sc);
1747}
1748
1749static void
1750fxp_txeof(struct fxp_softc *sc)
1751{
1752	if_t ifp;
1753	struct fxp_tx *txp;
1754
1755	ifp = sc->ifp;
1756	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1757	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1758	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1759	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1760	    txp = txp->tx_next) {
1761		if (txp->tx_mbuf != NULL) {
1762			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1763			    BUS_DMASYNC_POSTWRITE);
1764			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1765			m_freem(txp->tx_mbuf);
1766			txp->tx_mbuf = NULL;
1767			/* clear this to reset csum offload bits */
1768			txp->tx_cb->tbd[0].tb_addr = 0;
1769		}
1770		sc->tx_queued--;
1771		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1772	}
1773	sc->fxp_desc.tx_first = txp;
1774	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1775	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1776	if (sc->tx_queued == 0)
1777		sc->watchdog_timer = 0;
1778}
1779
1780static void
1781fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1782    uint16_t status, int pos)
1783{
1784	struct ether_header *eh;
1785	struct ip *ip;
1786	struct udphdr *uh;
1787	int32_t hlen, len, pktlen, temp32;
1788	uint16_t csum, *opts;
1789
1790	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1791		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1792			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1793				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1794			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1795				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1796			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1797			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1798				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1799				    CSUM_PSEUDO_HDR;
1800				m->m_pkthdr.csum_data = 0xffff;
1801			}
1802		}
1803		return;
1804	}
1805
1806	pktlen = m->m_pkthdr.len;
1807	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1808		return;
1809	eh = mtod(m, struct ether_header *);
1810	if (eh->ether_type != htons(ETHERTYPE_IP))
1811		return;
1812	ip = (struct ip *)(eh + 1);
1813	if (ip->ip_v != IPVERSION)
1814		return;
1815
1816	hlen = ip->ip_hl << 2;
1817	pktlen -= sizeof(struct ether_header);
1818	if (hlen < sizeof(struct ip))
1819		return;
1820	if (ntohs(ip->ip_len) < hlen)
1821		return;
1822	if (ntohs(ip->ip_len) != pktlen)
1823		return;
1824	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1825		return;	/* can't handle fragmented packet */
1826
1827	switch (ip->ip_p) {
1828	case IPPROTO_TCP:
1829		if (pktlen < (hlen + sizeof(struct tcphdr)))
1830			return;
1831		break;
1832	case IPPROTO_UDP:
1833		if (pktlen < (hlen + sizeof(struct udphdr)))
1834			return;
1835		uh = (struct udphdr *)((caddr_t)ip + hlen);
1836		if (uh->uh_sum == 0)
1837			return; /* no checksum */
1838		break;
1839	default:
1840		return;
1841	}
1842	/* Extract computed checksum. */
1843	csum = be16dec(mtod(m, char *) + pos);
1844	/* checksum fixup for IP options */
1845	len = hlen - sizeof(struct ip);
1846	if (len > 0) {
1847		opts = (uint16_t *)(ip + 1);
1848		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1849			temp32 = csum - *opts;
1850			temp32 = (temp32 >> 16) + (temp32 & 65535);
1851			csum = temp32 & 65535;
1852		}
1853	}
1854	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1855	m->m_pkthdr.csum_data = csum;
1856}
1857
1858static int
1859fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1860    int count)
1861{
1862	struct mbuf *m;
1863	struct fxp_rx *rxp;
1864	struct fxp_rfa *rfa;
1865	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1866	int rx_npkts;
1867	uint16_t status;
1868
1869	rx_npkts = 0;
1870	FXP_LOCK_ASSERT(sc, MA_OWNED);
1871
1872	if (rnr)
1873		sc->rnr++;
1874#ifdef DEVICE_POLLING
1875	/* Pick up a deferred RNR condition if `count' ran out last time. */
1876	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1877		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1878		rnr = 1;
1879	}
1880#endif
1881
1882	/*
1883	 * Free any finished transmit mbuf chains.
1884	 *
1885	 * Handle the CNA event likt a CXTNO event. It used to
1886	 * be that this event (control unit not ready) was not
1887	 * encountered, but it is now with the SMPng modifications.
1888	 * The exact sequence of events that occur when the interface
1889	 * is brought up are different now, and if this event
1890	 * goes unhandled, the configuration/rxfilter setup sequence
1891	 * can stall for several seconds. The result is that no
1892	 * packets go out onto the wire for about 5 to 10 seconds
1893	 * after the interface is ifconfig'ed for the first time.
1894	 */
1895	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1896		fxp_txeof(sc);
1897
1898	/*
1899	 * Try to start more packets transmitting.
1900	 */
1901	if (!if_sendq_empty(ifp))
1902		fxp_start_body(ifp);
1903
1904	/*
1905	 * Just return if nothing happened on the receive side.
1906	 */
1907	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1908		return (rx_npkts);
1909
1910	/*
1911	 * Process receiver interrupts. If a no-resource (RNR)
1912	 * condition exists, get whatever packets we can and
1913	 * re-start the receiver.
1914	 *
1915	 * When using polling, we do not process the list to completion,
1916	 * so when we get an RNR interrupt we must defer the restart
1917	 * until we hit the last buffer with the C bit set.
1918	 * If we run out of cycles and rfa_headm has the C bit set,
1919	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1920	 * that the info will be used in the subsequent polling cycle.
1921	 */
1922	for (;;) {
1923		rxp = sc->fxp_desc.rx_head;
1924		m = rxp->rx_mbuf;
1925		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1926		    RFA_ALIGNMENT_FUDGE);
1927		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1928		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1929
1930#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1931		if (count >= 0 && count-- == 0) {
1932			if (rnr) {
1933				/* Defer RNR processing until the next time. */
1934				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1935				rnr = 0;
1936			}
1937			break;
1938		}
1939#endif /* DEVICE_POLLING */
1940
1941		status = le16toh(rfa->rfa_status);
1942		if ((status & FXP_RFA_STATUS_C) == 0)
1943			break;
1944
1945		if ((status & FXP_RFA_STATUS_RNR) != 0)
1946			rnr++;
1947		/*
1948		 * Advance head forward.
1949		 */
1950		sc->fxp_desc.rx_head = rxp->rx_next;
1951
1952		/*
1953		 * Add a new buffer to the receive chain.
1954		 * If this fails, the old buffer is recycled
1955		 * instead.
1956		 */
1957		if (fxp_new_rfabuf(sc, rxp) == 0) {
1958			int total_len;
1959
1960			/*
1961			 * Fetch packet length (the top 2 bits of
1962			 * actual_size are flags set by the controller
1963			 * upon completion), and drop the packet in case
1964			 * of bogus length or CRC errors.
1965			 */
1966			total_len = le16toh(rfa->actual_size) & 0x3fff;
1967			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1968			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1969				/* Adjust for appended checksum bytes. */
1970				total_len -= 2;
1971			}
1972			if (total_len < (int)sizeof(struct ether_header) ||
1973			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1974			    sc->rfa_size) ||
1975			    status & (FXP_RFA_STATUS_CRC |
1976			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1977				m_freem(m);
1978				fxp_add_rfabuf(sc, rxp);
1979				continue;
1980			}
1981
1982			m->m_pkthdr.len = m->m_len = total_len;
1983			if_setrcvif(m, ifp);
1984
1985                        /* Do IP checksum checking. */
1986			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1987				fxp_rxcsum(sc, ifp, m, status, total_len);
1988			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1989			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1990				m->m_pkthdr.ether_vtag =
1991				    ntohs(rfa->rfax_vlan_id);
1992				m->m_flags |= M_VLANTAG;
1993			}
1994			/*
1995			 * Drop locks before calling if_input() since it
1996			 * may re-enter fxp_start() in the netisr case.
1997			 * This would result in a lock reversal.  Better
1998			 * performance might be obtained by chaining all
1999			 * packets received, dropping the lock, and then
2000			 * calling if_input() on each one.
2001			 */
2002			FXP_UNLOCK(sc);
2003			if_input(ifp, m);
2004			FXP_LOCK(sc);
2005			rx_npkts++;
2006			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2007				return (rx_npkts);
2008		} else {
2009			/* Reuse RFA and loaded DMA map. */
2010			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2011			fxp_discard_rfabuf(sc, rxp);
2012		}
2013		fxp_add_rfabuf(sc, rxp);
2014	}
2015	if (rnr) {
2016		fxp_scb_wait(sc);
2017		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2018		    sc->fxp_desc.rx_head->rx_addr);
2019		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2020	}
2021	return (rx_npkts);
2022}
2023
2024static void
2025fxp_update_stats(struct fxp_softc *sc)
2026{
2027	if_t ifp = sc->ifp;
2028	struct fxp_stats *sp = sc->fxp_stats;
2029	struct fxp_hwstats *hsp;
2030	uint32_t *status;
2031
2032	FXP_LOCK_ASSERT(sc, MA_OWNED);
2033
2034	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2035	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2036	/* Update statistical counters. */
2037	if (sc->revision >= FXP_REV_82559_A0)
2038		status = &sp->completion_status;
2039	else if (sc->revision >= FXP_REV_82558_A4)
2040		status = (uint32_t *)&sp->tx_tco;
2041	else
2042		status = &sp->tx_pause;
2043	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2044		hsp = &sc->fxp_hwstats;
2045		hsp->tx_good += le32toh(sp->tx_good);
2046		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2047		hsp->tx_latecols += le32toh(sp->tx_latecols);
2048		hsp->tx_underruns += le32toh(sp->tx_underruns);
2049		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2050		hsp->tx_deffered += le32toh(sp->tx_deffered);
2051		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2052		hsp->tx_multiple_collisions +=
2053		    le32toh(sp->tx_multiple_collisions);
2054		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2055		hsp->rx_good += le32toh(sp->rx_good);
2056		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2057		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2058		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2059		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2060		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2061		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2062		hsp->tx_pause += le32toh(sp->tx_pause);
2063		hsp->rx_pause += le32toh(sp->rx_pause);
2064		hsp->rx_controls += le32toh(sp->rx_controls);
2065		hsp->tx_tco += le16toh(sp->tx_tco);
2066		hsp->rx_tco += le16toh(sp->rx_tco);
2067
2068		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2069		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2070		    le32toh(sp->tx_total_collisions));
2071		if (sp->rx_good) {
2072			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2073			    le32toh(sp->rx_good));
2074			sc->rx_idle_secs = 0;
2075		} else if (sc->flags & FXP_FLAG_RXBUG) {
2076			/*
2077			 * Receiver's been idle for another second.
2078			 */
2079			sc->rx_idle_secs++;
2080		}
2081		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2082		    le32toh(sp->rx_crc_errors) +
2083		    le32toh(sp->rx_alignment_errors) +
2084		    le32toh(sp->rx_rnr_errors) +
2085		    le32toh(sp->rx_overrun_errors));
2086		/*
2087		 * If any transmit underruns occurred, bump up the transmit
2088		 * threshold by another 512 bytes (64 * 8).
2089		 */
2090		if (sp->tx_underruns) {
2091			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2092			    le32toh(sp->tx_underruns));
2093			if (tx_threshold < 192)
2094				tx_threshold += 64;
2095		}
2096		*status = 0;
2097		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2098		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099	}
2100}
2101
2102/*
2103 * Update packet in/out/collision statistics. The i82557 doesn't
2104 * allow you to access these counters without doing a fairly
2105 * expensive DMA to get _all_ of the statistics it maintains, so
2106 * we do this operation here only once per second. The statistics
2107 * counters in the kernel are updated from the previous dump-stats
2108 * DMA and then a new dump-stats DMA is started. The on-chip
2109 * counters are zeroed when the DMA completes. If we can't start
2110 * the DMA immediately, we don't wait - we just prepare to read
2111 * them again next time.
2112 */
2113static void
2114fxp_tick(void *xsc)
2115{
2116	struct fxp_softc *sc = xsc;
2117	if_t ifp = sc->ifp;
2118
2119	FXP_LOCK_ASSERT(sc, MA_OWNED);
2120
2121	/* Update statistical counters. */
2122	fxp_update_stats(sc);
2123
2124	/*
2125	 * Release any xmit buffers that have completed DMA. This isn't
2126	 * strictly necessary to do here, but it's advantagous for mbufs
2127	 * with external storage to be released in a timely manner rather
2128	 * than being defered for a potentially long time. This limits
2129	 * the delay to a maximum of one second.
2130	 */
2131	fxp_txeof(sc);
2132
2133	/*
2134	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2135	 * then assume the receiver has locked up and attempt to clear
2136	 * the condition by reprogramming the multicast filter. This is
2137	 * a work-around for a bug in the 82557 where the receiver locks
2138	 * up if it gets certain types of garbage in the synchronization
2139	 * bits prior to the packet header. This bug is supposed to only
2140	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2141	 * mode as well (perhaps due to a 10/100 speed transition).
2142	 */
2143	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2144		sc->rx_idle_secs = 0;
2145		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2146			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2147			fxp_init_body(sc, 1);
2148		}
2149		return;
2150	}
2151	/*
2152	 * If there is no pending command, start another stats
2153	 * dump. Otherwise punt for now.
2154	 */
2155	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2156		/*
2157		 * Start another stats dump.
2158		 */
2159		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2160	}
2161	if (sc->miibus != NULL)
2162		mii_tick(device_get_softc(sc->miibus));
2163
2164	/*
2165	 * Check that chip hasn't hung.
2166	 */
2167	fxp_watchdog(sc);
2168
2169	/*
2170	 * Schedule another timeout one second from now.
2171	 */
2172	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2173}
2174
2175/*
2176 * Stop the interface. Cancels the statistics updater and resets
2177 * the interface.
2178 */
2179static void
2180fxp_stop(struct fxp_softc *sc)
2181{
2182	if_t ifp = sc->ifp;
2183	struct fxp_tx *txp;
2184	int i;
2185
2186	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2187	sc->watchdog_timer = 0;
2188
2189	/*
2190	 * Cancel stats updater.
2191	 */
2192	callout_stop(&sc->stat_ch);
2193
2194	/*
2195	 * Preserve PCI configuration, configure, IA/multicast
2196	 * setup and put RU and CU into idle state.
2197	 */
2198	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2199	DELAY(50);
2200	/* Disable interrupts. */
2201	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2202
2203	fxp_update_stats(sc);
2204
2205	/*
2206	 * Release any xmit buffers.
2207	 */
2208	txp = sc->fxp_desc.tx_list;
2209	for (i = 0; i < FXP_NTXCB; i++) {
2210		if (txp[i].tx_mbuf != NULL) {
2211			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2212			    BUS_DMASYNC_POSTWRITE);
2213			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2214			m_freem(txp[i].tx_mbuf);
2215			txp[i].tx_mbuf = NULL;
2216			/* clear this to reset csum offload bits */
2217			txp[i].tx_cb->tbd[0].tb_addr = 0;
2218		}
2219	}
2220	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2221	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2222	sc->tx_queued = 0;
2223}
2224
2225/*
2226 * Watchdog/transmission transmit timeout handler. Called when a
2227 * transmission is started on the interface, but no interrupt is
2228 * received before the timeout. This usually indicates that the
2229 * card has wedged for some reason.
2230 */
2231static void
2232fxp_watchdog(struct fxp_softc *sc)
2233{
2234	if_t ifp = sc->ifp;
2235
2236	FXP_LOCK_ASSERT(sc, MA_OWNED);
2237
2238	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2239		return;
2240
2241	device_printf(sc->dev, "device timeout\n");
2242	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2243
2244	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2245	fxp_init_body(sc, 1);
2246}
2247
2248/*
2249 * Acquire locks and then call the real initialization function.  This
2250 * is necessary because ether_ioctl() calls if_init() and this would
2251 * result in mutex recursion if the mutex was held.
2252 */
2253static void
2254fxp_init(void *xsc)
2255{
2256	struct fxp_softc *sc = xsc;
2257
2258	FXP_LOCK(sc);
2259	fxp_init_body(sc, 1);
2260	FXP_UNLOCK(sc);
2261}
2262
2263/*
2264 * Perform device initialization. This routine must be called with the
2265 * softc lock held.
2266 */
2267static void
2268fxp_init_body(struct fxp_softc *sc, int setmedia)
2269{
2270	if_t ifp = sc->ifp;
2271	struct mii_data *mii;
2272	struct fxp_cb_config *cbp;
2273	struct fxp_cb_ias *cb_ias;
2274	struct fxp_cb_tx *tcbp;
2275	struct fxp_tx *txp;
2276	int i, prm;
2277
2278	FXP_LOCK_ASSERT(sc, MA_OWNED);
2279
2280	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2281		return;
2282
2283	/*
2284	 * Cancel any pending I/O
2285	 */
2286	fxp_stop(sc);
2287
2288	/*
2289	 * Issue software reset, which also unloads the microcode.
2290	 */
2291	sc->flags &= ~FXP_FLAG_UCODE;
2292	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2293	DELAY(50);
2294
2295	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2296
2297	/*
2298	 * Initialize base of CBL and RFA memory. Loading with zero
2299	 * sets it up for regular linear addressing.
2300	 */
2301	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2302	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2303
2304	fxp_scb_wait(sc);
2305	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2306
2307	/*
2308	 * Initialize base of dump-stats buffer.
2309	 */
2310	fxp_scb_wait(sc);
2311	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2312	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2313	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2314	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2315	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2316
2317	/*
2318	 * Attempt to load microcode if requested.
2319	 * For ICH based controllers do not load microcode.
2320	 */
2321	if (sc->ident->ich == 0) {
2322		if (if_getflags(ifp) & IFF_LINK0 &&
2323		    (sc->flags & FXP_FLAG_UCODE) == 0)
2324			fxp_load_ucode(sc);
2325	}
2326
2327	/*
2328	 * Set IFF_ALLMULTI status. It's needed in configure action
2329	 * command.
2330	 */
2331	fxp_mc_addrs(sc);
2332
2333	/*
2334	 * We temporarily use memory that contains the TxCB list to
2335	 * construct the config CB. The TxCB list memory is rebuilt
2336	 * later.
2337	 */
2338	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2339
2340	/*
2341	 * This bcopy is kind of disgusting, but there are a bunch of must be
2342	 * zero and must be one bits in this structure and this is the easiest
2343	 * way to initialize them all to proper values.
2344	 */
2345	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2346
2347	cbp->cb_status =	0;
2348	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2349	    FXP_CB_COMMAND_EL);
2350	cbp->link_addr =	0xffffffff;	/* (no) next command */
2351	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2352	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2353	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2354	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2355	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2356	cbp->type_enable =	0;	/* actually reserved */
2357	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2358	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2359	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2360	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2361	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2362	cbp->late_scb =		0;	/* (don't) defer SCB update */
2363	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2364	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2365	cbp->ci_int =		1;	/* interrupt on CU idle */
2366	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2367	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2368	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2369	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2370	cbp->disc_short_rx =	!prm;	/* discard short packets */
2371	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2372	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2373	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2374	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2375	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2376	cbp->csma_dis =		0;	/* (don't) disable link */
2377	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2378	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2379	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2380	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2381	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2382	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2383	cbp->nsai =		1;	/* (don't) disable source addr insert */
2384	cbp->preamble_length =	2;	/* (7 byte) preamble */
2385	cbp->loopback =		0;	/* (don't) loopback */
2386	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2387	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2388	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2389	cbp->promiscuous =	prm;	/* promiscuous mode */
2390	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2391	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2392	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2393	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2394	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2395
2396	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2397	cbp->padding =		1;	/* (do) pad short tx packets */
2398	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2399	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2400	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2401	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2402	cbp->force_fdx =	0;	/* (don't) force full duplex */
2403	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2404	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2405	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2406	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2407	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2408	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2409
2410	if (sc->revision == FXP_REV_82557) {
2411		/*
2412		 * The 82557 has no hardware flow control, the values
2413		 * below are the defaults for the chip.
2414		 */
2415		cbp->fc_delay_lsb =	0;
2416		cbp->fc_delay_msb =	0x40;
2417		cbp->pri_fc_thresh =	3;
2418		cbp->tx_fc_dis =	0;
2419		cbp->rx_fc_restop =	0;
2420		cbp->rx_fc_restart =	0;
2421		cbp->fc_filter =	0;
2422		cbp->pri_fc_loc =	1;
2423	} else {
2424		/* Set pause RX FIFO threshold to 1KB. */
2425		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2426		/* Set pause time. */
2427		cbp->fc_delay_lsb =	0xff;
2428		cbp->fc_delay_msb =	0xff;
2429		cbp->pri_fc_thresh =	3;
2430		mii = device_get_softc(sc->miibus);
2431		if ((IFM_OPTIONS(mii->mii_media_active) &
2432		    IFM_ETH_TXPAUSE) != 0)
2433			/* enable transmit FC */
2434			cbp->tx_fc_dis = 0;
2435		else
2436			/* disable transmit FC */
2437			cbp->tx_fc_dis = 1;
2438		if ((IFM_OPTIONS(mii->mii_media_active) &
2439		    IFM_ETH_RXPAUSE) != 0) {
2440			/* enable FC restart/restop frames */
2441			cbp->rx_fc_restart = 1;
2442			cbp->rx_fc_restop = 1;
2443		} else {
2444			/* disable FC restart/restop frames */
2445			cbp->rx_fc_restart = 0;
2446			cbp->rx_fc_restop = 0;
2447		}
2448		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2449		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2450	}
2451
2452	/* Enable 82558 and 82559 extended statistics functionality. */
2453	if (sc->revision >= FXP_REV_82558_A4) {
2454		if (sc->revision >= FXP_REV_82559_A0) {
2455			/*
2456			 * Extend configuration table size to 32
2457			 * to include TCO configuration.
2458			 */
2459			cbp->byte_count = 32;
2460			cbp->ext_stats_dis = 1;
2461			/* Enable TCO stats. */
2462			cbp->tno_int_or_tco_en = 1;
2463			cbp->gamla_rx = 1;
2464		} else
2465			cbp->ext_stats_dis = 0;
2466	}
2467
2468	/*
2469	 * Start the config command/DMA.
2470	 */
2471	fxp_scb_wait(sc);
2472	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2473	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2474	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2475	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2476	/* ...and wait for it to complete. */
2477	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2478
2479	/*
2480	 * Now initialize the station address. Temporarily use the TxCB
2481	 * memory area like we did above for the config CB.
2482	 */
2483	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2484	cb_ias->cb_status = 0;
2485	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2486	cb_ias->link_addr = 0xffffffff;
2487	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2488
2489	/*
2490	 * Start the IAS (Individual Address Setup) command/DMA.
2491	 */
2492	fxp_scb_wait(sc);
2493	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2494	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2495	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2496	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2497	/* ...and wait for it to complete. */
2498	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2499
2500	/*
2501	 * Initialize the multicast address list.
2502	 */
2503	fxp_mc_setup(sc);
2504
2505	/*
2506	 * Initialize transmit control block (TxCB) list.
2507	 */
2508	txp = sc->fxp_desc.tx_list;
2509	tcbp = sc->fxp_desc.cbl_list;
2510	bzero(tcbp, FXP_TXCB_SZ);
2511	for (i = 0; i < FXP_NTXCB; i++) {
2512		txp[i].tx_mbuf = NULL;
2513		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2514		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2515		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2516		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2517		if (sc->flags & FXP_FLAG_EXT_TXCB)
2518			tcbp[i].tbd_array_addr =
2519			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2520		else
2521			tcbp[i].tbd_array_addr =
2522			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2523		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2524	}
2525	/*
2526	 * Set the suspend flag on the first TxCB and start the control
2527	 * unit. It will execute the NOP and then suspend.
2528	 */
2529	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2530	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2531	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2532	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2533	sc->tx_queued = 1;
2534
2535	fxp_scb_wait(sc);
2536	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2537	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2538
2539	/*
2540	 * Initialize receiver buffer area - RFA.
2541	 */
2542	fxp_scb_wait(sc);
2543	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2544	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2545
2546	if (sc->miibus != NULL && setmedia != 0)
2547		mii_mediachg(device_get_softc(sc->miibus));
2548
2549	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2550
2551	/*
2552	 * Enable interrupts.
2553	 */
2554#ifdef DEVICE_POLLING
2555	/*
2556	 * ... but only do that if we are not polling. And because (presumably)
2557	 * the default is interrupts on, we need to disable them explicitly!
2558	 */
2559	if (if_getcapenable(ifp) & IFCAP_POLLING )
2560		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2561	else
2562#endif /* DEVICE_POLLING */
2563	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2564
2565	/*
2566	 * Start stats updater.
2567	 */
2568	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2569}
2570
2571static int
2572fxp_serial_ifmedia_upd(if_t ifp)
2573{
2574
2575	return (0);
2576}
2577
2578static void
2579fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2580{
2581
2582	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2583}
2584
2585/*
2586 * Change media according to request.
2587 */
2588static int
2589fxp_ifmedia_upd(if_t ifp)
2590{
2591	struct fxp_softc *sc = if_getsoftc(ifp);
2592	struct mii_data *mii;
2593	struct mii_softc	*miisc;
2594
2595	mii = device_get_softc(sc->miibus);
2596	FXP_LOCK(sc);
2597	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2598		PHY_RESET(miisc);
2599	mii_mediachg(mii);
2600	FXP_UNLOCK(sc);
2601	return (0);
2602}
2603
2604/*
2605 * Notify the world which media we're using.
2606 */
2607static void
2608fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2609{
2610	struct fxp_softc *sc = if_getsoftc(ifp);
2611	struct mii_data *mii;
2612
2613	mii = device_get_softc(sc->miibus);
2614	FXP_LOCK(sc);
2615	mii_pollstat(mii);
2616	ifmr->ifm_active = mii->mii_media_active;
2617	ifmr->ifm_status = mii->mii_media_status;
2618	FXP_UNLOCK(sc);
2619}
2620
2621/*
2622 * Add a buffer to the end of the RFA buffer list.
2623 * Return 0 if successful, 1 for failure. A failure results in
2624 * reusing the RFA buffer.
2625 * The RFA struct is stuck at the beginning of mbuf cluster and the
2626 * data pointer is fixed up to point just past it.
2627 */
2628static int
2629fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2630{
2631	struct mbuf *m;
2632	struct fxp_rfa *rfa;
2633	bus_dmamap_t tmp_map;
2634	int error;
2635
2636	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2637	if (m == NULL)
2638		return (ENOBUFS);
2639
2640	/*
2641	 * Move the data pointer up so that the incoming data packet
2642	 * will be 32-bit aligned.
2643	 */
2644	m->m_data += RFA_ALIGNMENT_FUDGE;
2645
2646	/*
2647	 * Get a pointer to the base of the mbuf cluster and move
2648	 * data start past it.
2649	 */
2650	rfa = mtod(m, struct fxp_rfa *);
2651	m->m_data += sc->rfa_size;
2652	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2653
2654	rfa->rfa_status = 0;
2655	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2656	rfa->actual_size = 0;
2657	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2658	    sc->rfa_size;
2659
2660	/*
2661	 * Initialize the rest of the RFA.  Note that since the RFA
2662	 * is misaligned, we cannot store values directly.  We're thus
2663	 * using the le32enc() function which handles endianness and
2664	 * is also alignment-safe.
2665	 */
2666	le32enc(&rfa->link_addr, 0xffffffff);
2667	le32enc(&rfa->rbd_addr, 0xffffffff);
2668
2669	/* Map the RFA into DMA memory. */
2670	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2671	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2672	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2673	if (error) {
2674		m_freem(m);
2675		return (error);
2676	}
2677
2678	if (rxp->rx_mbuf != NULL)
2679		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2680	tmp_map = sc->spare_map;
2681	sc->spare_map = rxp->rx_map;
2682	rxp->rx_map = tmp_map;
2683	rxp->rx_mbuf = m;
2684
2685	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2686	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2687	return (0);
2688}
2689
2690static void
2691fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2692{
2693	struct fxp_rfa *p_rfa;
2694	struct fxp_rx *p_rx;
2695
2696	/*
2697	 * If there are other buffers already on the list, attach this
2698	 * one to the end by fixing up the tail to point to this one.
2699	 */
2700	if (sc->fxp_desc.rx_head != NULL) {
2701		p_rx = sc->fxp_desc.rx_tail;
2702		p_rfa = (struct fxp_rfa *)
2703		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2704		p_rx->rx_next = rxp;
2705		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2706		p_rfa->rfa_control = 0;
2707		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2708		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2709	} else {
2710		rxp->rx_next = NULL;
2711		sc->fxp_desc.rx_head = rxp;
2712	}
2713	sc->fxp_desc.rx_tail = rxp;
2714}
2715
2716static void
2717fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2718{
2719	struct mbuf *m;
2720	struct fxp_rfa *rfa;
2721
2722	m = rxp->rx_mbuf;
2723	m->m_data = m->m_ext.ext_buf;
2724	/*
2725	 * Move the data pointer up so that the incoming data packet
2726	 * will be 32-bit aligned.
2727	 */
2728	m->m_data += RFA_ALIGNMENT_FUDGE;
2729
2730	/*
2731	 * Get a pointer to the base of the mbuf cluster and move
2732	 * data start past it.
2733	 */
2734	rfa = mtod(m, struct fxp_rfa *);
2735	m->m_data += sc->rfa_size;
2736	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2737
2738	rfa->rfa_status = 0;
2739	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2740	rfa->actual_size = 0;
2741
2742	/*
2743	 * Initialize the rest of the RFA.  Note that since the RFA
2744	 * is misaligned, we cannot store values directly.  We're thus
2745	 * using the le32enc() function which handles endianness and
2746	 * is also alignment-safe.
2747	 */
2748	le32enc(&rfa->link_addr, 0xffffffff);
2749	le32enc(&rfa->rbd_addr, 0xffffffff);
2750
2751	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2752	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2753}
2754
2755static int
2756fxp_miibus_readreg(device_t dev, int phy, int reg)
2757{
2758	struct fxp_softc *sc = device_get_softc(dev);
2759	int count = 10000;
2760	int value;
2761
2762	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2763	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2764
2765	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2766	    && count--)
2767		DELAY(10);
2768
2769	if (count <= 0)
2770		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2771
2772	return (value & 0xffff);
2773}
2774
2775static int
2776fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2777{
2778	struct fxp_softc *sc = device_get_softc(dev);
2779	int count = 10000;
2780
2781	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2782	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2783	    (value & 0xffff));
2784
2785	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2786	    count--)
2787		DELAY(10);
2788
2789	if (count <= 0)
2790		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2791	return (0);
2792}
2793
2794static void
2795fxp_miibus_statchg(device_t dev)
2796{
2797	struct fxp_softc *sc;
2798	struct mii_data *mii;
2799	if_t ifp;
2800
2801	sc = device_get_softc(dev);
2802	mii = device_get_softc(sc->miibus);
2803	ifp = sc->ifp;
2804	if (mii == NULL || ifp == (void *)NULL ||
2805	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2806	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2807	    (IFM_AVALID | IFM_ACTIVE))
2808		return;
2809
2810	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2811	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2812		sc->cu_resume_bug = 1;
2813	else
2814		sc->cu_resume_bug = 0;
2815	/*
2816	 * Call fxp_init_body in order to adjust the flow control settings.
2817	 * Note that the 82557 doesn't support hardware flow control.
2818	 */
2819	if (sc->revision == FXP_REV_82557)
2820		return;
2821	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2822	fxp_init_body(sc, 0);
2823}
2824
2825static int
2826fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2827{
2828	struct fxp_softc *sc = if_getsoftc(ifp);
2829	struct ifreq *ifr = (struct ifreq *)data;
2830	struct mii_data *mii;
2831	int flag, mask, error = 0, reinit;
2832
2833	switch (command) {
2834	case SIOCSIFFLAGS:
2835		FXP_LOCK(sc);
2836		/*
2837		 * If interface is marked up and not running, then start it.
2838		 * If it is marked down and running, stop it.
2839		 * XXX If it's up then re-initialize it. This is so flags
2840		 * such as IFF_PROMISC are handled.
2841		 */
2842		if (if_getflags(ifp) & IFF_UP) {
2843			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2844			    ((if_getflags(ifp) ^ sc->if_flags) &
2845			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2846				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2847				fxp_init_body(sc, 0);
2848			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2849				fxp_init_body(sc, 1);
2850		} else {
2851			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2852				fxp_stop(sc);
2853		}
2854		sc->if_flags = if_getflags(ifp);
2855		FXP_UNLOCK(sc);
2856		break;
2857
2858	case SIOCADDMULTI:
2859	case SIOCDELMULTI:
2860		FXP_LOCK(sc);
2861		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2862			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2863			fxp_init_body(sc, 0);
2864		}
2865		FXP_UNLOCK(sc);
2866		break;
2867
2868	case SIOCSIFMEDIA:
2869	case SIOCGIFMEDIA:
2870		if (sc->miibus != NULL) {
2871			mii = device_get_softc(sc->miibus);
2872                        error = ifmedia_ioctl(ifp, ifr,
2873                            &mii->mii_media, command);
2874		} else {
2875                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2876		}
2877		break;
2878
2879	case SIOCSIFCAP:
2880		reinit = 0;
2881		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2882#ifdef DEVICE_POLLING
2883		if (mask & IFCAP_POLLING) {
2884			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2885				error = ether_poll_register(fxp_poll, ifp);
2886				if (error)
2887					return(error);
2888				FXP_LOCK(sc);
2889				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2890				    FXP_SCB_INTR_DISABLE);
2891				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2892				FXP_UNLOCK(sc);
2893			} else {
2894				error = ether_poll_deregister(ifp);
2895				/* Enable interrupts in any case */
2896				FXP_LOCK(sc);
2897				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2898				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2899				FXP_UNLOCK(sc);
2900			}
2901		}
2902#endif
2903		FXP_LOCK(sc);
2904		if ((mask & IFCAP_TXCSUM) != 0 &&
2905		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2906			if_togglecapenable(ifp, IFCAP_TXCSUM);
2907			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2908				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2909			else
2910				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2911		}
2912		if ((mask & IFCAP_RXCSUM) != 0 &&
2913		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2914			if_togglecapenable(ifp, IFCAP_RXCSUM);
2915			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2916				reinit++;
2917		}
2918		if ((mask & IFCAP_TSO4) != 0 &&
2919		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2920			if_togglecapenable(ifp, IFCAP_TSO4);
2921			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2922				if_sethwassistbits(ifp, CSUM_TSO, 0);
2923			else
2924				if_sethwassistbits(ifp, 0, CSUM_TSO);
2925		}
2926		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2927		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2928			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2929		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2930		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2931			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2932			if (sc->revision != FXP_REV_82557)
2933				flag = FXP_FLAG_LONG_PKT_EN;
2934			else /* a hack to get long frames on the old chip */
2935				flag = FXP_FLAG_SAVE_BAD;
2936			sc->flags ^= flag;
2937			if (if_getflags(ifp) & IFF_UP)
2938				reinit++;
2939		}
2940		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2941		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2942			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2943		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2944		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2945			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2946		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2947		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2948			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2949			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2950				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2951				    IFCAP_VLAN_HWCSUM);
2952			reinit++;
2953		}
2954		if (reinit > 0 &&
2955		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2956			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2957			fxp_init_body(sc, 0);
2958		}
2959		FXP_UNLOCK(sc);
2960		if_vlancap(ifp);
2961		break;
2962
2963	default:
2964		error = ether_ioctl(ifp, command, data);
2965	}
2966	return (error);
2967}
2968
2969static u_int
2970fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2971{
2972	struct fxp_softc *sc = arg;
2973	struct fxp_cb_mcs *mcsp = sc->mcsp;
2974
2975	if (mcsp->mc_cnt < MAXMCADDR)
2976		bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN],
2977		    ETHER_ADDR_LEN);
2978	mcsp->mc_cnt++;
2979	return (1);
2980}
2981
2982/*
2983 * Fill in the multicast address list and return number of entries.
2984 */
2985static void
2986fxp_mc_addrs(struct fxp_softc *sc)
2987{
2988	struct fxp_cb_mcs *mcsp = sc->mcsp;
2989	if_t ifp = sc->ifp;
2990
2991	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2992		mcsp->mc_cnt = 0;
2993		if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc);
2994		if (mcsp->mc_cnt >= MAXMCADDR) {
2995			if_setflagbits(ifp, IFF_ALLMULTI, 0);
2996			mcsp->mc_cnt = 0;
2997		}
2998	}
2999	mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN);
3000}
3001
3002/*
3003 * Program the multicast filter.
3004 *
3005 * We have an artificial restriction that the multicast setup command
3006 * must be the first command in the chain, so we take steps to ensure
3007 * this. By requiring this, it allows us to keep up the performance of
3008 * the pre-initialized command ring (esp. link pointers) by not actually
3009 * inserting the mcsetup command in the ring - i.e. its link pointer
3010 * points to the TxCB ring, but the mcsetup descriptor itself is not part
3011 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3012 * lead into the regular TxCB ring when it completes.
3013 */
3014static void
3015fxp_mc_setup(struct fxp_softc *sc)
3016{
3017	struct fxp_cb_mcs *mcsp;
3018	int count;
3019
3020	FXP_LOCK_ASSERT(sc, MA_OWNED);
3021
3022	mcsp = sc->mcsp;
3023	mcsp->cb_status = 0;
3024	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3025	mcsp->link_addr = 0xffffffff;
3026	fxp_mc_addrs(sc);
3027
3028	/*
3029	 * Wait until command unit is idle. This should never be the
3030	 * case when nothing is queued, but make sure anyway.
3031	 */
3032	count = 100;
3033	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3034	    FXP_SCB_CUS_IDLE && --count)
3035		DELAY(10);
3036	if (count == 0) {
3037		device_printf(sc->dev, "command queue timeout\n");
3038		return;
3039	}
3040
3041	/*
3042	 * Start the multicast setup command.
3043	 */
3044	fxp_scb_wait(sc);
3045	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3046	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3047	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3048	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3049	/* ...and wait for it to complete. */
3050	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3051}
3052
3053static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3054static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3055static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3056static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3057static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3058static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3059static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3060
3061#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3062
3063static const struct ucode {
3064	uint32_t	revision;
3065	uint32_t	*ucode;
3066	int		length;
3067	u_short		int_delay_offset;
3068	u_short		bundle_max_offset;
3069} ucode_table[] = {
3070	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3071	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3072	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3073	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3074	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3075	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3076	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3077	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3078	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3079	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3080	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3081	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3082	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3083	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3084	{ 0, NULL, 0, 0, 0 }
3085};
3086
3087static void
3088fxp_load_ucode(struct fxp_softc *sc)
3089{
3090	const struct ucode *uc;
3091	struct fxp_cb_ucode *cbp;
3092	int i;
3093
3094	if (sc->flags & FXP_FLAG_NO_UCODE)
3095		return;
3096
3097	for (uc = ucode_table; uc->ucode != NULL; uc++)
3098		if (sc->revision == uc->revision)
3099			break;
3100	if (uc->ucode == NULL)
3101		return;
3102	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3103	cbp->cb_status = 0;
3104	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3105	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3106	for (i = 0; i < uc->length; i++)
3107		cbp->ucode[i] = htole32(uc->ucode[i]);
3108	if (uc->int_delay_offset)
3109		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3110		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3111	if (uc->bundle_max_offset)
3112		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3113		    htole16(sc->tunable_bundle_max);
3114	/*
3115	 * Download the ucode to the chip.
3116	 */
3117	fxp_scb_wait(sc);
3118	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3119	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3120	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3121	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3122	/* ...and wait for it to complete. */
3123	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3124	device_printf(sc->dev,
3125	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3126	    sc->tunable_int_delay,
3127	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3128	sc->flags |= FXP_FLAG_UCODE;
3129	bzero(cbp, FXP_TXCB_SZ);
3130}
3131
3132#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3133	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3134
3135static void
3136fxp_sysctl_node(struct fxp_softc *sc)
3137{
3138	struct sysctl_ctx_list *ctx;
3139	struct sysctl_oid_list *child, *parent;
3140	struct sysctl_oid *tree;
3141	struct fxp_hwstats *hsp;
3142
3143	ctx = device_get_sysctl_ctx(sc->dev);
3144	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3145
3146	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay",
3147	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3148	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3149	    "FXP driver receive interrupt microcode bundling delay");
3150	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max",
3151	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3152	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3153	    "FXP driver receive interrupt microcode bundle size limit");
3154	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3155	    "FXP RNR events");
3156
3157	/*
3158	 * Pull in device tunables.
3159	 */
3160	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3161	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3162	(void) resource_int_value(device_get_name(sc->dev),
3163	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3164	(void) resource_int_value(device_get_name(sc->dev),
3165	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3166	sc->rnr = 0;
3167
3168	hsp = &sc->fxp_hwstats;
3169	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3170	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics");
3171	parent = SYSCTL_CHILDREN(tree);
3172
3173	/* Rx MAC statistics. */
3174	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3175	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3176	child = SYSCTL_CHILDREN(tree);
3177	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3178	    &hsp->rx_good, "Good frames");
3179	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3180	    &hsp->rx_crc_errors, "CRC errors");
3181	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3182	    &hsp->rx_alignment_errors, "Alignment errors");
3183	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3184	    &hsp->rx_rnr_errors, "RNR errors");
3185	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3186	    &hsp->rx_overrun_errors, "Overrun errors");
3187	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3188	    &hsp->rx_cdt_errors, "Collision detect errors");
3189	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3190	    &hsp->rx_shortframes, "Short frame errors");
3191	if (sc->revision >= FXP_REV_82558_A4) {
3192		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3193		    &hsp->rx_pause, "Pause frames");
3194		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3195		    &hsp->rx_controls, "Unsupported control frames");
3196	}
3197	if (sc->revision >= FXP_REV_82559_A0)
3198		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3199		    &hsp->rx_tco, "TCO frames");
3200
3201	/* Tx MAC statistics. */
3202	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3203	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3204	child = SYSCTL_CHILDREN(tree);
3205	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3206	    &hsp->tx_good, "Good frames");
3207	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3208	    &hsp->tx_maxcols, "Maximum collisions errors");
3209	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3210	    &hsp->tx_latecols, "Late collisions errors");
3211	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3212	    &hsp->tx_underruns, "Underrun errors");
3213	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3214	    &hsp->tx_lostcrs, "Lost carrier sense");
3215	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3216	    &hsp->tx_deffered, "Deferred");
3217	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3218	    &hsp->tx_single_collisions, "Single collisions");
3219	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3220	    &hsp->tx_multiple_collisions, "Multiple collisions");
3221	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3222	    &hsp->tx_total_collisions, "Total collisions");
3223	if (sc->revision >= FXP_REV_82558_A4)
3224		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3225		    &hsp->tx_pause, "Pause frames");
3226	if (sc->revision >= FXP_REV_82559_A0)
3227		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3228		    &hsp->tx_tco, "TCO frames");
3229}
3230
3231#undef FXP_SYSCTL_STAT_ADD
3232
3233static int
3234sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3235{
3236	int error, value;
3237
3238	value = *(int *)arg1;
3239	error = sysctl_handle_int(oidp, &value, 0, req);
3240	if (error || !req->newptr)
3241		return (error);
3242	if (value < low || value > high)
3243		return (EINVAL);
3244	*(int *)arg1 = value;
3245	return (0);
3246}
3247
3248/*
3249 * Interrupt delay is expressed in microseconds, a multiplier is used
3250 * to convert this to the appropriate clock ticks before using.
3251 */
3252static int
3253sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3254{
3255
3256	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3257}
3258
3259static int
3260sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3261{
3262
3263	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3264}
3265