1/*
2 * Copyright 2011 (c) Oracle Corp.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24 */
25
26/*
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
28 * over the DMA pools:
29 * - Pool collects resently freed pages for reuse (and hooks up to
30 *   the shrinker).
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
33 *   when freed).
34 */
35
36#include <sys/cdefs.h>
37#define pr_fmt(fmt) "[TTM] " fmt
38
39#include <linux/dma-mapping.h>
40#include <linux/list.h>
41#include <linux/seq_file.h> /* for seq_printf */
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/highmem.h>
45#include <linux/mm_types.h>
46#include <linux/module.h>
47#include <linux/mm.h>
48#include <linux/atomic.h>
49#include <linux/device.h>
50#include <linux/kthread.h>
51#include <drm/ttm/ttm_bo_driver.h>
52#include <drm/ttm/ttm_page_alloc.h>
53#ifdef TTM_HAS_AGP
54#include <asm/agp.h>
55#endif
56
57#define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
58#define SMALL_ALLOCATION		4
59#define FREE_ALL_PAGES			(~0U)
60/* times are in msecs */
61#define IS_UNDEFINED			(0)
62#define IS_WC				(1<<1)
63#define IS_UC				(1<<2)
64#define IS_CACHED			(1<<3)
65#define IS_DMA32			(1<<4)
66
67enum pool_type {
68	POOL_IS_UNDEFINED,
69	POOL_IS_WC = IS_WC,
70	POOL_IS_UC = IS_UC,
71	POOL_IS_CACHED = IS_CACHED,
72	POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
73	POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
74	POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
75};
76/*
77 * The pool structure. There are usually six pools:
78 *  - generic (not restricted to DMA32):
79 *      - write combined, uncached, cached.
80 *  - dma32 (up to 2^32 - so up 4GB):
81 *      - write combined, uncached, cached.
82 * for each 'struct device'. The 'cached' is for pages that are actively used.
83 * The other ones can be shrunk by the shrinker API if necessary.
84 * @pools: The 'struct device->dma_pools' link.
85 * @type: Type of the pool
86 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
87 * used with irqsave/irqrestore variants because pool allocator maybe called
88 * from delayed work.
89 * @inuse_list: Pool of pages that are in use. The order is very important and
90 *   it is in the order that the TTM pages that are put back are in.
91 * @free_list: Pool of pages that are free to be used. No order requirements.
92 * @dev: The device that is associated with these pools.
93 * @size: Size used during DMA allocation.
94 * @npages_free: Count of available pages for re-use.
95 * @npages_in_use: Count of pages that are in use.
96 * @nfrees: Stats when pool is shrinking.
97 * @nrefills: Stats when the pool is grown.
98 * @gfp_flags: Flags to pass for alloc_page.
99 * @name: Name of the pool.
100 * @dev_name: Name derieved from dev - similar to how dev_info works.
101 *   Used during shutdown as the dev_info during release is unavailable.
102 */
103struct dma_pool {
104	struct list_head pools; /* The 'struct device->dma_pools link */
105	enum pool_type type;
106	spinlock_t lock;
107	struct list_head inuse_list;
108	struct list_head free_list;
109	struct device *dev;
110	unsigned size;
111	unsigned npages_free;
112	unsigned npages_in_use;
113	unsigned long nfrees; /* Stats when shrunk. */
114	unsigned long nrefills; /* Stats when grown. */
115	gfp_t gfp_flags;
116	char name[13]; /* "cached dma32" */
117	char dev_name[64]; /* Constructed from dev */
118};
119
120/*
121 * The accounting page keeping track of the allocated page along with
122 * the DMA address.
123 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
124 * @vaddr: The virtual address of the page
125 * @dma: The bus address of the page. If the page is not allocated
126 *   via the DMA API, it will be -1.
127 */
128struct dma_page {
129	struct list_head page_list;
130	void *vaddr;
131	struct page *p;
132	dma_addr_t dma;
133};
134
135/*
136 * Limits for the pool. They are handled without locks because only place where
137 * they may change is in sysfs store. They won't have immediate effect anyway
138 * so forcing serialization to access them is pointless.
139 */
140
141struct ttm_pool_opts {
142	unsigned	alloc_size;
143	unsigned	max_size;
144	unsigned	small;
145};
146
147/*
148 * Contains the list of all of the 'struct device' and their corresponding
149 * DMA pools. Guarded by _mutex->lock.
150 * @pools: The link to 'struct ttm_pool_manager->pools'
151 * @dev: The 'struct device' associated with the 'pool'
152 * @pool: The 'struct dma_pool' associated with the 'dev'
153 */
154struct device_pools {
155	struct list_head pools;
156	struct device *dev;
157	struct dma_pool *pool;
158};
159
160/*
161 * struct ttm_pool_manager - Holds memory pools for fast allocation
162 *
163 * @lock: Lock used when adding/removing from pools
164 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
165 * @options: Limits for the pool.
166 * @npools: Total amount of pools in existence.
167 * @shrinker: The structure used by [un|]register_shrinker
168 */
169struct ttm_pool_manager {
170	struct mutex		lock;
171	struct list_head	pools;
172	struct ttm_pool_opts	options;
173	unsigned		npools;
174	struct shrinker		mm_shrink;
175	struct kobject		kobj;
176};
177
178static struct ttm_pool_manager *_manager;
179
180static struct attribute ttm_page_pool_max = {
181	.name = "pool_max_size",
182	.mode = S_IRUGO | S_IWUSR
183};
184static struct attribute ttm_page_pool_small = {
185	.name = "pool_small_allocation",
186	.mode = S_IRUGO | S_IWUSR
187};
188static struct attribute ttm_page_pool_alloc_size = {
189	.name = "pool_allocation_size",
190	.mode = S_IRUGO | S_IWUSR
191};
192
193static struct attribute *ttm_pool_attrs[] = {
194	&ttm_page_pool_max,
195	&ttm_page_pool_small,
196	&ttm_page_pool_alloc_size,
197	NULL
198};
199
200static void ttm_pool_kobj_release(struct kobject *kobj)
201{
202	struct ttm_pool_manager *m =
203		container_of(kobj, struct ttm_pool_manager, kobj);
204	kfree(m);
205}
206
207static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
208			      const char *buffer, size_t size)
209{
210	struct ttm_pool_manager *m =
211		container_of(kobj, struct ttm_pool_manager, kobj);
212	int chars;
213	unsigned val;
214	chars = sscanf(buffer, "%u", &val);
215	if (chars == 0)
216		return size;
217
218	/* Convert kb to number of pages */
219	val = val / (PAGE_SIZE >> 10);
220
221	if (attr == &ttm_page_pool_max)
222		m->options.max_size = val;
223	else if (attr == &ttm_page_pool_small)
224		m->options.small = val;
225	else if (attr == &ttm_page_pool_alloc_size) {
226		if (val > NUM_PAGES_TO_ALLOC*8) {
227			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
228			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
229			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230			return size;
231		} else if (val > NUM_PAGES_TO_ALLOC) {
232			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
233				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
234		}
235		m->options.alloc_size = val;
236	}
237
238	return size;
239}
240
241static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
242			     char *buffer)
243{
244	struct ttm_pool_manager *m =
245		container_of(kobj, struct ttm_pool_manager, kobj);
246	unsigned val = 0;
247
248	if (attr == &ttm_page_pool_max)
249		val = m->options.max_size;
250	else if (attr == &ttm_page_pool_small)
251		val = m->options.small;
252	else if (attr == &ttm_page_pool_alloc_size)
253		val = m->options.alloc_size;
254
255	val = val * (PAGE_SIZE >> 10);
256
257	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
258}
259
260static const struct sysfs_ops ttm_pool_sysfs_ops = {
261	.show = &ttm_pool_show,
262	.store = &ttm_pool_store,
263};
264
265static struct kobj_type ttm_pool_kobj_type = {
266	.release = &ttm_pool_kobj_release,
267	.sysfs_ops = &ttm_pool_sysfs_ops,
268	.default_attrs = ttm_pool_attrs,
269};
270
271#ifndef CONFIG_X86
272static int set_pages_array_wb(struct page **pages, int addrinarray)
273{
274#ifdef TTM_HAS_AGP
275	int i;
276
277	for (i = 0; i < addrinarray; i++)
278		unmap_page_from_agp(pages[i]);
279#endif
280	return 0;
281}
282
283static int set_pages_array_wc(struct page **pages, int addrinarray)
284{
285#ifdef TTM_HAS_AGP
286	int i;
287
288	for (i = 0; i < addrinarray; i++)
289		map_page_into_agp(pages[i]);
290#endif
291	return 0;
292}
293
294static int set_pages_array_uc(struct page **pages, int addrinarray)
295{
296#ifdef TTM_HAS_AGP
297	int i;
298
299	for (i = 0; i < addrinarray; i++)
300		map_page_into_agp(pages[i]);
301#endif
302	return 0;
303}
304#endif /* for !CONFIG_X86 */
305
306static int ttm_set_pages_caching(struct dma_pool *pool,
307				 struct page **pages, unsigned cpages)
308{
309	int r = 0;
310	/* Set page caching */
311	if (pool->type & IS_UC) {
312		r = set_pages_array_uc(pages, cpages);
313		if (r)
314			pr_err("%s: Failed to set %d pages to uc!\n",
315			       pool->dev_name, cpages);
316	}
317	if (pool->type & IS_WC) {
318		r = set_pages_array_wc(pages, cpages);
319		if (r)
320			pr_err("%s: Failed to set %d pages to wc!\n",
321			       pool->dev_name, cpages);
322	}
323	return r;
324}
325
326static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
327{
328	dma_addr_t dma = d_page->dma;
329	dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
330
331	kfree(d_page);
332	d_page = NULL;
333}
334static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
335{
336	struct dma_page *d_page;
337
338	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
339	if (!d_page)
340		return NULL;
341
342	d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
343					   &d_page->dma,
344					   pool->gfp_flags);
345	if (d_page->vaddr)
346		d_page->p = virt_to_page(d_page->vaddr);
347	else {
348		kfree(d_page);
349		d_page = NULL;
350	}
351	return d_page;
352}
353static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
354{
355	enum pool_type type = IS_UNDEFINED;
356
357	if (flags & TTM_PAGE_FLAG_DMA32)
358		type |= IS_DMA32;
359	if (cstate == tt_cached)
360		type |= IS_CACHED;
361	else if (cstate == tt_uncached)
362		type |= IS_UC;
363	else
364		type |= IS_WC;
365
366	return type;
367}
368
369static void ttm_pool_update_free_locked(struct dma_pool *pool,
370					unsigned freed_pages)
371{
372	pool->npages_free -= freed_pages;
373	pool->nfrees += freed_pages;
374
375}
376
377/* set memory back to wb and free the pages. */
378static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
379			      struct page *pages[], unsigned npages)
380{
381	struct dma_page *d_page, *tmp;
382
383	/* Don't set WB on WB page pool. */
384	if (npages && !(pool->type & IS_CACHED) &&
385	    set_pages_array_wb(pages, npages))
386		pr_err("%s: Failed to set %d pages to wb!\n",
387		       pool->dev_name, npages);
388
389	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
390		list_del(&d_page->page_list);
391		__ttm_dma_free_page(pool, d_page);
392	}
393}
394
395static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
396{
397	/* Don't set WB on WB page pool. */
398	if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
399		pr_err("%s: Failed to set %d pages to wb!\n",
400		       pool->dev_name, 1);
401
402	list_del(&d_page->page_list);
403	__ttm_dma_free_page(pool, d_page);
404}
405
406/*
407 * Free pages from pool.
408 *
409 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
410 * number of pages in one go.
411 *
412 * @pool: to free the pages from
413 * @nr_free: If set to true will free all pages in pool
414 **/
415static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
416{
417	unsigned long irq_flags;
418	struct dma_page *dma_p, *tmp;
419	struct page **pages_to_free;
420	struct list_head d_pages;
421	unsigned freed_pages = 0,
422		 npages_to_free = nr_free;
423
424	if (NUM_PAGES_TO_ALLOC < nr_free)
425		npages_to_free = NUM_PAGES_TO_ALLOC;
426#if 0
427	if (nr_free > 1) {
428		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
429			 pool->dev_name, pool->name, current->pid,
430			 npages_to_free, nr_free);
431	}
432#endif
433	pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
434			GFP_KERNEL);
435
436	if (!pages_to_free) {
437		pr_err("%s: Failed to allocate memory for pool free operation\n",
438		       pool->dev_name);
439		return 0;
440	}
441	INIT_LIST_HEAD(&d_pages);
442restart:
443	spin_lock_irqsave(&pool->lock, irq_flags);
444
445	/* We picking the oldest ones off the list */
446	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
447					 page_list) {
448		if (freed_pages >= npages_to_free)
449			break;
450
451		/* Move the dma_page from one list to another. */
452		list_move(&dma_p->page_list, &d_pages);
453
454		pages_to_free[freed_pages++] = dma_p->p;
455		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
456		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
457
458			ttm_pool_update_free_locked(pool, freed_pages);
459			/**
460			 * Because changing page caching is costly
461			 * we unlock the pool to prevent stalling.
462			 */
463			spin_unlock_irqrestore(&pool->lock, irq_flags);
464
465			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
466					  freed_pages);
467
468			INIT_LIST_HEAD(&d_pages);
469
470			if (likely(nr_free != FREE_ALL_PAGES))
471				nr_free -= freed_pages;
472
473			if (NUM_PAGES_TO_ALLOC >= nr_free)
474				npages_to_free = nr_free;
475			else
476				npages_to_free = NUM_PAGES_TO_ALLOC;
477
478			freed_pages = 0;
479
480			/* free all so restart the processing */
481			if (nr_free)
482				goto restart;
483
484			/* Not allowed to fall through or break because
485			 * following context is inside spinlock while we are
486			 * outside here.
487			 */
488			goto out;
489
490		}
491	}
492
493	/* remove range of pages from the pool */
494	if (freed_pages) {
495		ttm_pool_update_free_locked(pool, freed_pages);
496		nr_free -= freed_pages;
497	}
498
499	spin_unlock_irqrestore(&pool->lock, irq_flags);
500
501	if (freed_pages)
502		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
503out:
504	kfree(pages_to_free);
505	return nr_free;
506}
507
508static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
509{
510	struct device_pools *p;
511	struct dma_pool *pool;
512
513	if (!dev)
514		return;
515
516	mutex_lock(&_manager->lock);
517	list_for_each_entry_reverse(p, &_manager->pools, pools) {
518		if (p->dev != dev)
519			continue;
520		pool = p->pool;
521		if (pool->type != type)
522			continue;
523
524		list_del(&p->pools);
525		kfree(p);
526		_manager->npools--;
527		break;
528	}
529	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
530		if (pool->type != type)
531			continue;
532		/* Takes a spinlock.. */
533		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
534		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
535		/* This code path is called after _all_ references to the
536		 * struct device has been dropped - so nobody should be
537		 * touching it. In case somebody is trying to _add_ we are
538		 * guarded by the mutex. */
539		list_del(&pool->pools);
540		kfree(pool);
541		break;
542	}
543	mutex_unlock(&_manager->lock);
544}
545
546/*
547 * On free-ing of the 'struct device' this deconstructor is run.
548 * Albeit the pool might have already been freed earlier.
549 */
550static void ttm_dma_pool_release(struct device *dev, void *res)
551{
552	struct dma_pool *pool = *(struct dma_pool **)res;
553
554	if (pool)
555		ttm_dma_free_pool(dev, pool->type);
556}
557
558static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
559{
560	return *(struct dma_pool **)res == match_data;
561}
562
563static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
564					  enum pool_type type)
565{
566	char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
567	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
568	struct device_pools *sec_pool = NULL;
569	struct dma_pool *pool = NULL, **ptr;
570	unsigned i;
571	int ret = -ENODEV;
572	char *p;
573
574	if (!dev)
575		return NULL;
576
577	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
578	if (!ptr)
579		return NULL;
580
581	ret = -ENOMEM;
582
583	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
584			    dev_to_node(dev));
585	if (!pool)
586		goto err_mem;
587
588	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
589				dev_to_node(dev));
590	if (!sec_pool)
591		goto err_mem;
592
593	INIT_LIST_HEAD(&sec_pool->pools);
594	sec_pool->dev = dev;
595	sec_pool->pool =  pool;
596
597	INIT_LIST_HEAD(&pool->free_list);
598	INIT_LIST_HEAD(&pool->inuse_list);
599	INIT_LIST_HEAD(&pool->pools);
600	spin_lock_init(&pool->lock);
601	pool->dev = dev;
602	pool->npages_free = pool->npages_in_use = 0;
603	pool->nfrees = 0;
604	pool->gfp_flags = flags;
605	pool->size = PAGE_SIZE;
606	pool->type = type;
607	pool->nrefills = 0;
608	p = pool->name;
609	for (i = 0; i < 5; i++) {
610		if (type & t[i]) {
611			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
612				      "%s", n[i]);
613		}
614	}
615	*p = 0;
616	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
617	 * - the kobj->name has already been deallocated.*/
618	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
619		 dev_driver_string(dev), dev_name(dev));
620	mutex_lock(&_manager->lock);
621	/* You can get the dma_pool from either the global: */
622	list_add(&sec_pool->pools, &_manager->pools);
623	_manager->npools++;
624	/* or from 'struct device': */
625	list_add(&pool->pools, &dev->dma_pools);
626	mutex_unlock(&_manager->lock);
627
628	*ptr = pool;
629	devres_add(dev, ptr);
630
631	return pool;
632err_mem:
633	devres_free(ptr);
634	kfree(sec_pool);
635	kfree(pool);
636	return ERR_PTR(ret);
637}
638
639static struct dma_pool *ttm_dma_find_pool(struct device *dev,
640					  enum pool_type type)
641{
642	struct dma_pool *pool, *tmp, *found = NULL;
643
644	if (type == IS_UNDEFINED)
645		return found;
646
647	/* NB: We iterate on the 'struct dev' which has no spinlock, but
648	 * it does have a kref which we have taken. The kref is taken during
649	 * graphic driver loading - in the drm_pci_init it calls either
650	 * pci_dev_get or pci_register_driver which both end up taking a kref
651	 * on 'struct device'.
652	 *
653	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
654	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
655	 * thing is at that point of time there are no pages associated with the
656	 * driver so this function will not be called.
657	 */
658	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
659		if (pool->type != type)
660			continue;
661		found = pool;
662		break;
663	}
664	return found;
665}
666
667/*
668 * Free pages the pages that failed to change the caching state. If there
669 * are pages that have changed their caching state already put them to the
670 * pool.
671 */
672static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
673						 struct list_head *d_pages,
674						 struct page **failed_pages,
675						 unsigned cpages)
676{
677	struct dma_page *d_page, *tmp;
678	struct page *p;
679	unsigned i = 0;
680
681	p = failed_pages[0];
682	if (!p)
683		return;
684	/* Find the failed page. */
685	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
686		if (d_page->p != p)
687			continue;
688		/* .. and then progress over the full list. */
689		list_del(&d_page->page_list);
690		__ttm_dma_free_page(pool, d_page);
691		if (++i < cpages)
692			p = failed_pages[i];
693		else
694			break;
695	}
696
697}
698
699/*
700 * Allocate 'count' pages, and put 'need' number of them on the
701 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
702 * The full list of pages should also be on 'd_pages'.
703 * We return zero for success, and negative numbers as errors.
704 */
705static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
706					struct list_head *d_pages,
707					unsigned count)
708{
709	struct page **caching_array;
710	struct dma_page *dma_p;
711	struct page *p;
712	int r = 0;
713	unsigned i, cpages;
714	unsigned max_cpages = min(count,
715			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
716
717	/* allocate array for page caching change */
718	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
719
720	if (!caching_array) {
721		pr_err("%s: Unable to allocate table for new pages\n",
722		       pool->dev_name);
723		return -ENOMEM;
724	}
725
726	if (count > 1) {
727		pr_debug("%s: (%s:%d) Getting %d pages\n",
728			 pool->dev_name, pool->name, current->pid, count);
729	}
730
731	for (i = 0, cpages = 0; i < count; ++i) {
732		dma_p = __ttm_dma_alloc_page(pool);
733		if (!dma_p) {
734			pr_err("%s: Unable to get page %u\n",
735			       pool->dev_name, i);
736
737			/* store already allocated pages in the pool after
738			 * setting the caching state */
739			if (cpages) {
740				r = ttm_set_pages_caching(pool, caching_array,
741							  cpages);
742				if (r)
743					ttm_dma_handle_caching_state_failure(
744						pool, d_pages, caching_array,
745						cpages);
746			}
747			r = -ENOMEM;
748			goto out;
749		}
750		p = dma_p->p;
751#ifdef CONFIG_HIGHMEM
752		/* gfp flags of highmem page should never be dma32 so we
753		 * we should be fine in such case
754		 */
755		if (!PageHighMem(p))
756#endif
757		{
758			caching_array[cpages++] = p;
759			if (cpages == max_cpages) {
760				/* Note: Cannot hold the spinlock */
761				r = ttm_set_pages_caching(pool, caching_array,
762						 cpages);
763				if (r) {
764					ttm_dma_handle_caching_state_failure(
765						pool, d_pages, caching_array,
766						cpages);
767					goto out;
768				}
769				cpages = 0;
770			}
771		}
772		list_add(&dma_p->page_list, d_pages);
773	}
774
775	if (cpages) {
776		r = ttm_set_pages_caching(pool, caching_array, cpages);
777		if (r)
778			ttm_dma_handle_caching_state_failure(pool, d_pages,
779					caching_array, cpages);
780	}
781out:
782	kfree(caching_array);
783	return r;
784}
785
786/*
787 * @return count of pages still required to fulfill the request.
788 */
789static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
790					 unsigned long *irq_flags)
791{
792	unsigned count = _manager->options.small;
793	int r = pool->npages_free;
794
795	if (count > pool->npages_free) {
796		struct list_head d_pages;
797
798		INIT_LIST_HEAD(&d_pages);
799
800		spin_unlock_irqrestore(&pool->lock, *irq_flags);
801
802		/* Returns how many more are necessary to fulfill the
803		 * request. */
804		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
805
806		spin_lock_irqsave(&pool->lock, *irq_flags);
807		if (!r) {
808			/* Add the fresh to the end.. */
809			list_splice(&d_pages, &pool->free_list);
810			++pool->nrefills;
811			pool->npages_free += count;
812			r = count;
813		} else {
814			struct dma_page *d_page;
815			unsigned cpages = 0;
816
817			pr_err("%s: Failed to fill %s pool (r:%d)!\n",
818			       pool->dev_name, pool->name, r);
819
820			list_for_each_entry(d_page, &d_pages, page_list) {
821				cpages++;
822			}
823			list_splice_tail(&d_pages, &pool->free_list);
824			pool->npages_free += cpages;
825			r = cpages;
826		}
827	}
828	return r;
829}
830
831/*
832 * @return count of pages still required to fulfill the request.
833 * The populate list is actually a stack (not that is matters as TTM
834 * allocates one page at a time.
835 */
836static int ttm_dma_pool_get_pages(struct dma_pool *pool,
837				  struct ttm_dma_tt *ttm_dma,
838				  unsigned index)
839{
840	struct dma_page *d_page;
841	struct ttm_tt *ttm = &ttm_dma->ttm;
842	unsigned long irq_flags;
843	int count, r = -ENOMEM;
844
845	spin_lock_irqsave(&pool->lock, irq_flags);
846	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
847	if (count) {
848		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
849		ttm->pages[index] = d_page->p;
850		ttm_dma->dma_address[index] = d_page->dma;
851		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
852		r = 0;
853		pool->npages_in_use += 1;
854		pool->npages_free -= 1;
855	}
856	spin_unlock_irqrestore(&pool->lock, irq_flags);
857	return r;
858}
859
860/*
861 * On success pages list will hold count number of correctly
862 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
863 */
864int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
865{
866	struct ttm_tt *ttm = &ttm_dma->ttm;
867	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
868	struct dma_pool *pool;
869	enum pool_type type;
870	unsigned i;
871	gfp_t gfp_flags;
872	int ret;
873
874	if (ttm->state != tt_unpopulated)
875		return 0;
876
877	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
878	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
879		gfp_flags = GFP_USER | GFP_DMA32;
880	else
881		gfp_flags = GFP_HIGHUSER;
882	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
883		gfp_flags |= __GFP_ZERO;
884
885	pool = ttm_dma_find_pool(dev, type);
886	if (!pool) {
887		pool = ttm_dma_pool_init(dev, gfp_flags, type);
888		if (IS_ERR_OR_NULL(pool)) {
889			return -ENOMEM;
890		}
891	}
892
893	INIT_LIST_HEAD(&ttm_dma->pages_list);
894	for (i = 0; i < ttm->num_pages; ++i) {
895		ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
896		if (ret != 0) {
897			ttm_dma_unpopulate(ttm_dma, dev);
898			return -ENOMEM;
899		}
900
901		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
902						false, false);
903		if (unlikely(ret != 0)) {
904			ttm_dma_unpopulate(ttm_dma, dev);
905			return -ENOMEM;
906		}
907	}
908
909	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
910		ret = ttm_tt_swapin(ttm);
911		if (unlikely(ret != 0)) {
912			ttm_dma_unpopulate(ttm_dma, dev);
913			return ret;
914		}
915	}
916
917	ttm->state = tt_unbound;
918	return 0;
919}
920EXPORT_SYMBOL_GPL(ttm_dma_populate);
921
922/* Get good estimation how many pages are free in pools */
923static int ttm_dma_pool_get_num_unused_pages(void)
924{
925	struct device_pools *p;
926	unsigned total = 0;
927
928	mutex_lock(&_manager->lock);
929	list_for_each_entry(p, &_manager->pools, pools)
930		total += p->pool->npages_free;
931	mutex_unlock(&_manager->lock);
932	return total;
933}
934
935/* Put all pages in pages list to correct pool to wait for reuse */
936void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
937{
938	struct ttm_tt *ttm = &ttm_dma->ttm;
939	struct dma_pool *pool;
940	struct dma_page *d_page, *next;
941	enum pool_type type;
942	bool is_cached = false;
943	unsigned count = 0, i, npages = 0;
944	unsigned long irq_flags;
945
946	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
947	pool = ttm_dma_find_pool(dev, type);
948	if (!pool)
949		return;
950
951	is_cached = (ttm_dma_find_pool(pool->dev,
952		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
953
954	/* make sure pages array match list and count number of pages */
955	list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
956		ttm->pages[count] = d_page->p;
957		count++;
958	}
959
960	spin_lock_irqsave(&pool->lock, irq_flags);
961	pool->npages_in_use -= count;
962	if (is_cached) {
963		pool->nfrees += count;
964	} else {
965		pool->npages_free += count;
966		list_splice(&ttm_dma->pages_list, &pool->free_list);
967		npages = count;
968		if (pool->npages_free > _manager->options.max_size) {
969			npages = pool->npages_free - _manager->options.max_size;
970			/* free at least NUM_PAGES_TO_ALLOC number of pages
971			 * to reduce calls to set_memory_wb */
972			if (npages < NUM_PAGES_TO_ALLOC)
973				npages = NUM_PAGES_TO_ALLOC;
974		}
975	}
976	spin_unlock_irqrestore(&pool->lock, irq_flags);
977
978	if (is_cached) {
979		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
980			ttm_mem_global_free_page(ttm->glob->mem_glob,
981						 d_page->p);
982			ttm_dma_page_put(pool, d_page);
983		}
984	} else {
985		for (i = 0; i < count; i++) {
986			ttm_mem_global_free_page(ttm->glob->mem_glob,
987						 ttm->pages[i]);
988		}
989	}
990
991	INIT_LIST_HEAD(&ttm_dma->pages_list);
992	for (i = 0; i < ttm->num_pages; i++) {
993		ttm->pages[i] = NULL;
994		ttm_dma->dma_address[i] = 0;
995	}
996
997	/* shrink pool if necessary (only on !is_cached pools)*/
998	if (npages)
999		ttm_dma_page_pool_free(pool, npages);
1000	ttm->state = tt_unpopulated;
1001}
1002EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1003
1004/**
1005 * Callback for mm to request pool to reduce number of page held.
1006 */
1007static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
1008				  struct shrink_control *sc)
1009{
1010	static atomic_t start_pool = ATOMIC_INIT(0);
1011	unsigned idx = 0;
1012	unsigned pool_offset = atomic_add_return(1, &start_pool);
1013	unsigned shrink_pages = sc->nr_to_scan;
1014	struct device_pools *p;
1015
1016	if (list_empty(&_manager->pools))
1017		return 0;
1018
1019	mutex_lock(&_manager->lock);
1020	pool_offset = pool_offset % _manager->npools;
1021	list_for_each_entry(p, &_manager->pools, pools) {
1022		unsigned nr_free;
1023
1024		if (!p->dev)
1025			continue;
1026		if (shrink_pages == 0)
1027			break;
1028		/* Do it in round-robin fashion. */
1029		if (++idx < pool_offset)
1030			continue;
1031		nr_free = shrink_pages;
1032		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
1033		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1034			 p->pool->dev_name, p->pool->name, current->pid,
1035			 nr_free, shrink_pages);
1036	}
1037	mutex_unlock(&_manager->lock);
1038	/* return estimated number of unused pages in pool */
1039	return ttm_dma_pool_get_num_unused_pages();
1040}
1041
1042static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1043{
1044	manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink;
1045	manager->mm_shrink.seeks = 1;
1046	register_shrinker(&manager->mm_shrink);
1047}
1048
1049static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1050{
1051	unregister_shrinker(&manager->mm_shrink);
1052}
1053
1054int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1055{
1056	int ret = -ENOMEM;
1057
1058	WARN_ON(_manager);
1059
1060	pr_info("Initializing DMA pool allocator\n");
1061
1062	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1063	if (!_manager)
1064		goto err;
1065
1066	mutex_init(&_manager->lock);
1067	INIT_LIST_HEAD(&_manager->pools);
1068
1069	_manager->options.max_size = max_pages;
1070	_manager->options.small = SMALL_ALLOCATION;
1071	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1072
1073	/* This takes care of auto-freeing the _manager */
1074	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1075				   &glob->kobj, "dma_pool");
1076	if (unlikely(ret != 0)) {
1077		kobject_put(&_manager->kobj);
1078		goto err;
1079	}
1080	ttm_dma_pool_mm_shrink_init(_manager);
1081	return 0;
1082err:
1083	return ret;
1084}
1085
1086void ttm_dma_page_alloc_fini(void)
1087{
1088	struct device_pools *p, *t;
1089
1090	pr_info("Finalizing DMA pool allocator\n");
1091	ttm_dma_pool_mm_shrink_fini(_manager);
1092
1093	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1094		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1095			current->pid);
1096		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1097			ttm_dma_pool_match, p->pool));
1098		ttm_dma_free_pool(p->dev, p->pool->type);
1099	}
1100	kobject_put(&_manager->kobj);
1101	_manager = NULL;
1102}
1103
1104int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1105{
1106	struct device_pools *p;
1107	struct dma_pool *pool = NULL;
1108	char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1109		     "name", "virt", "busaddr"};
1110
1111	if (!_manager) {
1112		seq_printf(m, "No pool allocator running.\n");
1113		return 0;
1114	}
1115	seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1116		   h[0], h[1], h[2], h[3], h[4], h[5]);
1117	mutex_lock(&_manager->lock);
1118	list_for_each_entry(p, &_manager->pools, pools) {
1119		struct device *dev = p->dev;
1120		if (!dev)
1121			continue;
1122		pool = p->pool;
1123		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1124				pool->name, pool->nrefills,
1125				pool->nfrees, pool->npages_in_use,
1126				pool->npages_free,
1127				pool->dev_name);
1128	}
1129	mutex_unlock(&_manager->lock);
1130	return 0;
1131}
1132EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1133