1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2012 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31#include "opt_inet.h"
32
33#include <sys/param.h>
34#include <sys/aio.h>
35#include <sys/bio.h>
36#include <sys/file.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/ktr.h>
40#include <sys/module.h>
41#include <sys/protosw.h>
42#include <sys/proc.h>
43#include <sys/domain.h>
44#include <sys/socket.h>
45#include <sys/socketvar.h>
46#include <sys/taskqueue.h>
47#include <sys/uio.h>
48#include <netinet/in.h>
49#include <netinet/in_pcb.h>
50#include <netinet/ip.h>
51#include <netinet/tcp_var.h>
52#define TCPSTATES
53#include <netinet/tcp_fsm.h>
54#include <netinet/toecore.h>
55
56#include <vm/vm.h>
57#include <vm/vm_extern.h>
58#include <vm/vm_param.h>
59#include <vm/pmap.h>
60#include <vm/vm_map.h>
61#include <vm/vm_page.h>
62#include <vm/vm_object.h>
63
64#include <cam/scsi/scsi_all.h>
65#include <cam/ctl/ctl_io.h>
66
67#ifdef TCP_OFFLOAD
68#include "common/common.h"
69#include "common/t4_msg.h"
70#include "common/t4_regs.h"
71#include "common/t4_tcb.h"
72#include "tom/t4_tom.h"
73
74/*
75 * Use the 'backend3' field in AIO jobs to store the amount of data
76 * received by the AIO job so far.
77 */
78#define	aio_received	backend3
79
80static void aio_ddp_requeue_task(void *context, int pending);
81static void ddp_complete_all(struct toepcb *toep, int error);
82static void t4_aio_cancel_active(struct kaiocb *job);
83static void t4_aio_cancel_queued(struct kaiocb *job);
84static int t4_alloc_page_pods_for_rcvbuf(struct ppod_region *pr,
85    struct ddp_rcv_buffer *drb);
86static int t4_write_page_pods_for_rcvbuf(struct adapter *sc,
87    struct sge_wrq *wrq, int tid, struct ddp_rcv_buffer *drb);
88
89static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
90static struct mtx ddp_orphan_pagesets_lock;
91static struct task ddp_orphan_task;
92
93#define MAX_DDP_BUFFER_SIZE		(M_TCB_RX_DDP_BUF0_LEN)
94
95/*
96 * A page set holds information about a user buffer used for AIO DDP.
97 * The page set holds resources such as the VM pages backing the
98 * buffer (either held or wired) and the page pods associated with the
99 * buffer.  Recently used page sets are cached to allow for efficient
100 * reuse of buffers (avoiding the need to re-fault in pages, hold
101 * them, etc.).  Note that cached page sets keep the backing pages
102 * wired.  The number of wired pages is capped by only allowing for
103 * two wired pagesets per connection.  This is not a perfect cap, but
104 * is a trade-off for performance.
105 *
106 * If an application ping-pongs two buffers for a connection via
107 * aio_read(2) then those buffers should remain wired and expensive VM
108 * fault lookups should be avoided after each buffer has been used
109 * once.  If an application uses more than two buffers then this will
110 * fall back to doing expensive VM fault lookups for each operation.
111 */
112static void
113free_pageset(struct tom_data *td, struct pageset *ps)
114{
115	vm_page_t p;
116	int i;
117
118	if (ps->prsv.prsv_nppods > 0)
119		t4_free_page_pods(&ps->prsv);
120
121	for (i = 0; i < ps->npages; i++) {
122		p = ps->pages[i];
123		vm_page_unwire(p, PQ_INACTIVE);
124	}
125	mtx_lock(&ddp_orphan_pagesets_lock);
126	TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
127	taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
128	mtx_unlock(&ddp_orphan_pagesets_lock);
129}
130
131static void
132ddp_free_orphan_pagesets(void *context, int pending)
133{
134	struct pageset *ps;
135
136	mtx_lock(&ddp_orphan_pagesets_lock);
137	while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
138		ps = TAILQ_FIRST(&ddp_orphan_pagesets);
139		TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
140		mtx_unlock(&ddp_orphan_pagesets_lock);
141		if (ps->vm)
142			vmspace_free(ps->vm);
143		free(ps, M_CXGBE);
144		mtx_lock(&ddp_orphan_pagesets_lock);
145	}
146	mtx_unlock(&ddp_orphan_pagesets_lock);
147}
148
149static void
150recycle_pageset(struct toepcb *toep, struct pageset *ps)
151{
152
153	DDP_ASSERT_LOCKED(toep);
154	if (!(toep->ddp.flags & DDP_DEAD)) {
155		KASSERT(toep->ddp.cached_count + toep->ddp.active_count <
156		    nitems(toep->ddp.db), ("too many wired pagesets"));
157		TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link);
158		toep->ddp.cached_count++;
159	} else
160		free_pageset(toep->td, ps);
161}
162
163static void
164ddp_complete_one(struct kaiocb *job, int error)
165{
166	long copied;
167
168	/*
169	 * If this job had copied data out of the socket buffer before
170	 * it was cancelled, report it as a short read rather than an
171	 * error.
172	 */
173	copied = job->aio_received;
174	if (copied != 0 || error == 0)
175		aio_complete(job, copied, 0);
176	else
177		aio_complete(job, -1, error);
178}
179
180static void
181free_ddp_rcv_buffer(struct toepcb *toep, struct ddp_rcv_buffer *drb)
182{
183	t4_free_page_pods(&drb->prsv);
184	contigfree(drb->buf, drb->len, M_CXGBE);
185	free(drb, M_CXGBE);
186	counter_u64_add(toep->ofld_rxq->ddp_buffer_free, 1);
187	free_toepcb(toep);
188}
189
190static void
191recycle_ddp_rcv_buffer(struct toepcb *toep, struct ddp_rcv_buffer *drb)
192{
193	DDP_CACHE_LOCK(toep);
194	if (!(toep->ddp.flags & DDP_DEAD) &&
195	    toep->ddp.cached_count < t4_ddp_rcvbuf_cache) {
196		TAILQ_INSERT_HEAD(&toep->ddp.cached_buffers, drb, link);
197		toep->ddp.cached_count++;
198		DDP_CACHE_UNLOCK(toep);
199	} else {
200		DDP_CACHE_UNLOCK(toep);
201		free_ddp_rcv_buffer(toep, drb);
202	}
203}
204
205static struct ddp_rcv_buffer *
206alloc_cached_ddp_rcv_buffer(struct toepcb *toep)
207{
208	struct ddp_rcv_buffer *drb;
209
210	DDP_CACHE_LOCK(toep);
211	if (!TAILQ_EMPTY(&toep->ddp.cached_buffers)) {
212		drb = TAILQ_FIRST(&toep->ddp.cached_buffers);
213		TAILQ_REMOVE(&toep->ddp.cached_buffers, drb, link);
214		toep->ddp.cached_count--;
215		counter_u64_add(toep->ofld_rxq->ddp_buffer_reuse, 1);
216	} else
217		drb = NULL;
218	DDP_CACHE_UNLOCK(toep);
219	return (drb);
220}
221
222static struct ddp_rcv_buffer *
223alloc_ddp_rcv_buffer(struct toepcb *toep, int how)
224{
225	struct tom_data *td = toep->td;
226	struct adapter *sc = td_adapter(td);
227	struct ddp_rcv_buffer *drb;
228	int error;
229
230	drb = malloc(sizeof(*drb), M_CXGBE, how | M_ZERO);
231	if (drb == NULL)
232		return (NULL);
233
234	drb->buf = contigmalloc(t4_ddp_rcvbuf_len, M_CXGBE, how, 0, ~0,
235	    t4_ddp_rcvbuf_len, 0);
236	if (drb->buf == NULL) {
237		free(drb, M_CXGBE);
238		return (NULL);
239	}
240	drb->len = t4_ddp_rcvbuf_len;
241	drb->refs = 1;
242
243	error = t4_alloc_page_pods_for_rcvbuf(&td->pr, drb);
244	if (error != 0) {
245		contigfree(drb->buf, drb->len, M_CXGBE);
246		free(drb, M_CXGBE);
247		return (NULL);
248	}
249
250	error = t4_write_page_pods_for_rcvbuf(sc, toep->ctrlq, toep->tid, drb);
251	if (error != 0) {
252		t4_free_page_pods(&drb->prsv);
253		contigfree(drb->buf, drb->len, M_CXGBE);
254		free(drb, M_CXGBE);
255		return (NULL);
256	}
257
258	hold_toepcb(toep);
259	counter_u64_add(toep->ofld_rxq->ddp_buffer_alloc, 1);
260	return (drb);
261}
262
263static void
264free_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db)
265{
266	if ((toep->ddp.flags & DDP_RCVBUF) != 0) {
267		if (db->drb != NULL)
268			free_ddp_rcv_buffer(toep, db->drb);
269#ifdef INVARIANTS
270		db->drb = NULL;
271#endif
272		return;
273	}
274
275	if (db->job) {
276		/*
277		 * XXX: If we are un-offloading the socket then we
278		 * should requeue these on the socket somehow.  If we
279		 * got a FIN from the remote end, then this completes
280		 * any remaining requests with an EOF read.
281		 */
282		if (!aio_clear_cancel_function(db->job))
283			ddp_complete_one(db->job, 0);
284#ifdef INVARIANTS
285		db->job = NULL;
286#endif
287	}
288
289	if (db->ps) {
290		free_pageset(toep->td, db->ps);
291#ifdef INVARIANTS
292		db->ps = NULL;
293#endif
294	}
295}
296
297static void
298ddp_init_toep(struct toepcb *toep)
299{
300
301	toep->ddp.flags = DDP_OK;
302	toep->ddp.active_id = -1;
303	mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF);
304	mtx_init(&toep->ddp.cache_lock, "t4 ddp cache", NULL, MTX_DEF);
305}
306
307void
308ddp_uninit_toep(struct toepcb *toep)
309{
310
311	mtx_destroy(&toep->ddp.lock);
312	mtx_destroy(&toep->ddp.cache_lock);
313}
314
315void
316release_ddp_resources(struct toepcb *toep)
317{
318	struct ddp_rcv_buffer *drb;
319	struct pageset *ps;
320	int i;
321
322	DDP_LOCK(toep);
323	DDP_CACHE_LOCK(toep);
324	toep->ddp.flags |= DDP_DEAD;
325	DDP_CACHE_UNLOCK(toep);
326	for (i = 0; i < nitems(toep->ddp.db); i++) {
327		free_ddp_buffer(toep, &toep->ddp.db[i]);
328	}
329	if ((toep->ddp.flags & DDP_AIO) != 0) {
330		while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) {
331			TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
332			free_pageset(toep->td, ps);
333		}
334		ddp_complete_all(toep, 0);
335	}
336	if ((toep->ddp.flags & DDP_RCVBUF) != 0) {
337		DDP_CACHE_LOCK(toep);
338		while ((drb = TAILQ_FIRST(&toep->ddp.cached_buffers)) != NULL) {
339			TAILQ_REMOVE(&toep->ddp.cached_buffers, drb, link);
340			free_ddp_rcv_buffer(toep, drb);
341		}
342		DDP_CACHE_UNLOCK(toep);
343	}
344	DDP_UNLOCK(toep);
345}
346
347#ifdef INVARIANTS
348void
349ddp_assert_empty(struct toepcb *toep)
350{
351	int i;
352
353	MPASS((toep->ddp.flags & (DDP_TASK_ACTIVE | DDP_DEAD)) != DDP_TASK_ACTIVE);
354	for (i = 0; i < nitems(toep->ddp.db); i++) {
355		if ((toep->ddp.flags & DDP_AIO) != 0) {
356			MPASS(toep->ddp.db[i].job == NULL);
357			MPASS(toep->ddp.db[i].ps == NULL);
358		} else
359			MPASS(toep->ddp.db[i].drb == NULL);
360	}
361	if ((toep->ddp.flags & DDP_AIO) != 0) {
362		MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets));
363		MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq));
364	}
365	if ((toep->ddp.flags & DDP_RCVBUF) != 0)
366		MPASS(TAILQ_EMPTY(&toep->ddp.cached_buffers));
367}
368#endif
369
370static void
371complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
372    unsigned int db_idx)
373{
374	struct ddp_rcv_buffer *drb;
375	unsigned int db_flag;
376
377	toep->ddp.active_count--;
378	if (toep->ddp.active_id == db_idx) {
379		if (toep->ddp.active_count == 0) {
380			if ((toep->ddp.flags & DDP_AIO) != 0)
381				KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL,
382				    ("%s: active_count mismatch", __func__));
383			else
384				KASSERT(toep->ddp.db[db_idx ^ 1].drb == NULL,
385				    ("%s: active_count mismatch", __func__));
386			toep->ddp.active_id = -1;
387		} else
388			toep->ddp.active_id ^= 1;
389#ifdef VERBOSE_TRACES
390		CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__,
391		    toep->tid, toep->ddp.active_id);
392#endif
393	} else {
394		KASSERT(toep->ddp.active_count != 0 &&
395		    toep->ddp.active_id != -1,
396		    ("%s: active count mismatch", __func__));
397	}
398
399	if ((toep->ddp.flags & DDP_AIO) != 0) {
400		db->cancel_pending = 0;
401		db->job = NULL;
402		recycle_pageset(toep, db->ps);
403		db->ps = NULL;
404	} else {
405		drb = db->drb;
406		if (atomic_fetchadd_int(&drb->refs, -1) == 1)
407			recycle_ddp_rcv_buffer(toep, drb);
408		db->drb = NULL;
409		db->placed = 0;
410	}
411
412	db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
413	KASSERT(toep->ddp.flags & db_flag,
414	    ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
415	    __func__, toep, toep->ddp.flags));
416	toep->ddp.flags &= ~db_flag;
417}
418
419/* Called when m_free drops the last reference. */
420static void
421ddp_rcv_mbuf_done(struct mbuf *m)
422{
423	struct toepcb *toep = m->m_ext.ext_arg1;
424	struct ddp_rcv_buffer *drb = m->m_ext.ext_arg2;
425
426	recycle_ddp_rcv_buffer(toep, drb);
427}
428
429static void
430queue_ddp_rcvbuf_mbuf(struct toepcb *toep, u_int db_idx, u_int len)
431{
432	struct inpcb *inp = toep->inp;
433	struct sockbuf *sb;
434	struct ddp_buffer *db;
435	struct ddp_rcv_buffer *drb;
436	struct mbuf *m;
437
438	m = m_gethdr(M_NOWAIT, MT_DATA);
439	if (m == NULL) {
440		printf("%s: failed to allocate mbuf", __func__);
441		return;
442	}
443	m->m_pkthdr.rcvif = toep->vi->ifp;
444
445	db = &toep->ddp.db[db_idx];
446	drb = db->drb;
447	m_extaddref(m, (char *)drb->buf + db->placed, len, &drb->refs,
448	    ddp_rcv_mbuf_done, toep, drb);
449	m->m_pkthdr.len = len;
450	m->m_len = len;
451
452	sb = &inp->inp_socket->so_rcv;
453	SOCKBUF_LOCK_ASSERT(sb);
454	sbappendstream_locked(sb, m, 0);
455
456	db->placed += len;
457	toep->ofld_rxq->rx_toe_ddp_octets += len;
458}
459
460/* XXX: handle_ddp_data code duplication */
461void
462insert_ddp_data(struct toepcb *toep, uint32_t n)
463{
464	struct inpcb *inp = toep->inp;
465	struct tcpcb *tp = intotcpcb(inp);
466	struct ddp_buffer *db;
467	struct kaiocb *job;
468	size_t placed;
469	long copied;
470	unsigned int db_idx;
471#ifdef INVARIANTS
472	unsigned int db_flag;
473#endif
474	bool ddp_rcvbuf;
475
476	INP_WLOCK_ASSERT(inp);
477	DDP_ASSERT_LOCKED(toep);
478
479	ddp_rcvbuf = (toep->ddp.flags & DDP_RCVBUF) != 0;
480	tp->rcv_nxt += n;
481#ifndef USE_DDP_RX_FLOW_CONTROL
482	KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
483	tp->rcv_wnd -= n;
484#endif
485	CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
486	    __func__, n);
487	while (toep->ddp.active_count > 0) {
488		MPASS(toep->ddp.active_id != -1);
489		db_idx = toep->ddp.active_id;
490#ifdef INVARIANTS
491		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
492#endif
493		MPASS((toep->ddp.flags & db_flag) != 0);
494		db = &toep->ddp.db[db_idx];
495		if (ddp_rcvbuf) {
496			placed = n;
497			if (placed > db->drb->len - db->placed)
498				placed = db->drb->len - db->placed;
499			if (placed != 0)
500				queue_ddp_rcvbuf_mbuf(toep, db_idx, placed);
501			complete_ddp_buffer(toep, db, db_idx);
502			n -= placed;
503			continue;
504		}
505		job = db->job;
506		copied = job->aio_received;
507		placed = n;
508		if (placed > job->uaiocb.aio_nbytes - copied)
509			placed = job->uaiocb.aio_nbytes - copied;
510		if (placed > 0) {
511			job->msgrcv = 1;
512			toep->ofld_rxq->rx_aio_ddp_jobs++;
513		}
514		toep->ofld_rxq->rx_aio_ddp_octets += placed;
515		if (!aio_clear_cancel_function(job)) {
516			/*
517			 * Update the copied length for when
518			 * t4_aio_cancel_active() completes this
519			 * request.
520			 */
521			job->aio_received += placed;
522		} else if (copied + placed != 0) {
523			CTR4(KTR_CXGBE,
524			    "%s: completing %p (copied %ld, placed %lu)",
525			    __func__, job, copied, placed);
526			/* XXX: This always completes if there is some data. */
527			aio_complete(job, copied + placed, 0);
528		} else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
529			TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
530			toep->ddp.waiting_count++;
531		} else
532			aio_cancel(job);
533		n -= placed;
534		complete_ddp_buffer(toep, db, db_idx);
535	}
536
537	MPASS(n == 0);
538}
539
540/* SET_TCB_FIELD sent as a ULP command looks like this */
541#define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
542    sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
543
544/* RX_DATA_ACK sent as a ULP command looks like this */
545#define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
546    sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
547
548static inline void *
549mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
550{
551	struct ulptx_idata *ulpsc;
552	struct cpl_rx_data_ack_core *req;
553
554	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
555	ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
556
557	ulpsc = (struct ulptx_idata *)(ulpmc + 1);
558	ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
559	ulpsc->len = htobe32(sizeof(*req));
560
561	req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
562	OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
563	req->credit_dack = htobe32(F_RX_MODULATE_RX);
564
565	ulpsc = (struct ulptx_idata *)(req + 1);
566	if (LEN__RX_DATA_ACK_ULP % 16) {
567		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
568		ulpsc->len = htobe32(0);
569		return (ulpsc + 1);
570	}
571	return (ulpsc);
572}
573
574static struct wrqe *
575mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
576    struct ppod_reservation *prsv, int offset, uint32_t len,
577    uint64_t ddp_flags, uint64_t ddp_flags_mask)
578{
579	struct wrqe *wr;
580	struct work_request_hdr *wrh;
581	struct ulp_txpkt *ulpmc;
582	int wrlen;
583
584	KASSERT(db_idx == 0 || db_idx == 1,
585	    ("%s: bad DDP buffer index %d", __func__, db_idx));
586
587	/*
588	 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an
589	 * RX_DATA_ACK (with RX_MODULATE to speed up delivery).
590	 *
591	 * The work request header is 16B and always ends at a 16B boundary.
592	 * The ULPTX master commands that follow must all end at 16B boundaries
593	 * too so we round up the size to 16.
594	 */
595	wrlen = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
596	    roundup2(LEN__RX_DATA_ACK_ULP, 16);
597
598	wr = alloc_wrqe(wrlen, toep->ctrlq);
599	if (wr == NULL)
600		return (NULL);
601	wrh = wrtod(wr);
602	INIT_ULPTX_WRH(wrh, wrlen, 1, 0);	/* atomic */
603	ulpmc = (struct ulp_txpkt *)(wrh + 1);
604
605	/* Write the buffer's tag */
606	ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid,
607	    W_TCB_RX_DDP_BUF0_TAG + db_idx,
608	    V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
609	    V_TCB_RX_DDP_BUF0_TAG(prsv->prsv_tag));
610
611	/* Update the current offset in the DDP buffer and its total length */
612	if (db_idx == 0)
613		ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid,
614		    W_TCB_RX_DDP_BUF0_OFFSET,
615		    V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
616		    V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
617		    V_TCB_RX_DDP_BUF0_OFFSET(offset) |
618		    V_TCB_RX_DDP_BUF0_LEN(len));
619	else
620		ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid,
621		    W_TCB_RX_DDP_BUF1_OFFSET,
622		    V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
623		    V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
624		    V_TCB_RX_DDP_BUF1_OFFSET(offset) |
625		    V_TCB_RX_DDP_BUF1_LEN((u64)len << 32));
626
627	/* Update DDP flags */
628	ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_RX_DDP_FLAGS,
629	    ddp_flags_mask, ddp_flags);
630
631	/* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
632	ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
633
634	return (wr);
635}
636
637static int
638handle_ddp_data_aio(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt,
639    int len)
640{
641	uint32_t report = be32toh(ddp_report);
642	unsigned int db_idx;
643	struct inpcb *inp = toep->inp;
644	struct ddp_buffer *db;
645	struct tcpcb *tp;
646	struct socket *so;
647	struct sockbuf *sb;
648	struct kaiocb *job;
649	long copied;
650
651	db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
652
653	if (__predict_false(!(report & F_DDP_INV)))
654		CXGBE_UNIMPLEMENTED("DDP buffer still valid");
655
656	INP_WLOCK(inp);
657	so = inp_inpcbtosocket(inp);
658	sb = &so->so_rcv;
659	DDP_LOCK(toep);
660
661	KASSERT(toep->ddp.active_id == db_idx,
662	    ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
663	    toep->ddp.active_id, toep->tid));
664	db = &toep->ddp.db[db_idx];
665	job = db->job;
666
667	if (__predict_false(inp->inp_flags & INP_DROPPED)) {
668		/*
669		 * This can happen due to an administrative tcpdrop(8).
670		 * Just fail the request with ECONNRESET.
671		 */
672		CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
673		    __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
674		if (aio_clear_cancel_function(job))
675			ddp_complete_one(job, ECONNRESET);
676		goto completed;
677	}
678
679	tp = intotcpcb(inp);
680
681	/*
682	 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
683	 * sequence number of the next byte to receive.  The length of
684	 * the data received for this message must be computed by
685	 * comparing the new and old values of rcv_nxt.
686	 *
687	 * For RX_DATA_DDP, len might be non-zero, but it is only the
688	 * length of the most recent DMA.  It does not include the
689	 * total length of the data received since the previous update
690	 * for this DDP buffer.  rcv_nxt is the sequence number of the
691	 * first received byte from the most recent DMA.
692	 */
693	len += be32toh(rcv_nxt) - tp->rcv_nxt;
694	tp->rcv_nxt += len;
695	tp->t_rcvtime = ticks;
696#ifndef USE_DDP_RX_FLOW_CONTROL
697	KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
698	tp->rcv_wnd -= len;
699#endif
700#ifdef VERBOSE_TRACES
701	CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__,
702	    toep->tid, db_idx, len, report);
703#endif
704
705	/* receive buffer autosize */
706	MPASS(toep->vnet == so->so_vnet);
707	CURVNET_SET(toep->vnet);
708	SOCKBUF_LOCK(sb);
709	if (sb->sb_flags & SB_AUTOSIZE &&
710	    V_tcp_do_autorcvbuf &&
711	    sb->sb_hiwat < V_tcp_autorcvbuf_max &&
712	    len > (sbspace(sb) / 8 * 7)) {
713		struct adapter *sc = td_adapter(toep->td);
714		unsigned int hiwat = sb->sb_hiwat;
715		unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
716		    V_tcp_autorcvbuf_max);
717
718		if (!sbreserve_locked(so, SO_RCV, newsize, NULL))
719			sb->sb_flags &= ~SB_AUTOSIZE;
720	}
721	SOCKBUF_UNLOCK(sb);
722	CURVNET_RESTORE();
723
724	job->msgrcv = 1;
725	toep->ofld_rxq->rx_aio_ddp_jobs++;
726	toep->ofld_rxq->rx_aio_ddp_octets += len;
727	if (db->cancel_pending) {
728		/*
729		 * Update the job's length but defer completion to the
730		 * TCB_RPL callback.
731		 */
732		job->aio_received += len;
733		goto out;
734	} else if (!aio_clear_cancel_function(job)) {
735		/*
736		 * Update the copied length for when
737		 * t4_aio_cancel_active() completes this request.
738		 */
739		job->aio_received += len;
740	} else {
741		copied = job->aio_received;
742#ifdef VERBOSE_TRACES
743		CTR5(KTR_CXGBE,
744		    "%s: tid %u, completing %p (copied %ld, placed %d)",
745		    __func__, toep->tid, job, copied, len);
746#endif
747		aio_complete(job, copied + len, 0);
748		t4_rcvd(&toep->td->tod, tp);
749	}
750
751completed:
752	complete_ddp_buffer(toep, db, db_idx);
753	if (toep->ddp.waiting_count > 0)
754		ddp_queue_toep(toep);
755out:
756	DDP_UNLOCK(toep);
757	INP_WUNLOCK(inp);
758
759	return (0);
760}
761
762static bool
763queue_ddp_rcvbuf(struct toepcb *toep, struct ddp_rcv_buffer *drb)
764{
765	struct adapter *sc = td_adapter(toep->td);
766	struct ddp_buffer *db;
767	struct wrqe *wr;
768	uint64_t ddp_flags, ddp_flags_mask;
769	int buf_flag, db_idx;
770
771	DDP_ASSERT_LOCKED(toep);
772
773	KASSERT((toep->ddp.flags & DDP_DEAD) == 0, ("%s: DDP_DEAD", __func__));
774	KASSERT(toep->ddp.active_count < nitems(toep->ddp.db),
775	    ("%s: no empty DDP buffer slot", __func__));
776
777	/* Determine which DDP buffer to use. */
778	if (toep->ddp.db[0].drb == NULL) {
779		db_idx = 0;
780	} else {
781		MPASS(toep->ddp.db[1].drb == NULL);
782		db_idx = 1;
783	}
784
785	/*
786	 * Permit PSH to trigger a partial completion without
787	 * invalidating the rest of the buffer, but disable the PUSH
788	 * timer.
789	 */
790	ddp_flags = 0;
791	ddp_flags_mask = 0;
792	if (db_idx == 0) {
793		ddp_flags |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
794		    V_TF_DDP_PUSH_DISABLE_0(0) | V_TF_DDP_PSHF_ENABLE_0(1) |
795		    V_TF_DDP_BUF0_VALID(1);
796		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
797		    V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
798		    V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
799		buf_flag = DDP_BUF0_ACTIVE;
800	} else {
801		ddp_flags |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
802		    V_TF_DDP_PUSH_DISABLE_1(0) | V_TF_DDP_PSHF_ENABLE_1(1) |
803		    V_TF_DDP_BUF1_VALID(1);
804		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
805		    V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
806		    V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
807		buf_flag = DDP_BUF1_ACTIVE;
808	}
809	MPASS((toep->ddp.flags & buf_flag) == 0);
810	if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
811		MPASS(db_idx == 0);
812		MPASS(toep->ddp.active_id == -1);
813		MPASS(toep->ddp.active_count == 0);
814		ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
815	}
816
817	/*
818	 * The TID for this connection should still be valid.  If
819	 * DDP_DEAD is set, SBS_CANTRCVMORE should be set, so we
820	 * shouldn't be this far anyway.
821	 */
822	wr = mk_update_tcb_for_ddp(sc, toep, db_idx, &drb->prsv, 0, drb->len,
823	    ddp_flags, ddp_flags_mask);
824	if (wr == NULL) {
825		recycle_ddp_rcv_buffer(toep, drb);
826		printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
827		return (false);
828	}
829
830#ifdef VERBOSE_TRACES
831	CTR(KTR_CXGBE,
832	    "%s: tid %u, scheduling DDP[%d] (flags %#lx/%#lx)", __func__,
833	    toep->tid, db_idx, ddp_flags, ddp_flags_mask);
834#endif
835	/*
836	 * Hold a reference on scheduled buffers that is dropped in
837	 * complete_ddp_buffer.
838	 */
839	drb->refs = 1;
840
841	/* Give the chip the go-ahead. */
842	t4_wrq_tx(sc, wr);
843	db = &toep->ddp.db[db_idx];
844	db->drb = drb;
845	toep->ddp.flags |= buf_flag;
846	toep->ddp.active_count++;
847	if (toep->ddp.active_count == 1) {
848		MPASS(toep->ddp.active_id == -1);
849		toep->ddp.active_id = db_idx;
850		CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
851		    toep->ddp.active_id);
852	}
853	return (true);
854}
855
856static int
857handle_ddp_data_rcvbuf(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt,
858    int len)
859{
860	uint32_t report = be32toh(ddp_report);
861	struct inpcb *inp = toep->inp;
862	struct tcpcb *tp;
863	struct socket *so;
864	struct sockbuf *sb;
865	struct ddp_buffer *db;
866	struct ddp_rcv_buffer *drb;
867	unsigned int db_idx;
868	bool invalidated;
869
870	db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
871
872	invalidated = (report & F_DDP_INV) != 0;
873
874	INP_WLOCK(inp);
875	so = inp_inpcbtosocket(inp);
876	sb = &so->so_rcv;
877	DDP_LOCK(toep);
878
879	KASSERT(toep->ddp.active_id == db_idx,
880	    ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
881	    toep->ddp.active_id, toep->tid));
882	db = &toep->ddp.db[db_idx];
883
884	if (__predict_false(inp->inp_flags & INP_DROPPED)) {
885		/*
886		 * This can happen due to an administrative tcpdrop(8).
887		 * Just ignore the received data.
888		 */
889		CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
890		    __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
891		if (invalidated)
892			complete_ddp_buffer(toep, db, db_idx);
893		goto out;
894	}
895
896	tp = intotcpcb(inp);
897
898	/*
899	 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
900	 * sequence number of the next byte to receive.  The length of
901	 * the data received for this message must be computed by
902	 * comparing the new and old values of rcv_nxt.
903	 *
904	 * For RX_DATA_DDP, len might be non-zero, but it is only the
905	 * length of the most recent DMA.  It does not include the
906	 * total length of the data received since the previous update
907	 * for this DDP buffer.  rcv_nxt is the sequence number of the
908	 * first received byte from the most recent DMA.
909	 */
910	len += be32toh(rcv_nxt) - tp->rcv_nxt;
911	tp->rcv_nxt += len;
912	tp->t_rcvtime = ticks;
913#ifndef USE_DDP_RX_FLOW_CONTROL
914	KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
915	tp->rcv_wnd -= len;
916#endif
917#ifdef VERBOSE_TRACES
918	CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__,
919	    toep->tid, db_idx, len, report);
920#endif
921
922	/* receive buffer autosize */
923	MPASS(toep->vnet == so->so_vnet);
924	CURVNET_SET(toep->vnet);
925	SOCKBUF_LOCK(sb);
926	if (sb->sb_flags & SB_AUTOSIZE &&
927	    V_tcp_do_autorcvbuf &&
928	    sb->sb_hiwat < V_tcp_autorcvbuf_max &&
929	    len > (sbspace(sb) / 8 * 7)) {
930		struct adapter *sc = td_adapter(toep->td);
931		unsigned int hiwat = sb->sb_hiwat;
932		unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
933		    V_tcp_autorcvbuf_max);
934
935		if (!sbreserve_locked(so, SO_RCV, newsize, NULL))
936			sb->sb_flags &= ~SB_AUTOSIZE;
937	}
938
939	if (len > 0) {
940		queue_ddp_rcvbuf_mbuf(toep, db_idx, len);
941		t4_rcvd_locked(&toep->td->tod, tp);
942	}
943	sorwakeup_locked(so);
944	SOCKBUF_UNLOCK_ASSERT(sb);
945	CURVNET_RESTORE();
946
947	if (invalidated)
948		complete_ddp_buffer(toep, db, db_idx);
949	else
950		KASSERT(db->placed < db->drb->len,
951		    ("%s: full DDP buffer not invalidated", __func__));
952
953	if (toep->ddp.active_count != nitems(toep->ddp.db)) {
954		drb = alloc_cached_ddp_rcv_buffer(toep);
955		if (drb == NULL)
956			drb = alloc_ddp_rcv_buffer(toep, M_NOWAIT);
957		if (drb == NULL)
958			ddp_queue_toep(toep);
959		else {
960			if (!queue_ddp_rcvbuf(toep, drb)) {
961				ddp_queue_toep(toep);
962			}
963		}
964	}
965out:
966	DDP_UNLOCK(toep);
967	INP_WUNLOCK(inp);
968
969	return (0);
970}
971
972static int
973handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
974{
975	if ((toep->ddp.flags & DDP_RCVBUF) != 0)
976		return (handle_ddp_data_rcvbuf(toep, ddp_report, rcv_nxt, len));
977	else
978		return (handle_ddp_data_aio(toep, ddp_report, rcv_nxt, len));
979}
980
981void
982handle_ddp_indicate(struct toepcb *toep)
983{
984
985	DDP_ASSERT_LOCKED(toep);
986	if ((toep->ddp.flags & DDP_RCVBUF) != 0) {
987		/*
988		 * Indicates are not meaningful for RCVBUF since
989		 * buffers are activated when the socket option is
990		 * set.
991		 */
992		return;
993	}
994
995	MPASS(toep->ddp.active_count == 0);
996	MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
997	if (toep->ddp.waiting_count == 0) {
998		/*
999		 * The pending requests that triggered the request for an
1000		 * an indicate were cancelled.  Those cancels should have
1001		 * already disabled DDP.  Just ignore this as the data is
1002		 * going into the socket buffer anyway.
1003		 */
1004		return;
1005	}
1006	CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
1007	    toep->tid, toep->ddp.waiting_count);
1008	ddp_queue_toep(toep);
1009}
1010
1011CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1);
1012
1013static int
1014do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1015{
1016	struct adapter *sc = iq->adapter;
1017	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
1018	unsigned int tid = GET_TID(cpl);
1019	unsigned int db_idx;
1020	struct toepcb *toep;
1021	struct inpcb *inp;
1022	struct ddp_buffer *db;
1023	struct kaiocb *job;
1024	long copied;
1025
1026	if (cpl->status != CPL_ERR_NONE)
1027		panic("XXX: tcp_rpl failed: %d", cpl->status);
1028
1029	toep = lookup_tid(sc, tid);
1030	inp = toep->inp;
1031	switch (cpl->cookie) {
1032	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0):
1033	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1):
1034		/*
1035		 * XXX: This duplicates a lot of code with handle_ddp_data().
1036		 */
1037		KASSERT((toep->ddp.flags & DDP_AIO) != 0,
1038		    ("%s: DDP_RCVBUF", __func__));
1039		db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0;
1040		MPASS(db_idx < nitems(toep->ddp.db));
1041		INP_WLOCK(inp);
1042		DDP_LOCK(toep);
1043		db = &toep->ddp.db[db_idx];
1044
1045		/*
1046		 * handle_ddp_data() should leave the job around until
1047		 * this callback runs once a cancel is pending.
1048		 */
1049		MPASS(db != NULL);
1050		MPASS(db->job != NULL);
1051		MPASS(db->cancel_pending);
1052
1053		/*
1054		 * XXX: It's not clear what happens if there is data
1055		 * placed when the buffer is invalidated.  I suspect we
1056		 * need to read the TCB to see how much data was placed.
1057		 *
1058		 * For now this just pretends like nothing was placed.
1059		 *
1060		 * XXX: Note that if we did check the PCB we would need to
1061		 * also take care of updating the tp, etc.
1062		 */
1063		job = db->job;
1064		copied = job->aio_received;
1065		if (copied == 0) {
1066			CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
1067			aio_cancel(job);
1068		} else {
1069			CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
1070			    __func__, job, copied);
1071			aio_complete(job, copied, 0);
1072			t4_rcvd(&toep->td->tod, intotcpcb(inp));
1073		}
1074
1075		complete_ddp_buffer(toep, db, db_idx);
1076		if (toep->ddp.waiting_count > 0)
1077			ddp_queue_toep(toep);
1078		DDP_UNLOCK(toep);
1079		INP_WUNLOCK(inp);
1080		break;
1081	default:
1082		panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
1083		    G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
1084	}
1085
1086	return (0);
1087}
1088
1089void
1090handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
1091{
1092	struct socket *so = toep->inp->inp_socket;
1093	struct sockbuf *sb = &so->so_rcv;
1094	struct ddp_buffer *db;
1095	struct kaiocb *job;
1096	long copied;
1097	unsigned int db_idx;
1098#ifdef INVARIANTS
1099	unsigned int db_flag;
1100#endif
1101	int len, placed;
1102	bool ddp_rcvbuf;
1103
1104	INP_WLOCK_ASSERT(toep->inp);
1105	DDP_ASSERT_LOCKED(toep);
1106
1107	ddp_rcvbuf = (toep->ddp.flags & DDP_RCVBUF) != 0;
1108
1109	/* - 1 is to ignore the byte for FIN */
1110	len = be32toh(rcv_nxt) - tp->rcv_nxt - 1;
1111	tp->rcv_nxt += len;
1112
1113	CTR(KTR_CXGBE, "%s: tid %d placed %u bytes before FIN", __func__,
1114	    toep->tid, len);
1115	while (toep->ddp.active_count > 0) {
1116		MPASS(toep->ddp.active_id != -1);
1117		db_idx = toep->ddp.active_id;
1118#ifdef INVARIANTS
1119		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
1120#endif
1121		MPASS((toep->ddp.flags & db_flag) != 0);
1122		db = &toep->ddp.db[db_idx];
1123		if (ddp_rcvbuf) {
1124			placed = len;
1125			if (placed > db->drb->len - db->placed)
1126				placed = db->drb->len - db->placed;
1127			if (placed != 0) {
1128				SOCKBUF_LOCK(sb);
1129				queue_ddp_rcvbuf_mbuf(toep, db_idx, placed);
1130				sorwakeup_locked(so);
1131				SOCKBUF_UNLOCK_ASSERT(sb);
1132			}
1133			complete_ddp_buffer(toep, db, db_idx);
1134			len -= placed;
1135			continue;
1136		}
1137		job = db->job;
1138		copied = job->aio_received;
1139		placed = len;
1140		if (placed > job->uaiocb.aio_nbytes - copied)
1141			placed = job->uaiocb.aio_nbytes - copied;
1142		if (placed > 0) {
1143			job->msgrcv = 1;
1144			toep->ofld_rxq->rx_aio_ddp_jobs++;
1145		}
1146		toep->ofld_rxq->rx_aio_ddp_octets += placed;
1147		if (!aio_clear_cancel_function(job)) {
1148			/*
1149			 * Update the copied length for when
1150			 * t4_aio_cancel_active() completes this
1151			 * request.
1152			 */
1153			job->aio_received += placed;
1154		} else {
1155			CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
1156			    __func__, toep->tid, db_idx, placed);
1157			aio_complete(job, copied + placed, 0);
1158		}
1159		len -= placed;
1160		complete_ddp_buffer(toep, db, db_idx);
1161	}
1162
1163	MPASS(len == 0);
1164	if ((toep->ddp.flags & DDP_AIO) != 0)
1165		ddp_complete_all(toep, 0);
1166}
1167
1168#define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
1169	 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
1170	 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
1171	 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
1172
1173extern cpl_handler_t t4_cpl_handler[];
1174
1175static int
1176do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1177{
1178	struct adapter *sc = iq->adapter;
1179	const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
1180	unsigned int tid = GET_TID(cpl);
1181	uint32_t vld;
1182	struct toepcb *toep = lookup_tid(sc, tid);
1183
1184	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1185	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
1186	KASSERT(!(toep->flags & TPF_SYNQE),
1187	    ("%s: toep %p claims to be a synq entry", __func__, toep));
1188
1189	vld = be32toh(cpl->ddpvld);
1190	if (__predict_false(vld & DDP_ERR)) {
1191		panic("%s: DDP error 0x%x (tid %d, toep %p)",
1192		    __func__, vld, tid, toep);
1193	}
1194
1195	if (ulp_mode(toep) == ULP_MODE_ISCSI) {
1196		t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
1197		return (0);
1198	}
1199
1200	handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
1201
1202	return (0);
1203}
1204
1205static int
1206do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
1207    struct mbuf *m)
1208{
1209	struct adapter *sc = iq->adapter;
1210	const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
1211	unsigned int tid = GET_TID(cpl);
1212	struct toepcb *toep = lookup_tid(sc, tid);
1213
1214	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1215	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
1216	KASSERT(!(toep->flags & TPF_SYNQE),
1217	    ("%s: toep %p claims to be a synq entry", __func__, toep));
1218
1219	handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
1220
1221	return (0);
1222}
1223
1224static bool
1225set_ddp_ulp_mode(struct toepcb *toep)
1226{
1227	struct adapter *sc = toep->vi->adapter;
1228	struct wrqe *wr;
1229	struct work_request_hdr *wrh;
1230	struct ulp_txpkt *ulpmc;
1231	int fields, len;
1232
1233	if (!sc->tt.ddp)
1234		return (false);
1235
1236	fields = 0;
1237
1238	/* Overlay region including W_TCB_RX_DDP_FLAGS */
1239	fields += 3;
1240
1241	/* W_TCB_ULP_TYPE */
1242	fields++;
1243
1244#ifdef USE_DDP_RX_FLOW_CONTROL
1245	/* W_TCB_T_FLAGS */
1246	fields++;
1247#endif
1248
1249	len = sizeof(*wrh) + fields * roundup2(LEN__SET_TCB_FIELD_ULP, 16);
1250	KASSERT(len <= SGE_MAX_WR_LEN,
1251	    ("%s: WR with %d TCB field updates too large", __func__, fields));
1252
1253	wr = alloc_wrqe(len, toep->ctrlq);
1254	if (wr == NULL)
1255		return (false);
1256
1257	CTR(KTR_CXGBE, "%s: tid %u", __func__, toep->tid);
1258
1259	wrh = wrtod(wr);
1260	INIT_ULPTX_WRH(wrh, len, 1, 0);	/* atomic */
1261	ulpmc = (struct ulp_txpkt *)(wrh + 1);
1262
1263	/*
1264	 * Words 26/27 are zero except for the DDP_OFF flag in
1265	 * W_TCB_RX_DDP_FLAGS (27).
1266	 */
1267	ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, 26,
1268	    0xffffffffffffffff, (uint64_t)V_TF_DDP_OFF(1) << 32);
1269
1270	/* Words 28/29 are zero. */
1271	ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, 28,
1272	    0xffffffffffffffff, 0);
1273
1274	/* Words 30/31 are zero. */
1275	ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, 30,
1276	    0xffffffffffffffff, 0);
1277
1278	/* Set the ULP mode to ULP_MODE_TCPDDP. */
1279	toep->params.ulp_mode = ULP_MODE_TCPDDP;
1280	ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_ULP_TYPE,
1281	    V_TCB_ULP_TYPE(M_TCB_ULP_TYPE), V_TCB_ULP_TYPE(ULP_MODE_TCPDDP));
1282
1283#ifdef USE_DDP_RX_FLOW_CONTROL
1284	/* Set TF_RX_FLOW_CONTROL_DDP. */
1285	ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_T_FLAGS,
1286	    V_TF_RX_FLOW_CONTROL_DDP(1), V_TF_RX_FLOW_CONTROL_DDP(1));
1287#endif
1288
1289	ddp_init_toep(toep);
1290
1291	t4_wrq_tx(sc, wr);
1292	return (true);
1293}
1294
1295static void
1296enable_ddp(struct adapter *sc, struct toepcb *toep)
1297{
1298	uint64_t ddp_flags;
1299
1300	KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
1301	    ("%s: toep %p has bad ddp_flags 0x%x",
1302	    __func__, toep, toep->ddp.flags));
1303
1304	CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
1305	    __func__, toep->tid, time_uptime);
1306
1307	ddp_flags = 0;
1308	if ((toep->ddp.flags & DDP_AIO) != 0)
1309		ddp_flags |= V_TF_DDP_BUF0_INDICATE(1) |
1310		    V_TF_DDP_BUF1_INDICATE(1);
1311	DDP_ASSERT_LOCKED(toep);
1312	toep->ddp.flags |= DDP_SC_REQ;
1313	t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS,
1314	    V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
1315	    V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
1316	    V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), ddp_flags, 0, 0);
1317	t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
1318	    V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0);
1319}
1320
1321static int
1322calculate_hcf(int n1, int n2)
1323{
1324	int a, b, t;
1325
1326	if (n1 <= n2) {
1327		a = n1;
1328		b = n2;
1329	} else {
1330		a = n2;
1331		b = n1;
1332	}
1333
1334	while (a != 0) {
1335		t = a;
1336		a = b % a;
1337		b = t;
1338	}
1339
1340	return (b);
1341}
1342
1343static inline int
1344pages_to_nppods(int npages, int ddp_page_shift)
1345{
1346
1347	MPASS(ddp_page_shift >= PAGE_SHIFT);
1348
1349	return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
1350}
1351
1352static int
1353alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
1354    struct ppod_reservation *prsv)
1355{
1356	vmem_addr_t addr;       /* relative to start of region */
1357
1358	if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
1359	    &addr) != 0)
1360		return (ENOMEM);
1361
1362#ifdef VERBOSE_TRACES
1363	CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
1364	    __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
1365	    nppods, 1 << pr->pr_page_shift[pgsz_idx]);
1366#endif
1367
1368	/*
1369	 * The hardware tagmask includes an extra invalid bit but the arena was
1370	 * seeded with valid values only.  An allocation out of this arena will
1371	 * fit inside the tagmask but won't have the invalid bit set.
1372	 */
1373	MPASS((addr & pr->pr_tag_mask) == addr);
1374	MPASS((addr & pr->pr_invalid_bit) == 0);
1375
1376	prsv->prsv_pr = pr;
1377	prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
1378	prsv->prsv_nppods = nppods;
1379
1380	return (0);
1381}
1382
1383static int
1384t4_alloc_page_pods_for_vmpages(struct ppod_region *pr, vm_page_t *pages,
1385    int npages, struct ppod_reservation *prsv)
1386{
1387	int i, hcf, seglen, idx, nppods;
1388
1389	/*
1390	 * The DDP page size is unrelated to the VM page size.  We combine
1391	 * contiguous physical pages into larger segments to get the best DDP
1392	 * page size possible.  This is the largest of the four sizes in
1393	 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
1394	 * the page list.
1395	 */
1396	hcf = 0;
1397	for (i = 0; i < npages; i++) {
1398		seglen = PAGE_SIZE;
1399		while (i < npages - 1 &&
1400		    VM_PAGE_TO_PHYS(pages[i]) + PAGE_SIZE ==
1401		    VM_PAGE_TO_PHYS(pages[i + 1])) {
1402			seglen += PAGE_SIZE;
1403			i++;
1404		}
1405
1406		hcf = calculate_hcf(hcf, seglen);
1407		if (hcf < (1 << pr->pr_page_shift[1])) {
1408			idx = 0;
1409			goto have_pgsz;	/* give up, short circuit */
1410		}
1411	}
1412
1413#define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
1414	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
1415	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
1416		if ((hcf & PR_PAGE_MASK(idx)) == 0)
1417			break;
1418	}
1419#undef PR_PAGE_MASK
1420
1421have_pgsz:
1422	MPASS(idx <= M_PPOD_PGSZ);
1423
1424	nppods = pages_to_nppods(npages, pr->pr_page_shift[idx]);
1425	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
1426		return (ENOMEM);
1427	MPASS(prsv->prsv_nppods > 0);
1428
1429	return (0);
1430}
1431
1432int
1433t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
1434{
1435	struct ppod_reservation *prsv = &ps->prsv;
1436
1437	KASSERT(prsv->prsv_nppods == 0,
1438	    ("%s: page pods already allocated", __func__));
1439
1440	return (t4_alloc_page_pods_for_vmpages(pr, ps->pages, ps->npages,
1441	    prsv));
1442}
1443
1444int
1445t4_alloc_page_pods_for_bio(struct ppod_region *pr, struct bio *bp,
1446    struct ppod_reservation *prsv)
1447{
1448
1449	MPASS(bp->bio_flags & BIO_UNMAPPED);
1450
1451	return (t4_alloc_page_pods_for_vmpages(pr, bp->bio_ma, bp->bio_ma_n,
1452	    prsv));
1453}
1454
1455int
1456t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
1457    struct ppod_reservation *prsv)
1458{
1459	int hcf, seglen, idx, npages, nppods;
1460	uintptr_t start_pva, end_pva, pva, p1;
1461
1462	MPASS(buf > 0);
1463	MPASS(len > 0);
1464
1465	/*
1466	 * The DDP page size is unrelated to the VM page size.  We combine
1467	 * contiguous physical pages into larger segments to get the best DDP
1468	 * page size possible.  This is the largest of the four sizes in
1469	 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
1470	 * in the page list.
1471	 */
1472	hcf = 0;
1473	start_pva = trunc_page(buf);
1474	end_pva = trunc_page(buf + len - 1);
1475	pva = start_pva;
1476	while (pva <= end_pva) {
1477		seglen = PAGE_SIZE;
1478		p1 = pmap_kextract(pva);
1479		pva += PAGE_SIZE;
1480		while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
1481			seglen += PAGE_SIZE;
1482			pva += PAGE_SIZE;
1483		}
1484
1485		hcf = calculate_hcf(hcf, seglen);
1486		if (hcf < (1 << pr->pr_page_shift[1])) {
1487			idx = 0;
1488			goto have_pgsz;	/* give up, short circuit */
1489		}
1490	}
1491
1492#define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
1493	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
1494	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
1495		if ((hcf & PR_PAGE_MASK(idx)) == 0)
1496			break;
1497	}
1498#undef PR_PAGE_MASK
1499
1500have_pgsz:
1501	MPASS(idx <= M_PPOD_PGSZ);
1502
1503	npages = 1;
1504	npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
1505	nppods = howmany(npages, PPOD_PAGES);
1506	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
1507		return (ENOMEM);
1508	MPASS(prsv->prsv_nppods > 0);
1509
1510	return (0);
1511}
1512
1513static int
1514t4_alloc_page_pods_for_rcvbuf(struct ppod_region *pr,
1515    struct ddp_rcv_buffer *drb)
1516{
1517	struct ppod_reservation *prsv = &drb->prsv;
1518
1519	KASSERT(prsv->prsv_nppods == 0,
1520	    ("%s: page pods already allocated", __func__));
1521
1522	return (t4_alloc_page_pods_for_buf(pr, (vm_offset_t)drb->buf, drb->len,
1523	    prsv));
1524}
1525
1526int
1527t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl,
1528    int entries, struct ppod_reservation *prsv)
1529{
1530	int hcf, seglen, idx = 0, npages, nppods, i, len;
1531	uintptr_t start_pva, end_pva, pva, p1 ;
1532	vm_offset_t buf;
1533	struct ctl_sg_entry *sge;
1534
1535	MPASS(entries > 0);
1536	MPASS(sgl);
1537
1538	/*
1539	 * The DDP page size is unrelated to the VM page size.	We combine
1540	 * contiguous physical pages into larger segments to get the best DDP
1541	 * page size possible.	This is the largest of the four sizes in
1542	 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
1543	 * in the page list.
1544	 */
1545	hcf = 0;
1546	for (i = entries - 1; i >= 0; i--) {
1547		sge = sgl + i;
1548		buf = (vm_offset_t)sge->addr;
1549		len = sge->len;
1550		start_pva = trunc_page(buf);
1551		end_pva = trunc_page(buf + len - 1);
1552		pva = start_pva;
1553		while (pva <= end_pva) {
1554			seglen = PAGE_SIZE;
1555			p1 = pmap_kextract(pva);
1556			pva += PAGE_SIZE;
1557			while (pva <= end_pva && p1 + seglen ==
1558			    pmap_kextract(pva)) {
1559				seglen += PAGE_SIZE;
1560				pva += PAGE_SIZE;
1561			}
1562
1563			hcf = calculate_hcf(hcf, seglen);
1564			if (hcf < (1 << pr->pr_page_shift[1])) {
1565				idx = 0;
1566				goto have_pgsz; /* give up, short circuit */
1567			}
1568		}
1569	}
1570#define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
1571	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
1572	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
1573		if ((hcf & PR_PAGE_MASK(idx)) == 0)
1574			break;
1575	}
1576#undef PR_PAGE_MASK
1577
1578have_pgsz:
1579	MPASS(idx <= M_PPOD_PGSZ);
1580
1581	npages = 0;
1582	while (entries--) {
1583		npages++;
1584		start_pva = trunc_page((vm_offset_t)sgl->addr);
1585		end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1);
1586		npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
1587		sgl = sgl + 1;
1588	}
1589	nppods = howmany(npages, PPOD_PAGES);
1590	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
1591		return (ENOMEM);
1592	MPASS(prsv->prsv_nppods > 0);
1593	return (0);
1594}
1595
1596void
1597t4_free_page_pods(struct ppod_reservation *prsv)
1598{
1599	struct ppod_region *pr = prsv->prsv_pr;
1600	vmem_addr_t addr;
1601
1602	MPASS(prsv != NULL);
1603	MPASS(prsv->prsv_nppods != 0);
1604
1605	addr = prsv->prsv_tag & pr->pr_tag_mask;
1606	MPASS((addr & pr->pr_invalid_bit) == 0);
1607
1608#ifdef VERBOSE_TRACES
1609	CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
1610	    pr->pr_arena, addr, prsv->prsv_nppods);
1611#endif
1612
1613	vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
1614	prsv->prsv_nppods = 0;
1615}
1616
1617#define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
1618
1619int
1620t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
1621    struct pageset *ps)
1622{
1623	struct wrqe *wr;
1624	struct ulp_mem_io *ulpmc;
1625	struct ulptx_idata *ulpsc;
1626	struct pagepod *ppod;
1627	int i, j, k, n, chunk, len, ddp_pgsz, idx;
1628	u_int ppod_addr;
1629	uint32_t cmd;
1630	struct ppod_reservation *prsv = &ps->prsv;
1631	struct ppod_region *pr = prsv->prsv_pr;
1632	vm_paddr_t pa;
1633
1634	KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
1635	    ("%s: page pods already written", __func__));
1636	MPASS(prsv->prsv_nppods > 0);
1637
1638	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1639	if (is_t4(sc))
1640		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1641	else
1642		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1643	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1644	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1645	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1646		/* How many page pods are we writing in this cycle */
1647		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1648		chunk = PPOD_SZ(n);
1649		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1650
1651		wr = alloc_wrqe(len, wrq);
1652		if (wr == NULL)
1653			return (ENOMEM);	/* ok to just bail out */
1654		ulpmc = wrtod(wr);
1655
1656		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1657		ulpmc->cmd = cmd;
1658		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1659		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1660		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1661
1662		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1663		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1664		ulpsc->len = htobe32(chunk);
1665
1666		ppod = (struct pagepod *)(ulpsc + 1);
1667		for (j = 0; j < n; i++, j++, ppod++) {
1668			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1669			    V_PPOD_TID(tid) | prsv->prsv_tag);
1670			ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
1671			    V_PPOD_OFST(ps->offset));
1672			ppod->rsvd = 0;
1673			idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
1674			for (k = 0; k < nitems(ppod->addr); k++) {
1675				if (idx < ps->npages) {
1676					pa = VM_PAGE_TO_PHYS(ps->pages[idx]);
1677					ppod->addr[k] = htobe64(pa);
1678					idx += ddp_pgsz / PAGE_SIZE;
1679				} else
1680					ppod->addr[k] = 0;
1681#if 0
1682				CTR5(KTR_CXGBE,
1683				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1684				    __func__, tid, i, k,
1685				    be64toh(ppod->addr[k]));
1686#endif
1687			}
1688
1689		}
1690
1691		t4_wrq_tx(sc, wr);
1692	}
1693	ps->flags |= PS_PPODS_WRITTEN;
1694
1695	return (0);
1696}
1697
1698static int
1699t4_write_page_pods_for_rcvbuf(struct adapter *sc, struct sge_wrq *wrq, int tid,
1700    struct ddp_rcv_buffer *drb)
1701{
1702	struct wrqe *wr;
1703	struct ulp_mem_io *ulpmc;
1704	struct ulptx_idata *ulpsc;
1705	struct pagepod *ppod;
1706	int i, j, k, n, chunk, len, ddp_pgsz;
1707	u_int ppod_addr, offset;
1708	uint32_t cmd;
1709	struct ppod_reservation *prsv = &drb->prsv;
1710	struct ppod_region *pr = prsv->prsv_pr;
1711	uintptr_t end_pva, pva;
1712	vm_paddr_t pa;
1713
1714	MPASS(prsv->prsv_nppods > 0);
1715
1716	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1717	if (is_t4(sc))
1718		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1719	else
1720		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1721	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1722	offset = (uintptr_t)drb->buf & PAGE_MASK;
1723	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1724	pva = trunc_page((uintptr_t)drb->buf);
1725	end_pva = trunc_page((uintptr_t)drb->buf + drb->len - 1);
1726	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1727		/* How many page pods are we writing in this cycle */
1728		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1729		MPASS(n > 0);
1730		chunk = PPOD_SZ(n);
1731		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1732
1733		wr = alloc_wrqe(len, wrq);
1734		if (wr == NULL)
1735			return (ENOMEM);	/* ok to just bail out */
1736		ulpmc = wrtod(wr);
1737
1738		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1739		ulpmc->cmd = cmd;
1740		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1741		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1742		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1743
1744		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1745		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1746		ulpsc->len = htobe32(chunk);
1747
1748		ppod = (struct pagepod *)(ulpsc + 1);
1749		for (j = 0; j < n; i++, j++, ppod++) {
1750			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1751			    V_PPOD_TID(tid) | prsv->prsv_tag);
1752			ppod->len_offset = htobe64(V_PPOD_LEN(drb->len) |
1753			    V_PPOD_OFST(offset));
1754			ppod->rsvd = 0;
1755
1756			for (k = 0; k < nitems(ppod->addr); k++) {
1757				if (pva > end_pva)
1758					ppod->addr[k] = 0;
1759				else {
1760					pa = pmap_kextract(pva);
1761					ppod->addr[k] = htobe64(pa);
1762					pva += ddp_pgsz;
1763				}
1764#if 0
1765				CTR5(KTR_CXGBE,
1766				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1767				    __func__, tid, i, k,
1768				    be64toh(ppod->addr[k]));
1769#endif
1770			}
1771
1772			/*
1773			 * Walk back 1 segment so that the first address in the
1774			 * next pod is the same as the last one in the current
1775			 * pod.
1776			 */
1777			pva -= ddp_pgsz;
1778		}
1779
1780		t4_wrq_tx(sc, wr);
1781	}
1782
1783	MPASS(pva <= end_pva);
1784
1785	return (0);
1786}
1787
1788static struct mbuf *
1789alloc_raw_wr_mbuf(int len)
1790{
1791	struct mbuf *m;
1792
1793	if (len <= MHLEN)
1794		m = m_gethdr(M_NOWAIT, MT_DATA);
1795	else if (len <= MCLBYTES)
1796		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1797	else
1798		m = NULL;
1799	if (m == NULL)
1800		return (NULL);
1801	m->m_pkthdr.len = len;
1802	m->m_len = len;
1803	set_mbuf_raw_wr(m, true);
1804	return (m);
1805}
1806
1807int
1808t4_write_page_pods_for_bio(struct adapter *sc, struct toepcb *toep,
1809    struct ppod_reservation *prsv, struct bio *bp, struct mbufq *wrq)
1810{
1811	struct ulp_mem_io *ulpmc;
1812	struct ulptx_idata *ulpsc;
1813	struct pagepod *ppod;
1814	int i, j, k, n, chunk, len, ddp_pgsz, idx;
1815	u_int ppod_addr;
1816	uint32_t cmd;
1817	struct ppod_region *pr = prsv->prsv_pr;
1818	vm_paddr_t pa;
1819	struct mbuf *m;
1820
1821	MPASS(bp->bio_flags & BIO_UNMAPPED);
1822
1823	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1824	if (is_t4(sc))
1825		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1826	else
1827		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1828	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1829	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1830	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1831
1832		/* How many page pods are we writing in this cycle */
1833		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1834		MPASS(n > 0);
1835		chunk = PPOD_SZ(n);
1836		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1837
1838		m = alloc_raw_wr_mbuf(len);
1839		if (m == NULL)
1840			return (ENOMEM);
1841
1842		ulpmc = mtod(m, struct ulp_mem_io *);
1843		INIT_ULPTX_WR(ulpmc, len, 0, toep->tid);
1844		ulpmc->cmd = cmd;
1845		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1846		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1847		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1848
1849		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1850		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1851		ulpsc->len = htobe32(chunk);
1852
1853		ppod = (struct pagepod *)(ulpsc + 1);
1854		for (j = 0; j < n; i++, j++, ppod++) {
1855			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1856			    V_PPOD_TID(toep->tid) |
1857			    (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
1858			ppod->len_offset = htobe64(V_PPOD_LEN(bp->bio_bcount) |
1859			    V_PPOD_OFST(bp->bio_ma_offset));
1860			ppod->rsvd = 0;
1861			idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
1862			for (k = 0; k < nitems(ppod->addr); k++) {
1863				if (idx < bp->bio_ma_n) {
1864					pa = VM_PAGE_TO_PHYS(bp->bio_ma[idx]);
1865					ppod->addr[k] = htobe64(pa);
1866					idx += ddp_pgsz / PAGE_SIZE;
1867				} else
1868					ppod->addr[k] = 0;
1869#if 0
1870				CTR5(KTR_CXGBE,
1871				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1872				    __func__, toep->tid, i, k,
1873				    be64toh(ppod->addr[k]));
1874#endif
1875			}
1876		}
1877
1878		mbufq_enqueue(wrq, m);
1879	}
1880
1881	return (0);
1882}
1883
1884int
1885t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep,
1886    struct ppod_reservation *prsv, vm_offset_t buf, int buflen,
1887    struct mbufq *wrq)
1888{
1889	struct ulp_mem_io *ulpmc;
1890	struct ulptx_idata *ulpsc;
1891	struct pagepod *ppod;
1892	int i, j, k, n, chunk, len, ddp_pgsz;
1893	u_int ppod_addr, offset;
1894	uint32_t cmd;
1895	struct ppod_region *pr = prsv->prsv_pr;
1896	uintptr_t end_pva, pva;
1897	vm_paddr_t pa;
1898	struct mbuf *m;
1899
1900	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1901	if (is_t4(sc))
1902		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1903	else
1904		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1905	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1906	offset = buf & PAGE_MASK;
1907	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1908	pva = trunc_page(buf);
1909	end_pva = trunc_page(buf + buflen - 1);
1910	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1911
1912		/* How many page pods are we writing in this cycle */
1913		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1914		MPASS(n > 0);
1915		chunk = PPOD_SZ(n);
1916		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1917
1918		m = alloc_raw_wr_mbuf(len);
1919		if (m == NULL)
1920			return (ENOMEM);
1921		ulpmc = mtod(m, struct ulp_mem_io *);
1922
1923		INIT_ULPTX_WR(ulpmc, len, 0, toep->tid);
1924		ulpmc->cmd = cmd;
1925		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1926		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1927		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1928
1929		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1930		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1931		ulpsc->len = htobe32(chunk);
1932
1933		ppod = (struct pagepod *)(ulpsc + 1);
1934		for (j = 0; j < n; i++, j++, ppod++) {
1935			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1936			    V_PPOD_TID(toep->tid) |
1937			    (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
1938			ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
1939			    V_PPOD_OFST(offset));
1940			ppod->rsvd = 0;
1941
1942			for (k = 0; k < nitems(ppod->addr); k++) {
1943				if (pva > end_pva)
1944					ppod->addr[k] = 0;
1945				else {
1946					pa = pmap_kextract(pva);
1947					ppod->addr[k] = htobe64(pa);
1948					pva += ddp_pgsz;
1949				}
1950#if 0
1951				CTR5(KTR_CXGBE,
1952				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1953				    __func__, toep->tid, i, k,
1954				    be64toh(ppod->addr[k]));
1955#endif
1956			}
1957
1958			/*
1959			 * Walk back 1 segment so that the first address in the
1960			 * next pod is the same as the last one in the current
1961			 * pod.
1962			 */
1963			pva -= ddp_pgsz;
1964		}
1965
1966		mbufq_enqueue(wrq, m);
1967	}
1968
1969	MPASS(pva <= end_pva);
1970
1971	return (0);
1972}
1973
1974int
1975t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep,
1976    struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries,
1977    int xferlen, struct mbufq *wrq)
1978{
1979	struct ulp_mem_io *ulpmc;
1980	struct ulptx_idata *ulpsc;
1981	struct pagepod *ppod;
1982	int i, j, k, n, chunk, len, ddp_pgsz;
1983	u_int ppod_addr, offset, sg_offset = 0;
1984	uint32_t cmd;
1985	struct ppod_region *pr = prsv->prsv_pr;
1986	uintptr_t pva;
1987	vm_paddr_t pa;
1988	struct mbuf *m;
1989
1990	MPASS(sgl != NULL);
1991	MPASS(entries > 0);
1992	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1993	if (is_t4(sc))
1994		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1995	else
1996		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1997	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1998	offset = (vm_offset_t)sgl->addr & PAGE_MASK;
1999	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
2000	pva = trunc_page((vm_offset_t)sgl->addr);
2001	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
2002
2003		/* How many page pods are we writing in this cycle */
2004		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
2005		MPASS(n > 0);
2006		chunk = PPOD_SZ(n);
2007		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
2008
2009		m = alloc_raw_wr_mbuf(len);
2010		if (m == NULL)
2011			return (ENOMEM);
2012		ulpmc = mtod(m, struct ulp_mem_io *);
2013
2014		INIT_ULPTX_WR(ulpmc, len, 0, toep->tid);
2015		ulpmc->cmd = cmd;
2016		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
2017		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
2018		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
2019
2020		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
2021		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
2022		ulpsc->len = htobe32(chunk);
2023
2024		ppod = (struct pagepod *)(ulpsc + 1);
2025		for (j = 0; j < n; i++, j++, ppod++) {
2026			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
2027			    V_PPOD_TID(toep->tid) |
2028			    (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
2029			ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) |
2030			    V_PPOD_OFST(offset));
2031			ppod->rsvd = 0;
2032
2033			for (k = 0; k < nitems(ppod->addr); k++) {
2034				if (entries != 0) {
2035					pa = pmap_kextract(pva + sg_offset);
2036					ppod->addr[k] = htobe64(pa);
2037				} else
2038					ppod->addr[k] = 0;
2039
2040#if 0
2041				CTR5(KTR_CXGBE,
2042				    "%s: tid %d ppod[%d]->addr[%d] = %p",
2043				    __func__, toep->tid, i, k,
2044				    be64toh(ppod->addr[k]));
2045#endif
2046
2047				/*
2048				 * If this is the last entry in a pod,
2049				 * reuse the same entry for first address
2050				 * in the next pod.
2051				 */
2052				if (k + 1 == nitems(ppod->addr))
2053					break;
2054
2055				/*
2056				 * Don't move to the next DDP page if the
2057				 * sgl is already finished.
2058				 */
2059				if (entries == 0)
2060					continue;
2061
2062				sg_offset += ddp_pgsz;
2063				if (sg_offset == sgl->len) {
2064					/*
2065					 * This sgl entry is done.  Go
2066					 * to the next.
2067					 */
2068					entries--;
2069					sgl++;
2070					sg_offset = 0;
2071					if (entries != 0)
2072						pva = trunc_page(
2073						    (vm_offset_t)sgl->addr);
2074				}
2075			}
2076		}
2077
2078		mbufq_enqueue(wrq, m);
2079	}
2080
2081	return (0);
2082}
2083
2084/*
2085 * Prepare a pageset for DDP.  This sets up page pods.
2086 */
2087static int
2088prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
2089{
2090	struct tom_data *td = sc->tom_softc;
2091
2092	if (ps->prsv.prsv_nppods == 0 &&
2093	    t4_alloc_page_pods_for_ps(&td->pr, ps) != 0) {
2094		return (0);
2095	}
2096	if (!(ps->flags & PS_PPODS_WRITTEN) &&
2097	    t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
2098		return (0);
2099	}
2100
2101	return (1);
2102}
2103
2104int
2105t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
2106    const char *name)
2107{
2108	int i;
2109
2110	MPASS(pr != NULL);
2111	MPASS(r->size > 0);
2112
2113	pr->pr_start = r->start;
2114	pr->pr_len = r->size;
2115	pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
2116	pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
2117	pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
2118	pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
2119
2120	/* The SGL -> page pod algorithm requires the sizes to be in order. */
2121	for (i = 1; i < nitems(pr->pr_page_shift); i++) {
2122		if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
2123			return (ENXIO);
2124	}
2125
2126	pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
2127	pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
2128	if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
2129		return (ENXIO);
2130	pr->pr_alias_shift = fls(pr->pr_tag_mask);
2131	pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
2132
2133	pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
2134	    M_FIRSTFIT | M_NOWAIT);
2135	if (pr->pr_arena == NULL)
2136		return (ENOMEM);
2137
2138	return (0);
2139}
2140
2141void
2142t4_free_ppod_region(struct ppod_region *pr)
2143{
2144
2145	MPASS(pr != NULL);
2146
2147	if (pr->pr_arena)
2148		vmem_destroy(pr->pr_arena);
2149	bzero(pr, sizeof(*pr));
2150}
2151
2152static int
2153pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
2154    int pgoff, int len)
2155{
2156
2157	if (ps->start != start || ps->npages != npages ||
2158	    ps->offset != pgoff || ps->len != len)
2159		return (1);
2160
2161	return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
2162}
2163
2164static int
2165hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
2166{
2167	struct vmspace *vm;
2168	vm_map_t map;
2169	vm_offset_t start, end, pgoff;
2170	struct pageset *ps;
2171	int n;
2172
2173	DDP_ASSERT_LOCKED(toep);
2174
2175	/*
2176	 * The AIO subsystem will cancel and drain all requests before
2177	 * permitting a process to exit or exec, so p_vmspace should
2178	 * be stable here.
2179	 */
2180	vm = job->userproc->p_vmspace;
2181	map = &vm->vm_map;
2182	start = (uintptr_t)job->uaiocb.aio_buf;
2183	pgoff = start & PAGE_MASK;
2184	end = round_page(start + job->uaiocb.aio_nbytes);
2185	start = trunc_page(start);
2186
2187	if (end - start > MAX_DDP_BUFFER_SIZE) {
2188		/*
2189		 * Truncate the request to a short read.
2190		 * Alternatively, we could DDP in chunks to the larger
2191		 * buffer, but that would be quite a bit more work.
2192		 *
2193		 * When truncating, round the request down to avoid
2194		 * crossing a cache line on the final transaction.
2195		 */
2196		end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
2197#ifdef VERBOSE_TRACES
2198		CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
2199		    __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
2200		    (unsigned long)(end - (start + pgoff)));
2201		job->uaiocb.aio_nbytes = end - (start + pgoff);
2202#endif
2203		end = round_page(end);
2204	}
2205
2206	n = atop(end - start);
2207
2208	/*
2209	 * Try to reuse a cached pageset.
2210	 */
2211	TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) {
2212		if (pscmp(ps, vm, start, n, pgoff,
2213		    job->uaiocb.aio_nbytes) == 0) {
2214			TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
2215			toep->ddp.cached_count--;
2216			*pps = ps;
2217			return (0);
2218		}
2219	}
2220
2221	/*
2222	 * If there are too many cached pagesets to create a new one,
2223	 * free a pageset before creating a new one.
2224	 */
2225	KASSERT(toep->ddp.active_count + toep->ddp.cached_count <=
2226	    nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__));
2227	if (toep->ddp.active_count + toep->ddp.cached_count ==
2228	    nitems(toep->ddp.db)) {
2229		KASSERT(toep->ddp.cached_count > 0,
2230		    ("no cached pageset to free"));
2231		ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq);
2232		TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
2233		toep->ddp.cached_count--;
2234		free_pageset(toep->td, ps);
2235	}
2236	DDP_UNLOCK(toep);
2237
2238	/* Create a new pageset. */
2239	ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
2240	    M_ZERO);
2241	ps->pages = (vm_page_t *)(ps + 1);
2242	ps->vm_timestamp = map->timestamp;
2243	ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
2244	    VM_PROT_WRITE, ps->pages, n);
2245
2246	DDP_LOCK(toep);
2247	if (ps->npages < 0) {
2248		free(ps, M_CXGBE);
2249		return (EFAULT);
2250	}
2251
2252	KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
2253	    ps->npages, n));
2254
2255	ps->offset = pgoff;
2256	ps->len = job->uaiocb.aio_nbytes;
2257	refcount_acquire(&vm->vm_refcnt);
2258	ps->vm = vm;
2259	ps->start = start;
2260
2261	CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
2262	    __func__, toep->tid, ps, job, ps->npages);
2263	*pps = ps;
2264	return (0);
2265}
2266
2267static void
2268ddp_complete_all(struct toepcb *toep, int error)
2269{
2270	struct kaiocb *job;
2271
2272	DDP_ASSERT_LOCKED(toep);
2273	KASSERT((toep->ddp.flags & DDP_AIO) != 0, ("%s: DDP_RCVBUF", __func__));
2274	while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) {
2275		job = TAILQ_FIRST(&toep->ddp.aiojobq);
2276		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
2277		toep->ddp.waiting_count--;
2278		if (aio_clear_cancel_function(job))
2279			ddp_complete_one(job, error);
2280	}
2281}
2282
2283static void
2284aio_ddp_cancel_one(struct kaiocb *job)
2285{
2286	long copied;
2287
2288	/*
2289	 * If this job had copied data out of the socket buffer before
2290	 * it was cancelled, report it as a short read rather than an
2291	 * error.
2292	 */
2293	copied = job->aio_received;
2294	if (copied != 0)
2295		aio_complete(job, copied, 0);
2296	else
2297		aio_cancel(job);
2298}
2299
2300/*
2301 * Called when the main loop wants to requeue a job to retry it later.
2302 * Deals with the race of the job being cancelled while it was being
2303 * examined.
2304 */
2305static void
2306aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
2307{
2308
2309	DDP_ASSERT_LOCKED(toep);
2310	if (!(toep->ddp.flags & DDP_DEAD) &&
2311	    aio_set_cancel_function(job, t4_aio_cancel_queued)) {
2312		TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
2313		toep->ddp.waiting_count++;
2314	} else
2315		aio_ddp_cancel_one(job);
2316}
2317
2318static void
2319aio_ddp_requeue(struct toepcb *toep)
2320{
2321	struct adapter *sc = td_adapter(toep->td);
2322	struct socket *so;
2323	struct sockbuf *sb;
2324	struct inpcb *inp;
2325	struct kaiocb *job;
2326	struct ddp_buffer *db;
2327	size_t copied, offset, resid;
2328	struct pageset *ps;
2329	struct mbuf *m;
2330	uint64_t ddp_flags, ddp_flags_mask;
2331	struct wrqe *wr;
2332	int buf_flag, db_idx, error;
2333
2334	DDP_ASSERT_LOCKED(toep);
2335
2336restart:
2337	if (toep->ddp.flags & DDP_DEAD) {
2338		MPASS(toep->ddp.waiting_count == 0);
2339		MPASS(toep->ddp.active_count == 0);
2340		return;
2341	}
2342
2343	if (toep->ddp.waiting_count == 0 ||
2344	    toep->ddp.active_count == nitems(toep->ddp.db)) {
2345		return;
2346	}
2347
2348	job = TAILQ_FIRST(&toep->ddp.aiojobq);
2349	so = job->fd_file->f_data;
2350	sb = &so->so_rcv;
2351	SOCKBUF_LOCK(sb);
2352
2353	/* We will never get anything unless we are or were connected. */
2354	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2355		SOCKBUF_UNLOCK(sb);
2356		ddp_complete_all(toep, ENOTCONN);
2357		return;
2358	}
2359
2360	KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0,
2361	    ("%s: pending sockbuf data and DDP is active", __func__));
2362
2363	/* Abort if socket has reported problems. */
2364	/* XXX: Wait for any queued DDP's to finish and/or flush them? */
2365	if (so->so_error && sbavail(sb) == 0) {
2366		toep->ddp.waiting_count--;
2367		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
2368		if (!aio_clear_cancel_function(job)) {
2369			SOCKBUF_UNLOCK(sb);
2370			goto restart;
2371		}
2372
2373		/*
2374		 * If this job has previously copied some data, report
2375		 * a short read and leave the error to be reported by
2376		 * a future request.
2377		 */
2378		copied = job->aio_received;
2379		if (copied != 0) {
2380			SOCKBUF_UNLOCK(sb);
2381			aio_complete(job, copied, 0);
2382			goto restart;
2383		}
2384		error = so->so_error;
2385		so->so_error = 0;
2386		SOCKBUF_UNLOCK(sb);
2387		aio_complete(job, -1, error);
2388		goto restart;
2389	}
2390
2391	/*
2392	 * Door is closed.  If there is pending data in the socket buffer,
2393	 * deliver it.  If there are pending DDP requests, wait for those
2394	 * to complete.  Once they have completed, return EOF reads.
2395	 */
2396	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
2397		SOCKBUF_UNLOCK(sb);
2398		if (toep->ddp.active_count != 0)
2399			return;
2400		ddp_complete_all(toep, 0);
2401		return;
2402	}
2403
2404	/*
2405	 * If DDP is not enabled and there is no pending socket buffer
2406	 * data, try to enable DDP.
2407	 */
2408	if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) {
2409		SOCKBUF_UNLOCK(sb);
2410
2411		/*
2412		 * Wait for the card to ACK that DDP is enabled before
2413		 * queueing any buffers.  Currently this waits for an
2414		 * indicate to arrive.  This could use a TCB_SET_FIELD_RPL
2415		 * message to know that DDP was enabled instead of waiting
2416		 * for the indicate which would avoid copying the indicate
2417		 * if no data is pending.
2418		 *
2419		 * XXX: Might want to limit the indicate size to the size
2420		 * of the first queued request.
2421		 */
2422		if ((toep->ddp.flags & DDP_SC_REQ) == 0)
2423			enable_ddp(sc, toep);
2424		return;
2425	}
2426	SOCKBUF_UNLOCK(sb);
2427
2428	/*
2429	 * If another thread is queueing a buffer for DDP, let it
2430	 * drain any work and return.
2431	 */
2432	if (toep->ddp.queueing != NULL)
2433		return;
2434
2435	/* Take the next job to prep it for DDP. */
2436	toep->ddp.waiting_count--;
2437	TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
2438	if (!aio_clear_cancel_function(job))
2439		goto restart;
2440	toep->ddp.queueing = job;
2441
2442	/* NB: This drops DDP_LOCK while it holds the backing VM pages. */
2443	error = hold_aio(toep, job, &ps);
2444	if (error != 0) {
2445		ddp_complete_one(job, error);
2446		toep->ddp.queueing = NULL;
2447		goto restart;
2448	}
2449
2450	SOCKBUF_LOCK(sb);
2451	if (so->so_error && sbavail(sb) == 0) {
2452		copied = job->aio_received;
2453		if (copied != 0) {
2454			SOCKBUF_UNLOCK(sb);
2455			recycle_pageset(toep, ps);
2456			aio_complete(job, copied, 0);
2457			toep->ddp.queueing = NULL;
2458			goto restart;
2459		}
2460
2461		error = so->so_error;
2462		so->so_error = 0;
2463		SOCKBUF_UNLOCK(sb);
2464		recycle_pageset(toep, ps);
2465		aio_complete(job, -1, error);
2466		toep->ddp.queueing = NULL;
2467		goto restart;
2468	}
2469
2470	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
2471		SOCKBUF_UNLOCK(sb);
2472		recycle_pageset(toep, ps);
2473		if (toep->ddp.active_count != 0) {
2474			/*
2475			 * The door is closed, but there are still pending
2476			 * DDP buffers.  Requeue.  These jobs will all be
2477			 * completed once those buffers drain.
2478			 */
2479			aio_ddp_requeue_one(toep, job);
2480			toep->ddp.queueing = NULL;
2481			return;
2482		}
2483		ddp_complete_one(job, 0);
2484		ddp_complete_all(toep, 0);
2485		toep->ddp.queueing = NULL;
2486		return;
2487	}
2488
2489sbcopy:
2490	/*
2491	 * If the toep is dead, there shouldn't be any data in the socket
2492	 * buffer, so the above case should have handled this.
2493	 */
2494	MPASS(!(toep->ddp.flags & DDP_DEAD));
2495
2496	/*
2497	 * If there is pending data in the socket buffer (either
2498	 * from before the requests were queued or a DDP indicate),
2499	 * copy those mbufs out directly.
2500	 */
2501	copied = 0;
2502	offset = ps->offset + job->aio_received;
2503	MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
2504	resid = job->uaiocb.aio_nbytes - job->aio_received;
2505	m = sb->sb_mb;
2506	KASSERT(m == NULL || toep->ddp.active_count == 0,
2507	    ("%s: sockbuf data with active DDP", __func__));
2508	while (m != NULL && resid > 0) {
2509		struct iovec iov[1];
2510		struct uio uio;
2511#ifdef INVARIANTS
2512		int error;
2513#endif
2514
2515		iov[0].iov_base = mtod(m, void *);
2516		iov[0].iov_len = m->m_len;
2517		if (iov[0].iov_len > resid)
2518			iov[0].iov_len = resid;
2519		uio.uio_iov = iov;
2520		uio.uio_iovcnt = 1;
2521		uio.uio_offset = 0;
2522		uio.uio_resid = iov[0].iov_len;
2523		uio.uio_segflg = UIO_SYSSPACE;
2524		uio.uio_rw = UIO_WRITE;
2525#ifdef INVARIANTS
2526		error = uiomove_fromphys(ps->pages, offset + copied,
2527		    uio.uio_resid, &uio);
2528#else
2529		uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio);
2530#endif
2531		MPASS(error == 0 && uio.uio_resid == 0);
2532		copied += uio.uio_offset;
2533		resid -= uio.uio_offset;
2534		m = m->m_next;
2535	}
2536	if (copied != 0) {
2537		sbdrop_locked(sb, copied);
2538		job->aio_received += copied;
2539		job->msgrcv = 1;
2540		copied = job->aio_received;
2541		inp = sotoinpcb(so);
2542		if (!INP_TRY_WLOCK(inp)) {
2543			/*
2544			 * The reference on the socket file descriptor in
2545			 * the AIO job should keep 'sb' and 'inp' stable.
2546			 * Our caller has a reference on the 'toep' that
2547			 * keeps it stable.
2548			 */
2549			SOCKBUF_UNLOCK(sb);
2550			DDP_UNLOCK(toep);
2551			INP_WLOCK(inp);
2552			DDP_LOCK(toep);
2553			SOCKBUF_LOCK(sb);
2554
2555			/*
2556			 * If the socket has been closed, we should detect
2557			 * that and complete this request if needed on
2558			 * the next trip around the loop.
2559			 */
2560		}
2561		t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
2562		INP_WUNLOCK(inp);
2563		if (resid == 0 || toep->ddp.flags & DDP_DEAD) {
2564			/*
2565			 * We filled the entire buffer with socket
2566			 * data, DDP is not being used, or the socket
2567			 * is being shut down, so complete the
2568			 * request.
2569			 */
2570			SOCKBUF_UNLOCK(sb);
2571			recycle_pageset(toep, ps);
2572			aio_complete(job, copied, 0);
2573			toep->ddp.queueing = NULL;
2574			goto restart;
2575		}
2576
2577		/*
2578		 * If DDP is not enabled, requeue this request and restart.
2579		 * This will either enable DDP or wait for more data to
2580		 * arrive on the socket buffer.
2581		 */
2582		if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
2583			SOCKBUF_UNLOCK(sb);
2584			recycle_pageset(toep, ps);
2585			aio_ddp_requeue_one(toep, job);
2586			toep->ddp.queueing = NULL;
2587			goto restart;
2588		}
2589
2590		/*
2591		 * An indicate might have arrived and been added to
2592		 * the socket buffer while it was unlocked after the
2593		 * copy to lock the INP.  If so, restart the copy.
2594		 */
2595		if (sbavail(sb) != 0)
2596			goto sbcopy;
2597	}
2598	SOCKBUF_UNLOCK(sb);
2599
2600	if (prep_pageset(sc, toep, ps) == 0) {
2601		recycle_pageset(toep, ps);
2602		aio_ddp_requeue_one(toep, job);
2603		toep->ddp.queueing = NULL;
2604
2605		/*
2606		 * XXX: Need to retry this later.  Mostly need a trigger
2607		 * when page pods are freed up.
2608		 */
2609		printf("%s: prep_pageset failed\n", __func__);
2610		return;
2611	}
2612
2613	/* Determine which DDP buffer to use. */
2614	if (toep->ddp.db[0].job == NULL) {
2615		db_idx = 0;
2616	} else {
2617		MPASS(toep->ddp.db[1].job == NULL);
2618		db_idx = 1;
2619	}
2620
2621	ddp_flags = 0;
2622	ddp_flags_mask = 0;
2623	if (db_idx == 0) {
2624		ddp_flags |= V_TF_DDP_BUF0_VALID(1);
2625		if (so->so_state & SS_NBIO)
2626			ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
2627		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
2628		    V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
2629		    V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
2630		buf_flag = DDP_BUF0_ACTIVE;
2631	} else {
2632		ddp_flags |= V_TF_DDP_BUF1_VALID(1);
2633		if (so->so_state & SS_NBIO)
2634			ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
2635		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
2636		    V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
2637		    V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
2638		buf_flag = DDP_BUF1_ACTIVE;
2639	}
2640	MPASS((toep->ddp.flags & buf_flag) == 0);
2641	if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
2642		MPASS(db_idx == 0);
2643		MPASS(toep->ddp.active_id == -1);
2644		MPASS(toep->ddp.active_count == 0);
2645		ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
2646	}
2647
2648	/*
2649	 * The TID for this connection should still be valid.  If DDP_DEAD
2650	 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be
2651	 * this far anyway.  Even if the socket is closing on the other
2652	 * end, the AIO job holds a reference on this end of the socket
2653	 * which will keep it open and keep the TCP PCB attached until
2654	 * after the job is completed.
2655	 */
2656	wr = mk_update_tcb_for_ddp(sc, toep, db_idx, &ps->prsv, ps->len,
2657	    job->aio_received, ddp_flags, ddp_flags_mask);
2658	if (wr == NULL) {
2659		recycle_pageset(toep, ps);
2660		aio_ddp_requeue_one(toep, job);
2661		toep->ddp.queueing = NULL;
2662
2663		/*
2664		 * XXX: Need a way to kick a retry here.
2665		 *
2666		 * XXX: We know the fixed size needed and could
2667		 * preallocate this using a blocking request at the
2668		 * start of the task to avoid having to handle this
2669		 * edge case.
2670		 */
2671		printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
2672		return;
2673	}
2674
2675	if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
2676		free_wrqe(wr);
2677		recycle_pageset(toep, ps);
2678		aio_ddp_cancel_one(job);
2679		toep->ddp.queueing = NULL;
2680		goto restart;
2681	}
2682
2683#ifdef VERBOSE_TRACES
2684	CTR6(KTR_CXGBE,
2685	    "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__,
2686	    toep->tid, job, db_idx, ddp_flags, ddp_flags_mask);
2687#endif
2688	/* Give the chip the go-ahead. */
2689	t4_wrq_tx(sc, wr);
2690	db = &toep->ddp.db[db_idx];
2691	db->cancel_pending = 0;
2692	db->job = job;
2693	db->ps = ps;
2694	toep->ddp.queueing = NULL;
2695	toep->ddp.flags |= buf_flag;
2696	toep->ddp.active_count++;
2697	if (toep->ddp.active_count == 1) {
2698		MPASS(toep->ddp.active_id == -1);
2699		toep->ddp.active_id = db_idx;
2700		CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
2701		    toep->ddp.active_id);
2702	}
2703	goto restart;
2704}
2705
2706void
2707ddp_queue_toep(struct toepcb *toep)
2708{
2709
2710	DDP_ASSERT_LOCKED(toep);
2711	if (toep->ddp.flags & DDP_TASK_ACTIVE)
2712		return;
2713	toep->ddp.flags |= DDP_TASK_ACTIVE;
2714	hold_toepcb(toep);
2715	soaio_enqueue(&toep->ddp.requeue_task);
2716}
2717
2718static void
2719aio_ddp_requeue_task(void *context, int pending)
2720{
2721	struct toepcb *toep = context;
2722
2723	DDP_LOCK(toep);
2724	aio_ddp_requeue(toep);
2725	toep->ddp.flags &= ~DDP_TASK_ACTIVE;
2726	DDP_UNLOCK(toep);
2727
2728	free_toepcb(toep);
2729}
2730
2731static void
2732t4_aio_cancel_active(struct kaiocb *job)
2733{
2734	struct socket *so = job->fd_file->f_data;
2735	struct tcpcb *tp = sototcpcb(so);
2736	struct toepcb *toep = tp->t_toe;
2737	struct adapter *sc = td_adapter(toep->td);
2738	uint64_t valid_flag;
2739	int i;
2740
2741	DDP_LOCK(toep);
2742	if (aio_cancel_cleared(job)) {
2743		DDP_UNLOCK(toep);
2744		aio_ddp_cancel_one(job);
2745		return;
2746	}
2747
2748	for (i = 0; i < nitems(toep->ddp.db); i++) {
2749		if (toep->ddp.db[i].job == job) {
2750			/* Should only ever get one cancel request for a job. */
2751			MPASS(toep->ddp.db[i].cancel_pending == 0);
2752
2753			/*
2754			 * Invalidate this buffer.  It will be
2755			 * cancelled or partially completed once the
2756			 * card ACKs the invalidate.
2757			 */
2758			valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
2759			    V_TF_DDP_BUF1_VALID(1);
2760			t4_set_tcb_field(sc, toep->ctrlq, toep,
2761			    W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
2762			    CPL_COOKIE_DDP0 + i);
2763			toep->ddp.db[i].cancel_pending = 1;
2764			CTR2(KTR_CXGBE, "%s: request %p marked pending",
2765			    __func__, job);
2766			break;
2767		}
2768	}
2769	DDP_UNLOCK(toep);
2770}
2771
2772static void
2773t4_aio_cancel_queued(struct kaiocb *job)
2774{
2775	struct socket *so = job->fd_file->f_data;
2776	struct tcpcb *tp = sototcpcb(so);
2777	struct toepcb *toep = tp->t_toe;
2778
2779	DDP_LOCK(toep);
2780	if (!aio_cancel_cleared(job)) {
2781		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
2782		toep->ddp.waiting_count--;
2783		if (toep->ddp.waiting_count == 0)
2784			ddp_queue_toep(toep);
2785	}
2786	CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
2787	DDP_UNLOCK(toep);
2788
2789	aio_ddp_cancel_one(job);
2790}
2791
2792int
2793t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
2794{
2795	struct inpcb *inp = sotoinpcb(so);
2796	struct tcpcb *tp = intotcpcb(inp);
2797	struct toepcb *toep = tp->t_toe;
2798
2799	/* Ignore writes. */
2800	if (job->uaiocb.aio_lio_opcode != LIO_READ)
2801		return (EOPNOTSUPP);
2802
2803	INP_WLOCK(inp);
2804	if (__predict_false(ulp_mode(toep) == ULP_MODE_NONE)) {
2805		if (!set_ddp_ulp_mode(toep)) {
2806			INP_WUNLOCK(inp);
2807			return (EOPNOTSUPP);
2808		}
2809	}
2810	INP_WUNLOCK(inp);
2811
2812	DDP_LOCK(toep);
2813
2814	/*
2815	 * If DDP is being used for all normal receive, don't use it
2816	 * for AIO.
2817	 */
2818	if ((toep->ddp.flags & DDP_RCVBUF) != 0) {
2819		DDP_UNLOCK(toep);
2820		return (EOPNOTSUPP);
2821	}
2822
2823	/*
2824	 * XXX: Think about possibly returning errors for ENOTCONN,
2825	 * etc.  Perhaps the caller would only queue the request
2826	 * if it failed with EOPNOTSUPP?
2827	 */
2828
2829#ifdef VERBOSE_TRACES
2830	CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
2831#endif
2832	if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
2833		panic("new job was cancelled");
2834	TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list);
2835	toep->ddp.waiting_count++;
2836
2837	if ((toep->ddp.flags & DDP_AIO) == 0) {
2838		toep->ddp.flags |= DDP_AIO;
2839		TAILQ_INIT(&toep->ddp.cached_pagesets);
2840		TAILQ_INIT(&toep->ddp.aiojobq);
2841		TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task,
2842		    toep);
2843	}
2844
2845	/*
2846	 * Try to handle this request synchronously.  If this has
2847	 * to block because the task is running, it will just bail
2848	 * and let the task handle it instead.
2849	 */
2850	aio_ddp_requeue(toep);
2851	DDP_UNLOCK(toep);
2852	return (0);
2853}
2854
2855static void
2856ddp_rcvbuf_requeue(struct toepcb *toep)
2857{
2858	struct socket *so;
2859	struct sockbuf *sb;
2860	struct inpcb *inp;
2861	struct ddp_rcv_buffer *drb;
2862
2863	DDP_ASSERT_LOCKED(toep);
2864restart:
2865	if ((toep->ddp.flags & DDP_DEAD) != 0) {
2866		MPASS(toep->ddp.active_count == 0);
2867		return;
2868	}
2869
2870	/* If both buffers are active, nothing to do. */
2871	if (toep->ddp.active_count == nitems(toep->ddp.db)) {
2872		return;
2873	}
2874
2875	inp = toep->inp;
2876	so = inp->inp_socket;
2877	sb = &so->so_rcv;
2878
2879	drb = alloc_cached_ddp_rcv_buffer(toep);
2880	DDP_UNLOCK(toep);
2881
2882	if (drb == NULL) {
2883		drb = alloc_ddp_rcv_buffer(toep, M_WAITOK);
2884		if (drb == NULL) {
2885			printf("%s: failed to allocate buffer\n", __func__);
2886			DDP_LOCK(toep);
2887			return;
2888		}
2889	}
2890
2891	DDP_LOCK(toep);
2892	if ((toep->ddp.flags & DDP_DEAD) != 0 ||
2893	    toep->ddp.active_count == nitems(toep->ddp.db)) {
2894		recycle_ddp_rcv_buffer(toep, drb);
2895		return;
2896	}
2897
2898	/* We will never get anything unless we are or were connected. */
2899	SOCKBUF_LOCK(sb);
2900	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2901		SOCKBUF_UNLOCK(sb);
2902		recycle_ddp_rcv_buffer(toep, drb);
2903		return;
2904	}
2905
2906	/* Abort if socket has reported problems or is closed. */
2907	if (so->so_error != 0 || (sb->sb_state & SBS_CANTRCVMORE) != 0) {
2908		SOCKBUF_UNLOCK(sb);
2909		recycle_ddp_rcv_buffer(toep, drb);
2910		return;
2911	}
2912	SOCKBUF_UNLOCK(sb);
2913
2914	if (!queue_ddp_rcvbuf(toep, drb)) {
2915		/*
2916		 * XXX: Need a way to kick a retry here.
2917		 *
2918		 * XXX: We know the fixed size needed and could
2919		 * preallocate the work request using a blocking
2920		 * request at the start of the task to avoid having to
2921		 * handle this edge case.
2922		 */
2923		return;
2924	}
2925	goto restart;
2926}
2927
2928static void
2929ddp_rcvbuf_requeue_task(void *context, int pending)
2930{
2931	struct toepcb *toep = context;
2932
2933	DDP_LOCK(toep);
2934	ddp_rcvbuf_requeue(toep);
2935	toep->ddp.flags &= ~DDP_TASK_ACTIVE;
2936	DDP_UNLOCK(toep);
2937
2938	free_toepcb(toep);
2939}
2940
2941int
2942t4_enable_ddp_rcv(struct socket *so, struct toepcb *toep)
2943{
2944	struct inpcb *inp = sotoinpcb(so);
2945	struct adapter *sc = td_adapter(toep->td);
2946
2947	INP_WLOCK(inp);
2948	switch (ulp_mode(toep)) {
2949	case ULP_MODE_TCPDDP:
2950		break;
2951	case ULP_MODE_NONE:
2952		if (set_ddp_ulp_mode(toep))
2953			break;
2954		/* FALLTHROUGH */
2955	default:
2956		INP_WUNLOCK(inp);
2957		return (EOPNOTSUPP);
2958	}
2959	INP_WUNLOCK(inp);
2960
2961	DDP_LOCK(toep);
2962
2963	/*
2964	 * If DDP is being used for AIO already, don't use it for
2965	 * normal receive.
2966	 */
2967	if ((toep->ddp.flags & DDP_AIO) != 0) {
2968		DDP_UNLOCK(toep);
2969		return (EOPNOTSUPP);
2970	}
2971
2972	if ((toep->ddp.flags & DDP_RCVBUF) != 0) {
2973		DDP_UNLOCK(toep);
2974		return (EBUSY);
2975	}
2976
2977	toep->ddp.flags |= DDP_RCVBUF;
2978	TAILQ_INIT(&toep->ddp.cached_buffers);
2979	enable_ddp(sc, toep);
2980	TASK_INIT(&toep->ddp.requeue_task, 0, ddp_rcvbuf_requeue_task, toep);
2981	ddp_queue_toep(toep);
2982	DDP_UNLOCK(toep);
2983	return (0);
2984}
2985
2986void
2987t4_ddp_mod_load(void)
2988{
2989	if (t4_ddp_rcvbuf_len < PAGE_SIZE)
2990		t4_ddp_rcvbuf_len = PAGE_SIZE;
2991	if (t4_ddp_rcvbuf_len > MAX_DDP_BUFFER_SIZE)
2992		t4_ddp_rcvbuf_len = MAX_DDP_BUFFER_SIZE;
2993	if (!powerof2(t4_ddp_rcvbuf_len))
2994		t4_ddp_rcvbuf_len = 1 << fls(t4_ddp_rcvbuf_len);
2995
2996	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
2997	    CPL_COOKIE_DDP0);
2998	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
2999	    CPL_COOKIE_DDP1);
3000	t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
3001	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
3002	TAILQ_INIT(&ddp_orphan_pagesets);
3003	mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
3004	TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
3005}
3006
3007void
3008t4_ddp_mod_unload(void)
3009{
3010
3011	taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
3012	MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
3013	mtx_destroy(&ddp_orphan_pagesets_lock);
3014	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0);
3015	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1);
3016	t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
3017	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
3018}
3019#endif
3020