1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30#include "opt_inet.h"
31
32#include <sys/param.h>
33#include <sys/eventhandler.h>
34
35#include "common.h"
36#include "t4_regs.h"
37#include "t4_regs_values.h"
38#include "firmware/t4fw_interface.h"
39
40#undef msleep
41#define msleep(x) do { \
42	if (cold) \
43		DELAY((x) * 1000); \
44	else \
45		pause("t4hw", (x) * hz / 1000); \
46} while (0)
47
48/**
49 *	t4_wait_op_done_val - wait until an operation is completed
50 *	@adapter: the adapter performing the operation
51 *	@reg: the register to check for completion
52 *	@mask: a single-bit field within @reg that indicates completion
53 *	@polarity: the value of the field when the operation is completed
54 *	@attempts: number of check iterations
55 *	@delay: delay in usecs between iterations
56 *	@valp: where to store the value of the register at completion time
57 *
58 *	Wait until an operation is completed by checking a bit in a register
59 *	up to @attempts times.  If @valp is not NULL the value of the register
60 *	at the time it indicated completion is stored there.  Returns 0 if the
61 *	operation completes and	-EAGAIN	otherwise.
62 */
63static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64			       int polarity, int attempts, int delay, u32 *valp)
65{
66	while (1) {
67		u32 val = t4_read_reg(adapter, reg);
68
69		if (!!(val & mask) == polarity) {
70			if (valp)
71				*valp = val;
72			return 0;
73		}
74		if (--attempts == 0)
75			return -EAGAIN;
76		if (delay)
77			udelay(delay);
78	}
79}
80
81static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82				  int polarity, int attempts, int delay)
83{
84	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85				   delay, NULL);
86}
87
88/**
89 *	t4_set_reg_field - set a register field to a value
90 *	@adapter: the adapter to program
91 *	@addr: the register address
92 *	@mask: specifies the portion of the register to modify
93 *	@val: the new value for the register field
94 *
95 *	Sets a register field specified by the supplied mask to the
96 *	given value.
97 */
98void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99		      u32 val)
100{
101	u32 v = t4_read_reg(adapter, addr) & ~mask;
102
103	t4_write_reg(adapter, addr, v | val);
104	(void) t4_read_reg(adapter, addr);      /* flush */
105}
106
107/**
108 *	t4_read_indirect - read indirectly addressed registers
109 *	@adap: the adapter
110 *	@addr_reg: register holding the indirect address
111 *	@data_reg: register holding the value of the indirect register
112 *	@vals: where the read register values are stored
113 *	@nregs: how many indirect registers to read
114 *	@start_idx: index of first indirect register to read
115 *
116 *	Reads registers that are accessed indirectly through an address/data
117 *	register pair.
118 */
119void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120			     unsigned int data_reg, u32 *vals,
121			     unsigned int nregs, unsigned int start_idx)
122{
123	while (nregs--) {
124		t4_write_reg(adap, addr_reg, start_idx);
125		*vals++ = t4_read_reg(adap, data_reg);
126		start_idx++;
127	}
128}
129
130/**
131 *	t4_write_indirect - write indirectly addressed registers
132 *	@adap: the adapter
133 *	@addr_reg: register holding the indirect addresses
134 *	@data_reg: register holding the value for the indirect registers
135 *	@vals: values to write
136 *	@nregs: how many indirect registers to write
137 *	@start_idx: address of first indirect register to write
138 *
139 *	Writes a sequential block of registers that are accessed indirectly
140 *	through an address/data register pair.
141 */
142void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143		       unsigned int data_reg, const u32 *vals,
144		       unsigned int nregs, unsigned int start_idx)
145{
146	while (nregs--) {
147		t4_write_reg(adap, addr_reg, start_idx++);
148		t4_write_reg(adap, data_reg, *vals++);
149	}
150}
151
152/*
153 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154 * mechanism.  This guarantees that we get the real value even if we're
155 * operating within a Virtual Machine and the Hypervisor is trapping our
156 * Configuration Space accesses.
157 *
158 * N.B. This routine should only be used as a last resort: the firmware uses
159 *      the backdoor registers on a regular basis and we can end up
160 *      conflicting with it's uses!
161 */
162u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163{
164	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165	u32 val;
166
167	if (chip_id(adap) <= CHELSIO_T5)
168		req |= F_ENABLE;
169	else
170		req |= F_T6_ENABLE;
171
172	if (is_t4(adap))
173		req |= F_LOCALCFG;
174
175	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177
178	/*
179	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180	 * Configuration Space read.  (None of the other fields matter when
181	 * F_ENABLE is 0 so a simple register write is easier than a
182	 * read-modify-write via t4_set_reg_field().)
183	 */
184	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185
186	return val;
187}
188
189/*
190 * t4_report_fw_error - report firmware error
191 * @adap: the adapter
192 *
193 * The adapter firmware can indicate error conditions to the host.
194 * If the firmware has indicated an error, print out the reason for
195 * the firmware error.
196 */
197void t4_report_fw_error(struct adapter *adap)
198{
199	static const char *const reason[] = {
200		"Crash",			/* PCIE_FW_EVAL_CRASH */
201		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207		"Reserved",			/* reserved */
208	};
209	u32 pcie_fw;
210
211	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212	if (pcie_fw & F_PCIE_FW_ERR) {
213		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
214		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
215	}
216}
217
218/*
219 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
220 */
221static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
222			 u32 mbox_addr)
223{
224	for ( ; nflit; nflit--, mbox_addr += 8)
225		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
226}
227
228/*
229 * Handle a FW assertion reported in a mailbox.
230 */
231static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
232{
233	CH_ALERT(adap,
234		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
235		  asrt->u.assert.filename_0_7,
236		  be32_to_cpu(asrt->u.assert.line),
237		  be32_to_cpu(asrt->u.assert.x),
238		  be32_to_cpu(asrt->u.assert.y));
239}
240
241struct port_tx_state {
242	uint64_t rx_pause;
243	uint64_t tx_frames;
244};
245
246u32
247t4_port_reg(struct adapter *adap, u8 port, u32 reg)
248{
249	if (chip_id(adap) > CHELSIO_T4)
250		return T5_PORT_REG(port, reg);
251	return PORT_REG(port, reg);
252}
253
254static void
255read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
256{
257	uint32_t rx_pause_reg, tx_frames_reg;
258
259	rx_pause_reg = t4_port_reg(sc, i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
260	tx_frames_reg = t4_port_reg(sc, i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261
262	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
263	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
264}
265
266static void
267read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
268{
269	int i;
270
271	for_each_port(sc, i)
272		read_tx_state_one(sc, i, &tx_state[i]);
273}
274
275static void
276check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
277{
278	uint32_t port_ctl_reg;
279	uint64_t tx_frames, rx_pause;
280	int i;
281
282	for_each_port(sc, i) {
283		rx_pause = tx_state[i].rx_pause;
284		tx_frames = tx_state[i].tx_frames;
285		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
286
287		port_ctl_reg = t4_port_reg(sc, i, A_MPS_PORT_CTL);
288		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
289		    rx_pause != tx_state[i].rx_pause &&
290		    tx_frames == tx_state[i].tx_frames) {
291			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
292			mdelay(1);
293			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
294		}
295	}
296}
297
298#define X_CIM_PF_NOACCESS 0xeeeeeeee
299/**
300 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
301 *	@adap: the adapter
302 *	@mbox: index of the mailbox to use
303 *	@cmd: the command to write
304 *	@size: command length in bytes
305 *	@rpl: where to optionally store the reply
306 *	@sleep_ok: if true we may sleep while awaiting command completion
307 *	@timeout: time to wait for command to finish before timing out
308 *		(negative implies @sleep_ok=false)
309 *
310 *	Sends the given command to FW through the selected mailbox and waits
311 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
312 *	store the FW's reply to the command.  The command and its optional
313 *	reply are of the same length.  Some FW commands like RESET and
314 *	INITIALIZE can take a considerable amount of time to execute.
315 *	@sleep_ok determines whether we may sleep while awaiting the response.
316 *	If sleeping is allowed we use progressive backoff otherwise we spin.
317 *	Note that passing in a negative @timeout is an alternate mechanism
318 *	for specifying @sleep_ok=false.  This is useful when a higher level
319 *	interface allows for specification of @timeout but not @sleep_ok ...
320 *
321 *	The return value is 0 on success or a negative errno on failure.  A
322 *	failure can happen either because we are not able to execute the
323 *	command or FW executes it but signals an error.  In the latter case
324 *	the return value is the error code indicated by FW (negated).
325 */
326int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
327			    int size, void *rpl, bool sleep_ok, int timeout)
328{
329	/*
330	 * We delay in small increments at first in an effort to maintain
331	 * responsiveness for simple, fast executing commands but then back
332	 * off to larger delays to a maximum retry delay.
333	 */
334	static const int delay[] = {
335		1, 1, 3, 5, 10, 10, 20, 50, 100
336	};
337	u32 v;
338	u64 res;
339	int i, ms, delay_idx, ret, next_tx_check;
340	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
341	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
342	u32 ctl;
343	__be64 cmd_rpl[MBOX_LEN/8];
344	u32 pcie_fw;
345	struct port_tx_state tx_state[MAX_NPORTS];
346
347	if (adap->flags & CHK_MBOX_ACCESS)
348		ASSERT_SYNCHRONIZED_OP(adap);
349
350	if (size <= 0 || (size & 15) || size > MBOX_LEN)
351		return -EINVAL;
352
353	if (adap->flags & IS_VF) {
354		if (is_t6(adap))
355			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
356		else
357			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
358		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
359	}
360
361	/*
362	 * If we have a negative timeout, that implies that we can't sleep.
363	 */
364	if (timeout < 0) {
365		sleep_ok = false;
366		timeout = -timeout;
367	}
368
369	/*
370	 * Attempt to gain access to the mailbox.
371	 */
372	pcie_fw = 0;
373	if (!(adap->flags & IS_VF)) {
374		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
375		if (pcie_fw & F_PCIE_FW_ERR)
376			goto failed;
377	}
378	for (i = 0; i < 4; i++) {
379		ctl = t4_read_reg(adap, ctl_reg);
380		v = G_MBOWNER(ctl);
381		if (v != X_MBOWNER_NONE)
382			break;
383	}
384
385	/*
386	 * If we were unable to gain access, report the error to our caller.
387	 */
388	if (v != X_MBOWNER_PL) {
389		if (!(adap->flags & IS_VF)) {
390			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
391			if (pcie_fw & F_PCIE_FW_ERR)
392				goto failed;
393		}
394		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
395		return ret;
396	}
397
398	/*
399	 * If we gain ownership of the mailbox and there's a "valid" message
400	 * in it, this is likely an asynchronous error message from the
401	 * firmware.  So we'll report that and then proceed on with attempting
402	 * to issue our own command ... which may well fail if the error
403	 * presaged the firmware crashing ...
404	 */
405	if (ctl & F_MBMSGVALID) {
406		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
407	}
408
409	/*
410	 * Copy in the new mailbox command and send it on its way ...
411	 */
412	memset(cmd_rpl, 0, sizeof(cmd_rpl));
413	memcpy(cmd_rpl, cmd, size);
414	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
415	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
416		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
417
418	if (adap->flags & IS_VF) {
419		/*
420		 * For the VFs, the Mailbox Data "registers" are
421		 * actually backed by T4's "MA" interface rather than
422		 * PL Registers (as is the case for the PFs).  Because
423		 * these are in different coherency domains, the write
424		 * to the VF's PL-register-backed Mailbox Control can
425		 * race in front of the writes to the MA-backed VF
426		 * Mailbox Data "registers".  So we need to do a
427		 * read-back on at least one byte of the VF Mailbox
428		 * Data registers before doing the write to the VF
429		 * Mailbox Control register.
430		 */
431		t4_read_reg(adap, data_reg);
432	}
433
434	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
435	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
436	next_tx_check = 1000;
437	delay_idx = 0;
438	ms = delay[0];
439
440	/*
441	 * Loop waiting for the reply; bail out if we time out or the firmware
442	 * reports an error.
443	 */
444	for (i = 0; i < timeout; i += ms) {
445		if (!(adap->flags & IS_VF)) {
446			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
447			if (pcie_fw & F_PCIE_FW_ERR)
448				break;
449		}
450
451		if (i >= next_tx_check) {
452			check_tx_state(adap, &tx_state[0]);
453			next_tx_check = i + 1000;
454		}
455
456		if (sleep_ok) {
457			ms = delay[delay_idx];  /* last element may repeat */
458			if (delay_idx < ARRAY_SIZE(delay) - 1)
459				delay_idx++;
460			msleep(ms);
461		} else {
462			mdelay(ms);
463		}
464
465		v = t4_read_reg(adap, ctl_reg);
466		if (v == X_CIM_PF_NOACCESS)
467			continue;
468		if (G_MBOWNER(v) == X_MBOWNER_PL) {
469			if (!(v & F_MBMSGVALID)) {
470				t4_write_reg(adap, ctl_reg,
471					     V_MBOWNER(X_MBOWNER_NONE));
472				continue;
473			}
474
475			/*
476			 * Retrieve the command reply and release the mailbox.
477			 */
478			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
479			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
480			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
481
482			res = be64_to_cpu(cmd_rpl[0]);
483			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
484				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
485				res = V_FW_CMD_RETVAL(EIO);
486			} else if (rpl)
487				memcpy(rpl, cmd_rpl, size);
488			return -G_FW_CMD_RETVAL((int)res);
489		}
490	}
491
492	/*
493	 * We timed out waiting for a reply to our mailbox command.  Report
494	 * the error and also check to see if the firmware reported any
495	 * errors ...
496	 */
497	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
498	    *(const u8 *)cmd, mbox, pcie_fw);
499	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
500	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
501failed:
502	adap->flags &= ~FW_OK;
503	ret = pcie_fw & F_PCIE_FW_ERR ? -ENXIO : -ETIMEDOUT;
504	t4_fatal_err(adap, true);
505	return ret;
506}
507
508int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
509		    void *rpl, bool sleep_ok)
510{
511		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
512					       sleep_ok, FW_CMD_MAX_TIMEOUT);
513
514}
515
516static int t4_edc_err_read(struct adapter *adap, int idx)
517{
518	u32 edc_ecc_err_addr_reg;
519	u32 edc_bist_status_rdata_reg;
520
521	if (is_t4(adap)) {
522		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
523		return 0;
524	}
525	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
526		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
527		return 0;
528	}
529
530	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
531	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
532
533	CH_WARN(adap,
534		"edc%d err addr 0x%x: 0x%x.\n",
535		idx, edc_ecc_err_addr_reg,
536		t4_read_reg(adap, edc_ecc_err_addr_reg));
537	CH_WARN(adap,
538	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
539		edc_bist_status_rdata_reg,
540		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
541		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
542		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
543		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
544		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
545		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
546		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
547		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
548		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
549
550	return 0;
551}
552
553/**
554 *	t4_mc_read - read from MC through backdoor accesses
555 *	@adap: the adapter
556 *	@idx: which MC to access
557 *	@addr: address of first byte requested
558 *	@data: 64 bytes of data containing the requested address
559 *	@ecc: where to store the corresponding 64-bit ECC word
560 *
561 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
562 *	that covers the requested address @addr.  If @parity is not %NULL it
563 *	is assigned the 64-bit ECC word for the read data.
564 */
565int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
566{
567	int i;
568	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
569	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
570
571	if (is_t4(adap)) {
572		mc_bist_cmd_reg = A_MC_BIST_CMD;
573		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
574		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
575		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
576		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
577	} else {
578		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
579		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
580		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
581		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
582						  idx);
583		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
584						  idx);
585	}
586
587	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
588		return -EBUSY;
589	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
590	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
591	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
592	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
593		     F_START_BIST | V_BIST_CMD_GAP(1));
594	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
595	if (i)
596		return i;
597
598#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
599
600	for (i = 15; i >= 0; i--)
601		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
602	if (ecc)
603		*ecc = t4_read_reg64(adap, MC_DATA(16));
604#undef MC_DATA
605	return 0;
606}
607
608/**
609 *	t4_edc_read - read from EDC through backdoor accesses
610 *	@adap: the adapter
611 *	@idx: which EDC to access
612 *	@addr: address of first byte requested
613 *	@data: 64 bytes of data containing the requested address
614 *	@ecc: where to store the corresponding 64-bit ECC word
615 *
616 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
617 *	that covers the requested address @addr.  If @parity is not %NULL it
618 *	is assigned the 64-bit ECC word for the read data.
619 */
620int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
621{
622	int i;
623	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
624	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
625
626	if (is_t4(adap)) {
627		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
628		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
629		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
630		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
631						    idx);
632		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
633						    idx);
634	} else {
635/*
636 * These macro are missing in t4_regs.h file.
637 * Added temporarily for testing.
638 */
639#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
640#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
641		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
642		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
643		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
644		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
645						    idx);
646		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
647						    idx);
648#undef EDC_REG_T5
649#undef EDC_STRIDE_T5
650	}
651
652	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
653		return -EBUSY;
654	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
655	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
656	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
657	t4_write_reg(adap, edc_bist_cmd_reg,
658		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
659	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
660	if (i)
661		return i;
662
663#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
664
665	for (i = 15; i >= 0; i--)
666		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
667	if (ecc)
668		*ecc = t4_read_reg64(adap, EDC_DATA(16));
669#undef EDC_DATA
670	return 0;
671}
672
673/**
674 *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
675 *	@adap: the adapter
676 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
677 *	@addr: address within indicated memory type
678 *	@len: amount of memory to read
679 *	@buf: host memory buffer
680 *
681 *	Reads an [almost] arbitrary memory region in the firmware: the
682 *	firmware memory address, length and host buffer must be aligned on
683 *	32-bit boudaries.  The memory is returned as a raw byte sequence from
684 *	the firmware's memory.  If this memory contains data structures which
685 *	contain multi-byte integers, it's the callers responsibility to
686 *	perform appropriate byte order conversions.
687 */
688int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
689		__be32 *buf)
690{
691	u32 pos, start, end, offset;
692	int ret;
693
694	/*
695	 * Argument sanity checks ...
696	 */
697	if ((addr & 0x3) || (len & 0x3))
698		return -EINVAL;
699
700	/*
701	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
702	 * need to round down the start and round up the end.  We'll start
703	 * copying out of the first line at (addr - start) a word at a time.
704	 */
705	start = rounddown2(addr, 64);
706	end = roundup2(addr + len, 64);
707	offset = (addr - start)/sizeof(__be32);
708
709	for (pos = start; pos < end; pos += 64, offset = 0) {
710		__be32 data[16];
711
712		/*
713		 * Read the chip's memory block and bail if there's an error.
714		 */
715		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
716			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
717		else
718			ret = t4_edc_read(adap, mtype, pos, data, NULL);
719		if (ret)
720			return ret;
721
722		/*
723		 * Copy the data into the caller's memory buffer.
724		 */
725		while (offset < 16 && len > 0) {
726			*buf++ = data[offset++];
727			len -= sizeof(__be32);
728		}
729	}
730
731	return 0;
732}
733
734/*
735 * Return the specified PCI-E Configuration Space register from our Physical
736 * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
737 * since we prefer to let the firmware own all of these registers, but if that
738 * fails we go for it directly ourselves.
739 */
740u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
741{
742
743	/*
744	 * If fw_attach != 0, construct and send the Firmware LDST Command to
745	 * retrieve the specified PCI-E Configuration Space register.
746	 */
747	if (drv_fw_attach != 0) {
748		struct fw_ldst_cmd ldst_cmd;
749		int ret;
750
751		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
752		ldst_cmd.op_to_addrspace =
753			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
754				    F_FW_CMD_REQUEST |
755				    F_FW_CMD_READ |
756				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
757		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
758		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
759		ldst_cmd.u.pcie.ctrl_to_fn =
760			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
761		ldst_cmd.u.pcie.r = reg;
762
763		/*
764		 * If the LDST Command succeeds, return the result, otherwise
765		 * fall through to reading it directly ourselves ...
766		 */
767		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
768				 &ldst_cmd);
769		if (ret == 0)
770			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
771
772		CH_WARN(adap, "Firmware failed to return "
773			"Configuration Space register %d, err = %d\n",
774			reg, -ret);
775	}
776
777	/*
778	 * Read the desired Configuration Space register via the PCI-E
779	 * Backdoor mechanism.
780	 */
781	return t4_hw_pci_read_cfg4(adap, reg);
782}
783
784/**
785 *	t4_get_regs_len - return the size of the chips register set
786 *	@adapter: the adapter
787 *
788 *	Returns the size of the chip's BAR0 register space.
789 */
790unsigned int t4_get_regs_len(struct adapter *adapter)
791{
792	unsigned int chip_version = chip_id(adapter);
793
794	switch (chip_version) {
795	case CHELSIO_T4:
796		if (adapter->flags & IS_VF)
797			return FW_T4VF_REGMAP_SIZE;
798		return T4_REGMAP_SIZE;
799
800	case CHELSIO_T5:
801	case CHELSIO_T6:
802		if (adapter->flags & IS_VF)
803			return FW_T4VF_REGMAP_SIZE;
804		return T5_REGMAP_SIZE;
805	}
806
807	CH_ERR(adapter,
808		"Unsupported chip version %d\n", chip_version);
809	return 0;
810}
811
812/**
813 *	t4_get_regs - read chip registers into provided buffer
814 *	@adap: the adapter
815 *	@buf: register buffer
816 *	@buf_size: size (in bytes) of register buffer
817 *
818 *	If the provided register buffer isn't large enough for the chip's
819 *	full register range, the register dump will be truncated to the
820 *	register buffer's size.
821 */
822void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
823{
824	static const unsigned int t4_reg_ranges[] = {
825		0x1008, 0x1108,
826		0x1180, 0x1184,
827		0x1190, 0x1194,
828		0x11a0, 0x11a4,
829		0x11b0, 0x11b4,
830		0x11fc, 0x123c,
831		0x1300, 0x173c,
832		0x1800, 0x18fc,
833		0x3000, 0x30d8,
834		0x30e0, 0x30e4,
835		0x30ec, 0x5910,
836		0x5920, 0x5924,
837		0x5960, 0x5960,
838		0x5968, 0x5968,
839		0x5970, 0x5970,
840		0x5978, 0x5978,
841		0x5980, 0x5980,
842		0x5988, 0x5988,
843		0x5990, 0x5990,
844		0x5998, 0x5998,
845		0x59a0, 0x59d4,
846		0x5a00, 0x5ae0,
847		0x5ae8, 0x5ae8,
848		0x5af0, 0x5af0,
849		0x5af8, 0x5af8,
850		0x6000, 0x6098,
851		0x6100, 0x6150,
852		0x6200, 0x6208,
853		0x6240, 0x6248,
854		0x6280, 0x62b0,
855		0x62c0, 0x6338,
856		0x6370, 0x638c,
857		0x6400, 0x643c,
858		0x6500, 0x6524,
859		0x6a00, 0x6a04,
860		0x6a14, 0x6a38,
861		0x6a60, 0x6a70,
862		0x6a78, 0x6a78,
863		0x6b00, 0x6b0c,
864		0x6b1c, 0x6b84,
865		0x6bf0, 0x6bf8,
866		0x6c00, 0x6c0c,
867		0x6c1c, 0x6c84,
868		0x6cf0, 0x6cf8,
869		0x6d00, 0x6d0c,
870		0x6d1c, 0x6d84,
871		0x6df0, 0x6df8,
872		0x6e00, 0x6e0c,
873		0x6e1c, 0x6e84,
874		0x6ef0, 0x6ef8,
875		0x6f00, 0x6f0c,
876		0x6f1c, 0x6f84,
877		0x6ff0, 0x6ff8,
878		0x7000, 0x700c,
879		0x701c, 0x7084,
880		0x70f0, 0x70f8,
881		0x7100, 0x710c,
882		0x711c, 0x7184,
883		0x71f0, 0x71f8,
884		0x7200, 0x720c,
885		0x721c, 0x7284,
886		0x72f0, 0x72f8,
887		0x7300, 0x730c,
888		0x731c, 0x7384,
889		0x73f0, 0x73f8,
890		0x7400, 0x7450,
891		0x7500, 0x7530,
892		0x7600, 0x760c,
893		0x7614, 0x761c,
894		0x7680, 0x76cc,
895		0x7700, 0x7798,
896		0x77c0, 0x77fc,
897		0x7900, 0x79fc,
898		0x7b00, 0x7b58,
899		0x7b60, 0x7b84,
900		0x7b8c, 0x7c38,
901		0x7d00, 0x7d38,
902		0x7d40, 0x7d80,
903		0x7d8c, 0x7ddc,
904		0x7de4, 0x7e04,
905		0x7e10, 0x7e1c,
906		0x7e24, 0x7e38,
907		0x7e40, 0x7e44,
908		0x7e4c, 0x7e78,
909		0x7e80, 0x7ea4,
910		0x7eac, 0x7edc,
911		0x7ee8, 0x7efc,
912		0x8dc0, 0x8e04,
913		0x8e10, 0x8e1c,
914		0x8e30, 0x8e78,
915		0x8ea0, 0x8eb8,
916		0x8ec0, 0x8f6c,
917		0x8fc0, 0x9008,
918		0x9010, 0x9058,
919		0x9060, 0x9060,
920		0x9068, 0x9074,
921		0x90fc, 0x90fc,
922		0x9400, 0x9408,
923		0x9410, 0x9458,
924		0x9600, 0x9600,
925		0x9608, 0x9638,
926		0x9640, 0x96bc,
927		0x9800, 0x9808,
928		0x9820, 0x983c,
929		0x9850, 0x9864,
930		0x9c00, 0x9c6c,
931		0x9c80, 0x9cec,
932		0x9d00, 0x9d6c,
933		0x9d80, 0x9dec,
934		0x9e00, 0x9e6c,
935		0x9e80, 0x9eec,
936		0x9f00, 0x9f6c,
937		0x9f80, 0x9fec,
938		0xd004, 0xd004,
939		0xd010, 0xd03c,
940		0xdfc0, 0xdfe0,
941		0xe000, 0xea7c,
942		0xf000, 0x11110,
943		0x11118, 0x11190,
944		0x19040, 0x1906c,
945		0x19078, 0x19080,
946		0x1908c, 0x190e4,
947		0x190f0, 0x190f8,
948		0x19100, 0x19110,
949		0x19120, 0x19124,
950		0x19150, 0x19194,
951		0x1919c, 0x191b0,
952		0x191d0, 0x191e8,
953		0x19238, 0x1924c,
954		0x193f8, 0x1943c,
955		0x1944c, 0x19474,
956		0x19490, 0x194e0,
957		0x194f0, 0x194f8,
958		0x19800, 0x19c08,
959		0x19c10, 0x19c90,
960		0x19ca0, 0x19ce4,
961		0x19cf0, 0x19d40,
962		0x19d50, 0x19d94,
963		0x19da0, 0x19de8,
964		0x19df0, 0x19e40,
965		0x19e50, 0x19e90,
966		0x19ea0, 0x19f4c,
967		0x1a000, 0x1a004,
968		0x1a010, 0x1a06c,
969		0x1a0b0, 0x1a0e4,
970		0x1a0ec, 0x1a0f4,
971		0x1a100, 0x1a108,
972		0x1a114, 0x1a120,
973		0x1a128, 0x1a130,
974		0x1a138, 0x1a138,
975		0x1a190, 0x1a1c4,
976		0x1a1fc, 0x1a1fc,
977		0x1e040, 0x1e04c,
978		0x1e284, 0x1e28c,
979		0x1e2c0, 0x1e2c0,
980		0x1e2e0, 0x1e2e0,
981		0x1e300, 0x1e384,
982		0x1e3c0, 0x1e3c8,
983		0x1e440, 0x1e44c,
984		0x1e684, 0x1e68c,
985		0x1e6c0, 0x1e6c0,
986		0x1e6e0, 0x1e6e0,
987		0x1e700, 0x1e784,
988		0x1e7c0, 0x1e7c8,
989		0x1e840, 0x1e84c,
990		0x1ea84, 0x1ea8c,
991		0x1eac0, 0x1eac0,
992		0x1eae0, 0x1eae0,
993		0x1eb00, 0x1eb84,
994		0x1ebc0, 0x1ebc8,
995		0x1ec40, 0x1ec4c,
996		0x1ee84, 0x1ee8c,
997		0x1eec0, 0x1eec0,
998		0x1eee0, 0x1eee0,
999		0x1ef00, 0x1ef84,
1000		0x1efc0, 0x1efc8,
1001		0x1f040, 0x1f04c,
1002		0x1f284, 0x1f28c,
1003		0x1f2c0, 0x1f2c0,
1004		0x1f2e0, 0x1f2e0,
1005		0x1f300, 0x1f384,
1006		0x1f3c0, 0x1f3c8,
1007		0x1f440, 0x1f44c,
1008		0x1f684, 0x1f68c,
1009		0x1f6c0, 0x1f6c0,
1010		0x1f6e0, 0x1f6e0,
1011		0x1f700, 0x1f784,
1012		0x1f7c0, 0x1f7c8,
1013		0x1f840, 0x1f84c,
1014		0x1fa84, 0x1fa8c,
1015		0x1fac0, 0x1fac0,
1016		0x1fae0, 0x1fae0,
1017		0x1fb00, 0x1fb84,
1018		0x1fbc0, 0x1fbc8,
1019		0x1fc40, 0x1fc4c,
1020		0x1fe84, 0x1fe8c,
1021		0x1fec0, 0x1fec0,
1022		0x1fee0, 0x1fee0,
1023		0x1ff00, 0x1ff84,
1024		0x1ffc0, 0x1ffc8,
1025		0x20000, 0x2002c,
1026		0x20100, 0x2013c,
1027		0x20190, 0x201a0,
1028		0x201a8, 0x201b8,
1029		0x201c4, 0x201c8,
1030		0x20200, 0x20318,
1031		0x20400, 0x204b4,
1032		0x204c0, 0x20528,
1033		0x20540, 0x20614,
1034		0x21000, 0x21040,
1035		0x2104c, 0x21060,
1036		0x210c0, 0x210ec,
1037		0x21200, 0x21268,
1038		0x21270, 0x21284,
1039		0x212fc, 0x21388,
1040		0x21400, 0x21404,
1041		0x21500, 0x21500,
1042		0x21510, 0x21518,
1043		0x2152c, 0x21530,
1044		0x2153c, 0x2153c,
1045		0x21550, 0x21554,
1046		0x21600, 0x21600,
1047		0x21608, 0x2161c,
1048		0x21624, 0x21628,
1049		0x21630, 0x21634,
1050		0x2163c, 0x2163c,
1051		0x21700, 0x2171c,
1052		0x21780, 0x2178c,
1053		0x21800, 0x21818,
1054		0x21820, 0x21828,
1055		0x21830, 0x21848,
1056		0x21850, 0x21854,
1057		0x21860, 0x21868,
1058		0x21870, 0x21870,
1059		0x21878, 0x21898,
1060		0x218a0, 0x218a8,
1061		0x218b0, 0x218c8,
1062		0x218d0, 0x218d4,
1063		0x218e0, 0x218e8,
1064		0x218f0, 0x218f0,
1065		0x218f8, 0x21a18,
1066		0x21a20, 0x21a28,
1067		0x21a30, 0x21a48,
1068		0x21a50, 0x21a54,
1069		0x21a60, 0x21a68,
1070		0x21a70, 0x21a70,
1071		0x21a78, 0x21a98,
1072		0x21aa0, 0x21aa8,
1073		0x21ab0, 0x21ac8,
1074		0x21ad0, 0x21ad4,
1075		0x21ae0, 0x21ae8,
1076		0x21af0, 0x21af0,
1077		0x21af8, 0x21c18,
1078		0x21c20, 0x21c20,
1079		0x21c28, 0x21c30,
1080		0x21c38, 0x21c38,
1081		0x21c80, 0x21c98,
1082		0x21ca0, 0x21ca8,
1083		0x21cb0, 0x21cc8,
1084		0x21cd0, 0x21cd4,
1085		0x21ce0, 0x21ce8,
1086		0x21cf0, 0x21cf0,
1087		0x21cf8, 0x21d7c,
1088		0x21e00, 0x21e04,
1089		0x22000, 0x2202c,
1090		0x22100, 0x2213c,
1091		0x22190, 0x221a0,
1092		0x221a8, 0x221b8,
1093		0x221c4, 0x221c8,
1094		0x22200, 0x22318,
1095		0x22400, 0x224b4,
1096		0x224c0, 0x22528,
1097		0x22540, 0x22614,
1098		0x23000, 0x23040,
1099		0x2304c, 0x23060,
1100		0x230c0, 0x230ec,
1101		0x23200, 0x23268,
1102		0x23270, 0x23284,
1103		0x232fc, 0x23388,
1104		0x23400, 0x23404,
1105		0x23500, 0x23500,
1106		0x23510, 0x23518,
1107		0x2352c, 0x23530,
1108		0x2353c, 0x2353c,
1109		0x23550, 0x23554,
1110		0x23600, 0x23600,
1111		0x23608, 0x2361c,
1112		0x23624, 0x23628,
1113		0x23630, 0x23634,
1114		0x2363c, 0x2363c,
1115		0x23700, 0x2371c,
1116		0x23780, 0x2378c,
1117		0x23800, 0x23818,
1118		0x23820, 0x23828,
1119		0x23830, 0x23848,
1120		0x23850, 0x23854,
1121		0x23860, 0x23868,
1122		0x23870, 0x23870,
1123		0x23878, 0x23898,
1124		0x238a0, 0x238a8,
1125		0x238b0, 0x238c8,
1126		0x238d0, 0x238d4,
1127		0x238e0, 0x238e8,
1128		0x238f0, 0x238f0,
1129		0x238f8, 0x23a18,
1130		0x23a20, 0x23a28,
1131		0x23a30, 0x23a48,
1132		0x23a50, 0x23a54,
1133		0x23a60, 0x23a68,
1134		0x23a70, 0x23a70,
1135		0x23a78, 0x23a98,
1136		0x23aa0, 0x23aa8,
1137		0x23ab0, 0x23ac8,
1138		0x23ad0, 0x23ad4,
1139		0x23ae0, 0x23ae8,
1140		0x23af0, 0x23af0,
1141		0x23af8, 0x23c18,
1142		0x23c20, 0x23c20,
1143		0x23c28, 0x23c30,
1144		0x23c38, 0x23c38,
1145		0x23c80, 0x23c98,
1146		0x23ca0, 0x23ca8,
1147		0x23cb0, 0x23cc8,
1148		0x23cd0, 0x23cd4,
1149		0x23ce0, 0x23ce8,
1150		0x23cf0, 0x23cf0,
1151		0x23cf8, 0x23d7c,
1152		0x23e00, 0x23e04,
1153		0x24000, 0x2402c,
1154		0x24100, 0x2413c,
1155		0x24190, 0x241a0,
1156		0x241a8, 0x241b8,
1157		0x241c4, 0x241c8,
1158		0x24200, 0x24318,
1159		0x24400, 0x244b4,
1160		0x244c0, 0x24528,
1161		0x24540, 0x24614,
1162		0x25000, 0x25040,
1163		0x2504c, 0x25060,
1164		0x250c0, 0x250ec,
1165		0x25200, 0x25268,
1166		0x25270, 0x25284,
1167		0x252fc, 0x25388,
1168		0x25400, 0x25404,
1169		0x25500, 0x25500,
1170		0x25510, 0x25518,
1171		0x2552c, 0x25530,
1172		0x2553c, 0x2553c,
1173		0x25550, 0x25554,
1174		0x25600, 0x25600,
1175		0x25608, 0x2561c,
1176		0x25624, 0x25628,
1177		0x25630, 0x25634,
1178		0x2563c, 0x2563c,
1179		0x25700, 0x2571c,
1180		0x25780, 0x2578c,
1181		0x25800, 0x25818,
1182		0x25820, 0x25828,
1183		0x25830, 0x25848,
1184		0x25850, 0x25854,
1185		0x25860, 0x25868,
1186		0x25870, 0x25870,
1187		0x25878, 0x25898,
1188		0x258a0, 0x258a8,
1189		0x258b0, 0x258c8,
1190		0x258d0, 0x258d4,
1191		0x258e0, 0x258e8,
1192		0x258f0, 0x258f0,
1193		0x258f8, 0x25a18,
1194		0x25a20, 0x25a28,
1195		0x25a30, 0x25a48,
1196		0x25a50, 0x25a54,
1197		0x25a60, 0x25a68,
1198		0x25a70, 0x25a70,
1199		0x25a78, 0x25a98,
1200		0x25aa0, 0x25aa8,
1201		0x25ab0, 0x25ac8,
1202		0x25ad0, 0x25ad4,
1203		0x25ae0, 0x25ae8,
1204		0x25af0, 0x25af0,
1205		0x25af8, 0x25c18,
1206		0x25c20, 0x25c20,
1207		0x25c28, 0x25c30,
1208		0x25c38, 0x25c38,
1209		0x25c80, 0x25c98,
1210		0x25ca0, 0x25ca8,
1211		0x25cb0, 0x25cc8,
1212		0x25cd0, 0x25cd4,
1213		0x25ce0, 0x25ce8,
1214		0x25cf0, 0x25cf0,
1215		0x25cf8, 0x25d7c,
1216		0x25e00, 0x25e04,
1217		0x26000, 0x2602c,
1218		0x26100, 0x2613c,
1219		0x26190, 0x261a0,
1220		0x261a8, 0x261b8,
1221		0x261c4, 0x261c8,
1222		0x26200, 0x26318,
1223		0x26400, 0x264b4,
1224		0x264c0, 0x26528,
1225		0x26540, 0x26614,
1226		0x27000, 0x27040,
1227		0x2704c, 0x27060,
1228		0x270c0, 0x270ec,
1229		0x27200, 0x27268,
1230		0x27270, 0x27284,
1231		0x272fc, 0x27388,
1232		0x27400, 0x27404,
1233		0x27500, 0x27500,
1234		0x27510, 0x27518,
1235		0x2752c, 0x27530,
1236		0x2753c, 0x2753c,
1237		0x27550, 0x27554,
1238		0x27600, 0x27600,
1239		0x27608, 0x2761c,
1240		0x27624, 0x27628,
1241		0x27630, 0x27634,
1242		0x2763c, 0x2763c,
1243		0x27700, 0x2771c,
1244		0x27780, 0x2778c,
1245		0x27800, 0x27818,
1246		0x27820, 0x27828,
1247		0x27830, 0x27848,
1248		0x27850, 0x27854,
1249		0x27860, 0x27868,
1250		0x27870, 0x27870,
1251		0x27878, 0x27898,
1252		0x278a0, 0x278a8,
1253		0x278b0, 0x278c8,
1254		0x278d0, 0x278d4,
1255		0x278e0, 0x278e8,
1256		0x278f0, 0x278f0,
1257		0x278f8, 0x27a18,
1258		0x27a20, 0x27a28,
1259		0x27a30, 0x27a48,
1260		0x27a50, 0x27a54,
1261		0x27a60, 0x27a68,
1262		0x27a70, 0x27a70,
1263		0x27a78, 0x27a98,
1264		0x27aa0, 0x27aa8,
1265		0x27ab0, 0x27ac8,
1266		0x27ad0, 0x27ad4,
1267		0x27ae0, 0x27ae8,
1268		0x27af0, 0x27af0,
1269		0x27af8, 0x27c18,
1270		0x27c20, 0x27c20,
1271		0x27c28, 0x27c30,
1272		0x27c38, 0x27c38,
1273		0x27c80, 0x27c98,
1274		0x27ca0, 0x27ca8,
1275		0x27cb0, 0x27cc8,
1276		0x27cd0, 0x27cd4,
1277		0x27ce0, 0x27ce8,
1278		0x27cf0, 0x27cf0,
1279		0x27cf8, 0x27d7c,
1280		0x27e00, 0x27e04,
1281	};
1282
1283	static const unsigned int t4vf_reg_ranges[] = {
1284		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1285		VF_MPS_REG(A_MPS_VF_CTL),
1286		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1287		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1288		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1289		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1290		FW_T4VF_MBDATA_BASE_ADDR,
1291		FW_T4VF_MBDATA_BASE_ADDR +
1292		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1293	};
1294
1295	static const unsigned int t5_reg_ranges[] = {
1296		0x1008, 0x10c0,
1297		0x10cc, 0x10f8,
1298		0x1100, 0x1100,
1299		0x110c, 0x1148,
1300		0x1180, 0x1184,
1301		0x1190, 0x1194,
1302		0x11a0, 0x11a4,
1303		0x11b0, 0x11b4,
1304		0x11fc, 0x123c,
1305		0x1280, 0x173c,
1306		0x1800, 0x18fc,
1307		0x3000, 0x3028,
1308		0x3060, 0x30b0,
1309		0x30b8, 0x30d8,
1310		0x30e0, 0x30fc,
1311		0x3140, 0x357c,
1312		0x35a8, 0x35cc,
1313		0x35ec, 0x35ec,
1314		0x3600, 0x5624,
1315		0x56cc, 0x56ec,
1316		0x56f4, 0x5720,
1317		0x5728, 0x575c,
1318		0x580c, 0x5814,
1319		0x5890, 0x589c,
1320		0x58a4, 0x58ac,
1321		0x58b8, 0x58bc,
1322		0x5940, 0x59c8,
1323		0x59d0, 0x59dc,
1324		0x59fc, 0x5a18,
1325		0x5a60, 0x5a70,
1326		0x5a80, 0x5a9c,
1327		0x5b94, 0x5bfc,
1328		0x6000, 0x6020,
1329		0x6028, 0x6040,
1330		0x6058, 0x609c,
1331		0x60a8, 0x614c,
1332		0x7700, 0x7798,
1333		0x77c0, 0x78fc,
1334		0x7b00, 0x7b58,
1335		0x7b60, 0x7b84,
1336		0x7b8c, 0x7c54,
1337		0x7d00, 0x7d38,
1338		0x7d40, 0x7d80,
1339		0x7d8c, 0x7ddc,
1340		0x7de4, 0x7e04,
1341		0x7e10, 0x7e1c,
1342		0x7e24, 0x7e38,
1343		0x7e40, 0x7e44,
1344		0x7e4c, 0x7e78,
1345		0x7e80, 0x7edc,
1346		0x7ee8, 0x7efc,
1347		0x8dc0, 0x8de0,
1348		0x8df8, 0x8e04,
1349		0x8e10, 0x8e84,
1350		0x8ea0, 0x8f84,
1351		0x8fc0, 0x9058,
1352		0x9060, 0x9060,
1353		0x9068, 0x90f8,
1354		0x9400, 0x9408,
1355		0x9410, 0x9470,
1356		0x9600, 0x9600,
1357		0x9608, 0x9638,
1358		0x9640, 0x96f4,
1359		0x9800, 0x9808,
1360		0x9810, 0x9864,
1361		0x9c00, 0x9c6c,
1362		0x9c80, 0x9cec,
1363		0x9d00, 0x9d6c,
1364		0x9d80, 0x9dec,
1365		0x9e00, 0x9e6c,
1366		0x9e80, 0x9eec,
1367		0x9f00, 0x9f6c,
1368		0x9f80, 0xa020,
1369		0xd000, 0xd004,
1370		0xd010, 0xd03c,
1371		0xdfc0, 0xdfe0,
1372		0xe000, 0x1106c,
1373		0x11074, 0x11088,
1374		0x1109c, 0x11110,
1375		0x11118, 0x1117c,
1376		0x11190, 0x11204,
1377		0x19040, 0x1906c,
1378		0x19078, 0x19080,
1379		0x1908c, 0x190e8,
1380		0x190f0, 0x190f8,
1381		0x19100, 0x19110,
1382		0x19120, 0x19124,
1383		0x19150, 0x19194,
1384		0x1919c, 0x191b0,
1385		0x191d0, 0x191e8,
1386		0x19238, 0x19290,
1387		0x193f8, 0x19428,
1388		0x19430, 0x19444,
1389		0x1944c, 0x1946c,
1390		0x19474, 0x19474,
1391		0x19490, 0x194cc,
1392		0x194f0, 0x194f8,
1393		0x19c00, 0x19c08,
1394		0x19c10, 0x19c60,
1395		0x19c94, 0x19ce4,
1396		0x19cf0, 0x19d40,
1397		0x19d50, 0x19d94,
1398		0x19da0, 0x19de8,
1399		0x19df0, 0x19e10,
1400		0x19e50, 0x19e90,
1401		0x19ea0, 0x19f24,
1402		0x19f34, 0x19f34,
1403		0x19f40, 0x19f50,
1404		0x19f90, 0x19fb4,
1405		0x19fc4, 0x19fe4,
1406		0x1a000, 0x1a004,
1407		0x1a010, 0x1a06c,
1408		0x1a0b0, 0x1a0e4,
1409		0x1a0ec, 0x1a0f8,
1410		0x1a100, 0x1a108,
1411		0x1a114, 0x1a130,
1412		0x1a138, 0x1a1c4,
1413		0x1a1fc, 0x1a1fc,
1414		0x1e008, 0x1e00c,
1415		0x1e040, 0x1e044,
1416		0x1e04c, 0x1e04c,
1417		0x1e284, 0x1e290,
1418		0x1e2c0, 0x1e2c0,
1419		0x1e2e0, 0x1e2e0,
1420		0x1e300, 0x1e384,
1421		0x1e3c0, 0x1e3c8,
1422		0x1e408, 0x1e40c,
1423		0x1e440, 0x1e444,
1424		0x1e44c, 0x1e44c,
1425		0x1e684, 0x1e690,
1426		0x1e6c0, 0x1e6c0,
1427		0x1e6e0, 0x1e6e0,
1428		0x1e700, 0x1e784,
1429		0x1e7c0, 0x1e7c8,
1430		0x1e808, 0x1e80c,
1431		0x1e840, 0x1e844,
1432		0x1e84c, 0x1e84c,
1433		0x1ea84, 0x1ea90,
1434		0x1eac0, 0x1eac0,
1435		0x1eae0, 0x1eae0,
1436		0x1eb00, 0x1eb84,
1437		0x1ebc0, 0x1ebc8,
1438		0x1ec08, 0x1ec0c,
1439		0x1ec40, 0x1ec44,
1440		0x1ec4c, 0x1ec4c,
1441		0x1ee84, 0x1ee90,
1442		0x1eec0, 0x1eec0,
1443		0x1eee0, 0x1eee0,
1444		0x1ef00, 0x1ef84,
1445		0x1efc0, 0x1efc8,
1446		0x1f008, 0x1f00c,
1447		0x1f040, 0x1f044,
1448		0x1f04c, 0x1f04c,
1449		0x1f284, 0x1f290,
1450		0x1f2c0, 0x1f2c0,
1451		0x1f2e0, 0x1f2e0,
1452		0x1f300, 0x1f384,
1453		0x1f3c0, 0x1f3c8,
1454		0x1f408, 0x1f40c,
1455		0x1f440, 0x1f444,
1456		0x1f44c, 0x1f44c,
1457		0x1f684, 0x1f690,
1458		0x1f6c0, 0x1f6c0,
1459		0x1f6e0, 0x1f6e0,
1460		0x1f700, 0x1f784,
1461		0x1f7c0, 0x1f7c8,
1462		0x1f808, 0x1f80c,
1463		0x1f840, 0x1f844,
1464		0x1f84c, 0x1f84c,
1465		0x1fa84, 0x1fa90,
1466		0x1fac0, 0x1fac0,
1467		0x1fae0, 0x1fae0,
1468		0x1fb00, 0x1fb84,
1469		0x1fbc0, 0x1fbc8,
1470		0x1fc08, 0x1fc0c,
1471		0x1fc40, 0x1fc44,
1472		0x1fc4c, 0x1fc4c,
1473		0x1fe84, 0x1fe90,
1474		0x1fec0, 0x1fec0,
1475		0x1fee0, 0x1fee0,
1476		0x1ff00, 0x1ff84,
1477		0x1ffc0, 0x1ffc8,
1478		0x30000, 0x30030,
1479		0x30100, 0x30144,
1480		0x30190, 0x301a0,
1481		0x301a8, 0x301b8,
1482		0x301c4, 0x301c8,
1483		0x301d0, 0x301d0,
1484		0x30200, 0x30318,
1485		0x30400, 0x304b4,
1486		0x304c0, 0x3052c,
1487		0x30540, 0x3061c,
1488		0x30800, 0x30828,
1489		0x30834, 0x30834,
1490		0x308c0, 0x30908,
1491		0x30910, 0x309ac,
1492		0x30a00, 0x30a14,
1493		0x30a1c, 0x30a2c,
1494		0x30a44, 0x30a50,
1495		0x30a74, 0x30a74,
1496		0x30a7c, 0x30afc,
1497		0x30b08, 0x30c24,
1498		0x30d00, 0x30d00,
1499		0x30d08, 0x30d14,
1500		0x30d1c, 0x30d20,
1501		0x30d3c, 0x30d3c,
1502		0x30d48, 0x30d50,
1503		0x31200, 0x3120c,
1504		0x31220, 0x31220,
1505		0x31240, 0x31240,
1506		0x31600, 0x3160c,
1507		0x31a00, 0x31a1c,
1508		0x31e00, 0x31e20,
1509		0x31e38, 0x31e3c,
1510		0x31e80, 0x31e80,
1511		0x31e88, 0x31ea8,
1512		0x31eb0, 0x31eb4,
1513		0x31ec8, 0x31ed4,
1514		0x31fb8, 0x32004,
1515		0x32200, 0x32200,
1516		0x32208, 0x32240,
1517		0x32248, 0x32280,
1518		0x32288, 0x322c0,
1519		0x322c8, 0x322fc,
1520		0x32600, 0x32630,
1521		0x32a00, 0x32abc,
1522		0x32b00, 0x32b10,
1523		0x32b20, 0x32b30,
1524		0x32b40, 0x32b50,
1525		0x32b60, 0x32b70,
1526		0x33000, 0x33028,
1527		0x33030, 0x33048,
1528		0x33060, 0x33068,
1529		0x33070, 0x3309c,
1530		0x330f0, 0x33128,
1531		0x33130, 0x33148,
1532		0x33160, 0x33168,
1533		0x33170, 0x3319c,
1534		0x331f0, 0x33238,
1535		0x33240, 0x33240,
1536		0x33248, 0x33250,
1537		0x3325c, 0x33264,
1538		0x33270, 0x332b8,
1539		0x332c0, 0x332e4,
1540		0x332f8, 0x33338,
1541		0x33340, 0x33340,
1542		0x33348, 0x33350,
1543		0x3335c, 0x33364,
1544		0x33370, 0x333b8,
1545		0x333c0, 0x333e4,
1546		0x333f8, 0x33428,
1547		0x33430, 0x33448,
1548		0x33460, 0x33468,
1549		0x33470, 0x3349c,
1550		0x334f0, 0x33528,
1551		0x33530, 0x33548,
1552		0x33560, 0x33568,
1553		0x33570, 0x3359c,
1554		0x335f0, 0x33638,
1555		0x33640, 0x33640,
1556		0x33648, 0x33650,
1557		0x3365c, 0x33664,
1558		0x33670, 0x336b8,
1559		0x336c0, 0x336e4,
1560		0x336f8, 0x33738,
1561		0x33740, 0x33740,
1562		0x33748, 0x33750,
1563		0x3375c, 0x33764,
1564		0x33770, 0x337b8,
1565		0x337c0, 0x337e4,
1566		0x337f8, 0x337fc,
1567		0x33814, 0x33814,
1568		0x3382c, 0x3382c,
1569		0x33880, 0x3388c,
1570		0x338e8, 0x338ec,
1571		0x33900, 0x33928,
1572		0x33930, 0x33948,
1573		0x33960, 0x33968,
1574		0x33970, 0x3399c,
1575		0x339f0, 0x33a38,
1576		0x33a40, 0x33a40,
1577		0x33a48, 0x33a50,
1578		0x33a5c, 0x33a64,
1579		0x33a70, 0x33ab8,
1580		0x33ac0, 0x33ae4,
1581		0x33af8, 0x33b10,
1582		0x33b28, 0x33b28,
1583		0x33b3c, 0x33b50,
1584		0x33bf0, 0x33c10,
1585		0x33c28, 0x33c28,
1586		0x33c3c, 0x33c50,
1587		0x33cf0, 0x33cfc,
1588		0x34000, 0x34030,
1589		0x34100, 0x34144,
1590		0x34190, 0x341a0,
1591		0x341a8, 0x341b8,
1592		0x341c4, 0x341c8,
1593		0x341d0, 0x341d0,
1594		0x34200, 0x34318,
1595		0x34400, 0x344b4,
1596		0x344c0, 0x3452c,
1597		0x34540, 0x3461c,
1598		0x34800, 0x34828,
1599		0x34834, 0x34834,
1600		0x348c0, 0x34908,
1601		0x34910, 0x349ac,
1602		0x34a00, 0x34a14,
1603		0x34a1c, 0x34a2c,
1604		0x34a44, 0x34a50,
1605		0x34a74, 0x34a74,
1606		0x34a7c, 0x34afc,
1607		0x34b08, 0x34c24,
1608		0x34d00, 0x34d00,
1609		0x34d08, 0x34d14,
1610		0x34d1c, 0x34d20,
1611		0x34d3c, 0x34d3c,
1612		0x34d48, 0x34d50,
1613		0x35200, 0x3520c,
1614		0x35220, 0x35220,
1615		0x35240, 0x35240,
1616		0x35600, 0x3560c,
1617		0x35a00, 0x35a1c,
1618		0x35e00, 0x35e20,
1619		0x35e38, 0x35e3c,
1620		0x35e80, 0x35e80,
1621		0x35e88, 0x35ea8,
1622		0x35eb0, 0x35eb4,
1623		0x35ec8, 0x35ed4,
1624		0x35fb8, 0x36004,
1625		0x36200, 0x36200,
1626		0x36208, 0x36240,
1627		0x36248, 0x36280,
1628		0x36288, 0x362c0,
1629		0x362c8, 0x362fc,
1630		0x36600, 0x36630,
1631		0x36a00, 0x36abc,
1632		0x36b00, 0x36b10,
1633		0x36b20, 0x36b30,
1634		0x36b40, 0x36b50,
1635		0x36b60, 0x36b70,
1636		0x37000, 0x37028,
1637		0x37030, 0x37048,
1638		0x37060, 0x37068,
1639		0x37070, 0x3709c,
1640		0x370f0, 0x37128,
1641		0x37130, 0x37148,
1642		0x37160, 0x37168,
1643		0x37170, 0x3719c,
1644		0x371f0, 0x37238,
1645		0x37240, 0x37240,
1646		0x37248, 0x37250,
1647		0x3725c, 0x37264,
1648		0x37270, 0x372b8,
1649		0x372c0, 0x372e4,
1650		0x372f8, 0x37338,
1651		0x37340, 0x37340,
1652		0x37348, 0x37350,
1653		0x3735c, 0x37364,
1654		0x37370, 0x373b8,
1655		0x373c0, 0x373e4,
1656		0x373f8, 0x37428,
1657		0x37430, 0x37448,
1658		0x37460, 0x37468,
1659		0x37470, 0x3749c,
1660		0x374f0, 0x37528,
1661		0x37530, 0x37548,
1662		0x37560, 0x37568,
1663		0x37570, 0x3759c,
1664		0x375f0, 0x37638,
1665		0x37640, 0x37640,
1666		0x37648, 0x37650,
1667		0x3765c, 0x37664,
1668		0x37670, 0x376b8,
1669		0x376c0, 0x376e4,
1670		0x376f8, 0x37738,
1671		0x37740, 0x37740,
1672		0x37748, 0x37750,
1673		0x3775c, 0x37764,
1674		0x37770, 0x377b8,
1675		0x377c0, 0x377e4,
1676		0x377f8, 0x377fc,
1677		0x37814, 0x37814,
1678		0x3782c, 0x3782c,
1679		0x37880, 0x3788c,
1680		0x378e8, 0x378ec,
1681		0x37900, 0x37928,
1682		0x37930, 0x37948,
1683		0x37960, 0x37968,
1684		0x37970, 0x3799c,
1685		0x379f0, 0x37a38,
1686		0x37a40, 0x37a40,
1687		0x37a48, 0x37a50,
1688		0x37a5c, 0x37a64,
1689		0x37a70, 0x37ab8,
1690		0x37ac0, 0x37ae4,
1691		0x37af8, 0x37b10,
1692		0x37b28, 0x37b28,
1693		0x37b3c, 0x37b50,
1694		0x37bf0, 0x37c10,
1695		0x37c28, 0x37c28,
1696		0x37c3c, 0x37c50,
1697		0x37cf0, 0x37cfc,
1698		0x38000, 0x38030,
1699		0x38100, 0x38144,
1700		0x38190, 0x381a0,
1701		0x381a8, 0x381b8,
1702		0x381c4, 0x381c8,
1703		0x381d0, 0x381d0,
1704		0x38200, 0x38318,
1705		0x38400, 0x384b4,
1706		0x384c0, 0x3852c,
1707		0x38540, 0x3861c,
1708		0x38800, 0x38828,
1709		0x38834, 0x38834,
1710		0x388c0, 0x38908,
1711		0x38910, 0x389ac,
1712		0x38a00, 0x38a14,
1713		0x38a1c, 0x38a2c,
1714		0x38a44, 0x38a50,
1715		0x38a74, 0x38a74,
1716		0x38a7c, 0x38afc,
1717		0x38b08, 0x38c24,
1718		0x38d00, 0x38d00,
1719		0x38d08, 0x38d14,
1720		0x38d1c, 0x38d20,
1721		0x38d3c, 0x38d3c,
1722		0x38d48, 0x38d50,
1723		0x39200, 0x3920c,
1724		0x39220, 0x39220,
1725		0x39240, 0x39240,
1726		0x39600, 0x3960c,
1727		0x39a00, 0x39a1c,
1728		0x39e00, 0x39e20,
1729		0x39e38, 0x39e3c,
1730		0x39e80, 0x39e80,
1731		0x39e88, 0x39ea8,
1732		0x39eb0, 0x39eb4,
1733		0x39ec8, 0x39ed4,
1734		0x39fb8, 0x3a004,
1735		0x3a200, 0x3a200,
1736		0x3a208, 0x3a240,
1737		0x3a248, 0x3a280,
1738		0x3a288, 0x3a2c0,
1739		0x3a2c8, 0x3a2fc,
1740		0x3a600, 0x3a630,
1741		0x3aa00, 0x3aabc,
1742		0x3ab00, 0x3ab10,
1743		0x3ab20, 0x3ab30,
1744		0x3ab40, 0x3ab50,
1745		0x3ab60, 0x3ab70,
1746		0x3b000, 0x3b028,
1747		0x3b030, 0x3b048,
1748		0x3b060, 0x3b068,
1749		0x3b070, 0x3b09c,
1750		0x3b0f0, 0x3b128,
1751		0x3b130, 0x3b148,
1752		0x3b160, 0x3b168,
1753		0x3b170, 0x3b19c,
1754		0x3b1f0, 0x3b238,
1755		0x3b240, 0x3b240,
1756		0x3b248, 0x3b250,
1757		0x3b25c, 0x3b264,
1758		0x3b270, 0x3b2b8,
1759		0x3b2c0, 0x3b2e4,
1760		0x3b2f8, 0x3b338,
1761		0x3b340, 0x3b340,
1762		0x3b348, 0x3b350,
1763		0x3b35c, 0x3b364,
1764		0x3b370, 0x3b3b8,
1765		0x3b3c0, 0x3b3e4,
1766		0x3b3f8, 0x3b428,
1767		0x3b430, 0x3b448,
1768		0x3b460, 0x3b468,
1769		0x3b470, 0x3b49c,
1770		0x3b4f0, 0x3b528,
1771		0x3b530, 0x3b548,
1772		0x3b560, 0x3b568,
1773		0x3b570, 0x3b59c,
1774		0x3b5f0, 0x3b638,
1775		0x3b640, 0x3b640,
1776		0x3b648, 0x3b650,
1777		0x3b65c, 0x3b664,
1778		0x3b670, 0x3b6b8,
1779		0x3b6c0, 0x3b6e4,
1780		0x3b6f8, 0x3b738,
1781		0x3b740, 0x3b740,
1782		0x3b748, 0x3b750,
1783		0x3b75c, 0x3b764,
1784		0x3b770, 0x3b7b8,
1785		0x3b7c0, 0x3b7e4,
1786		0x3b7f8, 0x3b7fc,
1787		0x3b814, 0x3b814,
1788		0x3b82c, 0x3b82c,
1789		0x3b880, 0x3b88c,
1790		0x3b8e8, 0x3b8ec,
1791		0x3b900, 0x3b928,
1792		0x3b930, 0x3b948,
1793		0x3b960, 0x3b968,
1794		0x3b970, 0x3b99c,
1795		0x3b9f0, 0x3ba38,
1796		0x3ba40, 0x3ba40,
1797		0x3ba48, 0x3ba50,
1798		0x3ba5c, 0x3ba64,
1799		0x3ba70, 0x3bab8,
1800		0x3bac0, 0x3bae4,
1801		0x3baf8, 0x3bb10,
1802		0x3bb28, 0x3bb28,
1803		0x3bb3c, 0x3bb50,
1804		0x3bbf0, 0x3bc10,
1805		0x3bc28, 0x3bc28,
1806		0x3bc3c, 0x3bc50,
1807		0x3bcf0, 0x3bcfc,
1808		0x3c000, 0x3c030,
1809		0x3c100, 0x3c144,
1810		0x3c190, 0x3c1a0,
1811		0x3c1a8, 0x3c1b8,
1812		0x3c1c4, 0x3c1c8,
1813		0x3c1d0, 0x3c1d0,
1814		0x3c200, 0x3c318,
1815		0x3c400, 0x3c4b4,
1816		0x3c4c0, 0x3c52c,
1817		0x3c540, 0x3c61c,
1818		0x3c800, 0x3c828,
1819		0x3c834, 0x3c834,
1820		0x3c8c0, 0x3c908,
1821		0x3c910, 0x3c9ac,
1822		0x3ca00, 0x3ca14,
1823		0x3ca1c, 0x3ca2c,
1824		0x3ca44, 0x3ca50,
1825		0x3ca74, 0x3ca74,
1826		0x3ca7c, 0x3cafc,
1827		0x3cb08, 0x3cc24,
1828		0x3cd00, 0x3cd00,
1829		0x3cd08, 0x3cd14,
1830		0x3cd1c, 0x3cd20,
1831		0x3cd3c, 0x3cd3c,
1832		0x3cd48, 0x3cd50,
1833		0x3d200, 0x3d20c,
1834		0x3d220, 0x3d220,
1835		0x3d240, 0x3d240,
1836		0x3d600, 0x3d60c,
1837		0x3da00, 0x3da1c,
1838		0x3de00, 0x3de20,
1839		0x3de38, 0x3de3c,
1840		0x3de80, 0x3de80,
1841		0x3de88, 0x3dea8,
1842		0x3deb0, 0x3deb4,
1843		0x3dec8, 0x3ded4,
1844		0x3dfb8, 0x3e004,
1845		0x3e200, 0x3e200,
1846		0x3e208, 0x3e240,
1847		0x3e248, 0x3e280,
1848		0x3e288, 0x3e2c0,
1849		0x3e2c8, 0x3e2fc,
1850		0x3e600, 0x3e630,
1851		0x3ea00, 0x3eabc,
1852		0x3eb00, 0x3eb10,
1853		0x3eb20, 0x3eb30,
1854		0x3eb40, 0x3eb50,
1855		0x3eb60, 0x3eb70,
1856		0x3f000, 0x3f028,
1857		0x3f030, 0x3f048,
1858		0x3f060, 0x3f068,
1859		0x3f070, 0x3f09c,
1860		0x3f0f0, 0x3f128,
1861		0x3f130, 0x3f148,
1862		0x3f160, 0x3f168,
1863		0x3f170, 0x3f19c,
1864		0x3f1f0, 0x3f238,
1865		0x3f240, 0x3f240,
1866		0x3f248, 0x3f250,
1867		0x3f25c, 0x3f264,
1868		0x3f270, 0x3f2b8,
1869		0x3f2c0, 0x3f2e4,
1870		0x3f2f8, 0x3f338,
1871		0x3f340, 0x3f340,
1872		0x3f348, 0x3f350,
1873		0x3f35c, 0x3f364,
1874		0x3f370, 0x3f3b8,
1875		0x3f3c0, 0x3f3e4,
1876		0x3f3f8, 0x3f428,
1877		0x3f430, 0x3f448,
1878		0x3f460, 0x3f468,
1879		0x3f470, 0x3f49c,
1880		0x3f4f0, 0x3f528,
1881		0x3f530, 0x3f548,
1882		0x3f560, 0x3f568,
1883		0x3f570, 0x3f59c,
1884		0x3f5f0, 0x3f638,
1885		0x3f640, 0x3f640,
1886		0x3f648, 0x3f650,
1887		0x3f65c, 0x3f664,
1888		0x3f670, 0x3f6b8,
1889		0x3f6c0, 0x3f6e4,
1890		0x3f6f8, 0x3f738,
1891		0x3f740, 0x3f740,
1892		0x3f748, 0x3f750,
1893		0x3f75c, 0x3f764,
1894		0x3f770, 0x3f7b8,
1895		0x3f7c0, 0x3f7e4,
1896		0x3f7f8, 0x3f7fc,
1897		0x3f814, 0x3f814,
1898		0x3f82c, 0x3f82c,
1899		0x3f880, 0x3f88c,
1900		0x3f8e8, 0x3f8ec,
1901		0x3f900, 0x3f928,
1902		0x3f930, 0x3f948,
1903		0x3f960, 0x3f968,
1904		0x3f970, 0x3f99c,
1905		0x3f9f0, 0x3fa38,
1906		0x3fa40, 0x3fa40,
1907		0x3fa48, 0x3fa50,
1908		0x3fa5c, 0x3fa64,
1909		0x3fa70, 0x3fab8,
1910		0x3fac0, 0x3fae4,
1911		0x3faf8, 0x3fb10,
1912		0x3fb28, 0x3fb28,
1913		0x3fb3c, 0x3fb50,
1914		0x3fbf0, 0x3fc10,
1915		0x3fc28, 0x3fc28,
1916		0x3fc3c, 0x3fc50,
1917		0x3fcf0, 0x3fcfc,
1918		0x40000, 0x4000c,
1919		0x40040, 0x40050,
1920		0x40060, 0x40068,
1921		0x4007c, 0x4008c,
1922		0x40094, 0x400b0,
1923		0x400c0, 0x40144,
1924		0x40180, 0x4018c,
1925		0x40200, 0x40254,
1926		0x40260, 0x40264,
1927		0x40270, 0x40288,
1928		0x40290, 0x40298,
1929		0x402ac, 0x402c8,
1930		0x402d0, 0x402e0,
1931		0x402f0, 0x402f0,
1932		0x40300, 0x4033c,
1933		0x403f8, 0x403fc,
1934		0x41304, 0x413c4,
1935		0x41400, 0x4140c,
1936		0x41414, 0x4141c,
1937		0x41480, 0x414d0,
1938		0x44000, 0x44054,
1939		0x4405c, 0x44078,
1940		0x440c0, 0x44174,
1941		0x44180, 0x441ac,
1942		0x441b4, 0x441b8,
1943		0x441c0, 0x44254,
1944		0x4425c, 0x44278,
1945		0x442c0, 0x44374,
1946		0x44380, 0x443ac,
1947		0x443b4, 0x443b8,
1948		0x443c0, 0x44454,
1949		0x4445c, 0x44478,
1950		0x444c0, 0x44574,
1951		0x44580, 0x445ac,
1952		0x445b4, 0x445b8,
1953		0x445c0, 0x44654,
1954		0x4465c, 0x44678,
1955		0x446c0, 0x44774,
1956		0x44780, 0x447ac,
1957		0x447b4, 0x447b8,
1958		0x447c0, 0x44854,
1959		0x4485c, 0x44878,
1960		0x448c0, 0x44974,
1961		0x44980, 0x449ac,
1962		0x449b4, 0x449b8,
1963		0x449c0, 0x449fc,
1964		0x45000, 0x45004,
1965		0x45010, 0x45030,
1966		0x45040, 0x45060,
1967		0x45068, 0x45068,
1968		0x45080, 0x45084,
1969		0x450a0, 0x450b0,
1970		0x45200, 0x45204,
1971		0x45210, 0x45230,
1972		0x45240, 0x45260,
1973		0x45268, 0x45268,
1974		0x45280, 0x45284,
1975		0x452a0, 0x452b0,
1976		0x460c0, 0x460e4,
1977		0x47000, 0x4703c,
1978		0x47044, 0x4708c,
1979		0x47200, 0x47250,
1980		0x47400, 0x47408,
1981		0x47414, 0x47420,
1982		0x47600, 0x47618,
1983		0x47800, 0x47814,
1984		0x48000, 0x4800c,
1985		0x48040, 0x48050,
1986		0x48060, 0x48068,
1987		0x4807c, 0x4808c,
1988		0x48094, 0x480b0,
1989		0x480c0, 0x48144,
1990		0x48180, 0x4818c,
1991		0x48200, 0x48254,
1992		0x48260, 0x48264,
1993		0x48270, 0x48288,
1994		0x48290, 0x48298,
1995		0x482ac, 0x482c8,
1996		0x482d0, 0x482e0,
1997		0x482f0, 0x482f0,
1998		0x48300, 0x4833c,
1999		0x483f8, 0x483fc,
2000		0x49304, 0x493c4,
2001		0x49400, 0x4940c,
2002		0x49414, 0x4941c,
2003		0x49480, 0x494d0,
2004		0x4c000, 0x4c054,
2005		0x4c05c, 0x4c078,
2006		0x4c0c0, 0x4c174,
2007		0x4c180, 0x4c1ac,
2008		0x4c1b4, 0x4c1b8,
2009		0x4c1c0, 0x4c254,
2010		0x4c25c, 0x4c278,
2011		0x4c2c0, 0x4c374,
2012		0x4c380, 0x4c3ac,
2013		0x4c3b4, 0x4c3b8,
2014		0x4c3c0, 0x4c454,
2015		0x4c45c, 0x4c478,
2016		0x4c4c0, 0x4c574,
2017		0x4c580, 0x4c5ac,
2018		0x4c5b4, 0x4c5b8,
2019		0x4c5c0, 0x4c654,
2020		0x4c65c, 0x4c678,
2021		0x4c6c0, 0x4c774,
2022		0x4c780, 0x4c7ac,
2023		0x4c7b4, 0x4c7b8,
2024		0x4c7c0, 0x4c854,
2025		0x4c85c, 0x4c878,
2026		0x4c8c0, 0x4c974,
2027		0x4c980, 0x4c9ac,
2028		0x4c9b4, 0x4c9b8,
2029		0x4c9c0, 0x4c9fc,
2030		0x4d000, 0x4d004,
2031		0x4d010, 0x4d030,
2032		0x4d040, 0x4d060,
2033		0x4d068, 0x4d068,
2034		0x4d080, 0x4d084,
2035		0x4d0a0, 0x4d0b0,
2036		0x4d200, 0x4d204,
2037		0x4d210, 0x4d230,
2038		0x4d240, 0x4d260,
2039		0x4d268, 0x4d268,
2040		0x4d280, 0x4d284,
2041		0x4d2a0, 0x4d2b0,
2042		0x4e0c0, 0x4e0e4,
2043		0x4f000, 0x4f03c,
2044		0x4f044, 0x4f08c,
2045		0x4f200, 0x4f250,
2046		0x4f400, 0x4f408,
2047		0x4f414, 0x4f420,
2048		0x4f600, 0x4f618,
2049		0x4f800, 0x4f814,
2050		0x50000, 0x50084,
2051		0x50090, 0x500cc,
2052		0x50400, 0x50400,
2053		0x50800, 0x50884,
2054		0x50890, 0x508cc,
2055		0x50c00, 0x50c00,
2056		0x51000, 0x5101c,
2057		0x51300, 0x51308,
2058	};
2059
2060	static const unsigned int t5vf_reg_ranges[] = {
2061		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2062		VF_MPS_REG(A_MPS_VF_CTL),
2063		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2064		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2065		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2066		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2067		FW_T4VF_MBDATA_BASE_ADDR,
2068		FW_T4VF_MBDATA_BASE_ADDR +
2069		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2070	};
2071
2072	static const unsigned int t6_reg_ranges[] = {
2073		0x1008, 0x101c,
2074		0x1024, 0x10a8,
2075		0x10b4, 0x10f8,
2076		0x1100, 0x1114,
2077		0x111c, 0x112c,
2078		0x1138, 0x113c,
2079		0x1144, 0x114c,
2080		0x1180, 0x1184,
2081		0x1190, 0x1194,
2082		0x11a0, 0x11a4,
2083		0x11b0, 0x11c4,
2084		0x11fc, 0x123c,
2085		0x1254, 0x1274,
2086		0x1280, 0x133c,
2087		0x1800, 0x18fc,
2088		0x3000, 0x302c,
2089		0x3060, 0x30b0,
2090		0x30b8, 0x30d8,
2091		0x30e0, 0x30fc,
2092		0x3140, 0x357c,
2093		0x35a8, 0x35cc,
2094		0x35ec, 0x35ec,
2095		0x3600, 0x5624,
2096		0x56cc, 0x56ec,
2097		0x56f4, 0x5720,
2098		0x5728, 0x575c,
2099		0x580c, 0x5814,
2100		0x5890, 0x589c,
2101		0x58a4, 0x58ac,
2102		0x58b8, 0x58bc,
2103		0x5940, 0x595c,
2104		0x5980, 0x598c,
2105		0x59b0, 0x59c8,
2106		0x59d0, 0x59dc,
2107		0x59fc, 0x5a18,
2108		0x5a60, 0x5a6c,
2109		0x5a80, 0x5a8c,
2110		0x5a94, 0x5a9c,
2111		0x5b94, 0x5bfc,
2112		0x5c10, 0x5e48,
2113		0x5e50, 0x5e94,
2114		0x5ea0, 0x5eb0,
2115		0x5ec0, 0x5ec0,
2116		0x5ec8, 0x5ed0,
2117		0x5ee0, 0x5ee0,
2118		0x5ef0, 0x5ef0,
2119		0x5f00, 0x5f00,
2120		0x6000, 0x6020,
2121		0x6028, 0x6040,
2122		0x6058, 0x609c,
2123		0x60a8, 0x619c,
2124		0x7700, 0x7798,
2125		0x77c0, 0x7880,
2126		0x78cc, 0x78fc,
2127		0x7b00, 0x7b58,
2128		0x7b60, 0x7b84,
2129		0x7b8c, 0x7c54,
2130		0x7d00, 0x7d38,
2131		0x7d40, 0x7d84,
2132		0x7d8c, 0x7ddc,
2133		0x7de4, 0x7e04,
2134		0x7e10, 0x7e1c,
2135		0x7e24, 0x7e38,
2136		0x7e40, 0x7e44,
2137		0x7e4c, 0x7e78,
2138		0x7e80, 0x7edc,
2139		0x7ee8, 0x7efc,
2140		0x8dc0, 0x8de0,
2141		0x8df8, 0x8e04,
2142		0x8e10, 0x8e84,
2143		0x8ea0, 0x8f88,
2144		0x8fb8, 0x9058,
2145		0x9060, 0x9060,
2146		0x9068, 0x90f8,
2147		0x9100, 0x9124,
2148		0x9400, 0x9470,
2149		0x9600, 0x9600,
2150		0x9608, 0x9638,
2151		0x9640, 0x9704,
2152		0x9710, 0x971c,
2153		0x9800, 0x9808,
2154		0x9810, 0x9864,
2155		0x9c00, 0x9c6c,
2156		0x9c80, 0x9cec,
2157		0x9d00, 0x9d6c,
2158		0x9d80, 0x9dec,
2159		0x9e00, 0x9e6c,
2160		0x9e80, 0x9eec,
2161		0x9f00, 0x9f6c,
2162		0x9f80, 0xa020,
2163		0xd000, 0xd03c,
2164		0xd100, 0xd118,
2165		0xd200, 0xd214,
2166		0xd220, 0xd234,
2167		0xd240, 0xd254,
2168		0xd260, 0xd274,
2169		0xd280, 0xd294,
2170		0xd2a0, 0xd2b4,
2171		0xd2c0, 0xd2d4,
2172		0xd2e0, 0xd2f4,
2173		0xd300, 0xd31c,
2174		0xdfc0, 0xdfe0,
2175		0xe000, 0xf008,
2176		0xf010, 0xf018,
2177		0xf020, 0xf028,
2178		0x11000, 0x11014,
2179		0x11048, 0x1106c,
2180		0x11074, 0x11088,
2181		0x11098, 0x11120,
2182		0x1112c, 0x1117c,
2183		0x11190, 0x112e0,
2184		0x11300, 0x1130c,
2185		0x12000, 0x1206c,
2186		0x19040, 0x1906c,
2187		0x19078, 0x19080,
2188		0x1908c, 0x190e8,
2189		0x190f0, 0x190f8,
2190		0x19100, 0x19110,
2191		0x19120, 0x19124,
2192		0x19150, 0x19194,
2193		0x1919c, 0x191b0,
2194		0x191d0, 0x191e8,
2195		0x19238, 0x19290,
2196		0x192a4, 0x192b0,
2197		0x19348, 0x1934c,
2198		0x193f8, 0x19418,
2199		0x19420, 0x19428,
2200		0x19430, 0x19444,
2201		0x1944c, 0x1946c,
2202		0x19474, 0x19474,
2203		0x19490, 0x194cc,
2204		0x194f0, 0x194f8,
2205		0x19c00, 0x19c48,
2206		0x19c50, 0x19c80,
2207		0x19c94, 0x19c98,
2208		0x19ca0, 0x19cbc,
2209		0x19ce4, 0x19ce4,
2210		0x19cf0, 0x19cf8,
2211		0x19d00, 0x19d28,
2212		0x19d50, 0x19d78,
2213		0x19d94, 0x19d98,
2214		0x19da0, 0x19de0,
2215		0x19df0, 0x19e10,
2216		0x19e50, 0x19e6c,
2217		0x19ea0, 0x19ebc,
2218		0x19ec4, 0x19ef4,
2219		0x19f04, 0x19f2c,
2220		0x19f34, 0x19f34,
2221		0x19f40, 0x19f50,
2222		0x19f90, 0x19fac,
2223		0x19fc4, 0x19fc8,
2224		0x19fd0, 0x19fe4,
2225		0x1a000, 0x1a004,
2226		0x1a010, 0x1a06c,
2227		0x1a0b0, 0x1a0e4,
2228		0x1a0ec, 0x1a0f8,
2229		0x1a100, 0x1a108,
2230		0x1a114, 0x1a130,
2231		0x1a138, 0x1a1c4,
2232		0x1a1fc, 0x1a1fc,
2233		0x1e008, 0x1e00c,
2234		0x1e040, 0x1e044,
2235		0x1e04c, 0x1e04c,
2236		0x1e284, 0x1e290,
2237		0x1e2c0, 0x1e2c0,
2238		0x1e2e0, 0x1e2e0,
2239		0x1e300, 0x1e384,
2240		0x1e3c0, 0x1e3c8,
2241		0x1e408, 0x1e40c,
2242		0x1e440, 0x1e444,
2243		0x1e44c, 0x1e44c,
2244		0x1e684, 0x1e690,
2245		0x1e6c0, 0x1e6c0,
2246		0x1e6e0, 0x1e6e0,
2247		0x1e700, 0x1e784,
2248		0x1e7c0, 0x1e7c8,
2249		0x1e808, 0x1e80c,
2250		0x1e840, 0x1e844,
2251		0x1e84c, 0x1e84c,
2252		0x1ea84, 0x1ea90,
2253		0x1eac0, 0x1eac0,
2254		0x1eae0, 0x1eae0,
2255		0x1eb00, 0x1eb84,
2256		0x1ebc0, 0x1ebc8,
2257		0x1ec08, 0x1ec0c,
2258		0x1ec40, 0x1ec44,
2259		0x1ec4c, 0x1ec4c,
2260		0x1ee84, 0x1ee90,
2261		0x1eec0, 0x1eec0,
2262		0x1eee0, 0x1eee0,
2263		0x1ef00, 0x1ef84,
2264		0x1efc0, 0x1efc8,
2265		0x1f008, 0x1f00c,
2266		0x1f040, 0x1f044,
2267		0x1f04c, 0x1f04c,
2268		0x1f284, 0x1f290,
2269		0x1f2c0, 0x1f2c0,
2270		0x1f2e0, 0x1f2e0,
2271		0x1f300, 0x1f384,
2272		0x1f3c0, 0x1f3c8,
2273		0x1f408, 0x1f40c,
2274		0x1f440, 0x1f444,
2275		0x1f44c, 0x1f44c,
2276		0x1f684, 0x1f690,
2277		0x1f6c0, 0x1f6c0,
2278		0x1f6e0, 0x1f6e0,
2279		0x1f700, 0x1f784,
2280		0x1f7c0, 0x1f7c8,
2281		0x1f808, 0x1f80c,
2282		0x1f840, 0x1f844,
2283		0x1f84c, 0x1f84c,
2284		0x1fa84, 0x1fa90,
2285		0x1fac0, 0x1fac0,
2286		0x1fae0, 0x1fae0,
2287		0x1fb00, 0x1fb84,
2288		0x1fbc0, 0x1fbc8,
2289		0x1fc08, 0x1fc0c,
2290		0x1fc40, 0x1fc44,
2291		0x1fc4c, 0x1fc4c,
2292		0x1fe84, 0x1fe90,
2293		0x1fec0, 0x1fec0,
2294		0x1fee0, 0x1fee0,
2295		0x1ff00, 0x1ff84,
2296		0x1ffc0, 0x1ffc8,
2297		0x30000, 0x30030,
2298		0x30100, 0x30168,
2299		0x30190, 0x301a0,
2300		0x301a8, 0x301b8,
2301		0x301c4, 0x301c8,
2302		0x301d0, 0x301d0,
2303		0x30200, 0x30320,
2304		0x30400, 0x304b4,
2305		0x304c0, 0x3052c,
2306		0x30540, 0x3061c,
2307		0x30800, 0x308a0,
2308		0x308c0, 0x30908,
2309		0x30910, 0x309b8,
2310		0x30a00, 0x30a04,
2311		0x30a0c, 0x30a14,
2312		0x30a1c, 0x30a2c,
2313		0x30a44, 0x30a50,
2314		0x30a74, 0x30a74,
2315		0x30a7c, 0x30afc,
2316		0x30b08, 0x30c24,
2317		0x30d00, 0x30d14,
2318		0x30d1c, 0x30d3c,
2319		0x30d44, 0x30d4c,
2320		0x30d54, 0x30d74,
2321		0x30d7c, 0x30d7c,
2322		0x30de0, 0x30de0,
2323		0x30e00, 0x30ed4,
2324		0x30f00, 0x30fa4,
2325		0x30fc0, 0x30fc4,
2326		0x31000, 0x31004,
2327		0x31080, 0x310fc,
2328		0x31208, 0x31220,
2329		0x3123c, 0x31254,
2330		0x31300, 0x31300,
2331		0x31308, 0x3131c,
2332		0x31338, 0x3133c,
2333		0x31380, 0x31380,
2334		0x31388, 0x313a8,
2335		0x313b4, 0x313b4,
2336		0x31400, 0x31420,
2337		0x31438, 0x3143c,
2338		0x31480, 0x31480,
2339		0x314a8, 0x314a8,
2340		0x314b0, 0x314b4,
2341		0x314c8, 0x314d4,
2342		0x31a40, 0x31a4c,
2343		0x31af0, 0x31b20,
2344		0x31b38, 0x31b3c,
2345		0x31b80, 0x31b80,
2346		0x31ba8, 0x31ba8,
2347		0x31bb0, 0x31bb4,
2348		0x31bc8, 0x31bd4,
2349		0x32140, 0x3218c,
2350		0x321f0, 0x321f4,
2351		0x32200, 0x32200,
2352		0x32218, 0x32218,
2353		0x32400, 0x32400,
2354		0x32408, 0x3241c,
2355		0x32618, 0x32620,
2356		0x32664, 0x32664,
2357		0x326a8, 0x326a8,
2358		0x326ec, 0x326ec,
2359		0x32a00, 0x32abc,
2360		0x32b00, 0x32b18,
2361		0x32b20, 0x32b38,
2362		0x32b40, 0x32b58,
2363		0x32b60, 0x32b78,
2364		0x32c00, 0x32c00,
2365		0x32c08, 0x32c3c,
2366		0x33000, 0x3302c,
2367		0x33034, 0x33050,
2368		0x33058, 0x33058,
2369		0x33060, 0x3308c,
2370		0x3309c, 0x330ac,
2371		0x330c0, 0x330c0,
2372		0x330c8, 0x330d0,
2373		0x330d8, 0x330e0,
2374		0x330ec, 0x3312c,
2375		0x33134, 0x33150,
2376		0x33158, 0x33158,
2377		0x33160, 0x3318c,
2378		0x3319c, 0x331ac,
2379		0x331c0, 0x331c0,
2380		0x331c8, 0x331d0,
2381		0x331d8, 0x331e0,
2382		0x331ec, 0x33290,
2383		0x33298, 0x332c4,
2384		0x332e4, 0x33390,
2385		0x33398, 0x333c4,
2386		0x333e4, 0x3342c,
2387		0x33434, 0x33450,
2388		0x33458, 0x33458,
2389		0x33460, 0x3348c,
2390		0x3349c, 0x334ac,
2391		0x334c0, 0x334c0,
2392		0x334c8, 0x334d0,
2393		0x334d8, 0x334e0,
2394		0x334ec, 0x3352c,
2395		0x33534, 0x33550,
2396		0x33558, 0x33558,
2397		0x33560, 0x3358c,
2398		0x3359c, 0x335ac,
2399		0x335c0, 0x335c0,
2400		0x335c8, 0x335d0,
2401		0x335d8, 0x335e0,
2402		0x335ec, 0x33690,
2403		0x33698, 0x336c4,
2404		0x336e4, 0x33790,
2405		0x33798, 0x337c4,
2406		0x337e4, 0x337fc,
2407		0x33814, 0x33814,
2408		0x33854, 0x33868,
2409		0x33880, 0x3388c,
2410		0x338c0, 0x338d0,
2411		0x338e8, 0x338ec,
2412		0x33900, 0x3392c,
2413		0x33934, 0x33950,
2414		0x33958, 0x33958,
2415		0x33960, 0x3398c,
2416		0x3399c, 0x339ac,
2417		0x339c0, 0x339c0,
2418		0x339c8, 0x339d0,
2419		0x339d8, 0x339e0,
2420		0x339ec, 0x33a90,
2421		0x33a98, 0x33ac4,
2422		0x33ae4, 0x33b10,
2423		0x33b24, 0x33b28,
2424		0x33b38, 0x33b50,
2425		0x33bf0, 0x33c10,
2426		0x33c24, 0x33c28,
2427		0x33c38, 0x33c50,
2428		0x33cf0, 0x33cfc,
2429		0x34000, 0x34030,
2430		0x34100, 0x34168,
2431		0x34190, 0x341a0,
2432		0x341a8, 0x341b8,
2433		0x341c4, 0x341c8,
2434		0x341d0, 0x341d0,
2435		0x34200, 0x34320,
2436		0x34400, 0x344b4,
2437		0x344c0, 0x3452c,
2438		0x34540, 0x3461c,
2439		0x34800, 0x348a0,
2440		0x348c0, 0x34908,
2441		0x34910, 0x349b8,
2442		0x34a00, 0x34a04,
2443		0x34a0c, 0x34a14,
2444		0x34a1c, 0x34a2c,
2445		0x34a44, 0x34a50,
2446		0x34a74, 0x34a74,
2447		0x34a7c, 0x34afc,
2448		0x34b08, 0x34c24,
2449		0x34d00, 0x34d14,
2450		0x34d1c, 0x34d3c,
2451		0x34d44, 0x34d4c,
2452		0x34d54, 0x34d74,
2453		0x34d7c, 0x34d7c,
2454		0x34de0, 0x34de0,
2455		0x34e00, 0x34ed4,
2456		0x34f00, 0x34fa4,
2457		0x34fc0, 0x34fc4,
2458		0x35000, 0x35004,
2459		0x35080, 0x350fc,
2460		0x35208, 0x35220,
2461		0x3523c, 0x35254,
2462		0x35300, 0x35300,
2463		0x35308, 0x3531c,
2464		0x35338, 0x3533c,
2465		0x35380, 0x35380,
2466		0x35388, 0x353a8,
2467		0x353b4, 0x353b4,
2468		0x35400, 0x35420,
2469		0x35438, 0x3543c,
2470		0x35480, 0x35480,
2471		0x354a8, 0x354a8,
2472		0x354b0, 0x354b4,
2473		0x354c8, 0x354d4,
2474		0x35a40, 0x35a4c,
2475		0x35af0, 0x35b20,
2476		0x35b38, 0x35b3c,
2477		0x35b80, 0x35b80,
2478		0x35ba8, 0x35ba8,
2479		0x35bb0, 0x35bb4,
2480		0x35bc8, 0x35bd4,
2481		0x36140, 0x3618c,
2482		0x361f0, 0x361f4,
2483		0x36200, 0x36200,
2484		0x36218, 0x36218,
2485		0x36400, 0x36400,
2486		0x36408, 0x3641c,
2487		0x36618, 0x36620,
2488		0x36664, 0x36664,
2489		0x366a8, 0x366a8,
2490		0x366ec, 0x366ec,
2491		0x36a00, 0x36abc,
2492		0x36b00, 0x36b18,
2493		0x36b20, 0x36b38,
2494		0x36b40, 0x36b58,
2495		0x36b60, 0x36b78,
2496		0x36c00, 0x36c00,
2497		0x36c08, 0x36c3c,
2498		0x37000, 0x3702c,
2499		0x37034, 0x37050,
2500		0x37058, 0x37058,
2501		0x37060, 0x3708c,
2502		0x3709c, 0x370ac,
2503		0x370c0, 0x370c0,
2504		0x370c8, 0x370d0,
2505		0x370d8, 0x370e0,
2506		0x370ec, 0x3712c,
2507		0x37134, 0x37150,
2508		0x37158, 0x37158,
2509		0x37160, 0x3718c,
2510		0x3719c, 0x371ac,
2511		0x371c0, 0x371c0,
2512		0x371c8, 0x371d0,
2513		0x371d8, 0x371e0,
2514		0x371ec, 0x37290,
2515		0x37298, 0x372c4,
2516		0x372e4, 0x37390,
2517		0x37398, 0x373c4,
2518		0x373e4, 0x3742c,
2519		0x37434, 0x37450,
2520		0x37458, 0x37458,
2521		0x37460, 0x3748c,
2522		0x3749c, 0x374ac,
2523		0x374c0, 0x374c0,
2524		0x374c8, 0x374d0,
2525		0x374d8, 0x374e0,
2526		0x374ec, 0x3752c,
2527		0x37534, 0x37550,
2528		0x37558, 0x37558,
2529		0x37560, 0x3758c,
2530		0x3759c, 0x375ac,
2531		0x375c0, 0x375c0,
2532		0x375c8, 0x375d0,
2533		0x375d8, 0x375e0,
2534		0x375ec, 0x37690,
2535		0x37698, 0x376c4,
2536		0x376e4, 0x37790,
2537		0x37798, 0x377c4,
2538		0x377e4, 0x377fc,
2539		0x37814, 0x37814,
2540		0x37854, 0x37868,
2541		0x37880, 0x3788c,
2542		0x378c0, 0x378d0,
2543		0x378e8, 0x378ec,
2544		0x37900, 0x3792c,
2545		0x37934, 0x37950,
2546		0x37958, 0x37958,
2547		0x37960, 0x3798c,
2548		0x3799c, 0x379ac,
2549		0x379c0, 0x379c0,
2550		0x379c8, 0x379d0,
2551		0x379d8, 0x379e0,
2552		0x379ec, 0x37a90,
2553		0x37a98, 0x37ac4,
2554		0x37ae4, 0x37b10,
2555		0x37b24, 0x37b28,
2556		0x37b38, 0x37b50,
2557		0x37bf0, 0x37c10,
2558		0x37c24, 0x37c28,
2559		0x37c38, 0x37c50,
2560		0x37cf0, 0x37cfc,
2561		0x40040, 0x40040,
2562		0x40080, 0x40084,
2563		0x40100, 0x40100,
2564		0x40140, 0x401bc,
2565		0x40200, 0x40214,
2566		0x40228, 0x40228,
2567		0x40240, 0x40258,
2568		0x40280, 0x40280,
2569		0x40304, 0x40304,
2570		0x40330, 0x4033c,
2571		0x41304, 0x413c8,
2572		0x413d0, 0x413dc,
2573		0x413f0, 0x413f0,
2574		0x41400, 0x4140c,
2575		0x41414, 0x4141c,
2576		0x41480, 0x414d0,
2577		0x44000, 0x4407c,
2578		0x440c0, 0x441ac,
2579		0x441b4, 0x4427c,
2580		0x442c0, 0x443ac,
2581		0x443b4, 0x4447c,
2582		0x444c0, 0x445ac,
2583		0x445b4, 0x4467c,
2584		0x446c0, 0x447ac,
2585		0x447b4, 0x4487c,
2586		0x448c0, 0x449ac,
2587		0x449b4, 0x44a7c,
2588		0x44ac0, 0x44bac,
2589		0x44bb4, 0x44c7c,
2590		0x44cc0, 0x44dac,
2591		0x44db4, 0x44e7c,
2592		0x44ec0, 0x44fac,
2593		0x44fb4, 0x4507c,
2594		0x450c0, 0x451ac,
2595		0x451b4, 0x451fc,
2596		0x45800, 0x45804,
2597		0x45810, 0x45830,
2598		0x45840, 0x45860,
2599		0x45868, 0x45868,
2600		0x45880, 0x45884,
2601		0x458a0, 0x458b0,
2602		0x45a00, 0x45a04,
2603		0x45a10, 0x45a30,
2604		0x45a40, 0x45a60,
2605		0x45a68, 0x45a68,
2606		0x45a80, 0x45a84,
2607		0x45aa0, 0x45ab0,
2608		0x460c0, 0x460e4,
2609		0x47000, 0x4703c,
2610		0x47044, 0x4708c,
2611		0x47200, 0x47250,
2612		0x47400, 0x47408,
2613		0x47414, 0x47420,
2614		0x47600, 0x47618,
2615		0x47800, 0x47814,
2616		0x47820, 0x4782c,
2617		0x50000, 0x50084,
2618		0x50090, 0x500cc,
2619		0x50300, 0x50384,
2620		0x50400, 0x50400,
2621		0x50800, 0x50884,
2622		0x50890, 0x508cc,
2623		0x50b00, 0x50b84,
2624		0x50c00, 0x50c00,
2625		0x51000, 0x51020,
2626		0x51028, 0x510b0,
2627		0x51300, 0x51324,
2628	};
2629
2630	static const unsigned int t6vf_reg_ranges[] = {
2631		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2632		VF_MPS_REG(A_MPS_VF_CTL),
2633		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2634		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2635		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2636		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2637		FW_T6VF_MBDATA_BASE_ADDR,
2638		FW_T6VF_MBDATA_BASE_ADDR +
2639		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2640	};
2641
2642	u32 *buf_end = (u32 *)(buf + buf_size);
2643	const unsigned int *reg_ranges;
2644	int reg_ranges_size, range;
2645	unsigned int chip_version = chip_id(adap);
2646
2647	/*
2648	 * Select the right set of register ranges to dump depending on the
2649	 * adapter chip type.
2650	 */
2651	switch (chip_version) {
2652	case CHELSIO_T4:
2653		if (adap->flags & IS_VF) {
2654			reg_ranges = t4vf_reg_ranges;
2655			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2656		} else {
2657			reg_ranges = t4_reg_ranges;
2658			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2659		}
2660		break;
2661
2662	case CHELSIO_T5:
2663		if (adap->flags & IS_VF) {
2664			reg_ranges = t5vf_reg_ranges;
2665			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2666		} else {
2667			reg_ranges = t5_reg_ranges;
2668			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2669		}
2670		break;
2671
2672	case CHELSIO_T6:
2673		if (adap->flags & IS_VF) {
2674			reg_ranges = t6vf_reg_ranges;
2675			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2676		} else {
2677			reg_ranges = t6_reg_ranges;
2678			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2679		}
2680		break;
2681
2682	default:
2683		CH_ERR(adap,
2684			"Unsupported chip version %d\n", chip_version);
2685		return;
2686	}
2687
2688	/*
2689	 * Clear the register buffer and insert the appropriate register
2690	 * values selected by the above register ranges.
2691	 */
2692	memset(buf, 0, buf_size);
2693	for (range = 0; range < reg_ranges_size; range += 2) {
2694		unsigned int reg = reg_ranges[range];
2695		unsigned int last_reg = reg_ranges[range + 1];
2696		u32 *bufp = (u32 *)(buf + reg);
2697
2698		/*
2699		 * Iterate across the register range filling in the register
2700		 * buffer but don't write past the end of the register buffer.
2701		 */
2702		while (reg <= last_reg && bufp < buf_end) {
2703			*bufp++ = t4_read_reg(adap, reg);
2704			reg += sizeof(u32);
2705		}
2706	}
2707}
2708
2709/*
2710 * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2711 * header followed by one or more VPD-R sections, each with its own header.
2712 */
2713struct t4_vpd_hdr {
2714	u8  id_tag;
2715	u8  id_len[2];
2716	u8  id_data[ID_LEN];
2717};
2718
2719struct t4_vpdr_hdr {
2720	u8  vpdr_tag;
2721	u8  vpdr_len[2];
2722};
2723
2724/*
2725 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2726 */
2727#define EEPROM_DELAY		10		/* 10us per poll spin */
2728#define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2729
2730#define EEPROM_STAT_ADDR	0x7bfc
2731#define VPD_SIZE		0x800
2732#define VPD_BASE		0x400
2733#define VPD_BASE_OLD		0
2734#define VPD_LEN			1024
2735#define VPD_INFO_FLD_HDR_SIZE	3
2736#define CHELSIO_VPD_UNIQUE_ID	0x82
2737
2738/*
2739 * Small utility function to wait till any outstanding VPD Access is complete.
2740 * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2741 * VPD Access in flight.  This allows us to handle the problem of having a
2742 * previous VPD Access time out and prevent an attempt to inject a new VPD
2743 * Request before any in-flight VPD reguest has completed.
2744 */
2745static int t4_seeprom_wait(struct adapter *adapter)
2746{
2747	unsigned int base = adapter->params.pci.vpd_cap_addr;
2748	int max_poll;
2749
2750	/*
2751	 * If no VPD Access is in flight, we can just return success right
2752	 * away.
2753	 */
2754	if (!adapter->vpd_busy)
2755		return 0;
2756
2757	/*
2758	 * Poll the VPD Capability Address/Flag register waiting for it
2759	 * to indicate that the operation is complete.
2760	 */
2761	max_poll = EEPROM_MAX_POLL;
2762	do {
2763		u16 val;
2764
2765		udelay(EEPROM_DELAY);
2766		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2767
2768		/*
2769		 * If the operation is complete, mark the VPD as no longer
2770		 * busy and return success.
2771		 */
2772		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2773			adapter->vpd_busy = 0;
2774			return 0;
2775		}
2776	} while (--max_poll);
2777
2778	/*
2779	 * Failure!  Note that we leave the VPD Busy status set in order to
2780	 * avoid pushing a new VPD Access request into the VPD Capability till
2781	 * the current operation eventually succeeds.  It's a bug to issue a
2782	 * new request when an existing request is in flight and will result
2783	 * in corrupt hardware state.
2784	 */
2785	return -ETIMEDOUT;
2786}
2787
2788/**
2789 *	t4_seeprom_read - read a serial EEPROM location
2790 *	@adapter: adapter to read
2791 *	@addr: EEPROM virtual address
2792 *	@data: where to store the read data
2793 *
2794 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2795 *	VPD capability.  Note that this function must be called with a virtual
2796 *	address.
2797 */
2798int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2799{
2800	unsigned int base = adapter->params.pci.vpd_cap_addr;
2801	int ret;
2802
2803	/*
2804	 * VPD Accesses must alway be 4-byte aligned!
2805	 */
2806	if (addr >= EEPROMVSIZE || (addr & 3))
2807		return -EINVAL;
2808
2809	/*
2810	 * Wait for any previous operation which may still be in flight to
2811	 * complete.
2812	 */
2813	ret = t4_seeprom_wait(adapter);
2814	if (ret) {
2815		CH_ERR(adapter, "VPD still busy from previous operation\n");
2816		return ret;
2817	}
2818
2819	/*
2820	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2821	 * for our request to complete.  If it doesn't complete, note the
2822	 * error and return it to our caller.  Note that we do not reset the
2823	 * VPD Busy status!
2824	 */
2825	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2826	adapter->vpd_busy = 1;
2827	adapter->vpd_flag = PCI_VPD_ADDR_F;
2828	ret = t4_seeprom_wait(adapter);
2829	if (ret) {
2830		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2831		return ret;
2832	}
2833
2834	/*
2835	 * Grab the returned data, swizzle it into our endianness and
2836	 * return success.
2837	 */
2838	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2839	*data = le32_to_cpu(*data);
2840	return 0;
2841}
2842
2843/**
2844 *	t4_seeprom_write - write a serial EEPROM location
2845 *	@adapter: adapter to write
2846 *	@addr: virtual EEPROM address
2847 *	@data: value to write
2848 *
2849 *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2850 *	VPD capability.  Note that this function must be called with a virtual
2851 *	address.
2852 */
2853int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2854{
2855	unsigned int base = adapter->params.pci.vpd_cap_addr;
2856	int ret;
2857	u32 stats_reg;
2858	int max_poll;
2859
2860	/*
2861	 * VPD Accesses must alway be 4-byte aligned!
2862	 */
2863	if (addr >= EEPROMVSIZE || (addr & 3))
2864		return -EINVAL;
2865
2866	/*
2867	 * Wait for any previous operation which may still be in flight to
2868	 * complete.
2869	 */
2870	ret = t4_seeprom_wait(adapter);
2871	if (ret) {
2872		CH_ERR(adapter, "VPD still busy from previous operation\n");
2873		return ret;
2874	}
2875
2876	/*
2877	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2878	 * for our request to complete.  If it doesn't complete, note the
2879	 * error and return it to our caller.  Note that we do not reset the
2880	 * VPD Busy status!
2881	 */
2882	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2883				 cpu_to_le32(data));
2884	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2885				 (u16)addr | PCI_VPD_ADDR_F);
2886	adapter->vpd_busy = 1;
2887	adapter->vpd_flag = 0;
2888	ret = t4_seeprom_wait(adapter);
2889	if (ret) {
2890		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2891		return ret;
2892	}
2893
2894	/*
2895	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2896	 * request to complete. If it doesn't complete, return error.
2897	 */
2898	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2899	max_poll = EEPROM_MAX_POLL;
2900	do {
2901		udelay(EEPROM_DELAY);
2902		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2903	} while ((stats_reg & 0x1) && --max_poll);
2904	if (!max_poll)
2905		return -ETIMEDOUT;
2906
2907	/* Return success! */
2908	return 0;
2909}
2910
2911/**
2912 *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2913 *	@phys_addr: the physical EEPROM address
2914 *	@fn: the PCI function number
2915 *	@sz: size of function-specific area
2916 *
2917 *	Translate a physical EEPROM address to virtual.  The first 1K is
2918 *	accessed through virtual addresses starting at 31K, the rest is
2919 *	accessed through virtual addresses starting at 0.
2920 *
2921 *	The mapping is as follows:
2922 *	[0..1K) -> [31K..32K)
2923 *	[1K..1K+A) -> [ES-A..ES)
2924 *	[1K+A..ES) -> [0..ES-A-1K)
2925 *
2926 *	where A = @fn * @sz, and ES = EEPROM size.
2927 */
2928int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2929{
2930	fn *= sz;
2931	if (phys_addr < 1024)
2932		return phys_addr + (31 << 10);
2933	if (phys_addr < 1024 + fn)
2934		return EEPROMSIZE - fn + phys_addr - 1024;
2935	if (phys_addr < EEPROMSIZE)
2936		return phys_addr - 1024 - fn;
2937	return -EINVAL;
2938}
2939
2940/**
2941 *	t4_seeprom_wp - enable/disable EEPROM write protection
2942 *	@adapter: the adapter
2943 *	@enable: whether to enable or disable write protection
2944 *
2945 *	Enables or disables write protection on the serial EEPROM.
2946 */
2947int t4_seeprom_wp(struct adapter *adapter, int enable)
2948{
2949	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2950}
2951
2952/**
2953 *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2954 *	@vpd: Pointer to buffered vpd data structure
2955 *	@kw: The keyword to search for
2956 *	@region: VPD region to search (starting from 0)
2957 *
2958 *	Returns the value of the information field keyword or
2959 *	-ENOENT otherwise.
2960 */
2961static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2962{
2963	int i, tag;
2964	unsigned int offset, len;
2965	const struct t4_vpdr_hdr *vpdr;
2966
2967	offset = sizeof(struct t4_vpd_hdr);
2968	vpdr = (const void *)(vpd + offset);
2969	tag = vpdr->vpdr_tag;
2970	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2971	while (region--) {
2972		offset += sizeof(struct t4_vpdr_hdr) + len;
2973		vpdr = (const void *)(vpd + offset);
2974		if (++tag != vpdr->vpdr_tag)
2975			return -ENOENT;
2976		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2977	}
2978	offset += sizeof(struct t4_vpdr_hdr);
2979
2980	if (offset + len > VPD_LEN) {
2981		return -ENOENT;
2982	}
2983
2984	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2985		if (memcmp(vpd + i , kw , 2) == 0){
2986			i += VPD_INFO_FLD_HDR_SIZE;
2987			return i;
2988		}
2989
2990		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2991	}
2992
2993	return -ENOENT;
2994}
2995
2996
2997/**
2998 *	get_vpd_params - read VPD parameters from VPD EEPROM
2999 *	@adapter: adapter to read
3000 *	@p: where to store the parameters
3001 *	@vpd: caller provided temporary space to read the VPD into
3002 *
3003 *	Reads card parameters stored in VPD EEPROM.
3004 */
3005static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3006    uint16_t device_id, u32 *buf)
3007{
3008	int i, ret, addr;
3009	int ec, sn, pn, na, md;
3010	u8 csum;
3011	const u8 *vpd = (const u8 *)buf;
3012
3013	/*
3014	 * Card information normally starts at VPD_BASE but early cards had
3015	 * it at 0.
3016	 */
3017	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3018	if (ret)
3019		return (ret);
3020
3021	/*
3022	 * The VPD shall have a unique identifier specified by the PCI SIG.
3023	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3024	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3025	 * is expected to automatically put this entry at the
3026	 * beginning of the VPD.
3027	 */
3028	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3029
3030	for (i = 0; i < VPD_LEN; i += 4) {
3031		ret = t4_seeprom_read(adapter, addr + i, buf++);
3032		if (ret)
3033			return ret;
3034	}
3035
3036#define FIND_VPD_KW(var,name) do { \
3037	var = get_vpd_keyword_val(vpd, name, 0); \
3038	if (var < 0) { \
3039		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3040		return -EINVAL; \
3041	} \
3042} while (0)
3043
3044	FIND_VPD_KW(i, "RV");
3045	for (csum = 0; i >= 0; i--)
3046		csum += vpd[i];
3047
3048	if (csum) {
3049		CH_ERR(adapter,
3050			"corrupted VPD EEPROM, actual csum %u\n", csum);
3051		return -EINVAL;
3052	}
3053
3054	FIND_VPD_KW(ec, "EC");
3055	FIND_VPD_KW(sn, "SN");
3056	FIND_VPD_KW(pn, "PN");
3057	FIND_VPD_KW(na, "NA");
3058#undef FIND_VPD_KW
3059
3060	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3061	strstrip(p->id);
3062	memcpy(p->ec, vpd + ec, EC_LEN);
3063	strstrip(p->ec);
3064	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3065	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3066	strstrip(p->sn);
3067	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3068	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3069	strstrip((char *)p->pn);
3070	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3071	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3072	strstrip((char *)p->na);
3073
3074	if (device_id & 0x80)
3075		return 0;	/* Custom card */
3076
3077	md = get_vpd_keyword_val(vpd, "VF", 1);
3078	if (md < 0) {
3079		snprintf(p->md, sizeof(p->md), "unknown");
3080	} else {
3081		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3082		memcpy(p->md, vpd + md, min(i, MD_LEN));
3083		strstrip((char *)p->md);
3084	}
3085
3086	return 0;
3087}
3088
3089/* serial flash and firmware constants and flash config file constants */
3090enum {
3091	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3092
3093	/* flash command opcodes */
3094	SF_PROG_PAGE    = 2,	/* program 256B page */
3095	SF_WR_DISABLE   = 4,	/* disable writes */
3096	SF_RD_STATUS    = 5,	/* read status register */
3097	SF_WR_ENABLE    = 6,	/* enable writes */
3098	SF_RD_DATA_FAST = 0xb,	/* read flash */
3099	SF_RD_ID	= 0x9f,	/* read ID */
3100	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3101};
3102
3103/**
3104 *	sf1_read - read data from the serial flash
3105 *	@adapter: the adapter
3106 *	@byte_cnt: number of bytes to read
3107 *	@cont: whether another operation will be chained
3108 *	@lock: whether to lock SF for PL access only
3109 *	@valp: where to store the read data
3110 *
3111 *	Reads up to 4 bytes of data from the serial flash.  The location of
3112 *	the read needs to be specified prior to calling this by issuing the
3113 *	appropriate commands to the serial flash.
3114 */
3115static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3116		    int lock, u32 *valp)
3117{
3118	int ret;
3119
3120	if (!byte_cnt || byte_cnt > 4)
3121		return -EINVAL;
3122	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3123		return -EBUSY;
3124	t4_write_reg(adapter, A_SF_OP,
3125		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3126	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3127	if (!ret)
3128		*valp = t4_read_reg(adapter, A_SF_DATA);
3129	return ret;
3130}
3131
3132/**
3133 *	sf1_write - write data to the serial flash
3134 *	@adapter: the adapter
3135 *	@byte_cnt: number of bytes to write
3136 *	@cont: whether another operation will be chained
3137 *	@lock: whether to lock SF for PL access only
3138 *	@val: value to write
3139 *
3140 *	Writes up to 4 bytes of data to the serial flash.  The location of
3141 *	the write needs to be specified prior to calling this by issuing the
3142 *	appropriate commands to the serial flash.
3143 */
3144static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3145		     int lock, u32 val)
3146{
3147	if (!byte_cnt || byte_cnt > 4)
3148		return -EINVAL;
3149	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3150		return -EBUSY;
3151	t4_write_reg(adapter, A_SF_DATA, val);
3152	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3153		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3154	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3155}
3156
3157/**
3158 *	flash_wait_op - wait for a flash operation to complete
3159 *	@adapter: the adapter
3160 *	@attempts: max number of polls of the status register
3161 *	@delay: delay between polls in ms
3162 *
3163 *	Wait for a flash operation to complete by polling the status register.
3164 */
3165static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3166{
3167	int ret;
3168	u32 status;
3169
3170	while (1) {
3171		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3172		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3173			return ret;
3174		if (!(status & 1))
3175			return 0;
3176		if (--attempts == 0)
3177			return -EAGAIN;
3178		if (delay)
3179			msleep(delay);
3180	}
3181}
3182
3183/**
3184 *	t4_read_flash - read words from serial flash
3185 *	@adapter: the adapter
3186 *	@addr: the start address for the read
3187 *	@nwords: how many 32-bit words to read
3188 *	@data: where to store the read data
3189 *	@byte_oriented: whether to store data as bytes or as words
3190 *
3191 *	Read the specified number of 32-bit words from the serial flash.
3192 *	If @byte_oriented is set the read data is stored as a byte array
3193 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3194 *	natural endianness.
3195 */
3196int t4_read_flash(struct adapter *adapter, unsigned int addr,
3197		  unsigned int nwords, u32 *data, int byte_oriented)
3198{
3199	int ret;
3200
3201	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3202		return -EINVAL;
3203
3204	addr = swab32(addr) | SF_RD_DATA_FAST;
3205
3206	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3207	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3208		return ret;
3209
3210	for ( ; nwords; nwords--, data++) {
3211		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3212		if (nwords == 1)
3213			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3214		if (ret)
3215			return ret;
3216		if (byte_oriented)
3217			*data = (__force __u32)(cpu_to_be32(*data));
3218	}
3219	return 0;
3220}
3221
3222/**
3223 *	t4_write_flash - write up to a page of data to the serial flash
3224 *	@adapter: the adapter
3225 *	@addr: the start address to write
3226 *	@n: length of data to write in bytes
3227 *	@data: the data to write
3228 *	@byte_oriented: whether to store data as bytes or as words
3229 *
3230 *	Writes up to a page of data (256 bytes) to the serial flash starting
3231 *	at the given address.  All the data must be written to the same page.
3232 *	If @byte_oriented is set the write data is stored as byte stream
3233 *	(i.e. matches what on disk), otherwise in big-endian.
3234 */
3235int t4_write_flash(struct adapter *adapter, unsigned int addr,
3236			  unsigned int n, const u8 *data, int byte_oriented)
3237{
3238	int ret;
3239	u32 buf[SF_PAGE_SIZE / 4];
3240	unsigned int i, c, left, val, offset = addr & 0xff;
3241
3242	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3243		return -EINVAL;
3244
3245	val = swab32(addr) | SF_PROG_PAGE;
3246
3247	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3248	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3249		goto unlock;
3250
3251	for (left = n; left; left -= c) {
3252		c = min(left, 4U);
3253		for (val = 0, i = 0; i < c; ++i)
3254			val = (val << 8) + *data++;
3255
3256		if (!byte_oriented)
3257			val = cpu_to_be32(val);
3258
3259		ret = sf1_write(adapter, c, c != left, 1, val);
3260		if (ret)
3261			goto unlock;
3262	}
3263	ret = flash_wait_op(adapter, 8, 1);
3264	if (ret)
3265		goto unlock;
3266
3267	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3268
3269	/* Read the page to verify the write succeeded */
3270	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3271			    byte_oriented);
3272	if (ret)
3273		return ret;
3274
3275	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3276		CH_ERR(adapter,
3277			"failed to correctly write the flash page at %#x\n",
3278			addr);
3279		return -EIO;
3280	}
3281	return 0;
3282
3283unlock:
3284	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3285	return ret;
3286}
3287
3288/**
3289 *	t4_get_fw_version - read the firmware version
3290 *	@adapter: the adapter
3291 *	@vers: where to place the version
3292 *
3293 *	Reads the FW version from flash.
3294 */
3295int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3296{
3297	return t4_read_flash(adapter, FLASH_FW_START +
3298			     offsetof(struct fw_hdr, fw_ver), 1,
3299			     vers, 0);
3300}
3301
3302/**
3303 *	t4_get_fw_hdr - read the firmware header
3304 *	@adapter: the adapter
3305 *	@hdr: where to place the version
3306 *
3307 *	Reads the FW header from flash into caller provided buffer.
3308 */
3309int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3310{
3311	return t4_read_flash(adapter, FLASH_FW_START,
3312	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3313}
3314
3315/**
3316 *	t4_get_bs_version - read the firmware bootstrap version
3317 *	@adapter: the adapter
3318 *	@vers: where to place the version
3319 *
3320 *	Reads the FW Bootstrap version from flash.
3321 */
3322int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3323{
3324	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3325			     offsetof(struct fw_hdr, fw_ver), 1,
3326			     vers, 0);
3327}
3328
3329/**
3330 *	t4_get_tp_version - read the TP microcode version
3331 *	@adapter: the adapter
3332 *	@vers: where to place the version
3333 *
3334 *	Reads the TP microcode version from flash.
3335 */
3336int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3337{
3338	return t4_read_flash(adapter, FLASH_FW_START +
3339			     offsetof(struct fw_hdr, tp_microcode_ver),
3340			     1, vers, 0);
3341}
3342
3343/**
3344 *	t4_get_exprom_version - return the Expansion ROM version (if any)
3345 *	@adapter: the adapter
3346 *	@vers: where to place the version
3347 *
3348 *	Reads the Expansion ROM header from FLASH and returns the version
3349 *	number (if present) through the @vers return value pointer.  We return
3350 *	this in the Firmware Version Format since it's convenient.  Return
3351 *	0 on success, -ENOENT if no Expansion ROM is present.
3352 */
3353int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3354{
3355	struct exprom_header {
3356		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3357		unsigned char hdr_ver[4];	/* Expansion ROM version */
3358	} *hdr;
3359	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3360					   sizeof(u32))];
3361	int ret;
3362
3363	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3364			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3365			    0);
3366	if (ret)
3367		return ret;
3368
3369	hdr = (struct exprom_header *)exprom_header_buf;
3370	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3371		return -ENOENT;
3372
3373	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3374		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3375		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3376		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3377	return 0;
3378}
3379
3380/**
3381 *	t4_get_scfg_version - return the Serial Configuration version
3382 *	@adapter: the adapter
3383 *	@vers: where to place the version
3384 *
3385 *	Reads the Serial Configuration Version via the Firmware interface
3386 *	(thus this can only be called once we're ready to issue Firmware
3387 *	commands).  The format of the Serial Configuration version is
3388 *	adapter specific.  Returns 0 on success, an error on failure.
3389 *
3390 *	Note that early versions of the Firmware didn't include the ability
3391 *	to retrieve the Serial Configuration version, so we zero-out the
3392 *	return-value parameter in that case to avoid leaving it with
3393 *	garbage in it.
3394 *
3395 *	Also note that the Firmware will return its cached copy of the Serial
3396 *	Initialization Revision ID, not the actual Revision ID as written in
3397 *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3398 *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3399 *	it's best to defer calling this routine till after a FW_RESET_CMD has
3400 *	been issued if the Host Driver will be performing a full adapter
3401 *	initialization.
3402 */
3403int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3404{
3405	u32 scfgrev_param;
3406	int ret;
3407
3408	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3409			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3410	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3411			      1, &scfgrev_param, vers);
3412	if (ret)
3413		*vers = 0;
3414	return ret;
3415}
3416
3417/**
3418 *	t4_get_vpd_version - return the VPD version
3419 *	@adapter: the adapter
3420 *	@vers: where to place the version
3421 *
3422 *	Reads the VPD via the Firmware interface (thus this can only be called
3423 *	once we're ready to issue Firmware commands).  The format of the
3424 *	VPD version is adapter specific.  Returns 0 on success, an error on
3425 *	failure.
3426 *
3427 *	Note that early versions of the Firmware didn't include the ability
3428 *	to retrieve the VPD version, so we zero-out the return-value parameter
3429 *	in that case to avoid leaving it with garbage in it.
3430 *
3431 *	Also note that the Firmware will return its cached copy of the VPD
3432 *	Revision ID, not the actual Revision ID as written in the Serial
3433 *	EEPROM.  This is only an issue if a new VPD has been written and the
3434 *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3435 *	to defer calling this routine till after a FW_RESET_CMD has been issued
3436 *	if the Host Driver will be performing a full adapter initialization.
3437 */
3438int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3439{
3440	u32 vpdrev_param;
3441	int ret;
3442
3443	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3444			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3445	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3446			      1, &vpdrev_param, vers);
3447	if (ret)
3448		*vers = 0;
3449	return ret;
3450}
3451
3452/**
3453 *	t4_get_version_info - extract various chip/firmware version information
3454 *	@adapter: the adapter
3455 *
3456 *	Reads various chip/firmware version numbers and stores them into the
3457 *	adapter Adapter Parameters structure.  If any of the efforts fails
3458 *	the first failure will be returned, but all of the version numbers
3459 *	will be read.
3460 */
3461int t4_get_version_info(struct adapter *adapter)
3462{
3463	int ret = 0;
3464
3465	#define FIRST_RET(__getvinfo) \
3466	do { \
3467		int __ret = __getvinfo; \
3468		if (__ret && !ret) \
3469			ret = __ret; \
3470	} while (0)
3471
3472	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3473	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3474	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3475	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3476	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3477	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3478
3479	#undef FIRST_RET
3480
3481	return ret;
3482}
3483
3484/**
3485 *	t4_flash_erase_sectors - erase a range of flash sectors
3486 *	@adapter: the adapter
3487 *	@start: the first sector to erase
3488 *	@end: the last sector to erase
3489 *
3490 *	Erases the sectors in the given inclusive range.
3491 */
3492int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3493{
3494	int ret = 0;
3495
3496	if (end >= adapter->params.sf_nsec)
3497		return -EINVAL;
3498
3499	while (start <= end) {
3500		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3501		    (ret = sf1_write(adapter, 4, 0, 1,
3502				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3503		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3504			CH_ERR(adapter,
3505				"erase of flash sector %d failed, error %d\n",
3506				start, ret);
3507			break;
3508		}
3509		start++;
3510	}
3511	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3512	return ret;
3513}
3514
3515/**
3516 *	t4_flash_cfg_addr - return the address of the flash configuration file
3517 *	@adapter: the adapter
3518 *
3519 *	Return the address within the flash where the Firmware Configuration
3520 *	File is stored, or an error if the device FLASH is too small to contain
3521 *	a Firmware Configuration File.
3522 */
3523int t4_flash_cfg_addr(struct adapter *adapter)
3524{
3525	/*
3526	 * If the device FLASH isn't large enough to hold a Firmware
3527	 * Configuration File, return an error.
3528	 */
3529	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3530		return -ENOSPC;
3531
3532	return FLASH_CFG_START;
3533}
3534
3535/*
3536 * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3537 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3538 * and emit an error message for mismatched firmware to save our caller the
3539 * effort ...
3540 */
3541static int t4_fw_matches_chip(struct adapter *adap,
3542			      const struct fw_hdr *hdr)
3543{
3544	/*
3545	 * The expression below will return FALSE for any unsupported adapter
3546	 * which will keep us "honest" in the future ...
3547	 */
3548	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3549	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3550	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3551		return 1;
3552
3553	CH_ERR(adap,
3554		"FW image (%d) is not suitable for this adapter (%d)\n",
3555		hdr->chip, chip_id(adap));
3556	return 0;
3557}
3558
3559/**
3560 *	t4_load_fw - download firmware
3561 *	@adap: the adapter
3562 *	@fw_data: the firmware image to write
3563 *	@size: image size
3564 *
3565 *	Write the supplied firmware image to the card's serial flash.
3566 */
3567int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3568{
3569	u32 csum;
3570	int ret, addr;
3571	unsigned int i;
3572	u8 first_page[SF_PAGE_SIZE];
3573	const u32 *p = (const u32 *)fw_data;
3574	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3575	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3576	unsigned int fw_start_sec;
3577	unsigned int fw_start;
3578	unsigned int fw_size;
3579
3580	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3581		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3582		fw_start = FLASH_FWBOOTSTRAP_START;
3583		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3584	} else {
3585		fw_start_sec = FLASH_FW_START_SEC;
3586 		fw_start = FLASH_FW_START;
3587		fw_size = FLASH_FW_MAX_SIZE;
3588	}
3589
3590	if (!size) {
3591		CH_ERR(adap, "FW image has no data\n");
3592		return -EINVAL;
3593	}
3594	if (size & 511) {
3595		CH_ERR(adap,
3596			"FW image size not multiple of 512 bytes\n");
3597		return -EINVAL;
3598	}
3599	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3600		CH_ERR(adap,
3601			"FW image size differs from size in FW header\n");
3602		return -EINVAL;
3603	}
3604	if (size > fw_size) {
3605		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3606			fw_size);
3607		return -EFBIG;
3608	}
3609	if (!t4_fw_matches_chip(adap, hdr))
3610		return -EINVAL;
3611
3612	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3613		csum += be32_to_cpu(p[i]);
3614
3615	if (csum != 0xffffffff) {
3616		CH_ERR(adap,
3617			"corrupted firmware image, checksum %#x\n", csum);
3618		return -EINVAL;
3619	}
3620
3621	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3622	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3623	if (ret)
3624		goto out;
3625
3626	/*
3627	 * We write the correct version at the end so the driver can see a bad
3628	 * version if the FW write fails.  Start by writing a copy of the
3629	 * first page with a bad version.
3630	 */
3631	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3632	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3633	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3634	if (ret)
3635		goto out;
3636
3637	addr = fw_start;
3638	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3639		addr += SF_PAGE_SIZE;
3640		fw_data += SF_PAGE_SIZE;
3641		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3642		if (ret)
3643			goto out;
3644	}
3645
3646	ret = t4_write_flash(adap,
3647			     fw_start + offsetof(struct fw_hdr, fw_ver),
3648			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3649out:
3650	if (ret)
3651		CH_ERR(adap, "firmware download failed, error %d\n",
3652			ret);
3653	return ret;
3654}
3655
3656/**
3657 *	t4_fwcache - firmware cache operation
3658 *	@adap: the adapter
3659 *	@op  : the operation (flush or flush and invalidate)
3660 */
3661int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3662{
3663	struct fw_params_cmd c;
3664
3665	memset(&c, 0, sizeof(c));
3666	c.op_to_vfn =
3667	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3668			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3669				V_FW_PARAMS_CMD_PFN(adap->pf) |
3670				V_FW_PARAMS_CMD_VFN(0));
3671	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3672	c.param[0].mnem =
3673	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3674			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3675	c.param[0].val = (__force __be32)op;
3676
3677	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3678}
3679
3680void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3681			unsigned int *pif_req_wrptr,
3682			unsigned int *pif_rsp_wrptr)
3683{
3684	int i, j;
3685	u32 cfg, val, req, rsp;
3686
3687	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3688	if (cfg & F_LADBGEN)
3689		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3690
3691	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3692	req = G_POLADBGWRPTR(val);
3693	rsp = G_PILADBGWRPTR(val);
3694	if (pif_req_wrptr)
3695		*pif_req_wrptr = req;
3696	if (pif_rsp_wrptr)
3697		*pif_rsp_wrptr = rsp;
3698
3699	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3700		for (j = 0; j < 6; j++) {
3701			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3702				     V_PILADBGRDPTR(rsp));
3703			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3704			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3705			req++;
3706			rsp++;
3707		}
3708		req = (req + 2) & M_POLADBGRDPTR;
3709		rsp = (rsp + 2) & M_PILADBGRDPTR;
3710	}
3711	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3712}
3713
3714void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3715{
3716	u32 cfg;
3717	int i, j, idx;
3718
3719	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3720	if (cfg & F_LADBGEN)
3721		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3722
3723	for (i = 0; i < CIM_MALA_SIZE; i++) {
3724		for (j = 0; j < 5; j++) {
3725			idx = 8 * i + j;
3726			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3727				     V_PILADBGRDPTR(idx));
3728			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3729			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3730		}
3731	}
3732	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3733}
3734
3735void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3736{
3737	unsigned int i, j;
3738
3739	for (i = 0; i < 8; i++) {
3740		u32 *p = la_buf + i;
3741
3742		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3743		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3744		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3745		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3746			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3747	}
3748}
3749
3750/**
3751 *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3752 *	@caps16: a 16-bit Port Capabilities value
3753 *
3754 *	Returns the equivalent 32-bit Port Capabilities value.
3755 */
3756static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3757{
3758	uint32_t caps32 = 0;
3759
3760	#define CAP16_TO_CAP32(__cap) \
3761		do { \
3762			if (caps16 & FW_PORT_CAP_##__cap) \
3763				caps32 |= FW_PORT_CAP32_##__cap; \
3764		} while (0)
3765
3766	CAP16_TO_CAP32(SPEED_100M);
3767	CAP16_TO_CAP32(SPEED_1G);
3768	CAP16_TO_CAP32(SPEED_25G);
3769	CAP16_TO_CAP32(SPEED_10G);
3770	CAP16_TO_CAP32(SPEED_40G);
3771	CAP16_TO_CAP32(SPEED_100G);
3772	CAP16_TO_CAP32(FC_RX);
3773	CAP16_TO_CAP32(FC_TX);
3774	CAP16_TO_CAP32(ANEG);
3775	CAP16_TO_CAP32(FORCE_PAUSE);
3776	CAP16_TO_CAP32(MDIAUTO);
3777	CAP16_TO_CAP32(MDISTRAIGHT);
3778	CAP16_TO_CAP32(FEC_RS);
3779	CAP16_TO_CAP32(FEC_BASER_RS);
3780	CAP16_TO_CAP32(802_3_PAUSE);
3781	CAP16_TO_CAP32(802_3_ASM_DIR);
3782
3783	#undef CAP16_TO_CAP32
3784
3785	return caps32;
3786}
3787
3788/**
3789 *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3790 *	@caps32: a 32-bit Port Capabilities value
3791 *
3792 *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3793 *	not all 32-bit Port Capabilities can be represented in the 16-bit
3794 *	Port Capabilities and some fields/values may not make it.
3795 */
3796static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3797{
3798	uint16_t caps16 = 0;
3799
3800	#define CAP32_TO_CAP16(__cap) \
3801		do { \
3802			if (caps32 & FW_PORT_CAP32_##__cap) \
3803				caps16 |= FW_PORT_CAP_##__cap; \
3804		} while (0)
3805
3806	CAP32_TO_CAP16(SPEED_100M);
3807	CAP32_TO_CAP16(SPEED_1G);
3808	CAP32_TO_CAP16(SPEED_10G);
3809	CAP32_TO_CAP16(SPEED_25G);
3810	CAP32_TO_CAP16(SPEED_40G);
3811	CAP32_TO_CAP16(SPEED_100G);
3812	CAP32_TO_CAP16(FC_RX);
3813	CAP32_TO_CAP16(FC_TX);
3814	CAP32_TO_CAP16(802_3_PAUSE);
3815	CAP32_TO_CAP16(802_3_ASM_DIR);
3816	CAP32_TO_CAP16(ANEG);
3817	CAP32_TO_CAP16(FORCE_PAUSE);
3818	CAP32_TO_CAP16(MDIAUTO);
3819	CAP32_TO_CAP16(MDISTRAIGHT);
3820	CAP32_TO_CAP16(FEC_RS);
3821	CAP32_TO_CAP16(FEC_BASER_RS);
3822
3823	#undef CAP32_TO_CAP16
3824
3825	return caps16;
3826}
3827
3828static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3829{
3830	int8_t fec = 0;
3831
3832	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3833		return (unset_means_none ? FEC_NONE : 0);
3834
3835	if (caps & FW_PORT_CAP32_FEC_RS)
3836		fec |= FEC_RS;
3837	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3838		fec |= FEC_BASER_RS;
3839	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3840		fec |= FEC_NONE;
3841
3842	return (fec);
3843}
3844
3845/*
3846 * Note that 0 is not translated to NO_FEC.
3847 */
3848static uint32_t fec_to_fwcap(int8_t fec)
3849{
3850	uint32_t caps = 0;
3851
3852	/* Only real FECs allowed. */
3853	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3854
3855	if (fec & FEC_RS)
3856		caps |= FW_PORT_CAP32_FEC_RS;
3857	if (fec & FEC_BASER_RS)
3858		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3859	if (fec & FEC_NONE)
3860		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3861
3862	return (caps);
3863}
3864
3865/**
3866 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3867 *	@phy: the PHY to setup
3868 *	@mac: the MAC to setup
3869 *	@lc: the requested link configuration
3870 *
3871 *	Set up a port's MAC and PHY according to a desired link configuration.
3872 *	- If the PHY can auto-negotiate first decide what to advertise, then
3873 *	  enable/disable auto-negotiation as desired, and reset.
3874 *	- If the PHY does not auto-negotiate just reset it.
3875 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3876 *	  otherwise do it later based on the outcome of auto-negotiation.
3877 */
3878int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3879		  struct link_config *lc)
3880{
3881	struct fw_port_cmd c;
3882	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3883	unsigned int aneg, fc, fec, speed, rcap;
3884
3885	fc = 0;
3886	if (lc->requested_fc & PAUSE_RX)
3887		fc |= FW_PORT_CAP32_FC_RX;
3888	if (lc->requested_fc & PAUSE_TX)
3889		fc |= FW_PORT_CAP32_FC_TX;
3890	if (!(lc->requested_fc & PAUSE_AUTONEG))
3891		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3892
3893	if (lc->requested_aneg == AUTONEG_DISABLE)
3894		aneg = 0;
3895	else if (lc->requested_aneg == AUTONEG_ENABLE)
3896		aneg = FW_PORT_CAP32_ANEG;
3897	else
3898		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3899
3900	if (aneg) {
3901		speed = lc->pcaps &
3902		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3903	} else if (lc->requested_speed != 0)
3904		speed = speed_to_fwcap(lc->requested_speed);
3905	else
3906		speed = fwcap_top_speed(lc->pcaps);
3907
3908	fec = 0;
3909	if (fec_supported(speed)) {
3910		int force_fec;
3911
3912		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3913			force_fec = lc->force_fec;
3914		else
3915			force_fec = 0;
3916
3917		if (lc->requested_fec == FEC_AUTO) {
3918			if (force_fec > 0) {
3919				/*
3920				 * Must use FORCE_FEC even though requested FEC
3921				 * is AUTO. Set all the FEC bits valid for the
3922				 * speed and let the firmware pick one.
3923				 */
3924				fec |= FW_PORT_CAP32_FORCE_FEC;
3925				if (speed & FW_PORT_CAP32_SPEED_100G) {
3926					fec |= FW_PORT_CAP32_FEC_RS;
3927					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3928				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3929					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3930					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3931				} else {
3932					fec |= FW_PORT_CAP32_FEC_RS;
3933					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3934					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3935				}
3936			} else {
3937				/*
3938				 * Set only 1b. Old firmwares can't deal with
3939				 * multiple bits and new firmwares are free to
3940				 * ignore this and try whatever FECs they want
3941				 * because we aren't setting FORCE_FEC here.
3942				 */
3943				fec |= fec_to_fwcap(lc->fec_hint);
3944				MPASS(powerof2(fec));
3945
3946				/*
3947				 * Override the hint if the FEC is not valid for
3948				 * the potential top speed.  Request the best
3949				 * FEC at that speed instead.
3950				 */
3951				if (speed & FW_PORT_CAP32_SPEED_100G) {
3952					if (fec == FW_PORT_CAP32_FEC_BASER_RS)
3953						fec = FW_PORT_CAP32_FEC_RS;
3954				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3955					if (fec == FW_PORT_CAP32_FEC_RS)
3956						fec = FW_PORT_CAP32_FEC_BASER_RS;
3957				}
3958			}
3959		} else {
3960			/*
3961			 * User has explicitly requested some FEC(s). Set
3962			 * FORCE_FEC unless prohibited from using it.
3963			 */
3964			if (force_fec != 0)
3965				fec |= FW_PORT_CAP32_FORCE_FEC;
3966			fec |= fec_to_fwcap(lc->requested_fec &
3967			    M_FW_PORT_CAP32_FEC);
3968			if (lc->requested_fec & FEC_MODULE)
3969				fec |= fec_to_fwcap(lc->fec_hint);
3970		}
3971
3972		/*
3973		 * This is for compatibility with old firmwares. The original
3974		 * way to request NO_FEC was to not set any of the FEC bits. New
3975		 * firmwares understand this too.
3976		 */
3977		if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3978			fec = 0;
3979	}
3980
3981	/* Force AN on for BT cards. */
3982	if (isset(&adap->bt_map, port))
3983		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3984
3985	rcap = aneg | speed | fc | fec;
3986	if ((rcap | lc->pcaps) != lc->pcaps) {
3987#ifdef INVARIANTS
3988		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3989		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3990#endif
3991		rcap &= lc->pcaps;
3992	}
3993	rcap |= mdi;
3994
3995	memset(&c, 0, sizeof(c));
3996	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3997				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3998				     V_FW_PORT_CMD_PORTID(port));
3999	if (adap->params.port_caps32) {
4000		c.action_to_len16 =
4001		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
4002			FW_LEN16(c));
4003		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4004	} else {
4005		c.action_to_len16 =
4006		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4007			    FW_LEN16(c));
4008		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4009	}
4010
4011	lc->requested_caps = rcap;
4012	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4013}
4014
4015/**
4016 *	t4_restart_aneg - restart autonegotiation
4017 *	@adap: the adapter
4018 *	@mbox: mbox to use for the FW command
4019 *	@port: the port id
4020 *
4021 *	Restarts autonegotiation for the selected port.
4022 */
4023int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4024{
4025	struct fw_port_cmd c;
4026
4027	memset(&c, 0, sizeof(c));
4028	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4029				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4030				     V_FW_PORT_CMD_PORTID(port));
4031	c.action_to_len16 =
4032		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4033			    FW_LEN16(c));
4034	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4035	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4036}
4037
4038struct intr_details {
4039	u32 mask;
4040	const char *msg;
4041};
4042
4043struct intr_action {
4044	u32 mask;
4045	int arg;
4046	bool (*action)(struct adapter *, int, bool);
4047};
4048
4049#define NONFATAL_IF_DISABLED 1
4050struct intr_info {
4051	const char *name;	/* name of the INT_CAUSE register */
4052	int cause_reg;		/* INT_CAUSE register */
4053	int enable_reg;		/* INT_ENABLE register */
4054	u32 fatal;		/* bits that are fatal */
4055	int flags;		/* hints */
4056	const struct intr_details *details;
4057	const struct intr_action *actions;
4058};
4059
4060static inline char
4061intr_alert_char(u32 cause, u32 enable, u32 fatal)
4062{
4063
4064	if (cause & fatal)
4065		return ('!');
4066	if (cause & enable)
4067		return ('*');
4068	return ('-');
4069}
4070
4071static void
4072t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4073{
4074	u32 enable, fatal, leftover;
4075	const struct intr_details *details;
4076	char alert;
4077
4078	enable = t4_read_reg(adap, ii->enable_reg);
4079	if (ii->flags & NONFATAL_IF_DISABLED)
4080		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4081	else
4082		fatal = ii->fatal;
4083	alert = intr_alert_char(cause, enable, fatal);
4084	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4085	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4086
4087	leftover = cause;
4088	for (details = ii->details; details && details->mask != 0; details++) {
4089		u32 msgbits = details->mask & cause;
4090		if (msgbits == 0)
4091			continue;
4092		alert = intr_alert_char(msgbits, enable, ii->fatal);
4093		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4094		    details->msg);
4095		leftover &= ~msgbits;
4096	}
4097	if (leftover != 0 && leftover != cause)
4098		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4099}
4100
4101/*
4102 * Returns true for fatal error.
4103 */
4104static bool
4105t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4106    u32 additional_cause, bool verbose)
4107{
4108	u32 cause, fatal;
4109	bool rc;
4110	const struct intr_action *action;
4111
4112	/*
4113	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4114	 * bit special and we need to completely ignore the bits that are not in
4115	 * PL_INT_ENABLE.
4116	 */
4117	cause = t4_read_reg(adap, ii->cause_reg);
4118	if (ii->cause_reg == A_PL_INT_CAUSE)
4119		cause &= t4_read_reg(adap, ii->enable_reg);
4120	if (verbose || cause != 0)
4121		t4_show_intr_info(adap, ii, cause);
4122	fatal = cause & ii->fatal;
4123	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4124		fatal &= t4_read_reg(adap, ii->enable_reg);
4125	cause |= additional_cause;
4126	if (cause == 0)
4127		return (false);
4128
4129	rc = fatal != 0;
4130	for (action = ii->actions; action && action->mask != 0; action++) {
4131		if (!(action->mask & cause))
4132			continue;
4133		rc |= (action->action)(adap, action->arg, verbose);
4134	}
4135
4136	/* clear */
4137	t4_write_reg(adap, ii->cause_reg, cause);
4138	(void)t4_read_reg(adap, ii->cause_reg);
4139
4140	return (rc);
4141}
4142
4143/*
4144 * Interrupt handler for the PCIE module.
4145 */
4146static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4147{
4148	static const struct intr_details sysbus_intr_details[] = {
4149		{ F_RNPP, "RXNP array parity error" },
4150		{ F_RPCP, "RXPC array parity error" },
4151		{ F_RCIP, "RXCIF array parity error" },
4152		{ F_RCCP, "Rx completions control array parity error" },
4153		{ F_RFTP, "RXFT array parity error" },
4154		{ 0 }
4155	};
4156	static const struct intr_info sysbus_intr_info = {
4157		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4158		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4159		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4160		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4161		.flags = 0,
4162		.details = sysbus_intr_details,
4163		.actions = NULL,
4164	};
4165	static const struct intr_details pcie_port_intr_details[] = {
4166		{ F_TPCP, "TXPC array parity error" },
4167		{ F_TNPP, "TXNP array parity error" },
4168		{ F_TFTP, "TXFT array parity error" },
4169		{ F_TCAP, "TXCA array parity error" },
4170		{ F_TCIP, "TXCIF array parity error" },
4171		{ F_RCAP, "RXCA array parity error" },
4172		{ F_OTDD, "outbound request TLP discarded" },
4173		{ F_RDPE, "Rx data parity error" },
4174		{ F_TDUE, "Tx uncorrectable data error" },
4175		{ 0 }
4176	};
4177	static const struct intr_info pcie_port_intr_info = {
4178		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4179		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4180		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4181		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4182		    F_OTDD | F_RDPE | F_TDUE,
4183		.flags = 0,
4184		.details = pcie_port_intr_details,
4185		.actions = NULL,
4186	};
4187	static const struct intr_details pcie_intr_details[] = {
4188		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4189		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4190		{ F_MSIDATAPERR, "MSI data parity error" },
4191		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4192		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4193		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4194		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4195		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4196		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4197		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4198		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4199		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4200		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4201		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4202		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4203		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4204		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4205		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4206		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4207		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4208		{ F_FIDPERR, "PCIe FID parity error" },
4209		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4210		{ F_MATAGPERR, "PCIe MA tag parity error" },
4211		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4212		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4213		{ F_RXWRPERR, "PCIe Rx write parity error" },
4214		{ F_RPLPERR, "PCIe replay buffer parity error" },
4215		{ F_PCIESINT, "PCIe core secondary fault" },
4216		{ F_PCIEPINT, "PCIe core primary fault" },
4217		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4218		{ 0 }
4219	};
4220	static const struct intr_details t5_pcie_intr_details[] = {
4221		{ F_IPGRPPERR, "Parity errors observed by IP" },
4222		{ F_NONFATALERR, "PCIe non-fatal error" },
4223		{ F_READRSPERR, "Outbound read error" },
4224		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4225		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4226		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4227		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4228		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4229		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4230		{ F_MAGRPPERR, "MA group FIFO parity error" },
4231		{ F_VFIDPERR, "VFID SRAM parity error" },
4232		{ F_FIDPERR, "FID SRAM parity error" },
4233		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4234		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4235		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4236		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4237		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4238		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4239		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4240		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4241		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4242		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4243		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4244		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4245		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4246		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4247		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4248		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4249		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4250		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4251		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4252		{ 0 }
4253	};
4254	struct intr_info pcie_intr_info = {
4255		.name = "PCIE_INT_CAUSE",
4256		.cause_reg = A_PCIE_INT_CAUSE,
4257		.enable_reg = A_PCIE_INT_ENABLE,
4258		.fatal = 0xffffffff,
4259		.flags = NONFATAL_IF_DISABLED,
4260		.details = NULL,
4261		.actions = NULL,
4262	};
4263	bool fatal = false;
4264
4265	if (is_t4(adap)) {
4266		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4267		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4268
4269		pcie_intr_info.details = pcie_intr_details;
4270	} else {
4271		pcie_intr_info.details = t5_pcie_intr_details;
4272	}
4273	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4274
4275	return (fatal);
4276}
4277
4278/*
4279 * TP interrupt handler.
4280 */
4281static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4282{
4283	static const struct intr_details tp_intr_details[] = {
4284		{ 0x3fffffff, "TP parity error" },
4285		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4286		{ 0 }
4287	};
4288	static const struct intr_info tp_intr_info = {
4289		.name = "TP_INT_CAUSE",
4290		.cause_reg = A_TP_INT_CAUSE,
4291		.enable_reg = A_TP_INT_ENABLE,
4292		.fatal = 0x7fffffff,
4293		.flags = NONFATAL_IF_DISABLED,
4294		.details = tp_intr_details,
4295		.actions = NULL,
4296	};
4297
4298	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4299}
4300
4301/*
4302 * SGE interrupt handler.
4303 */
4304static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4305{
4306	static const struct intr_info sge_int1_info = {
4307		.name = "SGE_INT_CAUSE1",
4308		.cause_reg = A_SGE_INT_CAUSE1,
4309		.enable_reg = A_SGE_INT_ENABLE1,
4310		.fatal = 0xffffffff,
4311		.flags = NONFATAL_IF_DISABLED,
4312		.details = NULL,
4313		.actions = NULL,
4314	};
4315	static const struct intr_info sge_int2_info = {
4316		.name = "SGE_INT_CAUSE2",
4317		.cause_reg = A_SGE_INT_CAUSE2,
4318		.enable_reg = A_SGE_INT_ENABLE2,
4319		.fatal = 0xffffffff,
4320		.flags = NONFATAL_IF_DISABLED,
4321		.details = NULL,
4322		.actions = NULL,
4323	};
4324	static const struct intr_details sge_int3_details[] = {
4325		{ F_ERR_FLM_DBP,
4326			"DBP pointer delivery for invalid context or QID" },
4327		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4328			"Invalid QID or header request by IDMA" },
4329		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4330		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4331		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4332		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4333		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4334		{ F_ERR_TIMER_ABOVE_MAX_QID,
4335			"SGE GTS with timer 0-5 for IQID > 1023" },
4336		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4337			"SGE received CPL exceeding IQE size" },
4338		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4339		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4340		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4341		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4342		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4343		  "SGE IQID > 1023 received CPL for FL" },
4344		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4345			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4346		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4347		{ F_ERR_ING_CTXT_PRIO,
4348			"Ingress context manager priority user error" },
4349		{ F_ERR_EGR_CTXT_PRIO,
4350			"Egress context manager priority user error" },
4351		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4352		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4353		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4354		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4355		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4356		{ 0x0000000f, "SGE context access for invalid queue" },
4357		{ 0 }
4358	};
4359	static const struct intr_details t6_sge_int3_details[] = {
4360		{ F_ERR_FLM_DBP,
4361			"DBP pointer delivery for invalid context or QID" },
4362		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4363			"Invalid QID or header request by IDMA" },
4364		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4365		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4366		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4367		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4368		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4369		{ F_ERR_TIMER_ABOVE_MAX_QID,
4370			"SGE GTS with timer 0-5 for IQID > 1023" },
4371		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4372			"SGE received CPL exceeding IQE size" },
4373		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4374		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4375		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4376		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4377		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4378			"SGE IQID > 1023 received CPL for FL" },
4379		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4380			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4381		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4382		{ F_ERR_ING_CTXT_PRIO,
4383			"Ingress context manager priority user error" },
4384		{ F_ERR_EGR_CTXT_PRIO,
4385			"Egress context manager priority user error" },
4386		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4387		{ F_FATAL_WRE_LEN,
4388			"SGE WRE packet less than advertized length" },
4389		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4390		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4391		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4392		{ 0x0000000f, "SGE context access for invalid queue" },
4393		{ 0 }
4394	};
4395	struct intr_info sge_int3_info = {
4396		.name = "SGE_INT_CAUSE3",
4397		.cause_reg = A_SGE_INT_CAUSE3,
4398		.enable_reg = A_SGE_INT_ENABLE3,
4399		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4400		.flags = 0,
4401		.details = NULL,
4402		.actions = NULL,
4403	};
4404	static const struct intr_info sge_int4_info = {
4405		.name = "SGE_INT_CAUSE4",
4406		.cause_reg = A_SGE_INT_CAUSE4,
4407		.enable_reg = A_SGE_INT_ENABLE4,
4408		.fatal = 0,
4409		.flags = 0,
4410		.details = NULL,
4411		.actions = NULL,
4412	};
4413	static const struct intr_info sge_int5_info = {
4414		.name = "SGE_INT_CAUSE5",
4415		.cause_reg = A_SGE_INT_CAUSE5,
4416		.enable_reg = A_SGE_INT_ENABLE5,
4417		.fatal = 0xffffffff,
4418		.flags = NONFATAL_IF_DISABLED,
4419		.details = NULL,
4420		.actions = NULL,
4421	};
4422	static const struct intr_info sge_int6_info = {
4423		.name = "SGE_INT_CAUSE6",
4424		.cause_reg = A_SGE_INT_CAUSE6,
4425		.enable_reg = A_SGE_INT_ENABLE6,
4426		.fatal = 0,
4427		.flags = 0,
4428		.details = NULL,
4429		.actions = NULL,
4430	};
4431
4432	bool fatal;
4433	u32 v;
4434
4435	if (chip_id(adap) <= CHELSIO_T5) {
4436		sge_int3_info.details = sge_int3_details;
4437	} else {
4438		sge_int3_info.details = t6_sge_int3_details;
4439	}
4440
4441	fatal = false;
4442	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4443	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4444	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4445	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4446	if (chip_id(adap) >= CHELSIO_T5)
4447		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4448	if (chip_id(adap) >= CHELSIO_T6)
4449		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4450
4451	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4452	if (v & F_ERROR_QID_VALID) {
4453		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4454		if (v & F_UNCAPTURED_ERROR)
4455			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4456		t4_write_reg(adap, A_SGE_ERROR_STATS,
4457		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4458	}
4459
4460	return (fatal);
4461}
4462
4463/*
4464 * CIM interrupt handler.
4465 */
4466static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4467{
4468	static const struct intr_details cim_host_intr_details[] = {
4469		/* T6+ */
4470		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4471
4472		/* T5+ */
4473		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4474		{ F_PLCIM_MSTRSPDATAPARERR,
4475			"PL2CIM master response data parity error" },
4476		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4477		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4478		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4479		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4480		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4481		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4482
4483		/* T4+ */
4484		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4485		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4486		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4487		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4488		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4489		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4490		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4491		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4492		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4493			"CIM IBQ PCIe/SGE_HI parity error" },
4494		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4495		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4496		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4497		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4498		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4499		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4500		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4501		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4502		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4503		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4504		{ 0}
4505	};
4506	static const struct intr_info cim_host_intr_info = {
4507		.name = "CIM_HOST_INT_CAUSE",
4508		.cause_reg = A_CIM_HOST_INT_CAUSE,
4509		.enable_reg = A_CIM_HOST_INT_ENABLE,
4510		.fatal = 0x007fffe6,
4511		.flags = NONFATAL_IF_DISABLED,
4512		.details = cim_host_intr_details,
4513		.actions = NULL,
4514	};
4515	static const struct intr_details cim_host_upacc_intr_details[] = {
4516		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4517		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4518		{ F_TIMEOUTINT, "CIM PIF timeout" },
4519		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4520		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4521		{ F_BLKWRPLINT, "CIM block write to PL space" },
4522		{ F_BLKRDPLINT, "CIM block read from PL space" },
4523		{ F_SGLWRPLINT,
4524			"CIM single write to PL space with illegal BEs" },
4525		{ F_SGLRDPLINT,
4526			"CIM single read from PL space with illegal BEs" },
4527		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4528		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4529		{ F_SGLWRCTLINT,
4530			"CIM single write to CTL space with illegal BEs" },
4531		{ F_SGLRDCTLINT,
4532			"CIM single read from CTL space with illegal BEs" },
4533		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4534		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4535		{ F_SGLWREEPROMINT,
4536			"CIM single write to EEPROM space with illegal BEs" },
4537		{ F_SGLRDEEPROMINT,
4538			"CIM single read from EEPROM space with illegal BEs" },
4539		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4540		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4541		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4542		{ F_SGLRDFLASHINT,
4543			"CIM single read from flash space with illegal BEs" },
4544		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4545		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4546		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4547		{ F_SGLRDBOOTINT,
4548			"CIM single read from boot space with illegal BEs" },
4549		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4550		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4551		{ F_ILLRDINT, "CIM illegal read" },
4552		{ F_ILLWRINT, "CIM illegal write" },
4553		{ F_ILLTRANSINT, "CIM illegal transaction" },
4554		{ F_RSVDSPACEINT, "CIM reserved space access" },
4555		{0}
4556	};
4557	static const struct intr_info cim_host_upacc_intr_info = {
4558		.name = "CIM_HOST_UPACC_INT_CAUSE",
4559		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4560		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4561		.fatal = 0x3fffeeff,
4562		.flags = NONFATAL_IF_DISABLED,
4563		.details = cim_host_upacc_intr_details,
4564		.actions = NULL,
4565	};
4566	static const struct intr_info cim_pf_host_intr_info = {
4567		.name = "CIM_PF_HOST_INT_CAUSE",
4568		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4569		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4570		.fatal = 0,
4571		.flags = 0,
4572		.details = NULL,
4573		.actions = NULL,
4574	};
4575	u32 val, fw_err;
4576	bool fatal;
4577
4578	/*
4579	 * When the Firmware detects an internal error which normally wouldn't
4580	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4581	 * to make sure the Host sees the Firmware Crash.  So if we have a
4582	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4583	 * interrupt.
4584	 */
4585	fw_err = t4_read_reg(adap, A_PCIE_FW);
4586	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4587	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4588	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4589		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4590	}
4591
4592	fatal = (fw_err & F_PCIE_FW_ERR) != 0;
4593	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4594	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4595	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4596	if (fatal)
4597		t4_os_cim_err(adap);
4598
4599	return (fatal);
4600}
4601
4602/*
4603 * ULP RX interrupt handler.
4604 */
4605static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4606{
4607	static const struct intr_details ulprx_intr_details[] = {
4608		/* T5+ */
4609		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4610		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4611
4612		/* T4+ */
4613		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4614		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4615		{ 0x007fffff, "ULPRX parity error" },
4616		{ 0 }
4617	};
4618	static const struct intr_info ulprx_intr_info = {
4619		.name = "ULP_RX_INT_CAUSE",
4620		.cause_reg = A_ULP_RX_INT_CAUSE,
4621		.enable_reg = A_ULP_RX_INT_ENABLE,
4622		.fatal = 0x07ffffff,
4623		.flags = NONFATAL_IF_DISABLED,
4624		.details = ulprx_intr_details,
4625		.actions = NULL,
4626	};
4627	static const struct intr_info ulprx_intr2_info = {
4628		.name = "ULP_RX_INT_CAUSE_2",
4629		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4630		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4631		.fatal = 0,
4632		.flags = 0,
4633		.details = NULL,
4634		.actions = NULL,
4635	};
4636	bool fatal = false;
4637
4638	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4639	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4640
4641	return (fatal);
4642}
4643
4644/*
4645 * ULP TX interrupt handler.
4646 */
4647static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4648{
4649	static const struct intr_details ulptx_intr_details[] = {
4650		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4651		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4652		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4653		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4654		{ 0x0fffffff, "ULPTX parity error" },
4655		{ 0 }
4656	};
4657	static const struct intr_info ulptx_intr_info = {
4658		.name = "ULP_TX_INT_CAUSE",
4659		.cause_reg = A_ULP_TX_INT_CAUSE,
4660		.enable_reg = A_ULP_TX_INT_ENABLE,
4661		.fatal = 0x0fffffff,
4662		.flags = NONFATAL_IF_DISABLED,
4663		.details = ulptx_intr_details,
4664		.actions = NULL,
4665	};
4666	static const struct intr_info ulptx_intr2_info = {
4667		.name = "ULP_TX_INT_CAUSE_2",
4668		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4669		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4670		.fatal = 0xf0,
4671		.flags = NONFATAL_IF_DISABLED,
4672		.details = NULL,
4673		.actions = NULL,
4674	};
4675	bool fatal = false;
4676
4677	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4678	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4679
4680	return (fatal);
4681}
4682
4683static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4684{
4685	int i;
4686	u32 data[17];
4687
4688	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4689	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4690	for (i = 0; i < ARRAY_SIZE(data); i++) {
4691		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4692		    A_PM_TX_DBG_STAT0 + i, data[i]);
4693	}
4694
4695	return (false);
4696}
4697
4698/*
4699 * PM TX interrupt handler.
4700 */
4701static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4702{
4703	static const struct intr_action pmtx_intr_actions[] = {
4704		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4705		{ 0 },
4706	};
4707	static const struct intr_details pmtx_intr_details[] = {
4708		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4709		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4710		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4711		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4712		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4713		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4714		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4715		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4716		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4717		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4718		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4719		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4720		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4721		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4722		{ 0 }
4723	};
4724	static const struct intr_info pmtx_intr_info = {
4725		.name = "PM_TX_INT_CAUSE",
4726		.cause_reg = A_PM_TX_INT_CAUSE,
4727		.enable_reg = A_PM_TX_INT_ENABLE,
4728		.fatal = 0xffffffff,
4729		.flags = 0,
4730		.details = pmtx_intr_details,
4731		.actions = pmtx_intr_actions,
4732	};
4733
4734	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4735}
4736
4737/*
4738 * PM RX interrupt handler.
4739 */
4740static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4741{
4742	static const struct intr_details pmrx_intr_details[] = {
4743		/* T6+ */
4744		{ 0x18000000, "PMRX ospi overflow" },
4745		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4746		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4747		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4748		{ F_SDC_ERR, "PMRX SDC error" },
4749
4750		/* T4+ */
4751		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4752		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4753		{ 0x0003c000, "PMRX iespi Rx framing error" },
4754		{ 0x00003c00, "PMRX iespi Tx framing error" },
4755		{ 0x00000300, "PMRX ocspi Rx framing error" },
4756		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4757		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4758		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4759		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4760		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4761		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4762		{ 0 }
4763	};
4764	static const struct intr_info pmrx_intr_info = {
4765		.name = "PM_RX_INT_CAUSE",
4766		.cause_reg = A_PM_RX_INT_CAUSE,
4767		.enable_reg = A_PM_RX_INT_ENABLE,
4768		.fatal = 0x1fffffff,
4769		.flags = NONFATAL_IF_DISABLED,
4770		.details = pmrx_intr_details,
4771		.actions = NULL,
4772	};
4773
4774	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4775}
4776
4777/*
4778 * CPL switch interrupt handler.
4779 */
4780static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4781{
4782	static const struct intr_details cplsw_intr_details[] = {
4783		/* T5+ */
4784		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4785		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4786
4787		/* T4+ */
4788		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4789		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4790		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4791		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4792		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4793		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4794		{ 0 }
4795	};
4796	static const struct intr_info cplsw_intr_info = {
4797		.name = "CPL_INTR_CAUSE",
4798		.cause_reg = A_CPL_INTR_CAUSE,
4799		.enable_reg = A_CPL_INTR_ENABLE,
4800		.fatal = 0xff,
4801		.flags = NONFATAL_IF_DISABLED,
4802		.details = cplsw_intr_details,
4803		.actions = NULL,
4804	};
4805
4806	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4807}
4808
4809#define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4810#define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4811#define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4812    F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4813    F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4814    F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4815#define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4816    F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4817    F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4818
4819/*
4820 * LE interrupt handler.
4821 */
4822static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4823{
4824	static const struct intr_details le_intr_details[] = {
4825		{ F_REQQPARERR, "LE request queue parity error" },
4826		{ F_UNKNOWNCMD, "LE unknown command" },
4827		{ F_ACTRGNFULL, "LE active region full" },
4828		{ F_PARITYERR, "LE parity error" },
4829		{ F_LIPMISS, "LE LIP miss" },
4830		{ F_LIP0, "LE 0 LIP error" },
4831		{ 0 }
4832	};
4833	static const struct intr_details t6_le_intr_details[] = {
4834		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4835		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4836		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4837		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4838		{ F_TOTCNTERR, "LE total active < TCAM count" },
4839		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4840		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4841		{ F_T6_ACTRGNFULL, "LE active region full" },
4842		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4843		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4844		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4845		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4846		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4847		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4848		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4849		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4850		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4851		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4852		{ 0 }
4853	};
4854	struct intr_info le_intr_info = {
4855		.name = "LE_DB_INT_CAUSE",
4856		.cause_reg = A_LE_DB_INT_CAUSE,
4857		.enable_reg = A_LE_DB_INT_ENABLE,
4858		.fatal = 0,
4859		.flags = NONFATAL_IF_DISABLED,
4860		.details = NULL,
4861		.actions = NULL,
4862	};
4863
4864	if (chip_id(adap) <= CHELSIO_T5) {
4865		le_intr_info.details = le_intr_details;
4866		le_intr_info.fatal = T5_LE_FATAL_MASK;
4867	} else {
4868		le_intr_info.details = t6_le_intr_details;
4869		le_intr_info.fatal = T6_LE_FATAL_MASK;
4870	}
4871
4872	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4873}
4874
4875/*
4876 * MPS interrupt handler.
4877 */
4878static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4879{
4880	static const struct intr_details mps_rx_perr_intr_details[] = {
4881		{ 0xffffffff, "MPS Rx parity error" },
4882		{ 0 }
4883	};
4884	static const struct intr_info mps_rx_perr_intr_info = {
4885		.name = "MPS_RX_PERR_INT_CAUSE",
4886		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4887		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4888		.fatal = 0xffffffff,
4889		.flags = NONFATAL_IF_DISABLED,
4890		.details = mps_rx_perr_intr_details,
4891		.actions = NULL,
4892	};
4893	static const struct intr_details mps_tx_intr_details[] = {
4894		{ F_PORTERR, "MPS Tx destination port is disabled" },
4895		{ F_FRMERR, "MPS Tx framing error" },
4896		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4897		{ F_BUBBLE, "MPS Tx underflow" },
4898		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4899		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4900		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4901		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4902		{ 0 }
4903	};
4904	static const struct intr_info mps_tx_intr_info = {
4905		.name = "MPS_TX_INT_CAUSE",
4906		.cause_reg = A_MPS_TX_INT_CAUSE,
4907		.enable_reg = A_MPS_TX_INT_ENABLE,
4908		.fatal = 0x1ffff,
4909		.flags = NONFATAL_IF_DISABLED,
4910		.details = mps_tx_intr_details,
4911		.actions = NULL,
4912	};
4913	static const struct intr_details mps_trc_intr_details[] = {
4914		{ F_MISCPERR, "MPS TRC misc parity error" },
4915		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4916		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4917		{ 0 }
4918	};
4919	static const struct intr_info mps_trc_intr_info = {
4920		.name = "MPS_TRC_INT_CAUSE",
4921		.cause_reg = A_MPS_TRC_INT_CAUSE,
4922		.enable_reg = A_MPS_TRC_INT_ENABLE,
4923		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4924		.flags = 0,
4925		.details = mps_trc_intr_details,
4926		.actions = NULL,
4927	};
4928	static const struct intr_details mps_stat_sram_intr_details[] = {
4929		{ 0xffffffff, "MPS statistics SRAM parity error" },
4930		{ 0 }
4931	};
4932	static const struct intr_info mps_stat_sram_intr_info = {
4933		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4934		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4935		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4936		.fatal = 0x1fffffff,
4937		.flags = NONFATAL_IF_DISABLED,
4938		.details = mps_stat_sram_intr_details,
4939		.actions = NULL,
4940	};
4941	static const struct intr_details mps_stat_tx_intr_details[] = {
4942		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4943		{ 0 }
4944	};
4945	static const struct intr_info mps_stat_tx_intr_info = {
4946		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4947		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4948		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4949		.fatal =  0xffffff,
4950		.flags = NONFATAL_IF_DISABLED,
4951		.details = mps_stat_tx_intr_details,
4952		.actions = NULL,
4953	};
4954	static const struct intr_details mps_stat_rx_intr_details[] = {
4955		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4956		{ 0 }
4957	};
4958	static const struct intr_info mps_stat_rx_intr_info = {
4959		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4960		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4961		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4962		.fatal =  0xffffff,
4963		.flags = 0,
4964		.details = mps_stat_rx_intr_details,
4965		.actions = NULL,
4966	};
4967	static const struct intr_details mps_cls_intr_details[] = {
4968		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4969		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4970		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4971		{ 0 }
4972	};
4973	static const struct intr_info mps_cls_intr_info = {
4974		.name = "MPS_CLS_INT_CAUSE",
4975		.cause_reg = A_MPS_CLS_INT_CAUSE,
4976		.enable_reg = A_MPS_CLS_INT_ENABLE,
4977		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4978		.flags = 0,
4979		.details = mps_cls_intr_details,
4980		.actions = NULL,
4981	};
4982	static const struct intr_details mps_stat_sram1_intr_details[] = {
4983		{ 0xff, "MPS statistics SRAM1 parity error" },
4984		{ 0 }
4985	};
4986	static const struct intr_info mps_stat_sram1_intr_info = {
4987		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4988		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4989		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4990		.fatal = 0xff,
4991		.flags = 0,
4992		.details = mps_stat_sram1_intr_details,
4993		.actions = NULL,
4994	};
4995
4996	bool fatal;
4997
4998	fatal = false;
4999	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
5000	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
5001	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
5002	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
5003	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
5004	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
5005	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
5006	if (chip_id(adap) > CHELSIO_T4) {
5007		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
5008		    verbose);
5009	}
5010
5011	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5012	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
5013
5014	return (fatal);
5015
5016}
5017
5018/*
5019 * EDC/MC interrupt handler.
5020 */
5021static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
5022{
5023	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5024	unsigned int count_reg, v;
5025	static const struct intr_details mem_intr_details[] = {
5026		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5027		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5028		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5029		{ 0 }
5030	};
5031	struct intr_info ii = {
5032		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5033		.details = mem_intr_details,
5034		.flags = 0,
5035		.actions = NULL,
5036	};
5037	bool fatal;
5038
5039	switch (idx) {
5040	case MEM_EDC0:
5041		ii.name = "EDC0_INT_CAUSE";
5042		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5043		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5044		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5045		break;
5046	case MEM_EDC1:
5047		ii.name = "EDC1_INT_CAUSE";
5048		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5049		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5050		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5051		break;
5052	case MEM_MC0:
5053		ii.name = "MC0_INT_CAUSE";
5054		if (is_t4(adap)) {
5055			ii.cause_reg = A_MC_INT_CAUSE;
5056			ii.enable_reg = A_MC_INT_ENABLE;
5057			count_reg = A_MC_ECC_STATUS;
5058		} else {
5059			ii.cause_reg = A_MC_P_INT_CAUSE;
5060			ii.enable_reg = A_MC_P_INT_ENABLE;
5061			count_reg = A_MC_P_ECC_STATUS;
5062		}
5063		break;
5064	case MEM_MC1:
5065		ii.name = "MC1_INT_CAUSE";
5066		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5067		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5068		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5069		break;
5070	}
5071
5072	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5073
5074	v = t4_read_reg(adap, count_reg);
5075	if (v != 0) {
5076		if (G_ECC_UECNT(v) != 0) {
5077			CH_ALERT(adap,
5078			    "%s: %u uncorrectable ECC data error(s)\n",
5079			    name[idx], G_ECC_UECNT(v));
5080		}
5081		if (G_ECC_CECNT(v) != 0) {
5082			if (idx <= MEM_EDC1)
5083				t4_edc_err_read(adap, idx);
5084			CH_WARN_RATELIMIT(adap,
5085			    "%s: %u correctable ECC data error(s)\n",
5086			    name[idx], G_ECC_CECNT(v));
5087		}
5088		t4_write_reg(adap, count_reg, 0xffffffff);
5089	}
5090
5091	return (fatal);
5092}
5093
5094static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5095{
5096	u32 v;
5097
5098	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5099	CH_ALERT(adap,
5100	    "MA address wrap-around error by client %u to address %#x\n",
5101	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5102	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5103
5104	return (false);
5105}
5106
5107
5108/*
5109 * MA interrupt handler.
5110 */
5111static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5112{
5113	static const struct intr_action ma_intr_actions[] = {
5114		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5115		{ 0 },
5116	};
5117	static const struct intr_info ma_intr_info = {
5118		.name = "MA_INT_CAUSE",
5119		.cause_reg = A_MA_INT_CAUSE,
5120		.enable_reg = A_MA_INT_ENABLE,
5121		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5122		.flags = NONFATAL_IF_DISABLED,
5123		.details = NULL,
5124		.actions = ma_intr_actions,
5125	};
5126	static const struct intr_info ma_perr_status1 = {
5127		.name = "MA_PARITY_ERROR_STATUS1",
5128		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5129		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5130		.fatal = 0xffffffff,
5131		.flags = 0,
5132		.details = NULL,
5133		.actions = NULL,
5134	};
5135	static const struct intr_info ma_perr_status2 = {
5136		.name = "MA_PARITY_ERROR_STATUS2",
5137		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5138		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5139		.fatal = 0xffffffff,
5140		.flags = 0,
5141		.details = NULL,
5142		.actions = NULL,
5143	};
5144	bool fatal;
5145
5146	fatal = false;
5147	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5148	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5149	if (chip_id(adap) > CHELSIO_T4)
5150		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5151
5152	return (fatal);
5153}
5154
5155/*
5156 * SMB interrupt handler.
5157 */
5158static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5159{
5160	static const struct intr_details smb_intr_details[] = {
5161		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5162		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5163		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5164		{ 0 }
5165	};
5166	static const struct intr_info smb_intr_info = {
5167		.name = "SMB_INT_CAUSE",
5168		.cause_reg = A_SMB_INT_CAUSE,
5169		.enable_reg = A_SMB_INT_ENABLE,
5170		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5171		.flags = 0,
5172		.details = smb_intr_details,
5173		.actions = NULL,
5174	};
5175
5176	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5177}
5178
5179/*
5180 * NC-SI interrupt handler.
5181 */
5182static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5183{
5184	static const struct intr_details ncsi_intr_details[] = {
5185		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5186		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5187		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5188		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5189		{ 0 }
5190	};
5191	static const struct intr_info ncsi_intr_info = {
5192		.name = "NCSI_INT_CAUSE",
5193		.cause_reg = A_NCSI_INT_CAUSE,
5194		.enable_reg = A_NCSI_INT_ENABLE,
5195		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5196		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5197		.flags = 0,
5198		.details = ncsi_intr_details,
5199		.actions = NULL,
5200	};
5201
5202	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5203}
5204
5205/*
5206 * MAC interrupt handler.
5207 */
5208static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5209{
5210	static const struct intr_details mac_intr_details[] = {
5211		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5212		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5213		{ 0 }
5214	};
5215	char name[32];
5216	struct intr_info ii;
5217	bool fatal = false;
5218
5219	if (is_t4(adap)) {
5220		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5221		ii.name = &name[0];
5222		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5223		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5224		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5225		ii.flags = 0;
5226		ii.details = mac_intr_details;
5227		ii.actions = NULL;
5228	} else {
5229		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5230		ii.name = &name[0];
5231		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5232		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5233		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5234		ii.flags = 0;
5235		ii.details = mac_intr_details;
5236		ii.actions = NULL;
5237	}
5238	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5239
5240	if (chip_id(adap) >= CHELSIO_T5) {
5241		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5242		ii.name = &name[0];
5243		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5244		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5245		ii.fatal = 0;
5246		ii.flags = 0;
5247		ii.details = NULL;
5248		ii.actions = NULL;
5249		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5250	}
5251
5252	if (chip_id(adap) >= CHELSIO_T6) {
5253		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5254		ii.name = &name[0];
5255		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5256		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5257		ii.fatal = 0;
5258		ii.flags = 0;
5259		ii.details = NULL;
5260		ii.actions = NULL;
5261		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5262	}
5263
5264	return (fatal);
5265}
5266
5267static bool pl_timeout_status(struct adapter *adap, int arg, bool verbose)
5268{
5269
5270	CH_ALERT(adap, "    PL_TIMEOUT_STATUS 0x%08x 0x%08x\n",
5271	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS0),
5272	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS1));
5273
5274	return (false);
5275}
5276
5277static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5278{
5279	static const struct intr_action plpl_intr_actions[] = {
5280		{ F_TIMEOUT, 0, pl_timeout_status },
5281		{ 0 },
5282	};
5283	static const struct intr_details plpl_intr_details[] = {
5284		{ F_PL_BUSPERR, "Bus parity error" },
5285		{ F_FATALPERR, "Fatal parity error" },
5286		{ F_INVALIDACCESS, "Global reserved memory access" },
5287		{ F_TIMEOUT,  "Bus timeout" },
5288		{ F_PLERR, "Module reserved access" },
5289		{ F_PERRVFID, "VFID_MAP parity error" },
5290		{ 0 }
5291	};
5292	static const struct intr_info plpl_intr_info = {
5293		.name = "PL_PL_INT_CAUSE",
5294		.cause_reg = A_PL_PL_INT_CAUSE,
5295		.enable_reg = A_PL_PL_INT_ENABLE,
5296		.fatal = F_FATALPERR | F_PERRVFID,
5297		.flags = NONFATAL_IF_DISABLED,
5298		.details = plpl_intr_details,
5299		.actions = plpl_intr_actions,
5300	};
5301
5302	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5303}
5304
5305/**
5306 *	t4_slow_intr_handler - control path interrupt handler
5307 *	@adap: the adapter
5308 *	@verbose: increased verbosity, for debug
5309 *
5310 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5311 *	The designation 'slow' is because it involves register reads, while
5312 *	data interrupts typically don't involve any MMIOs.
5313 */
5314bool t4_slow_intr_handler(struct adapter *adap, bool verbose)
5315{
5316	static const struct intr_details pl_intr_details[] = {
5317		{ F_MC1, "MC1" },
5318		{ F_UART, "UART" },
5319		{ F_ULP_TX, "ULP TX" },
5320		{ F_SGE, "SGE" },
5321		{ F_HMA, "HMA" },
5322		{ F_CPL_SWITCH, "CPL Switch" },
5323		{ F_ULP_RX, "ULP RX" },
5324		{ F_PM_RX, "PM RX" },
5325		{ F_PM_TX, "PM TX" },
5326		{ F_MA, "MA" },
5327		{ F_TP, "TP" },
5328		{ F_LE, "LE" },
5329		{ F_EDC1, "EDC1" },
5330		{ F_EDC0, "EDC0" },
5331		{ F_MC, "MC0" },
5332		{ F_PCIE, "PCIE" },
5333		{ F_PMU, "PMU" },
5334		{ F_MAC3, "MAC3" },
5335		{ F_MAC2, "MAC2" },
5336		{ F_MAC1, "MAC1" },
5337		{ F_MAC0, "MAC0" },
5338		{ F_SMB, "SMB" },
5339		{ F_SF, "SF" },
5340		{ F_PL, "PL" },
5341		{ F_NCSI, "NC-SI" },
5342		{ F_MPS, "MPS" },
5343		{ F_MI, "MI" },
5344		{ F_DBG, "DBG" },
5345		{ F_I2CM, "I2CM" },
5346		{ F_CIM, "CIM" },
5347		{ 0 }
5348	};
5349	static const struct intr_info pl_perr_cause = {
5350		.name = "PL_PERR_CAUSE",
5351		.cause_reg = A_PL_PERR_CAUSE,
5352		.enable_reg = A_PL_PERR_ENABLE,
5353		.fatal = 0xffffffff,
5354		.flags = 0,
5355		.details = pl_intr_details,
5356		.actions = NULL,
5357	};
5358	static const struct intr_action pl_intr_action[] = {
5359		{ F_MC1, MEM_MC1, mem_intr_handler },
5360		{ F_ULP_TX, -1, ulptx_intr_handler },
5361		{ F_SGE, -1, sge_intr_handler },
5362		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5363		{ F_ULP_RX, -1, ulprx_intr_handler },
5364		{ F_PM_RX, -1, pmrx_intr_handler},
5365		{ F_PM_TX, -1, pmtx_intr_handler},
5366		{ F_MA, -1, ma_intr_handler },
5367		{ F_TP, -1, tp_intr_handler },
5368		{ F_LE, -1, le_intr_handler },
5369		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5370		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5371		{ F_MC0, MEM_MC0, mem_intr_handler },
5372		{ F_PCIE, -1, pcie_intr_handler },
5373		{ F_MAC3, 3, mac_intr_handler},
5374		{ F_MAC2, 2, mac_intr_handler},
5375		{ F_MAC1, 1, mac_intr_handler},
5376		{ F_MAC0, 0, mac_intr_handler},
5377		{ F_SMB, -1, smb_intr_handler},
5378		{ F_PL, -1, plpl_intr_handler },
5379		{ F_NCSI, -1, ncsi_intr_handler},
5380		{ F_MPS, -1, mps_intr_handler },
5381		{ F_CIM, -1, cim_intr_handler },
5382		{ 0 }
5383	};
5384	static const struct intr_info pl_intr_info = {
5385		.name = "PL_INT_CAUSE",
5386		.cause_reg = A_PL_INT_CAUSE,
5387		.enable_reg = A_PL_INT_ENABLE,
5388		.fatal = 0,
5389		.flags = 0,
5390		.details = pl_intr_details,
5391		.actions = pl_intr_action,
5392	};
5393	u32 perr;
5394
5395	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5396	if (verbose || perr != 0) {
5397		t4_show_intr_info(adap, &pl_perr_cause, perr);
5398		if (perr != 0)
5399			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5400		if (verbose)
5401			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5402	}
5403
5404	return (t4_handle_intr(adap, &pl_intr_info, perr, verbose));
5405}
5406
5407#define PF_INTR_MASK (F_PFSW | F_PFCIM)
5408
5409/**
5410 *	t4_intr_enable - enable interrupts
5411 *	@adapter: the adapter whose interrupts should be enabled
5412 *
5413 *	Enable PF-specific interrupts for the calling function and the top-level
5414 *	interrupt concentrator for global interrupts.  Interrupts are already
5415 *	enabled at each module,	here we just enable the roots of the interrupt
5416 *	hierarchies.
5417 *
5418 *	Note: this function should be called only when the driver manages
5419 *	non PF-specific interrupts from the various HW modules.  Only one PCI
5420 *	function at a time should be doing this.
5421 */
5422void t4_intr_enable(struct adapter *adap)
5423{
5424	u32 val = 0;
5425
5426	if (chip_id(adap) <= CHELSIO_T5)
5427		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5428	else
5429		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5430	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5431	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5432	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5433	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5434	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5435	    F_EGRESS_SIZE_ERR;
5436	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5437	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5438	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5439	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5440}
5441
5442/**
5443 *	t4_intr_disable - disable interrupts
5444 *	@adap: the adapter whose interrupts should be disabled
5445 *
5446 *	Disable interrupts.  We only disable the top-level interrupt
5447 *	concentrators.  The caller must be a PCI function managing global
5448 *	interrupts.
5449 */
5450void t4_intr_disable(struct adapter *adap)
5451{
5452
5453	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5454	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5455}
5456
5457/**
5458 *	hash_mac_addr - return the hash value of a MAC address
5459 *	@addr: the 48-bit Ethernet MAC address
5460 *
5461 *	Hashes a MAC address according to the hash function used by HW inexact
5462 *	(hash) address matching.
5463 */
5464static int hash_mac_addr(const u8 *addr)
5465{
5466	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5467	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5468	a ^= b;
5469	a ^= (a >> 12);
5470	a ^= (a >> 6);
5471	return a & 0x3f;
5472}
5473
5474/**
5475 *	t4_config_rss_range - configure a portion of the RSS mapping table
5476 *	@adapter: the adapter
5477 *	@mbox: mbox to use for the FW command
5478 *	@viid: virtual interface whose RSS subtable is to be written
5479 *	@start: start entry in the table to write
5480 *	@n: how many table entries to write
5481 *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5482 *	@nrspq: number of values in @rspq
5483 *
5484 *	Programs the selected part of the VI's RSS mapping table with the
5485 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5486 *	until the full table range is populated.
5487 *
5488 *	The caller must ensure the values in @rspq are in the range allowed for
5489 *	@viid.
5490 */
5491int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5492			int start, int n, const u16 *rspq, unsigned int nrspq)
5493{
5494	int ret;
5495	const u16 *rsp = rspq;
5496	const u16 *rsp_end = rspq + nrspq;
5497	struct fw_rss_ind_tbl_cmd cmd;
5498
5499	memset(&cmd, 0, sizeof(cmd));
5500	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5501				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5502				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5503	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5504
5505	/*
5506	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5507	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5508	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5509	 * reserved.
5510	 */
5511	while (n > 0) {
5512		int nq = min(n, 32);
5513		int nq_packed = 0;
5514		__be32 *qp = &cmd.iq0_to_iq2;
5515
5516		/*
5517		 * Set up the firmware RSS command header to send the next
5518		 * "nq" Ingress Queue IDs to the firmware.
5519		 */
5520		cmd.niqid = cpu_to_be16(nq);
5521		cmd.startidx = cpu_to_be16(start);
5522
5523		/*
5524		 * "nq" more done for the start of the next loop.
5525		 */
5526		start += nq;
5527		n -= nq;
5528
5529		/*
5530		 * While there are still Ingress Queue IDs to stuff into the
5531		 * current firmware RSS command, retrieve them from the
5532		 * Ingress Queue ID array and insert them into the command.
5533		 */
5534		while (nq > 0) {
5535			/*
5536			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5537			 * around the Ingress Queue ID array if necessary) and
5538			 * insert them into the firmware RSS command at the
5539			 * current 3-tuple position within the commad.
5540			 */
5541			u16 qbuf[3];
5542			u16 *qbp = qbuf;
5543			int nqbuf = min(3, nq);
5544
5545			nq -= nqbuf;
5546			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5547			while (nqbuf && nq_packed < 32) {
5548				nqbuf--;
5549				nq_packed++;
5550				*qbp++ = *rsp++;
5551				if (rsp >= rsp_end)
5552					rsp = rspq;
5553			}
5554			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5555					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5556					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5557		}
5558
5559		/*
5560		 * Send this portion of the RRS table update to the firmware;
5561		 * bail out on any errors.
5562		 */
5563		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5564		if (ret)
5565			return ret;
5566	}
5567	return 0;
5568}
5569
5570/**
5571 *	t4_config_glbl_rss - configure the global RSS mode
5572 *	@adapter: the adapter
5573 *	@mbox: mbox to use for the FW command
5574 *	@mode: global RSS mode
5575 *	@flags: mode-specific flags
5576 *
5577 *	Sets the global RSS mode.
5578 */
5579int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5580		       unsigned int flags)
5581{
5582	struct fw_rss_glb_config_cmd c;
5583
5584	memset(&c, 0, sizeof(c));
5585	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5586				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5587	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5588	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5589		c.u.manual.mode_pkd =
5590			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5591	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5592		c.u.basicvirtual.mode_keymode =
5593			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5594		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5595	} else
5596		return -EINVAL;
5597	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5598}
5599
5600/**
5601 *	t4_config_vi_rss - configure per VI RSS settings
5602 *	@adapter: the adapter
5603 *	@mbox: mbox to use for the FW command
5604 *	@viid: the VI id
5605 *	@flags: RSS flags
5606 *	@defq: id of the default RSS queue for the VI.
5607 *	@skeyidx: RSS secret key table index for non-global mode
5608 *	@skey: RSS vf_scramble key for VI.
5609 *
5610 *	Configures VI-specific RSS properties.
5611 */
5612int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5613		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5614		     unsigned int skey)
5615{
5616	struct fw_rss_vi_config_cmd c;
5617
5618	memset(&c, 0, sizeof(c));
5619	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5620				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5621				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5622	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5623	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5624					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5625	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5626					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5627	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5628
5629	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5630}
5631
5632/* Read an RSS table row */
5633static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5634{
5635	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5636	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5637				   5, 0, val);
5638}
5639
5640/**
5641 *	t4_read_rss - read the contents of the RSS mapping table
5642 *	@adapter: the adapter
5643 *	@map: holds the contents of the RSS mapping table
5644 *
5645 *	Reads the contents of the RSS hash->queue mapping table.
5646 */
5647int t4_read_rss(struct adapter *adapter, u16 *map)
5648{
5649	u32 val;
5650	int i, ret;
5651	int rss_nentries = adapter->chip_params->rss_nentries;
5652
5653	for (i = 0; i < rss_nentries / 2; ++i) {
5654		ret = rd_rss_row(adapter, i, &val);
5655		if (ret)
5656			return ret;
5657		*map++ = G_LKPTBLQUEUE0(val);
5658		*map++ = G_LKPTBLQUEUE1(val);
5659	}
5660	return 0;
5661}
5662
5663/**
5664 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5665 * @adap: the adapter
5666 * @cmd: TP fw ldst address space type
5667 * @vals: where the indirect register values are stored/written
5668 * @nregs: how many indirect registers to read/write
5669 * @start_idx: index of first indirect register to read/write
5670 * @rw: Read (1) or Write (0)
5671 * @sleep_ok: if true we may sleep while awaiting command completion
5672 *
5673 * Access TP indirect registers through LDST
5674 **/
5675static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5676			    unsigned int nregs, unsigned int start_index,
5677			    unsigned int rw, bool sleep_ok)
5678{
5679	int ret = 0;
5680	unsigned int i;
5681	struct fw_ldst_cmd c;
5682
5683	for (i = 0; i < nregs; i++) {
5684		memset(&c, 0, sizeof(c));
5685		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5686						F_FW_CMD_REQUEST |
5687						(rw ? F_FW_CMD_READ :
5688						      F_FW_CMD_WRITE) |
5689						V_FW_LDST_CMD_ADDRSPACE(cmd));
5690		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5691
5692		c.u.addrval.addr = cpu_to_be32(start_index + i);
5693		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5694		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5695				      sleep_ok);
5696		if (ret)
5697			return ret;
5698
5699		if (rw)
5700			vals[i] = be32_to_cpu(c.u.addrval.val);
5701	}
5702	return 0;
5703}
5704
5705/**
5706 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5707 * @adap: the adapter
5708 * @reg_addr: Address Register
5709 * @reg_data: Data register
5710 * @buff: where the indirect register values are stored/written
5711 * @nregs: how many indirect registers to read/write
5712 * @start_index: index of first indirect register to read/write
5713 * @rw: READ(1) or WRITE(0)
5714 * @sleep_ok: if true we may sleep while awaiting command completion
5715 *
5716 * Read/Write TP indirect registers through LDST if possible.
5717 * Else, use backdoor access
5718 **/
5719static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5720			      u32 *buff, u32 nregs, u32 start_index, int rw,
5721			      bool sleep_ok)
5722{
5723	int rc = -EINVAL;
5724	int cmd;
5725
5726	switch (reg_addr) {
5727	case A_TP_PIO_ADDR:
5728		cmd = FW_LDST_ADDRSPC_TP_PIO;
5729		break;
5730	case A_TP_TM_PIO_ADDR:
5731		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5732		break;
5733	case A_TP_MIB_INDEX:
5734		cmd = FW_LDST_ADDRSPC_TP_MIB;
5735		break;
5736	default:
5737		goto indirect_access;
5738	}
5739
5740	if (t4_use_ldst(adap))
5741		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5742				      sleep_ok);
5743
5744indirect_access:
5745
5746	if (rc) {
5747		if (rw)
5748			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5749					 start_index);
5750		else
5751			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5752					  start_index);
5753	}
5754}
5755
5756/**
5757 * t4_tp_pio_read - Read TP PIO registers
5758 * @adap: the adapter
5759 * @buff: where the indirect register values are written
5760 * @nregs: how many indirect registers to read
5761 * @start_index: index of first indirect register to read
5762 * @sleep_ok: if true we may sleep while awaiting command completion
5763 *
5764 * Read TP PIO Registers
5765 **/
5766void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5767		    u32 start_index, bool sleep_ok)
5768{
5769	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5770			  start_index, 1, sleep_ok);
5771}
5772
5773/**
5774 * t4_tp_pio_write - Write TP PIO registers
5775 * @adap: the adapter
5776 * @buff: where the indirect register values are stored
5777 * @nregs: how many indirect registers to write
5778 * @start_index: index of first indirect register to write
5779 * @sleep_ok: if true we may sleep while awaiting command completion
5780 *
5781 * Write TP PIO Registers
5782 **/
5783void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5784		     u32 start_index, bool sleep_ok)
5785{
5786	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5787	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5788}
5789
5790/**
5791 * t4_tp_tm_pio_read - Read TP TM PIO registers
5792 * @adap: the adapter
5793 * @buff: where the indirect register values are written
5794 * @nregs: how many indirect registers to read
5795 * @start_index: index of first indirect register to read
5796 * @sleep_ok: if true we may sleep while awaiting command completion
5797 *
5798 * Read TP TM PIO Registers
5799 **/
5800void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5801		       u32 start_index, bool sleep_ok)
5802{
5803	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5804			  nregs, start_index, 1, sleep_ok);
5805}
5806
5807/**
5808 * t4_tp_mib_read - Read TP MIB registers
5809 * @adap: the adapter
5810 * @buff: where the indirect register values are written
5811 * @nregs: how many indirect registers to read
5812 * @start_index: index of first indirect register to read
5813 * @sleep_ok: if true we may sleep while awaiting command completion
5814 *
5815 * Read TP MIB Registers
5816 **/
5817void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5818		    bool sleep_ok)
5819{
5820	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5821			  start_index, 1, sleep_ok);
5822}
5823
5824/**
5825 *	t4_read_rss_key - read the global RSS key
5826 *	@adap: the adapter
5827 *	@key: 10-entry array holding the 320-bit RSS key
5828 * 	@sleep_ok: if true we may sleep while awaiting command completion
5829 *
5830 *	Reads the global 320-bit RSS key.
5831 */
5832void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5833{
5834	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5835}
5836
5837/**
5838 *	t4_write_rss_key - program one of the RSS keys
5839 *	@adap: the adapter
5840 *	@key: 10-entry array holding the 320-bit RSS key
5841 *	@idx: which RSS key to write
5842 * 	@sleep_ok: if true we may sleep while awaiting command completion
5843 *
5844 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5845 *	0..15 the corresponding entry in the RSS key table is written,
5846 *	otherwise the global RSS key is written.
5847 */
5848void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5849		      bool sleep_ok)
5850{
5851	u8 rss_key_addr_cnt = 16;
5852	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5853
5854	/*
5855	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5856	 * allows access to key addresses 16-63 by using KeyWrAddrX
5857	 * as index[5:4](upper 2) into key table
5858	 */
5859	if ((chip_id(adap) > CHELSIO_T5) &&
5860	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5861		rss_key_addr_cnt = 32;
5862
5863	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5864
5865	if (idx >= 0 && idx < rss_key_addr_cnt) {
5866		if (rss_key_addr_cnt > 16)
5867			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5868				     vrt | V_KEYWRADDRX(idx >> 4) |
5869				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5870		else
5871			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5872				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5873	}
5874}
5875
5876/**
5877 *	t4_read_rss_pf_config - read PF RSS Configuration Table
5878 *	@adapter: the adapter
5879 *	@index: the entry in the PF RSS table to read
5880 *	@valp: where to store the returned value
5881 * 	@sleep_ok: if true we may sleep while awaiting command completion
5882 *
5883 *	Reads the PF RSS Configuration Table at the specified index and returns
5884 *	the value found there.
5885 */
5886void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5887			   u32 *valp, bool sleep_ok)
5888{
5889	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5890}
5891
5892/**
5893 *	t4_write_rss_pf_config - write PF RSS Configuration Table
5894 *	@adapter: the adapter
5895 *	@index: the entry in the VF RSS table to read
5896 *	@val: the value to store
5897 * 	@sleep_ok: if true we may sleep while awaiting command completion
5898 *
5899 *	Writes the PF RSS Configuration Table at the specified index with the
5900 *	specified value.
5901 */
5902void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5903			    u32 val, bool sleep_ok)
5904{
5905	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5906			sleep_ok);
5907}
5908
5909/**
5910 *	t4_read_rss_vf_config - read VF RSS Configuration Table
5911 *	@adapter: the adapter
5912 *	@index: the entry in the VF RSS table to read
5913 *	@vfl: where to store the returned VFL
5914 *	@vfh: where to store the returned VFH
5915 * 	@sleep_ok: if true we may sleep while awaiting command completion
5916 *
5917 *	Reads the VF RSS Configuration Table at the specified index and returns
5918 *	the (VFL, VFH) values found there.
5919 */
5920void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5921			   u32 *vfl, u32 *vfh, bool sleep_ok)
5922{
5923	u32 vrt, mask, data;
5924
5925	if (chip_id(adapter) <= CHELSIO_T5) {
5926		mask = V_VFWRADDR(M_VFWRADDR);
5927		data = V_VFWRADDR(index);
5928	} else {
5929		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5930		 data = V_T6_VFWRADDR(index);
5931	}
5932	/*
5933	 * Request that the index'th VF Table values be read into VFL/VFH.
5934	 */
5935	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5936	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5937	vrt |= data | F_VFRDEN;
5938	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5939
5940	/*
5941	 * Grab the VFL/VFH values ...
5942	 */
5943	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5944	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5945}
5946
5947/**
5948 *	t4_write_rss_vf_config - write VF RSS Configuration Table
5949 *
5950 *	@adapter: the adapter
5951 *	@index: the entry in the VF RSS table to write
5952 *	@vfl: the VFL to store
5953 *	@vfh: the VFH to store
5954 *
5955 *	Writes the VF RSS Configuration Table at the specified index with the
5956 *	specified (VFL, VFH) values.
5957 */
5958void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5959			    u32 vfl, u32 vfh, bool sleep_ok)
5960{
5961	u32 vrt, mask, data;
5962
5963	if (chip_id(adapter) <= CHELSIO_T5) {
5964		mask = V_VFWRADDR(M_VFWRADDR);
5965		data = V_VFWRADDR(index);
5966	} else {
5967		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5968		data = V_T6_VFWRADDR(index);
5969	}
5970
5971	/*
5972	 * Load up VFL/VFH with the values to be written ...
5973	 */
5974	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5975	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5976
5977	/*
5978	 * Write the VFL/VFH into the VF Table at index'th location.
5979	 */
5980	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5981	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5982	vrt |= data | F_VFRDEN;
5983	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5984}
5985
5986/**
5987 *	t4_read_rss_pf_map - read PF RSS Map
5988 *	@adapter: the adapter
5989 * 	@sleep_ok: if true we may sleep while awaiting command completion
5990 *
5991 *	Reads the PF RSS Map register and returns its value.
5992 */
5993u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5994{
5995	u32 pfmap;
5996
5997	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5998
5999	return pfmap;
6000}
6001
6002/**
6003 *	t4_write_rss_pf_map - write PF RSS Map
6004 *	@adapter: the adapter
6005 *	@pfmap: PF RSS Map value
6006 *
6007 *	Writes the specified value to the PF RSS Map register.
6008 */
6009void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6010{
6011	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6012}
6013
6014/**
6015 *	t4_read_rss_pf_mask - read PF RSS Mask
6016 *	@adapter: the adapter
6017 * 	@sleep_ok: if true we may sleep while awaiting command completion
6018 *
6019 *	Reads the PF RSS Mask register and returns its value.
6020 */
6021u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6022{
6023	u32 pfmask;
6024
6025	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6026
6027	return pfmask;
6028}
6029
6030/**
6031 *	t4_write_rss_pf_mask - write PF RSS Mask
6032 *	@adapter: the adapter
6033 *	@pfmask: PF RSS Mask value
6034 *
6035 *	Writes the specified value to the PF RSS Mask register.
6036 */
6037void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6038{
6039	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6040}
6041
6042/**
6043 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6044 *	@adap: the adapter
6045 *	@v4: holds the TCP/IP counter values
6046 *	@v6: holds the TCP/IPv6 counter values
6047 * 	@sleep_ok: if true we may sleep while awaiting command completion
6048 *
6049 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6050 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6051 */
6052void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6053			 struct tp_tcp_stats *v6, bool sleep_ok)
6054{
6055	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6056
6057#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6058#define STAT(x)     val[STAT_IDX(x)]
6059#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6060
6061	if (v4) {
6062		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6063			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6064		v4->tcp_out_rsts = STAT(OUT_RST);
6065		v4->tcp_in_segs  = STAT64(IN_SEG);
6066		v4->tcp_out_segs = STAT64(OUT_SEG);
6067		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6068	}
6069	if (v6) {
6070		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6071			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6072		v6->tcp_out_rsts = STAT(OUT_RST);
6073		v6->tcp_in_segs  = STAT64(IN_SEG);
6074		v6->tcp_out_segs = STAT64(OUT_SEG);
6075		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6076	}
6077#undef STAT64
6078#undef STAT
6079#undef STAT_IDX
6080}
6081
6082/**
6083 *	t4_tp_get_err_stats - read TP's error MIB counters
6084 *	@adap: the adapter
6085 *	@st: holds the counter values
6086 * 	@sleep_ok: if true we may sleep while awaiting command completion
6087 *
6088 *	Returns the values of TP's error counters.
6089 */
6090void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6091			 bool sleep_ok)
6092{
6093	int nchan = adap->chip_params->nchan;
6094
6095	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6096		       sleep_ok);
6097
6098	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6099		       sleep_ok);
6100
6101	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6102		       sleep_ok);
6103
6104	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6105		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6106
6107	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6108		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6109
6110	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6111		       sleep_ok);
6112
6113	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6114		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6115
6116	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6117		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6118
6119	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6120		       sleep_ok);
6121}
6122
6123/**
6124 *	t4_tp_get_err_stats - read TP's error MIB counters
6125 *	@adap: the adapter
6126 *	@st: holds the counter values
6127 * 	@sleep_ok: if true we may sleep while awaiting command completion
6128 *
6129 *	Returns the values of TP's error counters.
6130 */
6131void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6132			 bool sleep_ok)
6133{
6134	int nchan = adap->chip_params->nchan;
6135
6136	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6137		       sleep_ok);
6138	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6139		       sleep_ok);
6140}
6141
6142/**
6143 *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6144 *	@adap: the adapter
6145 *	@st: holds the counter values
6146 *
6147 *	Returns the values of TP's proxy counters.
6148 */
6149void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6150    bool sleep_ok)
6151{
6152	int nchan = adap->chip_params->nchan;
6153
6154	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6155}
6156
6157/**
6158 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6159 *	@adap: the adapter
6160 *	@st: holds the counter values
6161 * 	@sleep_ok: if true we may sleep while awaiting command completion
6162 *
6163 *	Returns the values of TP's CPL counters.
6164 */
6165void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6166			 bool sleep_ok)
6167{
6168	int nchan = adap->chip_params->nchan;
6169
6170	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6171
6172	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6173}
6174
6175/**
6176 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6177 *	@adap: the adapter
6178 *	@st: holds the counter values
6179 *
6180 *	Returns the values of TP's RDMA counters.
6181 */
6182void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6183			  bool sleep_ok)
6184{
6185	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6186		       sleep_ok);
6187}
6188
6189/**
6190 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6191 *	@adap: the adapter
6192 *	@idx: the port index
6193 *	@st: holds the counter values
6194 * 	@sleep_ok: if true we may sleep while awaiting command completion
6195 *
6196 *	Returns the values of TP's FCoE counters for the selected port.
6197 */
6198void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6199		       struct tp_fcoe_stats *st, bool sleep_ok)
6200{
6201	u32 val[2];
6202
6203	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6204		       sleep_ok);
6205
6206	t4_tp_mib_read(adap, &st->frames_drop, 1,
6207		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6208
6209	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6210		       sleep_ok);
6211
6212	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6213}
6214
6215/**
6216 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6217 *	@adap: the adapter
6218 *	@st: holds the counter values
6219 * 	@sleep_ok: if true we may sleep while awaiting command completion
6220 *
6221 *	Returns the values of TP's counters for non-TCP directly-placed packets.
6222 */
6223void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6224		      bool sleep_ok)
6225{
6226	u32 val[4];
6227
6228	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6229
6230	st->frames = val[0];
6231	st->drops = val[1];
6232	st->octets = ((u64)val[2] << 32) | val[3];
6233}
6234
6235/**
6236 *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6237 *	@adap: the adapter
6238 *	@st: holds the counter values
6239 * 	@sleep_ok: if true we may sleep while awaiting command completion
6240 *
6241 *	Returns the values of TP's counters for tids.
6242 */
6243void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6244		      bool sleep_ok)
6245{
6246
6247	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6248}
6249
6250/**
6251 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6252 *	@adap: the adapter
6253 *	@mtus: where to store the MTU values
6254 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6255 *
6256 *	Reads the HW path MTU table.
6257 */
6258void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6259{
6260	u32 v;
6261	int i;
6262
6263	for (i = 0; i < NMTUS; ++i) {
6264		t4_write_reg(adap, A_TP_MTU_TABLE,
6265			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6266		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6267		mtus[i] = G_MTUVALUE(v);
6268		if (mtu_log)
6269			mtu_log[i] = G_MTUWIDTH(v);
6270	}
6271}
6272
6273/**
6274 *	t4_read_cong_tbl - reads the congestion control table
6275 *	@adap: the adapter
6276 *	@incr: where to store the alpha values
6277 *
6278 *	Reads the additive increments programmed into the HW congestion
6279 *	control table.
6280 */
6281void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6282{
6283	unsigned int mtu, w;
6284
6285	for (mtu = 0; mtu < NMTUS; ++mtu)
6286		for (w = 0; w < NCCTRL_WIN; ++w) {
6287			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6288				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6289			incr[mtu][w] = (u16)t4_read_reg(adap,
6290						A_TP_CCTRL_TABLE) & 0x1fff;
6291		}
6292}
6293
6294/**
6295 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6296 *	@adap: the adapter
6297 *	@addr: the indirect TP register address
6298 *	@mask: specifies the field within the register to modify
6299 *	@val: new value for the field
6300 *
6301 *	Sets a field of an indirect TP register to the given value.
6302 */
6303void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6304			    unsigned int mask, unsigned int val)
6305{
6306	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6307	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6308	t4_write_reg(adap, A_TP_PIO_DATA, val);
6309}
6310
6311/**
6312 *	init_cong_ctrl - initialize congestion control parameters
6313 *	@a: the alpha values for congestion control
6314 *	@b: the beta values for congestion control
6315 *
6316 *	Initialize the congestion control parameters.
6317 */
6318static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6319{
6320	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6321	a[9] = 2;
6322	a[10] = 3;
6323	a[11] = 4;
6324	a[12] = 5;
6325	a[13] = 6;
6326	a[14] = 7;
6327	a[15] = 8;
6328	a[16] = 9;
6329	a[17] = 10;
6330	a[18] = 14;
6331	a[19] = 17;
6332	a[20] = 21;
6333	a[21] = 25;
6334	a[22] = 30;
6335	a[23] = 35;
6336	a[24] = 45;
6337	a[25] = 60;
6338	a[26] = 80;
6339	a[27] = 100;
6340	a[28] = 200;
6341	a[29] = 300;
6342	a[30] = 400;
6343	a[31] = 500;
6344
6345	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6346	b[9] = b[10] = 1;
6347	b[11] = b[12] = 2;
6348	b[13] = b[14] = b[15] = b[16] = 3;
6349	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6350	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6351	b[28] = b[29] = 6;
6352	b[30] = b[31] = 7;
6353}
6354
6355/* The minimum additive increment value for the congestion control table */
6356#define CC_MIN_INCR 2U
6357
6358/**
6359 *	t4_load_mtus - write the MTU and congestion control HW tables
6360 *	@adap: the adapter
6361 *	@mtus: the values for the MTU table
6362 *	@alpha: the values for the congestion control alpha parameter
6363 *	@beta: the values for the congestion control beta parameter
6364 *
6365 *	Write the HW MTU table with the supplied MTUs and the high-speed
6366 *	congestion control table with the supplied alpha, beta, and MTUs.
6367 *	We write the two tables together because the additive increments
6368 *	depend on the MTUs.
6369 */
6370void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6371		  const unsigned short *alpha, const unsigned short *beta)
6372{
6373	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6374		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6375		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6376		28672, 40960, 57344, 81920, 114688, 163840, 229376
6377	};
6378
6379	unsigned int i, w;
6380
6381	for (i = 0; i < NMTUS; ++i) {
6382		unsigned int mtu = mtus[i];
6383		unsigned int log2 = fls(mtu);
6384
6385		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6386			log2--;
6387		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6388			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6389
6390		for (w = 0; w < NCCTRL_WIN; ++w) {
6391			unsigned int inc;
6392
6393			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6394				  CC_MIN_INCR);
6395
6396			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6397				     (w << 16) | (beta[w] << 13) | inc);
6398		}
6399	}
6400}
6401
6402/**
6403 *	t4_set_pace_tbl - set the pace table
6404 *	@adap: the adapter
6405 *	@pace_vals: the pace values in microseconds
6406 *	@start: index of the first entry in the HW pace table to set
6407 *	@n: how many entries to set
6408 *
6409 *	Sets (a subset of the) HW pace table.
6410 */
6411int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6412		     unsigned int start, unsigned int n)
6413{
6414	unsigned int vals[NTX_SCHED], i;
6415	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6416
6417	if (n > NTX_SCHED)
6418	    return -ERANGE;
6419
6420	/* convert values from us to dack ticks, rounding to closest value */
6421	for (i = 0; i < n; i++, pace_vals++) {
6422		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6423		if (vals[i] > 0x7ff)
6424			return -ERANGE;
6425		if (*pace_vals && vals[i] == 0)
6426			return -ERANGE;
6427	}
6428	for (i = 0; i < n; i++, start++)
6429		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6430	return 0;
6431}
6432
6433/**
6434 *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6435 *	@adap: the adapter
6436 *	@kbps: target rate in Kbps
6437 *	@sched: the scheduler index
6438 *
6439 *	Configure a Tx HW scheduler for the target rate.
6440 */
6441int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6442{
6443	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6444	unsigned int clk = adap->params.vpd.cclk * 1000;
6445	unsigned int selected_cpt = 0, selected_bpt = 0;
6446
6447	if (kbps > 0) {
6448		kbps *= 125;     /* -> bytes */
6449		for (cpt = 1; cpt <= 255; cpt++) {
6450			tps = clk / cpt;
6451			bpt = (kbps + tps / 2) / tps;
6452			if (bpt > 0 && bpt <= 255) {
6453				v = bpt * tps;
6454				delta = v >= kbps ? v - kbps : kbps - v;
6455				if (delta < mindelta) {
6456					mindelta = delta;
6457					selected_cpt = cpt;
6458					selected_bpt = bpt;
6459				}
6460			} else if (selected_cpt)
6461				break;
6462		}
6463		if (!selected_cpt)
6464			return -EINVAL;
6465	}
6466	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6467		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6468	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6469	if (sched & 1)
6470		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6471	else
6472		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6473	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6474	return 0;
6475}
6476
6477/**
6478 *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6479 *	@adap: the adapter
6480 *	@sched: the scheduler index
6481 *	@ipg: the interpacket delay in tenths of nanoseconds
6482 *
6483 *	Set the interpacket delay for a HW packet rate scheduler.
6484 */
6485int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6486{
6487	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6488
6489	/* convert ipg to nearest number of core clocks */
6490	ipg *= core_ticks_per_usec(adap);
6491	ipg = (ipg + 5000) / 10000;
6492	if (ipg > M_TXTIMERSEPQ0)
6493		return -EINVAL;
6494
6495	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6496	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6497	if (sched & 1)
6498		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6499	else
6500		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6501	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6502	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6503	return 0;
6504}
6505
6506/*
6507 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6508 * clocks.  The formula is
6509 *
6510 * bytes/s = bytes256 * 256 * ClkFreq / 4096
6511 *
6512 * which is equivalent to
6513 *
6514 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6515 */
6516static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6517{
6518	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6519
6520	return v * 62 + v / 2;
6521}
6522
6523/**
6524 *	t4_get_chan_txrate - get the current per channel Tx rates
6525 *	@adap: the adapter
6526 *	@nic_rate: rates for NIC traffic
6527 *	@ofld_rate: rates for offloaded traffic
6528 *
6529 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6530 *	for each channel.
6531 */
6532void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6533{
6534	u32 v;
6535
6536	v = t4_read_reg(adap, A_TP_TX_TRATE);
6537	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6538	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6539	if (adap->chip_params->nchan > 2) {
6540		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6541		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6542	}
6543
6544	v = t4_read_reg(adap, A_TP_TX_ORATE);
6545	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6546	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6547	if (adap->chip_params->nchan > 2) {
6548		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6549		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6550	}
6551}
6552
6553/**
6554 *	t4_set_trace_filter - configure one of the tracing filters
6555 *	@adap: the adapter
6556 *	@tp: the desired trace filter parameters
6557 *	@idx: which filter to configure
6558 *	@enable: whether to enable or disable the filter
6559 *
6560 *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6561 *	it indicates that the filter is already written in the register and it
6562 *	just needs to be enabled or disabled.
6563 */
6564int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6565    int idx, int enable)
6566{
6567	int i, ofst = idx * 4;
6568	u32 data_reg, mask_reg, cfg;
6569	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6570
6571	if (idx < 0 || idx >= NTRACE)
6572		return -EINVAL;
6573
6574	if (tp == NULL || !enable) {
6575		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6576		    enable ? en : 0);
6577		return 0;
6578	}
6579
6580	/*
6581	 * TODO - After T4 data book is updated, specify the exact
6582	 * section below.
6583	 *
6584	 * See T4 data book - MPS section for a complete description
6585	 * of the below if..else handling of A_MPS_TRC_CFG register
6586	 * value.
6587	 */
6588	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6589	if (cfg & F_TRCMULTIFILTER) {
6590		/*
6591		 * If multiple tracers are enabled, then maximum
6592		 * capture size is 2.5KB (FIFO size of a single channel)
6593		 * minus 2 flits for CPL_TRACE_PKT header.
6594		 */
6595		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6596			return -EINVAL;
6597	} else {
6598		/*
6599		 * If multiple tracers are disabled, to avoid deadlocks
6600		 * maximum packet capture size of 9600 bytes is recommended.
6601		 * Also in this mode, only trace0 can be enabled and running.
6602		 */
6603		if (tp->snap_len > 9600 || idx)
6604			return -EINVAL;
6605	}
6606
6607	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6608	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6609	    tp->min_len > M_TFMINPKTSIZE)
6610		return -EINVAL;
6611
6612	/* stop the tracer we'll be changing */
6613	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6614
6615	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6616	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6617	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6618
6619	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6620		t4_write_reg(adap, data_reg, tp->data[i]);
6621		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6622	}
6623	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6624		     V_TFCAPTUREMAX(tp->snap_len) |
6625		     V_TFMINPKTSIZE(tp->min_len));
6626	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6627		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6628		     (is_t4(adap) ?
6629		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6630		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6631
6632	return 0;
6633}
6634
6635/**
6636 *	t4_get_trace_filter - query one of the tracing filters
6637 *	@adap: the adapter
6638 *	@tp: the current trace filter parameters
6639 *	@idx: which trace filter to query
6640 *	@enabled: non-zero if the filter is enabled
6641 *
6642 *	Returns the current settings of one of the HW tracing filters.
6643 */
6644void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6645			 int *enabled)
6646{
6647	u32 ctla, ctlb;
6648	int i, ofst = idx * 4;
6649	u32 data_reg, mask_reg;
6650
6651	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6652	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6653
6654	if (is_t4(adap)) {
6655		*enabled = !!(ctla & F_TFEN);
6656		tp->port =  G_TFPORT(ctla);
6657		tp->invert = !!(ctla & F_TFINVERTMATCH);
6658	} else {
6659		*enabled = !!(ctla & F_T5_TFEN);
6660		tp->port = G_T5_TFPORT(ctla);
6661		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6662	}
6663	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6664	tp->min_len = G_TFMINPKTSIZE(ctlb);
6665	tp->skip_ofst = G_TFOFFSET(ctla);
6666	tp->skip_len = G_TFLENGTH(ctla);
6667
6668	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6669	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6670	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6671
6672	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6673		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6674		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6675	}
6676}
6677
6678/**
6679 *	t4_pmtx_get_stats - returns the HW stats from PMTX
6680 *	@adap: the adapter
6681 *	@cnt: where to store the count statistics
6682 *	@cycles: where to store the cycle statistics
6683 *
6684 *	Returns performance statistics from PMTX.
6685 */
6686void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6687{
6688	int i;
6689	u32 data[2];
6690
6691	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6692		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6693		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6694		if (is_t4(adap))
6695			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6696		else {
6697			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6698					 A_PM_TX_DBG_DATA, data, 2,
6699					 A_PM_TX_DBG_STAT_MSB);
6700			cycles[i] = (((u64)data[0] << 32) | data[1]);
6701		}
6702	}
6703}
6704
6705/**
6706 *	t4_pmrx_get_stats - returns the HW stats from PMRX
6707 *	@adap: the adapter
6708 *	@cnt: where to store the count statistics
6709 *	@cycles: where to store the cycle statistics
6710 *
6711 *	Returns performance statistics from PMRX.
6712 */
6713void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6714{
6715	int i;
6716	u32 data[2];
6717
6718	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6719		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6720		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6721		if (is_t4(adap)) {
6722			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6723		} else {
6724			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6725					 A_PM_RX_DBG_DATA, data, 2,
6726					 A_PM_RX_DBG_STAT_MSB);
6727			cycles[i] = (((u64)data[0] << 32) | data[1]);
6728		}
6729	}
6730}
6731
6732/**
6733 *	t4_get_mps_bg_map - return the buffer groups associated with a port
6734 *	@adap: the adapter
6735 *	@idx: the port index
6736 *
6737 *	Returns a bitmap indicating which MPS buffer groups are associated
6738 *	with the given port.  Bit i is set if buffer group i is used by the
6739 *	port.
6740 */
6741static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6742{
6743	u32 n;
6744
6745	if (adap->params.mps_bg_map != UINT32_MAX)
6746		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6747
6748	n = adap->params.nports;
6749	MPASS(n > 0 && n <= MAX_NPORTS);
6750	if (n == 1)
6751		return idx == 0 ? 0xf : 0;
6752	if (n == 2 && chip_id(adap) <= CHELSIO_T5)
6753		return idx < 2 ? (3 << (2 * idx)) : 0;
6754	return 1 << idx;
6755}
6756
6757/*
6758 * TP RX e-channels associated with the port.
6759 */
6760static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6761{
6762	const u32 n = adap->params.nports;
6763	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6764
6765	if (n == 1)
6766		return idx == 0 ? all_chan : 0;
6767	if (n == 2 && chip_id(adap) <= CHELSIO_T5)
6768		return idx < 2 ? (3 << (2 * idx)) : 0;
6769	return 1 << idx;
6770}
6771
6772/*
6773 * TP RX c-channel associated with the port.
6774 */
6775static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6776{
6777	if (adap->params.tp_ch_map != UINT32_MAX)
6778		return (adap->params.tp_ch_map >> (8 * idx)) & 0xff;
6779        return 0;
6780}
6781
6782/*
6783 * TP TX c-channel associated with the port.
6784 */
6785static unsigned int t4_get_tx_c_chan(struct adapter *adap, int idx)
6786{
6787	return idx;
6788}
6789
6790/**
6791 *      t4_get_port_type_description - return Port Type string description
6792 *      @port_type: firmware Port Type enumeration
6793 */
6794const char *t4_get_port_type_description(enum fw_port_type port_type)
6795{
6796	static const char *const port_type_description[] = {
6797		"Fiber_XFI",
6798		"Fiber_XAUI",
6799		"BT_SGMII",
6800		"BT_XFI",
6801		"BT_XAUI",
6802		"KX4",
6803		"CX4",
6804		"KX",
6805		"KR",
6806		"SFP",
6807		"BP_AP",
6808		"BP4_AP",
6809		"QSFP_10G",
6810		"QSA",
6811		"QSFP",
6812		"BP40_BA",
6813		"KR4_100G",
6814		"CR4_QSFP",
6815		"CR_QSFP",
6816		"CR2_QSFP",
6817		"SFP28",
6818		"KR_SFP28",
6819		"KR_XLAUI",
6820	};
6821
6822	if (port_type < ARRAY_SIZE(port_type_description))
6823		return port_type_description[port_type];
6824	return "UNKNOWN";
6825}
6826
6827/**
6828 *      t4_get_port_stats_offset - collect port stats relative to a previous
6829 *				   snapshot
6830 *      @adap: The adapter
6831 *      @idx: The port
6832 *      @stats: Current stats to fill
6833 *      @offset: Previous stats snapshot
6834 */
6835void t4_get_port_stats_offset(struct adapter *adap, int idx,
6836		struct port_stats *stats,
6837		struct port_stats *offset)
6838{
6839	u64 *s, *o;
6840	int i;
6841
6842	t4_get_port_stats(adap, idx, stats);
6843	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6844			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6845			i++, s++, o++)
6846		*s -= *o;
6847}
6848
6849/**
6850 *	t4_get_port_stats - collect port statistics
6851 *	@adap: the adapter
6852 *	@idx: the port index
6853 *	@p: the stats structure to fill
6854 *
6855 *	Collect statistics related to the given port from HW.
6856 */
6857void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6858{
6859	struct port_info *pi = adap->port[idx];
6860	u32 bgmap = pi->mps_bg_map;
6861	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6862
6863#define GET_STAT(name) \
6864	t4_read_reg64(adap, \
6865	    t4_port_reg(adap, pi->tx_chan, A_MPS_PORT_STAT_##name##_L));
6866#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6867
6868	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6869	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6870	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6871	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6872	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6873	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6874	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6875	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6876	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6877	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6878	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6879	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6880	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6881	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6882	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6883	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6884	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6885	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6886	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6887	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6888	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6889	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6890	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6891
6892	if (chip_id(adap) >= CHELSIO_T5) {
6893		if (stat_ctl & F_COUNTPAUSESTATTX) {
6894			p->tx_frames -= p->tx_pause;
6895			p->tx_octets -= p->tx_pause * 64;
6896		}
6897		if (stat_ctl & F_COUNTPAUSEMCTX)
6898			p->tx_mcast_frames -= p->tx_pause;
6899	}
6900
6901	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6902	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6903	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6904	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6905	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6906	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6907	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6908	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6909	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6910	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6911	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6912	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6913	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6914	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6915	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6916	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6917	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6918	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6919	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6920	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6921	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6922	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6923	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6924	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6925	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6926	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6927
6928	if (pi->fcs_reg != -1)
6929		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
6930
6931	if (chip_id(adap) >= CHELSIO_T5) {
6932		if (stat_ctl & F_COUNTPAUSESTATRX) {
6933			p->rx_frames -= p->rx_pause;
6934			p->rx_octets -= p->rx_pause * 64;
6935		}
6936		if (stat_ctl & F_COUNTPAUSEMCRX)
6937			p->rx_mcast_frames -= p->rx_pause;
6938	}
6939
6940	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6941	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6942	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6943	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6944	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6945	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6946	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6947	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6948
6949#undef GET_STAT
6950#undef GET_STAT_COM
6951}
6952
6953/**
6954 *	t4_get_lb_stats - collect loopback port statistics
6955 *	@adap: the adapter
6956 *	@idx: the loopback port index
6957 *	@p: the stats structure to fill
6958 *
6959 *	Return HW statistics for the given loopback port.
6960 */
6961void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6962{
6963
6964#define GET_STAT(name) \
6965	t4_read_reg64(adap, \
6966	    t4_port_reg(adap, idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))
6967#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6968
6969	p->octets	= GET_STAT(BYTES);
6970	p->frames	= GET_STAT(FRAMES);
6971	p->bcast_frames	= GET_STAT(BCAST);
6972	p->mcast_frames	= GET_STAT(MCAST);
6973	p->ucast_frames	= GET_STAT(UCAST);
6974	p->error_frames	= GET_STAT(ERROR);
6975
6976	p->frames_64		= GET_STAT(64B);
6977	p->frames_65_127	= GET_STAT(65B_127B);
6978	p->frames_128_255	= GET_STAT(128B_255B);
6979	p->frames_256_511	= GET_STAT(256B_511B);
6980	p->frames_512_1023	= GET_STAT(512B_1023B);
6981	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6982	p->frames_1519_max	= GET_STAT(1519B_MAX);
6983	p->drop			= GET_STAT(DROP_FRAMES);
6984
6985	if (idx < adap->params.nports) {
6986		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
6987
6988		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6989		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6990		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6991		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6992		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6993		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6994		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6995		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6996	}
6997
6998#undef GET_STAT
6999#undef GET_STAT_COM
7000}
7001
7002/**
7003 *	t4_wol_magic_enable - enable/disable magic packet WoL
7004 *	@adap: the adapter
7005 *	@port: the physical port index
7006 *	@addr: MAC address expected in magic packets, %NULL to disable
7007 *
7008 *	Enables/disables magic packet wake-on-LAN for the selected port.
7009 */
7010void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7011			 const u8 *addr)
7012{
7013	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7014
7015	if (is_t4(adap)) {
7016		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7017		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7018		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7019	} else {
7020		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7021		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7022		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7023	}
7024
7025	if (addr) {
7026		t4_write_reg(adap, mag_id_reg_l,
7027			     (addr[2] << 24) | (addr[3] << 16) |
7028			     (addr[4] << 8) | addr[5]);
7029		t4_write_reg(adap, mag_id_reg_h,
7030			     (addr[0] << 8) | addr[1]);
7031	}
7032	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7033			 V_MAGICEN(addr != NULL));
7034}
7035
7036/**
7037 *	t4_wol_pat_enable - enable/disable pattern-based WoL
7038 *	@adap: the adapter
7039 *	@port: the physical port index
7040 *	@map: bitmap of which HW pattern filters to set
7041 *	@mask0: byte mask for bytes 0-63 of a packet
7042 *	@mask1: byte mask for bytes 64-127 of a packet
7043 *	@crc: Ethernet CRC for selected bytes
7044 *	@enable: enable/disable switch
7045 *
7046 *	Sets the pattern filters indicated in @map to mask out the bytes
7047 *	specified in @mask0/@mask1 in received packets and compare the CRC of
7048 *	the resulting packet against @crc.  If @enable is %true pattern-based
7049 *	WoL is enabled, otherwise disabled.
7050 */
7051int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7052		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7053{
7054	int i;
7055	u32 port_cfg_reg;
7056
7057	if (is_t4(adap))
7058		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7059	else
7060		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7061
7062	if (!enable) {
7063		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7064		return 0;
7065	}
7066	if (map > 0xff)
7067		return -EINVAL;
7068
7069#define EPIO_REG(name) \
7070	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7071	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7072
7073	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7074	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7075	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7076
7077	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7078		if (!(map & 1))
7079			continue;
7080
7081		/* write byte masks */
7082		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7083		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7084		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7085		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7086			return -ETIMEDOUT;
7087
7088		/* write CRC */
7089		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7090		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7091		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7092		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7093			return -ETIMEDOUT;
7094	}
7095#undef EPIO_REG
7096
7097	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7098	return 0;
7099}
7100
7101/*     t4_mk_filtdelwr - create a delete filter WR
7102 *     @ftid: the filter ID
7103 *     @wr: the filter work request to populate
7104 *     @qid: ingress queue to receive the delete notification
7105 *
7106 *     Creates a filter work request to delete the supplied filter.  If @qid is
7107 *     negative the delete notification is suppressed.
7108 */
7109void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7110{
7111	memset(wr, 0, sizeof(*wr));
7112	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7113	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7114	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7115				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7116	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7117	if (qid >= 0)
7118		wr->rx_chan_rx_rpl_iq =
7119				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7120}
7121
7122#define INIT_CMD(var, cmd, rd_wr) do { \
7123	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7124					F_FW_CMD_REQUEST | \
7125					F_FW_CMD_##rd_wr); \
7126	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7127} while (0)
7128
7129int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7130			  u32 addr, u32 val)
7131{
7132	u32 ldst_addrspace;
7133	struct fw_ldst_cmd c;
7134
7135	memset(&c, 0, sizeof(c));
7136	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7137	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7138					F_FW_CMD_REQUEST |
7139					F_FW_CMD_WRITE |
7140					ldst_addrspace);
7141	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7142	c.u.addrval.addr = cpu_to_be32(addr);
7143	c.u.addrval.val = cpu_to_be32(val);
7144
7145	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7146}
7147
7148/**
7149 *	t4_mdio_rd - read a PHY register through MDIO
7150 *	@adap: the adapter
7151 *	@mbox: mailbox to use for the FW command
7152 *	@phy_addr: the PHY address
7153 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7154 *	@reg: the register to read
7155 *	@valp: where to store the value
7156 *
7157 *	Issues a FW command through the given mailbox to read a PHY register.
7158 */
7159int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7160	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7161{
7162	int ret;
7163	u32 ldst_addrspace;
7164	struct fw_ldst_cmd c;
7165
7166	memset(&c, 0, sizeof(c));
7167	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7168	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7169					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7170					ldst_addrspace);
7171	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7172	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7173					 V_FW_LDST_CMD_MMD(mmd));
7174	c.u.mdio.raddr = cpu_to_be16(reg);
7175
7176	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7177	if (ret == 0)
7178		*valp = be16_to_cpu(c.u.mdio.rval);
7179	return ret;
7180}
7181
7182/**
7183 *	t4_mdio_wr - write a PHY register through MDIO
7184 *	@adap: the adapter
7185 *	@mbox: mailbox to use for the FW command
7186 *	@phy_addr: the PHY address
7187 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7188 *	@reg: the register to write
7189 *	@valp: value to write
7190 *
7191 *	Issues a FW command through the given mailbox to write a PHY register.
7192 */
7193int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7194	       unsigned int mmd, unsigned int reg, unsigned int val)
7195{
7196	u32 ldst_addrspace;
7197	struct fw_ldst_cmd c;
7198
7199	memset(&c, 0, sizeof(c));
7200	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7201	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7202					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7203					ldst_addrspace);
7204	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7205	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7206					 V_FW_LDST_CMD_MMD(mmd));
7207	c.u.mdio.raddr = cpu_to_be16(reg);
7208	c.u.mdio.rval = cpu_to_be16(val);
7209
7210	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7211}
7212
7213/**
7214 *
7215 *	t4_sge_decode_idma_state - decode the idma state
7216 *	@adap: the adapter
7217 *	@state: the state idma is stuck in
7218 */
7219void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7220{
7221	static const char * const t4_decode[] = {
7222		"IDMA_IDLE",
7223		"IDMA_PUSH_MORE_CPL_FIFO",
7224		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7225		"Not used",
7226		"IDMA_PHYSADDR_SEND_PCIEHDR",
7227		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7228		"IDMA_PHYSADDR_SEND_PAYLOAD",
7229		"IDMA_SEND_FIFO_TO_IMSG",
7230		"IDMA_FL_REQ_DATA_FL_PREP",
7231		"IDMA_FL_REQ_DATA_FL",
7232		"IDMA_FL_DROP",
7233		"IDMA_FL_H_REQ_HEADER_FL",
7234		"IDMA_FL_H_SEND_PCIEHDR",
7235		"IDMA_FL_H_PUSH_CPL_FIFO",
7236		"IDMA_FL_H_SEND_CPL",
7237		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7238		"IDMA_FL_H_SEND_IP_HDR",
7239		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7240		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7241		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7242		"IDMA_FL_D_SEND_PCIEHDR",
7243		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7244		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7245		"IDMA_FL_SEND_PCIEHDR",
7246		"IDMA_FL_PUSH_CPL_FIFO",
7247		"IDMA_FL_SEND_CPL",
7248		"IDMA_FL_SEND_PAYLOAD_FIRST",
7249		"IDMA_FL_SEND_PAYLOAD",
7250		"IDMA_FL_REQ_NEXT_DATA_FL",
7251		"IDMA_FL_SEND_NEXT_PCIEHDR",
7252		"IDMA_FL_SEND_PADDING",
7253		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7254		"IDMA_FL_SEND_FIFO_TO_IMSG",
7255		"IDMA_FL_REQ_DATAFL_DONE",
7256		"IDMA_FL_REQ_HEADERFL_DONE",
7257	};
7258	static const char * const t5_decode[] = {
7259		"IDMA_IDLE",
7260		"IDMA_ALMOST_IDLE",
7261		"IDMA_PUSH_MORE_CPL_FIFO",
7262		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7263		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7264		"IDMA_PHYSADDR_SEND_PCIEHDR",
7265		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7266		"IDMA_PHYSADDR_SEND_PAYLOAD",
7267		"IDMA_SEND_FIFO_TO_IMSG",
7268		"IDMA_FL_REQ_DATA_FL",
7269		"IDMA_FL_DROP",
7270		"IDMA_FL_DROP_SEND_INC",
7271		"IDMA_FL_H_REQ_HEADER_FL",
7272		"IDMA_FL_H_SEND_PCIEHDR",
7273		"IDMA_FL_H_PUSH_CPL_FIFO",
7274		"IDMA_FL_H_SEND_CPL",
7275		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7276		"IDMA_FL_H_SEND_IP_HDR",
7277		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7278		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7279		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7280		"IDMA_FL_D_SEND_PCIEHDR",
7281		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7282		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7283		"IDMA_FL_SEND_PCIEHDR",
7284		"IDMA_FL_PUSH_CPL_FIFO",
7285		"IDMA_FL_SEND_CPL",
7286		"IDMA_FL_SEND_PAYLOAD_FIRST",
7287		"IDMA_FL_SEND_PAYLOAD",
7288		"IDMA_FL_REQ_NEXT_DATA_FL",
7289		"IDMA_FL_SEND_NEXT_PCIEHDR",
7290		"IDMA_FL_SEND_PADDING",
7291		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7292	};
7293	static const char * const t6_decode[] = {
7294		"IDMA_IDLE",
7295		"IDMA_PUSH_MORE_CPL_FIFO",
7296		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7297		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7298		"IDMA_PHYSADDR_SEND_PCIEHDR",
7299		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7300		"IDMA_PHYSADDR_SEND_PAYLOAD",
7301		"IDMA_FL_REQ_DATA_FL",
7302		"IDMA_FL_DROP",
7303		"IDMA_FL_DROP_SEND_INC",
7304		"IDMA_FL_H_REQ_HEADER_FL",
7305		"IDMA_FL_H_SEND_PCIEHDR",
7306		"IDMA_FL_H_PUSH_CPL_FIFO",
7307		"IDMA_FL_H_SEND_CPL",
7308		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7309		"IDMA_FL_H_SEND_IP_HDR",
7310		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7311		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7312		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7313		"IDMA_FL_D_SEND_PCIEHDR",
7314		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7315		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7316		"IDMA_FL_SEND_PCIEHDR",
7317		"IDMA_FL_PUSH_CPL_FIFO",
7318		"IDMA_FL_SEND_CPL",
7319		"IDMA_FL_SEND_PAYLOAD_FIRST",
7320		"IDMA_FL_SEND_PAYLOAD",
7321		"IDMA_FL_REQ_NEXT_DATA_FL",
7322		"IDMA_FL_SEND_NEXT_PCIEHDR",
7323		"IDMA_FL_SEND_PADDING",
7324		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7325	};
7326	static const u32 sge_regs[] = {
7327		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7328		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7329		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7330	};
7331	const char * const *sge_idma_decode;
7332	int sge_idma_decode_nstates;
7333	int i;
7334	unsigned int chip_version = chip_id(adapter);
7335
7336	/* Select the right set of decode strings to dump depending on the
7337	 * adapter chip type.
7338	 */
7339	switch (chip_version) {
7340	case CHELSIO_T4:
7341		sge_idma_decode = (const char * const *)t4_decode;
7342		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7343		break;
7344
7345	case CHELSIO_T5:
7346		sge_idma_decode = (const char * const *)t5_decode;
7347		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7348		break;
7349
7350	case CHELSIO_T6:
7351		sge_idma_decode = (const char * const *)t6_decode;
7352		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7353		break;
7354
7355	default:
7356		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7357		return;
7358	}
7359
7360	if (state < sge_idma_decode_nstates)
7361		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7362	else
7363		CH_WARN(adapter, "idma state %d unknown\n", state);
7364
7365	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7366		CH_WARN(adapter, "SGE register %#x value %#x\n",
7367			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7368}
7369
7370/**
7371 *      t4_sge_ctxt_flush - flush the SGE context cache
7372 *      @adap: the adapter
7373 *      @mbox: mailbox to use for the FW command
7374 *
7375 *      Issues a FW command through the given mailbox to flush the
7376 *      SGE context cache.
7377 */
7378int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7379{
7380	int ret;
7381	u32 ldst_addrspace;
7382	struct fw_ldst_cmd c;
7383
7384	memset(&c, 0, sizeof(c));
7385	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7386						 FW_LDST_ADDRSPC_SGE_EGRC :
7387						 FW_LDST_ADDRSPC_SGE_INGC);
7388	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7389					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7390					ldst_addrspace);
7391	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7392	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7393
7394	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7395	return ret;
7396}
7397
7398/**
7399 *      t4_fw_hello - establish communication with FW
7400 *      @adap: the adapter
7401 *      @mbox: mailbox to use for the FW command
7402 *      @evt_mbox: mailbox to receive async FW events
7403 *      @master: specifies the caller's willingness to be the device master
7404 *	@state: returns the current device state (if non-NULL)
7405 *
7406 *	Issues a command to establish communication with FW.  Returns either
7407 *	an error (negative integer) or the mailbox of the Master PF.
7408 */
7409int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7410		enum dev_master master, enum dev_state *state)
7411{
7412	int ret;
7413	struct fw_hello_cmd c;
7414	u32 v;
7415	unsigned int master_mbox;
7416	int retries = FW_CMD_HELLO_RETRIES;
7417
7418retry:
7419	memset(&c, 0, sizeof(c));
7420	INIT_CMD(c, HELLO, WRITE);
7421	c.err_to_clearinit = cpu_to_be32(
7422		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7423		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7424		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7425					mbox : M_FW_HELLO_CMD_MBMASTER) |
7426		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7427		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7428		F_FW_HELLO_CMD_CLEARINIT);
7429
7430	/*
7431	 * Issue the HELLO command to the firmware.  If it's not successful
7432	 * but indicates that we got a "busy" or "timeout" condition, retry
7433	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7434	 * retry limit, check to see if the firmware left us any error
7435	 * information and report that if so ...
7436	 */
7437	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7438	if (ret != FW_SUCCESS) {
7439		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7440			goto retry;
7441		return ret;
7442	}
7443
7444	v = be32_to_cpu(c.err_to_clearinit);
7445	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7446	if (state) {
7447		if (v & F_FW_HELLO_CMD_ERR)
7448			*state = DEV_STATE_ERR;
7449		else if (v & F_FW_HELLO_CMD_INIT)
7450			*state = DEV_STATE_INIT;
7451		else
7452			*state = DEV_STATE_UNINIT;
7453	}
7454
7455	/*
7456	 * If we're not the Master PF then we need to wait around for the
7457	 * Master PF Driver to finish setting up the adapter.
7458	 *
7459	 * Note that we also do this wait if we're a non-Master-capable PF and
7460	 * there is no current Master PF; a Master PF may show up momentarily
7461	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7462	 * OS loads lots of different drivers rapidly at the same time).  In
7463	 * this case, the Master PF returned by the firmware will be
7464	 * M_PCIE_FW_MASTER so the test below will work ...
7465	 */
7466	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7467	    master_mbox != mbox) {
7468		int waiting = FW_CMD_HELLO_TIMEOUT;
7469
7470		/*
7471		 * Wait for the firmware to either indicate an error or
7472		 * initialized state.  If we see either of these we bail out
7473		 * and report the issue to the caller.  If we exhaust the
7474		 * "hello timeout" and we haven't exhausted our retries, try
7475		 * again.  Otherwise bail with a timeout error.
7476		 */
7477		for (;;) {
7478			u32 pcie_fw;
7479
7480			msleep(50);
7481			waiting -= 50;
7482
7483			/*
7484			 * If neither Error nor Initialialized are indicated
7485			 * by the firmware keep waiting till we exhaust our
7486			 * timeout ... and then retry if we haven't exhausted
7487			 * our retries ...
7488			 */
7489			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7490			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7491				if (waiting <= 0) {
7492					if (retries-- > 0)
7493						goto retry;
7494
7495					return -ETIMEDOUT;
7496				}
7497				continue;
7498			}
7499
7500			/*
7501			 * We either have an Error or Initialized condition
7502			 * report errors preferentially.
7503			 */
7504			if (state) {
7505				if (pcie_fw & F_PCIE_FW_ERR)
7506					*state = DEV_STATE_ERR;
7507				else if (pcie_fw & F_PCIE_FW_INIT)
7508					*state = DEV_STATE_INIT;
7509			}
7510
7511			/*
7512			 * If we arrived before a Master PF was selected and
7513			 * there's not a valid Master PF, grab its identity
7514			 * for our caller.
7515			 */
7516			if (master_mbox == M_PCIE_FW_MASTER &&
7517			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7518				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7519			break;
7520		}
7521	}
7522
7523	return master_mbox;
7524}
7525
7526/**
7527 *	t4_fw_bye - end communication with FW
7528 *	@adap: the adapter
7529 *	@mbox: mailbox to use for the FW command
7530 *
7531 *	Issues a command to terminate communication with FW.
7532 */
7533int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7534{
7535	struct fw_bye_cmd c;
7536
7537	memset(&c, 0, sizeof(c));
7538	INIT_CMD(c, BYE, WRITE);
7539	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7540}
7541
7542/**
7543 *	t4_fw_reset - issue a reset to FW
7544 *	@adap: the adapter
7545 *	@mbox: mailbox to use for the FW command
7546 *	@reset: specifies the type of reset to perform
7547 *
7548 *	Issues a reset command of the specified type to FW.
7549 */
7550int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7551{
7552	struct fw_reset_cmd c;
7553
7554	memset(&c, 0, sizeof(c));
7555	INIT_CMD(c, RESET, WRITE);
7556	c.val = cpu_to_be32(reset);
7557	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7558}
7559
7560/**
7561 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7562 *	@adap: the adapter
7563 *	@mbox: mailbox to use for the FW RESET command (if desired)
7564 *	@force: force uP into RESET even if FW RESET command fails
7565 *
7566 *	Issues a RESET command to firmware (if desired) with a HALT indication
7567 *	and then puts the microprocessor into RESET state.  The RESET command
7568 *	will only be issued if a legitimate mailbox is provided (mbox <=
7569 *	M_PCIE_FW_MASTER).
7570 *
7571 *	This is generally used in order for the host to safely manipulate the
7572 *	adapter without fear of conflicting with whatever the firmware might
7573 *	be doing.  The only way out of this state is to RESTART the firmware
7574 *	...
7575 */
7576int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7577{
7578	int ret = 0;
7579
7580	/*
7581	 * If a legitimate mailbox is provided, issue a RESET command
7582	 * with a HALT indication.
7583	 */
7584	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7585		struct fw_reset_cmd c;
7586
7587		memset(&c, 0, sizeof(c));
7588		INIT_CMD(c, RESET, WRITE);
7589		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7590		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7591		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7592	}
7593
7594	/*
7595	 * Normally we won't complete the operation if the firmware RESET
7596	 * command fails but if our caller insists we'll go ahead and put the
7597	 * uP into RESET.  This can be useful if the firmware is hung or even
7598	 * missing ...  We'll have to take the risk of putting the uP into
7599	 * RESET without the cooperation of firmware in that case.
7600	 *
7601	 * We also force the firmware's HALT flag to be on in case we bypassed
7602	 * the firmware RESET command above or we're dealing with old firmware
7603	 * which doesn't have the HALT capability.  This will serve as a flag
7604	 * for the incoming firmware to know that it's coming out of a HALT
7605	 * rather than a RESET ... if it's new enough to understand that ...
7606	 */
7607	if (ret == 0 || force) {
7608		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7609		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7610				 F_PCIE_FW_HALT);
7611	}
7612
7613	/*
7614	 * And we always return the result of the firmware RESET command
7615	 * even when we force the uP into RESET ...
7616	 */
7617	return ret;
7618}
7619
7620/**
7621 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7622 *	@adap: the adapter
7623 *
7624 *	Restart firmware previously halted by t4_fw_halt().  On successful
7625 *	return the previous PF Master remains as the new PF Master and there
7626 *	is no need to issue a new HELLO command, etc.
7627 */
7628int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7629{
7630	int ms;
7631
7632	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7633	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7634		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7635			return FW_SUCCESS;
7636		msleep(100);
7637		ms += 100;
7638	}
7639
7640	return -ETIMEDOUT;
7641}
7642
7643/**
7644 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7645 *	@adap: the adapter
7646 *	@mbox: mailbox to use for the FW RESET command (if desired)
7647 *	@fw_data: the firmware image to write
7648 *	@size: image size
7649 *	@force: force upgrade even if firmware doesn't cooperate
7650 *
7651 *	Perform all of the steps necessary for upgrading an adapter's
7652 *	firmware image.  Normally this requires the cooperation of the
7653 *	existing firmware in order to halt all existing activities
7654 *	but if an invalid mailbox token is passed in we skip that step
7655 *	(though we'll still put the adapter microprocessor into RESET in
7656 *	that case).
7657 *
7658 *	On successful return the new firmware will have been loaded and
7659 *	the adapter will have been fully RESET losing all previous setup
7660 *	state.  On unsuccessful return the adapter may be completely hosed ...
7661 *	positive errno indicates that the adapter is ~probably~ intact, a
7662 *	negative errno indicates that things are looking bad ...
7663 */
7664int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7665		  const u8 *fw_data, unsigned int size, int force)
7666{
7667	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7668	unsigned int bootstrap =
7669	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7670	int ret;
7671
7672	if (!t4_fw_matches_chip(adap, fw_hdr))
7673		return -EINVAL;
7674
7675	if (!bootstrap) {
7676		ret = t4_fw_halt(adap, mbox, force);
7677		if (ret < 0 && !force)
7678			return ret;
7679	}
7680
7681	ret = t4_load_fw(adap, fw_data, size);
7682	if (ret < 0 || bootstrap)
7683		return ret;
7684
7685	return t4_fw_restart(adap, mbox);
7686}
7687
7688/**
7689 *	t4_fw_initialize - ask FW to initialize the device
7690 *	@adap: the adapter
7691 *	@mbox: mailbox to use for the FW command
7692 *
7693 *	Issues a command to FW to partially initialize the device.  This
7694 *	performs initialization that generally doesn't depend on user input.
7695 */
7696int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7697{
7698	struct fw_initialize_cmd c;
7699
7700	memset(&c, 0, sizeof(c));
7701	INIT_CMD(c, INITIALIZE, WRITE);
7702	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7703}
7704
7705/**
7706 *	t4_query_params_rw - query FW or device parameters
7707 *	@adap: the adapter
7708 *	@mbox: mailbox to use for the FW command
7709 *	@pf: the PF
7710 *	@vf: the VF
7711 *	@nparams: the number of parameters
7712 *	@params: the parameter names
7713 *	@val: the parameter values
7714 *	@rw: Write and read flag
7715 *
7716 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7717 *	queried at once.
7718 */
7719int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7720		       unsigned int vf, unsigned int nparams, const u32 *params,
7721		       u32 *val, int rw)
7722{
7723	int i, ret;
7724	struct fw_params_cmd c;
7725	__be32 *p = &c.param[0].mnem;
7726
7727	if (nparams > 7)
7728		return -EINVAL;
7729
7730	memset(&c, 0, sizeof(c));
7731	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7732				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7733				  V_FW_PARAMS_CMD_PFN(pf) |
7734				  V_FW_PARAMS_CMD_VFN(vf));
7735	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7736
7737	for (i = 0; i < nparams; i++) {
7738		*p++ = cpu_to_be32(*params++);
7739		if (rw)
7740			*p = cpu_to_be32(*(val + i));
7741		p++;
7742	}
7743
7744	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7745
7746	/*
7747	 * We always copy back the results, even if there's an error.  We'll
7748	 * get an error if any of the parameters was unknown to the Firmware,
7749	 * but there will be results for the others ...  (Older Firmware
7750	 * stopped at the first unknown parameter; newer Firmware processes
7751	 * them all and flags the unknown parameters with a return value of
7752	 * ~0UL.)
7753	 */
7754	for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7755		*val++ = be32_to_cpu(*p);
7756
7757	return ret;
7758}
7759
7760int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7761		    unsigned int vf, unsigned int nparams, const u32 *params,
7762		    u32 *val)
7763{
7764	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7765}
7766
7767/**
7768 *      t4_set_params_timeout - sets FW or device parameters
7769 *      @adap: the adapter
7770 *      @mbox: mailbox to use for the FW command
7771 *      @pf: the PF
7772 *      @vf: the VF
7773 *      @nparams: the number of parameters
7774 *      @params: the parameter names
7775 *      @val: the parameter values
7776 *      @timeout: the timeout time
7777 *
7778 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7779 *      specified at once.
7780 */
7781int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7782			  unsigned int pf, unsigned int vf,
7783			  unsigned int nparams, const u32 *params,
7784			  const u32 *val, int timeout)
7785{
7786	struct fw_params_cmd c;
7787	__be32 *p = &c.param[0].mnem;
7788
7789	if (nparams > 7)
7790		return -EINVAL;
7791
7792	memset(&c, 0, sizeof(c));
7793	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7794				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7795				  V_FW_PARAMS_CMD_PFN(pf) |
7796				  V_FW_PARAMS_CMD_VFN(vf));
7797	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7798
7799	while (nparams--) {
7800		*p++ = cpu_to_be32(*params++);
7801		*p++ = cpu_to_be32(*val++);
7802	}
7803
7804	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7805}
7806
7807/**
7808 *	t4_set_params - sets FW or device parameters
7809 *	@adap: the adapter
7810 *	@mbox: mailbox to use for the FW command
7811 *	@pf: the PF
7812 *	@vf: the VF
7813 *	@nparams: the number of parameters
7814 *	@params: the parameter names
7815 *	@val: the parameter values
7816 *
7817 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7818 *	specified at once.
7819 */
7820int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7821		  unsigned int vf, unsigned int nparams, const u32 *params,
7822		  const u32 *val)
7823{
7824	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7825				     FW_CMD_MAX_TIMEOUT);
7826}
7827
7828/**
7829 *	t4_cfg_pfvf - configure PF/VF resource limits
7830 *	@adap: the adapter
7831 *	@mbox: mailbox to use for the FW command
7832 *	@pf: the PF being configured
7833 *	@vf: the VF being configured
7834 *	@txq: the max number of egress queues
7835 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7836 *	@rxqi: the max number of interrupt-capable ingress queues
7837 *	@rxq: the max number of interruptless ingress queues
7838 *	@tc: the PCI traffic class
7839 *	@vi: the max number of virtual interfaces
7840 *	@cmask: the channel access rights mask for the PF/VF
7841 *	@pmask: the port access rights mask for the PF/VF
7842 *	@nexact: the maximum number of exact MPS filters
7843 *	@rcaps: read capabilities
7844 *	@wxcaps: write/execute capabilities
7845 *
7846 *	Configures resource limits and capabilities for a physical or virtual
7847 *	function.
7848 */
7849int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7850		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7851		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7852		unsigned int vi, unsigned int cmask, unsigned int pmask,
7853		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7854{
7855	struct fw_pfvf_cmd c;
7856
7857	memset(&c, 0, sizeof(c));
7858	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7859				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7860				  V_FW_PFVF_CMD_VFN(vf));
7861	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7862	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7863				     V_FW_PFVF_CMD_NIQ(rxq));
7864	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7865				    V_FW_PFVF_CMD_PMASK(pmask) |
7866				    V_FW_PFVF_CMD_NEQ(txq));
7867	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7868				      V_FW_PFVF_CMD_NVI(vi) |
7869				      V_FW_PFVF_CMD_NEXACTF(nexact));
7870	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7871				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7872				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7873	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7874}
7875
7876/**
7877 *	t4_alloc_vi_func - allocate a virtual interface
7878 *	@adap: the adapter
7879 *	@mbox: mailbox to use for the FW command
7880 *	@port: physical port associated with the VI
7881 *	@pf: the PF owning the VI
7882 *	@vf: the VF owning the VI
7883 *	@nmac: number of MAC addresses needed (1 to 5)
7884 *	@mac: the MAC addresses of the VI
7885 *	@rss_size: size of RSS table slice associated with this VI
7886 *	@portfunc: which Port Application Function MAC Address is desired
7887 *	@idstype: Intrusion Detection Type
7888 *
7889 *	Allocates a virtual interface for the given physical port.  If @mac is
7890 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7891 *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7892 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7893 *	stored consecutively so the space needed is @nmac * 6 bytes.
7894 *	Returns a negative error number or the non-negative VI id.
7895 */
7896int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7897		     unsigned int port, unsigned int pf, unsigned int vf,
7898		     unsigned int nmac, u8 *mac, u16 *rss_size,
7899		     uint8_t *vfvld, uint16_t *vin,
7900		     unsigned int portfunc, unsigned int idstype)
7901{
7902	int ret;
7903	struct fw_vi_cmd c;
7904
7905	memset(&c, 0, sizeof(c));
7906	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7907				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7908				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7909	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7910	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7911				     V_FW_VI_CMD_FUNC(portfunc));
7912	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7913	c.nmac = nmac - 1;
7914	if(!rss_size)
7915		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7916
7917	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7918	if (ret)
7919		return ret;
7920	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7921
7922	if (mac) {
7923		memcpy(mac, c.mac, sizeof(c.mac));
7924		switch (nmac) {
7925		case 5:
7926			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7927		case 4:
7928			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7929		case 3:
7930			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7931		case 2:
7932			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7933		}
7934	}
7935	if (rss_size)
7936		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7937	if (vfvld) {
7938		*vfvld = adap->params.viid_smt_extn_support ?
7939		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7940		    G_FW_VIID_VIVLD(ret);
7941	}
7942	if (vin) {
7943		*vin = adap->params.viid_smt_extn_support ?
7944		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7945		    G_FW_VIID_VIN(ret);
7946	}
7947
7948	return ret;
7949}
7950
7951/**
7952 *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7953 *      @adap: the adapter
7954 *      @mbox: mailbox to use for the FW command
7955 *      @port: physical port associated with the VI
7956 *      @pf: the PF owning the VI
7957 *      @vf: the VF owning the VI
7958 *      @nmac: number of MAC addresses needed (1 to 5)
7959 *      @mac: the MAC addresses of the VI
7960 *      @rss_size: size of RSS table slice associated with this VI
7961 *
7962 *	backwards compatible and convieniance routine to allocate a Virtual
7963 *	Interface with a Ethernet Port Application Function and Intrustion
7964 *	Detection System disabled.
7965 */
7966int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7967		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7968		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7969{
7970	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7971				vfvld, vin, FW_VI_FUNC_ETH, 0);
7972}
7973
7974/**
7975 * 	t4_free_vi - free a virtual interface
7976 * 	@adap: the adapter
7977 * 	@mbox: mailbox to use for the FW command
7978 * 	@pf: the PF owning the VI
7979 * 	@vf: the VF owning the VI
7980 * 	@viid: virtual interface identifiler
7981 *
7982 * 	Free a previously allocated virtual interface.
7983 */
7984int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7985	       unsigned int vf, unsigned int viid)
7986{
7987	struct fw_vi_cmd c;
7988
7989	memset(&c, 0, sizeof(c));
7990	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7991				  F_FW_CMD_REQUEST |
7992				  F_FW_CMD_EXEC |
7993				  V_FW_VI_CMD_PFN(pf) |
7994				  V_FW_VI_CMD_VFN(vf));
7995	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7996	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7997
7998	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7999}
8000
8001/**
8002 *	t4_set_rxmode - set Rx properties of a virtual interface
8003 *	@adap: the adapter
8004 *	@mbox: mailbox to use for the FW command
8005 *	@viid: the VI id
8006 *	@mtu: the new MTU or -1
8007 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8008 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8009 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8010 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8011 *	@sleep_ok: if true we may sleep while awaiting command completion
8012 *
8013 *	Sets Rx properties of a virtual interface.
8014 */
8015int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8016		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8017		  bool sleep_ok)
8018{
8019	struct fw_vi_rxmode_cmd c;
8020
8021	/* convert to FW values */
8022	if (mtu < 0)
8023		mtu = M_FW_VI_RXMODE_CMD_MTU;
8024	if (promisc < 0)
8025		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8026	if (all_multi < 0)
8027		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8028	if (bcast < 0)
8029		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8030	if (vlanex < 0)
8031		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8032
8033	memset(&c, 0, sizeof(c));
8034	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8035				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8036				   V_FW_VI_RXMODE_CMD_VIID(viid));
8037	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8038	c.mtu_to_vlanexen =
8039		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8040			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8041			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8042			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8043			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8044	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8045}
8046
8047/**
8048 *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8049 *	@adap: the adapter
8050 *	@viid: the VI id
8051 *	@mac: the MAC address
8052 *	@mask: the mask
8053 *	@vni: the VNI id for the tunnel protocol
8054 *	@vni_mask: mask for the VNI id
8055 *	@dip_hit: to enable DIP match for the MPS entry
8056 *	@lookup_type: MAC address for inner (1) or outer (0) header
8057 *	@sleep_ok: call is allowed to sleep
8058 *
8059 *	Allocates an MPS entry with specified MAC address and VNI value.
8060 *
8061 *	Returns a negative error number or the allocated index for this mac.
8062 */
8063int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8064			    const u8 *addr, const u8 *mask, unsigned int vni,
8065			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8066			    bool sleep_ok)
8067{
8068	struct fw_vi_mac_cmd c;
8069	struct fw_vi_mac_vni *p = c.u.exact_vni;
8070	int ret = 0;
8071	u32 val;
8072
8073	memset(&c, 0, sizeof(c));
8074	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8075				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8076				   V_FW_VI_MAC_CMD_VIID(viid));
8077	val = V_FW_CMD_LEN16(1) |
8078	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8079	c.freemacs_to_len16 = cpu_to_be32(val);
8080	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8081				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8082	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8083	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8084
8085	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8086					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8087					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8088	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8089
8090	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8091	if (ret == 0)
8092		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8093	return ret;
8094}
8095
8096/**
8097 *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8098 *	@adap: the adapter
8099 *	@viid: the VI id
8100 *	@mac: the MAC address
8101 *	@mask: the mask
8102 *	@idx: index at which to add this entry
8103 *	@port_id: the port index
8104 *	@lookup_type: MAC address for inner (1) or outer (0) header
8105 *	@sleep_ok: call is allowed to sleep
8106 *
8107 *	Adds the mac entry at the specified index using raw mac interface.
8108 *
8109 *	Returns a negative error number or the allocated index for this mac.
8110 */
8111int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8112			  const u8 *addr, const u8 *mask, unsigned int idx,
8113			  u8 lookup_type, u8 port_id, bool sleep_ok)
8114{
8115	int ret = 0;
8116	struct fw_vi_mac_cmd c;
8117	struct fw_vi_mac_raw *p = &c.u.raw;
8118	u32 val;
8119
8120	memset(&c, 0, sizeof(c));
8121	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8122				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8123				   V_FW_VI_MAC_CMD_VIID(viid));
8124	val = V_FW_CMD_LEN16(1) |
8125	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8126	c.freemacs_to_len16 = cpu_to_be32(val);
8127
8128	/* Specify that this is an inner mac address */
8129	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8130
8131	/* Lookup Type. Outer header: 0, Inner header: 1 */
8132	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8133				   V_DATAPORTNUM(port_id));
8134	/* Lookup mask and port mask */
8135	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8136				    V_DATAPORTNUM(M_DATAPORTNUM));
8137
8138	/* Copy the address and the mask */
8139	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8140	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8141
8142	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8143	if (ret == 0) {
8144		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8145		if (ret != idx)
8146			ret = -ENOMEM;
8147	}
8148
8149	return ret;
8150}
8151
8152/**
8153 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8154 *	@adap: the adapter
8155 *	@mbox: mailbox to use for the FW command
8156 *	@viid: the VI id
8157 *	@free: if true any existing filters for this VI id are first removed
8158 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8159 *	@addr: the MAC address(es)
8160 *	@idx: where to store the index of each allocated filter
8161 *	@hash: pointer to hash address filter bitmap
8162 *	@sleep_ok: call is allowed to sleep
8163 *
8164 *	Allocates an exact-match filter for each of the supplied addresses and
8165 *	sets it to the corresponding address.  If @idx is not %NULL it should
8166 *	have at least @naddr entries, each of which will be set to the index of
8167 *	the filter allocated for the corresponding MAC address.  If a filter
8168 *	could not be allocated for an address its index is set to 0xffff.
8169 *	If @hash is not %NULL addresses that fail to allocate an exact filter
8170 *	are hashed and update the hash filter bitmap pointed at by @hash.
8171 *
8172 *	Returns a negative error number or the number of filters allocated.
8173 */
8174int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8175		      unsigned int viid, bool free, unsigned int naddr,
8176		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8177{
8178	int offset, ret = 0;
8179	struct fw_vi_mac_cmd c;
8180	unsigned int nfilters = 0;
8181	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8182	unsigned int rem = naddr;
8183
8184	if (naddr > max_naddr)
8185		return -EINVAL;
8186
8187	for (offset = 0; offset < naddr ; /**/) {
8188		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8189					 ? rem
8190					 : ARRAY_SIZE(c.u.exact));
8191		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8192						     u.exact[fw_naddr]), 16);
8193		struct fw_vi_mac_exact *p;
8194		int i;
8195
8196		memset(&c, 0, sizeof(c));
8197		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8198					   F_FW_CMD_REQUEST |
8199					   F_FW_CMD_WRITE |
8200					   V_FW_CMD_EXEC(free) |
8201					   V_FW_VI_MAC_CMD_VIID(viid));
8202		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8203						  V_FW_CMD_LEN16(len16));
8204
8205		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8206			p->valid_to_idx =
8207				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8208					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8209			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8210		}
8211
8212		/*
8213		 * It's okay if we run out of space in our MAC address arena.
8214		 * Some of the addresses we submit may get stored so we need
8215		 * to run through the reply to see what the results were ...
8216		 */
8217		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8218		if (ret && ret != -FW_ENOMEM)
8219			break;
8220
8221		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8222			u16 index = G_FW_VI_MAC_CMD_IDX(
8223						be16_to_cpu(p->valid_to_idx));
8224
8225			if (idx)
8226				idx[offset+i] = (index >=  max_naddr
8227						 ? 0xffff
8228						 : index);
8229			if (index < max_naddr)
8230				nfilters++;
8231			else if (hash)
8232				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8233		}
8234
8235		free = false;
8236		offset += fw_naddr;
8237		rem -= fw_naddr;
8238	}
8239
8240	if (ret == 0 || ret == -FW_ENOMEM)
8241		ret = nfilters;
8242	return ret;
8243}
8244
8245/**
8246 *	t4_free_encap_mac_filt - frees MPS entry at given index
8247 *	@adap: the adapter
8248 *	@viid: the VI id
8249 *	@idx: index of MPS entry to be freed
8250 *	@sleep_ok: call is allowed to sleep
8251 *
8252 *	Frees the MPS entry at supplied index
8253 *
8254 *	Returns a negative error number or zero on success
8255 */
8256int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8257			   int idx, bool sleep_ok)
8258{
8259	struct fw_vi_mac_exact *p;
8260	struct fw_vi_mac_cmd c;
8261	u8 addr[] = {0,0,0,0,0,0};
8262	int ret = 0;
8263	u32 exact;
8264
8265	memset(&c, 0, sizeof(c));
8266	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8267				   F_FW_CMD_REQUEST |
8268				   F_FW_CMD_WRITE |
8269				   V_FW_CMD_EXEC(0) |
8270				   V_FW_VI_MAC_CMD_VIID(viid));
8271	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8272	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8273					  exact |
8274					  V_FW_CMD_LEN16(1));
8275	p = c.u.exact;
8276	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8277				      V_FW_VI_MAC_CMD_IDX(idx));
8278	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8279
8280	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8281	return ret;
8282}
8283
8284/**
8285 *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8286 *	@adap: the adapter
8287 *	@viid: the VI id
8288 *	@addr: the MAC address
8289 *	@mask: the mask
8290 *	@idx: index of the entry in mps tcam
8291 *	@lookup_type: MAC address for inner (1) or outer (0) header
8292 *	@port_id: the port index
8293 *	@sleep_ok: call is allowed to sleep
8294 *
8295 *	Removes the mac entry at the specified index using raw mac interface.
8296 *
8297 *	Returns a negative error number on failure.
8298 */
8299int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8300			 const u8 *addr, const u8 *mask, unsigned int idx,
8301			 u8 lookup_type, u8 port_id, bool sleep_ok)
8302{
8303	struct fw_vi_mac_cmd c;
8304	struct fw_vi_mac_raw *p = &c.u.raw;
8305	u32 raw;
8306
8307	memset(&c, 0, sizeof(c));
8308	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8309				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8310				   V_FW_CMD_EXEC(0) |
8311				   V_FW_VI_MAC_CMD_VIID(viid));
8312	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8313	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8314					  raw |
8315					  V_FW_CMD_LEN16(1));
8316
8317	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8318				     FW_VI_MAC_ID_BASED_FREE);
8319
8320	/* Lookup Type. Outer header: 0, Inner header: 1 */
8321	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8322				   V_DATAPORTNUM(port_id));
8323	/* Lookup mask and port mask */
8324	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8325				    V_DATAPORTNUM(M_DATAPORTNUM));
8326
8327	/* Copy the address and the mask */
8328	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8329	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8330
8331	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8332}
8333
8334/**
8335 *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8336 *	@adap: the adapter
8337 *	@mbox: mailbox to use for the FW command
8338 *	@viid: the VI id
8339 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8340 *	@addr: the MAC address(es)
8341 *	@sleep_ok: call is allowed to sleep
8342 *
8343 *	Frees the exact-match filter for each of the supplied addresses
8344 *
8345 *	Returns a negative error number or the number of filters freed.
8346 */
8347int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8348		      unsigned int viid, unsigned int naddr,
8349		      const u8 **addr, bool sleep_ok)
8350{
8351	int offset, ret = 0;
8352	struct fw_vi_mac_cmd c;
8353	unsigned int nfilters = 0;
8354	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8355	unsigned int rem = naddr;
8356
8357	if (naddr > max_naddr)
8358		return -EINVAL;
8359
8360	for (offset = 0; offset < (int)naddr ; /**/) {
8361		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8362					 ? rem
8363					 : ARRAY_SIZE(c.u.exact));
8364		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8365						     u.exact[fw_naddr]), 16);
8366		struct fw_vi_mac_exact *p;
8367		int i;
8368
8369		memset(&c, 0, sizeof(c));
8370		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8371				     F_FW_CMD_REQUEST |
8372				     F_FW_CMD_WRITE |
8373				     V_FW_CMD_EXEC(0) |
8374				     V_FW_VI_MAC_CMD_VIID(viid));
8375		c.freemacs_to_len16 =
8376				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8377					    V_FW_CMD_LEN16(len16));
8378
8379		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8380			p->valid_to_idx = cpu_to_be16(
8381				F_FW_VI_MAC_CMD_VALID |
8382				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8383			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8384		}
8385
8386		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8387		if (ret)
8388			break;
8389
8390		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8391			u16 index = G_FW_VI_MAC_CMD_IDX(
8392						be16_to_cpu(p->valid_to_idx));
8393
8394			if (index < max_naddr)
8395				nfilters++;
8396		}
8397
8398		offset += fw_naddr;
8399		rem -= fw_naddr;
8400	}
8401
8402	if (ret == 0)
8403		ret = nfilters;
8404	return ret;
8405}
8406
8407/**
8408 *	t4_change_mac - modifies the exact-match filter for a MAC address
8409 *	@adap: the adapter
8410 *	@mbox: mailbox to use for the FW command
8411 *	@viid: the VI id
8412 *	@idx: index of existing filter for old value of MAC address, or -1
8413 *	@addr: the new MAC address value
8414 *	@persist: whether a new MAC allocation should be persistent
8415 *	@smt_idx: add MAC to SMT and return its index, or NULL
8416 *
8417 *	Modifies an exact-match filter and sets it to the new MAC address if
8418 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8419 *	latter case the address is added persistently if @persist is %true.
8420 *
8421 *	Note that in general it is not possible to modify the value of a given
8422 *	filter so the generic way to modify an address filter is to free the one
8423 *	being used by the old address value and allocate a new filter for the
8424 *	new address value.
8425 *
8426 *	Returns a negative error number or the index of the filter with the new
8427 *	MAC value.  Note that this index may differ from @idx.
8428 */
8429int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8430		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8431{
8432	int ret, mode;
8433	struct fw_vi_mac_cmd c;
8434	struct fw_vi_mac_exact *p = c.u.exact;
8435	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8436
8437	if (idx < 0)		/* new allocation */
8438		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8439	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8440
8441	memset(&c, 0, sizeof(c));
8442	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8443				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8444				   V_FW_VI_MAC_CMD_VIID(viid));
8445	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8446	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8447				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8448				      V_FW_VI_MAC_CMD_IDX(idx));
8449	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8450
8451	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8452	if (ret == 0) {
8453		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8454		if (ret >= max_mac_addr)
8455			ret = -ENOMEM;
8456		if (smt_idx) {
8457			if (adap->params.viid_smt_extn_support)
8458				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8459			else {
8460				if (chip_id(adap) <= CHELSIO_T5)
8461					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8462				else
8463					*smt_idx = viid & M_FW_VIID_VIN;
8464			}
8465		}
8466	}
8467	return ret;
8468}
8469
8470/**
8471 *	t4_set_addr_hash - program the MAC inexact-match hash filter
8472 *	@adap: the adapter
8473 *	@mbox: mailbox to use for the FW command
8474 *	@viid: the VI id
8475 *	@ucast: whether the hash filter should also match unicast addresses
8476 *	@vec: the value to be written to the hash filter
8477 *	@sleep_ok: call is allowed to sleep
8478 *
8479 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8480 */
8481int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8482		     bool ucast, u64 vec, bool sleep_ok)
8483{
8484	struct fw_vi_mac_cmd c;
8485	u32 val;
8486
8487	memset(&c, 0, sizeof(c));
8488	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8489				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8490				   V_FW_VI_ENABLE_CMD_VIID(viid));
8491	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8492	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8493	c.freemacs_to_len16 = cpu_to_be32(val);
8494	c.u.hash.hashvec = cpu_to_be64(vec);
8495	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8496}
8497
8498/**
8499 *      t4_enable_vi_params - enable/disable a virtual interface
8500 *      @adap: the adapter
8501 *      @mbox: mailbox to use for the FW command
8502 *      @viid: the VI id
8503 *      @rx_en: 1=enable Rx, 0=disable Rx
8504 *      @tx_en: 1=enable Tx, 0=disable Tx
8505 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8506 *
8507 *      Enables/disables a virtual interface.  Note that setting DCB Enable
8508 *      only makes sense when enabling a Virtual Interface ...
8509 */
8510int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8511			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8512{
8513	struct fw_vi_enable_cmd c;
8514
8515	memset(&c, 0, sizeof(c));
8516	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8517				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8518				   V_FW_VI_ENABLE_CMD_VIID(viid));
8519	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8520				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8521				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8522				     FW_LEN16(c));
8523	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8524}
8525
8526/**
8527 *	t4_enable_vi - enable/disable a virtual interface
8528 *	@adap: the adapter
8529 *	@mbox: mailbox to use for the FW command
8530 *	@viid: the VI id
8531 *	@rx_en: 1=enable Rx, 0=disable Rx
8532 *	@tx_en: 1=enable Tx, 0=disable Tx
8533 *
8534 *	Enables/disables a virtual interface.  Note that setting DCB Enable
8535 *	only makes sense when enabling a Virtual Interface ...
8536 */
8537int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8538		 bool rx_en, bool tx_en)
8539{
8540	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8541}
8542
8543/**
8544 *	t4_identify_port - identify a VI's port by blinking its LED
8545 *	@adap: the adapter
8546 *	@mbox: mailbox to use for the FW command
8547 *	@viid: the VI id
8548 *	@nblinks: how many times to blink LED at 2.5 Hz
8549 *
8550 *	Identifies a VI's port by blinking its LED.
8551 */
8552int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8553		     unsigned int nblinks)
8554{
8555	struct fw_vi_enable_cmd c;
8556
8557	memset(&c, 0, sizeof(c));
8558	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8559				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8560				   V_FW_VI_ENABLE_CMD_VIID(viid));
8561	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8562	c.blinkdur = cpu_to_be16(nblinks);
8563	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8564}
8565
8566/**
8567 *	t4_iq_stop - stop an ingress queue and its FLs
8568 *	@adap: the adapter
8569 *	@mbox: mailbox to use for the FW command
8570 *	@pf: the PF owning the queues
8571 *	@vf: the VF owning the queues
8572 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8573 *	@iqid: ingress queue id
8574 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8575 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8576 *
8577 *	Stops an ingress queue and its associated FLs, if any.  This causes
8578 *	any current or future data/messages destined for these queues to be
8579 *	tossed.
8580 */
8581int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8582	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8583	       unsigned int fl0id, unsigned int fl1id)
8584{
8585	struct fw_iq_cmd c;
8586
8587	memset(&c, 0, sizeof(c));
8588	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8589				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8590				  V_FW_IQ_CMD_VFN(vf));
8591	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8592	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8593	c.iqid = cpu_to_be16(iqid);
8594	c.fl0id = cpu_to_be16(fl0id);
8595	c.fl1id = cpu_to_be16(fl1id);
8596	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8597}
8598
8599/**
8600 *	t4_iq_free - free an ingress queue and its FLs
8601 *	@adap: the adapter
8602 *	@mbox: mailbox to use for the FW command
8603 *	@pf: the PF owning the queues
8604 *	@vf: the VF owning the queues
8605 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8606 *	@iqid: ingress queue id
8607 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8608 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8609 *
8610 *	Frees an ingress queue and its associated FLs, if any.
8611 */
8612int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8613	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8614	       unsigned int fl0id, unsigned int fl1id)
8615{
8616	struct fw_iq_cmd c;
8617
8618	memset(&c, 0, sizeof(c));
8619	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8620				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8621				  V_FW_IQ_CMD_VFN(vf));
8622	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8623	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8624	c.iqid = cpu_to_be16(iqid);
8625	c.fl0id = cpu_to_be16(fl0id);
8626	c.fl1id = cpu_to_be16(fl1id);
8627	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8628}
8629
8630/**
8631 *	t4_eth_eq_stop - stop an Ethernet egress queue
8632 *	@adap: the adapter
8633 *	@mbox: mailbox to use for the FW command
8634 *	@pf: the PF owning the queues
8635 *	@vf: the VF owning the queues
8636 *	@eqid: egress queue id
8637 *
8638 *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8639 *	freed but is not otherwise functional after this call.
8640 */
8641int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8642                   unsigned int vf, unsigned int eqid)
8643{
8644	struct fw_eq_eth_cmd c;
8645
8646	memset(&c, 0, sizeof(c));
8647	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8648				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8649				  V_FW_EQ_ETH_CMD_PFN(pf) |
8650				  V_FW_EQ_ETH_CMD_VFN(vf));
8651	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8652	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8653	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8654}
8655
8656/**
8657 *	t4_eth_eq_free - free an Ethernet egress queue
8658 *	@adap: the adapter
8659 *	@mbox: mailbox to use for the FW command
8660 *	@pf: the PF owning the queue
8661 *	@vf: the VF owning the queue
8662 *	@eqid: egress queue id
8663 *
8664 *	Frees an Ethernet egress queue.
8665 */
8666int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8667		   unsigned int vf, unsigned int eqid)
8668{
8669	struct fw_eq_eth_cmd c;
8670
8671	memset(&c, 0, sizeof(c));
8672	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8673				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8674				  V_FW_EQ_ETH_CMD_PFN(pf) |
8675				  V_FW_EQ_ETH_CMD_VFN(vf));
8676	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8677	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8678	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8679}
8680
8681/**
8682 *	t4_ctrl_eq_free - free a control egress queue
8683 *	@adap: the adapter
8684 *	@mbox: mailbox to use for the FW command
8685 *	@pf: the PF owning the queue
8686 *	@vf: the VF owning the queue
8687 *	@eqid: egress queue id
8688 *
8689 *	Frees a control egress queue.
8690 */
8691int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8692		    unsigned int vf, unsigned int eqid)
8693{
8694	struct fw_eq_ctrl_cmd c;
8695
8696	memset(&c, 0, sizeof(c));
8697	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8698				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8699				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8700				  V_FW_EQ_CTRL_CMD_VFN(vf));
8701	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8702	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8703	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8704}
8705
8706/**
8707 *	t4_ofld_eq_free - free an offload egress queue
8708 *	@adap: the adapter
8709 *	@mbox: mailbox to use for the FW command
8710 *	@pf: the PF owning the queue
8711 *	@vf: the VF owning the queue
8712 *	@eqid: egress queue id
8713 *
8714 *	Frees a control egress queue.
8715 */
8716int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8717		    unsigned int vf, unsigned int eqid)
8718{
8719	struct fw_eq_ofld_cmd c;
8720
8721	memset(&c, 0, sizeof(c));
8722	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8723				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8724				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8725				  V_FW_EQ_OFLD_CMD_VFN(vf));
8726	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8727	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8728	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8729}
8730
8731/**
8732 *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8733 *	@link_down_rc: Link Down Reason Code
8734 *
8735 *	Returns a string representation of the Link Down Reason Code.
8736 */
8737const char *t4_link_down_rc_str(unsigned char link_down_rc)
8738{
8739	static const char *reason[] = {
8740		"Link Down",
8741		"Remote Fault",
8742		"Auto-negotiation Failure",
8743		"Reserved3",
8744		"Insufficient Airflow",
8745		"Unable To Determine Reason",
8746		"No RX Signal Detected",
8747		"Reserved7",
8748	};
8749
8750	if (link_down_rc >= ARRAY_SIZE(reason))
8751		return "Bad Reason Code";
8752
8753	return reason[link_down_rc];
8754}
8755
8756/*
8757 * Return the highest speed set in the port capabilities, in Mb/s.
8758 */
8759unsigned int fwcap_to_speed(uint32_t caps)
8760{
8761	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8762		do { \
8763			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8764				return __speed; \
8765		} while (0)
8766
8767	TEST_SPEED_RETURN(400G, 400000);
8768	TEST_SPEED_RETURN(200G, 200000);
8769	TEST_SPEED_RETURN(100G, 100000);
8770	TEST_SPEED_RETURN(50G,   50000);
8771	TEST_SPEED_RETURN(40G,   40000);
8772	TEST_SPEED_RETURN(25G,   25000);
8773	TEST_SPEED_RETURN(10G,   10000);
8774	TEST_SPEED_RETURN(1G,     1000);
8775	TEST_SPEED_RETURN(100M,    100);
8776
8777	#undef TEST_SPEED_RETURN
8778
8779	return 0;
8780}
8781
8782/*
8783 * Return the port capabilities bit for the given speed, which is in Mb/s.
8784 */
8785uint32_t speed_to_fwcap(unsigned int speed)
8786{
8787	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8788		do { \
8789			if (speed == __speed) \
8790				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8791		} while (0)
8792
8793	TEST_SPEED_RETURN(400G, 400000);
8794	TEST_SPEED_RETURN(200G, 200000);
8795	TEST_SPEED_RETURN(100G, 100000);
8796	TEST_SPEED_RETURN(50G,   50000);
8797	TEST_SPEED_RETURN(40G,   40000);
8798	TEST_SPEED_RETURN(25G,   25000);
8799	TEST_SPEED_RETURN(10G,   10000);
8800	TEST_SPEED_RETURN(1G,     1000);
8801	TEST_SPEED_RETURN(100M,    100);
8802
8803	#undef TEST_SPEED_RETURN
8804
8805	return 0;
8806}
8807
8808/*
8809 * Return the port capabilities bit for the highest speed in the capabilities.
8810 */
8811uint32_t fwcap_top_speed(uint32_t caps)
8812{
8813	#define TEST_SPEED_RETURN(__caps_speed) \
8814		do { \
8815			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8816				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8817		} while (0)
8818
8819	TEST_SPEED_RETURN(400G);
8820	TEST_SPEED_RETURN(200G);
8821	TEST_SPEED_RETURN(100G);
8822	TEST_SPEED_RETURN(50G);
8823	TEST_SPEED_RETURN(40G);
8824	TEST_SPEED_RETURN(25G);
8825	TEST_SPEED_RETURN(10G);
8826	TEST_SPEED_RETURN(1G);
8827	TEST_SPEED_RETURN(100M);
8828
8829	#undef TEST_SPEED_RETURN
8830
8831	return 0;
8832}
8833
8834/**
8835 *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8836 *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8837 *
8838 *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8839 *	32-bit Port Capabilities value.
8840 */
8841static uint32_t lstatus_to_fwcap(u32 lstatus)
8842{
8843	uint32_t linkattr = 0;
8844
8845	/*
8846	 * Unfortunately the format of the Link Status in the old
8847	 * 16-bit Port Information message isn't the same as the
8848	 * 16-bit Port Capabilities bitfield used everywhere else ...
8849	 */
8850	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8851		linkattr |= FW_PORT_CAP32_FC_RX;
8852	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8853		linkattr |= FW_PORT_CAP32_FC_TX;
8854	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8855		linkattr |= FW_PORT_CAP32_SPEED_100M;
8856	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8857		linkattr |= FW_PORT_CAP32_SPEED_1G;
8858	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8859		linkattr |= FW_PORT_CAP32_SPEED_10G;
8860	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8861		linkattr |= FW_PORT_CAP32_SPEED_25G;
8862	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8863		linkattr |= FW_PORT_CAP32_SPEED_40G;
8864	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8865		linkattr |= FW_PORT_CAP32_SPEED_100G;
8866
8867	return linkattr;
8868}
8869
8870/*
8871 * Updates all fields owned by the common code in port_info and link_config
8872 * based on information provided by the firmware.  Does not touch any
8873 * requested_* field.
8874 */
8875static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8876    enum fw_port_action action, bool *mod_changed, bool *link_changed)
8877{
8878	struct link_config old_lc, *lc = &pi->link_cfg;
8879	unsigned char fc;
8880	u32 stat, linkattr;
8881	int old_ptype, old_mtype;
8882
8883	old_ptype = pi->port_type;
8884	old_mtype = pi->mod_type;
8885	old_lc = *lc;
8886	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8887		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8888
8889		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8890		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8891		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8892		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8893
8894		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8895		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8896		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8897		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8898		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8899
8900		linkattr = lstatus_to_fwcap(stat);
8901	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8902		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8903
8904		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8905		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8906		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8907		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8908
8909		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8910		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8911		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8912		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8913		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8914
8915		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8916	} else {
8917		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8918		return;
8919	}
8920
8921	lc->speed = fwcap_to_speed(linkattr);
8922	lc->fec = fwcap_to_fec(linkattr, true);
8923
8924	fc = 0;
8925	if (linkattr & FW_PORT_CAP32_FC_RX)
8926		fc |= PAUSE_RX;
8927	if (linkattr & FW_PORT_CAP32_FC_TX)
8928		fc |= PAUSE_TX;
8929	lc->fc = fc;
8930
8931	if (mod_changed != NULL)
8932		*mod_changed = false;
8933	if (link_changed != NULL)
8934		*link_changed = false;
8935	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8936	    old_lc.pcaps != lc->pcaps) {
8937		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
8938			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
8939		if (mod_changed != NULL)
8940			*mod_changed = true;
8941	}
8942	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8943	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8944		if (link_changed != NULL)
8945			*link_changed = true;
8946	}
8947}
8948
8949/**
8950 *	t4_update_port_info - retrieve and update port information if changed
8951 *	@pi: the port_info
8952 *
8953 *	We issue a Get Port Information Command to the Firmware and, if
8954 *	successful, we check to see if anything is different from what we
8955 *	last recorded and update things accordingly.
8956 */
8957 int t4_update_port_info(struct port_info *pi)
8958 {
8959	struct adapter *sc = pi->adapter;
8960	struct fw_port_cmd cmd;
8961	enum fw_port_action action;
8962	int ret;
8963
8964	memset(&cmd, 0, sizeof(cmd));
8965	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8966	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
8967	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
8968	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8969	    FW_PORT_ACTION_GET_PORT_INFO;
8970	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8971	    FW_LEN16(cmd));
8972	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8973	if (ret)
8974		return ret;
8975
8976	handle_port_info(pi, &cmd, action, NULL, NULL);
8977	return 0;
8978}
8979
8980/**
8981 *	t4_handle_fw_rpl - process a FW reply message
8982 *	@adap: the adapter
8983 *	@rpl: start of the FW message
8984 *
8985 *	Processes a FW message, such as link state change messages.
8986 */
8987int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8988{
8989	u8 opcode = *(const u8 *)rpl;
8990	const struct fw_port_cmd *p = (const void *)rpl;
8991	enum fw_port_action action =
8992	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8993	bool mod_changed, link_changed;
8994
8995	if (opcode == FW_PORT_CMD &&
8996	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8997	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8998		/* link/module state change message */
8999		int i;
9000		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9001		struct port_info *pi = NULL;
9002
9003		for_each_port(adap, i) {
9004			pi = adap2pinfo(adap, i);
9005			if (pi->tx_chan == chan)
9006				break;
9007		}
9008
9009		PORT_LOCK(pi);
9010		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9011		PORT_UNLOCK(pi);
9012		if (mod_changed)
9013			t4_os_portmod_changed(pi);
9014		if (link_changed) {
9015			PORT_LOCK(pi);
9016			t4_os_link_changed(pi);
9017			PORT_UNLOCK(pi);
9018		}
9019	} else {
9020		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9021		return -EINVAL;
9022	}
9023	return 0;
9024}
9025
9026/**
9027 *	get_pci_mode - determine a card's PCI mode
9028 *	@adapter: the adapter
9029 *	@p: where to store the PCI settings
9030 *
9031 *	Determines a card's PCI mode and associated parameters, such as speed
9032 *	and width.
9033 */
9034static void get_pci_mode(struct adapter *adapter,
9035				   struct pci_params *p)
9036{
9037	u16 val;
9038	u32 pcie_cap;
9039
9040	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9041	if (pcie_cap) {
9042		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9043		p->speed = val & PCI_EXP_LNKSTA_CLS;
9044		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9045	}
9046}
9047
9048struct flash_desc {
9049	u32 vendor_and_model_id;
9050	u32 size_mb;
9051};
9052
9053int t4_get_flash_params(struct adapter *adapter)
9054{
9055	/*
9056	 * Table for non-standard supported Flash parts.  Note, all Flash
9057	 * parts must have 64KB sectors.
9058	 */
9059	static struct flash_desc supported_flash[] = {
9060		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9061	};
9062
9063	int ret;
9064	u32 flashid = 0;
9065	unsigned int part, manufacturer;
9066	unsigned int density, size = 0;
9067
9068
9069	/*
9070	 * Issue a Read ID Command to the Flash part.  We decode supported
9071	 * Flash parts and their sizes from this.  There's a newer Query
9072	 * Command which can retrieve detailed geometry information but many
9073	 * Flash parts don't support it.
9074	 */
9075	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9076	if (!ret)
9077		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9078	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9079	if (ret < 0)
9080		return ret;
9081
9082	/*
9083	 * Check to see if it's one of our non-standard supported Flash parts.
9084	 */
9085	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9086		if (supported_flash[part].vendor_and_model_id == flashid) {
9087			adapter->params.sf_size =
9088				supported_flash[part].size_mb;
9089			adapter->params.sf_nsec =
9090				adapter->params.sf_size / SF_SEC_SIZE;
9091			goto found;
9092		}
9093
9094	/*
9095	 * Decode Flash part size.  The code below looks repetative with
9096	 * common encodings, but that's not guaranteed in the JEDEC
9097	 * specification for the Read JADEC ID command.  The only thing that
9098	 * we're guaranteed by the JADEC specification is where the
9099	 * Manufacturer ID is in the returned result.  After that each
9100	 * Manufacturer ~could~ encode things completely differently.
9101	 * Note, all Flash parts must have 64KB sectors.
9102	 */
9103	manufacturer = flashid & 0xff;
9104	switch (manufacturer) {
9105	case 0x20: /* Micron/Numonix */
9106		/*
9107		 * This Density -> Size decoding table is taken from Micron
9108		 * Data Sheets.
9109		 */
9110		density = (flashid >> 16) & 0xff;
9111		switch (density) {
9112		case 0x14: size = 1 << 20; break; /*   1MB */
9113		case 0x15: size = 1 << 21; break; /*   2MB */
9114		case 0x16: size = 1 << 22; break; /*   4MB */
9115		case 0x17: size = 1 << 23; break; /*   8MB */
9116		case 0x18: size = 1 << 24; break; /*  16MB */
9117		case 0x19: size = 1 << 25; break; /*  32MB */
9118		case 0x20: size = 1 << 26; break; /*  64MB */
9119		case 0x21: size = 1 << 27; break; /* 128MB */
9120		case 0x22: size = 1 << 28; break; /* 256MB */
9121		}
9122		break;
9123
9124	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9125		/*
9126		 * This Density -> Size decoding table is taken from ISSI
9127		 * Data Sheets.
9128		 */
9129		density = (flashid >> 16) & 0xff;
9130		switch (density) {
9131		case 0x16: size = 1 << 25; break; /*  32MB */
9132		case 0x17: size = 1 << 26; break; /*  64MB */
9133		}
9134		break;
9135
9136	case 0xc2: /* Macronix */
9137		/*
9138		 * This Density -> Size decoding table is taken from Macronix
9139		 * Data Sheets.
9140		 */
9141		density = (flashid >> 16) & 0xff;
9142		switch (density) {
9143		case 0x17: size = 1 << 23; break; /*   8MB */
9144		case 0x18: size = 1 << 24; break; /*  16MB */
9145		}
9146		break;
9147
9148	case 0xef: /* Winbond */
9149		/*
9150		 * This Density -> Size decoding table is taken from Winbond
9151		 * Data Sheets.
9152		 */
9153		density = (flashid >> 16) & 0xff;
9154		switch (density) {
9155		case 0x17: size = 1 << 23; break; /*   8MB */
9156		case 0x18: size = 1 << 24; break; /*  16MB */
9157		}
9158		break;
9159	}
9160
9161	/* If we didn't recognize the FLASH part, that's no real issue: the
9162	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9163	 * use a FLASH part which is at least 4MB in size and has 64KB
9164	 * sectors.  The unrecognized FLASH part is likely to be much larger
9165	 * than 4MB, but that's all we really need.
9166	 */
9167	if (size == 0) {
9168		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9169		size = 1 << 22;
9170	}
9171
9172	/*
9173	 * Store decoded Flash size and fall through into vetting code.
9174	 */
9175	adapter->params.sf_size = size;
9176	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9177
9178 found:
9179	/*
9180	 * We should ~probably~ reject adapters with FLASHes which are too
9181	 * small but we have some legacy FPGAs with small FLASHes that we'd
9182	 * still like to use.  So instead we emit a scary message ...
9183	 */
9184	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9185		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9186			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9187
9188	return 0;
9189}
9190
9191static void set_pcie_completion_timeout(struct adapter *adapter,
9192						  u8 range)
9193{
9194	u16 val;
9195	u32 pcie_cap;
9196
9197	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9198	if (pcie_cap) {
9199		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9200		val &= 0xfff0;
9201		val |= range ;
9202		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9203	}
9204}
9205
9206const struct chip_params *t4_get_chip_params(int chipid)
9207{
9208	static const struct chip_params chip_params[] = {
9209		{
9210			/* T4 */
9211			.nchan = NCHAN,
9212			.pm_stats_cnt = PM_NSTATS,
9213			.cng_ch_bits_log = 2,
9214			.nsched_cls = 15,
9215			.cim_num_obq = CIM_NUM_OBQ,
9216			.filter_opt_len = FILTER_OPT_LEN,
9217			.mps_rplc_size = 128,
9218			.vfcount = 128,
9219			.sge_fl_db = F_DBPRIO,
9220			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9221			.rss_nentries = RSS_NENTRIES,
9222			.cim_la_size = CIMLA_SIZE,
9223		},
9224		{
9225			/* T5 */
9226			.nchan = NCHAN,
9227			.pm_stats_cnt = PM_NSTATS,
9228			.cng_ch_bits_log = 2,
9229			.nsched_cls = 16,
9230			.cim_num_obq = CIM_NUM_OBQ_T5,
9231			.filter_opt_len = T5_FILTER_OPT_LEN,
9232			.mps_rplc_size = 128,
9233			.vfcount = 128,
9234			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9235			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9236			.rss_nentries = RSS_NENTRIES,
9237			.cim_la_size = CIMLA_SIZE,
9238		},
9239		{
9240			/* T6 */
9241			.nchan = T6_NCHAN,
9242			.pm_stats_cnt = T6_PM_NSTATS,
9243			.cng_ch_bits_log = 3,
9244			.nsched_cls = 16,
9245			.cim_num_obq = CIM_NUM_OBQ_T5,
9246			.filter_opt_len = T5_FILTER_OPT_LEN,
9247			.mps_rplc_size = 256,
9248			.vfcount = 256,
9249			.sge_fl_db = 0,
9250			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9251			.rss_nentries = T6_RSS_NENTRIES,
9252			.cim_la_size = CIMLA_SIZE_T6,
9253		},
9254	};
9255
9256	chipid -= CHELSIO_T4;
9257	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9258		return NULL;
9259
9260	return &chip_params[chipid];
9261}
9262
9263/**
9264 *	t4_prep_adapter - prepare SW and HW for operation
9265 *	@adapter: the adapter
9266 *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9267 *
9268 *	Initialize adapter SW state for the various HW modules, set initial
9269 *	values for some adapter tunables, take PHYs out of reset, and
9270 *	initialize the MDIO interface.
9271 */
9272int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9273{
9274	int ret;
9275	uint16_t device_id;
9276	uint32_t pl_rev;
9277
9278	get_pci_mode(adapter, &adapter->params.pci);
9279
9280	pl_rev = t4_read_reg(adapter, A_PL_REV);
9281	adapter->params.chipid = G_CHIPID(pl_rev);
9282	adapter->params.rev = G_REV(pl_rev);
9283	if (adapter->params.chipid == 0) {
9284		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9285		adapter->params.chipid = CHELSIO_T4;
9286
9287		/* T4A1 chip is not supported */
9288		if (adapter->params.rev == 1) {
9289			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9290			return -EINVAL;
9291		}
9292	}
9293
9294	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9295	if (adapter->chip_params == NULL)
9296		return -EINVAL;
9297
9298	adapter->params.pci.vpd_cap_addr =
9299	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9300
9301	ret = t4_get_flash_params(adapter);
9302	if (ret < 0)
9303		return ret;
9304
9305	/* Cards with real ASICs have the chipid in the PCIe device id */
9306	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9307	if (device_id >> 12 == chip_id(adapter))
9308		adapter->params.cim_la_size = adapter->chip_params->cim_la_size;
9309	else {
9310		/* FPGA */
9311		adapter->params.fpga = 1;
9312		adapter->params.cim_la_size = 2 * adapter->chip_params->cim_la_size;
9313	}
9314
9315	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9316	if (ret < 0)
9317		return ret;
9318
9319	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9320
9321	/*
9322	 * Default port and clock for debugging in case we can't reach FW.
9323	 */
9324	adapter->params.nports = 1;
9325	adapter->params.portvec = 1;
9326	adapter->params.vpd.cclk = 50000;
9327
9328	/* Set pci completion timeout value to 4 seconds. */
9329	set_pcie_completion_timeout(adapter, 0xd);
9330	return 0;
9331}
9332
9333/**
9334 *	t4_shutdown_adapter - shut down adapter, host & wire
9335 *	@adapter: the adapter
9336 *
9337 *	Perform an emergency shutdown of the adapter and stop it from
9338 *	continuing any further communication on the ports or DMA to the
9339 *	host.  This is typically used when the adapter and/or firmware
9340 *	have crashed and we want to prevent any further accidental
9341 *	communication with the rest of the world.  This will also force
9342 *	the port Link Status to go down -- if register writes work --
9343 *	which should help our peers figure out that we're down.
9344 */
9345int t4_shutdown_adapter(struct adapter *adapter)
9346{
9347	int port;
9348	const bool bt = adapter->bt_map != 0;
9349
9350	t4_intr_disable(adapter);
9351	if (bt)
9352		t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000);
9353	for_each_port(adapter, port) {
9354		u32 a_port_cfg = is_t4(adapter) ?
9355		    t4_port_reg(adapter, port, A_XGMAC_PORT_CFG) :
9356		    t4_port_reg(adapter, port, A_MAC_PORT_CFG);
9357
9358		t4_write_reg(adapter, a_port_cfg,
9359			     t4_read_reg(adapter, a_port_cfg)
9360			     & ~V_SIGNAL_DET(1));
9361		if (!bt) {
9362			u32 hss_cfg0 = is_t4(adapter) ?
9363			    t4_port_reg(adapter, port, A_XGMAC_PORT_HSS_CFG0) :
9364			    t4_port_reg(adapter, port, A_MAC_PORT_HSS_CFG0);
9365			t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB |
9366			    F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA,
9367			    F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB |
9368			    F_HSSPLLBYPA);
9369		}
9370	}
9371	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9372
9373	return 0;
9374}
9375
9376/**
9377 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9378 *	@adapter: the adapter
9379 *	@qid: the Queue ID
9380 *	@qtype: the Ingress or Egress type for @qid
9381 *	@user: true if this request is for a user mode queue
9382 *	@pbar2_qoffset: BAR2 Queue Offset
9383 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9384 *
9385 *	Returns the BAR2 SGE Queue Registers information associated with the
9386 *	indicated Absolute Queue ID.  These are passed back in return value
9387 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9388 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9389 *
9390 *	This may return an error which indicates that BAR2 SGE Queue
9391 *	registers aren't available.  If an error is not returned, then the
9392 *	following values are returned:
9393 *
9394 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9395 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9396 *
9397 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9398 *	require the "Inferred Queue ID" ability may be used.  E.g. the
9399 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9400 *	then these "Inferred Queue ID" register may not be used.
9401 */
9402int t4_bar2_sge_qregs(struct adapter *adapter,
9403		      unsigned int qid,
9404		      enum t4_bar2_qtype qtype,
9405		      int user,
9406		      u64 *pbar2_qoffset,
9407		      unsigned int *pbar2_qid)
9408{
9409	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9410	u64 bar2_page_offset, bar2_qoffset;
9411	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9412
9413	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9414	 * mode queues.
9415	 */
9416	if (!user && is_t4(adapter))
9417		return -EINVAL;
9418
9419	/* Get our SGE Page Size parameters.
9420	 */
9421	page_shift = adapter->params.sge.page_shift;
9422	page_size = 1 << page_shift;
9423
9424	/* Get the right Queues per Page parameters for our Queue.
9425	 */
9426	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9427		     ? adapter->params.sge.eq_s_qpp
9428		     : adapter->params.sge.iq_s_qpp);
9429	qpp_mask = (1 << qpp_shift) - 1;
9430
9431	/* Calculate the basics of the BAR2 SGE Queue register area:
9432	 *  o The BAR2 page the Queue registers will be in.
9433	 *  o The BAR2 Queue ID.
9434	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9435	 */
9436	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9437	bar2_qid = qid & qpp_mask;
9438	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9439
9440	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9441	 * hardware will infer the Absolute Queue ID simply from the writes to
9442	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9443	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9444	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9445	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9446	 * from the BAR2 Page and BAR2 Queue ID.
9447	 *
9448	 * One important censequence of this is that some BAR2 SGE registers
9449	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9450	 * there.  But other registers synthesize the SGE Queue ID purely
9451	 * from the writes to the registers -- the Write Combined Doorbell
9452	 * Buffer is a good example.  These BAR2 SGE Registers are only
9453	 * available for those BAR2 SGE Register areas where the SGE Absolute
9454	 * Queue ID can be inferred from simple writes.
9455	 */
9456	bar2_qoffset = bar2_page_offset;
9457	bar2_qinferred = (bar2_qid_offset < page_size);
9458	if (bar2_qinferred) {
9459		bar2_qoffset += bar2_qid_offset;
9460		bar2_qid = 0;
9461	}
9462
9463	*pbar2_qoffset = bar2_qoffset;
9464	*pbar2_qid = bar2_qid;
9465	return 0;
9466}
9467
9468/**
9469 *	t4_init_devlog_params - initialize adapter->params.devlog
9470 *	@adap: the adapter
9471 *	@fw_attach: whether we can talk to the firmware
9472 *
9473 *	Initialize various fields of the adapter's Firmware Device Log
9474 *	Parameters structure.
9475 */
9476int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9477{
9478	struct devlog_params *dparams = &adap->params.devlog;
9479	u32 pf_dparams;
9480	unsigned int devlog_meminfo;
9481	struct fw_devlog_cmd devlog_cmd;
9482	int ret;
9483
9484	/* If we're dealing with newer firmware, the Device Log Paramerters
9485	 * are stored in a designated register which allows us to access the
9486	 * Device Log even if we can't talk to the firmware.
9487	 */
9488	pf_dparams =
9489		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9490	if (pf_dparams) {
9491		unsigned int nentries, nentries128;
9492
9493		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9494		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9495
9496		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9497		nentries = (nentries128 + 1) * 128;
9498		dparams->size = nentries * sizeof(struct fw_devlog_e);
9499
9500		return 0;
9501	}
9502
9503	/*
9504	 * For any failing returns ...
9505	 */
9506	memset(dparams, 0, sizeof *dparams);
9507
9508	/*
9509	 * If we can't talk to the firmware, there's really nothing we can do
9510	 * at this point.
9511	 */
9512	if (!fw_attach)
9513		return -ENXIO;
9514
9515	/* Otherwise, ask the firmware for it's Device Log Parameters.
9516	 */
9517	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9518	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9519					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9520	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9521	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9522			 &devlog_cmd);
9523	if (ret)
9524		return ret;
9525
9526	devlog_meminfo =
9527		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9528	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9529	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9530	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9531
9532	return 0;
9533}
9534
9535/**
9536 *	t4_init_sge_params - initialize adap->params.sge
9537 *	@adapter: the adapter
9538 *
9539 *	Initialize various fields of the adapter's SGE Parameters structure.
9540 */
9541int t4_init_sge_params(struct adapter *adapter)
9542{
9543	u32 r;
9544	struct sge_params *sp = &adapter->params.sge;
9545	unsigned i, tscale = 1;
9546
9547	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9548	sp->counter_val[0] = G_THRESHOLD_0(r);
9549	sp->counter_val[1] = G_THRESHOLD_1(r);
9550	sp->counter_val[2] = G_THRESHOLD_2(r);
9551	sp->counter_val[3] = G_THRESHOLD_3(r);
9552
9553	if (chip_id(adapter) >= CHELSIO_T6) {
9554		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9555		tscale = G_TSCALE(r);
9556		if (tscale == 0)
9557			tscale = 1;
9558		else
9559			tscale += 2;
9560	}
9561
9562	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9563	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9564	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9565	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9566	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9567	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9568	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9569	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9570	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9571
9572	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9573	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9574	if (is_t4(adapter))
9575		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9576	else if (is_t5(adapter))
9577		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9578	else
9579		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9580
9581	/* egress queues: log2 of # of doorbells per BAR2 page */
9582	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9583	r >>= S_QUEUESPERPAGEPF0 +
9584	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9585	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9586
9587	/* ingress queues: log2 of # of doorbells per BAR2 page */
9588	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9589	r >>= S_QUEUESPERPAGEPF0 +
9590	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9591	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9592
9593	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9594	r >>= S_HOSTPAGESIZEPF0 +
9595	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9596	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9597
9598	r = t4_read_reg(adapter, A_SGE_CONTROL);
9599	sp->sge_control = r;
9600	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9601	sp->fl_pktshift = G_PKTSHIFT(r);
9602	if (chip_id(adapter) <= CHELSIO_T5) {
9603		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9604		    X_INGPADBOUNDARY_SHIFT);
9605	} else {
9606		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9607		    X_T6_INGPADBOUNDARY_SHIFT);
9608	}
9609	if (is_t4(adapter))
9610		sp->pack_boundary = sp->pad_boundary;
9611	else {
9612		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9613		if (G_INGPACKBOUNDARY(r) == 0)
9614			sp->pack_boundary = 16;
9615		else
9616			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9617	}
9618	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9619		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9620		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9621
9622	return 0;
9623}
9624
9625/* Convert the LE's hardware hash mask to a shorter filter mask. */
9626static inline uint16_t
9627hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9628{
9629	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9630	int i;
9631	uint16_t filter_mask;
9632	uint64_t mask;		/* field mask */
9633
9634	filter_mask = 0;
9635	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9636		if ((filter_mode & (1 << i)) == 0)
9637			continue;
9638		mask = (1 << width[i]) - 1;
9639		if ((hashmask & mask) == mask)
9640			filter_mask |= 1 << i;
9641		hashmask >>= width[i];
9642	}
9643
9644	return (filter_mask);
9645}
9646
9647/*
9648 * Read and cache the adapter's compressed filter mode and ingress config.
9649 */
9650static void
9651read_filter_mode_and_ingress_config(struct adapter *adap)
9652{
9653	int rc;
9654	uint32_t v, param[2], val[2];
9655	struct tp_params *tpp = &adap->params.tp;
9656	uint64_t hash_mask;
9657
9658	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9659	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9660	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9661	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9662	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9663	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9664	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9665	if (rc == 0) {
9666		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9667		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9668		tpp->vnic_mode = val[1];
9669	} else {
9670		/*
9671		 * Old firmware.  Read filter mode/mask and ingress config
9672		 * straight from the hardware.
9673		 */
9674		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9675		tpp->filter_mode = v & 0xffff;
9676
9677		hash_mask = 0;
9678		if (chip_id(adap) > CHELSIO_T4) {
9679			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9680			hash_mask = v;
9681			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9682			hash_mask |= (u64)v << 32;
9683		}
9684		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9685		    tpp->filter_mode);
9686
9687		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9688		if (v & F_VNIC)
9689			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9690		else
9691			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9692	}
9693
9694	/*
9695	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9696	 * shift positions of several elements of the Compressed Filter Tuple
9697	 * for this adapter which we need frequently ...
9698	 */
9699	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9700	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9701	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9702	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9703	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9704	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9705	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9706	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9707	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9708	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9709}
9710
9711/**
9712 *      t4_init_tp_params - initialize adap->params.tp
9713 *      @adap: the adapter
9714 *
9715 *      Initialize various fields of the adapter's TP Parameters structure.
9716 */
9717int t4_init_tp_params(struct adapter *adap)
9718{
9719	u32 tx_len, rx_len, r, v;
9720	struct tp_params *tpp = &adap->params.tp;
9721
9722	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9723	tpp->tre = G_TIMERRESOLUTION(v);
9724	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9725
9726	read_filter_mode_and_ingress_config(adap);
9727
9728	if (chip_id(adap) > CHELSIO_T5) {
9729		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9730		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9731	} else
9732		tpp->rx_pkt_encap = false;
9733
9734	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9735	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9736
9737	r = t4_read_reg(adap, A_TP_PARA_REG2);
9738	rx_len = min(rx_len, G_MAXRXDATA(r));
9739	tx_len = min(tx_len, G_MAXRXDATA(r));
9740
9741	r = t4_read_reg(adap, A_TP_PARA_REG7);
9742	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9743	rx_len = min(rx_len, v);
9744	tx_len = min(tx_len, v);
9745
9746	tpp->max_tx_pdu = tx_len;
9747	tpp->max_rx_pdu = rx_len;
9748
9749	return 0;
9750}
9751
9752/**
9753 *      t4_filter_field_shift - calculate filter field shift
9754 *      @adap: the adapter
9755 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9756 *
9757 *      Return the shift position of a filter field within the Compressed
9758 *      Filter Tuple.  The filter field is specified via its selection bit
9759 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9760 */
9761int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9762{
9763	const unsigned int filter_mode = adap->params.tp.filter_mode;
9764	unsigned int sel;
9765	int field_shift;
9766
9767	if ((filter_mode & filter_sel) == 0)
9768		return -1;
9769
9770	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9771		switch (filter_mode & sel) {
9772		case F_FCOE:
9773			field_shift += W_FT_FCOE;
9774			break;
9775		case F_PORT:
9776			field_shift += W_FT_PORT;
9777			break;
9778		case F_VNIC_ID:
9779			field_shift += W_FT_VNIC_ID;
9780			break;
9781		case F_VLAN:
9782			field_shift += W_FT_VLAN;
9783			break;
9784		case F_TOS:
9785			field_shift += W_FT_TOS;
9786			break;
9787		case F_PROTOCOL:
9788			field_shift += W_FT_PROTOCOL;
9789			break;
9790		case F_ETHERTYPE:
9791			field_shift += W_FT_ETHERTYPE;
9792			break;
9793		case F_MACMATCH:
9794			field_shift += W_FT_MACMATCH;
9795			break;
9796		case F_MPSHITTYPE:
9797			field_shift += W_FT_MPSHITTYPE;
9798			break;
9799		case F_FRAGMENTATION:
9800			field_shift += W_FT_FRAGMENTATION;
9801			break;
9802		}
9803	}
9804	return field_shift;
9805}
9806
9807int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9808{
9809	u8 addr[6];
9810	int ret, i, j;
9811	struct port_info *p = adap2pinfo(adap, port_id);
9812	u32 param, val;
9813	struct vi_info *vi = &p->vi[0];
9814
9815	for (i = 0, j = -1; i <= p->port_id; i++) {
9816		do {
9817			j++;
9818		} while ((adap->params.portvec & (1 << j)) == 0);
9819	}
9820
9821	p->tx_chan = t4_get_tx_c_chan(adap, j);
9822	p->rx_chan = t4_get_rx_c_chan(adap, j);
9823	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9824	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9825	p->lport = j;
9826
9827	if (!(adap->flags & IS_VF) ||
9828	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9829 		t4_update_port_info(p);
9830	}
9831
9832	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9833	    &vi->vfvld, &vi->vin);
9834	if (ret < 0)
9835		return ret;
9836
9837	vi->viid = ret;
9838	t4_os_set_hw_addr(p, addr);
9839
9840	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9841	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9842	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9843	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9844	if (ret)
9845		vi->rss_base = 0xffff;
9846	else {
9847		/* MPASS((val >> 16) == rss_size); */
9848		vi->rss_base = val & 0xffff;
9849	}
9850
9851	return 0;
9852}
9853
9854/**
9855 *	t4_read_cimq_cfg - read CIM queue configuration
9856 *	@adap: the adapter
9857 *	@base: holds the queue base addresses in bytes
9858 *	@size: holds the queue sizes in bytes
9859 *	@thres: holds the queue full thresholds in bytes
9860 *
9861 *	Returns the current configuration of the CIM queues, starting with
9862 *	the IBQs, then the OBQs.
9863 */
9864void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9865{
9866	unsigned int i, v;
9867	int cim_num_obq = adap->chip_params->cim_num_obq;
9868
9869	for (i = 0; i < CIM_NUM_IBQ; i++) {
9870		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9871			     V_QUENUMSELECT(i));
9872		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9873		/* value is in 256-byte units */
9874		*base++ = G_CIMQBASE(v) * 256;
9875		*size++ = G_CIMQSIZE(v) * 256;
9876		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9877	}
9878	for (i = 0; i < cim_num_obq; i++) {
9879		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9880			     V_QUENUMSELECT(i));
9881		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9882		/* value is in 256-byte units */
9883		*base++ = G_CIMQBASE(v) * 256;
9884		*size++ = G_CIMQSIZE(v) * 256;
9885	}
9886}
9887
9888/**
9889 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9890 *	@adap: the adapter
9891 *	@qid: the queue index
9892 *	@data: where to store the queue contents
9893 *	@n: capacity of @data in 32-bit words
9894 *
9895 *	Reads the contents of the selected CIM queue starting at address 0 up
9896 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9897 *	error and the number of 32-bit words actually read on success.
9898 */
9899int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9900{
9901	int i, err, attempts;
9902	unsigned int addr;
9903	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9904
9905	if (qid > 5 || (n & 3))
9906		return -EINVAL;
9907
9908	addr = qid * nwords;
9909	if (n > nwords)
9910		n = nwords;
9911
9912	/* It might take 3-10ms before the IBQ debug read access is allowed.
9913	 * Wait for 1 Sec with a delay of 1 usec.
9914	 */
9915	attempts = 1000000;
9916
9917	for (i = 0; i < n; i++, addr++) {
9918		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9919			     F_IBQDBGEN);
9920		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9921				      attempts, 1);
9922		if (err)
9923			return err;
9924		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9925	}
9926	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9927	return i;
9928}
9929
9930/**
9931 *	t4_read_cim_obq - read the contents of a CIM outbound queue
9932 *	@adap: the adapter
9933 *	@qid: the queue index
9934 *	@data: where to store the queue contents
9935 *	@n: capacity of @data in 32-bit words
9936 *
9937 *	Reads the contents of the selected CIM queue starting at address 0 up
9938 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9939 *	error and the number of 32-bit words actually read on success.
9940 */
9941int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9942{
9943	int i, err;
9944	unsigned int addr, v, nwords;
9945	int cim_num_obq = adap->chip_params->cim_num_obq;
9946
9947	if ((qid > (cim_num_obq - 1)) || (n & 3))
9948		return -EINVAL;
9949
9950	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9951		     V_QUENUMSELECT(qid));
9952	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9953
9954	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9955	nwords = G_CIMQSIZE(v) * 64;  /* same */
9956	if (n > nwords)
9957		n = nwords;
9958
9959	for (i = 0; i < n; i++, addr++) {
9960		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9961			     F_OBQDBGEN);
9962		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9963				      2, 1);
9964		if (err)
9965			return err;
9966		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9967	}
9968	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9969	return i;
9970}
9971
9972enum {
9973	CIM_QCTL_BASE     = 0,
9974	CIM_CTL_BASE      = 0x2000,
9975	CIM_PBT_ADDR_BASE = 0x2800,
9976	CIM_PBT_LRF_BASE  = 0x3000,
9977	CIM_PBT_DATA_BASE = 0x3800
9978};
9979
9980/**
9981 *	t4_cim_read - read a block from CIM internal address space
9982 *	@adap: the adapter
9983 *	@addr: the start address within the CIM address space
9984 *	@n: number of words to read
9985 *	@valp: where to store the result
9986 *
9987 *	Reads a block of 4-byte words from the CIM intenal address space.
9988 */
9989int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9990		unsigned int *valp)
9991{
9992	int ret = 0;
9993
9994	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9995		return -EBUSY;
9996
9997	for ( ; !ret && n--; addr += 4) {
9998		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9999		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10000				      0, 5, 2);
10001		if (!ret)
10002			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10003	}
10004	return ret;
10005}
10006
10007/**
10008 *	t4_cim_write - write a block into CIM internal address space
10009 *	@adap: the adapter
10010 *	@addr: the start address within the CIM address space
10011 *	@n: number of words to write
10012 *	@valp: set of values to write
10013 *
10014 *	Writes a block of 4-byte words into the CIM intenal address space.
10015 */
10016int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10017		 const unsigned int *valp)
10018{
10019	int ret = 0;
10020
10021	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10022		return -EBUSY;
10023
10024	for ( ; !ret && n--; addr += 4) {
10025		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10026		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10027		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10028				      0, 5, 2);
10029	}
10030	return ret;
10031}
10032
10033static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10034			 unsigned int val)
10035{
10036	return t4_cim_write(adap, addr, 1, &val);
10037}
10038
10039/**
10040 *	t4_cim_ctl_read - read a block from CIM control region
10041 *	@adap: the adapter
10042 *	@addr: the start address within the CIM control region
10043 *	@n: number of words to read
10044 *	@valp: where to store the result
10045 *
10046 *	Reads a block of 4-byte words from the CIM control region.
10047 */
10048int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10049		    unsigned int *valp)
10050{
10051	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10052}
10053
10054/**
10055 *	t4_cim_read_la - read CIM LA capture buffer
10056 *	@adap: the adapter
10057 *	@la_buf: where to store the LA data
10058 *	@wrptr: the HW write pointer within the capture buffer
10059 *
10060 *	Reads the contents of the CIM LA buffer with the most recent entry at
10061 *	the end	of the returned data and with the entry at @wrptr first.
10062 *	We try to leave the LA in the running state we find it in.
10063 */
10064int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10065{
10066	int i, ret;
10067	unsigned int cfg, val, idx;
10068
10069	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10070	if (ret)
10071		return ret;
10072
10073	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10074		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10075		if (ret)
10076			return ret;
10077	}
10078
10079	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10080	if (ret)
10081		goto restart;
10082
10083	idx = G_UPDBGLAWRPTR(val);
10084	if (wrptr)
10085		*wrptr = idx;
10086
10087	for (i = 0; i < adap->params.cim_la_size; i++) {
10088		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10089				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10090		if (ret)
10091			break;
10092		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10093		if (ret)
10094			break;
10095		if (val & F_UPDBGLARDEN) {
10096			ret = -ETIMEDOUT;
10097			break;
10098		}
10099		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10100		if (ret)
10101			break;
10102
10103		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10104		 * identify the 32-bit portion of the full 312-bit data
10105		 */
10106		if (is_t6(adap) && (idx & 0xf) >= 9)
10107			idx = (idx & 0xff0) + 0x10;
10108		else
10109			idx++;
10110		/* address can't exceed 0xfff */
10111		idx &= M_UPDBGLARDPTR;
10112	}
10113restart:
10114	if (cfg & F_UPDBGLAEN) {
10115		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10116				      cfg & ~F_UPDBGLARDEN);
10117		if (!ret)
10118			ret = r;
10119	}
10120	return ret;
10121}
10122
10123/**
10124 *	t4_tp_read_la - read TP LA capture buffer
10125 *	@adap: the adapter
10126 *	@la_buf: where to store the LA data
10127 *	@wrptr: the HW write pointer within the capture buffer
10128 *
10129 *	Reads the contents of the TP LA buffer with the most recent entry at
10130 *	the end	of the returned data and with the entry at @wrptr first.
10131 *	We leave the LA in the running state we find it in.
10132 */
10133void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10134{
10135	bool last_incomplete;
10136	unsigned int i, cfg, val, idx;
10137
10138	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10139	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10140		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10141			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10142
10143	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10144	idx = G_DBGLAWPTR(val);
10145	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10146	if (last_incomplete)
10147		idx = (idx + 1) & M_DBGLARPTR;
10148	if (wrptr)
10149		*wrptr = idx;
10150
10151	val &= 0xffff;
10152	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10153	val |= adap->params.tp.la_mask;
10154
10155	for (i = 0; i < TPLA_SIZE; i++) {
10156		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10157		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10158		idx = (idx + 1) & M_DBGLARPTR;
10159	}
10160
10161	/* Wipe out last entry if it isn't valid */
10162	if (last_incomplete)
10163		la_buf[TPLA_SIZE - 1] = ~0ULL;
10164
10165	if (cfg & F_DBGLAENABLE)		/* restore running state */
10166		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10167			     cfg | adap->params.tp.la_mask);
10168}
10169
10170/*
10171 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10172 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10173 * state for more than the Warning Threshold then we'll issue a warning about
10174 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10175 * appears to be hung every Warning Repeat second till the situation clears.
10176 * If the situation clears, we'll note that as well.
10177 */
10178#define SGE_IDMA_WARN_THRESH 1
10179#define SGE_IDMA_WARN_REPEAT 300
10180
10181/**
10182 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10183 *	@adapter: the adapter
10184 *	@idma: the adapter IDMA Monitor state
10185 *
10186 *	Initialize the state of an SGE Ingress DMA Monitor.
10187 */
10188void t4_idma_monitor_init(struct adapter *adapter,
10189			  struct sge_idma_monitor_state *idma)
10190{
10191	/* Initialize the state variables for detecting an SGE Ingress DMA
10192	 * hang.  The SGE has internal counters which count up on each clock
10193	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10194	 * same state they were on the previous clock tick.  The clock used is
10195	 * the Core Clock so we have a limit on the maximum "time" they can
10196	 * record; typically a very small number of seconds.  For instance,
10197	 * with a 600MHz Core Clock, we can only count up to a bit more than
10198	 * 7s.  So we'll synthesize a larger counter in order to not run the
10199	 * risk of having the "timers" overflow and give us the flexibility to
10200	 * maintain a Hung SGE State Machine of our own which operates across
10201	 * a longer time frame.
10202	 */
10203	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10204	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10205}
10206
10207/**
10208 *	t4_idma_monitor - monitor SGE Ingress DMA state
10209 *	@adapter: the adapter
10210 *	@idma: the adapter IDMA Monitor state
10211 *	@hz: number of ticks/second
10212 *	@ticks: number of ticks since the last IDMA Monitor call
10213 */
10214void t4_idma_monitor(struct adapter *adapter,
10215		     struct sge_idma_monitor_state *idma,
10216		     int hz, int ticks)
10217{
10218	int i, idma_same_state_cnt[2];
10219
10220	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10221	  * are counters inside the SGE which count up on each clock when the
10222	  * SGE finds its Ingress DMA State Engines in the same states they
10223	  * were in the previous clock.  The counters will peg out at
10224	  * 0xffffffff without wrapping around so once they pass the 1s
10225	  * threshold they'll stay above that till the IDMA state changes.
10226	  */
10227	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10228	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10229	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10230
10231	for (i = 0; i < 2; i++) {
10232		u32 debug0, debug11;
10233
10234		/* If the Ingress DMA Same State Counter ("timer") is less
10235		 * than 1s, then we can reset our synthesized Stall Timer and
10236		 * continue.  If we have previously emitted warnings about a
10237		 * potential stalled Ingress Queue, issue a note indicating
10238		 * that the Ingress Queue has resumed forward progress.
10239		 */
10240		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10241			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10242				CH_WARN(adapter, "SGE idma%d, queue %u, "
10243					"resumed after %d seconds\n",
10244					i, idma->idma_qid[i],
10245					idma->idma_stalled[i]/hz);
10246			idma->idma_stalled[i] = 0;
10247			continue;
10248		}
10249
10250		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10251		 * domain.  The first time we get here it'll be because we
10252		 * passed the 1s Threshold; each additional time it'll be
10253		 * because the RX Timer Callback is being fired on its regular
10254		 * schedule.
10255		 *
10256		 * If the stall is below our Potential Hung Ingress Queue
10257		 * Warning Threshold, continue.
10258		 */
10259		if (idma->idma_stalled[i] == 0) {
10260			idma->idma_stalled[i] = hz;
10261			idma->idma_warn[i] = 0;
10262		} else {
10263			idma->idma_stalled[i] += ticks;
10264			idma->idma_warn[i] -= ticks;
10265		}
10266
10267		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10268			continue;
10269
10270		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10271		 */
10272		if (idma->idma_warn[i] > 0)
10273			continue;
10274		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10275
10276		/* Read and save the SGE IDMA State and Queue ID information.
10277		 * We do this every time in case it changes across time ...
10278		 * can't be too careful ...
10279		 */
10280		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10281		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10282		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10283
10284		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10285		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10286		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10287
10288		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10289			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10290			i, idma->idma_qid[i], idma->idma_state[i],
10291			idma->idma_stalled[i]/hz,
10292			debug0, debug11);
10293		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10294	}
10295}
10296
10297/**
10298 *     t4_set_vf_mac - Set MAC address for the specified VF
10299 *     @adapter: The adapter
10300 *     @pf: the PF used to instantiate the VFs
10301 *     @vf: one of the VFs instantiated by the specified PF
10302 *     @naddr: the number of MAC addresses
10303 *     @addr: the MAC address(es) to be set to the specified VF
10304 */
10305int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10306		  unsigned int naddr, u8 *addr)
10307{
10308	struct fw_acl_mac_cmd cmd;
10309
10310	memset(&cmd, 0, sizeof(cmd));
10311	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10312				    F_FW_CMD_REQUEST |
10313				    F_FW_CMD_WRITE |
10314				    V_FW_ACL_MAC_CMD_PFN(pf) |
10315				    V_FW_ACL_MAC_CMD_VFN(vf));
10316
10317	/* Note: Do not enable the ACL */
10318	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10319	cmd.nmac = naddr;
10320
10321	switch (pf) {
10322	case 3:
10323		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10324		break;
10325	case 2:
10326		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10327		break;
10328	case 1:
10329		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10330		break;
10331	case 0:
10332		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10333		break;
10334	}
10335
10336	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10337}
10338
10339/**
10340 *	t4_read_pace_tbl - read the pace table
10341 *	@adap: the adapter
10342 *	@pace_vals: holds the returned values
10343 *
10344 *	Returns the values of TP's pace table in microseconds.
10345 */
10346void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10347{
10348	unsigned int i, v;
10349
10350	for (i = 0; i < NTX_SCHED; i++) {
10351		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10352		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10353		pace_vals[i] = dack_ticks_to_usec(adap, v);
10354	}
10355}
10356
10357/**
10358 *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10359 *	@adap: the adapter
10360 *	@sched: the scheduler index
10361 *	@kbps: the byte rate in Kbps
10362 *	@ipg: the interpacket delay in tenths of nanoseconds
10363 *
10364 *	Return the current configuration of a HW Tx scheduler.
10365 */
10366void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10367		     unsigned int *ipg, bool sleep_ok)
10368{
10369	unsigned int v, addr, bpt, cpt;
10370
10371	if (kbps) {
10372		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10373		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10374		if (sched & 1)
10375			v >>= 16;
10376		bpt = (v >> 8) & 0xff;
10377		cpt = v & 0xff;
10378		if (!cpt)
10379			*kbps = 0;	/* scheduler disabled */
10380		else {
10381			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10382			*kbps = (v * bpt) / 125;
10383		}
10384	}
10385	if (ipg) {
10386		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10387		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10388		if (sched & 1)
10389			v >>= 16;
10390		v &= 0xffff;
10391		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10392	}
10393}
10394
10395/**
10396 *	t4_load_cfg - download config file
10397 *	@adap: the adapter
10398 *	@cfg_data: the cfg text file to write
10399 *	@size: text file size
10400 *
10401 *	Write the supplied config text file to the card's serial flash.
10402 */
10403int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10404{
10405	int ret, i, n, cfg_addr;
10406	unsigned int addr;
10407	unsigned int flash_cfg_start_sec;
10408	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10409
10410	cfg_addr = t4_flash_cfg_addr(adap);
10411	if (cfg_addr < 0)
10412		return cfg_addr;
10413
10414	addr = cfg_addr;
10415	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10416
10417	if (size > FLASH_CFG_MAX_SIZE) {
10418		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10419		       FLASH_CFG_MAX_SIZE);
10420		return -EFBIG;
10421	}
10422
10423	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10424			 sf_sec_size);
10425	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10426				     flash_cfg_start_sec + i - 1);
10427	/*
10428	 * If size == 0 then we're simply erasing the FLASH sectors associated
10429	 * with the on-adapter Firmware Configuration File.
10430	 */
10431	if (ret || size == 0)
10432		goto out;
10433
10434	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10435	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10436		if ( (size - i) <  SF_PAGE_SIZE)
10437			n = size - i;
10438		else
10439			n = SF_PAGE_SIZE;
10440		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10441		if (ret)
10442			goto out;
10443
10444		addr += SF_PAGE_SIZE;
10445		cfg_data += SF_PAGE_SIZE;
10446	}
10447
10448out:
10449	if (ret)
10450		CH_ERR(adap, "config file %s failed %d\n",
10451		       (size == 0 ? "clear" : "download"), ret);
10452	return ret;
10453}
10454
10455/**
10456 *	t5_fw_init_extern_mem - initialize the external memory
10457 *	@adap: the adapter
10458 *
10459 *	Initializes the external memory on T5.
10460 */
10461int t5_fw_init_extern_mem(struct adapter *adap)
10462{
10463	u32 params[1], val[1];
10464	int ret;
10465
10466	if (!is_t5(adap))
10467		return 0;
10468
10469	val[0] = 0xff; /* Initialize all MCs */
10470	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10471			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10472	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10473			FW_CMD_MAX_TIMEOUT);
10474
10475	return ret;
10476}
10477
10478/* BIOS boot headers */
10479typedef struct pci_expansion_rom_header {
10480	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10481	u8	reserved[22]; /* Reserved per processor Architecture data */
10482	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10483} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10484
10485/* Legacy PCI Expansion ROM Header */
10486typedef struct legacy_pci_expansion_rom_header {
10487	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10488	u8	size512; /* Current Image Size in units of 512 bytes */
10489	u8	initentry_point[4];
10490	u8	cksum; /* Checksum computed on the entire Image */
10491	u8	reserved[16]; /* Reserved */
10492	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10493} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10494
10495/* EFI PCI Expansion ROM Header */
10496typedef struct efi_pci_expansion_rom_header {
10497	u8	signature[2]; // ROM signature. The value 0xaa55
10498	u8	initialization_size[2]; /* Units 512. Includes this header */
10499	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10500	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10501	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10502	u8	compression_type[2]; /* Compression type. */
10503		/*
10504		 * Compression type definition
10505		 * 0x0: uncompressed
10506		 * 0x1: Compressed
10507		 * 0x2-0xFFFF: Reserved
10508		 */
10509	u8	reserved[8]; /* Reserved */
10510	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10511	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10512} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10513
10514/* PCI Data Structure Format */
10515typedef struct pcir_data_structure { /* PCI Data Structure */
10516	u8	signature[4]; /* Signature. The string "PCIR" */
10517	u8	vendor_id[2]; /* Vendor Identification */
10518	u8	device_id[2]; /* Device Identification */
10519	u8	vital_product[2]; /* Pointer to Vital Product Data */
10520	u8	length[2]; /* PCIR Data Structure Length */
10521	u8	revision; /* PCIR Data Structure Revision */
10522	u8	class_code[3]; /* Class Code */
10523	u8	image_length[2]; /* Image Length. Multiple of 512B */
10524	u8	code_revision[2]; /* Revision Level of Code/Data */
10525	u8	code_type; /* Code Type. */
10526		/*
10527		 * PCI Expansion ROM Code Types
10528		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10529		 * 0x01: Open Firmware standard for PCI. FCODE
10530		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10531		 * 0x03: EFI Image. EFI
10532		 * 0x04-0xFF: Reserved.
10533		 */
10534	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10535	u8	reserved[2]; /* Reserved */
10536} pcir_data_t; /* PCI__DATA_STRUCTURE */
10537
10538/* BOOT constants */
10539enum {
10540	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10541	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10542	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10543	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10544	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10545	VENDOR_ID = 0x1425, /* Vendor ID */
10546	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10547};
10548
10549/*
10550 *	modify_device_id - Modifies the device ID of the Boot BIOS image
10551 *	@adatper: the device ID to write.
10552 *	@boot_data: the boot image to modify.
10553 *
10554 *	Write the supplied device ID to the boot BIOS image.
10555 */
10556static void modify_device_id(int device_id, u8 *boot_data)
10557{
10558	legacy_pci_exp_rom_header_t *header;
10559	pcir_data_t *pcir_header;
10560	u32 cur_header = 0;
10561
10562	/*
10563	 * Loop through all chained images and change the device ID's
10564	 */
10565	while (1) {
10566		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10567		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10568			      le16_to_cpu(*(u16*)header->pcir_offset)];
10569
10570		/*
10571		 * Only modify the Device ID if code type is Legacy or HP.
10572		 * 0x00: Okay to modify
10573		 * 0x01: FCODE. Do not be modify
10574		 * 0x03: Okay to modify
10575		 * 0x04-0xFF: Do not modify
10576		 */
10577		if (pcir_header->code_type == 0x00) {
10578			u8 csum = 0;
10579			int i;
10580
10581			/*
10582			 * Modify Device ID to match current adatper
10583			 */
10584			*(u16*) pcir_header->device_id = device_id;
10585
10586			/*
10587			 * Set checksum temporarily to 0.
10588			 * We will recalculate it later.
10589			 */
10590			header->cksum = 0x0;
10591
10592			/*
10593			 * Calculate and update checksum
10594			 */
10595			for (i = 0; i < (header->size512 * 512); i++)
10596				csum += (u8)boot_data[cur_header + i];
10597
10598			/*
10599			 * Invert summed value to create the checksum
10600			 * Writing new checksum value directly to the boot data
10601			 */
10602			boot_data[cur_header + 7] = -csum;
10603
10604		} else if (pcir_header->code_type == 0x03) {
10605
10606			/*
10607			 * Modify Device ID to match current adatper
10608			 */
10609			*(u16*) pcir_header->device_id = device_id;
10610
10611		}
10612
10613
10614		/*
10615		 * Check indicator element to identify if this is the last
10616		 * image in the ROM.
10617		 */
10618		if (pcir_header->indicator & 0x80)
10619			break;
10620
10621		/*
10622		 * Move header pointer up to the next image in the ROM.
10623		 */
10624		cur_header += header->size512 * 512;
10625	}
10626}
10627
10628/*
10629 *	t4_load_boot - download boot flash
10630 *	@adapter: the adapter
10631 *	@boot_data: the boot image to write
10632 *	@boot_addr: offset in flash to write boot_data
10633 *	@size: image size
10634 *
10635 *	Write the supplied boot image to the card's serial flash.
10636 *	The boot image has the following sections: a 28-byte header and the
10637 *	boot image.
10638 */
10639int t4_load_boot(struct adapter *adap, u8 *boot_data,
10640		 unsigned int boot_addr, unsigned int size)
10641{
10642	pci_exp_rom_header_t *header;
10643	int pcir_offset ;
10644	pcir_data_t *pcir_header;
10645	int ret, addr;
10646	uint16_t device_id;
10647	unsigned int i;
10648	unsigned int boot_sector = (boot_addr * 1024 );
10649	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10650
10651	/*
10652	 * Make sure the boot image does not encroach on the firmware region
10653	 */
10654	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10655		CH_ERR(adap, "boot image encroaching on firmware region\n");
10656		return -EFBIG;
10657	}
10658
10659	/*
10660	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10661	 * and Boot configuration data sections. These 3 boot sections span
10662	 * sectors 0 to 7 in flash and live right before the FW image location.
10663	 */
10664	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10665			sf_sec_size);
10666	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10667				     (boot_sector >> 16) + i - 1);
10668
10669	/*
10670	 * If size == 0 then we're simply erasing the FLASH sectors associated
10671	 * with the on-adapter option ROM file
10672	 */
10673	if (ret || (size == 0))
10674		goto out;
10675
10676	/* Get boot header */
10677	header = (pci_exp_rom_header_t *)boot_data;
10678	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10679	/* PCIR Data Structure */
10680	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10681
10682	/*
10683	 * Perform some primitive sanity testing to avoid accidentally
10684	 * writing garbage over the boot sectors.  We ought to check for
10685	 * more but it's not worth it for now ...
10686	 */
10687	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10688		CH_ERR(adap, "boot image too small/large\n");
10689		return -EFBIG;
10690	}
10691
10692#ifndef CHELSIO_T4_DIAGS
10693	/*
10694	 * Check BOOT ROM header signature
10695	 */
10696	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10697		CH_ERR(adap, "Boot image missing signature\n");
10698		return -EINVAL;
10699	}
10700
10701	/*
10702	 * Check PCI header signature
10703	 */
10704	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10705		CH_ERR(adap, "PCI header missing signature\n");
10706		return -EINVAL;
10707	}
10708
10709	/*
10710	 * Check Vendor ID matches Chelsio ID
10711	 */
10712	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10713		CH_ERR(adap, "Vendor ID missing signature\n");
10714		return -EINVAL;
10715	}
10716#endif
10717
10718	/*
10719	 * Retrieve adapter's device ID
10720	 */
10721	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10722	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10723	device_id = device_id & 0xf0ff;
10724
10725	/*
10726	 * Check PCIE Device ID
10727	 */
10728	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10729		/*
10730		 * Change the device ID in the Boot BIOS image to match
10731		 * the Device ID of the current adapter.
10732		 */
10733		modify_device_id(device_id, boot_data);
10734	}
10735
10736	/*
10737	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10738	 * we finish copying the rest of the boot image. This will ensure
10739	 * that the BIOS boot header will only be written if the boot image
10740	 * was written in full.
10741	 */
10742	addr = boot_sector;
10743	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10744		addr += SF_PAGE_SIZE;
10745		boot_data += SF_PAGE_SIZE;
10746		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10747		if (ret)
10748			goto out;
10749	}
10750
10751	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10752			     (const u8 *)header, 0);
10753
10754out:
10755	if (ret)
10756		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10757	return ret;
10758}
10759
10760/*
10761 *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10762 *	@adapter: the adapter
10763 *
10764 *	Return the address within the flash where the OptionROM Configuration
10765 *	is stored, or an error if the device FLASH is too small to contain
10766 *	a OptionROM Configuration.
10767 */
10768static int t4_flash_bootcfg_addr(struct adapter *adapter)
10769{
10770	/*
10771	 * If the device FLASH isn't large enough to hold a Firmware
10772	 * Configuration File, return an error.
10773	 */
10774	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10775		return -ENOSPC;
10776
10777	return FLASH_BOOTCFG_START;
10778}
10779
10780int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10781{
10782	int ret, i, n, cfg_addr;
10783	unsigned int addr;
10784	unsigned int flash_cfg_start_sec;
10785	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10786
10787	cfg_addr = t4_flash_bootcfg_addr(adap);
10788	if (cfg_addr < 0)
10789		return cfg_addr;
10790
10791	addr = cfg_addr;
10792	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10793
10794	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10795		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10796			FLASH_BOOTCFG_MAX_SIZE);
10797		return -EFBIG;
10798	}
10799
10800	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10801			 sf_sec_size);
10802	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10803					flash_cfg_start_sec + i - 1);
10804
10805	/*
10806	 * If size == 0 then we're simply erasing the FLASH sectors associated
10807	 * with the on-adapter OptionROM Configuration File.
10808	 */
10809	if (ret || size == 0)
10810		goto out;
10811
10812	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10813	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10814		if ( (size - i) <  SF_PAGE_SIZE)
10815			n = size - i;
10816		else
10817			n = SF_PAGE_SIZE;
10818		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10819		if (ret)
10820			goto out;
10821
10822		addr += SF_PAGE_SIZE;
10823		cfg_data += SF_PAGE_SIZE;
10824	}
10825
10826out:
10827	if (ret)
10828		CH_ERR(adap, "boot config data %s failed %d\n",
10829				(size == 0 ? "clear" : "download"), ret);
10830	return ret;
10831}
10832
10833/**
10834 *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10835 *	@adap: the adapter
10836 *	@mode: a bitmap selecting which optional filter components to enable
10837 *	@mask: a bitmap selecting which components to enable in filter mask
10838 *	@vnic_mode: the ingress config/vnic mode setting
10839 *
10840 *	Sets the filter mode and mask by selecting the optional components to
10841 *	enable in filter tuples.  Returns 0 on success and a negative error if
10842 *	the requested mode needs more bits than are available for optional
10843 *	components.  The filter mask must be a subset of the filter mode.
10844 */
10845int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10846{
10847	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10848	int i, nbits, rc;
10849	uint32_t param, val;
10850	uint16_t fmode, fmask;
10851	const int maxbits = adap->chip_params->filter_opt_len;
10852
10853	if (mode != -1 || mask != -1) {
10854		if (mode != -1) {
10855			fmode = mode;
10856			nbits = 0;
10857			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10858				if (fmode & (1 << i))
10859					nbits += width[i];
10860			}
10861			if (nbits > maxbits) {
10862				CH_ERR(adap, "optional fields in the filter "
10863				    "mode (0x%x) add up to %d bits "
10864				    "(must be <= %db).  Remove some fields and "
10865				    "try again.\n", fmode, nbits, maxbits);
10866				return -E2BIG;
10867			}
10868
10869			/*
10870			 * Hardware wants the bits to be maxed out.  Keep
10871			 * setting them until there's no room for more.
10872			 */
10873			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10874				if (fmode & (1 << i))
10875					continue;
10876				if (nbits + width[i] <= maxbits) {
10877					fmode |= 1 << i;
10878					nbits += width[i];
10879					if (nbits == maxbits)
10880						break;
10881				}
10882			}
10883
10884			fmask = fmode & adap->params.tp.filter_mask;
10885			if (fmask != adap->params.tp.filter_mask) {
10886				CH_WARN(adap,
10887				    "filter mask will be changed from 0x%x to "
10888				    "0x%x to comply with the filter mode (0x%x).\n",
10889				    adap->params.tp.filter_mask, fmask, fmode);
10890			}
10891		} else {
10892			fmode = adap->params.tp.filter_mode;
10893			fmask = mask;
10894			if ((fmode | fmask) != fmode) {
10895				CH_ERR(adap,
10896				    "filter mask (0x%x) must be a subset of "
10897				    "the filter mode (0x%x).\n", fmask, fmode);
10898				return -EINVAL;
10899			}
10900		}
10901
10902		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10903		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10904		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10905		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10906		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10907		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10908		    &val);
10909		if (rc < 0)
10910			return rc;
10911	}
10912
10913	if (vnic_mode != -1) {
10914		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10915		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10916		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
10917		val = vnic_mode;
10918		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10919		    &val);
10920		if (rc < 0)
10921			return rc;
10922	}
10923
10924	/* Refresh. */
10925	read_filter_mode_and_ingress_config(adap);
10926
10927	return 0;
10928}
10929
10930/**
10931 *	t4_clr_port_stats - clear port statistics
10932 *	@adap: the adapter
10933 *	@idx: the port index
10934 *
10935 *	Clear HW statistics for the given port.
10936 */
10937void t4_clr_port_stats(struct adapter *adap, int idx)
10938{
10939	unsigned int i;
10940	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10941	u32 port_base_addr;
10942
10943	if (is_t4(adap))
10944		port_base_addr = PORT_BASE(idx);
10945	else
10946		port_base_addr = T5_PORT_BASE(idx);
10947
10948	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10949			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10950		t4_write_reg(adap, port_base_addr + i, 0);
10951	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10952			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10953		t4_write_reg(adap, port_base_addr + i, 0);
10954	for (i = 0; i < 4; i++)
10955		if (bgmap & (1 << i)) {
10956			t4_write_reg(adap,
10957			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10958			t4_write_reg(adap,
10959			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10960		}
10961}
10962
10963/**
10964 *	t4_i2c_io - read/write I2C data from adapter
10965 *	@adap: the adapter
10966 *	@port: Port number if per-port device; <0 if not
10967 *	@devid: per-port device ID or absolute device ID
10968 *	@offset: byte offset into device I2C space
10969 *	@len: byte length of I2C space data
10970 *	@buf: buffer in which to return I2C data for read
10971 *	      buffer which holds the I2C data for write
10972 *	@write: if true, do a write; else do a read
10973 *	Reads/Writes the I2C data from/to the indicated device and location.
10974 */
10975int t4_i2c_io(struct adapter *adap, unsigned int mbox,
10976	      int port, unsigned int devid,
10977	      unsigned int offset, unsigned int len,
10978	      u8 *buf, bool write)
10979{
10980	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10981	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10982	int ret = 0;
10983
10984	if (len > I2C_PAGE_SIZE)
10985		return -EINVAL;
10986
10987	/* Dont allow reads that spans multiple pages */
10988	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10989		return -EINVAL;
10990
10991	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10992	ldst_cmd.op_to_addrspace =
10993		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10994			    F_FW_CMD_REQUEST |
10995			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
10996			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
10997	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10998	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10999	ldst_cmd.u.i2c.did = devid;
11000
11001	while (len > 0) {
11002		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11003
11004		ldst_cmd.u.i2c.boffset = offset;
11005		ldst_cmd.u.i2c.blen = i2c_len;
11006
11007		if (write)
11008			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11009
11010		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11011				 write ? NULL : &ldst_rpl);
11012		if (ret)
11013			break;
11014
11015		if (!write)
11016			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11017		offset += i2c_len;
11018		buf += i2c_len;
11019		len -= i2c_len;
11020	}
11021
11022	return ret;
11023}
11024
11025int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11026	      int port, unsigned int devid,
11027	      unsigned int offset, unsigned int len,
11028	      u8 *buf)
11029{
11030	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11031}
11032
11033int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11034	      int port, unsigned int devid,
11035	      unsigned int offset, unsigned int len,
11036	      u8 *buf)
11037{
11038	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11039}
11040
11041/**
11042 * 	t4_sge_ctxt_rd - read an SGE context through FW
11043 * 	@adap: the adapter
11044 * 	@mbox: mailbox to use for the FW command
11045 * 	@cid: the context id
11046 * 	@ctype: the context type
11047 * 	@data: where to store the context data
11048 *
11049 * 	Issues a FW command through the given mailbox to read an SGE context.
11050 */
11051int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11052		   enum ctxt_type ctype, u32 *data)
11053{
11054	int ret;
11055	struct fw_ldst_cmd c;
11056
11057	if (ctype == CTXT_EGRESS)
11058		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11059	else if (ctype == CTXT_INGRESS)
11060		ret = FW_LDST_ADDRSPC_SGE_INGC;
11061	else if (ctype == CTXT_FLM)
11062		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11063	else
11064		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11065
11066	memset(&c, 0, sizeof(c));
11067	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11068					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11069					V_FW_LDST_CMD_ADDRSPACE(ret));
11070	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11071	c.u.idctxt.physid = cpu_to_be32(cid);
11072
11073	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11074	if (ret == 0) {
11075		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11076		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11077		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11078		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11079		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11080		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11081	}
11082	return ret;
11083}
11084
11085/**
11086 * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11087 * 	@adap: the adapter
11088 * 	@cid: the context id
11089 * 	@ctype: the context type
11090 * 	@data: where to store the context data
11091 *
11092 * 	Reads an SGE context directly, bypassing FW.  This is only for
11093 * 	debugging when FW is unavailable.
11094 */
11095int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11096		      u32 *data)
11097{
11098	int i, ret;
11099
11100	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11101	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11102	if (!ret)
11103		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11104			*data++ = t4_read_reg(adap, i);
11105	return ret;
11106}
11107
11108int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11109    int sleep_ok)
11110{
11111	struct fw_sched_cmd cmd;
11112
11113	memset(&cmd, 0, sizeof(cmd));
11114	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11115				      F_FW_CMD_REQUEST |
11116				      F_FW_CMD_WRITE);
11117	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11118
11119	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11120	cmd.u.config.type = type;
11121	cmd.u.config.minmaxen = minmaxen;
11122
11123	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11124			       NULL, sleep_ok);
11125}
11126
11127int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11128		    int rateunit, int ratemode, int channel, int cl,
11129		    int minrate, int maxrate, int weight, int pktsize,
11130		    int burstsize, int sleep_ok)
11131{
11132	struct fw_sched_cmd cmd;
11133
11134	memset(&cmd, 0, sizeof(cmd));
11135	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11136				      F_FW_CMD_REQUEST |
11137				      F_FW_CMD_WRITE);
11138	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11139
11140	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11141	cmd.u.params.type = type;
11142	cmd.u.params.level = level;
11143	cmd.u.params.mode = mode;
11144	cmd.u.params.ch = channel;
11145	cmd.u.params.cl = cl;
11146	cmd.u.params.unit = rateunit;
11147	cmd.u.params.rate = ratemode;
11148	cmd.u.params.min = cpu_to_be32(minrate);
11149	cmd.u.params.max = cpu_to_be32(maxrate);
11150	cmd.u.params.weight = cpu_to_be16(weight);
11151	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11152	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11153
11154	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11155			       NULL, sleep_ok);
11156}
11157
11158int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11159    unsigned int maxrate, int sleep_ok)
11160{
11161	struct fw_sched_cmd cmd;
11162
11163	memset(&cmd, 0, sizeof(cmd));
11164	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11165				      F_FW_CMD_REQUEST |
11166				      F_FW_CMD_WRITE);
11167	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11168
11169	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11170	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11171	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11172	cmd.u.params.ch = channel;
11173	cmd.u.params.rate = ratemode;		/* REL or ABS */
11174	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11175
11176	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11177			       NULL, sleep_ok);
11178}
11179
11180int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11181    int weight, int sleep_ok)
11182{
11183	struct fw_sched_cmd cmd;
11184
11185	if (weight < 0 || weight > 100)
11186		return -EINVAL;
11187
11188	memset(&cmd, 0, sizeof(cmd));
11189	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11190				      F_FW_CMD_REQUEST |
11191				      F_FW_CMD_WRITE);
11192	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11193
11194	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11195	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11196	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11197	cmd.u.params.ch = channel;
11198	cmd.u.params.cl = cl;
11199	cmd.u.params.weight = cpu_to_be16(weight);
11200
11201	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11202			       NULL, sleep_ok);
11203}
11204
11205int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11206    int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11207{
11208	struct fw_sched_cmd cmd;
11209
11210	memset(&cmd, 0, sizeof(cmd));
11211	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11212				      F_FW_CMD_REQUEST |
11213				      F_FW_CMD_WRITE);
11214	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11215
11216	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11217	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11218	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11219	cmd.u.params.mode = mode;
11220	cmd.u.params.ch = channel;
11221	cmd.u.params.cl = cl;
11222	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11223	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11224	cmd.u.params.max = cpu_to_be32(maxrate);
11225	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11226
11227	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11228			       NULL, sleep_ok);
11229}
11230
11231/*
11232 *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11233 *	@adapter: the adapter
11234 * 	@mbox: mailbox to use for the FW command
11235 * 	@pf: the PF owning the queue
11236 * 	@vf: the VF owning the queue
11237 *	@timeout: watchdog timeout in ms
11238 *	@action: watchdog timer / action
11239 *
11240 *	There are separate watchdog timers for each possible watchdog
11241 *	action.  Configure one of the watchdog timers by setting a non-zero
11242 *	timeout.  Disable a watchdog timer by using a timeout of zero.
11243 */
11244int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11245		       unsigned int pf, unsigned int vf,
11246		       unsigned int timeout, unsigned int action)
11247{
11248	struct fw_watchdog_cmd wdog;
11249	unsigned int ticks;
11250
11251	/*
11252	 * The watchdog command expects a timeout in units of 10ms so we need
11253	 * to convert it here (via rounding) and force a minimum of one 10ms
11254	 * "tick" if the timeout is non-zero but the conversion results in 0
11255	 * ticks.
11256	 */
11257	ticks = (timeout + 5)/10;
11258	if (timeout && !ticks)
11259		ticks = 1;
11260
11261	memset(&wdog, 0, sizeof wdog);
11262	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11263				     F_FW_CMD_REQUEST |
11264				     F_FW_CMD_WRITE |
11265				     V_FW_PARAMS_CMD_PFN(pf) |
11266				     V_FW_PARAMS_CMD_VFN(vf));
11267	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11268	wdog.timeout = cpu_to_be32(ticks);
11269	wdog.action = cpu_to_be32(action);
11270
11271	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11272}
11273
11274int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11275{
11276	struct fw_devlog_cmd devlog_cmd;
11277	int ret;
11278
11279	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11280	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11281					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11282	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11283	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11284			 sizeof(devlog_cmd), &devlog_cmd);
11285	if (ret)
11286		return ret;
11287
11288	*level = devlog_cmd.level;
11289	return 0;
11290}
11291
11292int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11293{
11294	struct fw_devlog_cmd devlog_cmd;
11295
11296	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11297	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11298					     F_FW_CMD_REQUEST |
11299					     F_FW_CMD_WRITE);
11300	devlog_cmd.level = level;
11301	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11302	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11303			  sizeof(devlog_cmd), &devlog_cmd);
11304}
11305
11306int t4_configure_add_smac(struct adapter *adap)
11307{
11308	unsigned int param, val;
11309	int ret = 0;
11310
11311	adap->params.smac_add_support = 0;
11312	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11313		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11314	/* Query FW to check if FW supports adding source mac address
11315	 * to TCAM feature or not.
11316	 * If FW returns 1, driver can use this feature and driver need to send
11317	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11318	 * enable adding smac to TCAM.
11319	 */
11320	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11321	if (ret)
11322		return ret;
11323
11324	if (val == 1) {
11325		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11326				    &param, &val);
11327		if (!ret)
11328			/* Firmware allows adding explicit TCAM entries.
11329			 * Save this internally.
11330			 */
11331			adap->params.smac_add_support = 1;
11332	}
11333
11334	return ret;
11335}
11336
11337int t4_configure_ringbb(struct adapter *adap)
11338{
11339	unsigned int param, val;
11340	int ret = 0;
11341
11342	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11343		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11344	/* Query FW to check if FW supports ring switch feature or not.
11345	 * If FW returns 1, driver can use this feature and driver need to send
11346	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11347	 * enable the ring backbone configuration.
11348	 */
11349	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11350	if (ret < 0) {
11351		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11352			ret);
11353		goto out;
11354	}
11355
11356	if (val != 1) {
11357		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11358		goto out;
11359	}
11360
11361	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11362	if (ret < 0) {
11363		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11364			ret);
11365		goto out;
11366	}
11367
11368out:
11369	return ret;
11370}
11371
11372/*
11373 *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11374 *	@adapter: the adapter
11375 *	@mbox: mailbox to use for the FW command
11376 *	@vf: one of the VFs instantiated by the specified PF
11377 *	@vlan: The vlanid to be set
11378 *
11379 */
11380int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11381		    u16 vlan)
11382{
11383	struct fw_acl_vlan_cmd vlan_cmd;
11384	unsigned int enable;
11385
11386	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11387	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11388	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11389					 F_FW_CMD_REQUEST |
11390					 F_FW_CMD_WRITE |
11391					 F_FW_CMD_EXEC |
11392					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11393					 V_FW_ACL_VLAN_CMD_VFN(vf));
11394	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11395	/* Drop all packets that donot match vlan id */
11396	vlan_cmd.dropnovlan_fm = (enable
11397				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11398				     F_FW_ACL_VLAN_CMD_FM)
11399				  : 0);
11400	if (enable != 0) {
11401		vlan_cmd.nvlan = 1;
11402		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11403	}
11404
11405	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11406}
11407
11408/**
11409 *	t4_del_mac - Removes the exact-match filter for a MAC address
11410 *	@adap: the adapter
11411 *	@mbox: mailbox to use for the FW command
11412 *	@viid: the VI id
11413 *	@addr: the MAC address value
11414 *	@smac: if true, delete from only the smac region of MPS
11415 *
11416 *	Modifies an exact-match filter and sets it to the new MAC address if
11417 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11418 *	latter case the address is added persistently if @persist is %true.
11419 *
11420 *	Returns a negative error number or the index of the filter with the new
11421 *	MAC value.  Note that this index may differ from @idx.
11422 */
11423int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11424	       const u8 *addr, bool smac)
11425{
11426	int ret;
11427	struct fw_vi_mac_cmd c;
11428	struct fw_vi_mac_exact *p = c.u.exact;
11429	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11430
11431	memset(&c, 0, sizeof(c));
11432	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11433				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11434				   V_FW_VI_MAC_CMD_VIID(viid));
11435	c.freemacs_to_len16 = cpu_to_be32(
11436					V_FW_CMD_LEN16(1) |
11437					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11438
11439	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11440	p->valid_to_idx = cpu_to_be16(
11441				F_FW_VI_MAC_CMD_VALID |
11442				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11443
11444	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11445	if (ret == 0) {
11446		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11447		if (ret < max_mac_addr)
11448			return -ENOMEM;
11449	}
11450
11451	return ret;
11452}
11453
11454/**
11455 *	t4_add_mac - Adds an exact-match filter for a MAC address
11456 *	@adap: the adapter
11457 *	@mbox: mailbox to use for the FW command
11458 *	@viid: the VI id
11459 *	@idx: index of existing filter for old value of MAC address, or -1
11460 *	@addr: the new MAC address value
11461 *	@persist: whether a new MAC allocation should be persistent
11462 *	@add_smt: if true also add the address to the HW SMT
11463 *	@smac: if true, update only the smac region of MPS
11464 *
11465 *	Modifies an exact-match filter and sets it to the new MAC address if
11466 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11467 *	latter case the address is added persistently if @persist is %true.
11468 *
11469 *	Returns a negative error number or the index of the filter with the new
11470 *	MAC value.  Note that this index may differ from @idx.
11471 */
11472int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11473	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11474{
11475	int ret, mode;
11476	struct fw_vi_mac_cmd c;
11477	struct fw_vi_mac_exact *p = c.u.exact;
11478	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11479
11480	if (idx < 0)		/* new allocation */
11481		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11482	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11483
11484	memset(&c, 0, sizeof(c));
11485	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11486				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11487				   V_FW_VI_MAC_CMD_VIID(viid));
11488	c.freemacs_to_len16 = cpu_to_be32(
11489				V_FW_CMD_LEN16(1) |
11490				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11491	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11492				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11493				      V_FW_VI_MAC_CMD_IDX(idx));
11494	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11495
11496	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11497	if (ret == 0) {
11498		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11499		if (ret >= max_mac_addr)
11500			return -ENOMEM;
11501		if (smt_idx) {
11502			/* Does fw supports returning smt_idx? */
11503			if (adap->params.viid_smt_extn_support)
11504				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11505			else {
11506				/* In T4/T5, SMT contains 256 SMAC entries
11507				 * organized in 128 rows of 2 entries each.
11508				 * In T6, SMT contains 256 SMAC entries in
11509				 * 256 rows.
11510				 */
11511				if (chip_id(adap) <= CHELSIO_T5)
11512					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11513				else
11514					*smt_idx = (viid & M_FW_VIID_VIN);
11515			}
11516		}
11517	}
11518
11519	return ret;
11520}
11521