1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef __BXE_H__
30#define __BXE_H__
31
32#include <sys/param.h>
33#include <sys/kernel.h>
34#include <sys/systm.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/sx.h>
38#include <sys/module.h>
39#include <sys/endian.h>
40#include <sys/types.h>
41#include <sys/malloc.h>
42#include <sys/kobj.h>
43#include <sys/bus.h>
44#include <sys/rman.h>
45#include <sys/socket.h>
46#include <sys/sockio.h>
47#include <sys/sysctl.h>
48#include <sys/smp.h>
49#include <sys/bitstring.h>
50#include <sys/limits.h>
51#include <sys/queue.h>
52#include <sys/taskqueue.h>
53#include <contrib/zlib/zlib.h>
54
55#include <net/debugnet.h>
56#include <net/if.h>
57#include <net/if_types.h>
58#include <net/if_arp.h>
59#include <net/ethernet.h>
60#include <net/if_dl.h>
61#include <net/if_var.h>
62#include <net/if_media.h>
63#include <net/if_vlan_var.h>
64#include <net/bpf.h>
65
66#include <netinet/in.h>
67#include <netinet/ip.h>
68#include <netinet/ip6.h>
69#include <netinet/tcp.h>
70#include <netinet/udp.h>
71
72#include <dev/pci/pcireg.h>
73#include <dev/pci/pcivar.h>
74
75#include <machine/atomic.h>
76#include <machine/resource.h>
77#include <machine/endian.h>
78#include <machine/bus.h>
79#include <machine/in_cksum.h>
80
81#include "device_if.h"
82#include "bus_if.h"
83#include "pci_if.h"
84
85#if _BYTE_ORDER == _LITTLE_ENDIAN
86#ifndef LITTLE_ENDIAN
87#define LITTLE_ENDIAN
88#endif
89#ifndef __LITTLE_ENDIAN
90#define __LITTLE_ENDIAN
91#endif
92#undef BIG_ENDIAN
93#undef __BIG_ENDIAN
94#else /* _BIG_ENDIAN */
95#ifndef BIG_ENDIAN
96#define BIG_ENDIAN
97#endif
98#ifndef __BIG_ENDIAN
99#define __BIG_ENDIAN
100#endif
101#undef LITTLE_ENDIAN
102#undef __LITTLE_ENDIAN
103#endif
104
105#include "ecore_mfw_req.h"
106#include "ecore_fw_defs.h"
107#include "ecore_hsi.h"
108#include "ecore_reg.h"
109#include "bxe_dcb.h"
110#include "bxe_stats.h"
111
112#include "bxe_elink.h"
113
114#define VF_MAC_CREDIT_CNT 0
115#define VF_VLAN_CREDIT_CNT (0)
116
117#ifndef ARRAY_SIZE
118#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
119#endif
120#ifndef ARRSIZE
121#define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
122#endif
123#ifndef DIV_ROUND_UP
124#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
125#endif
126#ifndef roundup
127#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
128#endif
129
130#include "ecore_sp.h"
131
132#define BRCM_VENDORID 0x14e4
133#define	QLOGIC_VENDORID	0x1077
134#define PCI_ANY_ID    (uint16_t)(~0U)
135
136struct bxe_device_type
137{
138    uint16_t bxe_vid;
139    uint16_t bxe_did;
140    uint16_t bxe_svid;
141    uint16_t bxe_sdid;
142    char     *bxe_name;
143};
144
145#define BCM_PAGE_SHIFT       12
146#define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
147#define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
148#define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
149
150#if BCM_PAGE_SIZE != 4096
151#error Page sizes other than 4KB are unsupported!
152#endif
153
154#if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
155#define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
156#define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
157#else
158#define U64_LO(addr) ((uint32_t)(addr))
159#define U64_HI(addr) (0)
160#endif
161#define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
162
163#define SET_FLAG(value, mask, flag)            \
164    do {                                       \
165        (value) &= ~(mask);                    \
166        (value) |= ((flag) << (mask##_SHIFT)); \
167    } while (0)
168
169#define GET_FLAG(value, mask)              \
170    (((value) & (mask)) >> (mask##_SHIFT))
171
172#define GET_FIELD(value, fname)                     \
173    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
174
175#define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
176#define BXE_TSO_MAX_SEGMENTS 32
177#define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
178#define BXE_TSO_MAX_SEG_SIZE 4096
179
180/* dropless fc FW/HW related params */
181#define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
182#define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
183                                  ETH_MAX_AGGREGATION_QUEUES_E1 :    \
184                                  ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
185#define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
186#define FW_PREFETCH_CNT      16
187#define DROPLESS_FC_HEADROOM 100
188
189/******************/
190/* RX SGE defines */
191/******************/
192
193#define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
194#define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
195#define RX_SGE_NEXT_PAGE_DESC_CNT 2
196#define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
197#define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
198#define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
199#define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
200#define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
201#define RX_SGE(x)              ((x) & RX_SGE_MAX)
202
203#define RX_SGE_NEXT(x)                                              \
204    ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
205     ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
206
207#define RX_SGE_MASK_ELEM_SZ    64
208#define RX_SGE_MASK_ELEM_SHIFT 6
209#define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
210
211/*
212 * Creates a bitmask of all ones in less significant bits.
213 * idx - index of the most significant bit in the created mask.
214 */
215#define RX_SGE_ONES_MASK(idx)                                      \
216    (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
217#define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
218
219/* Number of uint64_t elements in SGE mask array. */
220#define RX_SGE_MASK_LEN                                                \
221    ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
222#define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
223#define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
224
225/*
226 * dropless fc calculations for SGEs
227 * Number of required SGEs is the sum of two:
228 * 1. Number of possible opened aggregations (next packet for
229 *    these aggregations will probably consume SGE immidiatelly)
230 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
231 *    after placement on BD for new TPA aggregation)
232 * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
233 */
234#define NUM_SGE_REQ(sc)                                    \
235    (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
236#define NUM_SGE_PG_REQ(sc)                                                    \
237    ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
238#define SGE_TH_LO(sc)                                                  \
239    (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
240#define SGE_TH_HI(sc)                      \
241    (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
242
243#define PAGES_PER_SGE_SHIFT  0
244#define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
245#define SGE_PAGE_SIZE        BCM_PAGE_SIZE
246#define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
247#define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
248#define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
249#define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
250
251/*****************/
252/* TX BD defines */
253/*****************/
254
255#define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
256#define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
257#define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
258#define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
259#define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
260#define TX_BD_MAX             (TX_BD_TOTAL - 1)
261
262#define TX_BD_NEXT(x)                                                 \
263    ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
264     ((x) + 2) : ((x) + 1))
265#define TX_BD(x)      ((x) & TX_BD_MAX)
266#define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
267#define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
268
269/*
270 * Trigger pending transmits when the number of available BDs is greater
271 * than 1/8 of the total number of usable BDs.
272 */
273#define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
274#define BXE_TX_TIMEOUT 5
275
276/*****************/
277/* RX BD defines */
278/*****************/
279
280#define RX_BD_NUM_PAGES       8 /* power of 2 */
281#define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
282#define RX_BD_NEXT_PAGE_DESC_CNT 2
283#define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
284#define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
285#define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
286#define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
287#define RX_BD_MAX             (RX_BD_TOTAL - 1)
288
289#define RX_BD_NEXT(x)                                               \
290    ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
291     ((x) + 3) : ((x) + 1))
292#define RX_BD(x)      ((x) & RX_BD_MAX)
293#define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
294#define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
295
296/*
297 * dropless fc calculations for BDs
298 * Number of BDs should be as number of buffers in BRB:
299 * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
300 * "next" elements on each page
301 */
302#define NUM_BD_REQ(sc) \
303    BRB_SIZE(sc)
304#define NUM_BD_PG_REQ(sc)                                                  \
305    ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
306#define BD_TH_LO(sc)                                \
307    (NUM_BD_REQ(sc) +                               \
308     NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
309     FW_DROP_LEVEL(sc))
310#define BD_TH_HI(sc)                      \
311    (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
312#define MIN_RX_AVAIL(sc)                           \
313    ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
314#define MIN_RX_SIZE_TPA_HW(sc)                         \
315    (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
316                      ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
317#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
318#define MIN_RX_SIZE_TPA(sc)                         \
319    (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
320#define MIN_RX_SIZE_NONTPA(sc)                     \
321    (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
322
323/***************/
324/* RCQ defines */
325/***************/
326
327/*
328 * As long as CQE is X times bigger than BD entry we have to allocate X times
329 * more pages for CQ ring in order to keep it balanced with BD ring
330 */
331#define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
332                             sizeof(struct eth_rx_bd))
333#define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
334#define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
335#define RCQ_NEXT_PAGE_DESC_CNT 1
336#define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
337#define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
338#define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
339#define RCQ_MAX             (RCQ_TOTAL - 1)
340
341#define RCQ_NEXT(x)                                               \
342    ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
343     ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
344#define RCQ(x)      ((x) & RCQ_MAX)
345#define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
346#define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
347
348/*
349 * dropless fc calculations for RCQs
350 * Number of RCQs should be as number of buffers in BRB:
351 * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
352 * "next" elements on each page
353 */
354#define NUM_RCQ_REQ(sc) \
355    BRB_SIZE(sc)
356#define NUM_RCQ_PG_REQ(sc)                                              \
357    ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
358#define RCQ_TH_LO(sc)                              \
359    (NUM_RCQ_REQ(sc) +                             \
360     NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
361     FW_DROP_LEVEL(sc))
362#define RCQ_TH_HI(sc)                      \
363    (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
364
365/* This is needed for determening of last_max */
366#define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
367
368#define __SGE_MASK_SET_BIT(el, bit)               \
369    do {                                          \
370        (el) = ((el) | ((uint64_t)0x1 << (bit))); \
371    } while (0)
372
373#define __SGE_MASK_CLEAR_BIT(el, bit)                \
374    do {                                             \
375        (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
376    } while (0)
377
378#define SGE_MASK_SET_BIT(fp, idx)                                       \
379    __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
380                       ((idx) & RX_SGE_MASK_ELEM_MASK))
381
382#define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
383    __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
384                         ((idx) & RX_SGE_MASK_ELEM_MASK))
385
386/* Load / Unload modes */
387#define LOAD_NORMAL       0
388#define LOAD_OPEN         1
389#define LOAD_DIAG         2
390#define LOAD_LOOPBACK_EXT 3
391#define UNLOAD_NORMAL     0
392#define UNLOAD_CLOSE      1
393#define UNLOAD_RECOVERY   2
394
395/* Some constants... */
396//#define MAX_PATH_NUM       2
397//#define E2_MAX_NUM_OF_VFS  64
398//#define E1H_FUNC_MAX       8
399//#define E2_FUNC_MAX        4   /* per path */
400#define MAX_VNIC_NUM       4
401#define MAX_FUNC_NUM       8   /* common to all chips */
402//#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
403#define MAX_RSS_CHAINS     16 /* a constant for HW limit */
404#define MAX_MSI_VECTOR     8  /* a constant for HW limit */
405
406#define ILT_NUM_PAGE_ENTRIES 3072
407/*
408 * 57710/11 we use whole table since we have 8 functions.
409 * 57712 we have only 4 functions, but use same size per func, so only half
410 * of the table is used.
411 */
412#define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
413#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
414/*
415 * the phys address is shifted right 12 bits and has an added
416 * 1=valid bit added to the 53rd bit
417 * then since this is a wide register(TM)
418 * we split it into two 32 bit writes
419 */
420#define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
421#define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
422
423/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
424#define ETH_HLEN                  14
425#define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
426#define ETH_MIN_PACKET_SIZE       60
427#define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
428#define ETH_MAX_JUMBO_PACKET_SIZE 9600
429/* TCP with Timestamp Option (32) + IPv6 (40) */
430#define ETH_MAX_TPA_HEADER_SIZE   72
431
432/* max supported alignment is 256 (8 shift) */
433//#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
434#define BXE_RX_ALIGN_SHIFT 8
435/* FW uses 2 cache lines alignment for start packet and size  */
436#define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
437#define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
438
439#define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
440#define BXE_SET_ERROR_BIT(sc, error) \
441{ \
442                (sc)->error_status |= (error); \
443}
444
445struct bxe_bar {
446    struct resource    *resource;
447    int                rid;
448    bus_space_tag_t    tag;
449    bus_space_handle_t handle;
450    vm_offset_t        kva;
451};
452
453struct bxe_intr {
454    struct resource *resource;
455    int             rid;
456    void            *tag;
457};
458
459/* Used to manage DMA allocations. */
460struct bxe_dma {
461    struct bxe_softc  *sc;
462    bus_addr_t        paddr;
463    void              *vaddr;
464    bus_dma_tag_t     tag;
465    bus_dmamap_t      map;
466    bus_dma_segment_t seg;
467    bus_size_t        size;
468    int               nseg;
469    char              msg[32];
470};
471
472/* attn group wiring */
473#define MAX_DYNAMIC_ATTN_GRPS 8
474
475struct attn_route {
476    uint32_t sig[5];
477};
478
479struct iro {
480    uint32_t base;
481    uint16_t m1;
482    uint16_t m2;
483    uint16_t m3;
484    uint16_t size;
485};
486
487union bxe_host_hc_status_block {
488    /* pointer to fp status block e2 */
489    struct host_hc_status_block_e2  *e2_sb;
490    /* pointer to fp status block e1x */
491    struct host_hc_status_block_e1x *e1x_sb;
492};
493
494union bxe_db_prod {
495    struct doorbell_set_prod data;
496    uint32_t                 raw;
497};
498
499struct bxe_sw_tx_bd {
500    struct mbuf  *m;
501    bus_dmamap_t m_map;
502    uint16_t     first_bd;
503    uint8_t      flags;
504/* set on the first BD descriptor when there is a split BD */
505#define BXE_TSO_SPLIT_BD (1 << 0)
506};
507
508struct bxe_sw_rx_bd {
509    struct mbuf  *m;
510    bus_dmamap_t m_map;
511};
512
513struct bxe_sw_tpa_info {
514    struct bxe_sw_rx_bd bd;
515    bus_dma_segment_t   seg;
516    uint8_t             state;
517#define BXE_TPA_STATE_START 1
518#define BXE_TPA_STATE_STOP  2
519    uint8_t             placement_offset;
520    uint16_t            parsing_flags;
521    uint16_t            vlan_tag;
522    uint16_t            len_on_bd;
523};
524
525/*
526 * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
527 * instances of the fastpath structure when using multiple queues.
528 */
529struct bxe_fastpath {
530    /* pointer back to parent structure */
531    struct bxe_softc *sc;
532
533    struct mtx tx_mtx;
534    char       tx_mtx_name[32];
535    struct mtx rx_mtx;
536    char       rx_mtx_name[32];
537
538#define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
539#define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
540#define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
541#define BXE_FP_TX_TRYLOCK(fp)     mtx_trylock(&fp->tx_mtx)
542
543#define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
544#define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
545#define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
546
547    /* status block */
548    struct bxe_dma                 sb_dma;
549    union bxe_host_hc_status_block status_block;
550
551    /* transmit chain (tx bds) */
552    struct bxe_dma        tx_dma;
553    union eth_tx_bd_types *tx_chain;
554
555    /* receive chain (rx bds) */
556    struct bxe_dma   rx_dma;
557    struct eth_rx_bd *rx_chain;
558
559    /* receive completion queue chain (rcq bds) */
560    struct bxe_dma   rcq_dma;
561    union eth_rx_cqe *rcq_chain;
562
563    /* receive scatter/gather entry chain (for TPA) */
564    struct bxe_dma    rx_sge_dma;
565    struct eth_rx_sge *rx_sge_chain;
566
567    /* tx mbufs */
568    bus_dma_tag_t       tx_mbuf_tag;
569    struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
570
571    /* rx mbufs */
572    bus_dma_tag_t       rx_mbuf_tag;
573    struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
574    bus_dmamap_t        rx_mbuf_spare_map;
575
576    /* rx sge mbufs */
577    bus_dma_tag_t       rx_sge_mbuf_tag;
578    struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
579    bus_dmamap_t        rx_sge_mbuf_spare_map;
580
581    /* rx tpa mbufs (use the larger size for TPA queue length) */
582    int                    tpa_enable; /* disabled per fastpath upon error */
583    struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
584    bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
585    uint64_t               rx_tpa_queue_used;
586
587    uint16_t *sb_index_values;
588    uint16_t *sb_running_index;
589    uint32_t ustorm_rx_prods_offset;
590
591    uint8_t igu_sb_id; /* status block number in HW */
592    uint8_t fw_sb_id;  /* status block number in FW */
593
594    uint32_t rx_buf_size;
595    int mbuf_alloc_size;
596
597    int state;
598#define BXE_FP_STATE_CLOSED  0x01
599#define BXE_FP_STATE_IRQ     0x02
600#define BXE_FP_STATE_OPENING 0x04
601#define BXE_FP_STATE_OPEN    0x08
602#define BXE_FP_STATE_HALTING 0x10
603#define BXE_FP_STATE_HALTED  0x20
604
605    /* reference back to this fastpath queue number */
606    uint8_t index; /* this is also the 'cid' */
607#define FP_IDX(fp) (fp->index)
608
609    /* interrupt taskqueue (fast) */
610    struct task      tq_task;
611    struct taskqueue *tq;
612    char             tq_name[32];
613
614    struct task tx_task;
615    struct timeout_task tx_timeout_task;
616
617    /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
618    uint8_t cl_id;
619#define FP_CL_ID(fp) (fp->cl_id)
620    uint8_t cl_qzone_id;
621
622    uint16_t fp_hc_idx;
623
624    /* driver copy of the receive buffer descriptor prod/cons indices */
625    uint16_t rx_bd_prod;
626    uint16_t rx_bd_cons;
627
628    /* driver copy of the receive completion queue prod/cons indices */
629    uint16_t rx_cq_prod;
630    uint16_t rx_cq_cons;
631
632    union bxe_db_prod tx_db;
633
634    /* Transmit packet producer index (used in eth_tx_bd). */
635    uint16_t tx_pkt_prod;
636    uint16_t tx_pkt_cons;
637
638    /* Transmit buffer descriptor producer index. */
639    uint16_t tx_bd_prod;
640    uint16_t tx_bd_cons;
641
642    uint64_t sge_mask[RX_SGE_MASK_LEN];
643    uint16_t rx_sge_prod;
644
645    struct tstorm_per_queue_stats old_tclient;
646    struct ustorm_per_queue_stats old_uclient;
647    struct xstorm_per_queue_stats old_xclient;
648    struct bxe_eth_q_stats        eth_q_stats;
649    struct bxe_eth_q_stats_old    eth_q_stats_old;
650
651    /* Pointer to the receive consumer in the status block */
652    uint16_t *rx_cq_cons_sb;
653
654    /* Pointer to the transmit consumer in the status block */
655    uint16_t *tx_cons_sb;
656
657    /* transmit timeout until chip reset */
658    int watchdog_timer;
659
660    /* Free/used buffer descriptor counters. */
661    //uint16_t used_tx_bd;
662
663    /* Last maximal completed SGE */
664    uint16_t last_max_sge;
665
666    //uint16_t rx_sge_free_idx;
667
668    //uint8_t segs;
669
670#define BXE_BR_SIZE 4096
671    struct buf_ring *tx_br;
672}; /* struct bxe_fastpath */
673
674/* sriov XXX */
675#define BXE_MAX_NUM_OF_VFS 64
676#define BXE_VF_CID_WND     0
677#define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
678#define BXE_CLIENTS_PER_VF 1
679#define BXE_FIRST_VF_CID   256
680#define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
681#define BXE_VF_ID_INVALID  0xFF
682#define IS_SRIOV(sc) 0
683
684#define GET_NUM_VFS_PER_PATH(sc) 0
685#define GET_NUM_VFS_PER_PF(sc)   0
686
687/* maximum number of fast-path interrupt contexts */
688#define FP_SB_MAX_E1x 16
689#define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
690
691union cdu_context {
692    struct eth_context eth;
693    char pad[1024];
694};
695
696/* CDU host DB constants */
697#define CDU_ILT_PAGE_SZ_HW 2
698#define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
699#define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
700
701#define CNIC_ISCSI_CID_MAX 256
702#define CNIC_FCOE_CID_MAX  2048
703#define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
704#define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
705
706#define QM_ILT_PAGE_SZ_HW  0
707#define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
708#define QM_CID_ROUND       1024
709
710/* TM (timers) host DB constants */
711#define TM_ILT_PAGE_SZ_HW  0
712#define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
713/*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
714#define TM_CONN_NUM        1024
715#define TM_ILT_SZ          (8 * TM_CONN_NUM)
716#define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
717
718/* SRC (Searcher) host DB constants */
719#define SRC_ILT_PAGE_SZ_HW 0
720#define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
721#define SRC_HASH_BITS      10
722#define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
723#define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
724#define SRC_T2_SZ          SRC_ILT_SZ
725#define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
726
727struct hw_context {
728    struct bxe_dma    vcxt_dma;
729    union cdu_context *vcxt;
730    //bus_addr_t        cxt_mapping;
731    size_t            size;
732};
733
734#define SM_RX_ID 0
735#define SM_TX_ID 1
736
737/* defines for multiple tx priority indices */
738#define FIRST_TX_ONLY_COS_INDEX 1
739#define FIRST_TX_COS_INDEX      0
740
741#define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
742
743#define HC_INDEX_ETH_RX_CQ_CONS       1
744#define HC_INDEX_OOO_TX_CQ_CONS       4
745#define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
746#define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
747#define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
748#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
749
750/* congestion management fairness mode */
751#define CMNG_FNS_NONE   0
752#define CMNG_FNS_MINMAX 1
753
754/* CMNG constants, as derived from system spec calculations */
755/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
756#define DEF_MIN_RATE 100
757/* resolution of the rate shaping timer - 400 usec */
758#define RS_PERIODIC_TIMEOUT_USEC 400
759/* number of bytes in single QM arbitration cycle -
760 * coefficient for calculating the fairness timer */
761#define QM_ARB_BYTES 160000
762/* resolution of Min algorithm 1:100 */
763#define MIN_RES 100
764/* how many bytes above threshold for the minimal credit of Min algorithm*/
765#define MIN_ABOVE_THRESH 32768
766/* fairness algorithm integration time coefficient -
767 * for calculating the actual Tfair */
768#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
769/* memory of fairness algorithm - 2 cycles */
770#define FAIR_MEM 2
771
772#define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
773#define HC_SEG_ACCESS_ATTN  4
774#define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
775
776/*
777 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
778 * control by the number of fast-path status blocks supported by the
779 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
780 * status block represents an independent interrupts context that can
781 * serve a regular L2 networking queue. However special L2 queues such
782 * as the FCoE queue do not require a FP-SB and other components like
783 * the CNIC may consume FP-SB reducing the number of possible L2 queues
784 *
785 * If the maximum number of FP-SB available is X then:
786 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
787 *    regular L2 queues is Y=X-1
788 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
789 * c. If the FCoE L2 queue is supported the actual number of L2 queues
790 *    is Y+1
791 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
792 *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
793 *    FP interrupt context for the CNIC).
794 * e. The number of HW context (CID count) is always X or X+1 if FCoE
795 *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
796 *
797 * So this is quite simple for now as no ULPs are supported yet. :-)
798 */
799#define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
800#define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
801#define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
802#define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
803
804#define FOR_EACH_QUEUE(sc, var)                          \
805    for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
806
807#define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
808    for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
809
810#define FOR_EACH_ETH_QUEUE(sc, var)                          \
811    for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
812
813#define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
814    for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
815
816#define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
817    for ((var) = 0; (var) < (sc)->max_cos; (var)++)
818
819#define FOR_EACH_CNIC_QUEUE(sc, var)     \
820    for ((var) = BXE_NUM_ETH_QUEUES(sc); \
821         (var) < BXE_NUM_QUEUES(sc);     \
822         (var)++)
823
824enum {
825    OOO_IDX_OFFSET,
826    FCOE_IDX_OFFSET,
827    FWD_IDX_OFFSET,
828};
829
830#define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
831#define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
832#define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
833#define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
834#define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
835#define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
836
837#define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
838#define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
839#define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
840#define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
841#define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
842
843#define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
844#define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
845#define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
846#define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
847#define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
848#define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
849
850#define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
851#define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
852#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
853#define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
854#define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
855#define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
856#define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
857
858enum {
859    BXE_PORT_QUERY_IDX,
860    BXE_PF_QUERY_IDX,
861    BXE_FCOE_QUERY_IDX,
862    BXE_FIRST_QUEUE_QUERY_IDX,
863};
864
865struct bxe_fw_stats_req {
866    struct stats_query_header hdr;
867    struct stats_query_entry  query[FP_SB_MAX_E1x +
868                                    BXE_FIRST_QUEUE_QUERY_IDX];
869};
870
871struct bxe_fw_stats_data {
872    struct stats_counter          storm_counters;
873    struct per_port_stats         port;
874    struct per_pf_stats           pf;
875    //struct fcoe_statistics_params fcoe;
876    struct per_queue_stats        queue_stats[1];
877};
878
879/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
880#define BXE_IGU_STAS_MSG_VF_CNT 64
881#define BXE_IGU_STAS_MSG_PF_CNT 4
882
883#define MAX_DMAE_C 8
884
885/*
886 * For the main interface up/down code paths, a not-so-fine-grained CORE
887 * mutex lock is used. Inside this code are various calls to kernel routines
888 * that can cause a sleep to occur. Namely memory allocations and taskqueue
889 * handling. If using an MTX lock we are *not* allowed to sleep but we can
890 * with an SX lock. This define forces the CORE lock to use and SX lock.
891 * Undefine this and an MTX lock will be used instead. Note that the IOCTL
892 * path can cause problems since it's called by a non-sleepable thread. To
893 * alleviate a potential sleep, any IOCTL processing that results in the
894 * chip/interface being started/stopped/reinitialized, the actual work is
895 * offloaded to a taskqueue.
896 */
897#define BXE_CORE_LOCK_SX
898
899/*
900 * This is the slowpath data structure. It is mapped into non-paged memory
901 * so that the hardware can access it's contents directly and must be page
902 * aligned.
903 */
904struct bxe_slowpath {
905
906    /* used by the DMAE command executer */
907    struct dmae_cmd dmae[MAX_DMAE_C];
908
909    /* statistics completion */
910    uint32_t stats_comp;
911
912    /* firmware defined statistics blocks */
913    union mac_stats        mac_stats;
914    struct nig_stats       nig_stats;
915    struct host_port_stats port_stats;
916    struct host_func_stats func_stats;
917    //struct host_func_stats func_stats_base;
918
919    /* DMAE completion value and data source/sink */
920    uint32_t wb_comp;
921    uint32_t wb_data[4];
922
923    union {
924        struct mac_configuration_cmd          e1x;
925        struct eth_classify_rules_ramrod_data e2;
926    } mac_rdata;
927
928    union {
929        struct tstorm_eth_mac_filter_config e1x;
930        struct eth_filter_rules_ramrod_data e2;
931    } rx_mode_rdata;
932
933    struct eth_rss_update_ramrod_data rss_rdata;
934
935    union {
936        struct mac_configuration_cmd           e1;
937        struct eth_multicast_rules_ramrod_data e2;
938    } mcast_rdata;
939
940    union {
941        struct function_start_data        func_start;
942        struct flow_control_configuration pfc_config; /* for DCBX ramrod */
943    } func_rdata;
944
945    /* Queue State related ramrods */
946    union {
947        struct client_init_ramrod_data   init_data;
948        struct client_update_ramrod_data update_data;
949    } q_rdata;
950
951    /*
952     * AFEX ramrod can not be a part of func_rdata union because these
953     * events might arrive in parallel to other events from func_rdata.
954     * If they were defined in the same union the data can get corrupted.
955     */
956    struct afex_vif_list_ramrod_data func_afex_rdata;
957
958    union drv_info_to_mcp drv_info_to_mcp;
959}; /* struct bxe_slowpath */
960
961/*
962 * Port specifc data structure.
963 */
964struct bxe_port {
965    /*
966     * Port Management Function (for 57711E only).
967     * When this field is set the driver instance is
968     * responsible for managing port specifc
969     * configurations such as handling link attentions.
970     */
971    uint32_t pmf;
972
973    /* Ethernet maximum transmission unit. */
974    uint16_t ether_mtu;
975
976    uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
977
978    uint32_t ext_phy_config;
979
980    /* Port feature config.*/
981    uint32_t config;
982
983    /* Defines the features supported by the PHY. */
984    uint32_t supported[ELINK_LINK_CONFIG_SIZE];
985
986    /* Defines the features advertised by the PHY. */
987    uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
988#define ADVERTISED_10baseT_Half    (1 << 1)
989#define ADVERTISED_10baseT_Full    (1 << 2)
990#define ADVERTISED_100baseT_Half   (1 << 3)
991#define ADVERTISED_100baseT_Full   (1 << 4)
992#define ADVERTISED_1000baseT_Half  (1 << 5)
993#define ADVERTISED_1000baseT_Full  (1 << 6)
994#define ADVERTISED_TP              (1 << 7)
995#define ADVERTISED_FIBRE           (1 << 8)
996#define ADVERTISED_Autoneg         (1 << 9)
997#define ADVERTISED_Asym_Pause      (1 << 10)
998#define ADVERTISED_Pause           (1 << 11)
999#define ADVERTISED_2500baseX_Full  (1 << 15)
1000#define ADVERTISED_10000baseT_Full (1 << 16)
1001
1002    uint32_t    phy_addr;
1003
1004    /* Used to synchronize phy accesses. */
1005    struct mtx  phy_mtx;
1006    char        phy_mtx_name[32];
1007
1008#define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1009#define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1010#define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1011
1012    /*
1013     * MCP scratchpad address for port specific statistics.
1014     * The device is responsible for writing statistcss
1015     * back to the MCP for use with management firmware such
1016     * as UMP/NC-SI.
1017     */
1018    uint32_t port_stx;
1019
1020    struct nig_stats old_nig_stats;
1021}; /* struct bxe_port */
1022
1023struct bxe_mf_info {
1024    uint32_t mf_config[E1HVN_MAX];
1025
1026    uint32_t vnics_per_port;   /* 1, 2 or 4 */
1027    uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1028    uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1029
1030#define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1031#define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1032#define VNICS_PER_PATH(sc)                                  \
1033    ((sc)->devinfo.mf_info.vnics_per_port *                 \
1034     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1035
1036    uint8_t min_bw[MAX_VNIC_NUM];
1037    uint8_t max_bw[MAX_VNIC_NUM];
1038
1039    uint16_t ext_id; /* vnic outer vlan or VIF ID */
1040#define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1041#define INVALID_VIF_ID 0xFFFF
1042#define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1043#define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1044
1045    uint16_t default_vlan;
1046#define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1047
1048    uint8_t niv_allowed_priorities;
1049#define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1050
1051    uint8_t niv_default_cos;
1052#define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1053
1054    uint8_t niv_mba_enabled;
1055
1056    enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1057#define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1058    int                        afex_def_vlan_tag;
1059    uint32_t                   pending_max;
1060
1061    uint16_t flags;
1062#define MF_INFO_VALID_MAC       0x0001
1063
1064    uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1065#define IS_MF(sc)                        \
1066    (IS_MULTI_VNIC(sc) &&                \
1067     ((sc)->devinfo.mf_info.mf_mode != 0))
1068#define IS_MF_SD(sc)                                     \
1069    (IS_MULTI_VNIC(sc) &&                                \
1070     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1071#define IS_MF_SI(sc)                                     \
1072    (IS_MULTI_VNIC(sc) &&                                \
1073     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1074#define IS_MF_AFEX(sc)                              \
1075    (IS_MULTI_VNIC(sc) &&                           \
1076     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1077#define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1078#define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1079#define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1080
1081    uint32_t mf_protos_supported;
1082    #define MF_PROTO_SUPPORT_ETHERNET 0x1
1083    #define MF_PROTO_SUPPORT_ISCSI    0x2
1084    #define MF_PROTO_SUPPORT_FCOE     0x4
1085}; /* struct bxe_mf_info */
1086
1087/* Device information data structure. */
1088struct bxe_devinfo {
1089    /* PCIe info */
1090    uint16_t vendor_id;
1091    uint16_t device_id;
1092    uint16_t subvendor_id;
1093    uint16_t subdevice_id;
1094
1095    /*
1096     * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1097     *   C = Chip Number   (bits 16-31)
1098     *   R = Chip Revision (bits 12-15)
1099     *   M = Chip Metal    (bits 4-11)
1100     *   B = Chip Bond ID  (bits 0-3)
1101     */
1102    uint32_t chip_id;
1103#define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1104#define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1105/* device ids */
1106#define CHIP_NUM_57710        0x164e
1107#define CHIP_NUM_57711        0x164f
1108#define CHIP_NUM_57711E       0x1650
1109#define CHIP_NUM_57712        0x1662
1110#define CHIP_NUM_57712_MF     0x1663
1111#define CHIP_NUM_57712_VF     0x166f
1112#define CHIP_NUM_57800        0x168a
1113#define CHIP_NUM_57800_MF     0x16a5
1114#define CHIP_NUM_57800_VF     0x16a9
1115#define CHIP_NUM_57810        0x168e
1116#define CHIP_NUM_57810_MF     0x16ae
1117#define CHIP_NUM_57810_VF     0x16af
1118#define CHIP_NUM_57811        0x163d
1119#define CHIP_NUM_57811_MF     0x163e
1120#define CHIP_NUM_57811_VF     0x163f
1121#define CHIP_NUM_57840_OBS    0x168d
1122#define CHIP_NUM_57840_OBS_MF 0x16ab
1123#define CHIP_NUM_57840_4_10   0x16a1
1124#define CHIP_NUM_57840_2_20   0x16a2
1125#define CHIP_NUM_57840_MF     0x16a4
1126#define CHIP_NUM_57840_VF     0x16ad
1127
1128#define CHIP_REV_SHIFT      12
1129#define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1130#define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1131
1132#define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1133#define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1134#define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1135
1136#define CHIP_REV_IS_SLOW(sc)    \
1137    (CHIP_REV(sc) > 0x00005000)
1138#define CHIP_REV_IS_FPGA(sc)                              \
1139    (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1140#define CHIP_REV_IS_EMUL(sc)                               \
1141    (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1142#define CHIP_REV_IS_ASIC(sc) \
1143    (!CHIP_REV_IS_SLOW(sc))
1144
1145#define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1146#define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1147
1148#define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1149#define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1150#define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1151#define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1152#define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1153                             (CHIP_IS_57711E(sc)))
1154#define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1155                             CHIP_IS_E1H((sc)))
1156
1157#define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1158#define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1159#define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1160#define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1161                              CHIP_IS_57712_MF(sc))
1162
1163#define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1164#define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1165#define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1166#define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1167#define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1168#define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1169#define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1170#define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1171#define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1172#define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1173                              (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1174                              (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1175#define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1176                              (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1177#define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1178
1179#define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1180                             CHIP_IS_57800_MF(sc) || \
1181                             CHIP_IS_57800_VF(sc) || \
1182                             CHIP_IS_57810(sc)    || \
1183                             CHIP_IS_57810_MF(sc) || \
1184                             CHIP_IS_57810_VF(sc) || \
1185                             CHIP_IS_57811(sc)    || \
1186                             CHIP_IS_57811_MF(sc) || \
1187                             CHIP_IS_57811_VF(sc) || \
1188                             CHIP_IS_57840(sc)    || \
1189                             CHIP_IS_57840_MF(sc) || \
1190                             CHIP_IS_57840_VF(sc))
1191#define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1192                             (CHIP_REV(sc) == CHIP_REV_Ax))
1193#define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1194                             (CHIP_REV(sc) == CHIP_REV_Bx))
1195
1196#define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1197#define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1198                             CHIP_IS_E3(sc))
1199
1200#define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1201                             CHIP_IS_57712_MF(sc) || \
1202                             CHIP_IS_E3(sc))
1203
1204#define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1205                             CHIP_IS_57800_VF(sc) || \
1206                             CHIP_IS_57810_VF(sc) || \
1207                             CHIP_IS_57840_VF(sc))
1208#define IS_PF(sc)           (!IS_VF(sc))
1209
1210/*
1211 * This define is used in two main places:
1212 * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1213 * to nic-only mode or to offload mode. Offload mode is configured if either
1214 * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1215 * already registered for this port (which means that the user wants storage
1216 * services).
1217 * 2. During cnic-related load, to know if offload mode is already configured
1218 * in the HW or needs to be configrued. Since the transition from nic-mode to
1219 * offload-mode in HW causes traffic coruption, nic-mode is configured only
1220 * in ports on which storage services where never requested.
1221 */
1222#define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1223
1224    uint8_t  chip_port_mode;
1225#define CHIP_4_PORT_MODE        0x0
1226#define CHIP_2_PORT_MODE        0x1
1227#define CHIP_PORT_MODE_NONE     0x2
1228#define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1229#define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1230
1231    uint8_t int_block;
1232#define INT_BLOCK_HC            0
1233#define INT_BLOCK_IGU           1
1234#define INT_BLOCK_MODE_NORMAL   0
1235#define INT_BLOCK_MODE_BW_COMP  2
1236#define CHIP_INT_MODE_IS_NBC(sc)                          \
1237    (!CHIP_IS_E1x(sc) &&                                  \
1238     !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1239#define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1240
1241    uint32_t shmem_base;
1242    uint32_t shmem2_base;
1243    uint32_t bc_ver;
1244    char bc_ver_str[32];
1245    uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1246    struct bxe_mf_info mf_info;
1247
1248    int flash_size;
1249#define NVRAM_1MB_SIZE      0x20000
1250#define NVRAM_TIMEOUT_COUNT 30000
1251#define NVRAM_PAGE_SIZE     256
1252
1253    /* PCIe capability information */
1254    uint32_t pcie_cap_flags;
1255#define BXE_PM_CAPABLE_FLAG     0x00000001
1256#define BXE_PCIE_CAPABLE_FLAG   0x00000002
1257#define BXE_MSI_CAPABLE_FLAG    0x00000004
1258#define BXE_MSIX_CAPABLE_FLAG   0x00000008
1259    uint16_t pcie_pm_cap_reg;
1260    uint16_t pcie_pcie_cap_reg;
1261    //uint16_t pcie_devctl;
1262    uint16_t pcie_link_width;
1263    uint16_t pcie_link_speed;
1264    uint16_t pcie_msi_cap_reg;
1265    uint16_t pcie_msix_cap_reg;
1266
1267    /* device configuration read from bootcode shared memory */
1268    uint32_t hw_config;
1269    uint32_t hw_config2;
1270}; /* struct bxe_devinfo */
1271
1272struct bxe_sp_objs {
1273    struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1274    struct ecore_queue_sp_obj q_obj; /* Queue State object */
1275}; /* struct bxe_sp_objs */
1276
1277/*
1278 * Data that will be used to create a link report message. We will keep the
1279 * data used for the last link report in order to prevent reporting the same
1280 * link parameters twice.
1281 */
1282struct bxe_link_report_data {
1283    uint16_t      line_speed;        /* Effective line speed */
1284    unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1285};
1286enum {
1287    BXE_LINK_REPORT_FULL_DUPLEX,
1288    BXE_LINK_REPORT_LINK_DOWN,
1289    BXE_LINK_REPORT_RX_FC_ON,
1290    BXE_LINK_REPORT_TX_FC_ON
1291};
1292
1293/* Top level device private data structure. */
1294struct bxe_softc {
1295    /*
1296     * First entry must be a pointer to the BSD ifnet struct which
1297     * has a first element of 'void *if_softc' (which is us). XXX
1298     */
1299    if_t 	    ifp;
1300    struct ifmedia  ifmedia; /* network interface media structure */
1301    int             media;
1302
1303    volatile int    state; /* device state */
1304#define BXE_STATE_CLOSED                 0x0000
1305#define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1306#define BXE_STATE_OPENING_WAITING_PORT   0x2000
1307#define BXE_STATE_OPEN                   0x3000
1308#define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1309#define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1310#define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1311#define BXE_STATE_DISABLED               0xD000
1312#define BXE_STATE_DIAG                   0xE000
1313#define BXE_STATE_ERROR                  0xF000
1314
1315    int flags;
1316#define BXE_ONE_PORT_FLAG    0x00000001
1317#define BXE_NO_ISCSI         0x00000002
1318#define BXE_NO_FCOE          0x00000004
1319#define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1320//#define BXE_NO_WOL_FLAG      0x00000008
1321//#define BXE_USING_DAC_FLAG   0x00000010
1322//#define BXE_USING_MSIX_FLAG  0x00000020
1323//#define BXE_USING_MSI_FLAG   0x00000040
1324//#define BXE_DISABLE_MSI_FLAG 0x00000080
1325#define BXE_NO_MCP_FLAG      0x00000200
1326#define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1327//#define BXE_SAFC_TX_FLAG     0x00000400
1328#define BXE_MF_FUNC_DIS      0x00000800
1329#define BXE_TX_SWITCHING     0x00001000
1330#define BXE_NO_PULSE	     0x00002000
1331
1332    unsigned long debug; /* per-instance debug logging config */
1333
1334#define MAX_BARS 5
1335    struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1336
1337    uint16_t doorbell_size;
1338
1339    /* periodic timer callout */
1340#define PERIODIC_STOP 0
1341#define PERIODIC_GO   1
1342    volatile unsigned long periodic_flags;
1343    struct callout         periodic_callout;
1344
1345    /* chip start/stop/reset taskqueue */
1346#define CHIP_TQ_NONE   0
1347#define CHIP_TQ_START  1
1348#define CHIP_TQ_STOP   2
1349#define CHIP_TQ_REINIT 3
1350    volatile unsigned long chip_tq_flags;
1351    struct task            chip_tq_task;
1352    struct taskqueue       *chip_tq;
1353    char                   chip_tq_name[32];
1354
1355    struct timeout_task        sp_err_timeout_task;
1356
1357    /* slowpath interrupt taskqueue */
1358    struct task      sp_tq_task;
1359    struct taskqueue *sp_tq;
1360    char             sp_tq_name[32];
1361
1362    struct bxe_fastpath fp[MAX_RSS_CHAINS];
1363    struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1364
1365    device_t dev;  /* parent device handle */
1366    uint8_t  unit; /* driver instance number */
1367
1368    int pcie_bus;    /* PCIe bus number */
1369    int pcie_device; /* PCIe device/slot number */
1370    int pcie_func;   /* PCIe function number */
1371
1372    uint8_t pfunc_rel; /* function relative */
1373    uint8_t pfunc_abs; /* function absolute */
1374    uint8_t path_id;   /* function absolute */
1375#define SC_PATH(sc)     (sc->path_id)
1376#define SC_PORT(sc)     (sc->pfunc_rel & 1)
1377#define SC_FUNC(sc)     (sc->pfunc_rel)
1378#define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1379#define SC_VN(sc)       (sc->pfunc_rel >> 1)
1380#define SC_L_ID(sc)     (SC_VN(sc) << 2)
1381#define PORT_ID(sc)     SC_PORT(sc)
1382#define PATH_ID(sc)     SC_PATH(sc)
1383#define VNIC_ID(sc)     SC_VN(sc)
1384#define FUNC_ID(sc)     SC_FUNC(sc)
1385#define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1386#define SC_FW_MB_IDX_VN(sc, vn)                                \
1387    (SC_PORT(sc) + (vn) *                                      \
1388     ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1389#define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1390
1391    int if_capen; /* enabled interface capabilities */
1392
1393    struct bxe_devinfo devinfo;
1394    char fw_ver_str[32];
1395    char mf_mode_str[32];
1396    char pci_link_str[32];
1397
1398    const struct iro *iro_array;
1399
1400#ifdef BXE_CORE_LOCK_SX
1401    struct sx      core_sx;
1402    char           core_sx_name[32];
1403#else
1404    struct mtx     core_mtx;
1405    char           core_mtx_name[32];
1406#endif
1407    struct mtx     sp_mtx;
1408    char           sp_mtx_name[32];
1409    struct mtx     dmae_mtx;
1410    char           dmae_mtx_name[32];
1411    struct mtx     fwmb_mtx;
1412    char           fwmb_mtx_name[32];
1413    struct mtx     print_mtx;
1414    char           print_mtx_name[32];
1415    struct mtx     stats_mtx;
1416    char           stats_mtx_name[32];
1417    struct mtx     mcast_mtx;
1418    char           mcast_mtx_name[32];
1419
1420#ifdef BXE_CORE_LOCK_SX
1421#define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1422#define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1423#define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1424#define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1425#else
1426#define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1427#define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1428#define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1429#define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1430#endif
1431
1432#define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1433#define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1434#define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1435
1436#define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1437#define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1438#define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1439
1440#define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1441#define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1442#define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1443
1444#define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1445#define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1446#define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1447
1448#define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1449#define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1450#define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1451
1452#define BXE_MCAST_LOCK(sc)	mtx_lock(&sc->mcast_mtx);
1453#define BXE_MCAST_UNLOCK(sc)	mtx_unlock(&sc->mcast_mtx);
1454#define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1455
1456    int dmae_ready;
1457#define DMAE_READY(sc) (sc->dmae_ready)
1458
1459    struct ecore_credit_pool_obj vlans_pool;
1460    struct ecore_credit_pool_obj macs_pool;
1461    struct ecore_rx_mode_obj     rx_mode_obj;
1462    struct ecore_mcast_obj       mcast_obj;
1463    struct ecore_rss_config_obj  rss_conf_obj;
1464    struct ecore_func_sp_obj     func_obj;
1465
1466    uint16_t fw_seq;
1467    uint16_t fw_drv_pulse_wr_seq;
1468    uint32_t func_stx;
1469
1470    struct elink_params         link_params;
1471    struct elink_vars           link_vars;
1472    uint32_t                    link_cnt;
1473    struct bxe_link_report_data last_reported_link;
1474    char mac_addr_str[32];
1475
1476    int last_reported_link_state;
1477
1478    int tx_ring_size;
1479    int rx_ring_size;
1480    int wol;
1481
1482    int is_leader;
1483    int recovery_state;
1484#define BXE_RECOVERY_DONE        1
1485#define BXE_RECOVERY_INIT        2
1486#define BXE_RECOVERY_WAIT        3
1487#define BXE_RECOVERY_FAILED      4
1488#define BXE_RECOVERY_NIC_LOADING 5
1489
1490#define BXE_ERR_TXQ_STUCK       0x1  /* Tx queue stuck detected by driver. */
1491#define BXE_ERR_MISC            0x2  /* MISC ERR */
1492#define BXE_ERR_PARITY          0x4  /* Parity error detected. */
1493#define BXE_ERR_STATS_TO        0x8  /* Statistics timeout detected. */
1494#define BXE_ERR_MC_ASSERT       0x10 /* MC assert attention received. */
1495#define BXE_ERR_PANIC           0x20 /* Driver asserted. */
1496#define BXE_ERR_MCP_ASSERT      0x40 /* MCP assert attention received. No Recovery*/
1497#define BXE_ERR_GLOBAL          0x80 /* PCIe/PXP/IGU/MISC/NIG device blocks error- needs PCIe/Fundamental reset */
1498        uint32_t error_status;
1499
1500    uint32_t rx_mode;
1501#define BXE_RX_MODE_NONE     0
1502#define BXE_RX_MODE_NORMAL   1
1503#define BXE_RX_MODE_ALLMULTI 2
1504#define BXE_RX_MODE_PROMISC  3
1505#define BXE_MAX_MULTICAST    64
1506
1507    struct bxe_port port;
1508
1509    struct cmng_init cmng;
1510
1511    /* user configs */
1512    int      num_queues;
1513    int      max_rx_bufs;
1514    int      hc_rx_ticks;
1515    int      hc_tx_ticks;
1516    int      rx_budget;
1517    int      max_aggregation_size;
1518    int      mrrs;
1519    int      autogreeen;
1520#define AUTO_GREEN_HW_DEFAULT 0
1521#define AUTO_GREEN_FORCE_ON   1
1522#define AUTO_GREEN_FORCE_OFF  2
1523    int      interrupt_mode;
1524#define INTR_MODE_INTX 0
1525#define INTR_MODE_MSI  1
1526#define INTR_MODE_MSIX 2
1527    int      udp_rss;
1528
1529    /* interrupt allocations */
1530    struct bxe_intr intr[MAX_RSS_CHAINS+1];
1531    int             intr_count;
1532    uint8_t         igu_dsb_id;
1533    uint8_t         igu_base_sb;
1534    uint8_t         igu_sb_cnt;
1535    //uint8_t         min_msix_vec_cnt;
1536    uint32_t        igu_base_addr;
1537    //bus_addr_t      def_status_blk_mapping;
1538    uint8_t         base_fw_ndsb;
1539#define DEF_SB_IGU_ID 16
1540#define DEF_SB_ID     HC_SP_SB_ID
1541
1542    /* parent bus DMA tag  */
1543    bus_dma_tag_t parent_dma_tag;
1544
1545    /* default status block */
1546    struct bxe_dma              def_sb_dma;
1547    struct host_sp_status_block *def_sb;
1548    uint16_t                    def_idx;
1549    uint16_t                    def_att_idx;
1550    uint32_t                    attn_state;
1551    struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1552
1553/* general SP events - stats query, cfc delete, etc */
1554#define HC_SP_INDEX_ETH_DEF_CONS         3
1555/* EQ completions */
1556#define HC_SP_INDEX_EQ_CONS              7
1557/* FCoE L2 connection completions */
1558#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1559#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1560/* iSCSI L2 */
1561#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1562#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1563
1564    /* event queue */
1565    struct bxe_dma        eq_dma;
1566    union event_ring_elem *eq;
1567    uint16_t              eq_prod;
1568    uint16_t              eq_cons;
1569    uint16_t              *eq_cons_sb;
1570#define NUM_EQ_PAGES     1 /* must be a power of 2 */
1571#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1572#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1573#define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1574#define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1575#define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1576/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1577#define NEXT_EQ_IDX(x)                                      \
1578    ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1579         ((x) + 2) : ((x) + 1))
1580/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1581#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1582
1583    /* slow path */
1584    struct bxe_dma      sp_dma;
1585    struct bxe_slowpath *sp;
1586    unsigned long       sp_state;
1587
1588    /* slow path queue */
1589    struct bxe_dma spq_dma;
1590    struct eth_spe *spq;
1591#define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1592#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1593#define MAX_SPQ_PENDING 8
1594
1595    uint16_t       spq_prod_idx;
1596    struct eth_spe *spq_prod_bd;
1597    struct eth_spe *spq_last_bd;
1598    uint16_t       *dsb_sp_prod;
1599    //uint16_t       *spq_hw_con;
1600    //uint16_t       spq_left;
1601
1602    volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1603    volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1604
1605    /* fw decompression buffer */
1606    struct bxe_dma gz_buf_dma;
1607    void           *gz_buf;
1608    z_streamp      gz_strm;
1609    uint32_t       gz_outlen;
1610#define GUNZIP_BUF(sc)    (sc->gz_buf)
1611#define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1612#define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1613#define FW_BUF_SIZE       0x40000
1614
1615    const struct raw_op *init_ops;
1616    const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1617    const uint32_t *init_data;        /* data blob, 32 bit granularity */
1618    uint32_t       init_mode_flags;
1619#define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1620    /* PRAM blobs - raw data */
1621    const uint8_t *tsem_int_table_data;
1622    const uint8_t *tsem_pram_data;
1623    const uint8_t *usem_int_table_data;
1624    const uint8_t *usem_pram_data;
1625    const uint8_t *xsem_int_table_data;
1626    const uint8_t *xsem_pram_data;
1627    const uint8_t *csem_int_table_data;
1628    const uint8_t *csem_pram_data;
1629#define INIT_OPS(sc)                 (sc->init_ops)
1630#define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1631#define INIT_DATA(sc)                (sc->init_data)
1632#define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1633#define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1634#define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1635#define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1636#define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1637#define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1638#define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1639#define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1640
1641    /* ILT
1642     * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1643     * context size we need 8 ILT entries.
1644     */
1645#define ILT_MAX_L2_LINES 8
1646    struct hw_context context[ILT_MAX_L2_LINES];
1647    struct ecore_ilt *ilt;
1648#define ILT_MAX_LINES 256
1649
1650/* max supported number of RSS queues: IGU SBs minus one for CNIC */
1651#define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1652/* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1653#if 1
1654#define BXE_L2_MAX_CID(sc)                                              \
1655    (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1656#else
1657#define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1658    (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1659#endif
1660#if 1
1661#define BXE_L2_CID_COUNT(sc)                                             \
1662    (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1663#else
1664#define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1665    (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1666#endif
1667#define L2_ILT_LINES(sc)                                \
1668    (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1669
1670    int qm_cid_count;
1671
1672    uint8_t dropless_fc;
1673
1674    /* total number of FW statistics requests */
1675    uint8_t fw_stats_num;
1676    /*
1677     * This is a memory buffer that will contain both statistics ramrod
1678     * request and data.
1679     */
1680    struct bxe_dma fw_stats_dma;
1681    /*
1682     * FW statistics request shortcut (points at the beginning of fw_stats
1683     * buffer).
1684     */
1685    int                     fw_stats_req_size;
1686    struct bxe_fw_stats_req *fw_stats_req;
1687    bus_addr_t              fw_stats_req_mapping;
1688    /*
1689     * FW statistics data shortcut (points at the beginning of fw_stats
1690     * buffer + fw_stats_req_size).
1691     */
1692    int                      fw_stats_data_size;
1693    struct bxe_fw_stats_data *fw_stats_data;
1694    bus_addr_t               fw_stats_data_mapping;
1695
1696    /* tracking a pending STAT_QUERY ramrod */
1697    uint16_t stats_pending;
1698    /* number of completed statistics ramrods */
1699    uint16_t stats_comp;
1700    uint16_t stats_counter;
1701    uint8_t  stats_init;
1702    int      stats_state;
1703
1704    struct bxe_eth_stats         eth_stats;
1705    struct host_func_stats       func_stats;
1706    struct bxe_eth_stats_old     eth_stats_old;
1707    struct bxe_net_stats_old     net_stats_old;
1708    struct bxe_fw_port_stats_old fw_stats_old;
1709
1710    struct dmae_cmd stats_dmae; /* used by dmae command loader */
1711    int                 executer_idx;
1712
1713    int mtu;
1714
1715    /* LLDP params */
1716    struct bxe_config_lldp_params lldp_config_params;
1717    /* DCB support on/off */
1718    int dcb_state;
1719#define BXE_DCB_STATE_OFF 0
1720#define BXE_DCB_STATE_ON  1
1721    /* DCBX engine mode */
1722    int dcbx_enabled;
1723#define BXE_DCBX_ENABLED_OFF        0
1724#define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1725#define BXE_DCBX_ENABLED_ON_NEG_ON  2
1726#define BXE_DCBX_ENABLED_INVALID    -1
1727    uint8_t dcbx_mode_uset;
1728    struct bxe_config_dcbx_params dcbx_config_params;
1729    struct bxe_dcbx_port_params   dcbx_port_params;
1730    int dcb_version;
1731
1732    uint8_t cnic_support;
1733    uint8_t cnic_enabled;
1734    uint8_t cnic_loaded;
1735#define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1736#define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1737#define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1738
1739    /* multiple tx classes of service */
1740    uint8_t max_cos;
1741#define BXE_MAX_PRIORITY 8
1742    /* priority to cos mapping */
1743    uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1744
1745    int panic;
1746
1747    struct cdev *ioctl_dev;
1748
1749    void *grc_dump;
1750    unsigned int trigger_grcdump;
1751    unsigned int  grcdump_done;
1752    unsigned int grcdump_started;
1753    int bxe_pause_param;
1754    void *eeprom;
1755}; /* struct bxe_softc */
1756
1757/* IOCTL sub-commands for edebug and firmware upgrade */
1758#define BXE_IOC_RD_NVRAM        1
1759#define BXE_IOC_WR_NVRAM        2
1760#define BXE_IOC_STATS_SHOW_NUM  3
1761#define BXE_IOC_STATS_SHOW_STR  4
1762#define BXE_IOC_STATS_SHOW_CNT  5
1763
1764struct bxe_nvram_data {
1765    uint32_t op; /* ioctl sub-command */
1766    uint32_t offset;
1767    uint32_t len;
1768    uint32_t value[1]; /* variable */
1769};
1770
1771union bxe_stats_show_data {
1772    uint32_t op; /* ioctl sub-command */
1773
1774    struct {
1775        uint32_t num; /* return number of stats */
1776        uint32_t len; /* length of each string item */
1777    } desc;
1778
1779    /* variable length... */
1780    char str[1]; /* holds names of desc.num stats, each desc.len in length */
1781
1782    /* variable length... */
1783    uint64_t stats[1]; /* holds all stats */
1784};
1785
1786/* function init flags */
1787#define FUNC_FLG_RSS     0x0001
1788#define FUNC_FLG_STATS   0x0002
1789/* FUNC_FLG_UNMATCHED       0x0004 */
1790#define FUNC_FLG_TPA     0x0008
1791#define FUNC_FLG_SPQ     0x0010
1792#define FUNC_FLG_LEADING 0x0020 /* PF only */
1793
1794struct bxe_func_init_params {
1795    bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1796    bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1797    uint16_t   func_flgs;
1798    uint16_t   func_id;     /* abs function id */
1799    uint16_t   pf_id;
1800    uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1801};
1802
1803/* memory resources reside at BARs 0, 2, 4 */
1804/* Run `pciconf -lb` to see mappings */
1805#define BAR0 0
1806#define BAR1 2
1807#define BAR2 4
1808
1809#ifdef BXE_REG_NO_INLINE
1810
1811uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1812uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1813uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1814
1815void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1816void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1817void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1818
1819#define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1820#define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1821#define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1822
1823#define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1824#define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1825#define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1826
1827#else /* not BXE_REG_NO_INLINE */
1828
1829#define REG_WR8(sc, offset, val)            \
1830    bus_space_write_1(sc->bar[BAR0].tag,    \
1831                      sc->bar[BAR0].handle, \
1832                      offset, val)
1833
1834#define REG_WR16(sc, offset, val)           \
1835    bus_space_write_2(sc->bar[BAR0].tag,    \
1836                      sc->bar[BAR0].handle, \
1837                      offset, val)
1838
1839#define REG_WR32(sc, offset, val)           \
1840    bus_space_write_4(sc->bar[BAR0].tag,    \
1841                      sc->bar[BAR0].handle, \
1842                      offset, val)
1843
1844#define REG_RD8(sc, offset)                \
1845    bus_space_read_1(sc->bar[BAR0].tag,    \
1846                     sc->bar[BAR0].handle, \
1847                     offset)
1848
1849#define REG_RD16(sc, offset)               \
1850    bus_space_read_2(sc->bar[BAR0].tag,    \
1851                     sc->bar[BAR0].handle, \
1852                     offset)
1853
1854#define REG_RD32(sc, offset)               \
1855    bus_space_read_4(sc->bar[BAR0].tag,    \
1856                     sc->bar[BAR0].handle, \
1857                     offset)
1858
1859#endif /* BXE_REG_NO_INLINE */
1860
1861#define REG_RD(sc, offset)      REG_RD32(sc, offset)
1862#define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1863
1864#define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1865#define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1866
1867#define BXE_SP(sc, var) (&(sc)->sp->var)
1868#define BXE_SP_MAPPING(sc, var) \
1869    (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1870
1871#define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1872#define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1873
1874#define REG_RD_DMAE(sc, offset, valp, len32)               \
1875    do {                                                   \
1876        bxe_read_dmae(sc, offset, len32);                  \
1877        memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1878    } while (0)
1879
1880#define REG_WR_DMAE(sc, offset, valp, len32)                            \
1881    do {                                                                \
1882        memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1883        bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1884    } while (0)
1885
1886#define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1887    REG_WR_DMAE(sc, offset, valp, len32)
1888
1889#define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1890    REG_RD_DMAE(sc, offset, valp, len32)
1891
1892#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1893    do {                                                           \
1894        /* if (le32_swap) {                                     */ \
1895        /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1896        /* }                                                    */ \
1897        memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1898        ecore_write_big_buf_wb(sc, addr, len32);                   \
1899    } while (0)
1900
1901#define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1902#define BXE_DB_SHIFT     7   /* 128 bytes */
1903#if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1904#error "Minimum DB doorbell stride is 8"
1905#endif
1906#define DPM_TRIGGER_TYPE 0x40
1907#define DOORBELL(sc, cid, val)                                              \
1908    do {                                                                    \
1909        bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1910                          ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1911                          (uint32_t)val);                                   \
1912    } while(0)
1913
1914#define SHMEM_ADDR(sc, field)                                       \
1915    (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1916#define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
1917#define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
1918#define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1919
1920#define SHMEM2_ADDR(sc, field)                                        \
1921    (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1922#define SHMEM2_HAS(sc, field)                                            \
1923    (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
1924                                 offsetof(struct shmem2_region, field)))
1925#define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
1926#define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1927
1928#define MFCFG_ADDR(sc, field)                                  \
1929    (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1930#define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
1931#define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
1932#define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1933
1934/* DMAE command defines */
1935
1936#define DMAE_TIMEOUT      -1
1937#define DMAE_PCI_ERROR    -2 /* E2 and onward */
1938#define DMAE_NOT_RDY      -3
1939#define DMAE_PCI_ERR_FLAG 0x80000000
1940
1941#define DMAE_SRC_PCI      0
1942#define DMAE_SRC_GRC      1
1943
1944#define DMAE_DST_NONE     0
1945#define DMAE_DST_PCI      1
1946#define DMAE_DST_GRC      2
1947
1948#define DMAE_COMP_PCI     0
1949#define DMAE_COMP_GRC     1
1950
1951#define DMAE_COMP_REGULAR 0
1952#define DMAE_COM_SET_ERR  1
1953
1954#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
1955#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
1956#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
1957#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
1958
1959#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
1960#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
1961
1962#define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_CMD_ENDIANITY_SHIFT)
1963#define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_CMD_ENDIANITY_SHIFT)
1964#define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_CMD_ENDIANITY_SHIFT)
1965#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
1966
1967#define DMAE_CMD_PORT_0 0
1968#define DMAE_CMD_PORT_1 DMAE_CMD_PORT
1969
1970#define DMAE_SRC_PF 0
1971#define DMAE_SRC_VF 1
1972
1973#define DMAE_DST_PF 0
1974#define DMAE_DST_VF 1
1975
1976#define DMAE_C_SRC 0
1977#define DMAE_C_DST 1
1978
1979#define DMAE_LEN32_RD_MAX     0x80
1980#define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
1981
1982#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
1983
1984#define MAX_DMAE_C_PER_PORT 8
1985#define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
1986#define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
1987
1988static const uint32_t dmae_reg_go_c[] = {
1989    DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
1990    DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
1991    DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
1992    DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
1993};
1994
1995#define ATTN_NIG_FOR_FUNC     (1L << 8)
1996#define ATTN_SW_TIMER_4_FUNC  (1L << 9)
1997#define GPIO_2_FUNC           (1L << 10)
1998#define GPIO_3_FUNC           (1L << 11)
1999#define GPIO_4_FUNC           (1L << 12)
2000#define ATTN_GENERAL_ATTN_1   (1L << 13)
2001#define ATTN_GENERAL_ATTN_2   (1L << 14)
2002#define ATTN_GENERAL_ATTN_3   (1L << 15)
2003#define ATTN_GENERAL_ATTN_4   (1L << 13)
2004#define ATTN_GENERAL_ATTN_5   (1L << 14)
2005#define ATTN_GENERAL_ATTN_6   (1L << 15)
2006#define ATTN_HARD_WIRED_MASK  0xff00
2007#define ATTENTION_ID          4
2008
2009#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2010    AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2011
2012#define MAX_IGU_ATTN_ACK_TO 100
2013
2014#define STORM_ASSERT_ARRAY_SIZE 50
2015
2016#define BXE_PMF_LINK_ASSERT(sc) \
2017    GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2018
2019#define BXE_MC_ASSERT_BITS \
2020    (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2021     GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2022     GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2023     GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2024
2025#define BXE_MCP_ASSERT \
2026    GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2027
2028#define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2029#define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2030                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2031                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2032                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2033                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2034                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2035
2036#define MULTI_MASK 0x7f
2037
2038#define PFS_PER_PORT(sc)                               \
2039    ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2040#define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2041
2042#define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2043    ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2044     PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2045
2046#define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2047    for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2048         (i) < MAX_FUNC_NUM;                       \
2049         (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2050
2051#define BXE_SWCID_SHIFT 17
2052#define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2053
2054#define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2055#define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2056
2057#define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2058#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2059#define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2060#define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2061#define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2062
2063/* must be used on a CID before placing it on a HW ring */
2064#define HW_CID(sc, x) \
2065    ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2066
2067#define SPEED_10    10
2068#define SPEED_100   100
2069#define SPEED_1000  1000
2070#define SPEED_2500  2500
2071#define SPEED_10000 10000
2072
2073#define PCI_PM_D0    1
2074#define PCI_PM_D3hot 2
2075
2076#ifndef DUPLEX_UNKNOWN
2077#define DUPLEX_UNKNOWN (0xff)
2078#endif
2079
2080#ifndef SPEED_UNKNOWN
2081#define SPEED_UNKNOWN (-1)
2082#endif
2083
2084/* Enable or disable autonegotiation. */
2085#define AUTONEG_DISABLE         0x00
2086#define AUTONEG_ENABLE          0x01
2087
2088/* Which connector port. */
2089#define PORT_TP                 0x00
2090#define PORT_AUI                0x01
2091#define PORT_MII                0x02
2092#define PORT_FIBRE              0x03
2093#define PORT_BNC                0x04
2094#define PORT_DA                 0x05
2095#define PORT_NONE               0xef
2096#define PORT_OTHER              0xff
2097
2098int  bxe_test_bit(int nr, volatile unsigned long * addr);
2099void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2100void bxe_clear_bit(int nr, volatile unsigned long * addr);
2101int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2102int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2103int  bxe_cmpxchg(volatile int *addr, int old, int new);
2104
2105void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2106                    uint32_t val);
2107uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2108
2109
2110int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2111                  struct bxe_dma *dma, const char *msg);
2112void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2113
2114uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2115uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2116uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2117                         uint8_t dst_type, uint8_t with_comp,
2118                         uint8_t comp_type);
2119void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2120void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2121void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2122                    uint32_t dst_addr, uint32_t len32);
2123void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2124                             uint32_t addr, uint32_t len);
2125
2126void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2127                            uint32_t cid);
2128void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2129                                  uint8_t sb_index, uint8_t disable,
2130                                  uint16_t usec);
2131
2132int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2133                uint32_t data_hi, uint32_t data_lo, int cmd_type);
2134
2135void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2136                    uint8_t segment, uint16_t index, uint8_t op,
2137                    uint8_t update);
2138
2139void ecore_init_e1_firmware(struct bxe_softc *sc);
2140void ecore_init_e1h_firmware(struct bxe_softc *sc);
2141void ecore_init_e2_firmware(struct bxe_softc *sc);
2142
2143void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2144                               size_t size, uint32_t *data);
2145
2146/*********************/
2147/* LOGGING AND DEBUG */
2148/*********************/
2149
2150/* debug logging codepaths */
2151#define DBG_LOAD   0x00000001 /* load and unload    */
2152#define DBG_INTR   0x00000002 /* interrupt handling */
2153#define DBG_SP     0x00000004 /* slowpath handling  */
2154#define DBG_STATS  0x00000008 /* stats updates      */
2155#define DBG_TX     0x00000010 /* packet transmit    */
2156#define DBG_RX     0x00000020 /* packet receive     */
2157#define DBG_PHY    0x00000040 /* phy/link handling  */
2158#define DBG_IOCTL  0x00000080 /* ioctl handling     */
2159#define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2160#define DBG_REGS   0x00000200 /* register access    */
2161#define DBG_LRO    0x00000400 /* lro processing     */
2162#define DBG_ASSERT 0x80000000 /* debug assert       */
2163#define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2164
2165#define DBASSERT(sc, exp, msg)                         \
2166    do {                                               \
2167        if (__predict_false(sc->debug & DBG_ASSERT)) { \
2168            if (__predict_false(!(exp))) {             \
2169                panic msg;                             \
2170            }                                          \
2171        }                                              \
2172    } while (0)
2173
2174/* log a debug message */
2175#define BLOGD(sc, codepath, format, args...)           \
2176    do {                                               \
2177        if (__predict_false(sc->debug & (codepath))) { \
2178            device_printf((sc)->dev,                   \
2179                          "%s(%s:%d) " format,         \
2180                          __FUNCTION__,                \
2181                          __FILE__,                    \
2182                          __LINE__,                    \
2183                          ## args);                    \
2184        }                                              \
2185    } while(0)
2186
2187/* log a info message */
2188#define BLOGI(sc, format, args...)             \
2189    do {                                       \
2190        if (__predict_false(sc->debug)) {      \
2191            device_printf((sc)->dev,           \
2192                          "%s(%s:%d) " format, \
2193                          __FUNCTION__,        \
2194                          __FILE__,            \
2195                          __LINE__,            \
2196                          ## args);            \
2197        } else {                               \
2198            device_printf((sc)->dev,           \
2199                          format,              \
2200                          ## args);            \
2201        }                                      \
2202    } while(0)
2203
2204/* log a warning message */
2205#define BLOGW(sc, format, args...)                      \
2206    do {                                                \
2207        if (__predict_false(sc->debug)) {               \
2208            device_printf((sc)->dev,                    \
2209                          "%s(%s:%d) WARNING: " format, \
2210                          __FUNCTION__,                 \
2211                          __FILE__,                     \
2212                          __LINE__,                     \
2213                          ## args);                     \
2214        } else {                                        \
2215            device_printf((sc)->dev,                    \
2216                          "WARNING: " format,           \
2217                          ## args);                     \
2218        }                                               \
2219    } while(0)
2220
2221/* log a error message */
2222#define BLOGE(sc, format, args...)                    \
2223    do {                                              \
2224        if (__predict_false(sc->debug)) {             \
2225            device_printf((sc)->dev,                  \
2226                          "%s(%s:%d) ERROR: " format, \
2227                          __FUNCTION__,               \
2228                          __FILE__,                   \
2229                          __LINE__,                   \
2230                          ## args);                   \
2231        } else {                                      \
2232            device_printf((sc)->dev,                  \
2233                          "ERROR: " format,           \
2234                          ## args);                   \
2235        }                                             \
2236    } while(0)
2237
2238#ifdef ECORE_STOP_ON_ERROR
2239
2240#define bxe_panic(sc, msg) \
2241    do {                   \
2242        panic msg;         \
2243    } while (0)
2244
2245#else
2246
2247#define bxe_panic(sc, msg) \
2248    device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2249
2250#endif
2251
2252#define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2253#define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2254
2255void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2256                  uint8_t *mem, uint32_t len);
2257void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2258                        struct mbuf *m, uint8_t contents);
2259
2260#define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE)
2261#define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2262
2263/***********/
2264/* INLINES */
2265/***********/
2266
2267static inline uint32_t
2268reg_poll(struct bxe_softc *sc,
2269         uint32_t         reg,
2270         uint32_t         expected,
2271         int              ms,
2272         int              wait)
2273{
2274    uint32_t val;
2275
2276    do {
2277        val = REG_RD(sc, reg);
2278        if (val == expected) {
2279            break;
2280        }
2281        ms -= wait;
2282        DELAY(wait * 1000);
2283    } while (ms > 0);
2284
2285    return (val);
2286}
2287
2288static inline void
2289bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2290{
2291    mb(); /* status block is written to by the chip */
2292    fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2293}
2294
2295static inline void
2296bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2297                   uint8_t          igu_sb_id,
2298                   uint8_t          segment,
2299                   uint16_t         index,
2300                   uint8_t          op,
2301                   uint8_t          update,
2302                   uint32_t         igu_addr)
2303{
2304    struct igu_regular cmd_data = {0};
2305
2306    cmd_data.sb_id_and_flags =
2307        ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2308         (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2309         (update << IGU_REGULAR_BUPDATE_SHIFT) |
2310         (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2311
2312    BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2313            cmd_data.sb_id_and_flags, igu_addr);
2314    REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2315
2316    /* Make sure that ACK is written */
2317    bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2318                      BUS_SPACE_BARRIER_WRITE);
2319    mb();
2320}
2321
2322static inline void
2323bxe_hc_ack_sb(struct bxe_softc *sc,
2324              uint8_t          sb_id,
2325              uint8_t          storm,
2326              uint16_t         index,
2327              uint8_t          op,
2328              uint8_t          update)
2329{
2330    uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2331                        COMMAND_REG_INT_ACK);
2332    struct igu_ack_register igu_ack;
2333
2334    igu_ack.status_block_index = index;
2335    igu_ack.sb_id_and_flags =
2336        ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2337         (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2338         (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2339         (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2340
2341    REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2342
2343    /* Make sure that ACK is written */
2344    bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2345                      BUS_SPACE_BARRIER_WRITE);
2346    mb();
2347}
2348
2349static inline void
2350bxe_ack_sb(struct bxe_softc *sc,
2351           uint8_t          igu_sb_id,
2352           uint8_t          storm,
2353           uint16_t         index,
2354           uint8_t          op,
2355           uint8_t          update)
2356{
2357    if (sc->devinfo.int_block == INT_BLOCK_HC)
2358        bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2359    else {
2360        uint8_t segment;
2361        if (CHIP_INT_MODE_IS_BC(sc)) {
2362            segment = storm;
2363        } else if (igu_sb_id != sc->igu_dsb_id) {
2364            segment = IGU_SEG_ACCESS_DEF;
2365        } else if (storm == ATTENTION_ID) {
2366            segment = IGU_SEG_ACCESS_ATTN;
2367        } else {
2368            segment = IGU_SEG_ACCESS_DEF;
2369        }
2370        bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2371    }
2372}
2373
2374static inline uint16_t
2375bxe_hc_ack_int(struct bxe_softc *sc)
2376{
2377    uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2378                        COMMAND_REG_SIMD_MASK);
2379    uint32_t result = REG_RD(sc, hc_addr);
2380
2381    mb();
2382    return (result);
2383}
2384
2385static inline uint16_t
2386bxe_igu_ack_int(struct bxe_softc *sc)
2387{
2388    uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2389    uint32_t result = REG_RD(sc, igu_addr);
2390
2391    BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2392          result, igu_addr);
2393
2394    mb();
2395    return (result);
2396}
2397
2398static inline uint16_t
2399bxe_ack_int(struct bxe_softc *sc)
2400{
2401    mb();
2402    if (sc->devinfo.int_block == INT_BLOCK_HC) {
2403        return (bxe_hc_ack_int(sc));
2404    } else {
2405        return (bxe_igu_ack_int(sc));
2406    }
2407}
2408
2409static inline int
2410func_by_vn(struct bxe_softc *sc,
2411           int              vn)
2412{
2413    return (2 * vn + SC_PORT(sc));
2414}
2415
2416/*
2417 * Statistics ID are global per chip/path, while Client IDs for E1x
2418 * are per port.
2419 */
2420static inline uint8_t
2421bxe_stats_id(struct bxe_fastpath *fp)
2422{
2423    struct bxe_softc *sc = fp->sc;
2424
2425    if (!CHIP_IS_E1x(sc)) {
2426        return (fp->cl_id);
2427    }
2428
2429    return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2430}
2431
2432#endif /* __BXE_H__ */
2433
2434