1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer,
12 *    without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 *    redistribution must be conditioned upon including a substantially
16 *    similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32#include <sys/cdefs.h>
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_var.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_arp.h>
81#include <net/ethernet.h>
82#include <net/if_llc.h>
83
84#include <net80211/ieee80211_var.h>
85#include <net80211/ieee80211_regdomain.h>
86#ifdef IEEE80211_SUPPORT_SUPERG
87#include <net80211/ieee80211_superg.h>
88#endif
89#ifdef IEEE80211_SUPPORT_TDMA
90#include <net80211/ieee80211_tdma.h>
91#endif
92
93#include <net/bpf.h>
94
95#ifdef INET
96#include <netinet/in.h>
97#include <netinet/if_ether.h>
98#endif
99
100#include <dev/ath/if_athvar.h>
101#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104#include <dev/ath/if_ath_debug.h>
105#include <dev/ath/if_ath_misc.h>
106#include <dev/ath/if_ath_tsf.h>
107#include <dev/ath/if_ath_tx.h>
108#include <dev/ath/if_ath_sysctl.h>
109#include <dev/ath/if_ath_led.h>
110#include <dev/ath/if_ath_keycache.h>
111#include <dev/ath/if_ath_rx.h>
112#include <dev/ath/if_ath_beacon.h>
113#include <dev/ath/if_athdfs.h>
114#include <dev/ath/if_ath_descdma.h>
115
116#ifdef ATH_TX99_DIAG
117#include <dev/ath/ath_tx99/ath_tx99.h>
118#endif
119
120#ifdef	ATH_DEBUG_ALQ
121#include <dev/ath/if_ath_alq.h>
122#endif
123
124#include <dev/ath/if_ath_lna_div.h>
125
126/*
127 * Calculate the receive filter according to the
128 * operating mode and state:
129 *
130 * o always accept unicast, broadcast, and multicast traffic
131 * o accept PHY error frames when hardware doesn't have MIB support
132 *   to count and we need them for ANI (sta mode only until recently)
133 *   and we are not scanning (ANI is disabled)
134 *   NB: older hal's add rx filter bits out of sight and we need to
135 *	 blindly preserve them
136 * o probe request frames are accepted only when operating in
137 *   hostap, adhoc, mesh, or monitor modes
138 * o enable promiscuous mode
139 *   - when in monitor mode
140 *   - if interface marked PROMISC (assumes bridge setting is filtered)
141 * o accept beacons:
142 *   - when operating in station mode for collecting rssi data when
143 *     the station is otherwise quiet, or
144 *   - when operating in adhoc mode so the 802.11 layer creates
145 *     node table entries for peers,
146 *   - when scanning
147 *   - when doing s/w beacon miss (e.g. for ap+sta)
148 *   - when operating in ap mode in 11g to detect overlapping bss that
149 *     require protection
150 *   - when operating in mesh mode to detect neighbors
151 * o accept control frames:
152 *   - when in monitor mode
153 * XXX HT protection for 11n
154 */
155u_int32_t
156ath_calcrxfilter(struct ath_softc *sc)
157{
158	struct ieee80211com *ic = &sc->sc_ic;
159	u_int32_t rfilt;
160
161	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
162	if (!sc->sc_needmib && !sc->sc_scanning)
163		rfilt |= HAL_RX_FILTER_PHYERR;
164	if (ic->ic_opmode != IEEE80211_M_STA)
165		rfilt |= HAL_RX_FILTER_PROBEREQ;
166	/* XXX ic->ic_monvaps != 0? */
167	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0)
168		rfilt |= HAL_RX_FILTER_PROM;
169
170	/*
171	 * Only listen to all beacons if we're scanning.
172	 *
173	 * Otherwise we only really need to hear beacons from
174	 * our own BSSID.
175	 *
176	 * IBSS? software beacon miss? Just receive all beacons.
177	 * We need to hear beacons/probe requests from everyone so
178	 * we can merge ibss.
179	 */
180	if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
181		rfilt |= HAL_RX_FILTER_BEACON;
182	} else if (ic->ic_opmode == IEEE80211_M_STA) {
183		if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
184			rfilt |= HAL_RX_FILTER_MYBEACON;
185		} else { /* scanning, non-mybeacon chips */
186			rfilt |= HAL_RX_FILTER_BEACON;
187		}
188	}
189
190	/*
191	 * NB: We don't recalculate the rx filter when
192	 * ic_protmode changes; otherwise we could do
193	 * this only when ic_protmode != NONE.
194	 */
195	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
196	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
197		rfilt |= HAL_RX_FILTER_BEACON;
198
199	/*
200	 * Enable hardware PS-POLL RX only for hostap mode;
201	 * STA mode sends PS-POLL frames but never
202	 * receives them.
203	 */
204	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
205	    0, NULL) == HAL_OK &&
206	    ic->ic_opmode == IEEE80211_M_HOSTAP)
207		rfilt |= HAL_RX_FILTER_PSPOLL;
208
209	if (sc->sc_nmeshvaps) {
210		rfilt |= HAL_RX_FILTER_BEACON;
211		if (sc->sc_hasbmatch)
212			rfilt |= HAL_RX_FILTER_BSSID;
213		else
214			rfilt |= HAL_RX_FILTER_PROM;
215	}
216	if (ic->ic_opmode == IEEE80211_M_MONITOR)
217		rfilt |= HAL_RX_FILTER_CONTROL;
218
219	/*
220	 * Enable RX of compressed BAR frames only when doing
221	 * 802.11n. Required for A-MPDU.
222	 */
223	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
224		rfilt |= HAL_RX_FILTER_COMPBAR;
225
226	/*
227	 * Enable radar PHY errors if requested by the
228	 * DFS module.
229	 */
230	if (sc->sc_dodfs)
231		rfilt |= HAL_RX_FILTER_PHYRADAR;
232
233	/*
234	 * Enable spectral PHY errors if requested by the
235	 * spectral module.
236	 */
237	if (sc->sc_dospectral)
238		rfilt |= HAL_RX_FILTER_PHYRADAR;
239
240	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n",
241	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]);
242	return rfilt;
243}
244
245static int
246ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
247{
248	struct ath_hal *ah = sc->sc_ah;
249	int error;
250	struct mbuf *m;
251	struct ath_desc *ds;
252
253	/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
254
255	m = bf->bf_m;
256	if (m == NULL) {
257		/*
258		 * NB: by assigning a page to the rx dma buffer we
259		 * implicitly satisfy the Atheros requirement that
260		 * this buffer be cache-line-aligned and sized to be
261		 * multiple of the cache line size.  Not doing this
262		 * causes weird stuff to happen (for the 5210 at least).
263		 */
264		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
265		if (m == NULL) {
266			DPRINTF(sc, ATH_DEBUG_ANY,
267				"%s: no mbuf/cluster\n", __func__);
268			sc->sc_stats.ast_rx_nombuf++;
269			return ENOMEM;
270		}
271		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
272
273		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
274					     bf->bf_dmamap, m,
275					     bf->bf_segs, &bf->bf_nseg,
276					     BUS_DMA_NOWAIT);
277		if (error != 0) {
278			DPRINTF(sc, ATH_DEBUG_ANY,
279			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
280			    __func__, error);
281			sc->sc_stats.ast_rx_busdma++;
282			m_freem(m);
283			return error;
284		}
285		KASSERT(bf->bf_nseg == 1,
286			("multi-segment packet; nseg %u", bf->bf_nseg));
287		bf->bf_m = m;
288	}
289	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
290
291	/*
292	 * Setup descriptors.  For receive we always terminate
293	 * the descriptor list with a self-linked entry so we'll
294	 * not get overrun under high load (as can happen with a
295	 * 5212 when ANI processing enables PHY error frames).
296	 *
297	 * To insure the last descriptor is self-linked we create
298	 * each descriptor as self-linked and add it to the end.  As
299	 * each additional descriptor is added the previous self-linked
300	 * entry is ``fixed'' naturally.  This should be safe even
301	 * if DMA is happening.  When processing RX interrupts we
302	 * never remove/process the last, self-linked, entry on the
303	 * descriptor list.  This insures the hardware always has
304	 * someplace to write a new frame.
305	 */
306	/*
307	 * 11N: we can no longer afford to self link the last descriptor.
308	 * MAC acknowledges BA status as long as it copies frames to host
309	 * buffer (or rx fifo). This can incorrectly acknowledge packets
310	 * to a sender if last desc is self-linked.
311	 */
312	ds = bf->bf_desc;
313	if (sc->sc_rxslink)
314		ds->ds_link = bf->bf_daddr;	/* link to self */
315	else
316		ds->ds_link = 0;		/* terminate the list */
317	ds->ds_data = bf->bf_segs[0].ds_addr;
318	ath_hal_setuprxdesc(ah, ds
319		, m->m_len		/* buffer size */
320		, 0
321	);
322
323	if (sc->sc_rxlink != NULL)
324		*sc->sc_rxlink = bf->bf_daddr;
325	sc->sc_rxlink = &ds->ds_link;
326	return 0;
327}
328
329/*
330 * Intercept management frames to collect beacon rssi data
331 * and to do ibss merges.
332 */
333void
334ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
335	int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
336{
337	struct ieee80211vap *vap = ni->ni_vap;
338	struct ath_softc *sc = vap->iv_ic->ic_softc;
339	uint64_t tsf_beacon_old, tsf_beacon;
340	uint64_t nexttbtt;
341	int64_t tsf_delta;
342	int32_t tsf_delta_bmiss;
343	int32_t tsf_remainder;
344	uint64_t tsf_beacon_target;
345	int tsf_intval;
346
347	tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
348	tsf_beacon_old |= le32dec(ni->ni_tstamp.data);
349
350#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
351	tsf_intval = 1;
352	if (ni->ni_intval > 0) {
353		tsf_intval = TU_TO_TSF(ni->ni_intval);
354	}
355#undef	TU_TO_TSF
356
357	/*
358	 * Call up first so subsequent work can use information
359	 * potentially stored in the node (e.g. for ibss merge).
360	 */
361	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
362	switch (subtype) {
363	case IEEE80211_FC0_SUBTYPE_BEACON:
364		/*
365		 * Always update the per-node beacon RSSI if we're hearing
366		 * beacons from that node.
367		 */
368		ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgbrssi, rssi);
369
370		/*
371		 * Only do the following processing if it's for
372		 * the current BSS.
373		 *
374		 * In scan and IBSS mode we receive all beacons,
375		 * which means we need to filter out stuff
376		 * that isn't for us or we'll end up constantly
377		 * trying to sync / merge to BSSes that aren't
378		 * actually us.
379		 */
380		if ((vap->iv_opmode != IEEE80211_M_HOSTAP) &&
381		    IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) {
382			/* update rssi statistics for use by the hal */
383			/* XXX unlocked check against vap->iv_bss? */
384			ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
385
386			tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
387			tsf_beacon |= le32dec(ni->ni_tstamp.data);
388
389			nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
390
391			/*
392			 * Let's calculate the delta and remainder, so we can see
393			 * if the beacon timer from the AP is varying by more than
394			 * a few TU.  (Which would be a huge, huge problem.)
395			 */
396			tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
397
398			tsf_delta_bmiss = tsf_delta / tsf_intval;
399
400			/*
401			 * If our delta is greater than half the beacon interval,
402			 * let's round the bmiss value up to the next beacon
403			 * interval.  Ie, we're running really, really early
404			 * on the next beacon.
405			 */
406			if (tsf_delta % tsf_intval > (tsf_intval / 2))
407				tsf_delta_bmiss ++;
408
409			tsf_beacon_target = tsf_beacon_old +
410			    (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
411
412			/*
413			 * The remainder using '%' is between 0 .. intval-1.
414			 * If we're actually running too fast, then the remainder
415			 * will be some large number just under intval-1.
416			 * So we need to look at whether we're running
417			 * before or after the target beacon interval
418			 * and if we are, modify how we do the remainder
419			 * calculation.
420			 */
421			if (tsf_beacon < tsf_beacon_target) {
422				tsf_remainder =
423				    -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
424			} else {
425				tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
426			}
427
428			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: old_tsf=%llu (%u), new_tsf=%llu (%u), target_tsf=%llu (%u), delta=%lld, bmiss=%d, remainder=%d\n",
429			    __func__,
430			    ieee80211_get_vap_ifname(vap),
431			    (unsigned long long) tsf_beacon_old,
432			    (unsigned int) (tsf_beacon_old >> 10),
433			    (unsigned long long) tsf_beacon,
434			    (unsigned int ) (tsf_beacon >> 10),
435			    (unsigned long long) tsf_beacon_target,
436			    (unsigned int) (tsf_beacon_target >> 10),
437			    (long long) tsf_delta,
438			    tsf_delta_bmiss,
439			    tsf_remainder);
440
441			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: ni=%6D bssid=%6D tsf=%llu (%u), nexttbtt=%llu (%u), delta=%d\n",
442			    __func__,
443			    ieee80211_get_vap_ifname(vap),
444			    ni->ni_bssid, ":",
445			    vap->iv_bss->ni_bssid, ":",
446			    (unsigned long long) tsf_beacon,
447			    (unsigned int) (tsf_beacon >> 10),
448			    (unsigned long long) nexttbtt,
449			    (unsigned int) (nexttbtt >> 10),
450			    (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
451
452			/*
453			 * We only do syncbeacon on STA VAPs; not on IBSS;
454			 * but don't do it with swbmiss enabled or we
455			 * may end up overwriting AP mode beacon config.
456			 *
457			 * The driver (and net80211) should be smarter about
458			 * this..
459			 */
460			if (vap->iv_opmode == IEEE80211_M_STA &&
461			    sc->sc_syncbeacon &&
462			    (!sc->sc_swbmiss) &&
463			    ni == vap->iv_bss &&
464			    ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) &&
465			    (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
466				DPRINTF(sc, ATH_DEBUG_BEACON,
467				    "%s: syncbeacon=1; syncing\n",
468				    __func__);
469				/*
470				 * Resync beacon timers using the tsf of the beacon
471				 * frame we just received.
472				 */
473				ath_beacon_config(sc, vap);
474				sc->sc_syncbeacon = 0;
475			}
476		}
477
478		/* fall thru... */
479	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
480		if (vap->iv_opmode == IEEE80211_M_IBSS &&
481		    vap->iv_state == IEEE80211_S_RUN &&
482		    ieee80211_ibss_merge_check(ni)) {
483			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
484			uint64_t tsf = ath_extend_tsf(sc, rstamp,
485				ath_hal_gettsf64(sc->sc_ah));
486			/*
487			 * Handle ibss merge as needed; check the tsf on the
488			 * frame before attempting the merge.  The 802.11 spec
489			 * says the station should change it's bssid to match
490			 * the oldest station with the same ssid, where oldest
491			 * is determined by the tsf.  Note that hardware
492			 * reconfiguration happens through callback to
493			 * ath_newstate as the state machine will go from
494			 * RUN -> RUN when this happens.
495			 */
496			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
497				DPRINTF(sc, ATH_DEBUG_STATE,
498				    "ibss merge, rstamp %u tsf %ju "
499				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
500				    (uintmax_t)ni->ni_tstamp.tsf);
501				(void) ieee80211_ibss_merge(ni);
502			}
503		}
504		break;
505	}
506}
507
508#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
509static void
510ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m,
511    const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
512{
513
514	/* Fill in the extension bitmap */
515	sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
516
517	/* Fill in the vendor header */
518	sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
519	sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
520	sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
521
522	/* XXX what should this be? */
523	sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
524	sc->sc_rx_th.wr_vh.vh_skip_len =
525	    htole16(sizeof(struct ath_radiotap_vendor_hdr));
526
527	/* General version info */
528	sc->sc_rx_th.wr_v.vh_version = 1;
529
530	sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
531
532	/* rssi */
533	sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
534	sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
535	sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
536	sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
537	sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
538	sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
539
540	/* evm */
541	sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
542	sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
543	sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
544	/* These are only populated from the AR9300 or later */
545	sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
546	sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
547
548	/* direction */
549	sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
550
551	/* RX rate */
552	sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
553
554	/* RX flags */
555	sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
556
557	if (rs->rs_isaggr)
558		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
559	if (rs->rs_moreaggr)
560		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
561
562	/* phyerr info */
563	if (rs->rs_status & HAL_RXERR_PHY) {
564		sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
565		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
566	} else {
567		sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
568	}
569	sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
570	sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
571}
572#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
573
574static void
575ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
576	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
577{
578#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
579#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
580#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
581#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
582	const HAL_RATE_TABLE *rt;
583	uint8_t rix;
584
585	rt = sc->sc_currates;
586	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
587	rix = rt->rateCodeToIndex[rs->rs_rate];
588	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
589	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
590
591	/* 802.11 specific flags */
592	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
593	if (rs->rs_status & HAL_RXERR_PHY) {
594		/*
595		 * PHY error - make sure the channel flags
596		 * reflect the actual channel configuration,
597		 * not the received frame.
598		 */
599		if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
600			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
601		else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
602			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
603		else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
604			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
605	} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
606		struct ieee80211com *ic = &sc->sc_ic;
607
608		if ((rs->rs_flags & HAL_RX_2040) == 0)
609			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
610		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
611			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
612		else
613			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
614
615		if (rs->rs_flags & HAL_RX_GI)
616			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
617	}
618
619	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
620	if (rs->rs_status & HAL_RXERR_CRC)
621		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
622	/* XXX propagate other error flags from descriptor */
623	sc->sc_rx_th.wr_antnoise = nf;
624	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
625	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
626#undef CHAN_HT
627#undef CHAN_HT20
628#undef CHAN_HT40U
629#undef CHAN_HT40D
630}
631
632static void
633ath_handle_micerror(struct ieee80211com *ic,
634	struct ieee80211_frame *wh, int keyix)
635{
636	struct ieee80211_node *ni;
637
638	/* XXX recheck MIC to deal w/ chips that lie */
639	/* XXX discard MIC errors on !data frames */
640	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
641	if (ni != NULL) {
642		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
643		ieee80211_free_node(ni);
644	}
645}
646
647/*
648 * Process a single packet.
649 *
650 * The mbuf must already be synced, unmapped and removed from bf->bf_m
651 * by this stage.
652 *
653 * The mbuf must be consumed by this routine - either passed up the
654 * net80211 stack, put on the holding queue, or freed.
655 */
656int
657ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
658    uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
659    struct mbuf *m)
660{
661	uint64_t rstamp;
662	/* XXX TODO: make this an mbuf tag? */
663	struct ieee80211_rx_stats rxs;
664	int len, type, i;
665	struct ieee80211com *ic = &sc->sc_ic;
666	struct ieee80211_node *ni;
667	int is_good = 0;
668	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
669
670	/*
671	 * Calculate the correct 64 bit TSF given
672	 * the TSF64 register value and rs_tstamp.
673	 */
674	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
675
676	/* 802.11 return codes - These aren't specifically errors */
677	if (rs->rs_flags & HAL_RX_GI)
678		sc->sc_stats.ast_rx_halfgi++;
679	if (rs->rs_flags & HAL_RX_2040)
680		sc->sc_stats.ast_rx_2040++;
681	if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
682		sc->sc_stats.ast_rx_pre_crc_err++;
683	if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
684		sc->sc_stats.ast_rx_post_crc_err++;
685	if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
686		sc->sc_stats.ast_rx_decrypt_busy_err++;
687	if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
688		sc->sc_stats.ast_rx_hi_rx_chain++;
689	if (rs->rs_flags & HAL_RX_STBC)
690		sc->sc_stats.ast_rx_stbc++;
691
692	if (rs->rs_status != 0) {
693		if (rs->rs_status & HAL_RXERR_CRC)
694			sc->sc_stats.ast_rx_crcerr++;
695		if (rs->rs_status & HAL_RXERR_FIFO)
696			sc->sc_stats.ast_rx_fifoerr++;
697		if (rs->rs_status & HAL_RXERR_PHY) {
698			sc->sc_stats.ast_rx_phyerr++;
699			/* Process DFS radar events */
700			if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
701			    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
702				/* Now pass it to the radar processing code */
703				ath_dfs_process_phy_err(sc, m, rstamp, rs);
704			}
705
706			/*
707			 * Be suitably paranoid about receiving phy errors
708			 * out of the stats array bounds
709			 */
710			if (rs->rs_phyerr < ATH_IOCTL_STATS_NUM_RX_PHYERR)
711				sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
712			goto rx_error;	/* NB: don't count in ierrors */
713		}
714		if (rs->rs_status & HAL_RXERR_DECRYPT) {
715			/*
716			 * Decrypt error.  If the error occurred
717			 * because there was no hardware key, then
718			 * let the frame through so the upper layers
719			 * can process it.  This is necessary for 5210
720			 * parts which have no way to setup a ``clear''
721			 * key cache entry.
722			 *
723			 * XXX do key cache faulting
724			 */
725			if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
726				goto rx_accept;
727			sc->sc_stats.ast_rx_badcrypt++;
728		}
729		/*
730		 * Similar as above - if the failure was a keymiss
731		 * just punt it up to the upper layers for now.
732		 */
733		if (rs->rs_status & HAL_RXERR_KEYMISS) {
734			sc->sc_stats.ast_rx_keymiss++;
735			goto rx_accept;
736		}
737		if (rs->rs_status & HAL_RXERR_MIC) {
738			sc->sc_stats.ast_rx_badmic++;
739			/*
740			 * Do minimal work required to hand off
741			 * the 802.11 header for notification.
742			 */
743			/* XXX frag's and qos frames */
744			len = rs->rs_datalen;
745			if (len >= sizeof (struct ieee80211_frame)) {
746				ath_handle_micerror(ic,
747				    mtod(m, struct ieee80211_frame *),
748				    sc->sc_splitmic ?
749					rs->rs_keyix-32 : rs->rs_keyix);
750			}
751		}
752		counter_u64_add(ic->ic_ierrors, 1);
753rx_error:
754		/*
755		 * Cleanup any pending partial frame.
756		 */
757		if (re->m_rxpending != NULL) {
758			m_freem(re->m_rxpending);
759			re->m_rxpending = NULL;
760		}
761		/*
762		 * When a tap is present pass error frames
763		 * that have been requested.  By default we
764		 * pass decrypt+mic errors but others may be
765		 * interesting (e.g. crc).
766		 */
767		if (ieee80211_radiotap_active(ic) &&
768		    (rs->rs_status & sc->sc_monpass)) {
769			/* NB: bpf needs the mbuf length setup */
770			len = rs->rs_datalen;
771			m->m_pkthdr.len = m->m_len = len;
772			ath_rx_tap(sc, m, rs, rstamp, nf);
773#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
774			ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
775#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
776			ieee80211_radiotap_rx_all(ic, m);
777		}
778		/* XXX pass MIC errors up for s/w reclaculation */
779		m_freem(m); m = NULL;
780		goto rx_next;
781	}
782rx_accept:
783	len = rs->rs_datalen;
784	m->m_len = len;
785
786	if (rs->rs_more) {
787		/*
788		 * Frame spans multiple descriptors; save
789		 * it for the next completed descriptor, it
790		 * will be used to construct a jumbogram.
791		 */
792		if (re->m_rxpending != NULL) {
793			/* NB: max frame size is currently 2 clusters */
794			sc->sc_stats.ast_rx_toobig++;
795			m_freem(re->m_rxpending);
796		}
797		m->m_pkthdr.len = len;
798		re->m_rxpending = m;
799		m = NULL;
800		goto rx_next;
801	} else if (re->m_rxpending != NULL) {
802		/*
803		 * This is the second part of a jumbogram,
804		 * chain it to the first mbuf, adjust the
805		 * frame length, and clear the rxpending state.
806		 */
807		re->m_rxpending->m_next = m;
808		re->m_rxpending->m_pkthdr.len += len;
809		m = re->m_rxpending;
810		re->m_rxpending = NULL;
811	} else {
812		/*
813		 * Normal single-descriptor receive; setup packet length.
814		 */
815		m->m_pkthdr.len = len;
816	}
817
818	/*
819	 * Validate rs->rs_antenna.
820	 *
821	 * Some users w/ AR9285 NICs have reported crashes
822	 * here because rs_antenna field is bogusly large.
823	 * Let's enforce the maximum antenna limit of 8
824	 * (and it shouldn't be hard coded, but that's a
825	 * separate problem) and if there's an issue, print
826	 * out an error and adjust rs_antenna to something
827	 * sensible.
828	 *
829	 * This code should be removed once the actual
830	 * root cause of the issue has been identified.
831	 * For example, it may be that the rs_antenna
832	 * field is only valid for the last frame of
833	 * an aggregate and it just happens that it is
834	 * "mostly" right. (This is a general statement -
835	 * the majority of the statistics are only valid
836	 * for the last frame in an aggregate.
837	 */
838	if (rs->rs_antenna >= ATH_IOCTL_STATS_NUM_RX_ANTENNA) {
839		device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
840		    __func__, rs->rs_antenna);
841#ifdef	ATH_DEBUG
842		ath_printrxbuf(sc, bf, 0, status == HAL_OK);
843#endif /* ATH_DEBUG */
844		rs->rs_antenna = 0;	/* XXX better than nothing */
845	}
846
847	/*
848	 * If this is an AR9285/AR9485, then the receive and LNA
849	 * configuration is stored in RSSI[2] / EXTRSSI[2].
850	 * We can extract this out to build a much better
851	 * receive antenna profile.
852	 *
853	 * Yes, this just blurts over the above RX antenna field
854	 * for now.  It's fine, the AR9285 doesn't really use
855	 * that.
856	 *
857	 * Later on we should store away the fine grained LNA
858	 * information and keep separate counters just for
859	 * that.  It'll help when debugging the AR9285/AR9485
860	 * combined diversity code.
861	 */
862	if (sc->sc_rx_lnamixer) {
863		rs->rs_antenna = 0;
864
865		/* Bits 0:1 - the LNA configuration used */
866		rs->rs_antenna |=
867		    ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
868		      >> HAL_RX_LNA_CFG_USED_S);
869
870		/* Bit 2 - the external RX antenna switch */
871		if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
872			rs->rs_antenna |= 0x4;
873	}
874
875	sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
876
877	/*
878	 * Populate the rx status block.  When there are bpf
879	 * listeners we do the additional work to provide
880	 * complete status.  Otherwise we fill in only the
881	 * material required by ieee80211_input.  Note that
882	 * noise setting is filled in above.
883	 */
884	if (ieee80211_radiotap_active(ic)) {
885		ath_rx_tap(sc, m, rs, rstamp, nf);
886#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
887		ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
888#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
889	}
890
891	/*
892	 * From this point on we assume the frame is at least
893	 * as large as ieee80211_frame_min; verify that.
894	 */
895	if (len < IEEE80211_MIN_LEN) {
896		if (!ieee80211_radiotap_active(ic)) {
897			DPRINTF(sc, ATH_DEBUG_RECV,
898			    "%s: short packet %d\n", __func__, len);
899			sc->sc_stats.ast_rx_tooshort++;
900		} else {
901			/* NB: in particular this captures ack's */
902			ieee80211_radiotap_rx_all(ic, m);
903		}
904		m_freem(m); m = NULL;
905		goto rx_next;
906	}
907
908	if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
909		const HAL_RATE_TABLE *rt = sc->sc_currates;
910		uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
911
912		ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
913		    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
914	}
915
916	m_adj(m, -IEEE80211_CRC_LEN);
917
918	/*
919	 * Locate the node for sender, track state, and then
920	 * pass the (referenced) node up to the 802.11 layer
921	 * for its use.
922	 */
923	ni = ieee80211_find_rxnode_withkey(ic,
924		mtod(m, const struct ieee80211_frame_min *),
925		rs->rs_keyix == HAL_RXKEYIX_INVALID ?
926			IEEE80211_KEYIX_NONE : rs->rs_keyix);
927	sc->sc_lastrs = rs;
928
929	if (rs->rs_isaggr)
930		sc->sc_stats.ast_rx_agg++;
931
932	/*
933	 * Populate the per-chain RSSI values where appropriate.
934	 */
935	bzero(&rxs, sizeof(rxs));
936	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI |
937	    IEEE80211_R_C_CHAIN |
938	    IEEE80211_R_C_NF |
939	    IEEE80211_R_C_RSSI |
940	    IEEE80211_R_TSF64 |
941	    IEEE80211_R_TSF_START;	/* XXX TODO: validate */
942	rxs.c_rssi = rs->rs_rssi;
943	rxs.c_nf = nf;
944	rxs.c_chain = 3;	/* XXX TODO: check */
945	rxs.c_rx_tsf = rstamp;
946
947	for (i = 0; i < 3; i++) {
948		rxs.c_rssi_ctl[i] = rs->rs_rssi_ctl[i];
949		rxs.c_rssi_ext[i] = rs->rs_rssi_ext[i];
950		/*
951		 * XXX note: we currently don't track
952		 * per-chain noisefloor.
953		 */
954		rxs.c_nf_ctl[i] = nf;
955		rxs.c_nf_ext[i] = nf;
956	}
957
958	if (ni != NULL) {
959		/*
960		 * Only punt packets for ampdu reorder processing for
961		 * 11n nodes; net80211 enforces that M_AMPDU is only
962		 * set for 11n nodes.
963		 */
964		if (ni->ni_flags & IEEE80211_NODE_HT)
965			m->m_flags |= M_AMPDU;
966
967		/*
968		 * Inform rate control about the received RSSI.
969		 * It can then use this information to potentially drastically
970		 * alter the available rate based on the RSSI estimate.
971		 *
972		 * This is super important when associating to a far away station;
973		 * you don't want to waste time trying higher rates at some low
974		 * packet exchange rate (like during DHCP) just to establish
975		 * that higher MCS rates aren't available.
976		 */
977		ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgrssi,
978		    rs->rs_rssi);
979		ath_rate_update_rx_rssi(sc, ATH_NODE(ni),
980		    ATH_RSSI(ATH_NODE(ni)->an_node_stats.ns_avgrssi));
981
982		/*
983		 * Sending station is known, dispatch directly.
984		 */
985		(void) ieee80211_add_rx_params(m, &rxs);
986		type = ieee80211_input_mimo(ni, m);
987		ieee80211_free_node(ni);
988		m = NULL;
989		/*
990		 * Arrange to update the last rx timestamp only for
991		 * frames from our ap when operating in station mode.
992		 * This assumes the rx key is always setup when
993		 * associated.
994		 */
995		if (ic->ic_opmode == IEEE80211_M_STA &&
996		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
997			is_good = 1;
998	} else {
999		(void) ieee80211_add_rx_params(m, &rxs);
1000		type = ieee80211_input_mimo_all(ic, m);
1001		m = NULL;
1002	}
1003
1004	/*
1005	 * At this point we have passed the frame up the stack; thus
1006	 * the mbuf is no longer ours.
1007	 */
1008
1009	/*
1010	 * Track legacy station RX rssi and do any rx antenna management.
1011	 */
1012	ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
1013	if (sc->sc_diversity) {
1014		/*
1015		 * When using fast diversity, change the default rx
1016		 * antenna if diversity chooses the other antenna 3
1017		 * times in a row.
1018		 */
1019		if (sc->sc_defant != rs->rs_antenna) {
1020			if (++sc->sc_rxotherant >= 3)
1021				ath_setdefantenna(sc, rs->rs_antenna);
1022		} else
1023			sc->sc_rxotherant = 0;
1024	}
1025
1026	/* Handle slow diversity if enabled */
1027	if (sc->sc_dolnadiv) {
1028		ath_lna_rx_comb_scan(sc, rs, ticks, hz);
1029	}
1030
1031	if (sc->sc_softled) {
1032		/*
1033		 * Blink for any data frame.  Otherwise do a
1034		 * heartbeat-style blink when idle.  The latter
1035		 * is mainly for station mode where we depend on
1036		 * periodic beacon frames to trigger the poll event.
1037		 */
1038		if (type == IEEE80211_FC0_TYPE_DATA) {
1039			const HAL_RATE_TABLE *rt = sc->sc_currates;
1040			ath_led_event(sc,
1041			    rt->rateCodeToIndex[rs->rs_rate]);
1042		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1043			ath_led_event(sc, 0);
1044		}
1045rx_next:
1046	/*
1047	 * Debugging - complain if we didn't NULL the mbuf pointer
1048	 * here.
1049	 */
1050	if (m != NULL) {
1051		device_printf(sc->sc_dev,
1052		    "%s: mbuf %p should've been freed!\n",
1053		    __func__,
1054		    m);
1055	}
1056	return (is_good);
1057}
1058
1059#define	ATH_RX_MAX		128
1060
1061/*
1062 * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
1063 * the EDMA code does.
1064 *
1065 * XXX TODO: then, do all of the RX list management stuff inside
1066 * ATH_RX_LOCK() so we don't end up potentially racing.  The EDMA
1067 * code is doing it right.
1068 */
1069static void
1070ath_rx_proc(struct ath_softc *sc, int resched)
1071{
1072#define	PA2DESC(_sc, _pa) \
1073	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1074		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1075	struct ath_buf *bf;
1076	struct ath_hal *ah = sc->sc_ah;
1077#ifdef IEEE80211_SUPPORT_SUPERG
1078	struct ieee80211com *ic = &sc->sc_ic;
1079#endif
1080	struct ath_desc *ds;
1081	struct ath_rx_status *rs;
1082	struct mbuf *m;
1083	int ngood;
1084	HAL_STATUS status;
1085	int16_t nf;
1086	u_int64_t tsf;
1087	int npkts = 0;
1088	int kickpcu = 0;
1089	int ret;
1090
1091	/* XXX we must not hold the ATH_LOCK here */
1092	ATH_UNLOCK_ASSERT(sc);
1093	ATH_PCU_UNLOCK_ASSERT(sc);
1094
1095	ATH_PCU_LOCK(sc);
1096	sc->sc_rxproc_cnt++;
1097	kickpcu = sc->sc_kickpcu;
1098	ATH_PCU_UNLOCK(sc);
1099
1100	ATH_LOCK(sc);
1101	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1102	ATH_UNLOCK(sc);
1103
1104	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
1105	ngood = 0;
1106	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
1107	sc->sc_stats.ast_rx_noise = nf;
1108	tsf = ath_hal_gettsf64(ah);
1109	do {
1110		/*
1111		 * Don't process too many packets at a time; give the
1112		 * TX thread time to also run - otherwise the TX
1113		 * latency can jump by quite a bit, causing throughput
1114		 * degredation.
1115		 */
1116		if (!kickpcu && npkts >= ATH_RX_MAX)
1117			break;
1118
1119		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1120		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
1121			device_printf(sc->sc_dev, "%s: no buffer!\n", __func__);
1122			break;
1123		} else if (bf == NULL) {
1124			/*
1125			 * End of List:
1126			 * this can happen for non-self-linked RX chains
1127			 */
1128			sc->sc_stats.ast_rx_hitqueueend++;
1129			break;
1130		}
1131		m = bf->bf_m;
1132		if (m == NULL) {		/* NB: shouldn't happen */
1133			/*
1134			 * If mbuf allocation failed previously there
1135			 * will be no mbuf; try again to re-populate it.
1136			 */
1137			/* XXX make debug msg */
1138			device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__);
1139			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1140			goto rx_proc_next;
1141		}
1142		ds = bf->bf_desc;
1143		if (ds->ds_link == bf->bf_daddr) {
1144			/* NB: never process the self-linked entry at the end */
1145			sc->sc_stats.ast_rx_hitqueueend++;
1146			break;
1147		}
1148		/* XXX sync descriptor memory */
1149		/*
1150		 * Must provide the virtual address of the current
1151		 * descriptor, the physical address, and the virtual
1152		 * address of the next descriptor in the h/w chain.
1153		 * This allows the HAL to look ahead to see if the
1154		 * hardware is done with a descriptor by checking the
1155		 * done bit in the following descriptor and the address
1156		 * of the current descriptor the DMA engine is working
1157		 * on.  All this is necessary because of our use of
1158		 * a self-linked list to avoid rx overruns.
1159		 */
1160		rs = &bf->bf_status.ds_rxstat;
1161		status = ath_hal_rxprocdesc(ah, ds,
1162				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1163#ifdef ATH_DEBUG
1164		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
1165			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
1166#endif
1167
1168#ifdef	ATH_DEBUG_ALQ
1169		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
1170		    if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
1171		    sc->sc_rx_statuslen, (char *) ds);
1172#endif	/* ATH_DEBUG_ALQ */
1173
1174		if (status == HAL_EINPROGRESS)
1175			break;
1176
1177		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1178		npkts++;
1179
1180		/*
1181		 * Process a single frame.
1182		 */
1183		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
1184		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1185		bf->bf_m = NULL;
1186		if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
1187			ngood++;
1188rx_proc_next:
1189		/*
1190		 * If there's a holding buffer, insert that onto
1191		 * the RX list; the hardware is now definitely not pointing
1192		 * to it now.
1193		 */
1194		ret = 0;
1195		if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
1196			TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
1197			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
1198			    bf_list);
1199			ret = ath_rxbuf_init(sc,
1200			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
1201		}
1202		/*
1203		 * Next, throw our buffer into the holding entry.  The hardware
1204		 * may use the descriptor to read the link pointer before
1205		 * DMAing the next descriptor in to write out a packet.
1206		 */
1207		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
1208	} while (ret == 0);
1209
1210	/* rx signal state monitoring */
1211	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1212	if (ngood)
1213		sc->sc_lastrx = tsf;
1214
1215	ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1216	/* Queue DFS tasklet if needed */
1217	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1218		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1219
1220	/*
1221	 * Now that all the RX frames were handled that
1222	 * need to be handled, kick the PCU if there's
1223	 * been an RXEOL condition.
1224	 */
1225	if (resched && kickpcu) {
1226		ATH_PCU_LOCK(sc);
1227		ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1228		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1229		    __func__, npkts);
1230
1231		/*
1232		 * Go through the process of fully tearing down
1233		 * the RX buffers and reinitialising them.
1234		 *
1235		 * There's a hardware bug that causes the RX FIFO
1236		 * to get confused under certain conditions and
1237		 * constantly write over the same frame, leading
1238		 * the RX driver code here to get heavily confused.
1239		 */
1240		/*
1241		 * XXX Has RX DMA stopped enough here to just call
1242		 *     ath_startrecv()?
1243		 * XXX Do we need to use the holding buffer to restart
1244		 *     RX DMA by appending entries to the final
1245		 *     descriptor?  Quite likely.
1246		 */
1247#if 1
1248		ath_startrecv(sc);
1249#else
1250		/*
1251		 * Disabled for now - it'd be nice to be able to do
1252		 * this in order to limit the amount of CPU time spent
1253		 * reinitialising the RX side (and thus minimise RX
1254		 * drops) however there's a hardware issue that
1255		 * causes things to get too far out of whack.
1256		 */
1257		/*
1258		 * XXX can we hold the PCU lock here?
1259		 * Are there any net80211 buffer calls involved?
1260		 */
1261		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1262		ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1263		ath_hal_rxena(ah);		/* enable recv descriptors */
1264		ath_mode_init(sc);		/* set filters, etc. */
1265		ath_hal_startpcurecv(ah, (!! sc->sc_scanning));	/* re-enable PCU/DMA engine */
1266#endif
1267
1268		ath_hal_intrset(ah, sc->sc_imask);
1269		sc->sc_kickpcu = 0;
1270		ATH_PCU_UNLOCK(sc);
1271	}
1272
1273#ifdef IEEE80211_SUPPORT_SUPERG
1274	if (resched)
1275		ieee80211_ff_age_all(ic, 100);
1276#endif
1277
1278	/*
1279	 * Put the hardware to sleep again if we're done with it.
1280	 */
1281	ATH_LOCK(sc);
1282	ath_power_restore_power_state(sc);
1283	ATH_UNLOCK(sc);
1284
1285	/*
1286	 * If we hit the maximum number of frames in this round,
1287	 * reschedule for another immediate pass.  This gives
1288	 * the TX and TX completion routines time to run, which
1289	 * will reduce latency.
1290	 */
1291	if (npkts >= ATH_RX_MAX)
1292		sc->sc_rx.recv_sched(sc, resched);
1293
1294	ATH_PCU_LOCK(sc);
1295	sc->sc_rxproc_cnt--;
1296	ATH_PCU_UNLOCK(sc);
1297}
1298#undef	PA2DESC
1299#undef	ATH_RX_MAX
1300
1301/*
1302 * Only run the RX proc if it's not already running.
1303 * Since this may get run as part of the reset/flush path,
1304 * the task can't clash with an existing, running tasklet.
1305 */
1306static void
1307ath_legacy_rx_tasklet(void *arg, int npending)
1308{
1309	struct ath_softc *sc = arg;
1310
1311	ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1312	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1313	ATH_PCU_LOCK(sc);
1314	if (sc->sc_inreset_cnt > 0) {
1315		device_printf(sc->sc_dev,
1316		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1317		ATH_PCU_UNLOCK(sc);
1318		return;
1319	}
1320	ATH_PCU_UNLOCK(sc);
1321
1322	ath_rx_proc(sc, 1);
1323}
1324
1325static void
1326ath_legacy_flushrecv(struct ath_softc *sc)
1327{
1328
1329	ath_rx_proc(sc, 0);
1330}
1331
1332static void
1333ath_legacy_flush_rxpending(struct ath_softc *sc)
1334{
1335
1336	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1337
1338	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1339		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1340		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1341	}
1342	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1343		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1344		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1345	}
1346}
1347
1348static int
1349ath_legacy_flush_rxholdbf(struct ath_softc *sc)
1350{
1351	struct ath_buf *bf;
1352
1353	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1354	/*
1355	 * If there are RX holding buffers, free them here and return
1356	 * them to the list.
1357	 *
1358	 * XXX should just verify that bf->bf_m is NULL, as it must
1359	 * be at this point!
1360	 */
1361	bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
1362	if (bf != NULL) {
1363		if (bf->bf_m != NULL)
1364			m_freem(bf->bf_m);
1365		bf->bf_m = NULL;
1366		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1367		(void) ath_rxbuf_init(sc, bf);
1368	}
1369	sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
1370
1371	bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
1372	if (bf != NULL) {
1373		if (bf->bf_m != NULL)
1374			m_freem(bf->bf_m);
1375		bf->bf_m = NULL;
1376		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1377		(void) ath_rxbuf_init(sc, bf);
1378	}
1379	sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
1380
1381	return (0);
1382}
1383
1384/*
1385 * Disable the receive h/w in preparation for a reset.
1386 */
1387static void
1388ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1389{
1390#define	PA2DESC(_sc, _pa) \
1391	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1392		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1393	struct ath_hal *ah = sc->sc_ah;
1394
1395	ATH_RX_LOCK(sc);
1396
1397	ath_hal_stoppcurecv(ah);	/* disable PCU */
1398	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
1399	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
1400	/*
1401	 * TODO: see if this particular DELAY() is required; it may be
1402	 * masking some missing FIFO flush or DMA sync.
1403	 */
1404#if 0
1405	if (dodelay)
1406#endif
1407		DELAY(3000);		/* 3ms is long enough for 1 frame */
1408#ifdef ATH_DEBUG
1409	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1410		struct ath_buf *bf;
1411		u_int ix;
1412
1413		device_printf(sc->sc_dev,
1414		    "%s: rx queue %p, link %p\n",
1415		    __func__,
1416		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1417		    sc->sc_rxlink);
1418		ix = 0;
1419		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1420			struct ath_desc *ds = bf->bf_desc;
1421			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1422			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1423				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1424			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1425				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1426			ix++;
1427		}
1428	}
1429#endif
1430
1431	(void) ath_legacy_flush_rxpending(sc);
1432	(void) ath_legacy_flush_rxholdbf(sc);
1433
1434	sc->sc_rxlink = NULL;		/* just in case */
1435
1436	ATH_RX_UNLOCK(sc);
1437#undef PA2DESC
1438}
1439
1440/*
1441 * XXX TODO: something was calling startrecv without calling
1442 * stoprecv.  Let's figure out what/why.  It was showing up
1443 * as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
1444 */
1445
1446/*
1447 * Enable the receive h/w following a reset.
1448 */
1449static int
1450ath_legacy_startrecv(struct ath_softc *sc)
1451{
1452	struct ath_hal *ah = sc->sc_ah;
1453	struct ath_buf *bf;
1454
1455	ATH_RX_LOCK(sc);
1456
1457	/*
1458	 * XXX should verify these are already all NULL!
1459	 */
1460	sc->sc_rxlink = NULL;
1461	(void) ath_legacy_flush_rxpending(sc);
1462	(void) ath_legacy_flush_rxholdbf(sc);
1463
1464	/*
1465	 * Re-chain all of the buffers in the RX buffer list.
1466	 */
1467	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1468		int error = ath_rxbuf_init(sc, bf);
1469		if (error != 0) {
1470			DPRINTF(sc, ATH_DEBUG_RECV,
1471				"%s: ath_rxbuf_init failed %d\n",
1472				__func__, error);
1473			return error;
1474		}
1475	}
1476
1477	bf = TAILQ_FIRST(&sc->sc_rxbuf);
1478	ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1479	ath_hal_rxena(ah);		/* enable recv descriptors */
1480	ath_mode_init(sc);		/* set filters, etc. */
1481	ath_hal_startpcurecv(ah, (!! sc->sc_scanning));	/* re-enable PCU/DMA engine */
1482
1483	ATH_RX_UNLOCK(sc);
1484	return 0;
1485}
1486
1487static int
1488ath_legacy_dma_rxsetup(struct ath_softc *sc)
1489{
1490	int error;
1491
1492	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1493	    "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1494	if (error != 0)
1495		return (error);
1496
1497	return (0);
1498}
1499
1500static int
1501ath_legacy_dma_rxteardown(struct ath_softc *sc)
1502{
1503
1504	if (sc->sc_rxdma.dd_desc_len != 0)
1505		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1506	return (0);
1507}
1508
1509static void
1510ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1511{
1512
1513	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1514}
1515
1516static void
1517ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1518    int dosched)
1519{
1520
1521	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1522}
1523
1524void
1525ath_recv_setup_legacy(struct ath_softc *sc)
1526{
1527
1528	/* Sensible legacy defaults */
1529	/*
1530	 * XXX this should be changed to properly support the
1531	 * exact RX descriptor size for each HAL.
1532	 */
1533	sc->sc_rx_statuslen = sizeof(struct ath_desc);
1534
1535	sc->sc_rx.recv_start = ath_legacy_startrecv;
1536	sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1537	sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1538	sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1539	sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1540
1541	sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1542	sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1543	sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1544	sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1545}
1546