1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/bus.h>
35#include <sys/endian.h>
36#include <sys/kernel.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/module.h>
40#include <sys/rman.h>
41#include <sys/queue.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44#include <sys/sysctl.h>
45#include <sys/taskqueue.h>
46
47#include <net/bpf.h>
48#include <net/if.h>
49#include <net/if_var.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_llc.h>
54#include <net/if_media.h>
55#include <net/if_types.h>
56#include <net/if_vlan_var.h>
57
58#include <netinet/in.h>
59#include <netinet/in_systm.h>
60#include <netinet/ip.h>
61#include <netinet/tcp.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65
66#include <dev/pci/pcireg.h>
67#include <dev/pci/pcivar.h>
68
69#include <machine/bus.h>
70#include <machine/in_cksum.h>
71
72#include <dev/ale/if_alereg.h>
73#include <dev/ale/if_alevar.h>
74
75/* "device miibus" required.  See GENERIC if you get errors here. */
76#include "miibus_if.h"
77
78/* For more information about Tx checksum offload issues see ale_encap(). */
79#define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
80
81MODULE_DEPEND(ale, pci, 1, 1, 1);
82MODULE_DEPEND(ale, ether, 1, 1, 1);
83MODULE_DEPEND(ale, miibus, 1, 1, 1);
84
85/* Tunables. */
86static int msi_disable = 0;
87static int msix_disable = 0;
88TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
89TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
90
91/*
92 * Devices supported by this driver.
93 */
94static const struct ale_dev {
95	uint16_t	ale_vendorid;
96	uint16_t	ale_deviceid;
97	const char	*ale_name;
98} ale_devs[] = {
99    { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
100    "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
101};
102
103static int	ale_attach(device_t);
104static int	ale_check_boundary(struct ale_softc *);
105static int	ale_detach(device_t);
106static int	ale_dma_alloc(struct ale_softc *);
107static void	ale_dma_free(struct ale_softc *);
108static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
109static int	ale_encap(struct ale_softc *, struct mbuf **);
110static void	ale_get_macaddr(struct ale_softc *);
111static void	ale_init(void *);
112static void	ale_init_locked(struct ale_softc *);
113static void	ale_init_rx_pages(struct ale_softc *);
114static void	ale_init_tx_ring(struct ale_softc *);
115static void	ale_int_task(void *, int);
116static int	ale_intr(void *);
117static int	ale_ioctl(if_t, u_long, caddr_t);
118static void	ale_mac_config(struct ale_softc *);
119static int	ale_miibus_readreg(device_t, int, int);
120static void	ale_miibus_statchg(device_t);
121static int	ale_miibus_writereg(device_t, int, int, int);
122static int	ale_mediachange(if_t);
123static void	ale_mediastatus(if_t, struct ifmediareq *);
124static void	ale_phy_reset(struct ale_softc *);
125static int	ale_probe(device_t);
126static void	ale_reset(struct ale_softc *);
127static int	ale_resume(device_t);
128static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
129    uint32_t, uint32_t *);
130static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
131static int	ale_rxeof(struct ale_softc *sc, int);
132static void	ale_rxfilter(struct ale_softc *);
133static void	ale_rxvlan(struct ale_softc *);
134static void	ale_setlinkspeed(struct ale_softc *);
135static void	ale_setwol(struct ale_softc *);
136static int	ale_shutdown(device_t);
137static void	ale_start(if_t);
138static void	ale_start_locked(if_t);
139static void	ale_stats_clear(struct ale_softc *);
140static void	ale_stats_update(struct ale_softc *);
141static void	ale_stop(struct ale_softc *);
142static void	ale_stop_mac(struct ale_softc *);
143static int	ale_suspend(device_t);
144static void	ale_sysctl_node(struct ale_softc *);
145static void	ale_tick(void *);
146static void	ale_txeof(struct ale_softc *);
147static void	ale_watchdog(struct ale_softc *);
148static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
149static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
150static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
151
152static device_method_t ale_methods[] = {
153	/* Device interface. */
154	DEVMETHOD(device_probe,		ale_probe),
155	DEVMETHOD(device_attach,	ale_attach),
156	DEVMETHOD(device_detach,	ale_detach),
157	DEVMETHOD(device_shutdown,	ale_shutdown),
158	DEVMETHOD(device_suspend,	ale_suspend),
159	DEVMETHOD(device_resume,	ale_resume),
160
161	/* MII interface. */
162	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
163	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
164	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
165
166	DEVMETHOD_END
167};
168
169static driver_t ale_driver = {
170	"ale",
171	ale_methods,
172	sizeof(struct ale_softc)
173};
174
175DRIVER_MODULE(ale, pci, ale_driver, NULL, NULL);
176MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs,
177    nitems(ale_devs));
178DRIVER_MODULE(miibus, ale, miibus_driver, NULL, NULL);
179
180static struct resource_spec ale_res_spec_mem[] = {
181	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
182	{ -1,			0,		0 }
183};
184
185static struct resource_spec ale_irq_spec_legacy[] = {
186	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
187	{ -1,			0,		0 }
188};
189
190static struct resource_spec ale_irq_spec_msi[] = {
191	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec ale_irq_spec_msix[] = {
196	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static int
201ale_miibus_readreg(device_t dev, int phy, int reg)
202{
203	struct ale_softc *sc;
204	uint32_t v;
205	int i;
206
207	sc = device_get_softc(dev);
208
209	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
210	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
211	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
212		DELAY(5);
213		v = CSR_READ_4(sc, ALE_MDIO);
214		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
215			break;
216	}
217
218	if (i == 0) {
219		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
220		return (0);
221	}
222
223	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
224}
225
226static int
227ale_miibus_writereg(device_t dev, int phy, int reg, int val)
228{
229	struct ale_softc *sc;
230	uint32_t v;
231	int i;
232
233	sc = device_get_softc(dev);
234
235	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
236	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
237	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
238	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
239		DELAY(5);
240		v = CSR_READ_4(sc, ALE_MDIO);
241		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
242			break;
243	}
244
245	if (i == 0)
246		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
247
248	return (0);
249}
250
251static void
252ale_miibus_statchg(device_t dev)
253{
254	struct ale_softc *sc;
255	struct mii_data *mii;
256	if_t ifp;
257	uint32_t reg;
258
259	sc = device_get_softc(dev);
260	mii = device_get_softc(sc->ale_miibus);
261	ifp = sc->ale_ifp;
262	if (mii == NULL || ifp == NULL ||
263	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
264		return;
265
266	sc->ale_flags &= ~ALE_FLAG_LINK;
267	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
268	    (IFM_ACTIVE | IFM_AVALID)) {
269		switch (IFM_SUBTYPE(mii->mii_media_active)) {
270		case IFM_10_T:
271		case IFM_100_TX:
272			sc->ale_flags |= ALE_FLAG_LINK;
273			break;
274		case IFM_1000_T:
275			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
276				sc->ale_flags |= ALE_FLAG_LINK;
277			break;
278		default:
279			break;
280		}
281	}
282
283	/* Stop Rx/Tx MACs. */
284	ale_stop_mac(sc);
285
286	/* Program MACs with resolved speed/duplex/flow-control. */
287	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
288		ale_mac_config(sc);
289		/* Reenable Tx/Rx MACs. */
290		reg = CSR_READ_4(sc, ALE_MAC_CFG);
291		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
292		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
293	}
294}
295
296static void
297ale_mediastatus(if_t ifp, struct ifmediareq *ifmr)
298{
299	struct ale_softc *sc;
300	struct mii_data *mii;
301
302	sc = if_getsoftc(ifp);
303	ALE_LOCK(sc);
304	if ((if_getflags(ifp) & IFF_UP) == 0) {
305		ALE_UNLOCK(sc);
306		return;
307	}
308	mii = device_get_softc(sc->ale_miibus);
309
310	mii_pollstat(mii);
311	ifmr->ifm_status = mii->mii_media_status;
312	ifmr->ifm_active = mii->mii_media_active;
313	ALE_UNLOCK(sc);
314}
315
316static int
317ale_mediachange(if_t ifp)
318{
319	struct ale_softc *sc;
320	struct mii_data *mii;
321	struct mii_softc *miisc;
322	int error;
323
324	sc = if_getsoftc(ifp);
325	ALE_LOCK(sc);
326	mii = device_get_softc(sc->ale_miibus);
327	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
328		PHY_RESET(miisc);
329	error = mii_mediachg(mii);
330	ALE_UNLOCK(sc);
331
332	return (error);
333}
334
335static int
336ale_probe(device_t dev)
337{
338	const struct ale_dev *sp;
339	int i;
340	uint16_t vendor, devid;
341
342	vendor = pci_get_vendor(dev);
343	devid = pci_get_device(dev);
344	sp = ale_devs;
345	for (i = 0; i < nitems(ale_devs); i++) {
346		if (vendor == sp->ale_vendorid &&
347		    devid == sp->ale_deviceid) {
348			device_set_desc(dev, sp->ale_name);
349			return (BUS_PROBE_DEFAULT);
350		}
351		sp++;
352	}
353
354	return (ENXIO);
355}
356
357static void
358ale_get_macaddr(struct ale_softc *sc)
359{
360	uint32_t ea[2], reg;
361	int i, vpdc;
362
363	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
364	if ((reg & SPI_VPD_ENB) != 0) {
365		reg &= ~SPI_VPD_ENB;
366		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
367	}
368
369	if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
370		/*
371		 * PCI VPD capability found, let TWSI reload EEPROM.
372		 * This will set ethernet address of controller.
373		 */
374		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
375		    TWSI_CTRL_SW_LD_START);
376		for (i = 100; i > 0; i--) {
377			DELAY(1000);
378			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
379			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
380				break;
381		}
382		if (i == 0)
383			device_printf(sc->ale_dev,
384			    "reloading EEPROM timeout!\n");
385	} else {
386		if (bootverbose)
387			device_printf(sc->ale_dev,
388			    "PCI VPD capability not found!\n");
389	}
390
391	ea[0] = CSR_READ_4(sc, ALE_PAR0);
392	ea[1] = CSR_READ_4(sc, ALE_PAR1);
393	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
394	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
395	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
396	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
397	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
398	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
399}
400
401static void
402ale_phy_reset(struct ale_softc *sc)
403{
404
405	/* Reset magic from Linux. */
406	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
407	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
408	    GPHY_CTRL_PHY_PLL_ON);
409	DELAY(1000);
410	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
411	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
412	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
413	DELAY(1000);
414
415#define	ATPHY_DBG_ADDR		0x1D
416#define	ATPHY_DBG_DATA		0x1E
417
418	/* Enable hibernation mode. */
419	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
420	    ATPHY_DBG_ADDR, 0x0B);
421	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
422	    ATPHY_DBG_DATA, 0xBC00);
423	/* Set Class A/B for all modes. */
424	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425	    ATPHY_DBG_ADDR, 0x00);
426	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
427	    ATPHY_DBG_DATA, 0x02EF);
428	/* Enable 10BT power saving. */
429	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430	    ATPHY_DBG_ADDR, 0x12);
431	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
432	    ATPHY_DBG_DATA, 0x4C04);
433	/* Adjust 1000T power. */
434	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435	    ATPHY_DBG_ADDR, 0x04);
436	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
437	    ATPHY_DBG_ADDR, 0x8BBB);
438	/* 10BT center tap voltage. */
439	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440	    ATPHY_DBG_ADDR, 0x05);
441	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
442	    ATPHY_DBG_ADDR, 0x2C46);
443
444#undef	ATPHY_DBG_ADDR
445#undef	ATPHY_DBG_DATA
446	DELAY(1000);
447}
448
449static int
450ale_attach(device_t dev)
451{
452	struct ale_softc *sc;
453	if_t ifp;
454	uint16_t burst;
455	int error, i, msic, msixc, pmc;
456	uint32_t rxf_len, txf_len;
457
458	error = 0;
459	sc = device_get_softc(dev);
460	sc->ale_dev = dev;
461
462	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
463	    MTX_DEF);
464	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
465	NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
466
467	/* Map the device. */
468	pci_enable_busmaster(dev);
469	sc->ale_res_spec = ale_res_spec_mem;
470	sc->ale_irq_spec = ale_irq_spec_legacy;
471	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
472	if (error != 0) {
473		device_printf(dev, "cannot allocate memory resources.\n");
474		goto fail;
475	}
476
477	/* Set PHY address. */
478	sc->ale_phyaddr = ALE_PHY_ADDR;
479
480	/* Reset PHY. */
481	ale_phy_reset(sc);
482
483	/* Reset the ethernet controller. */
484	ale_reset(sc);
485
486	/* Get PCI and chip id/revision. */
487	sc->ale_rev = pci_get_revid(dev);
488	if (sc->ale_rev >= 0xF0) {
489		/* L2E Rev. B. AR8114 */
490		sc->ale_flags |= ALE_FLAG_FASTETHER;
491	} else {
492		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
493			/* L1E AR8121 */
494			sc->ale_flags |= ALE_FLAG_JUMBO;
495		} else {
496			/* L2E Rev. A. AR8113 */
497			sc->ale_flags |= ALE_FLAG_FASTETHER;
498		}
499	}
500	/*
501	 * All known controllers seems to require 4 bytes alignment
502	 * of Tx buffers to make Tx checksum offload with custom
503	 * checksum generation method work.
504	 */
505	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
506	/*
507	 * All known controllers seems to have issues on Rx checksum
508	 * offload for fragmented IP datagrams.
509	 */
510	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
511	/*
512	 * Don't use Tx CMB. It is known to cause RRS update failure
513	 * under certain circumstances. Typical phenomenon of the
514	 * issue would be unexpected sequence number encountered in
515	 * Rx handler.
516	 */
517	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
518	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
519	    MASTER_CHIP_REV_SHIFT;
520	if (bootverbose) {
521		device_printf(dev, "PCI device revision : 0x%04x\n",
522		    sc->ale_rev);
523		device_printf(dev, "Chip id/revision : 0x%04x\n",
524		    sc->ale_chip_rev);
525	}
526	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
527	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
528	/*
529	 * Uninitialized hardware returns an invalid chip id/revision
530	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
531	 */
532	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
533	    rxf_len == 0xFFFFFFF) {
534		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
535		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
536		    txf_len, rxf_len);
537		error = ENXIO;
538		goto fail;
539	}
540	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
541
542	/* Allocate IRQ resources. */
543	msixc = pci_msix_count(dev);
544	msic = pci_msi_count(dev);
545	if (bootverbose) {
546		device_printf(dev, "MSIX count : %d\n", msixc);
547		device_printf(dev, "MSI count : %d\n", msic);
548	}
549
550	/* Prefer MSIX over MSI. */
551	if (msix_disable == 0 || msi_disable == 0) {
552		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
553		    pci_alloc_msix(dev, &msixc) == 0) {
554			if (msixc == ALE_MSIX_MESSAGES) {
555				device_printf(dev, "Using %d MSIX messages.\n",
556				    msixc);
557				sc->ale_flags |= ALE_FLAG_MSIX;
558				sc->ale_irq_spec = ale_irq_spec_msix;
559			} else
560				pci_release_msi(dev);
561		}
562		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
563		    msic == ALE_MSI_MESSAGES &&
564		    pci_alloc_msi(dev, &msic) == 0) {
565			if (msic == ALE_MSI_MESSAGES) {
566				device_printf(dev, "Using %d MSI messages.\n",
567				    msic);
568				sc->ale_flags |= ALE_FLAG_MSI;
569				sc->ale_irq_spec = ale_irq_spec_msi;
570			} else
571				pci_release_msi(dev);
572		}
573	}
574
575	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
576	if (error != 0) {
577		device_printf(dev, "cannot allocate IRQ resources.\n");
578		goto fail;
579	}
580
581	/* Get DMA parameters from PCIe device control register. */
582	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
583		sc->ale_flags |= ALE_FLAG_PCIE;
584		burst = pci_read_config(dev, i + 0x08, 2);
585		/* Max read request size. */
586		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
587		    DMA_CFG_RD_BURST_SHIFT;
588		/* Max payload size. */
589		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
590		    DMA_CFG_WR_BURST_SHIFT;
591		if (bootverbose) {
592			device_printf(dev, "Read request size : %d bytes.\n",
593			    128 << ((burst >> 12) & 0x07));
594			device_printf(dev, "TLP payload size : %d bytes.\n",
595			    128 << ((burst >> 5) & 0x07));
596		}
597	} else {
598		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
599		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
600	}
601
602	/* Create device sysctl node. */
603	ale_sysctl_node(sc);
604
605	if ((error = ale_dma_alloc(sc)) != 0)
606		goto fail;
607
608	/* Load station address. */
609	ale_get_macaddr(sc);
610
611	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
612	if (ifp == NULL) {
613		device_printf(dev, "cannot allocate ifnet structure.\n");
614		error = ENXIO;
615		goto fail;
616	}
617
618	if_setsoftc(ifp, sc);
619	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
620	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
621	if_setioctlfn(ifp, ale_ioctl);
622	if_setstartfn(ifp, ale_start);
623	if_setinitfn(ifp, ale_init);
624	if_setsendqlen(ifp, ALE_TX_RING_CNT - 1);
625	if_setsendqready(ifp);
626	if_setcapabilities(ifp, IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4);
627	if_sethwassist(ifp, ALE_CSUM_FEATURES | CSUM_TSO);
628	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
629		sc->ale_flags |= ALE_FLAG_PMCAP;
630		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
631	}
632	if_setcapenable(ifp, if_getcapabilities(ifp));
633
634	/* Set up MII bus. */
635	error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
636	    ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
637	    MIIF_DOPAUSE);
638	if (error != 0) {
639		device_printf(dev, "attaching PHYs failed\n");
640		goto fail;
641	}
642
643	ether_ifattach(ifp, sc->ale_eaddr);
644
645	/* VLAN capability setup. */
646	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
647	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
648	if_setcapenable(ifp, if_getcapabilities(ifp));
649	/*
650	 * Even though controllers supported by ale(3) have Rx checksum
651	 * offload bug the workaround for fragmented frames seemed to
652	 * work so far. However it seems Rx checksum offload does not
653	 * work under certain conditions. So disable Rx checksum offload
654	 * until I find more clue about it but allow users to override it.
655	 */
656	if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
657
658	/* Tell the upper layer(s) we support long frames. */
659	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
660
661	/* Create local taskq. */
662	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
663	    taskqueue_thread_enqueue, &sc->ale_tq);
664	if (sc->ale_tq == NULL) {
665		device_printf(dev, "could not create taskqueue.\n");
666		ether_ifdetach(ifp);
667		error = ENXIO;
668		goto fail;
669	}
670	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
671	    device_get_nameunit(sc->ale_dev));
672
673	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
674		msic = ALE_MSIX_MESSAGES;
675	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
676		msic = ALE_MSI_MESSAGES;
677	else
678		msic = 1;
679	for (i = 0; i < msic; i++) {
680		error = bus_setup_intr(dev, sc->ale_irq[i],
681		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
682		    &sc->ale_intrhand[i]);
683		if (error != 0)
684			break;
685	}
686	if (error != 0) {
687		device_printf(dev, "could not set up interrupt handler.\n");
688		taskqueue_free(sc->ale_tq);
689		sc->ale_tq = NULL;
690		ether_ifdetach(ifp);
691		goto fail;
692	}
693
694fail:
695	if (error != 0)
696		ale_detach(dev);
697
698	return (error);
699}
700
701static int
702ale_detach(device_t dev)
703{
704	struct ale_softc *sc;
705	if_t ifp;
706	int i, msic;
707
708	sc = device_get_softc(dev);
709
710	ifp = sc->ale_ifp;
711	if (device_is_attached(dev)) {
712		ether_ifdetach(ifp);
713		ALE_LOCK(sc);
714		ale_stop(sc);
715		ALE_UNLOCK(sc);
716		callout_drain(&sc->ale_tick_ch);
717		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
718	}
719
720	if (sc->ale_tq != NULL) {
721		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
722		taskqueue_free(sc->ale_tq);
723		sc->ale_tq = NULL;
724	}
725
726	if (sc->ale_miibus != NULL) {
727		device_delete_child(dev, sc->ale_miibus);
728		sc->ale_miibus = NULL;
729	}
730	bus_generic_detach(dev);
731	ale_dma_free(sc);
732
733	if (ifp != NULL) {
734		if_free(ifp);
735		sc->ale_ifp = NULL;
736	}
737
738	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
739		msic = ALE_MSIX_MESSAGES;
740	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
741		msic = ALE_MSI_MESSAGES;
742	else
743		msic = 1;
744	for (i = 0; i < msic; i++) {
745		if (sc->ale_intrhand[i] != NULL) {
746			bus_teardown_intr(dev, sc->ale_irq[i],
747			    sc->ale_intrhand[i]);
748			sc->ale_intrhand[i] = NULL;
749		}
750	}
751
752	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
753	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
754		pci_release_msi(dev);
755	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
756	mtx_destroy(&sc->ale_mtx);
757
758	return (0);
759}
760
761#define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
762	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
763
764#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
765	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
766
767static void
768ale_sysctl_node(struct ale_softc *sc)
769{
770	struct sysctl_ctx_list *ctx;
771	struct sysctl_oid_list *child, *parent;
772	struct sysctl_oid *tree;
773	struct ale_hw_stats *stats;
774	int error;
775
776	stats = &sc->ale_stats;
777	ctx = device_get_sysctl_ctx(sc->ale_dev);
778	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
779
780	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
781	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod,
782	    0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
783	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
784	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod,
785	    0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
786	/* Pull in device tunables. */
787	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
788	error = resource_int_value(device_get_name(sc->ale_dev),
789	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
790	if (error == 0) {
791		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
792		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
793			device_printf(sc->ale_dev, "int_rx_mod value out of "
794			    "range; using default: %d\n",
795			    ALE_IM_RX_TIMER_DEFAULT);
796			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
797		}
798	}
799	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
800	error = resource_int_value(device_get_name(sc->ale_dev),
801	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
802	if (error == 0) {
803		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
804		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
805			device_printf(sc->ale_dev, "int_tx_mod value out of "
806			    "range; using default: %d\n",
807			    ALE_IM_TX_TIMER_DEFAULT);
808			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
809		}
810	}
811	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
812	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
813	    &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I",
814	    "max number of Rx events to process");
815	/* Pull in device tunables. */
816	sc->ale_process_limit = ALE_PROC_DEFAULT;
817	error = resource_int_value(device_get_name(sc->ale_dev),
818	    device_get_unit(sc->ale_dev), "process_limit",
819	    &sc->ale_process_limit);
820	if (error == 0) {
821		if (sc->ale_process_limit < ALE_PROC_MIN ||
822		    sc->ale_process_limit > ALE_PROC_MAX) {
823			device_printf(sc->ale_dev,
824			    "process_limit value out of range; "
825			    "using default: %d\n", ALE_PROC_DEFAULT);
826			sc->ale_process_limit = ALE_PROC_DEFAULT;
827		}
828	}
829
830	/* Misc statistics. */
831	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
832	    &stats->reset_brk_seq,
833	    "Controller resets due to broken Rx sequnce number");
834
835	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
836	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics");
837	parent = SYSCTL_CHILDREN(tree);
838
839	/* Rx statistics. */
840	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
841	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
842	child = SYSCTL_CHILDREN(tree);
843	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
844	    &stats->rx_frames, "Good frames");
845	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
846	    &stats->rx_bcast_frames, "Good broadcast frames");
847	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
848	    &stats->rx_mcast_frames, "Good multicast frames");
849	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
850	    &stats->rx_pause_frames, "Pause control frames");
851	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
852	    &stats->rx_control_frames, "Control frames");
853	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
854	    &stats->rx_crcerrs, "CRC errors");
855	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
856	    &stats->rx_lenerrs, "Frames with length mismatched");
857	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
858	    &stats->rx_bytes, "Good octets");
859	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
860	    &stats->rx_bcast_bytes, "Good broadcast octets");
861	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
862	    &stats->rx_mcast_bytes, "Good multicast octets");
863	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
864	    &stats->rx_runts, "Too short frames");
865	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
866	    &stats->rx_fragments, "Fragmented frames");
867	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
868	    &stats->rx_pkts_64, "64 bytes frames");
869	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
870	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
871	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
872	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
873	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
874	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
875	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
876	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
877	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
878	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
879	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
880	    &stats->rx_pkts_1519_max, "1519 to max frames");
881	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
882	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
883	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
884	    &stats->rx_fifo_oflows, "FIFO overflows");
885	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
886	    &stats->rx_rrs_errs, "Return status write-back errors");
887	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
888	    &stats->rx_alignerrs, "Alignment errors");
889	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
890	    &stats->rx_pkts_filtered,
891	    "Frames dropped due to address filtering");
892
893	/* Tx statistics. */
894	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
895	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
896	child = SYSCTL_CHILDREN(tree);
897	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
898	    &stats->tx_frames, "Good frames");
899	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
900	    &stats->tx_bcast_frames, "Good broadcast frames");
901	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
902	    &stats->tx_mcast_frames, "Good multicast frames");
903	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
904	    &stats->tx_pause_frames, "Pause control frames");
905	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
906	    &stats->tx_control_frames, "Control frames");
907	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
908	    &stats->tx_excess_defer, "Frames with excessive derferrals");
909	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
910	    &stats->tx_excess_defer, "Frames with derferrals");
911	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
912	    &stats->tx_bytes, "Good octets");
913	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
914	    &stats->tx_bcast_bytes, "Good broadcast octets");
915	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
916	    &stats->tx_mcast_bytes, "Good multicast octets");
917	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
918	    &stats->tx_pkts_64, "64 bytes frames");
919	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
920	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
921	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
922	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
923	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
924	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
925	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
926	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
927	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
928	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
929	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
930	    &stats->tx_pkts_1519_max, "1519 to max frames");
931	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
932	    &stats->tx_single_colls, "Single collisions");
933	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
934	    &stats->tx_multi_colls, "Multiple collisions");
935	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
936	    &stats->tx_late_colls, "Late collisions");
937	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
938	    &stats->tx_excess_colls, "Excessive collisions");
939	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
940	    &stats->tx_underrun, "FIFO underruns");
941	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
942	    &stats->tx_desc_underrun, "Descriptor write-back errors");
943	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
944	    &stats->tx_lenerrs, "Frames with length mismatched");
945	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
946	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
947}
948
949#undef ALE_SYSCTL_STAT_ADD32
950#undef ALE_SYSCTL_STAT_ADD64
951
952struct ale_dmamap_arg {
953	bus_addr_t	ale_busaddr;
954};
955
956static void
957ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
958{
959	struct ale_dmamap_arg *ctx;
960
961	if (error != 0)
962		return;
963
964	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
965
966	ctx = (struct ale_dmamap_arg *)arg;
967	ctx->ale_busaddr = segs[0].ds_addr;
968}
969
970/*
971 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
972 * which specifies high address region of DMA blocks. Therefore these
973 * blocks should have the same high address of given 4GB address
974 * space(i.e. crossing 4GB boundary is not allowed).
975 */
976static int
977ale_check_boundary(struct ale_softc *sc)
978{
979	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
980	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
981
982	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
983	    sc->ale_pagesize;
984	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
985	    sc->ale_pagesize;
986	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
987	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
988	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
989	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
990
991	if ((ALE_ADDR_HI(tx_ring_end) !=
992	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
993	    (ALE_ADDR_HI(rx_page_end[0]) !=
994	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
995	    (ALE_ADDR_HI(rx_page_end[1]) !=
996	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
997	    (ALE_ADDR_HI(tx_cmb_end) !=
998	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
999	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
1000	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1001	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
1002	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1003		return (EFBIG);
1004
1005	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1006	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1007	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1008	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1009	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1010		return (EFBIG);
1011
1012	return (0);
1013}
1014
1015static int
1016ale_dma_alloc(struct ale_softc *sc)
1017{
1018	struct ale_txdesc *txd;
1019	bus_addr_t lowaddr;
1020	struct ale_dmamap_arg ctx;
1021	int error, guard_size, i;
1022
1023	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1024		guard_size = ALE_JUMBO_FRAMELEN;
1025	else
1026		guard_size = ALE_MAX_FRAMELEN;
1027	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1028	    ALE_RX_PAGE_ALIGN);
1029	lowaddr = BUS_SPACE_MAXADDR;
1030again:
1031	/* Create parent DMA tag. */
1032	error = bus_dma_tag_create(
1033	    bus_get_dma_tag(sc->ale_dev), /* parent */
1034	    1, 0,			/* alignment, boundary */
1035	    lowaddr,			/* lowaddr */
1036	    BUS_SPACE_MAXADDR,		/* highaddr */
1037	    NULL, NULL,			/* filter, filterarg */
1038	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1039	    0,				/* nsegments */
1040	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1041	    0,				/* flags */
1042	    NULL, NULL,			/* lockfunc, lockarg */
1043	    &sc->ale_cdata.ale_parent_tag);
1044	if (error != 0) {
1045		device_printf(sc->ale_dev,
1046		    "could not create parent DMA tag.\n");
1047		goto fail;
1048	}
1049
1050	/* Create DMA tag for Tx descriptor ring. */
1051	error = bus_dma_tag_create(
1052	    sc->ale_cdata.ale_parent_tag, /* parent */
1053	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1054	    BUS_SPACE_MAXADDR,		/* lowaddr */
1055	    BUS_SPACE_MAXADDR,		/* highaddr */
1056	    NULL, NULL,			/* filter, filterarg */
1057	    ALE_TX_RING_SZ,		/* maxsize */
1058	    1,				/* nsegments */
1059	    ALE_TX_RING_SZ,		/* maxsegsize */
1060	    0,				/* flags */
1061	    NULL, NULL,			/* lockfunc, lockarg */
1062	    &sc->ale_cdata.ale_tx_ring_tag);
1063	if (error != 0) {
1064		device_printf(sc->ale_dev,
1065		    "could not create Tx ring DMA tag.\n");
1066		goto fail;
1067	}
1068
1069	/* Create DMA tag for Rx pages. */
1070	for (i = 0; i < ALE_RX_PAGES; i++) {
1071		error = bus_dma_tag_create(
1072		    sc->ale_cdata.ale_parent_tag, /* parent */
1073		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1074		    BUS_SPACE_MAXADDR,		/* lowaddr */
1075		    BUS_SPACE_MAXADDR,		/* highaddr */
1076		    NULL, NULL,			/* filter, filterarg */
1077		    sc->ale_pagesize,		/* maxsize */
1078		    1,				/* nsegments */
1079		    sc->ale_pagesize,		/* maxsegsize */
1080		    0,				/* flags */
1081		    NULL, NULL,			/* lockfunc, lockarg */
1082		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1083		if (error != 0) {
1084			device_printf(sc->ale_dev,
1085			    "could not create Rx page %d DMA tag.\n", i);
1086			goto fail;
1087		}
1088	}
1089
1090	/* Create DMA tag for Tx coalescing message block. */
1091	error = bus_dma_tag_create(
1092	    sc->ale_cdata.ale_parent_tag, /* parent */
1093	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1094	    BUS_SPACE_MAXADDR,		/* lowaddr */
1095	    BUS_SPACE_MAXADDR,		/* highaddr */
1096	    NULL, NULL,			/* filter, filterarg */
1097	    ALE_TX_CMB_SZ,		/* maxsize */
1098	    1,				/* nsegments */
1099	    ALE_TX_CMB_SZ,		/* maxsegsize */
1100	    0,				/* flags */
1101	    NULL, NULL,			/* lockfunc, lockarg */
1102	    &sc->ale_cdata.ale_tx_cmb_tag);
1103	if (error != 0) {
1104		device_printf(sc->ale_dev,
1105		    "could not create Tx CMB DMA tag.\n");
1106		goto fail;
1107	}
1108
1109	/* Create DMA tag for Rx coalescing message block. */
1110	for (i = 0; i < ALE_RX_PAGES; i++) {
1111		error = bus_dma_tag_create(
1112		    sc->ale_cdata.ale_parent_tag, /* parent */
1113		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1114		    BUS_SPACE_MAXADDR,		/* lowaddr */
1115		    BUS_SPACE_MAXADDR,		/* highaddr */
1116		    NULL, NULL,			/* filter, filterarg */
1117		    ALE_RX_CMB_SZ,		/* maxsize */
1118		    1,				/* nsegments */
1119		    ALE_RX_CMB_SZ,		/* maxsegsize */
1120		    0,				/* flags */
1121		    NULL, NULL,			/* lockfunc, lockarg */
1122		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1123		if (error != 0) {
1124			device_printf(sc->ale_dev,
1125			    "could not create Rx page %d CMB DMA tag.\n", i);
1126			goto fail;
1127		}
1128	}
1129
1130	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1131	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1132	    (void **)&sc->ale_cdata.ale_tx_ring,
1133	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1134	    &sc->ale_cdata.ale_tx_ring_map);
1135	if (error != 0) {
1136		device_printf(sc->ale_dev,
1137		    "could not allocate DMA'able memory for Tx ring.\n");
1138		goto fail;
1139	}
1140	ctx.ale_busaddr = 0;
1141	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1142	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1143	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1144	if (error != 0 || ctx.ale_busaddr == 0) {
1145		device_printf(sc->ale_dev,
1146		    "could not load DMA'able memory for Tx ring.\n");
1147		goto fail;
1148	}
1149	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1150
1151	/* Rx pages. */
1152	for (i = 0; i < ALE_RX_PAGES; i++) {
1153		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1154		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1155		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1156		    &sc->ale_cdata.ale_rx_page[i].page_map);
1157		if (error != 0) {
1158			device_printf(sc->ale_dev,
1159			    "could not allocate DMA'able memory for "
1160			    "Rx page %d.\n", i);
1161			goto fail;
1162		}
1163		ctx.ale_busaddr = 0;
1164		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1165		    sc->ale_cdata.ale_rx_page[i].page_map,
1166		    sc->ale_cdata.ale_rx_page[i].page_addr,
1167		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1168		if (error != 0 || ctx.ale_busaddr == 0) {
1169			device_printf(sc->ale_dev,
1170			    "could not load DMA'able memory for "
1171			    "Rx page %d.\n", i);
1172			goto fail;
1173		}
1174		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1175	}
1176
1177	/* Tx CMB. */
1178	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1179	    (void **)&sc->ale_cdata.ale_tx_cmb,
1180	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1181	    &sc->ale_cdata.ale_tx_cmb_map);
1182	if (error != 0) {
1183		device_printf(sc->ale_dev,
1184		    "could not allocate DMA'able memory for Tx CMB.\n");
1185		goto fail;
1186	}
1187	ctx.ale_busaddr = 0;
1188	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1189	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1190	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1191	if (error != 0 || ctx.ale_busaddr == 0) {
1192		device_printf(sc->ale_dev,
1193		    "could not load DMA'able memory for Tx CMB.\n");
1194		goto fail;
1195	}
1196	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1197
1198	/* Rx CMB. */
1199	for (i = 0; i < ALE_RX_PAGES; i++) {
1200		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1201		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1202		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1203		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1204		if (error != 0) {
1205			device_printf(sc->ale_dev, "could not allocate "
1206			    "DMA'able memory for Rx page %d CMB.\n", i);
1207			goto fail;
1208		}
1209		ctx.ale_busaddr = 0;
1210		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1211		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1212		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1213		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1214		if (error != 0 || ctx.ale_busaddr == 0) {
1215			device_printf(sc->ale_dev, "could not load DMA'able "
1216			    "memory for Rx page %d CMB.\n", i);
1217			goto fail;
1218		}
1219		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1220	}
1221
1222	/*
1223	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1224	 * high address region of 64bit DMA address space.
1225	 */
1226	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1227	    (error = ale_check_boundary(sc)) != 0) {
1228		device_printf(sc->ale_dev, "4GB boundary crossed, "
1229		    "switching to 32bit DMA addressing mode.\n");
1230		ale_dma_free(sc);
1231		/*
1232		 * Limit max allowable DMA address space to 32bit
1233		 * and try again.
1234		 */
1235		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1236		goto again;
1237	}
1238
1239	/*
1240	 * Create Tx buffer parent tag.
1241	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1242	 * needs separate parent DMA tag as parent DMA address space
1243	 * could be restricted to be within 32bit address space by
1244	 * 4GB boundary crossing.
1245	 */
1246	error = bus_dma_tag_create(
1247	    bus_get_dma_tag(sc->ale_dev), /* parent */
1248	    1, 0,			/* alignment, boundary */
1249	    BUS_SPACE_MAXADDR,		/* lowaddr */
1250	    BUS_SPACE_MAXADDR,		/* highaddr */
1251	    NULL, NULL,			/* filter, filterarg */
1252	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1253	    0,				/* nsegments */
1254	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1255	    0,				/* flags */
1256	    NULL, NULL,			/* lockfunc, lockarg */
1257	    &sc->ale_cdata.ale_buffer_tag);
1258	if (error != 0) {
1259		device_printf(sc->ale_dev,
1260		    "could not create parent buffer DMA tag.\n");
1261		goto fail;
1262	}
1263
1264	/* Create DMA tag for Tx buffers. */
1265	error = bus_dma_tag_create(
1266	    sc->ale_cdata.ale_buffer_tag, /* parent */
1267	    1, 0,			/* alignment, boundary */
1268	    BUS_SPACE_MAXADDR,		/* lowaddr */
1269	    BUS_SPACE_MAXADDR,		/* highaddr */
1270	    NULL, NULL,			/* filter, filterarg */
1271	    ALE_TSO_MAXSIZE,		/* maxsize */
1272	    ALE_MAXTXSEGS,		/* nsegments */
1273	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1274	    0,				/* flags */
1275	    NULL, NULL,			/* lockfunc, lockarg */
1276	    &sc->ale_cdata.ale_tx_tag);
1277	if (error != 0) {
1278		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1279		goto fail;
1280	}
1281
1282	/* Create DMA maps for Tx buffers. */
1283	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1284		txd = &sc->ale_cdata.ale_txdesc[i];
1285		txd->tx_m = NULL;
1286		txd->tx_dmamap = NULL;
1287		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1288		    &txd->tx_dmamap);
1289		if (error != 0) {
1290			device_printf(sc->ale_dev,
1291			    "could not create Tx dmamap.\n");
1292			goto fail;
1293		}
1294	}
1295
1296fail:
1297	return (error);
1298}
1299
1300static void
1301ale_dma_free(struct ale_softc *sc)
1302{
1303	struct ale_txdesc *txd;
1304	int i;
1305
1306	/* Tx buffers. */
1307	if (sc->ale_cdata.ale_tx_tag != NULL) {
1308		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1309			txd = &sc->ale_cdata.ale_txdesc[i];
1310			if (txd->tx_dmamap != NULL) {
1311				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1312				    txd->tx_dmamap);
1313				txd->tx_dmamap = NULL;
1314			}
1315		}
1316		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1317		sc->ale_cdata.ale_tx_tag = NULL;
1318	}
1319	/* Tx descriptor ring. */
1320	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1321		if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1322			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1323			    sc->ale_cdata.ale_tx_ring_map);
1324		if (sc->ale_cdata.ale_tx_ring != NULL)
1325			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1326			    sc->ale_cdata.ale_tx_ring,
1327			    sc->ale_cdata.ale_tx_ring_map);
1328		sc->ale_cdata.ale_tx_ring_paddr = 0;
1329		sc->ale_cdata.ale_tx_ring = NULL;
1330		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1331		sc->ale_cdata.ale_tx_ring_tag = NULL;
1332	}
1333	/* Rx page block. */
1334	for (i = 0; i < ALE_RX_PAGES; i++) {
1335		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1336			if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1337				bus_dmamap_unload(
1338				    sc->ale_cdata.ale_rx_page[i].page_tag,
1339				    sc->ale_cdata.ale_rx_page[i].page_map);
1340			if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1341				bus_dmamem_free(
1342				    sc->ale_cdata.ale_rx_page[i].page_tag,
1343				    sc->ale_cdata.ale_rx_page[i].page_addr,
1344				    sc->ale_cdata.ale_rx_page[i].page_map);
1345			sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1346			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1347			bus_dma_tag_destroy(
1348			    sc->ale_cdata.ale_rx_page[i].page_tag);
1349			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1350		}
1351	}
1352	/* Rx CMB. */
1353	for (i = 0; i < ALE_RX_PAGES; i++) {
1354		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1355			if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1356				bus_dmamap_unload(
1357				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1358				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1359			if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1360				bus_dmamem_free(
1361				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1362				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1363				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1364			sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1365			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1366			bus_dma_tag_destroy(
1367			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1368			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1369		}
1370	}
1371	/* Tx CMB. */
1372	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1373		if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1374			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1375			    sc->ale_cdata.ale_tx_cmb_map);
1376		if (sc->ale_cdata.ale_tx_cmb != NULL)
1377			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1378			    sc->ale_cdata.ale_tx_cmb,
1379			    sc->ale_cdata.ale_tx_cmb_map);
1380		sc->ale_cdata.ale_tx_cmb_paddr = 0;
1381		sc->ale_cdata.ale_tx_cmb = NULL;
1382		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1383		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1384	}
1385	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1386		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1387		sc->ale_cdata.ale_buffer_tag = NULL;
1388	}
1389	if (sc->ale_cdata.ale_parent_tag != NULL) {
1390		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1391		sc->ale_cdata.ale_parent_tag = NULL;
1392	}
1393}
1394
1395static int
1396ale_shutdown(device_t dev)
1397{
1398
1399	return (ale_suspend(dev));
1400}
1401
1402/*
1403 * Note, this driver resets the link speed to 10/100Mbps by
1404 * restarting auto-negotiation in suspend/shutdown phase but we
1405 * don't know whether that auto-negotiation would succeed or not
1406 * as driver has no control after powering off/suspend operation.
1407 * If the renegotiation fail WOL may not work. Running at 1Gbps
1408 * will draw more power than 375mA at 3.3V which is specified in
1409 * PCI specification and that would result in complete
1410 * shutdowning power to ethernet controller.
1411 *
1412 * TODO
1413 * Save current negotiated media speed/duplex/flow-control to
1414 * softc and restore the same link again after resuming. PHY
1415 * handling such as power down/resetting to 100Mbps may be better
1416 * handled in suspend method in phy driver.
1417 */
1418static void
1419ale_setlinkspeed(struct ale_softc *sc)
1420{
1421	struct mii_data *mii;
1422	int aneg, i;
1423
1424	mii = device_get_softc(sc->ale_miibus);
1425	mii_pollstat(mii);
1426	aneg = 0;
1427	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1428	    (IFM_ACTIVE | IFM_AVALID)) {
1429		switch IFM_SUBTYPE(mii->mii_media_active) {
1430		case IFM_10_T:
1431		case IFM_100_TX:
1432			return;
1433		case IFM_1000_T:
1434			aneg++;
1435			break;
1436		default:
1437			break;
1438		}
1439	}
1440	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1441	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1442	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1443	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1444	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1445	DELAY(1000);
1446	if (aneg != 0) {
1447		/*
1448		 * Poll link state until ale(4) get a 10/100Mbps link.
1449		 */
1450		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1451			mii_pollstat(mii);
1452			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1453			    == (IFM_ACTIVE | IFM_AVALID)) {
1454				switch (IFM_SUBTYPE(
1455				    mii->mii_media_active)) {
1456				case IFM_10_T:
1457				case IFM_100_TX:
1458					ale_mac_config(sc);
1459					return;
1460				default:
1461					break;
1462				}
1463			}
1464			ALE_UNLOCK(sc);
1465			pause("alelnk", hz);
1466			ALE_LOCK(sc);
1467		}
1468		if (i == MII_ANEGTICKS_GIGE)
1469			device_printf(sc->ale_dev,
1470			    "establishing a link failed, WOL may not work!");
1471	}
1472	/*
1473	 * No link, force MAC to have 100Mbps, full-duplex link.
1474	 * This is the last resort and may/may not work.
1475	 */
1476	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1477	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1478	ale_mac_config(sc);
1479}
1480
1481static void
1482ale_setwol(struct ale_softc *sc)
1483{
1484	if_t ifp;
1485	uint32_t reg, pmcs;
1486	uint16_t pmstat;
1487	int pmc;
1488
1489	ALE_LOCK_ASSERT(sc);
1490
1491	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1492		/* Disable WOL. */
1493		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1494		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1495		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1496		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1497		/* Force PHY power down. */
1498		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1499		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1500		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1501		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1502		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1503		return;
1504	}
1505
1506	ifp = sc->ale_ifp;
1507	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1508		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1509			ale_setlinkspeed(sc);
1510	}
1511
1512	pmcs = 0;
1513	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1514		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1515	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1516	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1517	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1518	    MAC_CFG_BCAST);
1519	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1520		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1521	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1522		reg |= MAC_CFG_RX_ENB;
1523	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1524
1525	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1526		/* WOL disabled, PHY power down. */
1527		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1528		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1529		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1530		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1531		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1532		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1533		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1534		    GPHY_CTRL_PWDOWN_HW);
1535	}
1536	/* Request PME. */
1537	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1538	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1539	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1540		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1541	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1542}
1543
1544static int
1545ale_suspend(device_t dev)
1546{
1547	struct ale_softc *sc;
1548
1549	sc = device_get_softc(dev);
1550
1551	ALE_LOCK(sc);
1552	ale_stop(sc);
1553	ale_setwol(sc);
1554	ALE_UNLOCK(sc);
1555
1556	return (0);
1557}
1558
1559static int
1560ale_resume(device_t dev)
1561{
1562	struct ale_softc *sc;
1563	if_t ifp;
1564	int pmc;
1565	uint16_t pmstat;
1566
1567	sc = device_get_softc(dev);
1568
1569	ALE_LOCK(sc);
1570	if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1571		/* Disable PME and clear PME status. */
1572		pmstat = pci_read_config(sc->ale_dev,
1573		    pmc + PCIR_POWER_STATUS, 2);
1574		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1575			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1576			pci_write_config(sc->ale_dev,
1577			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1578		}
1579	}
1580	/* Reset PHY. */
1581	ale_phy_reset(sc);
1582	ifp = sc->ale_ifp;
1583	if ((if_getflags(ifp) & IFF_UP) != 0) {
1584		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1585		ale_init_locked(sc);
1586	}
1587	ALE_UNLOCK(sc);
1588
1589	return (0);
1590}
1591
1592static int
1593ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1594{
1595	struct ale_txdesc *txd, *txd_last;
1596	struct tx_desc *desc;
1597	struct mbuf *m;
1598	struct ip *ip;
1599	struct tcphdr *tcp;
1600	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1601	bus_dmamap_t map;
1602	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1603	int error, i, nsegs, prod, si;
1604
1605	ALE_LOCK_ASSERT(sc);
1606
1607	M_ASSERTPKTHDR((*m_head));
1608
1609	m = *m_head;
1610	ip = NULL;
1611	tcp = NULL;
1612	cflags = vtag = 0;
1613	ip_off = poff = 0;
1614	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1615		/*
1616		 * AR81xx requires offset of TCP/UDP payload in its Tx
1617		 * descriptor to perform hardware Tx checksum offload.
1618		 * Additionally, TSO requires IP/TCP header size and
1619		 * modification of IP/TCP header in order to make TSO
1620		 * engine work. This kind of operation takes many CPU
1621		 * cycles on FreeBSD so fast host CPU is required to
1622		 * get smooth TSO performance.
1623		 */
1624		struct ether_header *eh;
1625
1626		if (M_WRITABLE(m) == 0) {
1627			/* Get a writable copy. */
1628			m = m_dup(*m_head, M_NOWAIT);
1629			/* Release original mbufs. */
1630			m_freem(*m_head);
1631			if (m == NULL) {
1632				*m_head = NULL;
1633				return (ENOBUFS);
1634			}
1635			*m_head = m;
1636		}
1637
1638		/*
1639		 * Buggy-controller requires 4 byte aligned Tx buffer
1640		 * to make custom checksum offload work.
1641		 */
1642		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1643		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1644		    (mtod(m, intptr_t) & 3) != 0) {
1645			m = m_defrag(*m_head, M_NOWAIT);
1646			if (m == NULL) {
1647				m_freem(*m_head);
1648				*m_head = NULL;
1649				return (ENOBUFS);
1650			}
1651			*m_head = m;
1652		}
1653
1654		ip_off = sizeof(struct ether_header);
1655		m = m_pullup(m, ip_off);
1656		if (m == NULL) {
1657			*m_head = NULL;
1658			return (ENOBUFS);
1659		}
1660		eh = mtod(m, struct ether_header *);
1661		/*
1662		 * Check if hardware VLAN insertion is off.
1663		 * Additional check for LLC/SNAP frame?
1664		 */
1665		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1666			ip_off = sizeof(struct ether_vlan_header);
1667			m = m_pullup(m, ip_off);
1668			if (m == NULL) {
1669				*m_head = NULL;
1670				return (ENOBUFS);
1671			}
1672		}
1673		m = m_pullup(m, ip_off + sizeof(struct ip));
1674		if (m == NULL) {
1675			*m_head = NULL;
1676			return (ENOBUFS);
1677		}
1678		ip = (struct ip *)(mtod(m, char *) + ip_off);
1679		poff = ip_off + (ip->ip_hl << 2);
1680		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1681			/*
1682			 * XXX
1683			 * AR81xx requires the first descriptor should
1684			 * not include any TCP playload for TSO case.
1685			 * (i.e. ethernet header + IP + TCP header only)
1686			 * m_pullup(9) above will ensure this too.
1687			 * However it's not correct if the first mbuf
1688			 * of the chain does not use cluster.
1689			 */
1690			m = m_pullup(m, poff + sizeof(struct tcphdr));
1691			if (m == NULL) {
1692				*m_head = NULL;
1693				return (ENOBUFS);
1694			}
1695			ip = (struct ip *)(mtod(m, char *) + ip_off);
1696			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1697			m = m_pullup(m, poff + (tcp->th_off << 2));
1698			if (m == NULL) {
1699				*m_head = NULL;
1700				return (ENOBUFS);
1701			}
1702			/*
1703			 * AR81xx requires IP/TCP header size and offset as
1704			 * well as TCP pseudo checksum which complicates
1705			 * TSO configuration. I guess this comes from the
1706			 * adherence to Microsoft NDIS Large Send
1707			 * specification which requires insertion of
1708			 * pseudo checksum by upper stack. The pseudo
1709			 * checksum that NDIS refers to doesn't include
1710			 * TCP payload length so ale(4) should recompute
1711			 * the pseudo checksum here. Hopefully this wouldn't
1712			 * be much burden on modern CPUs.
1713			 * Reset IP checksum and recompute TCP pseudo
1714			 * checksum as NDIS specification said.
1715			 */
1716			ip->ip_sum = 0;
1717			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1718			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1719		}
1720		*m_head = m;
1721	}
1722
1723	si = prod = sc->ale_cdata.ale_tx_prod;
1724	txd = &sc->ale_cdata.ale_txdesc[prod];
1725	txd_last = txd;
1726	map = txd->tx_dmamap;
1727
1728	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1729	    *m_head, txsegs, &nsegs, 0);
1730	if (error == EFBIG) {
1731		m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1732		if (m == NULL) {
1733			m_freem(*m_head);
1734			*m_head = NULL;
1735			return (ENOMEM);
1736		}
1737		*m_head = m;
1738		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1739		    *m_head, txsegs, &nsegs, 0);
1740		if (error != 0) {
1741			m_freem(*m_head);
1742			*m_head = NULL;
1743			return (error);
1744		}
1745	} else if (error != 0)
1746		return (error);
1747	if (nsegs == 0) {
1748		m_freem(*m_head);
1749		*m_head = NULL;
1750		return (EIO);
1751	}
1752
1753	/* Check descriptor overrun. */
1754	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1755		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1756		return (ENOBUFS);
1757	}
1758	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1759
1760	m = *m_head;
1761	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1762		/* Request TSO and set MSS. */
1763		cflags |= ALE_TD_TSO;
1764		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1765		/* Set IP/TCP header size. */
1766		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1767		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1768	} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1769		/*
1770		 * AR81xx supports Tx custom checksum offload feature
1771		 * that offloads single 16bit checksum computation.
1772		 * So you can choose one among IP, TCP and UDP.
1773		 * Normally driver sets checksum start/insertion
1774		 * position from the information of TCP/UDP frame as
1775		 * TCP/UDP checksum takes more time than that of IP.
1776		 * However it seems that custom checksum offload
1777		 * requires 4 bytes aligned Tx buffers due to hardware
1778		 * bug.
1779		 * AR81xx also supports explicit Tx checksum computation
1780		 * if it is told that the size of IP header and TCP
1781		 * header(for UDP, the header size does not matter
1782		 * because it's fixed length). However with this scheme
1783		 * TSO does not work so you have to choose one either
1784		 * TSO or explicit Tx checksum offload. I chosen TSO
1785		 * plus custom checksum offload with work-around which
1786		 * will cover most common usage for this consumer
1787		 * ethernet controller. The work-around takes a lot of
1788		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1789		 * boundary, though.
1790		 */
1791		cflags |= ALE_TD_CXSUM;
1792		/* Set checksum start offset. */
1793		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1794		/* Set checksum insertion position of TCP/UDP. */
1795		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1796		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1797	}
1798
1799	/* Configure VLAN hardware tag insertion. */
1800	if ((m->m_flags & M_VLANTAG) != 0) {
1801		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1802		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1803		cflags |= ALE_TD_INSERT_VLAN_TAG;
1804	}
1805
1806	i = 0;
1807	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1808		/*
1809		 * Make sure the first fragment contains
1810		 * only ethernet and IP/TCP header with options.
1811		 */
1812		hdrlen =  poff + (tcp->th_off << 2);
1813		desc = &sc->ale_cdata.ale_tx_ring[prod];
1814		desc->addr = htole64(txsegs[i].ds_addr);
1815		desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1816		desc->flags = htole32(cflags);
1817		sc->ale_cdata.ale_tx_cnt++;
1818		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1819		if (m->m_len - hdrlen > 0) {
1820			/* Handle remaining payload of the first fragment. */
1821			desc = &sc->ale_cdata.ale_tx_ring[prod];
1822			desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1823			desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1824			    vtag);
1825			desc->flags = htole32(cflags);
1826			sc->ale_cdata.ale_tx_cnt++;
1827			ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1828		}
1829		i = 1;
1830	}
1831	for (; i < nsegs; i++) {
1832		desc = &sc->ale_cdata.ale_tx_ring[prod];
1833		desc->addr = htole64(txsegs[i].ds_addr);
1834		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1835		desc->flags = htole32(cflags);
1836		sc->ale_cdata.ale_tx_cnt++;
1837		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1838	}
1839	/* Update producer index. */
1840	sc->ale_cdata.ale_tx_prod = prod;
1841	/* Set TSO header on the first descriptor. */
1842	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1843		desc = &sc->ale_cdata.ale_tx_ring[si];
1844		desc->flags |= htole32(ALE_TD_TSO_HDR);
1845	}
1846
1847	/* Finally set EOP on the last descriptor. */
1848	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1849	desc = &sc->ale_cdata.ale_tx_ring[prod];
1850	desc->flags |= htole32(ALE_TD_EOP);
1851
1852	/* Swap dmamap of the first and the last. */
1853	txd = &sc->ale_cdata.ale_txdesc[prod];
1854	map = txd_last->tx_dmamap;
1855	txd_last->tx_dmamap = txd->tx_dmamap;
1856	txd->tx_dmamap = map;
1857	txd->tx_m = m;
1858
1859	/* Sync descriptors. */
1860	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1861	    sc->ale_cdata.ale_tx_ring_map,
1862	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1863
1864	return (0);
1865}
1866
1867static void
1868ale_start(if_t ifp)
1869{
1870        struct ale_softc *sc;
1871
1872	sc = if_getsoftc(ifp);
1873	ALE_LOCK(sc);
1874	ale_start_locked(ifp);
1875	ALE_UNLOCK(sc);
1876}
1877
1878static void
1879ale_start_locked(if_t ifp)
1880{
1881        struct ale_softc *sc;
1882        struct mbuf *m_head;
1883	int enq;
1884
1885	sc = if_getsoftc(ifp);
1886
1887	ALE_LOCK_ASSERT(sc);
1888
1889	/* Reclaim transmitted frames. */
1890	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1891		ale_txeof(sc);
1892
1893	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1894	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1895		return;
1896
1897	for (enq = 0; !if_sendq_empty(ifp); ) {
1898		m_head = if_dequeue(ifp);
1899		if (m_head == NULL)
1900			break;
1901		/*
1902		 * Pack the data into the transmit ring. If we
1903		 * don't have room, set the OACTIVE flag and wait
1904		 * for the NIC to drain the ring.
1905		 */
1906		if (ale_encap(sc, &m_head)) {
1907			if (m_head == NULL)
1908				break;
1909			if_sendq_prepend(ifp, m_head);
1910			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1911			break;
1912		}
1913
1914		enq++;
1915		/*
1916		 * If there's a BPF listener, bounce a copy of this frame
1917		 * to him.
1918		 */
1919		ETHER_BPF_MTAP(ifp, m_head);
1920	}
1921
1922	if (enq > 0) {
1923		/* Kick. */
1924		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1925		    sc->ale_cdata.ale_tx_prod);
1926		/* Set a timeout in case the chip goes out to lunch. */
1927		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1928	}
1929}
1930
1931static void
1932ale_watchdog(struct ale_softc *sc)
1933{
1934	if_t ifp;
1935
1936	ALE_LOCK_ASSERT(sc);
1937
1938	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1939		return;
1940
1941	ifp = sc->ale_ifp;
1942	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1943		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1944		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1945		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1946		ale_init_locked(sc);
1947		return;
1948	}
1949	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1950	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1951	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1952	ale_init_locked(sc);
1953	if (!if_sendq_empty(ifp))
1954		ale_start_locked(ifp);
1955}
1956
1957static int
1958ale_ioctl(if_t ifp, u_long cmd, caddr_t data)
1959{
1960	struct ale_softc *sc;
1961	struct ifreq *ifr;
1962	struct mii_data *mii;
1963	int error, mask;
1964
1965	sc = if_getsoftc(ifp);
1966	ifr = (struct ifreq *)data;
1967	error = 0;
1968	switch (cmd) {
1969	case SIOCSIFMTU:
1970		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1971		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1972		    ifr->ifr_mtu > ETHERMTU))
1973			error = EINVAL;
1974		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1975			ALE_LOCK(sc);
1976			if_setmtu(ifp, ifr->ifr_mtu);
1977			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1978				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1979				ale_init_locked(sc);
1980			}
1981			ALE_UNLOCK(sc);
1982		}
1983		break;
1984	case SIOCSIFFLAGS:
1985		ALE_LOCK(sc);
1986		if ((if_getflags(ifp) & IFF_UP) != 0) {
1987			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1988				if (((if_getflags(ifp) ^ sc->ale_if_flags)
1989				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1990					ale_rxfilter(sc);
1991			} else {
1992				ale_init_locked(sc);
1993			}
1994		} else {
1995			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1996				ale_stop(sc);
1997		}
1998		sc->ale_if_flags = if_getflags(ifp);
1999		ALE_UNLOCK(sc);
2000		break;
2001	case SIOCADDMULTI:
2002	case SIOCDELMULTI:
2003		ALE_LOCK(sc);
2004		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2005			ale_rxfilter(sc);
2006		ALE_UNLOCK(sc);
2007		break;
2008	case SIOCSIFMEDIA:
2009	case SIOCGIFMEDIA:
2010		mii = device_get_softc(sc->ale_miibus);
2011		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2012		break;
2013	case SIOCSIFCAP:
2014		ALE_LOCK(sc);
2015		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2016		if ((mask & IFCAP_TXCSUM) != 0 &&
2017		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2018			if_togglecapenable(ifp, IFCAP_TXCSUM);
2019			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2020				if_sethwassistbits(ifp, ALE_CSUM_FEATURES, 0);
2021			else
2022				if_sethwassistbits(ifp, 0, ALE_CSUM_FEATURES);
2023		}
2024		if ((mask & IFCAP_RXCSUM) != 0 &&
2025		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
2026			if_togglecapenable(ifp, IFCAP_RXCSUM);
2027		if ((mask & IFCAP_TSO4) != 0 &&
2028		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2029			if_togglecapenable(ifp, IFCAP_TSO4);
2030			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2031				if_sethwassistbits(ifp, CSUM_TSO, 0);
2032			else
2033				if_sethwassistbits(ifp, 0, CSUM_TSO);
2034		}
2035
2036		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2037		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
2038			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2039		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2040		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2041			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2042		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2043		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2044			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2045		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2046		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2047			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2048		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2049		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2050			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2051			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2052				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
2053			ale_rxvlan(sc);
2054		}
2055		ALE_UNLOCK(sc);
2056		VLAN_CAPABILITIES(ifp);
2057		break;
2058	default:
2059		error = ether_ioctl(ifp, cmd, data);
2060		break;
2061	}
2062
2063	return (error);
2064}
2065
2066static void
2067ale_mac_config(struct ale_softc *sc)
2068{
2069	struct mii_data *mii;
2070	uint32_t reg;
2071
2072	ALE_LOCK_ASSERT(sc);
2073
2074	mii = device_get_softc(sc->ale_miibus);
2075	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2076	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2077	    MAC_CFG_SPEED_MASK);
2078	/* Reprogram MAC with resolved speed/duplex. */
2079	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2080	case IFM_10_T:
2081	case IFM_100_TX:
2082		reg |= MAC_CFG_SPEED_10_100;
2083		break;
2084	case IFM_1000_T:
2085		reg |= MAC_CFG_SPEED_1000;
2086		break;
2087	}
2088	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2089		reg |= MAC_CFG_FULL_DUPLEX;
2090		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2091			reg |= MAC_CFG_TX_FC;
2092		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2093			reg |= MAC_CFG_RX_FC;
2094	}
2095	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2096}
2097
2098static void
2099ale_stats_clear(struct ale_softc *sc)
2100{
2101	struct smb sb;
2102	uint32_t *reg;
2103	int i;
2104
2105	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2106		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2107		i += sizeof(uint32_t);
2108	}
2109	/* Read Tx statistics. */
2110	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2111		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2112		i += sizeof(uint32_t);
2113	}
2114}
2115
2116static void
2117ale_stats_update(struct ale_softc *sc)
2118{
2119	struct ale_hw_stats *stat;
2120	struct smb sb, *smb;
2121	if_t ifp;
2122	uint32_t *reg;
2123	int i;
2124
2125	ALE_LOCK_ASSERT(sc);
2126
2127	ifp = sc->ale_ifp;
2128	stat = &sc->ale_stats;
2129	smb = &sb;
2130
2131	/* Read Rx statistics. */
2132	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2133		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2134		i += sizeof(uint32_t);
2135	}
2136	/* Read Tx statistics. */
2137	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2138		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2139		i += sizeof(uint32_t);
2140	}
2141
2142	/* Rx stats. */
2143	stat->rx_frames += smb->rx_frames;
2144	stat->rx_bcast_frames += smb->rx_bcast_frames;
2145	stat->rx_mcast_frames += smb->rx_mcast_frames;
2146	stat->rx_pause_frames += smb->rx_pause_frames;
2147	stat->rx_control_frames += smb->rx_control_frames;
2148	stat->rx_crcerrs += smb->rx_crcerrs;
2149	stat->rx_lenerrs += smb->rx_lenerrs;
2150	stat->rx_bytes += smb->rx_bytes;
2151	stat->rx_runts += smb->rx_runts;
2152	stat->rx_fragments += smb->rx_fragments;
2153	stat->rx_pkts_64 += smb->rx_pkts_64;
2154	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2155	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2156	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2157	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2158	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2159	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2160	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2161	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2162	stat->rx_rrs_errs += smb->rx_rrs_errs;
2163	stat->rx_alignerrs += smb->rx_alignerrs;
2164	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2165	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2166	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2167
2168	/* Tx stats. */
2169	stat->tx_frames += smb->tx_frames;
2170	stat->tx_bcast_frames += smb->tx_bcast_frames;
2171	stat->tx_mcast_frames += smb->tx_mcast_frames;
2172	stat->tx_pause_frames += smb->tx_pause_frames;
2173	stat->tx_excess_defer += smb->tx_excess_defer;
2174	stat->tx_control_frames += smb->tx_control_frames;
2175	stat->tx_deferred += smb->tx_deferred;
2176	stat->tx_bytes += smb->tx_bytes;
2177	stat->tx_pkts_64 += smb->tx_pkts_64;
2178	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2179	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2180	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2181	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2182	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2183	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2184	stat->tx_single_colls += smb->tx_single_colls;
2185	stat->tx_multi_colls += smb->tx_multi_colls;
2186	stat->tx_late_colls += smb->tx_late_colls;
2187	stat->tx_excess_colls += smb->tx_excess_colls;
2188	stat->tx_underrun += smb->tx_underrun;
2189	stat->tx_desc_underrun += smb->tx_desc_underrun;
2190	stat->tx_lenerrs += smb->tx_lenerrs;
2191	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2192	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2193	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2194
2195	/* Update counters in ifnet. */
2196	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2197
2198	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2199	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2200	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2201
2202	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2203	    smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2204
2205	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2206
2207	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2208	    smb->rx_crcerrs + smb->rx_lenerrs +
2209	    smb->rx_runts + smb->rx_pkts_truncated +
2210	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2211	    smb->rx_alignerrs);
2212}
2213
2214static int
2215ale_intr(void *arg)
2216{
2217	struct ale_softc *sc;
2218	uint32_t status;
2219
2220	sc = (struct ale_softc *)arg;
2221
2222	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2223	if ((status & ALE_INTRS) == 0)
2224		return (FILTER_STRAY);
2225	/* Disable interrupts. */
2226	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2227	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2228
2229	return (FILTER_HANDLED);
2230}
2231
2232static void
2233ale_int_task(void *arg, int pending)
2234{
2235	struct ale_softc *sc;
2236	if_t ifp;
2237	uint32_t status;
2238	int more;
2239
2240	sc = (struct ale_softc *)arg;
2241
2242	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2243	ALE_LOCK(sc);
2244	if (sc->ale_morework != 0)
2245		status |= INTR_RX_PKT;
2246	if ((status & ALE_INTRS) == 0)
2247		goto done;
2248
2249	/* Acknowledge interrupts but still disable interrupts. */
2250	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2251
2252	ifp = sc->ale_ifp;
2253	more = 0;
2254	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2255		more = ale_rxeof(sc, sc->ale_process_limit);
2256		if (more == EAGAIN)
2257			sc->ale_morework = 1;
2258		else if (more == EIO) {
2259			sc->ale_stats.reset_brk_seq++;
2260			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2261			ale_init_locked(sc);
2262			ALE_UNLOCK(sc);
2263			return;
2264		}
2265
2266		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2267			if ((status & INTR_DMA_RD_TO_RST) != 0)
2268				device_printf(sc->ale_dev,
2269				    "DMA read error! -- resetting\n");
2270			if ((status & INTR_DMA_WR_TO_RST) != 0)
2271				device_printf(sc->ale_dev,
2272				    "DMA write error! -- resetting\n");
2273			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2274			ale_init_locked(sc);
2275			ALE_UNLOCK(sc);
2276			return;
2277		}
2278		if (!if_sendq_empty(ifp))
2279			ale_start_locked(ifp);
2280	}
2281
2282	if (more == EAGAIN ||
2283	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2284		ALE_UNLOCK(sc);
2285		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2286		return;
2287	}
2288
2289done:
2290	ALE_UNLOCK(sc);
2291
2292	/* Re-enable interrupts. */
2293	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2294}
2295
2296static void
2297ale_txeof(struct ale_softc *sc)
2298{
2299	if_t ifp;
2300	struct ale_txdesc *txd;
2301	uint32_t cons, prod;
2302	int prog;
2303
2304	ALE_LOCK_ASSERT(sc);
2305
2306	ifp = sc->ale_ifp;
2307
2308	if (sc->ale_cdata.ale_tx_cnt == 0)
2309		return;
2310
2311	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2312	    sc->ale_cdata.ale_tx_ring_map,
2313	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2314	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2315		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2316		    sc->ale_cdata.ale_tx_cmb_map,
2317		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2318		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2319	} else
2320		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2321	cons = sc->ale_cdata.ale_tx_cons;
2322	/*
2323	 * Go through our Tx list and free mbufs for those
2324	 * frames which have been transmitted.
2325	 */
2326	for (prog = 0; cons != prod; prog++,
2327	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2328		if (sc->ale_cdata.ale_tx_cnt <= 0)
2329			break;
2330		prog++;
2331		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2332		sc->ale_cdata.ale_tx_cnt--;
2333		txd = &sc->ale_cdata.ale_txdesc[cons];
2334		if (txd->tx_m != NULL) {
2335			/* Reclaim transmitted mbufs. */
2336			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2337			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2338			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2339			    txd->tx_dmamap);
2340			m_freem(txd->tx_m);
2341			txd->tx_m = NULL;
2342		}
2343	}
2344
2345	if (prog > 0) {
2346		sc->ale_cdata.ale_tx_cons = cons;
2347		/*
2348		 * Unarm watchdog timer only when there is no pending
2349		 * Tx descriptors in queue.
2350		 */
2351		if (sc->ale_cdata.ale_tx_cnt == 0)
2352			sc->ale_watchdog_timer = 0;
2353	}
2354}
2355
2356static void
2357ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2358    uint32_t length, uint32_t *prod)
2359{
2360	struct ale_rx_page *rx_page;
2361
2362	rx_page = *page;
2363	/* Update consumer position. */
2364	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2365	    ALE_RX_PAGE_ALIGN);
2366	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2367		/*
2368		 * End of Rx page reached, let hardware reuse
2369		 * this page.
2370		 */
2371		rx_page->cons = 0;
2372		*rx_page->cmb_addr = 0;
2373		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2374		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2375		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2376		    RXF_VALID);
2377		/* Switch to alternate Rx page. */
2378		sc->ale_cdata.ale_rx_curp ^= 1;
2379		rx_page = *page =
2380		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2381		/* Page flipped, sync CMB and Rx page. */
2382		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2383		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2384		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2385		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2386		/* Sync completed, cache updated producer index. */
2387		*prod = *rx_page->cmb_addr;
2388	}
2389}
2390
2391/*
2392 * It seems that AR81xx controller can compute partial checksum.
2393 * The partial checksum value can be used to accelerate checksum
2394 * computation for fragmented TCP/UDP packets. Upper network stack
2395 * already takes advantage of the partial checksum value in IP
2396 * reassembly stage. But I'm not sure the correctness of the
2397 * partial hardware checksum assistance due to lack of data sheet.
2398 * In addition, the Rx feature of controller that requires copying
2399 * for every frames effectively nullifies one of most nice offload
2400 * capability of controller.
2401 */
2402static void
2403ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2404{
2405	if_t ifp;
2406	struct ip *ip;
2407	char *p;
2408
2409	ifp = sc->ale_ifp;
2410	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2411	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2412		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2413
2414	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2415		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2416		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2417		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2418			m->m_pkthdr.csum_flags |=
2419			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2420			m->m_pkthdr.csum_data = 0xffff;
2421		}
2422	} else {
2423		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2424		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2425			p = mtod(m, char *);
2426			p += ETHER_HDR_LEN;
2427			if ((status & ALE_RD_802_3) != 0)
2428				p += LLC_SNAPFRAMELEN;
2429			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0 &&
2430			    (status & ALE_RD_VLAN) != 0)
2431				p += ETHER_VLAN_ENCAP_LEN;
2432			ip = (struct ip *)p;
2433			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2434				return;
2435			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2436			    CSUM_PSEUDO_HDR;
2437			m->m_pkthdr.csum_data = 0xffff;
2438		}
2439	}
2440	/*
2441	 * Don't mark bad checksum for TCP/UDP frames
2442	 * as fragmented frames may always have set
2443	 * bad checksummed bit of frame status.
2444	 */
2445}
2446
2447/* Process received frames. */
2448static int
2449ale_rxeof(struct ale_softc *sc, int count)
2450{
2451	struct ale_rx_page *rx_page;
2452	struct rx_rs *rs;
2453	if_t ifp;
2454	struct mbuf *m;
2455	uint32_t length, prod, seqno, status, vtags;
2456	int prog;
2457
2458	ifp = sc->ale_ifp;
2459	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2460	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2461	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2462	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2463	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2464	/*
2465	 * Don't directly access producer index as hardware may
2466	 * update it while Rx handler is in progress. It would
2467	 * be even better if there is a way to let hardware
2468	 * know how far driver processed its received frames.
2469	 * Alternatively, hardware could provide a way to disable
2470	 * CMB updates until driver acknowledges the end of CMB
2471	 * access.
2472	 */
2473	prod = *rx_page->cmb_addr;
2474	for (prog = 0; prog < count; prog++) {
2475		if (rx_page->cons >= prod)
2476			break;
2477		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2478		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2479		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2480			/*
2481			 * Normally I believe this should not happen unless
2482			 * severe driver bug or corrupted memory. However
2483			 * it seems to happen under certain conditions which
2484			 * is triggered by abrupt Rx events such as initiation
2485			 * of bulk transfer of remote host. It's not easy to
2486			 * reproduce this and I doubt it could be related
2487			 * with FIFO overflow of hardware or activity of Tx
2488			 * CMB updates. I also remember similar behaviour
2489			 * seen on RealTek 8139 which uses resembling Rx
2490			 * scheme.
2491			 */
2492			if (bootverbose)
2493				device_printf(sc->ale_dev,
2494				    "garbled seq: %u, expected: %u -- "
2495				    "resetting!\n", seqno,
2496				    sc->ale_cdata.ale_rx_seqno);
2497			return (EIO);
2498		}
2499		/* Frame received. */
2500		sc->ale_cdata.ale_rx_seqno++;
2501		length = ALE_RX_BYTES(le32toh(rs->length));
2502		status = le32toh(rs->flags);
2503		if ((status & ALE_RD_ERROR) != 0) {
2504			/*
2505			 * We want to pass the following frames to upper
2506			 * layer regardless of error status of Rx return
2507			 * status.
2508			 *
2509			 *  o IP/TCP/UDP checksum is bad.
2510			 *  o frame length and protocol specific length
2511			 *     does not match.
2512			 */
2513			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2514			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2515			    ALE_RD_TRUNC)) != 0) {
2516				ale_rx_update_page(sc, &rx_page, length, &prod);
2517				continue;
2518			}
2519		}
2520		/*
2521		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2522		 * from hardware limitation). For jumbo frames we could
2523		 * get a slightly better performance if driver use
2524		 * m_getjcl(9) with proper buffer size argument. However
2525		 * that would make code more complicated and I don't
2526		 * think users would expect good Rx performance numbers
2527		 * on these low-end consumer ethernet controller.
2528		 */
2529		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2530		    ETHER_ALIGN, ifp, NULL);
2531		if (m == NULL) {
2532			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2533			ale_rx_update_page(sc, &rx_page, length, &prod);
2534			continue;
2535		}
2536		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2537		    (status & ALE_RD_IPV4) != 0)
2538			ale_rxcsum(sc, m, status);
2539		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2540		    (status & ALE_RD_VLAN) != 0) {
2541			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2542			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2543			m->m_flags |= M_VLANTAG;
2544		}
2545
2546		/* Pass it to upper layer. */
2547		ALE_UNLOCK(sc);
2548		if_input(ifp, m);
2549		ALE_LOCK(sc);
2550
2551		ale_rx_update_page(sc, &rx_page, length, &prod);
2552	}
2553
2554	return (count > 0 ? 0 : EAGAIN);
2555}
2556
2557static void
2558ale_tick(void *arg)
2559{
2560	struct ale_softc *sc;
2561	struct mii_data *mii;
2562
2563	sc = (struct ale_softc *)arg;
2564
2565	ALE_LOCK_ASSERT(sc);
2566
2567	mii = device_get_softc(sc->ale_miibus);
2568	mii_tick(mii);
2569	ale_stats_update(sc);
2570	/*
2571	 * Reclaim Tx buffers that have been transferred. It's not
2572	 * needed here but it would release allocated mbuf chains
2573	 * faster and limit the maximum delay to a hz.
2574	 */
2575	ale_txeof(sc);
2576	ale_watchdog(sc);
2577	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2578}
2579
2580static void
2581ale_reset(struct ale_softc *sc)
2582{
2583	uint32_t reg;
2584	int i;
2585
2586	/* Initialize PCIe module. From Linux. */
2587	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2588
2589	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2590	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2591		DELAY(10);
2592		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2593			break;
2594	}
2595	if (i == 0)
2596		device_printf(sc->ale_dev, "master reset timeout!\n");
2597
2598	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2599		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2600			break;
2601		DELAY(10);
2602	}
2603
2604	if (i == 0)
2605		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2606}
2607
2608static void
2609ale_init(void *xsc)
2610{
2611	struct ale_softc *sc;
2612
2613	sc = (struct ale_softc *)xsc;
2614	ALE_LOCK(sc);
2615	ale_init_locked(sc);
2616	ALE_UNLOCK(sc);
2617}
2618
2619static void
2620ale_init_locked(struct ale_softc *sc)
2621{
2622	if_t ifp;
2623	struct mii_data *mii;
2624	uint8_t eaddr[ETHER_ADDR_LEN];
2625	bus_addr_t paddr;
2626	uint32_t reg, rxf_hi, rxf_lo;
2627
2628	ALE_LOCK_ASSERT(sc);
2629
2630	ifp = sc->ale_ifp;
2631	mii = device_get_softc(sc->ale_miibus);
2632
2633	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2634		return;
2635	/*
2636	 * Cancel any pending I/O.
2637	 */
2638	ale_stop(sc);
2639	/*
2640	 * Reset the chip to a known state.
2641	 */
2642	ale_reset(sc);
2643	/* Initialize Tx descriptors, DMA memory blocks. */
2644	ale_init_rx_pages(sc);
2645	ale_init_tx_ring(sc);
2646
2647	/* Reprogram the station address. */
2648	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2649	CSR_WRITE_4(sc, ALE_PAR0,
2650	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2651	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2652	/*
2653	 * Clear WOL status and disable all WOL feature as WOL
2654	 * would interfere Rx operation under normal environments.
2655	 */
2656	CSR_READ_4(sc, ALE_WOL_CFG);
2657	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2658	/*
2659	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2660	 * the same high address part of DMAable region.
2661	 */
2662	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2663	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2664	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2665	CSR_WRITE_4(sc, ALE_TPD_CNT,
2666	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2667	/* Set Rx page base address, note we use single queue. */
2668	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2669	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2670	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2671	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2672	/* Set Tx/Rx CMB addresses. */
2673	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2674	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2675	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2676	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2677	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2678	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2679	/* Mark RXF0 is valid. */
2680	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2681	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2682	/*
2683	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2684	 * multi-queue yet.
2685	 */
2686
2687	/* Set Rx page size, excluding guard frame size. */
2688	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2689	/* Tell hardware that we're ready to load DMA blocks. */
2690	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2691
2692	/* Set Rx/Tx interrupt trigger threshold. */
2693	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2694	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2695	/*
2696	 * XXX
2697	 * Set interrupt trigger timer, its purpose and relation
2698	 * with interrupt moderation mechanism is not clear yet.
2699	 */
2700	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2701	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2702	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2703
2704	/* Configure interrupt moderation timer. */
2705	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2706	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2707	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2708	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2709	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2710	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2711	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2712		reg |= MASTER_IM_RX_TIMER_ENB;
2713	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2714		reg |= MASTER_IM_TX_TIMER_ENB;
2715	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2716	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2717
2718	/* Set Maximum frame size of controller. */
2719	if (if_getmtu(ifp) < ETHERMTU)
2720		sc->ale_max_frame_size = ETHERMTU;
2721	else
2722		sc->ale_max_frame_size = if_getmtu(ifp);
2723	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2724	    ETHER_CRC_LEN;
2725	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2726	/* Configure IPG/IFG parameters. */
2727	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2728	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2729	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2730	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2731	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2732	/* Set parameters for half-duplex media. */
2733	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2734	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2735	    HDPX_CFG_LCOL_MASK) |
2736	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2737	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2738	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2739	    HDPX_CFG_ABEBT_MASK) |
2740	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2741	    HDPX_CFG_JAMIPG_MASK));
2742
2743	/* Configure Tx jumbo frame parameters. */
2744	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2745		if (if_getmtu(ifp) < ETHERMTU)
2746			reg = sc->ale_max_frame_size;
2747		else if (if_getmtu(ifp) < 6 * 1024)
2748			reg = (sc->ale_max_frame_size * 2) / 3;
2749		else
2750			reg = sc->ale_max_frame_size / 2;
2751		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2752		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2753		    TX_JUMBO_THRESH_UNIT_SHIFT);
2754	}
2755	/* Configure TxQ. */
2756	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2757	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2758	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2759	    TXQ_CFG_TPD_BURST_MASK;
2760	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2761
2762	/* Configure Rx jumbo frame & flow control parameters. */
2763	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2764		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2765		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2766		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2767		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2768		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2769		    RX_JUMBO_LKAH_MASK));
2770		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2771		rxf_hi = (reg * 7) / 10;
2772		rxf_lo = (reg * 3)/ 10;
2773		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2774		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2775		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2776		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2777		    RX_FIFO_PAUSE_THRESH_HI_MASK));
2778	}
2779
2780	/* Disable RSS. */
2781	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2782	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2783
2784	/* Configure RxQ. */
2785	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2786	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2787
2788	/* Configure DMA parameters. */
2789	reg = 0;
2790	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2791		reg |= DMA_CFG_TXCMB_ENB;
2792	CSR_WRITE_4(sc, ALE_DMA_CFG,
2793	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2794	    sc->ale_dma_rd_burst | reg |
2795	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2796	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2797	    DMA_CFG_RD_DELAY_CNT_MASK) |
2798	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2799	    DMA_CFG_WR_DELAY_CNT_MASK));
2800
2801	/*
2802	 * Hardware can be configured to issue SMB interrupt based
2803	 * on programmed interval. Since there is a callout that is
2804	 * invoked for every hz in driver we use that instead of
2805	 * relying on periodic SMB interrupt.
2806	 */
2807	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2808	/* Clear MAC statistics. */
2809	ale_stats_clear(sc);
2810
2811	/*
2812	 * Configure Tx/Rx MACs.
2813	 *  - Auto-padding for short frames.
2814	 *  - Enable CRC generation.
2815	 *  Actual reconfiguration of MAC for resolved speed/duplex
2816	 *  is followed after detection of link establishment.
2817	 *  AR81xx always does checksum computation regardless of
2818	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2819	 *  cause Rx handling issue for fragmented IP datagrams due
2820	 *  to silicon bug.
2821	 */
2822	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2823	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2824	    MAC_CFG_PREAMBLE_MASK);
2825	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2826		reg |= MAC_CFG_SPEED_10_100;
2827	else
2828		reg |= MAC_CFG_SPEED_1000;
2829	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2830
2831	/* Set up the receive filter. */
2832	ale_rxfilter(sc);
2833	ale_rxvlan(sc);
2834
2835	/* Acknowledge all pending interrupts and clear it. */
2836	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2837	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2838	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2839
2840	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2841	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2842
2843	sc->ale_flags &= ~ALE_FLAG_LINK;
2844	/* Switch to the current media. */
2845	mii_mediachg(mii);
2846
2847	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2848}
2849
2850static void
2851ale_stop(struct ale_softc *sc)
2852{
2853	if_t ifp;
2854	struct ale_txdesc *txd;
2855	uint32_t reg;
2856	int i;
2857
2858	ALE_LOCK_ASSERT(sc);
2859	/*
2860	 * Mark the interface down and cancel the watchdog timer.
2861	 */
2862	ifp = sc->ale_ifp;
2863	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2864	sc->ale_flags &= ~ALE_FLAG_LINK;
2865	callout_stop(&sc->ale_tick_ch);
2866	sc->ale_watchdog_timer = 0;
2867	ale_stats_update(sc);
2868	/* Disable interrupts. */
2869	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2870	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2871	/* Disable queue processing and DMA. */
2872	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2873	reg &= ~TXQ_CFG_ENB;
2874	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2875	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2876	reg &= ~RXQ_CFG_ENB;
2877	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2878	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2879	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2880	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2881	DELAY(1000);
2882	/* Stop Rx/Tx MACs. */
2883	ale_stop_mac(sc);
2884	/* Disable interrupts which might be touched in taskq handler. */
2885	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2886
2887	/*
2888	 * Free TX mbufs still in the queues.
2889	 */
2890	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2891		txd = &sc->ale_cdata.ale_txdesc[i];
2892		if (txd->tx_m != NULL) {
2893			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2894			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2895			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2896			    txd->tx_dmamap);
2897			m_freem(txd->tx_m);
2898			txd->tx_m = NULL;
2899		}
2900        }
2901}
2902
2903static void
2904ale_stop_mac(struct ale_softc *sc)
2905{
2906	uint32_t reg;
2907	int i;
2908
2909	ALE_LOCK_ASSERT(sc);
2910
2911	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2912	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2913		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2914		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2915	}
2916
2917	for (i = ALE_TIMEOUT; i > 0; i--) {
2918		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2919		if (reg == 0)
2920			break;
2921		DELAY(10);
2922	}
2923	if (i == 0)
2924		device_printf(sc->ale_dev,
2925		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2926}
2927
2928static void
2929ale_init_tx_ring(struct ale_softc *sc)
2930{
2931	struct ale_txdesc *txd;
2932	int i;
2933
2934	ALE_LOCK_ASSERT(sc);
2935
2936	sc->ale_cdata.ale_tx_prod = 0;
2937	sc->ale_cdata.ale_tx_cons = 0;
2938	sc->ale_cdata.ale_tx_cnt = 0;
2939
2940	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2941	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2942	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2943		txd = &sc->ale_cdata.ale_txdesc[i];
2944		txd->tx_m = NULL;
2945	}
2946	*sc->ale_cdata.ale_tx_cmb = 0;
2947	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2948	    sc->ale_cdata.ale_tx_cmb_map,
2949	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2950	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2951	    sc->ale_cdata.ale_tx_ring_map,
2952	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2953}
2954
2955static void
2956ale_init_rx_pages(struct ale_softc *sc)
2957{
2958	struct ale_rx_page *rx_page;
2959	int i;
2960
2961	ALE_LOCK_ASSERT(sc);
2962
2963	sc->ale_morework = 0;
2964	sc->ale_cdata.ale_rx_seqno = 0;
2965	sc->ale_cdata.ale_rx_curp = 0;
2966
2967	for (i = 0; i < ALE_RX_PAGES; i++) {
2968		rx_page = &sc->ale_cdata.ale_rx_page[i];
2969		bzero(rx_page->page_addr, sc->ale_pagesize);
2970		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2971		rx_page->cons = 0;
2972		*rx_page->cmb_addr = 0;
2973		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2974		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2975		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2976		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2977	}
2978}
2979
2980static void
2981ale_rxvlan(struct ale_softc *sc)
2982{
2983	if_t ifp;
2984	uint32_t reg;
2985
2986	ALE_LOCK_ASSERT(sc);
2987
2988	ifp = sc->ale_ifp;
2989	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2990	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2991	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2992		reg |= MAC_CFG_VLAN_TAG_STRIP;
2993	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2994}
2995
2996static u_int
2997ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2998{
2999	uint32_t crc, *mchash = arg;
3000
3001	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3002	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3003
3004	return (1);
3005}
3006
3007static void
3008ale_rxfilter(struct ale_softc *sc)
3009{
3010	if_t ifp;
3011	uint32_t mchash[2];
3012	uint32_t rxcfg;
3013
3014	ALE_LOCK_ASSERT(sc);
3015
3016	ifp = sc->ale_ifp;
3017
3018	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3019	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3020	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3021		rxcfg |= MAC_CFG_BCAST;
3022	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3023		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3024			rxcfg |= MAC_CFG_PROMISC;
3025		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3026			rxcfg |= MAC_CFG_ALLMULTI;
3027		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3028		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3029		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3030		return;
3031	}
3032
3033	/* Program new filter. */
3034	bzero(mchash, sizeof(mchash));
3035	if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash);
3036
3037	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3038	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3039	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3040}
3041
3042static int
3043sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3044{
3045	int error, value;
3046
3047	if (arg1 == NULL)
3048		return (EINVAL);
3049	value = *(int *)arg1;
3050	error = sysctl_handle_int(oidp, &value, 0, req);
3051	if (error || req->newptr == NULL)
3052		return (error);
3053	if (value < low || value > high)
3054		return (EINVAL);
3055        *(int *)arg1 = value;
3056
3057        return (0);
3058}
3059
3060static int
3061sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3062{
3063	return (sysctl_int_range(oidp, arg1, arg2, req,
3064	    ALE_PROC_MIN, ALE_PROC_MAX));
3065}
3066
3067static int
3068sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3069{
3070
3071	return (sysctl_int_range(oidp, arg1, arg2, req,
3072	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3073}
3074