1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29#include "opt_acpi.h"
30#include <sys/param.h>
31#include <sys/bus.h>
32#include <sys/cpu.h>
33#include <sys/kernel.h>
34#include <sys/malloc.h>
35#include <sys/module.h>
36#include <sys/pcpu.h>
37#include <sys/power.h>
38#include <sys/proc.h>
39#include <sys/sched.h>
40#include <sys/sbuf.h>
41#include <sys/smp.h>
42
43#include <dev/pci/pcivar.h>
44#include <machine/atomic.h>
45#include <machine/bus.h>
46#if defined(__amd64__) || defined(__i386__)
47#include <machine/clock.h>
48#include <machine/specialreg.h>
49#include <machine/md_var.h>
50#endif
51#include <sys/rman.h>
52
53#include <contrib/dev/acpica/include/acpi.h>
54#include <contrib/dev/acpica/include/accommon.h>
55
56#include <dev/acpica/acpivar.h>
57
58/*
59 * Support for ACPI Processor devices, including C[1-3] sleep states.
60 */
61
62/* Hooks for the ACPI CA debugging infrastructure */
63#define _COMPONENT	ACPI_PROCESSOR
64ACPI_MODULE_NAME("PROCESSOR")
65
66struct acpi_cx {
67    struct resource	*p_lvlx;	/* Register to read to enter state. */
68    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
69    uint32_t		 trans_lat;	/* Transition latency (usec). */
70    uint32_t		 power;		/* Power consumed (mW). */
71    int			 res_type;	/* Resource type for p_lvlx. */
72    int			 res_rid;	/* Resource ID for p_lvlx. */
73    bool		 do_mwait;
74    uint32_t		 mwait_hint;
75    bool		 mwait_hw_coord;
76    bool		 mwait_bm_avoidance;
77};
78#define MAX_CX_STATES	 8
79
80struct acpi_cpu_softc {
81    device_t		 cpu_dev;
82    ACPI_HANDLE		 cpu_handle;
83    struct pcpu		*cpu_pcpu;
84    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
85    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
86    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
87    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
88    int			 cpu_cx_count;	/* Number of valid Cx states. */
89    int			 cpu_prev_sleep;/* Last idle sleep duration. */
90    int			 cpu_features;	/* Child driver supported features. */
91    /* Runtime state. */
92    int			 cpu_non_c2;	/* Index of lowest non-C2 state. */
93    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
94    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
95    /* Values for sysctl. */
96    struct sysctl_ctx_list cpu_sysctl_ctx;
97    struct sysctl_oid	*cpu_sysctl_tree;
98    int			 cpu_cx_lowest;
99    int			 cpu_cx_lowest_lim;
100    int			 cpu_disable_idle; /* Disable entry to idle function */
101    char 		 cpu_cx_supported[64];
102};
103
104struct acpi_cpu_device {
105    struct resource_list	ad_rl;
106};
107
108#define CPU_GET_REG(reg, width) 					\
109    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
110		      rman_get_bushandle((reg)), 0))
111#define CPU_SET_REG(reg, width, val)					\
112    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
113		       rman_get_bushandle((reg)), 0, (val)))
114
115#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
116
117#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
118#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
119
120#define PCI_VENDOR_INTEL	0x8086
121#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
122#define PCI_REVISION_A_STEP	0
123#define PCI_REVISION_B_STEP	1
124#define PCI_REVISION_4E		2
125#define PCI_REVISION_4M		3
126#define PIIX4_DEVACTB_REG	0x58
127#define PIIX4_BRLD_EN_IRQ0	(1<<0)
128#define PIIX4_BRLD_EN_IRQ	(1<<1)
129#define PIIX4_BRLD_EN_IRQ8	(1<<5)
130#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
131#define PIIX4_PCNTRL_BST_EN	(1<<10)
132
133#define	CST_FFH_VENDOR_INTEL	1
134#define	CST_FFH_INTEL_CL_C1IO	1
135#define	CST_FFH_INTEL_CL_MWAIT	2
136#define	CST_FFH_MWAIT_HW_COORD	0x0001
137#define	CST_FFH_MWAIT_BM_AVOID	0x0002
138
139#define	CPUDEV_DEVICE_ID	"ACPI0007"
140
141/* Knob to disable acpi_cpu devices */
142bool acpi_cpu_disabled = false;
143
144/* Platform hardware resource information. */
145static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
146static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
147static int		 cpu_quirks;	/* Indicate any hardware bugs. */
148
149/* Values for sysctl. */
150static struct sysctl_ctx_list cpu_sysctl_ctx;
151static struct sysctl_oid *cpu_sysctl_tree;
152static int		 cpu_cx_generic;
153static int		 cpu_cx_lowest_lim;
154#if defined(__i386__) || defined(__amd64__)
155static bool		 cppc_notify;
156#endif
157
158static struct acpi_cpu_softc **cpu_softc;
159ACPI_SERIAL_DECL(cpu, "ACPI CPU");
160
161static int	acpi_cpu_probe(device_t dev);
162static int	acpi_cpu_attach(device_t dev);
163static int	acpi_cpu_suspend(device_t dev);
164static int	acpi_cpu_resume(device_t dev);
165static int	acpi_pcpu_get_id(device_t dev, uint32_t acpi_id,
166		    u_int *cpu_id);
167static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
168static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
169		    int unit);
170static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
171		    uintptr_t *result);
172static int	acpi_cpu_shutdown(device_t dev);
173static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
174static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
175static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
176static void	acpi_cpu_startup(void *arg);
177static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
178static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
179#if defined(__i386__) || defined(__amd64__)
180static void	acpi_cpu_idle(sbintime_t sbt);
181#endif
182static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
183static void	acpi_cpu_quirks(void);
184static void	acpi_cpu_quirks_piix4(void);
185static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
186static int	acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
187static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
188static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
189static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
190#if defined(__i386__) || defined(__amd64__)
191static int	acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
192#endif
193
194static device_method_t acpi_cpu_methods[] = {
195    /* Device interface */
196    DEVMETHOD(device_probe,	acpi_cpu_probe),
197    DEVMETHOD(device_attach,	acpi_cpu_attach),
198    DEVMETHOD(device_detach,	bus_generic_detach),
199    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
200    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
201    DEVMETHOD(device_resume,	acpi_cpu_resume),
202
203    /* Bus interface */
204    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
205    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
206    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
207    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
208    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
209    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
210    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
211    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
212    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
213    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
214    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
215
216    DEVMETHOD_END
217};
218
219static driver_t acpi_cpu_driver = {
220    "cpu",
221    acpi_cpu_methods,
222    sizeof(struct acpi_cpu_softc),
223};
224
225DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, 0, 0);
226MODULE_DEPEND(cpu, acpi, 1, 1, 1);
227
228static int
229acpi_cpu_probe(device_t dev)
230{
231    static char		   *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL };
232    int			   acpi_id, cpu_id;
233    ACPI_BUFFER		   buf;
234    ACPI_HANDLE		   handle;
235    ACPI_OBJECT		   *obj;
236    ACPI_STATUS		   status;
237    ACPI_OBJECT_TYPE	   type;
238
239    if (acpi_disabled("cpu") || acpi_cpu_disabled)
240	return (ENXIO);
241    type = acpi_get_type(dev);
242    if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE)
243	return (ENXIO);
244    if (type == ACPI_TYPE_DEVICE &&
245	ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids, NULL) >= 0)
246	return (ENXIO);
247
248    handle = acpi_get_handle(dev);
249    if (cpu_softc == NULL)
250	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
251	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
252
253    if (type == ACPI_TYPE_PROCESSOR) {
254	/* Get our Processor object. */
255	buf.Pointer = NULL;
256	buf.Length = ACPI_ALLOCATE_BUFFER;
257	status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
258	if (ACPI_FAILURE(status)) {
259	    device_printf(dev, "probe failed to get Processor obj - %s\n",
260		AcpiFormatException(status));
261	    return (ENXIO);
262	}
263	obj = (ACPI_OBJECT *)buf.Pointer;
264	if (obj->Type != ACPI_TYPE_PROCESSOR) {
265	    device_printf(dev, "Processor object has bad type %d\n",
266		obj->Type);
267	    AcpiOsFree(obj);
268	    return (ENXIO);
269	}
270
271	/*
272	 * Find the processor associated with our unit.  We could use the
273	 * ProcId as a key, however, some boxes do not have the same values
274	 * in their Processor object as the ProcId values in the MADT.
275	 */
276	acpi_id = obj->Processor.ProcId;
277	AcpiOsFree(obj);
278    } else {
279	status = acpi_GetInteger(handle, "_UID", &acpi_id);
280	if (ACPI_FAILURE(status)) {
281	    device_printf(dev, "Device object has bad value - %s\n",
282		AcpiFormatException(status));
283	    return (ENXIO);
284	}
285    }
286    if (acpi_pcpu_get_id(dev, acpi_id, &cpu_id) != 0) {
287	if (bootverbose && (type != ACPI_TYPE_PROCESSOR || acpi_id != 255))
288	    printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
289		acpi_name(acpi_get_handle(dev)), acpi_id);
290	return (ENXIO);
291    }
292
293    if (device_set_unit(dev, cpu_id) != 0)
294	return (ENXIO);
295
296    device_set_desc(dev, "ACPI CPU");
297
298    if (!bootverbose && device_get_unit(dev) != 0) {
299	    device_quiet(dev);
300	    device_quiet_children(dev);
301    }
302
303    return (BUS_PROBE_DEFAULT);
304}
305
306static int
307acpi_cpu_attach(device_t dev)
308{
309    ACPI_BUFFER		   buf;
310    ACPI_OBJECT		   arg, *obj;
311    ACPI_OBJECT_LIST	   arglist;
312    struct pcpu		   *pcpu_data;
313    struct acpi_cpu_softc *sc;
314    struct acpi_softc	  *acpi_sc;
315    ACPI_STATUS		   status;
316    u_int		   features;
317    int			   cpu_id, drv_count, i;
318    driver_t 		  **drivers;
319    uint32_t		   cap_set[3];
320
321    /* UUID needed by _OSC evaluation */
322    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
323				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
324				       0x58, 0x71, 0x39, 0x53 };
325
326    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
327
328    sc = device_get_softc(dev);
329    sc->cpu_dev = dev;
330    sc->cpu_handle = acpi_get_handle(dev);
331    cpu_id = device_get_unit(dev);
332    cpu_softc[cpu_id] = sc;
333    pcpu_data = pcpu_find(cpu_id);
334    pcpu_data->pc_device = dev;
335    sc->cpu_pcpu = pcpu_data;
336    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
337    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
338
339    if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) {
340	buf.Pointer = NULL;
341	buf.Length = ACPI_ALLOCATE_BUFFER;
342	status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
343	if (ACPI_FAILURE(status)) {
344	    device_printf(dev, "attach failed to get Processor obj - %s\n",
345		AcpiFormatException(status));
346	    return (ENXIO);
347	}
348	obj = (ACPI_OBJECT *)buf.Pointer;
349	sc->cpu_p_blk = obj->Processor.PblkAddress;
350	sc->cpu_p_blk_len = obj->Processor.PblkLength;
351	sc->cpu_acpi_id = obj->Processor.ProcId;
352	AcpiOsFree(obj);
353    } else {
354	KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE,
355	    ("Unexpected ACPI object"));
356	status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id);
357	if (ACPI_FAILURE(status)) {
358	    device_printf(dev, "Device object has bad value - %s\n",
359		AcpiFormatException(status));
360	    return (ENXIO);
361	}
362	sc->cpu_p_blk = 0;
363	sc->cpu_p_blk_len = 0;
364    }
365    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
366		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
367
368    /*
369     * If this is the first cpu we attach, create and initialize the generic
370     * resources that will be used by all acpi cpu devices.
371     */
372    if (device_get_unit(dev) == 0) {
373	/* Assume we won't be using generic Cx mode by default */
374	cpu_cx_generic = FALSE;
375
376	/* Install hw.acpi.cpu sysctl tree */
377	acpi_sc = acpi_device_get_parent_softc(dev);
378	sysctl_ctx_init(&cpu_sysctl_ctx);
379	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
380	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
381	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "node for CPU children");
382
383#if defined(__i386__) || defined(__amd64__)
384	/* Add sysctl handler to control registering for CPPC notifications */
385	cppc_notify = 1;
386	SYSCTL_ADD_BOOL(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
387	    OID_AUTO, "cppc_notify", CTLFLAG_RDTUN | CTLFLAG_MPSAFE,
388	    &cppc_notify, 0, "Register for CPPC Notifications");
389#endif
390    }
391
392    /*
393     * Before calling any CPU methods, collect child driver feature hints
394     * and notify ACPI of them.  We support unified SMP power control
395     * so advertise this ourselves.  Note this is not the same as independent
396     * SMP control where each CPU can have different settings.
397     */
398    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
399      ACPI_CAP_C1_IO_HALT;
400
401#if defined(__i386__) || defined(__amd64__)
402    /*
403     * Ask for MWAIT modes if not disabled and interrupts work
404     * reasonable with MWAIT.
405     */
406    if (!acpi_disabled("mwait") && cpu_mwait_usable())
407	sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
408
409    /*
410     * Work around a lingering SMM bug which leads to freezes when handling
411     * CPPC notifications. Tell the SMM we will handle any CPPC notifications.
412     */
413    if ((cpu_power_eax & CPUTPM1_HWP_NOTIFICATION) && cppc_notify)
414	    sc->cpu_features |= ACPI_CAP_INTR_CPPC;
415#endif
416
417    if (devclass_get_drivers(device_get_devclass(dev), &drivers,
418	&drv_count) == 0) {
419	for (i = 0; i < drv_count; i++) {
420	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
421		sc->cpu_features |= features;
422	}
423	free(drivers, M_TEMP);
424    }
425
426    /*
427     * CPU capabilities are specified in
428     * Intel Processor Vendor-Specific ACPI Interface Specification.
429     */
430    if (sc->cpu_features) {
431	cap_set[1] = sc->cpu_features;
432	status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
433	    cap_set, false);
434	if (ACPI_SUCCESS(status)) {
435	    if (cap_set[0] != 0)
436		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
437	}
438	else {
439	    arglist.Pointer = &arg;
440	    arglist.Count = 1;
441	    arg.Type = ACPI_TYPE_BUFFER;
442	    arg.Buffer.Length = sizeof(cap_set);
443	    arg.Buffer.Pointer = (uint8_t *)cap_set;
444	    cap_set[0] = 1; /* revision */
445	    cap_set[1] = 1; /* number of capabilities integers */
446	    cap_set[2] = sc->cpu_features;
447	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
448	}
449    }
450
451    /* Probe for Cx state support. */
452    acpi_cpu_cx_probe(sc);
453
454    return (0);
455}
456
457static void
458acpi_cpu_postattach(void *unused __unused)
459{
460    struct acpi_cpu_softc *sc;
461    int attached = 0, i;
462
463    if (cpu_softc == NULL)
464	return;
465
466    bus_topo_lock();
467    CPU_FOREACH(i) {
468	if ((sc = cpu_softc[i]) != NULL)
469		bus_generic_probe(sc->cpu_dev);
470    }
471    CPU_FOREACH(i) {
472	if ((sc = cpu_softc[i]) != NULL) {
473		bus_generic_attach(sc->cpu_dev);
474		attached = 1;
475	}
476    }
477    bus_topo_unlock();
478
479    if (attached) {
480#ifdef EARLY_AP_STARTUP
481	acpi_cpu_startup(NULL);
482#else
483	/* Queue post cpu-probing task handler */
484	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
485#endif
486    }
487}
488
489SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
490    acpi_cpu_postattach, NULL);
491
492static void
493disable_idle(struct acpi_cpu_softc *sc)
494{
495    cpuset_t cpuset;
496
497    CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
498    sc->cpu_disable_idle = TRUE;
499
500    /*
501     * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
502     * Note that this code depends on the fact that the rendezvous IPI
503     * can not penetrate context where interrupts are disabled and acpi_cpu_idle
504     * is called and executed in such a context with interrupts being re-enabled
505     * right before return.
506     */
507    smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
508	smp_no_rendezvous_barrier, NULL);
509}
510
511static void
512enable_idle(struct acpi_cpu_softc *sc)
513{
514
515    if (sc->cpu_cx_count > sc->cpu_non_c3 + 1 &&
516	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0)
517	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
518    sc->cpu_disable_idle = FALSE;
519}
520
521#if defined(__i386__) || defined(__amd64__)
522static int
523is_idle_disabled(struct acpi_cpu_softc *sc)
524{
525
526    return (sc->cpu_disable_idle);
527}
528#endif
529
530/*
531 * Disable any entry to the idle function during suspend and re-enable it
532 * during resume.
533 */
534static int
535acpi_cpu_suspend(device_t dev)
536{
537    int error;
538
539    error = bus_generic_suspend(dev);
540    if (error)
541	return (error);
542    disable_idle(device_get_softc(dev));
543    return (0);
544}
545
546static int
547acpi_cpu_resume(device_t dev)
548{
549
550    enable_idle(device_get_softc(dev));
551    return (bus_generic_resume(dev));
552}
553
554/*
555 * Find the processor associated with a given ACPI ID.
556 */
557static int
558acpi_pcpu_get_id(device_t dev, uint32_t acpi_id, u_int *cpu_id)
559{
560    struct pcpu	*pc;
561    u_int	 i;
562
563    CPU_FOREACH(i) {
564	pc = pcpu_find(i);
565	if (pc->pc_acpi_id == acpi_id) {
566	    *cpu_id = pc->pc_cpuid;
567	    return (0);
568	}
569    }
570
571    /*
572     * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
573     * UP box) use the ACPI ID from the first processor we find.
574     */
575    if (mp_ncpus == 1) {
576	pc = pcpu_find(0);
577	if (pc->pc_acpi_id == 0xffffffff)
578	    pc->pc_acpi_id = acpi_id;
579	*cpu_id = 0;
580	return (0);
581    }
582
583    return (ESRCH);
584}
585
586static struct resource_list *
587acpi_cpu_get_rlist(device_t dev, device_t child)
588{
589    struct acpi_cpu_device *ad;
590
591    ad = device_get_ivars(child);
592    if (ad == NULL)
593	return (NULL);
594    return (&ad->ad_rl);
595}
596
597static device_t
598acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
599{
600    struct acpi_cpu_device *ad;
601    device_t child;
602
603    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
604	return (NULL);
605
606    resource_list_init(&ad->ad_rl);
607
608    child = device_add_child_ordered(dev, order, name, unit);
609    if (child != NULL)
610	device_set_ivars(child, ad);
611    else
612	free(ad, M_TEMP);
613    return (child);
614}
615
616static int
617acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
618{
619    struct acpi_cpu_softc *sc;
620
621    sc = device_get_softc(dev);
622    switch (index) {
623    case ACPI_IVAR_HANDLE:
624	*result = (uintptr_t)sc->cpu_handle;
625	break;
626    case CPU_IVAR_PCPU:
627	*result = (uintptr_t)sc->cpu_pcpu;
628	break;
629#if defined(__amd64__) || defined(__i386__)
630    case CPU_IVAR_NOMINAL_MHZ:
631	if (tsc_is_invariant) {
632	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
633	    break;
634	}
635	/* FALLTHROUGH */
636#endif
637    default:
638	return (ENOENT);
639    }
640    return (0);
641}
642
643static int
644acpi_cpu_shutdown(device_t dev)
645{
646    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
647
648    /* Allow children to shutdown first. */
649    bus_generic_shutdown(dev);
650
651    /*
652     * Disable any entry to the idle function.
653     */
654    disable_idle(device_get_softc(dev));
655
656    /*
657     * CPU devices are not truly detached and remain referenced,
658     * so their resources are not freed.
659     */
660
661    return_VALUE (0);
662}
663
664static void
665acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
666{
667    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
668
669    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
670    sc->cpu_prev_sleep = 1000000;
671    sc->cpu_cx_lowest = 0;
672    sc->cpu_cx_lowest_lim = 0;
673
674    /*
675     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
676     * any, we'll revert to generic FADT/P_BLK Cx control method which will
677     * be handled by acpi_cpu_startup. We need to defer to after having
678     * probed all the cpus in the system before probing for generic Cx
679     * states as we may already have found cpus with valid _CST packages
680     */
681    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
682	/*
683	 * We were unable to find a _CST package for this cpu or there
684	 * was an error parsing it. Switch back to generic mode.
685	 */
686	cpu_cx_generic = TRUE;
687	if (bootverbose)
688	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
689    }
690
691    /*
692     * TODO: _CSD Package should be checked here.
693     */
694}
695
696static void
697acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
698{
699    ACPI_GENERIC_ADDRESS	 gas;
700    struct acpi_cx		*cx_ptr;
701
702    sc->cpu_cx_count = 0;
703    cx_ptr = sc->cpu_cx_states;
704
705    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
706    sc->cpu_prev_sleep = 1000000;
707
708    /* C1 has been required since just after ACPI 1.0 */
709    cx_ptr->type = ACPI_STATE_C1;
710    cx_ptr->trans_lat = 0;
711    cx_ptr++;
712    sc->cpu_non_c2 = sc->cpu_cx_count;
713    sc->cpu_non_c3 = sc->cpu_cx_count;
714    sc->cpu_cx_count++;
715
716    /*
717     * The spec says P_BLK must be 6 bytes long.  However, some systems
718     * use it to indicate a fractional set of features present so we
719     * take 5 as C2.  Some may also have a value of 7 to indicate
720     * another C3 but most use _CST for this (as required) and having
721     * "only" C1-C3 is not a hardship.
722     */
723    if (sc->cpu_p_blk_len < 5)
724	return;
725
726    /* Validate and allocate resources for C2 (P_LVL2). */
727    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
728    gas.BitWidth = 8;
729    if (AcpiGbl_FADT.C2Latency <= 100) {
730	gas.Address = sc->cpu_p_blk + 4;
731	cx_ptr->res_rid = 0;
732	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
733	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
734	if (cx_ptr->p_lvlx != NULL) {
735	    cx_ptr->type = ACPI_STATE_C2;
736	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
737	    cx_ptr++;
738	    sc->cpu_non_c3 = sc->cpu_cx_count;
739	    sc->cpu_cx_count++;
740	}
741    }
742    if (sc->cpu_p_blk_len < 6)
743	return;
744
745    /* Validate and allocate resources for C3 (P_LVL3). */
746    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
747	gas.Address = sc->cpu_p_blk + 5;
748	cx_ptr->res_rid = 1;
749	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
750	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
751	if (cx_ptr->p_lvlx != NULL) {
752	    cx_ptr->type = ACPI_STATE_C3;
753	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
754	    cx_ptr++;
755	    sc->cpu_cx_count++;
756	}
757    }
758}
759
760#if defined(__i386__) || defined(__amd64__)
761static void
762acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
763{
764
765	cx_ptr->do_mwait = true;
766	cx_ptr->mwait_hint = address & 0xffffffff;
767	cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
768	cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
769}
770#endif
771
772static void
773acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
774{
775
776	if (cx_ptr->p_lvlx == NULL)
777		return;
778	bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
779	    cx_ptr->p_lvlx);
780	cx_ptr->p_lvlx = NULL;
781}
782
783/*
784 * Parse a _CST package and set up its Cx states.  Since the _CST object
785 * can change dynamically, our notify handler may call this function
786 * to clean up and probe the new _CST package.
787 */
788static int
789acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
790{
791    struct	 acpi_cx *cx_ptr;
792    ACPI_STATUS	 status;
793    ACPI_BUFFER	 buf;
794    ACPI_OBJECT	*top;
795    ACPI_OBJECT	*pkg;
796    uint32_t	 count;
797    int		 i;
798#if defined(__i386__) || defined(__amd64__)
799    uint64_t	 address;
800    int		 vendor, class, accsize;
801#endif
802
803    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
804
805    buf.Pointer = NULL;
806    buf.Length = ACPI_ALLOCATE_BUFFER;
807    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
808    if (ACPI_FAILURE(status))
809	return (ENXIO);
810
811    /* _CST is a package with a count and at least one Cx package. */
812    top = (ACPI_OBJECT *)buf.Pointer;
813    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
814	device_printf(sc->cpu_dev, "invalid _CST package\n");
815	AcpiOsFree(buf.Pointer);
816	return (ENXIO);
817    }
818    if (count != top->Package.Count - 1) {
819	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
820	       count, top->Package.Count - 1);
821	count = top->Package.Count - 1;
822    }
823    if (count > MAX_CX_STATES) {
824	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
825	count = MAX_CX_STATES;
826    }
827
828    sc->cpu_non_c2 = 0;
829    sc->cpu_non_c3 = 0;
830    sc->cpu_cx_count = 0;
831    cx_ptr = sc->cpu_cx_states;
832
833    /*
834     * C1 has been required since just after ACPI 1.0.
835     * Reserve the first slot for it.
836     */
837    cx_ptr->type = ACPI_STATE_C0;
838    cx_ptr++;
839    sc->cpu_cx_count++;
840
841    /* Set up all valid states. */
842    for (i = 0; i < count; i++) {
843	pkg = &top->Package.Elements[i + 1];
844	if (!ACPI_PKG_VALID(pkg, 4) ||
845	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
846	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
847	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
848	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
849	    continue;
850	}
851
852	/* Validate the state to see if we should use it. */
853	switch (cx_ptr->type) {
854	case ACPI_STATE_C1:
855	    acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
856#if defined(__i386__) || defined(__amd64__)
857	    if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
858	      &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) {
859		if (class == CST_FFH_INTEL_CL_C1IO) {
860		    /* C1 I/O then Halt */
861		    cx_ptr->res_rid = sc->cpu_cx_count;
862		    bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
863		      cx_ptr->res_rid, address, 1);
864		    cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
865		      SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
866		      RF_SHAREABLE);
867		    if (cx_ptr->p_lvlx == NULL) {
868			bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
869			  cx_ptr->res_rid);
870			device_printf(sc->cpu_dev,
871			  "C1 I/O failed to allocate port %d, "
872			  "degrading to C1 Halt", (int)address);
873		    }
874		} else if (class == CST_FFH_INTEL_CL_MWAIT) {
875		    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
876		}
877	    }
878#endif
879	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
880		/* This is the first C1 state.  Use the reserved slot. */
881		sc->cpu_cx_states[0] = *cx_ptr;
882	    } else {
883		sc->cpu_non_c2 = sc->cpu_cx_count;
884		sc->cpu_non_c3 = sc->cpu_cx_count;
885		cx_ptr++;
886		sc->cpu_cx_count++;
887	    }
888	    continue;
889	case ACPI_STATE_C2:
890	    sc->cpu_non_c3 = sc->cpu_cx_count;
891	    break;
892	case ACPI_STATE_C3:
893	default:
894	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
895		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
896				 "acpi_cpu%d: C3[%d] not available.\n",
897				 device_get_unit(sc->cpu_dev), i));
898		continue;
899	    }
900	    break;
901	}
902
903	/* Free up any previous register. */
904	acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
905
906	/* Allocate the control register for C2 or C3. */
907#if defined(__i386__) || defined(__amd64__)
908	if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
909	  &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
910	  class == CST_FFH_INTEL_CL_MWAIT) {
911	    /* Native C State Instruction use (mwait) */
912	    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
913	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
914	      "acpi_cpu%d: Got C%d/mwait - %d latency\n",
915	      device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
916	    cx_ptr++;
917	    sc->cpu_cx_count++;
918	} else
919#endif
920	{
921	    cx_ptr->res_rid = sc->cpu_cx_count;
922	    acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
923		&cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
924	    if (cx_ptr->p_lvlx) {
925		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
926		     "acpi_cpu%d: Got C%d - %d latency\n",
927		     device_get_unit(sc->cpu_dev), cx_ptr->type,
928		     cx_ptr->trans_lat));
929		cx_ptr++;
930		sc->cpu_cx_count++;
931	    }
932	}
933    }
934    AcpiOsFree(buf.Pointer);
935
936    /* If C1 state was not found, we need one now. */
937    cx_ptr = sc->cpu_cx_states;
938    if (cx_ptr->type == ACPI_STATE_C0) {
939	cx_ptr->type = ACPI_STATE_C1;
940	cx_ptr->trans_lat = 0;
941    }
942
943    return (0);
944}
945
946/*
947 * Call this *after* all CPUs have been attached.
948 */
949static void
950acpi_cpu_startup(void *arg)
951{
952    struct acpi_cpu_softc *sc;
953    int i;
954
955    /*
956     * Setup any quirks that might necessary now that we have probed
957     * all the CPUs
958     */
959    acpi_cpu_quirks();
960
961    if (cpu_cx_generic) {
962	/*
963	 * We are using generic Cx mode, probe for available Cx states
964	 * for all processors.
965	 */
966	CPU_FOREACH(i) {
967	    if ((sc = cpu_softc[i]) != NULL)
968		acpi_cpu_generic_cx_probe(sc);
969	}
970    } else {
971	/*
972	 * We are using _CST mode, remove C3 state if necessary.
973	 * As we now know for sure that we will be using _CST mode
974	 * install our notify handler.
975	 */
976	CPU_FOREACH(i) {
977	    if ((sc = cpu_softc[i]) == NULL)
978		continue;
979	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
980		sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
981	    }
982	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
983		acpi_cpu_notify, sc);
984	}
985    }
986
987    /* Perform Cx final initialization. */
988    CPU_FOREACH(i) {
989	if ((sc = cpu_softc[i]) != NULL)
990	    acpi_cpu_startup_cx(sc);
991    }
992
993    /* Add a sysctl handler to handle global Cx lowest setting */
994    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
995	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
996	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
997	"Global lowest Cx sleep state to use");
998
999    /* Take over idling from cpu_idle_default(). */
1000    cpu_cx_lowest_lim = 0;
1001    CPU_FOREACH(i) {
1002	if ((sc = cpu_softc[i]) != NULL)
1003	    enable_idle(sc);
1004    }
1005#if defined(__i386__) || defined(__amd64__)
1006    cpu_idle_hook = acpi_cpu_idle;
1007#endif
1008}
1009
1010static void
1011acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
1012{
1013    struct sbuf sb;
1014    int i;
1015
1016    /*
1017     * Set up the list of Cx states
1018     */
1019    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
1020	SBUF_FIXEDLEN);
1021    for (i = 0; i < sc->cpu_cx_count; i++)
1022	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
1023	    sc->cpu_cx_states[i].trans_lat);
1024    sbuf_trim(&sb);
1025    sbuf_finish(&sb);
1026}
1027
1028static void
1029acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
1030{
1031    acpi_cpu_cx_list(sc);
1032
1033    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
1034		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1035		      OID_AUTO, "cx_supported", CTLFLAG_RD,
1036		      sc->cpu_cx_supported, 0,
1037		      "Cx/microsecond values for supported Cx states");
1038    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1039        SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1040	"cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1041	(void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
1042	"lowest Cx sleep state to use");
1043    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1044        SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1045	"cx_usage", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1046	(void *)sc, 0, acpi_cpu_usage_sysctl, "A",
1047	"percent usage for each Cx state");
1048    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1049        SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1050	"cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1051	(void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
1052	"Cx sleep state counters");
1053#if defined(__i386__) || defined(__amd64__)
1054    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1055        SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1056	"cx_method", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1057	(void *)sc, 0, acpi_cpu_method_sysctl, "A", "Cx entrance methods");
1058#endif
1059
1060    /* Signal platform that we can handle _CST notification. */
1061    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
1062	ACPI_LOCK(acpi);
1063	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
1064	ACPI_UNLOCK(acpi);
1065    }
1066}
1067
1068#if defined(__i386__) || defined(__amd64__)
1069/*
1070 * Idle the CPU in the lowest state possible.  This function is called with
1071 * interrupts disabled.  Note that once it re-enables interrupts, a task
1072 * switch can occur so do not access shared data (i.e. the softc) after
1073 * interrupts are re-enabled.
1074 */
1075static void
1076acpi_cpu_idle(sbintime_t sbt)
1077{
1078    struct	acpi_cpu_softc *sc;
1079    struct	acpi_cx *cx_next;
1080    uint64_t	start_ticks, end_ticks;
1081    uint32_t	start_time, end_time;
1082    ACPI_STATUS	status;
1083    int		bm_active, cx_next_idx, i, us;
1084
1085    /*
1086     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
1087     * since there is no ACPI processor object for this CPU.  This occurs
1088     * for logical CPUs in the HTT case.
1089     */
1090    sc = cpu_softc[PCPU_GET(cpuid)];
1091    if (sc == NULL) {
1092	acpi_cpu_c1();
1093	return;
1094    }
1095
1096    /* If disabled, take the safe path. */
1097    if (is_idle_disabled(sc)) {
1098	acpi_cpu_c1();
1099	return;
1100    }
1101
1102    /* Find the lowest state that has small enough latency. */
1103    us = sc->cpu_prev_sleep;
1104    if (sbt >= 0 && us > (sbt >> 12))
1105	us = (sbt >> 12);
1106    cx_next_idx = 0;
1107    if (cpu_disable_c2_sleep)
1108	i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
1109    else if (cpu_disable_c3_sleep)
1110	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
1111    else
1112	i = sc->cpu_cx_lowest;
1113    for (; i >= 0; i--) {
1114	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
1115	    cx_next_idx = i;
1116	    break;
1117	}
1118    }
1119
1120    /*
1121     * Check for bus master activity.  If there was activity, clear
1122     * the bit and use the lowest non-C3 state.  Note that the USB
1123     * driver polling for new devices keeps this bit set all the
1124     * time if USB is loaded.
1125     */
1126    cx_next = &sc->cpu_cx_states[cx_next_idx];
1127    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1128	cx_next_idx > sc->cpu_non_c3 &&
1129	(!cx_next->do_mwait || cx_next->mwait_bm_avoidance)) {
1130	status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1131	if (ACPI_SUCCESS(status) && bm_active != 0) {
1132	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1133	    cx_next_idx = sc->cpu_non_c3;
1134	    cx_next = &sc->cpu_cx_states[cx_next_idx];
1135	}
1136    }
1137
1138    /* Select the next state and update statistics. */
1139    sc->cpu_cx_stats[cx_next_idx]++;
1140    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1141
1142    /*
1143     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1144     * precisely calculate the time spent in C1 since the place we wake up
1145     * is an ISR.  Assume we slept no more then half of quantum, unless
1146     * we are called inside critical section, delaying context switch.
1147     */
1148    if (cx_next->type == ACPI_STATE_C1) {
1149	start_ticks = cpu_ticks();
1150	if (cx_next->p_lvlx != NULL) {
1151	    /* C1 I/O then Halt */
1152	    CPU_GET_REG(cx_next->p_lvlx, 1);
1153	}
1154	if (cx_next->do_mwait)
1155	    acpi_cpu_idle_mwait(cx_next->mwait_hint);
1156	else
1157	    acpi_cpu_c1();
1158	end_ticks = cpu_ticks();
1159	/* acpi_cpu_c1() returns with interrupts enabled. */
1160	if (cx_next->do_mwait)
1161	    ACPI_ENABLE_IRQS();
1162	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1163	if (!cx_next->do_mwait && curthread->td_critnest == 0)
1164		end_time = min(end_time, 500000 / hz);
1165	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1166	return;
1167    }
1168
1169    /*
1170     * For C3, disable bus master arbitration if BM control is available.
1171     * CPU may have to wake up to handle it. Otherwise flush the CPU cache.
1172     */
1173    if (cx_next->type == ACPI_STATE_C3) {
1174	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0)
1175	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1176	else
1177	    ACPI_FLUSH_CPU_CACHE();
1178    }
1179
1180    /*
1181     * Read from P_LVLx to enter C2(+), checking time spent asleep.
1182     * Use the ACPI timer for measuring sleep time.  Since we need to
1183     * get the time very close to the CPU start/stop clock logic, this
1184     * is the only reliable time source.
1185     */
1186    if (cx_next->type == ACPI_STATE_C3) {
1187	AcpiGetTimer(&start_time);
1188	start_ticks = 0;
1189    } else {
1190	start_time = 0;
1191	start_ticks = cpu_ticks();
1192    }
1193    if (cx_next->do_mwait) {
1194	acpi_cpu_idle_mwait(cx_next->mwait_hint);
1195    } else {
1196	CPU_GET_REG(cx_next->p_lvlx, 1);
1197	/*
1198	 * Read the end time twice.  Since it may take an arbitrary time
1199	 * to enter the idle state, the first read may be executed before
1200	 * the processor has stopped.  Doing it again provides enough
1201	 * margin that we are certain to have a correct value.
1202	 */
1203	AcpiGetTimer(&end_time);
1204    }
1205
1206    if (cx_next->type == ACPI_STATE_C3)
1207	AcpiGetTimer(&end_time);
1208    else
1209	end_ticks = cpu_ticks();
1210
1211    /* Enable bus master arbitration. */
1212    if (cx_next->type == ACPI_STATE_C3 &&
1213      (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0)
1214	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1215    ACPI_ENABLE_IRQS();
1216
1217    if (cx_next->type == ACPI_STATE_C3)
1218	AcpiGetTimerDuration(start_time, end_time, &end_time);
1219    else
1220	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1221    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1222}
1223#endif
1224
1225/*
1226 * Re-evaluate the _CST object when we are notified that it changed.
1227 */
1228static void
1229acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1230{
1231    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1232
1233    if (notify != ACPI_NOTIFY_CX_STATES)
1234	return;
1235
1236    /*
1237     * C-state data for target CPU is going to be in flux while we execute
1238     * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1239     * Also, it may happen that multiple ACPI taskqueues may concurrently
1240     * execute notifications for the same CPU.  ACPI_SERIAL is used to
1241     * protect against that.
1242     */
1243    ACPI_SERIAL_BEGIN(cpu);
1244    disable_idle(sc);
1245
1246    /* Update the list of Cx states. */
1247    acpi_cpu_cx_cst(sc);
1248    acpi_cpu_cx_list(sc);
1249    acpi_cpu_set_cx_lowest(sc);
1250
1251    enable_idle(sc);
1252    ACPI_SERIAL_END(cpu);
1253
1254    acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1255}
1256
1257static void
1258acpi_cpu_quirks(void)
1259{
1260    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1261
1262    /*
1263     * Bus mastering arbitration control is needed to keep caches coherent
1264     * while sleeping in C3.  If it's not present but a working flush cache
1265     * instruction is present, flush the caches before entering C3 instead.
1266     * Otherwise, just disable C3 completely.
1267     */
1268    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1269	AcpiGbl_FADT.Pm2ControlLength == 0) {
1270	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1271	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1272	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1273	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1274		"acpi_cpu: no BM control, using flush cache method\n"));
1275	} else {
1276	    cpu_quirks |= CPU_QUIRK_NO_C3;
1277	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1278		"acpi_cpu: no BM control, C3 not available\n"));
1279	}
1280    }
1281
1282    /*
1283     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1284     * the expensive flush cache instruction.
1285     */
1286    if (cpu_cx_generic && mp_ncpus > 1) {
1287	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1288	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1289	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1290    }
1291
1292    /* Look for various quirks of the PIIX4 part. */
1293    acpi_cpu_quirks_piix4();
1294}
1295
1296static void
1297acpi_cpu_quirks_piix4(void)
1298{
1299#ifdef __i386__
1300    device_t acpi_dev;
1301    uint32_t val;
1302    ACPI_STATUS status;
1303
1304    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1305    if (acpi_dev != NULL) {
1306	switch (pci_get_revid(acpi_dev)) {
1307	/*
1308	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1309	 * do not report the BMIDE status to the BM status register and
1310	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1311	 * works around the BMIDE bug by reading the BM status directly
1312	 * but we take the simpler approach of disabling C3 for these
1313	 * parts.
1314	 *
1315	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1316	 * Livelock") from the January 2002 PIIX4 specification update.
1317	 * Applies to all PIIX4 models.
1318	 *
1319	 * Also, make sure that all interrupts cause a "Stop Break"
1320	 * event to exit from C2 state.
1321	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1322	 * should be set to zero, otherwise it causes C2 to short-sleep.
1323	 * PIIX4 doesn't properly support C3 and bus master activity
1324	 * need not break out of C2.
1325	 */
1326	case PCI_REVISION_A_STEP:
1327	case PCI_REVISION_B_STEP:
1328	case PCI_REVISION_4E:
1329	case PCI_REVISION_4M:
1330	    cpu_quirks |= CPU_QUIRK_NO_C3;
1331	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1332		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1333
1334	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1335	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1336		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1337		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1338	    	val |= PIIX4_STOP_BREAK_MASK;
1339		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1340	    }
1341	    status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1342	    if (ACPI_SUCCESS(status) && val != 0) {
1343		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1344		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1345		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1346	    }
1347	    break;
1348	default:
1349	    break;
1350	}
1351    }
1352#endif
1353}
1354
1355static int
1356acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1357{
1358	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1359	struct sbuf	 sb;
1360	char		 buf[128];
1361	int		 error, i;
1362	uintmax_t	 fract, sum, whole;
1363
1364	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1365	sum = 0;
1366	for (i = 0; i < sc->cpu_cx_count; i++)
1367		sum += sc->cpu_cx_stats[i];
1368	for (i = 0; i < sc->cpu_cx_count; i++) {
1369		if (sum > 0) {
1370			whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1371			fract = (whole % sum) * 100;
1372			sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1373			    (u_int)(fract / sum));
1374		} else
1375			sbuf_printf(&sb, "0.00%% ");
1376	}
1377	sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1378	error = sbuf_finish(&sb);
1379	sbuf_delete(&sb);
1380	return (error);
1381}
1382
1383/*
1384 * XXX TODO: actually add support to count each entry/exit
1385 * from the Cx states.
1386 */
1387static int
1388acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
1389{
1390	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1391	struct sbuf	 sb;
1392	char		 buf[128];
1393	int		 error, i;
1394
1395	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1396	for (i = 0; i < sc->cpu_cx_count; i++) {
1397		if (i > 0)
1398			sbuf_putc(&sb, ' ');
1399		sbuf_printf(&sb, "%u", sc->cpu_cx_stats[i]);
1400	}
1401	error = sbuf_finish(&sb);
1402	sbuf_delete(&sb);
1403	return (error);
1404}
1405
1406#if defined(__i386__) || defined(__amd64__)
1407static int
1408acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
1409{
1410	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1411	struct acpi_cx *cx;
1412	struct sbuf sb;
1413	char buf[128];
1414	int error, i;
1415
1416	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1417	for (i = 0; i < sc->cpu_cx_count; i++) {
1418		cx = &sc->cpu_cx_states[i];
1419		if (i > 0)
1420			sbuf_putc(&sb, ' ');
1421		sbuf_printf(&sb, "C%d/", i + 1);
1422		if (cx->do_mwait) {
1423			sbuf_cat(&sb, "mwait");
1424			if (cx->mwait_hw_coord)
1425				sbuf_cat(&sb, "/hwc");
1426			if (cx->mwait_bm_avoidance)
1427				sbuf_cat(&sb, "/bma");
1428		} else if (cx->type == ACPI_STATE_C1) {
1429			sbuf_cat(&sb, "hlt");
1430		} else {
1431			sbuf_cat(&sb, "io");
1432		}
1433		if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
1434			sbuf_cat(&sb, "/iohlt");
1435	}
1436	error = sbuf_finish(&sb);
1437	sbuf_delete(&sb);
1438	return (error);
1439}
1440#endif
1441
1442static int
1443acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1444{
1445    int i;
1446
1447    ACPI_SERIAL_ASSERT(cpu);
1448    sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1449
1450    /* If not disabling, cache the new lowest non-C3 state. */
1451    sc->cpu_non_c3 = 0;
1452    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1453	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1454	    sc->cpu_non_c3 = i;
1455	    break;
1456	}
1457    }
1458
1459    /* Reset the statistics counters. */
1460    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1461    return (0);
1462}
1463
1464static int
1465acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1466{
1467    struct	 acpi_cpu_softc *sc;
1468    char	 state[8];
1469    int		 val, error;
1470
1471    sc = (struct acpi_cpu_softc *) arg1;
1472    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1473    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1474    if (error != 0 || req->newptr == NULL)
1475	return (error);
1476    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1477	return (EINVAL);
1478    if (strcasecmp(state, "Cmax") == 0)
1479	val = MAX_CX_STATES;
1480    else {
1481	val = (int) strtol(state + 1, NULL, 10);
1482	if (val < 1 || val > MAX_CX_STATES)
1483	    return (EINVAL);
1484    }
1485
1486    ACPI_SERIAL_BEGIN(cpu);
1487    sc->cpu_cx_lowest_lim = val - 1;
1488    acpi_cpu_set_cx_lowest(sc);
1489    ACPI_SERIAL_END(cpu);
1490
1491    return (0);
1492}
1493
1494static int
1495acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1496{
1497    struct	acpi_cpu_softc *sc;
1498    char	state[8];
1499    int		val, error, i;
1500
1501    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1502    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1503    if (error != 0 || req->newptr == NULL)
1504	return (error);
1505    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1506	return (EINVAL);
1507    if (strcasecmp(state, "Cmax") == 0)
1508	val = MAX_CX_STATES;
1509    else {
1510	val = (int) strtol(state + 1, NULL, 10);
1511	if (val < 1 || val > MAX_CX_STATES)
1512	    return (EINVAL);
1513    }
1514
1515    /* Update the new lowest useable Cx state for all CPUs. */
1516    ACPI_SERIAL_BEGIN(cpu);
1517    cpu_cx_lowest_lim = val - 1;
1518    CPU_FOREACH(i) {
1519	if ((sc = cpu_softc[i]) == NULL)
1520	    continue;
1521	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1522	acpi_cpu_set_cx_lowest(sc);
1523    }
1524    ACPI_SERIAL_END(cpu);
1525
1526    return (0);
1527}
1528