1/*
2 * Copyright (c) Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11
12/*-**************************************
13*  Tuning parameters
14****************************************/
15#define MINRATIO 4   /* minimum nb of apparition to be selected in dictionary */
16#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
17#define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
18
19
20/*-**************************************
21*  Compiler Options
22****************************************/
23/* Unix Large Files support (>4GB) */
24#define _FILE_OFFSET_BITS 64
25#if (defined(__sun__) && (!defined(__LP64__)))   /* Sun Solaris 32-bits requires specific definitions */
26#  ifndef _LARGEFILE_SOURCE
27#  define _LARGEFILE_SOURCE
28#  endif
29#elif ! defined(__LP64__)                        /* No point defining Large file for 64 bit */
30#  ifndef _LARGEFILE64_SOURCE
31#  define _LARGEFILE64_SOURCE
32#  endif
33#endif
34
35
36/*-*************************************
37*  Dependencies
38***************************************/
39#include <stdlib.h>        /* malloc, free */
40#include <string.h>        /* memset */
41#include <stdio.h>         /* fprintf, fopen, ftello64 */
42#include <time.h>          /* clock */
43
44#ifndef ZDICT_STATIC_LINKING_ONLY
45#  define ZDICT_STATIC_LINKING_ONLY
46#endif
47#define HUF_STATIC_LINKING_ONLY
48
49#include "../common/mem.h"           /* read */
50#include "../common/fse.h"           /* FSE_normalizeCount, FSE_writeNCount */
51#include "../common/huf.h"           /* HUF_buildCTable, HUF_writeCTable */
52#include "../common/zstd_internal.h" /* includes zstd.h */
53#include "../common/xxhash.h"        /* XXH64 */
54#include "../compress/zstd_compress_internal.h" /* ZSTD_loadCEntropy() */
55#include "../zdict.h"
56#include "divsufsort.h"
57
58
59/*-*************************************
60*  Constants
61***************************************/
62#define KB *(1 <<10)
63#define MB *(1 <<20)
64#define GB *(1U<<30)
65
66#define DICTLISTSIZE_DEFAULT 10000
67
68#define NOISELENGTH 32
69
70static const U32 g_selectivity_default = 9;
71
72
73/*-*************************************
74*  Console display
75***************************************/
76#undef  DISPLAY
77#define DISPLAY(...)         { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
78#undef  DISPLAYLEVEL
79#define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); }    /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
80
81static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
82
83static void ZDICT_printHex(const void* ptr, size_t length)
84{
85    const BYTE* const b = (const BYTE*)ptr;
86    size_t u;
87    for (u=0; u<length; u++) {
88        BYTE c = b[u];
89        if (c<32 || c>126) c = '.';   /* non-printable char */
90        DISPLAY("%c", c);
91    }
92}
93
94
95/*-********************************************************
96*  Helper functions
97**********************************************************/
98unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
99
100const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
101
102unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
103{
104    if (dictSize < 8) return 0;
105    if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
106    return MEM_readLE32((const char*)dictBuffer + 4);
107}
108
109size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize)
110{
111    size_t headerSize;
112    if (dictSize <= 8 || MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return ERROR(dictionary_corrupted);
113
114    {   ZSTD_compressedBlockState_t* bs = (ZSTD_compressedBlockState_t*)malloc(sizeof(ZSTD_compressedBlockState_t));
115        U32* wksp = (U32*)malloc(HUF_WORKSPACE_SIZE);
116        if (!bs || !wksp) {
117            headerSize = ERROR(memory_allocation);
118        } else {
119            ZSTD_reset_compressedBlockState(bs);
120            headerSize = ZSTD_loadCEntropy(bs, wksp, dictBuffer, dictSize);
121        }
122
123        free(bs);
124        free(wksp);
125    }
126
127    return headerSize;
128}
129
130/*-********************************************************
131*  Dictionary training functions
132**********************************************************/
133static unsigned ZDICT_NbCommonBytes (size_t val)
134{
135    if (MEM_isLittleEndian()) {
136        if (MEM_64bits()) {
137#       if defined(_MSC_VER) && defined(_WIN64)
138            if (val != 0) {
139                unsigned long r;
140                _BitScanForward64(&r, (U64)val);
141                return (unsigned)(r >> 3);
142            } else {
143                /* Should not reach this code path */
144                __assume(0);
145            }
146#       elif defined(__GNUC__) && (__GNUC__ >= 3)
147            return (unsigned)(__builtin_ctzll((U64)val) >> 3);
148#       else
149            static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
150            return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
151#       endif
152        } else { /* 32 bits */
153#       if defined(_MSC_VER)
154            if (val != 0) {
155                unsigned long r;
156                _BitScanForward(&r, (U32)val);
157                return (unsigned)(r >> 3);
158            } else {
159                /* Should not reach this code path */
160                __assume(0);
161            }
162#       elif defined(__GNUC__) && (__GNUC__ >= 3)
163            return (unsigned)(__builtin_ctz((U32)val) >> 3);
164#       else
165            static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
166            return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
167#       endif
168        }
169    } else {  /* Big Endian CPU */
170        if (MEM_64bits()) {
171#       if defined(_MSC_VER) && defined(_WIN64)
172            if (val != 0) {
173                unsigned long r;
174                _BitScanReverse64(&r, val);
175                return (unsigned)(r >> 3);
176            } else {
177                /* Should not reach this code path */
178                __assume(0);
179            }
180#       elif defined(__GNUC__) && (__GNUC__ >= 3)
181            return (unsigned)(__builtin_clzll(val) >> 3);
182#       else
183            unsigned r;
184            const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
185            if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
186            if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
187            r += (!val);
188            return r;
189#       endif
190        } else { /* 32 bits */
191#       if defined(_MSC_VER)
192            if (val != 0) {
193                unsigned long r;
194                _BitScanReverse(&r, (unsigned long)val);
195                return (unsigned)(r >> 3);
196            } else {
197                /* Should not reach this code path */
198                __assume(0);
199            }
200#       elif defined(__GNUC__) && (__GNUC__ >= 3)
201            return (unsigned)(__builtin_clz((U32)val) >> 3);
202#       else
203            unsigned r;
204            if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
205            r += (!val);
206            return r;
207#       endif
208    }   }
209}
210
211
212/*! ZDICT_count() :
213    Count the nb of common bytes between 2 pointers.
214    Note : this function presumes end of buffer followed by noisy guard band.
215*/
216static size_t ZDICT_count(const void* pIn, const void* pMatch)
217{
218    const char* const pStart = (const char*)pIn;
219    for (;;) {
220        size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
221        if (!diff) {
222            pIn = (const char*)pIn+sizeof(size_t);
223            pMatch = (const char*)pMatch+sizeof(size_t);
224            continue;
225        }
226        pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
227        return (size_t)((const char*)pIn - pStart);
228    }
229}
230
231
232typedef struct {
233    U32 pos;
234    U32 length;
235    U32 savings;
236} dictItem;
237
238static void ZDICT_initDictItem(dictItem* d)
239{
240    d->pos = 1;
241    d->length = 0;
242    d->savings = (U32)(-1);
243}
244
245
246#define LLIMIT 64          /* heuristic determined experimentally */
247#define MINMATCHLENGTH 7   /* heuristic determined experimentally */
248static dictItem ZDICT_analyzePos(
249                       BYTE* doneMarks,
250                       const int* suffix, U32 start,
251                       const void* buffer, U32 minRatio, U32 notificationLevel)
252{
253    U32 lengthList[LLIMIT] = {0};
254    U32 cumulLength[LLIMIT] = {0};
255    U32 savings[LLIMIT] = {0};
256    const BYTE* b = (const BYTE*)buffer;
257    size_t maxLength = LLIMIT;
258    size_t pos = (size_t)suffix[start];
259    U32 end = start;
260    dictItem solution;
261
262    /* init */
263    memset(&solution, 0, sizeof(solution));
264    doneMarks[pos] = 1;
265
266    /* trivial repetition cases */
267    if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
268       ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
269       ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
270        /* skip and mark segment */
271        U16 const pattern16 = MEM_read16(b+pos+4);
272        U32 u, patternEnd = 6;
273        while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
274        if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
275        for (u=1; u<patternEnd; u++)
276            doneMarks[pos+u] = 1;
277        return solution;
278    }
279
280    /* look forward */
281    {   size_t length;
282        do {
283            end++;
284            length = ZDICT_count(b + pos, b + suffix[end]);
285        } while (length >= MINMATCHLENGTH);
286    }
287
288    /* look backward */
289    {   size_t length;
290        do {
291            length = ZDICT_count(b + pos, b + *(suffix+start-1));
292            if (length >=MINMATCHLENGTH) start--;
293        } while(length >= MINMATCHLENGTH);
294    }
295
296    /* exit if not found a minimum nb of repetitions */
297    if (end-start < minRatio) {
298        U32 idx;
299        for(idx=start; idx<end; idx++)
300            doneMarks[suffix[idx]] = 1;
301        return solution;
302    }
303
304    {   int i;
305        U32 mml;
306        U32 refinedStart = start;
307        U32 refinedEnd = end;
308
309        DISPLAYLEVEL(4, "\n");
310        DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u  ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
311        DISPLAYLEVEL(4, "\n");
312
313        for (mml = MINMATCHLENGTH ; ; mml++) {
314            BYTE currentChar = 0;
315            U32 currentCount = 0;
316            U32 currentID = refinedStart;
317            U32 id;
318            U32 selectedCount = 0;
319            U32 selectedID = currentID;
320            for (id =refinedStart; id < refinedEnd; id++) {
321                if (b[suffix[id] + mml] != currentChar) {
322                    if (currentCount > selectedCount) {
323                        selectedCount = currentCount;
324                        selectedID = currentID;
325                    }
326                    currentID = id;
327                    currentChar = b[ suffix[id] + mml];
328                    currentCount = 0;
329                }
330                currentCount ++;
331            }
332            if (currentCount > selectedCount) {  /* for last */
333                selectedCount = currentCount;
334                selectedID = currentID;
335            }
336
337            if (selectedCount < minRatio)
338                break;
339            refinedStart = selectedID;
340            refinedEnd = refinedStart + selectedCount;
341        }
342
343        /* evaluate gain based on new dict */
344        start = refinedStart;
345        pos = suffix[refinedStart];
346        end = start;
347        memset(lengthList, 0, sizeof(lengthList));
348
349        /* look forward */
350        {   size_t length;
351            do {
352                end++;
353                length = ZDICT_count(b + pos, b + suffix[end]);
354                if (length >= LLIMIT) length = LLIMIT-1;
355                lengthList[length]++;
356            } while (length >=MINMATCHLENGTH);
357        }
358
359        /* look backward */
360        {   size_t length = MINMATCHLENGTH;
361            while ((length >= MINMATCHLENGTH) & (start > 0)) {
362                length = ZDICT_count(b + pos, b + suffix[start - 1]);
363                if (length >= LLIMIT) length = LLIMIT - 1;
364                lengthList[length]++;
365                if (length >= MINMATCHLENGTH) start--;
366            }
367        }
368
369        /* largest useful length */
370        memset(cumulLength, 0, sizeof(cumulLength));
371        cumulLength[maxLength-1] = lengthList[maxLength-1];
372        for (i=(int)(maxLength-2); i>=0; i--)
373            cumulLength[i] = cumulLength[i+1] + lengthList[i];
374
375        for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
376        maxLength = i;
377
378        /* reduce maxLength in case of final into repetitive data */
379        {   U32 l = (U32)maxLength;
380            BYTE const c = b[pos + maxLength-1];
381            while (b[pos+l-2]==c) l--;
382            maxLength = l;
383        }
384        if (maxLength < MINMATCHLENGTH) return solution;   /* skip : no long-enough solution */
385
386        /* calculate savings */
387        savings[5] = 0;
388        for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
389            savings[i] = savings[i-1] + (lengthList[i] * (i-3));
390
391        DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f)  \n",
392                     (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / (double)maxLength);
393
394        solution.pos = (U32)pos;
395        solution.length = (U32)maxLength;
396        solution.savings = savings[maxLength];
397
398        /* mark positions done */
399        {   U32 id;
400            for (id=start; id<end; id++) {
401                U32 p, pEnd, length;
402                U32 const testedPos = (U32)suffix[id];
403                if (testedPos == pos)
404                    length = solution.length;
405                else {
406                    length = (U32)ZDICT_count(b+pos, b+testedPos);
407                    if (length > solution.length) length = solution.length;
408                }
409                pEnd = (U32)(testedPos + length);
410                for (p=testedPos; p<pEnd; p++)
411                    doneMarks[p] = 1;
412    }   }   }
413
414    return solution;
415}
416
417
418static int isIncluded(const void* in, const void* container, size_t length)
419{
420    const char* const ip = (const char*) in;
421    const char* const into = (const char*) container;
422    size_t u;
423
424    for (u=0; u<length; u++) {  /* works because end of buffer is a noisy guard band */
425        if (ip[u] != into[u]) break;
426    }
427
428    return u==length;
429}
430
431/*! ZDICT_tryMerge() :
432    check if dictItem can be merged, do it if possible
433    @return : id of destination elt, 0 if not merged
434*/
435static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
436{
437    const U32 tableSize = table->pos;
438    const U32 eltEnd = elt.pos + elt.length;
439    const char* const buf = (const char*) buffer;
440
441    /* tail overlap */
442    U32 u; for (u=1; u<tableSize; u++) {
443        if (u==eltNbToSkip) continue;
444        if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) {  /* overlap, existing > new */
445            /* append */
446            U32 const addedLength = table[u].pos - elt.pos;
447            table[u].length += addedLength;
448            table[u].pos = elt.pos;
449            table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
450            table[u].savings += elt.length / 8;    /* rough approx bonus */
451            elt = table[u];
452            /* sort : improve rank */
453            while ((u>1) && (table[u-1].savings < elt.savings))
454            table[u] = table[u-1], u--;
455            table[u] = elt;
456            return u;
457    }   }
458
459    /* front overlap */
460    for (u=1; u<tableSize; u++) {
461        if (u==eltNbToSkip) continue;
462
463        if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) {  /* overlap, existing < new */
464            /* append */
465            int const addedLength = (int)eltEnd - (int)(table[u].pos + table[u].length);
466            table[u].savings += elt.length / 8;    /* rough approx bonus */
467            if (addedLength > 0) {   /* otherwise, elt fully included into existing */
468                table[u].length += addedLength;
469                table[u].savings += elt.savings * addedLength / elt.length;   /* rough approx */
470            }
471            /* sort : improve rank */
472            elt = table[u];
473            while ((u>1) && (table[u-1].savings < elt.savings))
474                table[u] = table[u-1], u--;
475            table[u] = elt;
476            return u;
477        }
478
479        if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
480            if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
481                size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
482                table[u].pos = elt.pos;
483                table[u].savings += (U32)(elt.savings * addedLength / elt.length);
484                table[u].length = MIN(elt.length, table[u].length + 1);
485                return u;
486            }
487        }
488    }
489
490    return 0;
491}
492
493
494static void ZDICT_removeDictItem(dictItem* table, U32 id)
495{
496    /* convention : table[0].pos stores nb of elts */
497    U32 const max = table[0].pos;
498    U32 u;
499    if (!id) return;   /* protection, should never happen */
500    for (u=id; u<max-1; u++)
501        table[u] = table[u+1];
502    table->pos--;
503}
504
505
506static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
507{
508    /* merge if possible */
509    U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
510    if (mergeId) {
511        U32 newMerge = 1;
512        while (newMerge) {
513            newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
514            if (newMerge) ZDICT_removeDictItem(table, mergeId);
515            mergeId = newMerge;
516        }
517        return;
518    }
519
520    /* insert */
521    {   U32 current;
522        U32 nextElt = table->pos;
523        if (nextElt >= maxSize) nextElt = maxSize-1;
524        current = nextElt-1;
525        while (table[current].savings < elt.savings) {
526            table[current+1] = table[current];
527            current--;
528        }
529        table[current+1] = elt;
530        table->pos = nextElt+1;
531    }
532}
533
534
535static U32 ZDICT_dictSize(const dictItem* dictList)
536{
537    U32 u, dictSize = 0;
538    for (u=1; u<dictList[0].pos; u++)
539        dictSize += dictList[u].length;
540    return dictSize;
541}
542
543
544static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
545                            const void* const buffer, size_t bufferSize,   /* buffer must end with noisy guard band */
546                            const size_t* fileSizes, unsigned nbFiles,
547                            unsigned minRatio, U32 notificationLevel)
548{
549    int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
550    int* const suffix = suffix0+1;
551    U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
552    BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks));   /* +16 for overflow security */
553    U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
554    size_t result = 0;
555    clock_t displayClock = 0;
556    clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
557
558#   undef  DISPLAYUPDATE
559#   define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
560            if (ZDICT_clockSpan(displayClock) > refreshRate)  \
561            { displayClock = clock(); DISPLAY(__VA_ARGS__); \
562            if (notificationLevel>=4) fflush(stderr); } }
563
564    /* init */
565    DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
566    if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
567        result = ERROR(memory_allocation);
568        goto _cleanup;
569    }
570    if (minRatio < MINRATIO) minRatio = MINRATIO;
571    memset(doneMarks, 0, bufferSize+16);
572
573    /* limit sample set size (divsufsort limitation)*/
574    if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
575    while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
576
577    /* sort */
578    DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
579    {   int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
580        if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
581    }
582    suffix[bufferSize] = (int)bufferSize;   /* leads into noise */
583    suffix0[0] = (int)bufferSize;           /* leads into noise */
584    /* build reverse suffix sort */
585    {   size_t pos;
586        for (pos=0; pos < bufferSize; pos++)
587            reverseSuffix[suffix[pos]] = (U32)pos;
588        /* note filePos tracks borders between samples.
589           It's not used at this stage, but planned to become useful in a later update */
590        filePos[0] = 0;
591        for (pos=1; pos<nbFiles; pos++)
592            filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
593    }
594
595    DISPLAYLEVEL(2, "finding patterns ... \n");
596    DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
597
598    {   U32 cursor; for (cursor=0; cursor < bufferSize; ) {
599            dictItem solution;
600            if (doneMarks[cursor]) { cursor++; continue; }
601            solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
602            if (solution.length==0) { cursor++; continue; }
603            ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
604            cursor += solution.length;
605            DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
606    }   }
607
608_cleanup:
609    free(suffix0);
610    free(reverseSuffix);
611    free(doneMarks);
612    free(filePos);
613    return result;
614}
615
616
617static void ZDICT_fillNoise(void* buffer, size_t length)
618{
619    unsigned const prime1 = 2654435761U;
620    unsigned const prime2 = 2246822519U;
621    unsigned acc = prime1;
622    size_t p=0;
623    for (p=0; p<length; p++) {
624        acc *= prime2;
625        ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
626    }
627}
628
629
630typedef struct
631{
632    ZSTD_CDict* dict;    /* dictionary */
633    ZSTD_CCtx* zc;     /* working context */
634    void* workPlace;   /* must be ZSTD_BLOCKSIZE_MAX allocated */
635} EStats_ress_t;
636
637#define MAXREPOFFSET 1024
638
639static void ZDICT_countEStats(EStats_ress_t esr, const ZSTD_parameters* params,
640                              unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
641                              const void* src, size_t srcSize,
642                              U32 notificationLevel)
643{
644    size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params->cParams.windowLog);
645    size_t cSize;
646
647    if (srcSize > blockSizeMax) srcSize = blockSizeMax;   /* protection vs large samples */
648    {   size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict);
649        if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
650
651    }
652    cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
653    if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
654
655    if (cSize) {  /* if == 0; block is not compressible */
656        const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
657
658        /* literals stats */
659        {   const BYTE* bytePtr;
660            for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
661                countLit[*bytePtr]++;
662        }
663
664        /* seqStats */
665        {   U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
666            ZSTD_seqToCodes(seqStorePtr);
667
668            {   const BYTE* codePtr = seqStorePtr->ofCode;
669                U32 u;
670                for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
671            }
672
673            {   const BYTE* codePtr = seqStorePtr->mlCode;
674                U32 u;
675                for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
676            }
677
678            {   const BYTE* codePtr = seqStorePtr->llCode;
679                U32 u;
680                for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
681            }
682
683            if (nbSeq >= 2) { /* rep offsets */
684                const seqDef* const seq = seqStorePtr->sequencesStart;
685                U32 offset1 = seq[0].offBase - ZSTD_REP_NUM;
686                U32 offset2 = seq[1].offBase - ZSTD_REP_NUM;
687                if (offset1 >= MAXREPOFFSET) offset1 = 0;
688                if (offset2 >= MAXREPOFFSET) offset2 = 0;
689                repOffsets[offset1] += 3;
690                repOffsets[offset2] += 1;
691    }   }   }
692}
693
694static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
695{
696    size_t total=0;
697    unsigned u;
698    for (u=0; u<nbFiles; u++) total += fileSizes[u];
699    return total;
700}
701
702typedef struct { U32 offset; U32 count; } offsetCount_t;
703
704static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
705{
706    U32 u;
707    table[ZSTD_REP_NUM].offset = val;
708    table[ZSTD_REP_NUM].count = count;
709    for (u=ZSTD_REP_NUM; u>0; u--) {
710        offsetCount_t tmp;
711        if (table[u-1].count >= table[u].count) break;
712        tmp = table[u-1];
713        table[u-1] = table[u];
714        table[u] = tmp;
715    }
716}
717
718/* ZDICT_flatLit() :
719 * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
720 * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
721 */
722static void ZDICT_flatLit(unsigned* countLit)
723{
724    int u;
725    for (u=1; u<256; u++) countLit[u] = 2;
726    countLit[0]   = 4;
727    countLit[253] = 1;
728    countLit[254] = 1;
729}
730
731#define OFFCODE_MAX 30  /* only applicable to first block */
732static size_t ZDICT_analyzeEntropy(void*  dstBuffer, size_t maxDstSize,
733                                   int compressionLevel,
734                             const void*  srcBuffer, const size_t* fileSizes, unsigned nbFiles,
735                             const void* dictBuffer, size_t  dictBufferSize,
736                                   unsigned notificationLevel)
737{
738    unsigned countLit[256];
739    HUF_CREATE_STATIC_CTABLE(hufTable, 255);
740    unsigned offcodeCount[OFFCODE_MAX+1];
741    short offcodeNCount[OFFCODE_MAX+1];
742    U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
743    unsigned matchLengthCount[MaxML+1];
744    short matchLengthNCount[MaxML+1];
745    unsigned litLengthCount[MaxLL+1];
746    short litLengthNCount[MaxLL+1];
747    U32 repOffset[MAXREPOFFSET];
748    offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
749    EStats_ress_t esr = { NULL, NULL, NULL };
750    ZSTD_parameters params;
751    U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
752    size_t pos = 0, errorCode;
753    size_t eSize = 0;
754    size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
755    size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
756    BYTE* dstPtr = (BYTE*)dstBuffer;
757
758    /* init */
759    DEBUGLOG(4, "ZDICT_analyzeEntropy");
760    if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; }   /* too large dictionary */
761    for (u=0; u<256; u++) countLit[u] = 1;   /* any character must be described */
762    for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
763    for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
764    for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
765    memset(repOffset, 0, sizeof(repOffset));
766    repOffset[1] = repOffset[4] = repOffset[8] = 1;
767    memset(bestRepOffset, 0, sizeof(bestRepOffset));
768    if (compressionLevel==0) compressionLevel = ZSTD_CLEVEL_DEFAULT;
769    params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
770
771    esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
772    esr.zc = ZSTD_createCCtx();
773    esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
774    if (!esr.dict || !esr.zc || !esr.workPlace) {
775        eSize = ERROR(memory_allocation);
776        DISPLAYLEVEL(1, "Not enough memory \n");
777        goto _cleanup;
778    }
779
780    /* collect stats on all samples */
781    for (u=0; u<nbFiles; u++) {
782        ZDICT_countEStats(esr, &params,
783                          countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
784                         (const char*)srcBuffer + pos, fileSizes[u],
785                          notificationLevel);
786        pos += fileSizes[u];
787    }
788
789    if (notificationLevel >= 4) {
790        /* writeStats */
791        DISPLAYLEVEL(4, "Offset Code Frequencies : \n");
792        for (u=0; u<=offcodeMax; u++) {
793            DISPLAYLEVEL(4, "%2u :%7u \n", u, offcodeCount[u]);
794    }   }
795
796    /* analyze, build stats, starting with literals */
797    {   size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
798        if (HUF_isError(maxNbBits)) {
799            eSize = maxNbBits;
800            DISPLAYLEVEL(1, " HUF_buildCTable error \n");
801            goto _cleanup;
802        }
803        if (maxNbBits==8) {  /* not compressible : will fail on HUF_writeCTable() */
804            DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
805            ZDICT_flatLit(countLit);  /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
806            maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
807            assert(maxNbBits==9);
808        }
809        huffLog = (U32)maxNbBits;
810    }
811
812    /* looking for most common first offsets */
813    {   U32 offset;
814        for (offset=1; offset<MAXREPOFFSET; offset++)
815            ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
816    }
817    /* note : the result of this phase should be used to better appreciate the impact on statistics */
818
819    total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
820    errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax, /* useLowProbCount */ 1);
821    if (FSE_isError(errorCode)) {
822        eSize = errorCode;
823        DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
824        goto _cleanup;
825    }
826    Offlog = (U32)errorCode;
827
828    total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
829    errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML, /* useLowProbCount */ 1);
830    if (FSE_isError(errorCode)) {
831        eSize = errorCode;
832        DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
833        goto _cleanup;
834    }
835    mlLog = (U32)errorCode;
836
837    total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
838    errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL, /* useLowProbCount */ 1);
839    if (FSE_isError(errorCode)) {
840        eSize = errorCode;
841        DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
842        goto _cleanup;
843    }
844    llLog = (U32)errorCode;
845
846    /* write result to buffer */
847    {   size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
848        if (HUF_isError(hhSize)) {
849            eSize = hhSize;
850            DISPLAYLEVEL(1, "HUF_writeCTable error \n");
851            goto _cleanup;
852        }
853        dstPtr += hhSize;
854        maxDstSize -= hhSize;
855        eSize += hhSize;
856    }
857
858    {   size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
859        if (FSE_isError(ohSize)) {
860            eSize = ohSize;
861            DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
862            goto _cleanup;
863        }
864        dstPtr += ohSize;
865        maxDstSize -= ohSize;
866        eSize += ohSize;
867    }
868
869    {   size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
870        if (FSE_isError(mhSize)) {
871            eSize = mhSize;
872            DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
873            goto _cleanup;
874        }
875        dstPtr += mhSize;
876        maxDstSize -= mhSize;
877        eSize += mhSize;
878    }
879
880    {   size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
881        if (FSE_isError(lhSize)) {
882            eSize = lhSize;
883            DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
884            goto _cleanup;
885        }
886        dstPtr += lhSize;
887        maxDstSize -= lhSize;
888        eSize += lhSize;
889    }
890
891    if (maxDstSize<12) {
892        eSize = ERROR(dstSize_tooSmall);
893        DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
894        goto _cleanup;
895    }
896# if 0
897    MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
898    MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
899    MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
900#else
901    /* at this stage, we don't use the result of "most common first offset",
902     * as the impact of statistics is not properly evaluated */
903    MEM_writeLE32(dstPtr+0, repStartValue[0]);
904    MEM_writeLE32(dstPtr+4, repStartValue[1]);
905    MEM_writeLE32(dstPtr+8, repStartValue[2]);
906#endif
907    eSize += 12;
908
909_cleanup:
910    ZSTD_freeCDict(esr.dict);
911    ZSTD_freeCCtx(esr.zc);
912    free(esr.workPlace);
913
914    return eSize;
915}
916
917
918/**
919 * @returns the maximum repcode value
920 */
921static U32 ZDICT_maxRep(U32 const reps[ZSTD_REP_NUM])
922{
923    U32 maxRep = reps[0];
924    int r;
925    for (r = 1; r < ZSTD_REP_NUM; ++r)
926        maxRep = MAX(maxRep, reps[r]);
927    return maxRep;
928}
929
930size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
931                          const void* customDictContent, size_t dictContentSize,
932                          const void* samplesBuffer, const size_t* samplesSizes,
933                          unsigned nbSamples, ZDICT_params_t params)
934{
935    size_t hSize;
936#define HBUFFSIZE 256   /* should prove large enough for all entropy headers */
937    BYTE header[HBUFFSIZE];
938    int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
939    U32 const notificationLevel = params.notificationLevel;
940    /* The final dictionary content must be at least as large as the largest repcode */
941    size_t const minContentSize = (size_t)ZDICT_maxRep(repStartValue);
942    size_t paddingSize;
943
944    /* check conditions */
945    DEBUGLOG(4, "ZDICT_finalizeDictionary");
946    if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
947    if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
948
949    /* dictionary header */
950    MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
951    {   U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
952        U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
953        U32 const dictID = params.dictID ? params.dictID : compliantID;
954        MEM_writeLE32(header+4, dictID);
955    }
956    hSize = 8;
957
958    /* entropy tables */
959    DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
960    DISPLAYLEVEL(2, "statistics ... \n");
961    {   size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
962                                  compressionLevel,
963                                  samplesBuffer, samplesSizes, nbSamples,
964                                  customDictContent, dictContentSize,
965                                  notificationLevel);
966        if (ZDICT_isError(eSize)) return eSize;
967        hSize += eSize;
968    }
969
970    /* Shrink the content size if it doesn't fit in the buffer */
971    if (hSize + dictContentSize > dictBufferCapacity) {
972        dictContentSize = dictBufferCapacity - hSize;
973    }
974
975    /* Pad the dictionary content with zeros if it is too small */
976    if (dictContentSize < minContentSize) {
977        RETURN_ERROR_IF(hSize + minContentSize > dictBufferCapacity, dstSize_tooSmall,
978                        "dictBufferCapacity too small to fit max repcode");
979        paddingSize = minContentSize - dictContentSize;
980    } else {
981        paddingSize = 0;
982    }
983
984    {
985        size_t const dictSize = hSize + paddingSize + dictContentSize;
986
987        /* The dictionary consists of the header, optional padding, and the content.
988         * The padding comes before the content because the "best" position in the
989         * dictionary is the last byte.
990         */
991        BYTE* const outDictHeader = (BYTE*)dictBuffer;
992        BYTE* const outDictPadding = outDictHeader + hSize;
993        BYTE* const outDictContent = outDictPadding + paddingSize;
994
995        assert(dictSize <= dictBufferCapacity);
996        assert(outDictContent + dictContentSize == (BYTE*)dictBuffer + dictSize);
997
998        /* First copy the customDictContent into its final location.
999         * `customDictContent` and `dictBuffer` may overlap, so we must
1000         * do this before any other writes into the output buffer.
1001         * Then copy the header & padding into the output buffer.
1002         */
1003        memmove(outDictContent, customDictContent, dictContentSize);
1004        memcpy(outDictHeader, header, hSize);
1005        memset(outDictPadding, 0, paddingSize);
1006
1007        return dictSize;
1008    }
1009}
1010
1011
1012static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
1013        void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
1014        const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1015        ZDICT_params_t params)
1016{
1017    int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
1018    U32 const notificationLevel = params.notificationLevel;
1019    size_t hSize = 8;
1020
1021    /* calculate entropy tables */
1022    DISPLAYLEVEL(2, "\r%70s\r", "");   /* clean display line */
1023    DISPLAYLEVEL(2, "statistics ... \n");
1024    {   size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
1025                                  compressionLevel,
1026                                  samplesBuffer, samplesSizes, nbSamples,
1027                                  (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
1028                                  notificationLevel);
1029        if (ZDICT_isError(eSize)) return eSize;
1030        hSize += eSize;
1031    }
1032
1033    /* add dictionary header (after entropy tables) */
1034    MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
1035    {   U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
1036        U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
1037        U32 const dictID = params.dictID ? params.dictID : compliantID;
1038        MEM_writeLE32((char*)dictBuffer+4, dictID);
1039    }
1040
1041    if (hSize + dictContentSize < dictBufferCapacity)
1042        memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
1043    return MIN(dictBufferCapacity, hSize+dictContentSize);
1044}
1045
1046/*! ZDICT_trainFromBuffer_unsafe_legacy() :
1047*   Warning : `samplesBuffer` must be followed by noisy guard band !!!
1048*   @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
1049*/
1050/* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
1051ZSTDLIB_API
1052/* End FreeBSD */
1053static size_t ZDICT_trainFromBuffer_unsafe_legacy(
1054                            void* dictBuffer, size_t maxDictSize,
1055                            const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1056                            ZDICT_legacy_params_t params)
1057{
1058    U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
1059    dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
1060    unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
1061    unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
1062    size_t const targetDictSize = maxDictSize;
1063    size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
1064    size_t dictSize = 0;
1065    U32 const notificationLevel = params.zParams.notificationLevel;
1066
1067    /* checks */
1068    if (!dictList) return ERROR(memory_allocation);
1069    if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); }   /* requested dictionary size is too small */
1070    if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* not enough source to create dictionary */
1071
1072    /* init */
1073    ZDICT_initDictItem(dictList);
1074
1075    /* build dictionary */
1076    ZDICT_trainBuffer_legacy(dictList, dictListSize,
1077                       samplesBuffer, samplesBuffSize,
1078                       samplesSizes, nbSamples,
1079                       minRep, notificationLevel);
1080
1081    /* display best matches */
1082    if (params.zParams.notificationLevel>= 3) {
1083        unsigned const nb = MIN(25, dictList[0].pos);
1084        unsigned const dictContentSize = ZDICT_dictSize(dictList);
1085        unsigned u;
1086        DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
1087        DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
1088        for (u=1; u<nb; u++) {
1089            unsigned const pos = dictList[u].pos;
1090            unsigned const length = dictList[u].length;
1091            U32 const printedLength = MIN(40, length);
1092            if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
1093                free(dictList);
1094                return ERROR(GENERIC);   /* should never happen */
1095            }
1096            DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
1097                         u, length, pos, (unsigned)dictList[u].savings);
1098            ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
1099            DISPLAYLEVEL(3, "| \n");
1100    }   }
1101
1102
1103    /* create dictionary */
1104    {   unsigned dictContentSize = ZDICT_dictSize(dictList);
1105        if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); }   /* dictionary content too small */
1106        if (dictContentSize < targetDictSize/4) {
1107            DISPLAYLEVEL(2, "!  warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
1108            if (samplesBuffSize < 10 * targetDictSize)
1109                DISPLAYLEVEL(2, "!  consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
1110            if (minRep > MINRATIO) {
1111                DISPLAYLEVEL(2, "!  consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
1112                DISPLAYLEVEL(2, "!  note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
1113            }
1114        }
1115
1116        if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
1117            unsigned proposedSelectivity = selectivity-1;
1118            while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
1119            DISPLAYLEVEL(2, "!  note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
1120            DISPLAYLEVEL(2, "!  consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
1121            DISPLAYLEVEL(2, "!  always test dictionary efficiency on real samples \n");
1122        }
1123
1124        /* limit dictionary size */
1125        {   U32 const max = dictList->pos;   /* convention : nb of useful elts within dictList */
1126            U32 currentSize = 0;
1127            U32 n; for (n=1; n<max; n++) {
1128                currentSize += dictList[n].length;
1129                if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
1130            }
1131            dictList->pos = n;
1132            dictContentSize = currentSize;
1133        }
1134
1135        /* build dict content */
1136        {   U32 u;
1137            BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
1138            for (u=1; u<dictList->pos; u++) {
1139                U32 l = dictList[u].length;
1140                ptr -= l;
1141                if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); }   /* should not happen */
1142                memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
1143        }   }
1144
1145        dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
1146                                                             samplesBuffer, samplesSizes, nbSamples,
1147                                                             params.zParams);
1148    }
1149
1150    /* clean up */
1151    free(dictList);
1152    return dictSize;
1153}
1154
1155
1156/* ZDICT_trainFromBuffer_legacy() :
1157 * issue : samplesBuffer need to be followed by a noisy guard band.
1158 * work around : duplicate the buffer, and add the noise */
1159size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
1160                              const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1161                              ZDICT_legacy_params_t params)
1162{
1163    size_t result;
1164    void* newBuff;
1165    size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
1166    if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0;   /* not enough content => no dictionary */
1167
1168    newBuff = malloc(sBuffSize + NOISELENGTH);
1169    if (!newBuff) return ERROR(memory_allocation);
1170
1171    memcpy(newBuff, samplesBuffer, sBuffSize);
1172    ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH);   /* guard band, for end of buffer condition */
1173
1174    result =
1175        ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
1176                                            samplesSizes, nbSamples, params);
1177    free(newBuff);
1178    return result;
1179}
1180
1181
1182size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
1183                             const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1184{
1185    ZDICT_fastCover_params_t params;
1186    DEBUGLOG(3, "ZDICT_trainFromBuffer");
1187    memset(&params, 0, sizeof(params));
1188    params.d = 8;
1189    params.steps = 4;
1190    /* Use default level since no compression level information is available */
1191    params.zParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
1192#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
1193    params.zParams.notificationLevel = DEBUGLEVEL;
1194#endif
1195    return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
1196                                               samplesBuffer, samplesSizes, nbSamples,
1197                                               &params);
1198}
1199
1200size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
1201                                  const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1202{
1203    ZDICT_params_t params;
1204    memset(&params, 0, sizeof(params));
1205    return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
1206                                                     samplesBuffer, samplesSizes, nbSamples,
1207                                                     params);
1208}
1209