1/*
2 * Copyright (c) Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11#include "zstd_compress_internal.h"
12#include "zstd_lazy.h"
13
14
15/*-*************************************
16*  Binary Tree search
17***************************************/
18
19static void
20ZSTD_updateDUBT(ZSTD_matchState_t* ms,
21                const BYTE* ip, const BYTE* iend,
22                U32 mls)
23{
24    const ZSTD_compressionParameters* const cParams = &ms->cParams;
25    U32* const hashTable = ms->hashTable;
26    U32  const hashLog = cParams->hashLog;
27
28    U32* const bt = ms->chainTable;
29    U32  const btLog  = cParams->chainLog - 1;
30    U32  const btMask = (1 << btLog) - 1;
31
32    const BYTE* const base = ms->window.base;
33    U32 const target = (U32)(ip - base);
34    U32 idx = ms->nextToUpdate;
35
36    if (idx != target)
37        DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
38                    idx, target, ms->window.dictLimit);
39    assert(ip + 8 <= iend);   /* condition for ZSTD_hashPtr */
40    (void)iend;
41
42    assert(idx >= ms->window.dictLimit);   /* condition for valid base+idx */
43    for ( ; idx < target ; idx++) {
44        size_t const h  = ZSTD_hashPtr(base + idx, hashLog, mls);   /* assumption : ip + 8 <= iend */
45        U32    const matchIndex = hashTable[h];
46
47        U32*   const nextCandidatePtr = bt + 2*(idx&btMask);
48        U32*   const sortMarkPtr  = nextCandidatePtr + 1;
49
50        DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
51        hashTable[h] = idx;   /* Update Hash Table */
52        *nextCandidatePtr = matchIndex;   /* update BT like a chain */
53        *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
54    }
55    ms->nextToUpdate = target;
56}
57
58
59/** ZSTD_insertDUBT1() :
60 *  sort one already inserted but unsorted position
61 *  assumption : curr >= btlow == (curr - btmask)
62 *  doesn't fail */
63static void
64ZSTD_insertDUBT1(const ZSTD_matchState_t* ms,
65                 U32 curr, const BYTE* inputEnd,
66                 U32 nbCompares, U32 btLow,
67                 const ZSTD_dictMode_e dictMode)
68{
69    const ZSTD_compressionParameters* const cParams = &ms->cParams;
70    U32* const bt = ms->chainTable;
71    U32  const btLog  = cParams->chainLog - 1;
72    U32  const btMask = (1 << btLog) - 1;
73    size_t commonLengthSmaller=0, commonLengthLarger=0;
74    const BYTE* const base = ms->window.base;
75    const BYTE* const dictBase = ms->window.dictBase;
76    const U32 dictLimit = ms->window.dictLimit;
77    const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr;
78    const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit;
79    const BYTE* const dictEnd = dictBase + dictLimit;
80    const BYTE* const prefixStart = base + dictLimit;
81    const BYTE* match;
82    U32* smallerPtr = bt + 2*(curr&btMask);
83    U32* largerPtr  = smallerPtr + 1;
84    U32 matchIndex = *smallerPtr;   /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
85    U32 dummy32;   /* to be nullified at the end */
86    U32 const windowValid = ms->window.lowLimit;
87    U32 const maxDistance = 1U << cParams->windowLog;
88    U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid;
89
90
91    DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
92                curr, dictLimit, windowLow);
93    assert(curr >= btLow);
94    assert(ip < iend);   /* condition for ZSTD_count */
95
96    for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
97        U32* const nextPtr = bt + 2*(matchIndex & btMask);
98        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
99        assert(matchIndex < curr);
100        /* note : all candidates are now supposed sorted,
101         * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK
102         * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */
103
104        if ( (dictMode != ZSTD_extDict)
105          || (matchIndex+matchLength >= dictLimit)  /* both in current segment*/
106          || (curr < dictLimit) /* both in extDict */) {
107            const BYTE* const mBase = ( (dictMode != ZSTD_extDict)
108                                     || (matchIndex+matchLength >= dictLimit)) ?
109                                        base : dictBase;
110            assert( (matchIndex+matchLength >= dictLimit)   /* might be wrong if extDict is incorrectly set to 0 */
111                 || (curr < dictLimit) );
112            match = mBase + matchIndex;
113            matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
114        } else {
115            match = dictBase + matchIndex;
116            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
117            if (matchIndex+matchLength >= dictLimit)
118                match = base + matchIndex;   /* preparation for next read of match[matchLength] */
119        }
120
121        DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
122                    curr, matchIndex, (U32)matchLength);
123
124        if (ip+matchLength == iend) {   /* equal : no way to know if inf or sup */
125            break;   /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
126        }
127
128        if (match[matchLength] < ip[matchLength]) {  /* necessarily within buffer */
129            /* match is smaller than current */
130            *smallerPtr = matchIndex;             /* update smaller idx */
131            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
132            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop searching */
133            DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
134                        matchIndex, btLow, nextPtr[1]);
135            smallerPtr = nextPtr+1;               /* new "candidate" => larger than match, which was smaller than target */
136            matchIndex = nextPtr[1];              /* new matchIndex, larger than previous and closer to current */
137        } else {
138            /* match is larger than current */
139            *largerPtr = matchIndex;
140            commonLengthLarger = matchLength;
141            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop searching */
142            DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
143                        matchIndex, btLow, nextPtr[0]);
144            largerPtr = nextPtr;
145            matchIndex = nextPtr[0];
146    }   }
147
148    *smallerPtr = *largerPtr = 0;
149}
150
151
152static size_t
153ZSTD_DUBT_findBetterDictMatch (
154        const ZSTD_matchState_t* ms,
155        const BYTE* const ip, const BYTE* const iend,
156        size_t* offsetPtr,
157        size_t bestLength,
158        U32 nbCompares,
159        U32 const mls,
160        const ZSTD_dictMode_e dictMode)
161{
162    const ZSTD_matchState_t * const dms = ms->dictMatchState;
163    const ZSTD_compressionParameters* const dmsCParams = &dms->cParams;
164    const U32 * const dictHashTable = dms->hashTable;
165    U32         const hashLog = dmsCParams->hashLog;
166    size_t      const h  = ZSTD_hashPtr(ip, hashLog, mls);
167    U32               dictMatchIndex = dictHashTable[h];
168
169    const BYTE* const base = ms->window.base;
170    const BYTE* const prefixStart = base + ms->window.dictLimit;
171    U32         const curr = (U32)(ip-base);
172    const BYTE* const dictBase = dms->window.base;
173    const BYTE* const dictEnd = dms->window.nextSrc;
174    U32         const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base);
175    U32         const dictLowLimit = dms->window.lowLimit;
176    U32         const dictIndexDelta = ms->window.lowLimit - dictHighLimit;
177
178    U32*        const dictBt = dms->chainTable;
179    U32         const btLog  = dmsCParams->chainLog - 1;
180    U32         const btMask = (1 << btLog) - 1;
181    U32         const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask;
182
183    size_t commonLengthSmaller=0, commonLengthLarger=0;
184
185    (void)dictMode;
186    assert(dictMode == ZSTD_dictMatchState);
187
188    for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) {
189        U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask);
190        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
191        const BYTE* match = dictBase + dictMatchIndex;
192        matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
193        if (dictMatchIndex+matchLength >= dictHighLimit)
194            match = base + dictMatchIndex + dictIndexDelta;   /* to prepare for next usage of match[matchLength] */
195
196        if (matchLength > bestLength) {
197            U32 matchIndex = dictMatchIndex + dictIndexDelta;
198            if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) {
199                DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)",
200                    curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, STORE_OFFSET(curr - matchIndex), dictMatchIndex, matchIndex);
201                bestLength = matchLength, *offsetPtr = STORE_OFFSET(curr - matchIndex);
202            }
203            if (ip+matchLength == iend) {   /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */
204                break;   /* drop, to guarantee consistency (miss a little bit of compression) */
205            }
206        }
207
208        if (match[matchLength] < ip[matchLength]) {
209            if (dictMatchIndex <= btLow) { break; }   /* beyond tree size, stop the search */
210            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
211            dictMatchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
212        } else {
213            /* match is larger than current */
214            if (dictMatchIndex <= btLow) { break; }   /* beyond tree size, stop the search */
215            commonLengthLarger = matchLength;
216            dictMatchIndex = nextPtr[0];
217        }
218    }
219
220    if (bestLength >= MINMATCH) {
221        U32 const mIndex = curr - (U32)STORED_OFFSET(*offsetPtr); (void)mIndex;
222        DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
223                    curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
224    }
225    return bestLength;
226
227}
228
229
230static size_t
231ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
232                        const BYTE* const ip, const BYTE* const iend,
233                        size_t* offsetPtr,
234                        U32 const mls,
235                        const ZSTD_dictMode_e dictMode)
236{
237    const ZSTD_compressionParameters* const cParams = &ms->cParams;
238    U32*   const hashTable = ms->hashTable;
239    U32    const hashLog = cParams->hashLog;
240    size_t const h  = ZSTD_hashPtr(ip, hashLog, mls);
241    U32          matchIndex  = hashTable[h];
242
243    const BYTE* const base = ms->window.base;
244    U32    const curr = (U32)(ip-base);
245    U32    const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
246
247    U32*   const bt = ms->chainTable;
248    U32    const btLog  = cParams->chainLog - 1;
249    U32    const btMask = (1 << btLog) - 1;
250    U32    const btLow = (btMask >= curr) ? 0 : curr - btMask;
251    U32    const unsortLimit = MAX(btLow, windowLow);
252
253    U32*         nextCandidate = bt + 2*(matchIndex&btMask);
254    U32*         unsortedMark = bt + 2*(matchIndex&btMask) + 1;
255    U32          nbCompares = 1U << cParams->searchLog;
256    U32          nbCandidates = nbCompares;
257    U32          previousCandidate = 0;
258
259    DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr);
260    assert(ip <= iend-8);   /* required for h calculation */
261    assert(dictMode != ZSTD_dedicatedDictSearch);
262
263    /* reach end of unsorted candidates list */
264    while ( (matchIndex > unsortLimit)
265         && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
266         && (nbCandidates > 1) ) {
267        DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
268                    matchIndex);
269        *unsortedMark = previousCandidate;  /* the unsortedMark becomes a reversed chain, to move up back to original position */
270        previousCandidate = matchIndex;
271        matchIndex = *nextCandidate;
272        nextCandidate = bt + 2*(matchIndex&btMask);
273        unsortedMark = bt + 2*(matchIndex&btMask) + 1;
274        nbCandidates --;
275    }
276
277    /* nullify last candidate if it's still unsorted
278     * simplification, detrimental to compression ratio, beneficial for speed */
279    if ( (matchIndex > unsortLimit)
280      && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
281        DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
282                    matchIndex);
283        *nextCandidate = *unsortedMark = 0;
284    }
285
286    /* batch sort stacked candidates */
287    matchIndex = previousCandidate;
288    while (matchIndex) {  /* will end on matchIndex == 0 */
289        U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
290        U32 const nextCandidateIdx = *nextCandidateIdxPtr;
291        ZSTD_insertDUBT1(ms, matchIndex, iend,
292                         nbCandidates, unsortLimit, dictMode);
293        matchIndex = nextCandidateIdx;
294        nbCandidates++;
295    }
296
297    /* find longest match */
298    {   size_t commonLengthSmaller = 0, commonLengthLarger = 0;
299        const BYTE* const dictBase = ms->window.dictBase;
300        const U32 dictLimit = ms->window.dictLimit;
301        const BYTE* const dictEnd = dictBase + dictLimit;
302        const BYTE* const prefixStart = base + dictLimit;
303        U32* smallerPtr = bt + 2*(curr&btMask);
304        U32* largerPtr  = bt + 2*(curr&btMask) + 1;
305        U32 matchEndIdx = curr + 8 + 1;
306        U32 dummy32;   /* to be nullified at the end */
307        size_t bestLength = 0;
308
309        matchIndex  = hashTable[h];
310        hashTable[h] = curr;   /* Update Hash Table */
311
312        for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
313            U32* const nextPtr = bt + 2*(matchIndex & btMask);
314            size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
315            const BYTE* match;
316
317            if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) {
318                match = base + matchIndex;
319                matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
320            } else {
321                match = dictBase + matchIndex;
322                matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
323                if (matchIndex+matchLength >= dictLimit)
324                    match = base + matchIndex;   /* to prepare for next usage of match[matchLength] */
325            }
326
327            if (matchLength > bestLength) {
328                if (matchLength > matchEndIdx - matchIndex)
329                    matchEndIdx = matchIndex + (U32)matchLength;
330                if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) )
331                    bestLength = matchLength, *offsetPtr = STORE_OFFSET(curr - matchIndex);
332                if (ip+matchLength == iend) {   /* equal : no way to know if inf or sup */
333                    if (dictMode == ZSTD_dictMatchState) {
334                        nbCompares = 0; /* in addition to avoiding checking any
335                                         * further in this loop, make sure we
336                                         * skip checking in the dictionary. */
337                    }
338                    break;   /* drop, to guarantee consistency (miss a little bit of compression) */
339                }
340            }
341
342            if (match[matchLength] < ip[matchLength]) {
343                /* match is smaller than current */
344                *smallerPtr = matchIndex;             /* update smaller idx */
345                commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
346                if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
347                smallerPtr = nextPtr+1;               /* new "smaller" => larger of match */
348                matchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
349            } else {
350                /* match is larger than current */
351                *largerPtr = matchIndex;
352                commonLengthLarger = matchLength;
353                if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
354                largerPtr = nextPtr;
355                matchIndex = nextPtr[0];
356        }   }
357
358        *smallerPtr = *largerPtr = 0;
359
360        assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
361        if (dictMode == ZSTD_dictMatchState && nbCompares) {
362            bestLength = ZSTD_DUBT_findBetterDictMatch(
363                    ms, ip, iend,
364                    offsetPtr, bestLength, nbCompares,
365                    mls, dictMode);
366        }
367
368        assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */
369        ms->nextToUpdate = matchEndIdx - 8;   /* skip repetitive patterns */
370        if (bestLength >= MINMATCH) {
371            U32 const mIndex = curr - (U32)STORED_OFFSET(*offsetPtr); (void)mIndex;
372            DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
373                        curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
374        }
375        return bestLength;
376    }
377}
378
379
380/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
381FORCE_INLINE_TEMPLATE size_t
382ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
383                const BYTE* const ip, const BYTE* const iLimit,
384                      size_t* offsetPtr,
385                const U32 mls /* template */,
386                const ZSTD_dictMode_e dictMode)
387{
388    DEBUGLOG(7, "ZSTD_BtFindBestMatch");
389    if (ip < ms->window.base + ms->nextToUpdate) return 0;   /* skipped area */
390    ZSTD_updateDUBT(ms, ip, iLimit, mls);
391    return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offsetPtr, mls, dictMode);
392}
393
394/***********************************
395* Dedicated dict search
396***********************************/
397
398void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip)
399{
400    const BYTE* const base = ms->window.base;
401    U32 const target = (U32)(ip - base);
402    U32* const hashTable = ms->hashTable;
403    U32* const chainTable = ms->chainTable;
404    U32 const chainSize = 1 << ms->cParams.chainLog;
405    U32 idx = ms->nextToUpdate;
406    U32 const minChain = chainSize < target - idx ? target - chainSize : idx;
407    U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG;
408    U32 const cacheSize = bucketSize - 1;
409    U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize;
410    U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts;
411
412    /* We know the hashtable is oversized by a factor of `bucketSize`.
413     * We are going to temporarily pretend `bucketSize == 1`, keeping only a
414     * single entry. We will use the rest of the space to construct a temporary
415     * chaintable.
416     */
417    U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
418    U32* const tmpHashTable = hashTable;
419    U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog);
420    U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog;
421    U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx;
422    U32 hashIdx;
423
424    assert(ms->cParams.chainLog <= 24);
425    assert(ms->cParams.hashLog > ms->cParams.chainLog);
426    assert(idx != 0);
427    assert(tmpMinChain <= minChain);
428
429    /* fill conventional hash table and conventional chain table */
430    for ( ; idx < target; idx++) {
431        U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch);
432        if (idx >= tmpMinChain) {
433            tmpChainTable[idx - tmpMinChain] = hashTable[h];
434        }
435        tmpHashTable[h] = idx;
436    }
437
438    /* sort chains into ddss chain table */
439    {
440        U32 chainPos = 0;
441        for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) {
442            U32 count;
443            U32 countBeyondMinChain = 0;
444            U32 i = tmpHashTable[hashIdx];
445            for (count = 0; i >= tmpMinChain && count < cacheSize; count++) {
446                /* skip through the chain to the first position that won't be
447                 * in the hash cache bucket */
448                if (i < minChain) {
449                    countBeyondMinChain++;
450                }
451                i = tmpChainTable[i - tmpMinChain];
452            }
453            if (count == cacheSize) {
454                for (count = 0; count < chainLimit;) {
455                    if (i < minChain) {
456                        if (!i || ++countBeyondMinChain > cacheSize) {
457                            /* only allow pulling `cacheSize` number of entries
458                             * into the cache or chainTable beyond `minChain`,
459                             * to replace the entries pulled out of the
460                             * chainTable into the cache. This lets us reach
461                             * back further without increasing the total number
462                             * of entries in the chainTable, guaranteeing the
463                             * DDSS chain table will fit into the space
464                             * allocated for the regular one. */
465                            break;
466                        }
467                    }
468                    chainTable[chainPos++] = i;
469                    count++;
470                    if (i < tmpMinChain) {
471                        break;
472                    }
473                    i = tmpChainTable[i - tmpMinChain];
474                }
475            } else {
476                count = 0;
477            }
478            if (count) {
479                tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count;
480            } else {
481                tmpHashTable[hashIdx] = 0;
482            }
483        }
484        assert(chainPos <= chainSize); /* I believe this is guaranteed... */
485    }
486
487    /* move chain pointers into the last entry of each hash bucket */
488    for (hashIdx = (1 << hashLog); hashIdx; ) {
489        U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG;
490        U32 const chainPackedPointer = tmpHashTable[hashIdx];
491        U32 i;
492        for (i = 0; i < cacheSize; i++) {
493            hashTable[bucketIdx + i] = 0;
494        }
495        hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer;
496    }
497
498    /* fill the buckets of the hash table */
499    for (idx = ms->nextToUpdate; idx < target; idx++) {
500        U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch)
501                   << ZSTD_LAZY_DDSS_BUCKET_LOG;
502        U32 i;
503        /* Shift hash cache down 1. */
504        for (i = cacheSize - 1; i; i--)
505            hashTable[h + i] = hashTable[h + i - 1];
506        hashTable[h] = idx;
507    }
508
509    ms->nextToUpdate = target;
510}
511
512/* Returns the longest match length found in the dedicated dict search structure.
513 * If none are longer than the argument ml, then ml will be returned.
514 */
515FORCE_INLINE_TEMPLATE
516size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts,
517                                            const ZSTD_matchState_t* const dms,
518                                            const BYTE* const ip, const BYTE* const iLimit,
519                                            const BYTE* const prefixStart, const U32 curr,
520                                            const U32 dictLimit, const size_t ddsIdx) {
521    const U32 ddsLowestIndex  = dms->window.dictLimit;
522    const BYTE* const ddsBase = dms->window.base;
523    const BYTE* const ddsEnd  = dms->window.nextSrc;
524    const U32 ddsSize         = (U32)(ddsEnd - ddsBase);
525    const U32 ddsIndexDelta   = dictLimit - ddsSize;
526    const U32 bucketSize      = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG);
527    const U32 bucketLimit     = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1;
528    U32 ddsAttempt;
529    U32 matchIndex;
530
531    for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) {
532        PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]);
533    }
534
535    {
536        U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
537        U32 const chainIndex = chainPackedPointer >> 8;
538
539        PREFETCH_L1(&dms->chainTable[chainIndex]);
540    }
541
542    for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) {
543        size_t currentMl=0;
544        const BYTE* match;
545        matchIndex = dms->hashTable[ddsIdx + ddsAttempt];
546        match = ddsBase + matchIndex;
547
548        if (!matchIndex) {
549            return ml;
550        }
551
552        /* guaranteed by table construction */
553        (void)ddsLowestIndex;
554        assert(matchIndex >= ddsLowestIndex);
555        assert(match+4 <= ddsEnd);
556        if (MEM_read32(match) == MEM_read32(ip)) {
557            /* assumption : matchIndex <= dictLimit-4 (by table construction) */
558            currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
559        }
560
561        /* save best solution */
562        if (currentMl > ml) {
563            ml = currentMl;
564            *offsetPtr = STORE_OFFSET(curr - (matchIndex + ddsIndexDelta));
565            if (ip+currentMl == iLimit) {
566                /* best possible, avoids read overflow on next attempt */
567                return ml;
568            }
569        }
570    }
571
572    {
573        U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
574        U32 chainIndex = chainPackedPointer >> 8;
575        U32 const chainLength = chainPackedPointer & 0xFF;
576        U32 const chainAttempts = nbAttempts - ddsAttempt;
577        U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts;
578        U32 chainAttempt;
579
580        for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) {
581            PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]);
582        }
583
584        for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) {
585            size_t currentMl=0;
586            const BYTE* match;
587            matchIndex = dms->chainTable[chainIndex];
588            match = ddsBase + matchIndex;
589
590            /* guaranteed by table construction */
591            assert(matchIndex >= ddsLowestIndex);
592            assert(match+4 <= ddsEnd);
593            if (MEM_read32(match) == MEM_read32(ip)) {
594                /* assumption : matchIndex <= dictLimit-4 (by table construction) */
595                currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
596            }
597
598            /* save best solution */
599            if (currentMl > ml) {
600                ml = currentMl;
601                *offsetPtr = STORE_OFFSET(curr - (matchIndex + ddsIndexDelta));
602                if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
603            }
604        }
605    }
606    return ml;
607}
608
609
610/* *********************************
611*  Hash Chain
612***********************************/
613#define NEXT_IN_CHAIN(d, mask)   chainTable[(d) & (mask)]
614
615/* Update chains up to ip (excluded)
616   Assumption : always within prefix (i.e. not within extDict) */
617FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal(
618                        ZSTD_matchState_t* ms,
619                        const ZSTD_compressionParameters* const cParams,
620                        const BYTE* ip, U32 const mls)
621{
622    U32* const hashTable  = ms->hashTable;
623    const U32 hashLog = cParams->hashLog;
624    U32* const chainTable = ms->chainTable;
625    const U32 chainMask = (1 << cParams->chainLog) - 1;
626    const BYTE* const base = ms->window.base;
627    const U32 target = (U32)(ip - base);
628    U32 idx = ms->nextToUpdate;
629
630    while(idx < target) { /* catch up */
631        size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
632        NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
633        hashTable[h] = idx;
634        idx++;
635    }
636
637    ms->nextToUpdate = target;
638    return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
639}
640
641U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
642    const ZSTD_compressionParameters* const cParams = &ms->cParams;
643    return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch);
644}
645
646/* inlining is important to hardwire a hot branch (template emulation) */
647FORCE_INLINE_TEMPLATE
648size_t ZSTD_HcFindBestMatch(
649                        ZSTD_matchState_t* ms,
650                        const BYTE* const ip, const BYTE* const iLimit,
651                        size_t* offsetPtr,
652                        const U32 mls, const ZSTD_dictMode_e dictMode)
653{
654    const ZSTD_compressionParameters* const cParams = &ms->cParams;
655    U32* const chainTable = ms->chainTable;
656    const U32 chainSize = (1 << cParams->chainLog);
657    const U32 chainMask = chainSize-1;
658    const BYTE* const base = ms->window.base;
659    const BYTE* const dictBase = ms->window.dictBase;
660    const U32 dictLimit = ms->window.dictLimit;
661    const BYTE* const prefixStart = base + dictLimit;
662    const BYTE* const dictEnd = dictBase + dictLimit;
663    const U32 curr = (U32)(ip-base);
664    const U32 maxDistance = 1U << cParams->windowLog;
665    const U32 lowestValid = ms->window.lowLimit;
666    const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
667    const U32 isDictionary = (ms->loadedDictEnd != 0);
668    const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
669    const U32 minChain = curr > chainSize ? curr - chainSize : 0;
670    U32 nbAttempts = 1U << cParams->searchLog;
671    size_t ml=4-1;
672
673    const ZSTD_matchState_t* const dms = ms->dictMatchState;
674    const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch
675                         ? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
676    const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch
677                        ? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
678
679    U32 matchIndex;
680
681    if (dictMode == ZSTD_dedicatedDictSearch) {
682        const U32* entry = &dms->hashTable[ddsIdx];
683        PREFETCH_L1(entry);
684    }
685
686    /* HC4 match finder */
687    matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls);
688
689    for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) {
690        size_t currentMl=0;
691        if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
692            const BYTE* const match = base + matchIndex;
693            assert(matchIndex >= dictLimit);   /* ensures this is true if dictMode != ZSTD_extDict */
694            if (match[ml] == ip[ml])   /* potentially better */
695                currentMl = ZSTD_count(ip, match, iLimit);
696        } else {
697            const BYTE* const match = dictBase + matchIndex;
698            assert(match+4 <= dictEnd);
699            if (MEM_read32(match) == MEM_read32(ip))   /* assumption : matchIndex <= dictLimit-4 (by table construction) */
700                currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
701        }
702
703        /* save best solution */
704        if (currentMl > ml) {
705            ml = currentMl;
706            *offsetPtr = STORE_OFFSET(curr - matchIndex);
707            if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
708        }
709
710        if (matchIndex <= minChain) break;
711        matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
712    }
713
714    assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
715    if (dictMode == ZSTD_dedicatedDictSearch) {
716        ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms,
717                                                  ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
718    } else if (dictMode == ZSTD_dictMatchState) {
719        const U32* const dmsChainTable = dms->chainTable;
720        const U32 dmsChainSize         = (1 << dms->cParams.chainLog);
721        const U32 dmsChainMask         = dmsChainSize - 1;
722        const U32 dmsLowestIndex       = dms->window.dictLimit;
723        const BYTE* const dmsBase      = dms->window.base;
724        const BYTE* const dmsEnd       = dms->window.nextSrc;
725        const U32 dmsSize              = (U32)(dmsEnd - dmsBase);
726        const U32 dmsIndexDelta        = dictLimit - dmsSize;
727        const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0;
728
729        matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)];
730
731        for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) {
732            size_t currentMl=0;
733            const BYTE* const match = dmsBase + matchIndex;
734            assert(match+4 <= dmsEnd);
735            if (MEM_read32(match) == MEM_read32(ip))   /* assumption : matchIndex <= dictLimit-4 (by table construction) */
736                currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
737
738            /* save best solution */
739            if (currentMl > ml) {
740                ml = currentMl;
741                assert(curr > matchIndex + dmsIndexDelta);
742                *offsetPtr = STORE_OFFSET(curr - (matchIndex + dmsIndexDelta));
743                if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
744            }
745
746            if (matchIndex <= dmsMinChain) break;
747
748            matchIndex = dmsChainTable[matchIndex & dmsChainMask];
749        }
750    }
751
752    return ml;
753}
754
755/* *********************************
756* (SIMD) Row-based matchfinder
757***********************************/
758/* Constants for row-based hash */
759#define ZSTD_ROW_HASH_TAG_OFFSET 16     /* byte offset of hashes in the match state's tagTable from the beginning of a row */
760#define ZSTD_ROW_HASH_TAG_BITS 8        /* nb bits to use for the tag */
761#define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1)
762#define ZSTD_ROW_HASH_MAX_ENTRIES 64    /* absolute maximum number of entries per row, for all configurations */
763
764#define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1)
765
766typedef U64 ZSTD_VecMask;   /* Clarifies when we are interacting with a U64 representing a mask of matches */
767
768/* ZSTD_VecMask_next():
769 * Starting from the LSB, returns the idx of the next non-zero bit.
770 * Basically counting the nb of trailing zeroes.
771 */
772static U32 ZSTD_VecMask_next(ZSTD_VecMask val) {
773    assert(val != 0);
774#   if defined(_MSC_VER) && defined(_WIN64)
775        if (val != 0) {
776            unsigned long r;
777            _BitScanForward64(&r, val);
778            return (U32)(r);
779        } else {
780            /* Should not reach this code path */
781            __assume(0);
782        }
783#   elif (defined(__GNUC__) && ((__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 4))))
784    if (sizeof(size_t) == 4) {
785        U32 mostSignificantWord = (U32)(val >> 32);
786        U32 leastSignificantWord = (U32)val;
787        if (leastSignificantWord == 0) {
788            return 32 + (U32)__builtin_ctz(mostSignificantWord);
789        } else {
790            return (U32)__builtin_ctz(leastSignificantWord);
791        }
792    } else {
793        return (U32)__builtin_ctzll(val);
794    }
795#   else
796    /* Software ctz version: http://aggregate.org/MAGIC/#Trailing%20Zero%20Count
797     * and: https://stackoverflow.com/questions/2709430/count-number-of-bits-in-a-64-bit-long-big-integer
798     */
799    val = ~val & (val - 1ULL); /* Lowest set bit mask */
800    val = val - ((val >> 1) & 0x5555555555555555);
801    val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
802    return (U32)((((val + (val >> 4)) & 0xF0F0F0F0F0F0F0FULL) * 0x101010101010101ULL) >> 56);
803#   endif
804}
805
806/* ZSTD_rotateRight_*():
807 * Rotates a bitfield to the right by "count" bits.
808 * https://en.wikipedia.org/w/index.php?title=Circular_shift&oldid=991635599#Implementing_circular_shifts
809 */
810FORCE_INLINE_TEMPLATE
811U64 ZSTD_rotateRight_U64(U64 const value, U32 count) {
812    assert(count < 64);
813    count &= 0x3F; /* for fickle pattern recognition */
814    return (value >> count) | (U64)(value << ((0U - count) & 0x3F));
815}
816
817FORCE_INLINE_TEMPLATE
818U32 ZSTD_rotateRight_U32(U32 const value, U32 count) {
819    assert(count < 32);
820    count &= 0x1F; /* for fickle pattern recognition */
821    return (value >> count) | (U32)(value << ((0U - count) & 0x1F));
822}
823
824FORCE_INLINE_TEMPLATE
825U16 ZSTD_rotateRight_U16(U16 const value, U32 count) {
826    assert(count < 16);
827    count &= 0x0F; /* for fickle pattern recognition */
828    return (value >> count) | (U16)(value << ((0U - count) & 0x0F));
829}
830
831/* ZSTD_row_nextIndex():
832 * Returns the next index to insert at within a tagTable row, and updates the "head"
833 * value to reflect the update. Essentially cycles backwards from [0, {entries per row})
834 */
835FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) {
836  U32 const next = (*tagRow - 1) & rowMask;
837  *tagRow = (BYTE)next;
838  return next;
839}
840
841/* ZSTD_isAligned():
842 * Checks that a pointer is aligned to "align" bytes which must be a power of 2.
843 */
844MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) {
845    assert((align & (align - 1)) == 0);
846    return (((size_t)ptr) & (align - 1)) == 0;
847}
848
849/* ZSTD_row_prefetch():
850 * Performs prefetching for the hashTable and tagTable at a given row.
851 */
852FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, U16 const* tagTable, U32 const relRow, U32 const rowLog) {
853    PREFETCH_L1(hashTable + relRow);
854    if (rowLog >= 5) {
855        PREFETCH_L1(hashTable + relRow + 16);
856        /* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */
857    }
858    PREFETCH_L1(tagTable + relRow);
859    if (rowLog == 6) {
860        PREFETCH_L1(tagTable + relRow + 32);
861    }
862    assert(rowLog == 4 || rowLog == 5 || rowLog == 6);
863    assert(ZSTD_isAligned(hashTable + relRow, 64));                 /* prefetched hash row always 64-byte aligned */
864    assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */
865}
866
867/* ZSTD_row_fillHashCache():
868 * Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries,
869 * but not beyond iLimit.
870 */
871FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base,
872                                   U32 const rowLog, U32 const mls,
873                                   U32 idx, const BYTE* const iLimit)
874{
875    U32 const* const hashTable = ms->hashTable;
876    U16 const* const tagTable = ms->tagTable;
877    U32 const hashLog = ms->rowHashLog;
878    U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1);
879    U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch);
880
881    for (; idx < lim; ++idx) {
882        U32 const hash = (U32)ZSTD_hashPtr(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
883        U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
884        ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
885        ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash;
886    }
887
888    DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1],
889                                                     ms->hashCache[2], ms->hashCache[3], ms->hashCache[4],
890                                                     ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]);
891}
892
893/* ZSTD_row_nextCachedHash():
894 * Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at
895 * base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable.
896 */
897FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable,
898                                                  U16 const* tagTable, BYTE const* base,
899                                                  U32 idx, U32 const hashLog,
900                                                  U32 const rowLog, U32 const mls)
901{
902    U32 const newHash = (U32)ZSTD_hashPtr(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
903    U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
904    ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
905    {   U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK];
906        cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash;
907        return hash;
908    }
909}
910
911/* ZSTD_row_update_internalImpl():
912 * Updates the hash table with positions starting from updateStartIdx until updateEndIdx.
913 */
914FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms,
915                                                        U32 updateStartIdx, U32 const updateEndIdx,
916                                                        U32 const mls, U32 const rowLog,
917                                                        U32 const rowMask, U32 const useCache)
918{
919    U32* const hashTable = ms->hashTable;
920    U16* const tagTable = ms->tagTable;
921    U32 const hashLog = ms->rowHashLog;
922    const BYTE* const base = ms->window.base;
923
924    DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx);
925    for (; updateStartIdx < updateEndIdx; ++updateStartIdx) {
926        U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls)
927                                  : (U32)ZSTD_hashPtr(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
928        U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
929        U32* const row = hashTable + relRow;
930        BYTE* tagRow = (BYTE*)(tagTable + relRow);  /* Though tagTable is laid out as a table of U16, each tag is only 1 byte.
931                                                       Explicit cast allows us to get exact desired position within each row */
932        U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
933
934        assert(hash == ZSTD_hashPtr(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls));
935        ((BYTE*)tagRow)[pos + ZSTD_ROW_HASH_TAG_OFFSET] = hash & ZSTD_ROW_HASH_TAG_MASK;
936        row[pos] = updateStartIdx;
937    }
938}
939
940/* ZSTD_row_update_internal():
941 * Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate.
942 * Skips sections of long matches as is necessary.
943 */
944FORCE_INLINE_TEMPLATE void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip,
945                                                    U32 const mls, U32 const rowLog,
946                                                    U32 const rowMask, U32 const useCache)
947{
948    U32 idx = ms->nextToUpdate;
949    const BYTE* const base = ms->window.base;
950    const U32 target = (U32)(ip - base);
951    const U32 kSkipThreshold = 384;
952    const U32 kMaxMatchStartPositionsToUpdate = 96;
953    const U32 kMaxMatchEndPositionsToUpdate = 32;
954
955    if (useCache) {
956        /* Only skip positions when using hash cache, i.e.
957         * if we are loading a dict, don't skip anything.
958         * If we decide to skip, then we only update a set number
959         * of positions at the beginning and end of the match.
960         */
961        if (UNLIKELY(target - idx > kSkipThreshold)) {
962            U32 const bound = idx + kMaxMatchStartPositionsToUpdate;
963            ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache);
964            idx = target - kMaxMatchEndPositionsToUpdate;
965            ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1);
966        }
967    }
968    assert(target >= idx);
969    ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache);
970    ms->nextToUpdate = target;
971}
972
973/* ZSTD_row_update():
974 * External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary
975 * processing.
976 */
977void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip) {
978    const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
979    const U32 rowMask = (1u << rowLog) - 1;
980    const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */);
981
982    DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog);
983    ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* dont use cache */);
984}
985
986#if defined(ZSTD_ARCH_X86_SSE2)
987FORCE_INLINE_TEMPLATE ZSTD_VecMask
988ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head)
989{
990    const __m128i comparisonMask = _mm_set1_epi8((char)tag);
991    int matches[4] = {0};
992    int i;
993    assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4);
994    for (i=0; i<nbChunks; i++) {
995        const __m128i chunk = _mm_loadu_si128((const __m128i*)(const void*)(src + 16*i));
996        const __m128i equalMask = _mm_cmpeq_epi8(chunk, comparisonMask);
997        matches[i] = _mm_movemask_epi8(equalMask);
998    }
999    if (nbChunks == 1) return ZSTD_rotateRight_U16((U16)matches[0], head);
1000    if (nbChunks == 2) return ZSTD_rotateRight_U32((U32)matches[1] << 16 | (U32)matches[0], head);
1001    assert(nbChunks == 4);
1002    return ZSTD_rotateRight_U64((U64)matches[3] << 48 | (U64)matches[2] << 32 | (U64)matches[1] << 16 | (U64)matches[0], head);
1003}
1004#endif
1005
1006/* Returns a ZSTD_VecMask (U32) that has the nth bit set to 1 if the newly-computed "tag" matches
1007 * the hash at the nth position in a row of the tagTable.
1008 * Each row is a circular buffer beginning at the value of "head". So we must rotate the "matches" bitfield
1009 * to match up with the actual layout of the entries within the hashTable */
1010FORCE_INLINE_TEMPLATE ZSTD_VecMask
1011ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 head, const U32 rowEntries)
1012{
1013    const BYTE* const src = tagRow + ZSTD_ROW_HASH_TAG_OFFSET;
1014    assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
1015    assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
1016
1017#if defined(ZSTD_ARCH_X86_SSE2)
1018
1019    return ZSTD_row_getSSEMask(rowEntries / 16, src, tag, head);
1020
1021#else /* SW or NEON-LE */
1022
1023# if defined(ZSTD_ARCH_ARM_NEON)
1024  /* This NEON path only works for little endian - otherwise use SWAR below */
1025    if (MEM_isLittleEndian()) {
1026        if (rowEntries == 16) {
1027            const uint8x16_t chunk = vld1q_u8(src);
1028            const uint16x8_t equalMask = vreinterpretq_u16_u8(vceqq_u8(chunk, vdupq_n_u8(tag)));
1029            const uint16x8_t t0 = vshlq_n_u16(equalMask, 7);
1030            const uint32x4_t t1 = vreinterpretq_u32_u16(vsriq_n_u16(t0, t0, 14));
1031            const uint64x2_t t2 = vreinterpretq_u64_u32(vshrq_n_u32(t1, 14));
1032            const uint8x16_t t3 = vreinterpretq_u8_u64(vsraq_n_u64(t2, t2, 28));
1033            const U16 hi = (U16)vgetq_lane_u8(t3, 8);
1034            const U16 lo = (U16)vgetq_lane_u8(t3, 0);
1035            return ZSTD_rotateRight_U16((hi << 8) | lo, head);
1036        } else if (rowEntries == 32) {
1037            const uint16x8x2_t chunk = vld2q_u16((const U16*)(const void*)src);
1038            const uint8x16_t chunk0 = vreinterpretq_u8_u16(chunk.val[0]);
1039            const uint8x16_t chunk1 = vreinterpretq_u8_u16(chunk.val[1]);
1040            const uint8x16_t equalMask0 = vceqq_u8(chunk0, vdupq_n_u8(tag));
1041            const uint8x16_t equalMask1 = vceqq_u8(chunk1, vdupq_n_u8(tag));
1042            const int8x8_t pack0 = vqmovn_s16(vreinterpretq_s16_u8(equalMask0));
1043            const int8x8_t pack1 = vqmovn_s16(vreinterpretq_s16_u8(equalMask1));
1044            const uint8x8_t t0 = vreinterpret_u8_s8(pack0);
1045            const uint8x8_t t1 = vreinterpret_u8_s8(pack1);
1046            const uint8x8_t t2 = vsri_n_u8(t1, t0, 2);
1047            const uint8x8x2_t t3 = vuzp_u8(t2, t0);
1048            const uint8x8_t t4 = vsri_n_u8(t3.val[1], t3.val[0], 4);
1049            const U32 matches = vget_lane_u32(vreinterpret_u32_u8(t4), 0);
1050            return ZSTD_rotateRight_U32(matches, head);
1051        } else { /* rowEntries == 64 */
1052            const uint8x16x4_t chunk = vld4q_u8(src);
1053            const uint8x16_t dup = vdupq_n_u8(tag);
1054            const uint8x16_t cmp0 = vceqq_u8(chunk.val[0], dup);
1055            const uint8x16_t cmp1 = vceqq_u8(chunk.val[1], dup);
1056            const uint8x16_t cmp2 = vceqq_u8(chunk.val[2], dup);
1057            const uint8x16_t cmp3 = vceqq_u8(chunk.val[3], dup);
1058
1059            const uint8x16_t t0 = vsriq_n_u8(cmp1, cmp0, 1);
1060            const uint8x16_t t1 = vsriq_n_u8(cmp3, cmp2, 1);
1061            const uint8x16_t t2 = vsriq_n_u8(t1, t0, 2);
1062            const uint8x16_t t3 = vsriq_n_u8(t2, t2, 4);
1063            const uint8x8_t t4 = vshrn_n_u16(vreinterpretq_u16_u8(t3), 4);
1064            const U64 matches = vget_lane_u64(vreinterpret_u64_u8(t4), 0);
1065            return ZSTD_rotateRight_U64(matches, head);
1066        }
1067    }
1068# endif /* ZSTD_ARCH_ARM_NEON */
1069    /* SWAR */
1070    {   const size_t chunkSize = sizeof(size_t);
1071        const size_t shiftAmount = ((chunkSize * 8) - chunkSize);
1072        const size_t xFF = ~((size_t)0);
1073        const size_t x01 = xFF / 0xFF;
1074        const size_t x80 = x01 << 7;
1075        const size_t splatChar = tag * x01;
1076        ZSTD_VecMask matches = 0;
1077        int i = rowEntries - chunkSize;
1078        assert((sizeof(size_t) == 4) || (sizeof(size_t) == 8));
1079        if (MEM_isLittleEndian()) { /* runtime check so have two loops */
1080            const size_t extractMagic = (xFF / 0x7F) >> chunkSize;
1081            do {
1082                size_t chunk = MEM_readST(&src[i]);
1083                chunk ^= splatChar;
1084                chunk = (((chunk | x80) - x01) | chunk) & x80;
1085                matches <<= chunkSize;
1086                matches |= (chunk * extractMagic) >> shiftAmount;
1087                i -= chunkSize;
1088            } while (i >= 0);
1089        } else { /* big endian: reverse bits during extraction */
1090            const size_t msb = xFF ^ (xFF >> 1);
1091            const size_t extractMagic = (msb / 0x1FF) | msb;
1092            do {
1093                size_t chunk = MEM_readST(&src[i]);
1094                chunk ^= splatChar;
1095                chunk = (((chunk | x80) - x01) | chunk) & x80;
1096                matches <<= chunkSize;
1097                matches |= ((chunk >> 7) * extractMagic) >> shiftAmount;
1098                i -= chunkSize;
1099            } while (i >= 0);
1100        }
1101        matches = ~matches;
1102        if (rowEntries == 16) {
1103            return ZSTD_rotateRight_U16((U16)matches, head);
1104        } else if (rowEntries == 32) {
1105            return ZSTD_rotateRight_U32((U32)matches, head);
1106        } else {
1107            return ZSTD_rotateRight_U64((U64)matches, head);
1108        }
1109    }
1110#endif
1111}
1112
1113/* The high-level approach of the SIMD row based match finder is as follows:
1114 * - Figure out where to insert the new entry:
1115 *      - Generate a hash from a byte along with an additional 1-byte "short hash". The additional byte is our "tag"
1116 *      - The hashTable is effectively split into groups or "rows" of 16 or 32 entries of U32, and the hash determines
1117 *        which row to insert into.
1118 *      - Determine the correct position within the row to insert the entry into. Each row of 16 or 32 can
1119 *        be considered as a circular buffer with a "head" index that resides in the tagTable.
1120 *      - Also insert the "tag" into the equivalent row and position in the tagTable.
1121 *          - Note: The tagTable has 17 or 33 1-byte entries per row, due to 16 or 32 tags, and 1 "head" entry.
1122 *                  The 17 or 33 entry rows are spaced out to occur every 32 or 64 bytes, respectively,
1123 *                  for alignment/performance reasons, leaving some bytes unused.
1124 * - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte "short hash" and
1125 *   generate a bitfield that we can cycle through to check the collisions in the hash table.
1126 * - Pick the longest match.
1127 */
1128FORCE_INLINE_TEMPLATE
1129size_t ZSTD_RowFindBestMatch(
1130                        ZSTD_matchState_t* ms,
1131                        const BYTE* const ip, const BYTE* const iLimit,
1132                        size_t* offsetPtr,
1133                        const U32 mls, const ZSTD_dictMode_e dictMode,
1134                        const U32 rowLog)
1135{
1136    U32* const hashTable = ms->hashTable;
1137    U16* const tagTable = ms->tagTable;
1138    U32* const hashCache = ms->hashCache;
1139    const U32 hashLog = ms->rowHashLog;
1140    const ZSTD_compressionParameters* const cParams = &ms->cParams;
1141    const BYTE* const base = ms->window.base;
1142    const BYTE* const dictBase = ms->window.dictBase;
1143    const U32 dictLimit = ms->window.dictLimit;
1144    const BYTE* const prefixStart = base + dictLimit;
1145    const BYTE* const dictEnd = dictBase + dictLimit;
1146    const U32 curr = (U32)(ip-base);
1147    const U32 maxDistance = 1U << cParams->windowLog;
1148    const U32 lowestValid = ms->window.lowLimit;
1149    const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
1150    const U32 isDictionary = (ms->loadedDictEnd != 0);
1151    const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
1152    const U32 rowEntries = (1U << rowLog);
1153    const U32 rowMask = rowEntries - 1;
1154    const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */
1155    U32 nbAttempts = 1U << cappedSearchLog;
1156    size_t ml=4-1;
1157
1158    /* DMS/DDS variables that may be referenced laster */
1159    const ZSTD_matchState_t* const dms = ms->dictMatchState;
1160
1161    /* Initialize the following variables to satisfy static analyzer */
1162    size_t ddsIdx = 0;
1163    U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */
1164    U32 dmsTag = 0;
1165    U32* dmsRow = NULL;
1166    BYTE* dmsTagRow = NULL;
1167
1168    if (dictMode == ZSTD_dedicatedDictSearch) {
1169        const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
1170        {   /* Prefetch DDS hashtable entry */
1171            ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG;
1172            PREFETCH_L1(&dms->hashTable[ddsIdx]);
1173        }
1174        ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0;
1175    }
1176
1177    if (dictMode == ZSTD_dictMatchState) {
1178        /* Prefetch DMS rows */
1179        U32* const dmsHashTable = dms->hashTable;
1180        U16* const dmsTagTable = dms->tagTable;
1181        U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
1182        U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1183        dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK;
1184        dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow);
1185        dmsRow = dmsHashTable + dmsRelRow;
1186        ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog);
1187    }
1188
1189    /* Update the hashTable and tagTable up to (but not including) ip */
1190    ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */);
1191    {   /* Get the hash for ip, compute the appropriate row */
1192        U32 const hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls);
1193        U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1194        U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK;
1195        U32* const row = hashTable + relRow;
1196        BYTE* tagRow = (BYTE*)(tagTable + relRow);
1197        U32 const head = *tagRow & rowMask;
1198        U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1199        size_t numMatches = 0;
1200        size_t currMatch = 0;
1201        ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, head, rowEntries);
1202
1203        /* Cycle through the matches and prefetch */
1204        for (; (matches > 0) && (nbAttempts > 0); --nbAttempts, matches &= (matches - 1)) {
1205            U32 const matchPos = (head + ZSTD_VecMask_next(matches)) & rowMask;
1206            U32 const matchIndex = row[matchPos];
1207            assert(numMatches < rowEntries);
1208            if (matchIndex < lowLimit)
1209                break;
1210            if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1211                PREFETCH_L1(base + matchIndex);
1212            } else {
1213                PREFETCH_L1(dictBase + matchIndex);
1214            }
1215            matchBuffer[numMatches++] = matchIndex;
1216        }
1217
1218        /* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop
1219           in ZSTD_row_update_internal() at the next search. */
1220        {
1221            U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
1222            tagRow[pos + ZSTD_ROW_HASH_TAG_OFFSET] = (BYTE)tag;
1223            row[pos] = ms->nextToUpdate++;
1224        }
1225
1226        /* Return the longest match */
1227        for (; currMatch < numMatches; ++currMatch) {
1228            U32 const matchIndex = matchBuffer[currMatch];
1229            size_t currentMl=0;
1230            assert(matchIndex < curr);
1231            assert(matchIndex >= lowLimit);
1232
1233            if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1234                const BYTE* const match = base + matchIndex;
1235                assert(matchIndex >= dictLimit);   /* ensures this is true if dictMode != ZSTD_extDict */
1236                if (match[ml] == ip[ml])   /* potentially better */
1237                    currentMl = ZSTD_count(ip, match, iLimit);
1238            } else {
1239                const BYTE* const match = dictBase + matchIndex;
1240                assert(match+4 <= dictEnd);
1241                if (MEM_read32(match) == MEM_read32(ip))   /* assumption : matchIndex <= dictLimit-4 (by table construction) */
1242                    currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
1243            }
1244
1245            /* Save best solution */
1246            if (currentMl > ml) {
1247                ml = currentMl;
1248                *offsetPtr = STORE_OFFSET(curr - matchIndex);
1249                if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
1250            }
1251        }
1252    }
1253
1254    assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
1255    if (dictMode == ZSTD_dedicatedDictSearch) {
1256        ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms,
1257                                                  ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
1258    } else if (dictMode == ZSTD_dictMatchState) {
1259        /* TODO: Measure and potentially add prefetching to DMS */
1260        const U32 dmsLowestIndex       = dms->window.dictLimit;
1261        const BYTE* const dmsBase      = dms->window.base;
1262        const BYTE* const dmsEnd       = dms->window.nextSrc;
1263        const U32 dmsSize              = (U32)(dmsEnd - dmsBase);
1264        const U32 dmsIndexDelta        = dictLimit - dmsSize;
1265
1266        {   U32 const head = *dmsTagRow & rowMask;
1267            U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1268            size_t numMatches = 0;
1269            size_t currMatch = 0;
1270            ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, head, rowEntries);
1271
1272            for (; (matches > 0) && (nbAttempts > 0); --nbAttempts, matches &= (matches - 1)) {
1273                U32 const matchPos = (head + ZSTD_VecMask_next(matches)) & rowMask;
1274                U32 const matchIndex = dmsRow[matchPos];
1275                if (matchIndex < dmsLowestIndex)
1276                    break;
1277                PREFETCH_L1(dmsBase + matchIndex);
1278                matchBuffer[numMatches++] = matchIndex;
1279            }
1280
1281            /* Return the longest match */
1282            for (; currMatch < numMatches; ++currMatch) {
1283                U32 const matchIndex = matchBuffer[currMatch];
1284                size_t currentMl=0;
1285                assert(matchIndex >= dmsLowestIndex);
1286                assert(matchIndex < curr);
1287
1288                {   const BYTE* const match = dmsBase + matchIndex;
1289                    assert(match+4 <= dmsEnd);
1290                    if (MEM_read32(match) == MEM_read32(ip))
1291                        currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
1292                }
1293
1294                if (currentMl > ml) {
1295                    ml = currentMl;
1296                    assert(curr > matchIndex + dmsIndexDelta);
1297                    *offsetPtr = STORE_OFFSET(curr - (matchIndex + dmsIndexDelta));
1298                    if (ip+currentMl == iLimit) break;
1299                }
1300            }
1301        }
1302    }
1303    return ml;
1304}
1305
1306
1307typedef size_t (*searchMax_f)(
1308                    ZSTD_matchState_t* ms,
1309                    const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
1310
1311/**
1312 * This struct contains the functions necessary for lazy to search.
1313 * Currently, that is only searchMax. However, it is still valuable to have the
1314 * VTable because this makes it easier to add more functions to the VTable later.
1315 *
1316 * TODO: The start of the search function involves loading and calculating a
1317 * bunch of constants from the ZSTD_matchState_t. These computations could be
1318 * done in an initialization function, and saved somewhere in the match state.
1319 * Then we could pass a pointer to the saved state instead of the match state,
1320 * and avoid duplicate computations.
1321 *
1322 * TODO: Move the match re-winding into searchMax. This improves compression
1323 * ratio, and unlocks further simplifications with the next TODO.
1324 *
1325 * TODO: Try moving the repcode search into searchMax. After the re-winding
1326 * and repcode search are in searchMax, there is no more logic in the match
1327 * finder loop that requires knowledge about the dictMode. So we should be
1328 * able to avoid force inlining it, and we can join the extDict loop with
1329 * the single segment loop. It should go in searchMax instead of its own
1330 * function to avoid having multiple virtual function calls per search.
1331 */
1332typedef struct {
1333    searchMax_f searchMax;
1334} ZSTD_LazyVTable;
1335
1336#define GEN_ZSTD_BT_VTABLE(dictMode, mls)                                             \
1337    static size_t ZSTD_BtFindBestMatch_##dictMode##_##mls(                            \
1338            ZSTD_matchState_t* ms,                                                    \
1339            const BYTE* ip, const BYTE* const iLimit,                                 \
1340            size_t* offsetPtr)                                                        \
1341    {                                                                                 \
1342        assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls);                          \
1343        return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
1344    }                                                                                 \
1345    static const ZSTD_LazyVTable ZSTD_BtVTable_##dictMode##_##mls = {                 \
1346        ZSTD_BtFindBestMatch_##dictMode##_##mls                                       \
1347    };
1348
1349#define GEN_ZSTD_HC_VTABLE(dictMode, mls)                                             \
1350    static size_t ZSTD_HcFindBestMatch_##dictMode##_##mls(                            \
1351            ZSTD_matchState_t* ms,                                                    \
1352            const BYTE* ip, const BYTE* const iLimit,                                 \
1353            size_t* offsetPtr)                                                        \
1354    {                                                                                 \
1355        assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls);                          \
1356        return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
1357    }                                                                                 \
1358    static const ZSTD_LazyVTable ZSTD_HcVTable_##dictMode##_##mls = {                 \
1359        ZSTD_HcFindBestMatch_##dictMode##_##mls                                       \
1360    };
1361
1362#define GEN_ZSTD_ROW_VTABLE(dictMode, mls, rowLog)                                             \
1363    static size_t ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog(                         \
1364            ZSTD_matchState_t* ms,                                                             \
1365            const BYTE* ip, const BYTE* const iLimit,                                          \
1366            size_t* offsetPtr)                                                                 \
1367    {                                                                                          \
1368        assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls);                                   \
1369        assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog);                               \
1370        return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \
1371    }                                                                                          \
1372    static const ZSTD_LazyVTable ZSTD_RowVTable_##dictMode##_##mls##_##rowLog = {              \
1373        ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog                                    \
1374    };
1375
1376#define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \
1377    X(dictMode, mls, 4)                        \
1378    X(dictMode, mls, 5)                        \
1379    X(dictMode, mls, 6)
1380
1381#define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \
1382    ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4)      \
1383    ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5)      \
1384    ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6)
1385
1386#define ZSTD_FOR_EACH_MLS(X, dictMode) \
1387    X(dictMode, 4)                     \
1388    X(dictMode, 5)                     \
1389    X(dictMode, 6)
1390
1391#define ZSTD_FOR_EACH_DICT_MODE(X, ...) \
1392    X(__VA_ARGS__, noDict)              \
1393    X(__VA_ARGS__, extDict)             \
1394    X(__VA_ARGS__, dictMatchState)      \
1395    X(__VA_ARGS__, dedicatedDictSearch)
1396
1397/* Generate Row VTables for each combination of (dictMode, mls, rowLog) */
1398ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_VTABLE)
1399/* Generate Binary Tree VTables for each combination of (dictMode, mls) */
1400ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_VTABLE)
1401/* Generate Hash Chain VTables for each combination of (dictMode, mls) */
1402ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_VTABLE)
1403
1404#define GEN_ZSTD_BT_VTABLE_ARRAY(dictMode) \
1405    {                                      \
1406        &ZSTD_BtVTable_##dictMode##_4,     \
1407        &ZSTD_BtVTable_##dictMode##_5,     \
1408        &ZSTD_BtVTable_##dictMode##_6      \
1409    }
1410
1411#define GEN_ZSTD_HC_VTABLE_ARRAY(dictMode) \
1412    {                                      \
1413        &ZSTD_HcVTable_##dictMode##_4,     \
1414        &ZSTD_HcVTable_##dictMode##_5,     \
1415        &ZSTD_HcVTable_##dictMode##_6      \
1416    }
1417
1418#define GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, mls) \
1419    {                                             \
1420        &ZSTD_RowVTable_##dictMode##_##mls##_4,   \
1421        &ZSTD_RowVTable_##dictMode##_##mls##_5,   \
1422        &ZSTD_RowVTable_##dictMode##_##mls##_6    \
1423    }
1424
1425#define GEN_ZSTD_ROW_VTABLE_ARRAY(dictMode)      \
1426    {                                            \
1427        GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, 4), \
1428        GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, 5), \
1429        GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, 6)  \
1430    }
1431
1432#define GEN_ZSTD_VTABLE_ARRAY(X) \
1433    {                            \
1434        X(noDict),               \
1435        X(extDict),              \
1436        X(dictMatchState),       \
1437        X(dedicatedDictSearch)   \
1438    }
1439
1440/* *******************************
1441*  Common parser - lazy strategy
1442*********************************/
1443typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e;
1444
1445/**
1446 * This table is indexed first by the four ZSTD_dictMode_e values, and then
1447 * by the two searchMethod_e values. NULLs are placed for configurations
1448 * that should never occur (extDict modes go to the other implementation
1449 * below and there is no DDSS for binary tree search yet).
1450 */
1451
1452static ZSTD_LazyVTable const*
1453ZSTD_selectLazyVTable(ZSTD_matchState_t const* ms, searchMethod_e searchMethod, ZSTD_dictMode_e dictMode)
1454{
1455    /* Fill the Hc/Bt VTable arrays with the right functions for the (dictMode, mls) combination. */
1456    ZSTD_LazyVTable const* const hcVTables[4][3] = GEN_ZSTD_VTABLE_ARRAY(GEN_ZSTD_HC_VTABLE_ARRAY);
1457    ZSTD_LazyVTable const* const btVTables[4][3] = GEN_ZSTD_VTABLE_ARRAY(GEN_ZSTD_BT_VTABLE_ARRAY);
1458    /* Fill the Row VTable array with the right functions for the (dictMode, mls, rowLog) combination. */
1459    ZSTD_LazyVTable const* const rowVTables[4][3][3] = GEN_ZSTD_VTABLE_ARRAY(GEN_ZSTD_ROW_VTABLE_ARRAY);
1460
1461    U32 const mls = MAX(4, MIN(6, ms->cParams.minMatch));
1462    U32 const rowLog = MAX(4, MIN(6, ms->cParams.searchLog));
1463    switch (searchMethod) {
1464        case search_hashChain:
1465            return hcVTables[dictMode][mls - 4];
1466        case search_binaryTree:
1467            return btVTables[dictMode][mls - 4];
1468        case search_rowHash:
1469            return rowVTables[dictMode][mls - 4][rowLog - 4];
1470        default:
1471            return NULL;
1472    }
1473}
1474
1475FORCE_INLINE_TEMPLATE size_t
1476ZSTD_compressBlock_lazy_generic(
1477                        ZSTD_matchState_t* ms, seqStore_t* seqStore,
1478                        U32 rep[ZSTD_REP_NUM],
1479                        const void* src, size_t srcSize,
1480                        const searchMethod_e searchMethod, const U32 depth,
1481                        ZSTD_dictMode_e const dictMode)
1482{
1483    const BYTE* const istart = (const BYTE*)src;
1484    const BYTE* ip = istart;
1485    const BYTE* anchor = istart;
1486    const BYTE* const iend = istart + srcSize;
1487    const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1488    const BYTE* const base = ms->window.base;
1489    const U32 prefixLowestIndex = ms->window.dictLimit;
1490    const BYTE* const prefixLowest = base + prefixLowestIndex;
1491
1492    searchMax_f const searchMax = ZSTD_selectLazyVTable(ms, searchMethod, dictMode)->searchMax;
1493    U32 offset_1 = rep[0], offset_2 = rep[1], savedOffset=0;
1494
1495    const int isDMS = dictMode == ZSTD_dictMatchState;
1496    const int isDDS = dictMode == ZSTD_dedicatedDictSearch;
1497    const int isDxS = isDMS || isDDS;
1498    const ZSTD_matchState_t* const dms = ms->dictMatchState;
1499    const U32 dictLowestIndex      = isDxS ? dms->window.dictLimit : 0;
1500    const BYTE* const dictBase     = isDxS ? dms->window.base : NULL;
1501    const BYTE* const dictLowest   = isDxS ? dictBase + dictLowestIndex : NULL;
1502    const BYTE* const dictEnd      = isDxS ? dms->window.nextSrc : NULL;
1503    const U32 dictIndexDelta       = isDxS ?
1504                                     prefixLowestIndex - (U32)(dictEnd - dictBase) :
1505                                     0;
1506    const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest));
1507
1508    assert(searchMax != NULL);
1509
1510    DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod);
1511    ip += (dictAndPrefixLength == 0);
1512    if (dictMode == ZSTD_noDict) {
1513        U32 const curr = (U32)(ip - base);
1514        U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog);
1515        U32 const maxRep = curr - windowLow;
1516        if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0;
1517        if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0;
1518    }
1519    if (isDxS) {
1520        /* dictMatchState repCode checks don't currently handle repCode == 0
1521         * disabling. */
1522        assert(offset_1 <= dictAndPrefixLength);
1523        assert(offset_2 <= dictAndPrefixLength);
1524    }
1525
1526    if (searchMethod == search_rowHash) {
1527        const U32 rowLog = MAX(4, MIN(6, ms->cParams.searchLog));
1528        ZSTD_row_fillHashCache(ms, base, rowLog,
1529                            MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */),
1530                            ms->nextToUpdate, ilimit);
1531    }
1532
1533    /* Match Loop */
1534#if defined(__GNUC__) && defined(__x86_64__)
1535    /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1536     * code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1537     */
1538    __asm__(".p2align 5");
1539#endif
1540    while (ip < ilimit) {
1541        size_t matchLength=0;
1542        size_t offcode=STORE_REPCODE_1;
1543        const BYTE* start=ip+1;
1544        DEBUGLOG(7, "search baseline (depth 0)");
1545
1546        /* check repCode */
1547        if (isDxS) {
1548            const U32 repIndex = (U32)(ip - base) + 1 - offset_1;
1549            const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch)
1550                                && repIndex < prefixLowestIndex) ?
1551                                   dictBase + (repIndex - dictIndexDelta) :
1552                                   base + repIndex;
1553            if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1554                && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
1555                const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1556                matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1557                if (depth==0) goto _storeSequence;
1558            }
1559        }
1560        if ( dictMode == ZSTD_noDict
1561          && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
1562            matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
1563            if (depth==0) goto _storeSequence;
1564        }
1565
1566        /* first search (depth 0) */
1567        {   size_t offsetFound = 999999999;
1568            size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
1569            if (ml2 > matchLength)
1570                matchLength = ml2, start = ip, offcode=offsetFound;
1571        }
1572
1573        if (matchLength < 4) {
1574            ip += ((ip-anchor) >> kSearchStrength) + 1;   /* jump faster over incompressible sections */
1575            continue;
1576        }
1577
1578        /* let's try to find a better solution */
1579        if (depth>=1)
1580        while (ip<ilimit) {
1581            DEBUGLOG(7, "search depth 1");
1582            ip ++;
1583            if ( (dictMode == ZSTD_noDict)
1584              && (offcode) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1585                size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1586                int const gain2 = (int)(mlRep * 3);
1587                int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1588                if ((mlRep >= 4) && (gain2 > gain1))
1589                    matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
1590            }
1591            if (isDxS) {
1592                const U32 repIndex = (U32)(ip - base) - offset_1;
1593                const BYTE* repMatch = repIndex < prefixLowestIndex ?
1594                               dictBase + (repIndex - dictIndexDelta) :
1595                               base + repIndex;
1596                if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1597                    && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1598                    const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1599                    size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1600                    int const gain2 = (int)(mlRep * 3);
1601                    int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1602                    if ((mlRep >= 4) && (gain2 > gain1))
1603                        matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
1604                }
1605            }
1606            {   size_t offset2=999999999;
1607                size_t const ml2 = searchMax(ms, ip, iend, &offset2);
1608                int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2)));   /* raw approx */
1609                int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 4);
1610                if ((ml2 >= 4) && (gain2 > gain1)) {
1611                    matchLength = ml2, offcode = offset2, start = ip;
1612                    continue;   /* search a better one */
1613            }   }
1614
1615            /* let's find an even better one */
1616            if ((depth==2) && (ip<ilimit)) {
1617                DEBUGLOG(7, "search depth 2");
1618                ip ++;
1619                if ( (dictMode == ZSTD_noDict)
1620                  && (offcode) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1621                    size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1622                    int const gain2 = (int)(mlRep * 4);
1623                    int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1624                    if ((mlRep >= 4) && (gain2 > gain1))
1625                        matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
1626                }
1627                if (isDxS) {
1628                    const U32 repIndex = (U32)(ip - base) - offset_1;
1629                    const BYTE* repMatch = repIndex < prefixLowestIndex ?
1630                                   dictBase + (repIndex - dictIndexDelta) :
1631                                   base + repIndex;
1632                    if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1633                        && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1634                        const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1635                        size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1636                        int const gain2 = (int)(mlRep * 4);
1637                        int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1638                        if ((mlRep >= 4) && (gain2 > gain1))
1639                            matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
1640                    }
1641                }
1642                {   size_t offset2=999999999;
1643                    size_t const ml2 = searchMax(ms, ip, iend, &offset2);
1644                    int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2)));   /* raw approx */
1645                    int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 7);
1646                    if ((ml2 >= 4) && (gain2 > gain1)) {
1647                        matchLength = ml2, offcode = offset2, start = ip;
1648                        continue;
1649            }   }   }
1650            break;  /* nothing found : store previous solution */
1651        }
1652
1653        /* NOTE:
1654         * Pay attention that `start[-value]` can lead to strange undefined behavior
1655         * notably if `value` is unsigned, resulting in a large positive `-value`.
1656         */
1657        /* catch up */
1658        if (STORED_IS_OFFSET(offcode)) {
1659            if (dictMode == ZSTD_noDict) {
1660                while ( ((start > anchor) & (start - STORED_OFFSET(offcode) > prefixLowest))
1661                     && (start[-1] == (start-STORED_OFFSET(offcode))[-1]) )  /* only search for offset within prefix */
1662                    { start--; matchLength++; }
1663            }
1664            if (isDxS) {
1665                U32 const matchIndex = (U32)((size_t)(start-base) - STORED_OFFSET(offcode));
1666                const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex;
1667                const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest;
1668                while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; }  /* catch up */
1669            }
1670            offset_2 = offset_1; offset_1 = (U32)STORED_OFFSET(offcode);
1671        }
1672        /* store sequence */
1673_storeSequence:
1674        {   size_t const litLength = (size_t)(start - anchor);
1675            ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offcode, matchLength);
1676            anchor = ip = start + matchLength;
1677        }
1678
1679        /* check immediate repcode */
1680        if (isDxS) {
1681            while (ip <= ilimit) {
1682                U32 const current2 = (U32)(ip-base);
1683                U32 const repIndex = current2 - offset_2;
1684                const BYTE* repMatch = repIndex < prefixLowestIndex ?
1685                        dictBase - dictIndexDelta + repIndex :
1686                        base + repIndex;
1687                if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */)
1688                   && (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1689                    const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
1690                    matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
1691                    offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode;   /* swap offset_2 <=> offset_1 */
1692                    ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength);
1693                    ip += matchLength;
1694                    anchor = ip;
1695                    continue;
1696                }
1697                break;
1698            }
1699        }
1700
1701        if (dictMode == ZSTD_noDict) {
1702            while ( ((ip <= ilimit) & (offset_2>0))
1703                 && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) {
1704                /* store sequence */
1705                matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
1706                offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap repcodes */
1707                ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength);
1708                ip += matchLength;
1709                anchor = ip;
1710                continue;   /* faster when present ... (?) */
1711    }   }   }
1712
1713    /* Save reps for next block */
1714    rep[0] = offset_1 ? offset_1 : savedOffset;
1715    rep[1] = offset_2 ? offset_2 : savedOffset;
1716
1717    /* Return the last literals size */
1718    return (size_t)(iend - anchor);
1719}
1720
1721
1722size_t ZSTD_compressBlock_btlazy2(
1723        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1724        void const* src, size_t srcSize)
1725{
1726    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
1727}
1728
1729size_t ZSTD_compressBlock_lazy2(
1730        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1731        void const* src, size_t srcSize)
1732{
1733    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
1734}
1735
1736size_t ZSTD_compressBlock_lazy(
1737        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1738        void const* src, size_t srcSize)
1739{
1740    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
1741}
1742
1743size_t ZSTD_compressBlock_greedy(
1744        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1745        void const* src, size_t srcSize)
1746{
1747    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
1748}
1749
1750size_t ZSTD_compressBlock_btlazy2_dictMatchState(
1751        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1752        void const* src, size_t srcSize)
1753{
1754    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
1755}
1756
1757size_t ZSTD_compressBlock_lazy2_dictMatchState(
1758        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1759        void const* src, size_t srcSize)
1760{
1761    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
1762}
1763
1764size_t ZSTD_compressBlock_lazy_dictMatchState(
1765        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1766        void const* src, size_t srcSize)
1767{
1768    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
1769}
1770
1771size_t ZSTD_compressBlock_greedy_dictMatchState(
1772        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1773        void const* src, size_t srcSize)
1774{
1775    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
1776}
1777
1778
1779size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
1780        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1781        void const* src, size_t srcSize)
1782{
1783    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
1784}
1785
1786size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
1787        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1788        void const* src, size_t srcSize)
1789{
1790    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
1791}
1792
1793size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
1794        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1795        void const* src, size_t srcSize)
1796{
1797    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
1798}
1799
1800/* Row-based matchfinder */
1801size_t ZSTD_compressBlock_lazy2_row(
1802        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1803        void const* src, size_t srcSize)
1804{
1805    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict);
1806}
1807
1808size_t ZSTD_compressBlock_lazy_row(
1809        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1810        void const* src, size_t srcSize)
1811{
1812    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict);
1813}
1814
1815size_t ZSTD_compressBlock_greedy_row(
1816        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1817        void const* src, size_t srcSize)
1818{
1819    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict);
1820}
1821
1822size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
1823        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1824        void const* src, size_t srcSize)
1825{
1826    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState);
1827}
1828
1829size_t ZSTD_compressBlock_lazy_dictMatchState_row(
1830        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1831        void const* src, size_t srcSize)
1832{
1833    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState);
1834}
1835
1836size_t ZSTD_compressBlock_greedy_dictMatchState_row(
1837        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1838        void const* src, size_t srcSize)
1839{
1840    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState);
1841}
1842
1843
1844size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
1845        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1846        void const* src, size_t srcSize)
1847{
1848    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch);
1849}
1850
1851size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
1852        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1853        void const* src, size_t srcSize)
1854{
1855    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch);
1856}
1857
1858size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
1859        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1860        void const* src, size_t srcSize)
1861{
1862    return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch);
1863}
1864
1865FORCE_INLINE_TEMPLATE
1866size_t ZSTD_compressBlock_lazy_extDict_generic(
1867                        ZSTD_matchState_t* ms, seqStore_t* seqStore,
1868                        U32 rep[ZSTD_REP_NUM],
1869                        const void* src, size_t srcSize,
1870                        const searchMethod_e searchMethod, const U32 depth)
1871{
1872    const BYTE* const istart = (const BYTE*)src;
1873    const BYTE* ip = istart;
1874    const BYTE* anchor = istart;
1875    const BYTE* const iend = istart + srcSize;
1876    const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1877    const BYTE* const base = ms->window.base;
1878    const U32 dictLimit = ms->window.dictLimit;
1879    const BYTE* const prefixStart = base + dictLimit;
1880    const BYTE* const dictBase = ms->window.dictBase;
1881    const BYTE* const dictEnd  = dictBase + dictLimit;
1882    const BYTE* const dictStart  = dictBase + ms->window.lowLimit;
1883    const U32 windowLog = ms->cParams.windowLog;
1884    const U32 rowLog = ms->cParams.searchLog < 5 ? 4 : 5;
1885
1886    searchMax_f const searchMax = ZSTD_selectLazyVTable(ms, searchMethod, ZSTD_extDict)->searchMax;
1887    U32 offset_1 = rep[0], offset_2 = rep[1];
1888
1889    DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod);
1890
1891    /* init */
1892    ip += (ip == prefixStart);
1893    if (searchMethod == search_rowHash) {
1894        ZSTD_row_fillHashCache(ms, base, rowLog,
1895                               MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */),
1896                               ms->nextToUpdate, ilimit);
1897    }
1898
1899    /* Match Loop */
1900#if defined(__GNUC__) && defined(__x86_64__)
1901    /* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1902     * code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1903     */
1904    __asm__(".p2align 5");
1905#endif
1906    while (ip < ilimit) {
1907        size_t matchLength=0;
1908        size_t offcode=STORE_REPCODE_1;
1909        const BYTE* start=ip+1;
1910        U32 curr = (U32)(ip-base);
1911
1912        /* check repCode */
1913        {   const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog);
1914            const U32 repIndex = (U32)(curr+1 - offset_1);
1915            const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1916            const BYTE* const repMatch = repBase + repIndex;
1917            if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow */
1918               & (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */
1919            if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
1920                /* repcode detected we should take it */
1921                const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
1922                matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4;
1923                if (depth==0) goto _storeSequence;
1924        }   }
1925
1926        /* first search (depth 0) */
1927        {   size_t offsetFound = 999999999;
1928            size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
1929            if (ml2 > matchLength)
1930                matchLength = ml2, start = ip, offcode=offsetFound;
1931        }
1932
1933        if (matchLength < 4) {
1934            ip += ((ip-anchor) >> kSearchStrength) + 1;   /* jump faster over incompressible sections */
1935            continue;
1936        }
1937
1938        /* let's try to find a better solution */
1939        if (depth>=1)
1940        while (ip<ilimit) {
1941            ip ++;
1942            curr++;
1943            /* check repCode */
1944            if (offcode) {
1945                const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
1946                const U32 repIndex = (U32)(curr - offset_1);
1947                const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1948                const BYTE* const repMatch = repBase + repIndex;
1949                if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments  */
1950                   & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
1951                if (MEM_read32(ip) == MEM_read32(repMatch)) {
1952                    /* repcode detected */
1953                    const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
1954                    size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
1955                    int const gain2 = (int)(repLength * 3);
1956                    int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1957                    if ((repLength >= 4) && (gain2 > gain1))
1958                        matchLength = repLength, offcode = STORE_REPCODE_1, start = ip;
1959            }   }
1960
1961            /* search match, depth 1 */
1962            {   size_t offset2=999999999;
1963                size_t const ml2 = searchMax(ms, ip, iend, &offset2);
1964                int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2)));   /* raw approx */
1965                int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 4);
1966                if ((ml2 >= 4) && (gain2 > gain1)) {
1967                    matchLength = ml2, offcode = offset2, start = ip;
1968                    continue;   /* search a better one */
1969            }   }
1970
1971            /* let's find an even better one */
1972            if ((depth==2) && (ip<ilimit)) {
1973                ip ++;
1974                curr++;
1975                /* check repCode */
1976                if (offcode) {
1977                    const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
1978                    const U32 repIndex = (U32)(curr - offset_1);
1979                    const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1980                    const BYTE* const repMatch = repBase + repIndex;
1981                    if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments  */
1982                       & (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
1983                    if (MEM_read32(ip) == MEM_read32(repMatch)) {
1984                        /* repcode detected */
1985                        const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
1986                        size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
1987                        int const gain2 = (int)(repLength * 4);
1988                        int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1989                        if ((repLength >= 4) && (gain2 > gain1))
1990                            matchLength = repLength, offcode = STORE_REPCODE_1, start = ip;
1991                }   }
1992
1993                /* search match, depth 2 */
1994                {   size_t offset2=999999999;
1995                    size_t const ml2 = searchMax(ms, ip, iend, &offset2);
1996                    int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2)));   /* raw approx */
1997                    int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 7);
1998                    if ((ml2 >= 4) && (gain2 > gain1)) {
1999                        matchLength = ml2, offcode = offset2, start = ip;
2000                        continue;
2001            }   }   }
2002            break;  /* nothing found : store previous solution */
2003        }
2004
2005        /* catch up */
2006        if (STORED_IS_OFFSET(offcode)) {
2007            U32 const matchIndex = (U32)((size_t)(start-base) - STORED_OFFSET(offcode));
2008            const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
2009            const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
2010            while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; }  /* catch up */
2011            offset_2 = offset_1; offset_1 = (U32)STORED_OFFSET(offcode);
2012        }
2013
2014        /* store sequence */
2015_storeSequence:
2016        {   size_t const litLength = (size_t)(start - anchor);
2017            ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offcode, matchLength);
2018            anchor = ip = start + matchLength;
2019        }
2020
2021        /* check immediate repcode */
2022        while (ip <= ilimit) {
2023            const U32 repCurrent = (U32)(ip-base);
2024            const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog);
2025            const U32 repIndex = repCurrent - offset_2;
2026            const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
2027            const BYTE* const repMatch = repBase + repIndex;
2028            if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments  */
2029               & (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
2030            if (MEM_read32(ip) == MEM_read32(repMatch)) {
2031                /* repcode detected we should take it */
2032                const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2033                matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2034                offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode;   /* swap offset history */
2035                ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength);
2036                ip += matchLength;
2037                anchor = ip;
2038                continue;   /* faster when present ... (?) */
2039            }
2040            break;
2041    }   }
2042
2043    /* Save reps for next block */
2044    rep[0] = offset_1;
2045    rep[1] = offset_2;
2046
2047    /* Return the last literals size */
2048    return (size_t)(iend - anchor);
2049}
2050
2051
2052size_t ZSTD_compressBlock_greedy_extDict(
2053        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2054        void const* src, size_t srcSize)
2055{
2056    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
2057}
2058
2059size_t ZSTD_compressBlock_lazy_extDict(
2060        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2061        void const* src, size_t srcSize)
2062
2063{
2064    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
2065}
2066
2067size_t ZSTD_compressBlock_lazy2_extDict(
2068        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2069        void const* src, size_t srcSize)
2070
2071{
2072    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
2073}
2074
2075size_t ZSTD_compressBlock_btlazy2_extDict(
2076        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2077        void const* src, size_t srcSize)
2078
2079{
2080    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
2081}
2082
2083size_t ZSTD_compressBlock_greedy_extDict_row(
2084        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2085        void const* src, size_t srcSize)
2086{
2087    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0);
2088}
2089
2090size_t ZSTD_compressBlock_lazy_extDict_row(
2091        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2092        void const* src, size_t srcSize)
2093
2094{
2095    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1);
2096}
2097
2098size_t ZSTD_compressBlock_lazy2_extDict_row(
2099        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2100        void const* src, size_t srcSize)
2101
2102{
2103    return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2);
2104}
2105