1/*
2 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11#ifndef MEM_H_MODULE
12#define MEM_H_MODULE
13
14#if defined (__cplusplus)
15extern "C" {
16#endif
17
18/*-****************************************
19*  Dependencies
20******************************************/
21#include <stddef.h>     /* size_t, ptrdiff_t */
22#include <string.h>     /* memcpy */
23
24
25/*-****************************************
26*  Compiler specifics
27******************************************/
28#if defined(_MSC_VER)   /* Visual Studio */
29#   include <stdlib.h>  /* _byteswap_ulong */
30#   include <intrin.h>  /* _byteswap_* */
31#endif
32#if defined(__GNUC__)
33#  define MEM_STATIC static __inline __attribute__((unused))
34#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
35#  define MEM_STATIC static inline
36#elif defined(_MSC_VER)
37#  define MEM_STATIC static __inline
38#else
39#  define MEM_STATIC static  /* this version may generate warnings for unused static functions; disable the relevant warning */
40#endif
41
42#ifndef __has_builtin
43#  define __has_builtin(x) 0  /* compat. with non-clang compilers */
44#endif
45
46/* code only tested on 32 and 64 bits systems */
47#define MEM_STATIC_ASSERT(c)   { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
48MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
49
50/* detects whether we are being compiled under msan */
51#if defined (__has_feature)
52#  if __has_feature(memory_sanitizer)
53#    define MEMORY_SANITIZER 1
54#  endif
55#endif
56
57#if defined (MEMORY_SANITIZER)
58/* Not all platforms that support msan provide sanitizers/msan_interface.h.
59 * We therefore declare the functions we need ourselves, rather than trying to
60 * include the header file... */
61
62#include <stdint.h> /* intptr_t */
63
64/* Make memory region fully initialized (without changing its contents). */
65void __msan_unpoison(const volatile void *a, size_t size);
66
67/* Make memory region fully uninitialized (without changing its contents).
68   This is a legacy interface that does not update origin information. Use
69   __msan_allocated_memory() instead. */
70void __msan_poison(const volatile void *a, size_t size);
71
72/* Returns the offset of the first (at least partially) poisoned byte in the
73   memory range, or -1 if the whole range is good. */
74intptr_t __msan_test_shadow(const volatile void *x, size_t size);
75#endif
76
77/* detects whether we are being compiled under asan */
78#if defined (ZFS_ASAN_ENABLED)
79#  define ADDRESS_SANITIZER 1
80#  define ZSTD_ASAN_DONT_POISON_WORKSPACE
81#endif
82
83#if defined (ADDRESS_SANITIZER)
84/* Not all platforms that support asan provide sanitizers/asan_interface.h.
85 * We therefore declare the functions we need ourselves, rather than trying to
86 * include the header file... */
87
88/**
89 * Marks a memory region (<c>[addr, addr+size)</c>) as unaddressable.
90 *
91 * This memory must be previously allocated by your program. Instrumented
92 * code is forbidden from accessing addresses in this region until it is
93 * unpoisoned. This function is not guaranteed to poison the entire region -
94 * it could poison only a subregion of <c>[addr, addr+size)</c> due to ASan
95 * alignment restrictions.
96 *
97 * \note This function is not thread-safe because no two threads can poison or
98 * unpoison memory in the same memory region simultaneously.
99 *
100 * \param addr Start of memory region.
101 * \param size Size of memory region. */
102void __asan_poison_memory_region(void const volatile *addr, size_t size);
103
104/**
105 * Marks a memory region (<c>[addr, addr+size)</c>) as addressable.
106 *
107 * This memory must be previously allocated by your program. Accessing
108 * addresses in this region is allowed until this region is poisoned again.
109 * This function could unpoison a super-region of <c>[addr, addr+size)</c> due
110 * to ASan alignment restrictions.
111 *
112 * \note This function is not thread-safe because no two threads can
113 * poison or unpoison memory in the same memory region simultaneously.
114 *
115 * \param addr Start of memory region.
116 * \param size Size of memory region. */
117void __asan_unpoison_memory_region(void const volatile *addr, size_t size);
118#endif
119
120
121/*-**************************************************************
122*  Basic Types
123*****************************************************************/
124#if  !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
125# include <stdint.h>
126  typedef   uint8_t BYTE;
127  typedef  uint16_t U16;
128  typedef   int16_t S16;
129  typedef  uint32_t U32;
130  typedef   int32_t S32;
131  typedef  uint64_t U64;
132  typedef   int64_t S64;
133#else
134# include <limits.h>
135#if CHAR_BIT != 8
136#  error "this implementation requires char to be exactly 8-bit type"
137#endif
138  typedef unsigned char      BYTE;
139#if USHRT_MAX != 65535
140#  error "this implementation requires short to be exactly 16-bit type"
141#endif
142  typedef unsigned short      U16;
143  typedef   signed short      S16;
144#if UINT_MAX != 4294967295
145#  error "this implementation requires int to be exactly 32-bit type"
146#endif
147  typedef unsigned int        U32;
148  typedef   signed int        S32;
149/* note : there are no limits defined for long long type in C90.
150 * limits exist in C99, however, in such case, <stdint.h> is preferred */
151  typedef unsigned long long  U64;
152  typedef   signed long long  S64;
153#endif
154
155
156/*-**************************************************************
157*  Memory I/O
158*****************************************************************/
159/* MEM_FORCE_MEMORY_ACCESS :
160 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
161 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
162 * The below switch allow to select different access method for improved performance.
163 * Method 0 (default) : use `memcpy()`. Safe and portable.
164 * Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
165 *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
166 * Method 2 : direct access. This method is portable but violate C standard.
167 *            It can generate buggy code on targets depending on alignment.
168 *            In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
169 * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
170 * Prefer these methods in priority order (0 > 1 > 2)
171 */
172#ifndef MEM_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
173#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
174#    define MEM_FORCE_MEMORY_ACCESS 2
175#  elif defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
176#    define MEM_FORCE_MEMORY_ACCESS 1
177#  endif
178#endif
179
180MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
181MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
182
183MEM_STATIC unsigned MEM_isLittleEndian(void)
184{
185    const union { U32 u; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */
186    return one.c[0];
187}
188
189#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
190
191/* violates C standard, by lying on structure alignment.
192Only use if no other choice to achieve best performance on target platform */
193MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
194MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
195MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
196MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
197
198MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
199MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
200MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
201
202#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
203
204/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
205/* currently only defined for gcc and icc */
206#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
207    __pragma( pack(push, 1) )
208    typedef struct { U16 v; } unalign16;
209    typedef struct { U32 v; } unalign32;
210    typedef struct { U64 v; } unalign64;
211    typedef struct { size_t v; } unalignArch;
212    __pragma( pack(pop) )
213#else
214    typedef struct { U16 v; } __attribute__((packed)) unalign16;
215    typedef struct { U32 v; } __attribute__((packed)) unalign32;
216    typedef struct { U64 v; } __attribute__((packed)) unalign64;
217    typedef struct { size_t v; } __attribute__((packed)) unalignArch;
218#endif
219
220MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
221MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
222MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
223MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
224
225MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
226MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
227MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
228
229#else
230
231/* default method, safe and standard.
232   can sometimes prove slower */
233
234MEM_STATIC U16 MEM_read16(const void* memPtr)
235{
236    U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
237}
238
239MEM_STATIC U32 MEM_read32(const void* memPtr)
240{
241    U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
242}
243
244MEM_STATIC U64 MEM_read64(const void* memPtr)
245{
246    U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
247}
248
249MEM_STATIC size_t MEM_readST(const void* memPtr)
250{
251    size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
252}
253
254MEM_STATIC void MEM_write16(void* memPtr, U16 value)
255{
256    memcpy(memPtr, &value, sizeof(value));
257}
258
259MEM_STATIC void MEM_write32(void* memPtr, U32 value)
260{
261    memcpy(memPtr, &value, sizeof(value));
262}
263
264MEM_STATIC void MEM_write64(void* memPtr, U64 value)
265{
266    memcpy(memPtr, &value, sizeof(value));
267}
268
269#endif /* MEM_FORCE_MEMORY_ACCESS */
270
271MEM_STATIC U32 MEM_swap32(U32 in)
272{
273#if defined(_MSC_VER)     /* Visual Studio */
274    return _byteswap_ulong(in);
275#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
276  || (defined(__clang__) && __has_builtin(__builtin_bswap32))
277    return __builtin_bswap32(in);
278#else
279    return  ((in << 24) & 0xff000000 ) |
280            ((in <<  8) & 0x00ff0000 ) |
281            ((in >>  8) & 0x0000ff00 ) |
282            ((in >> 24) & 0x000000ff );
283#endif
284}
285
286MEM_STATIC U64 MEM_swap64(U64 in)
287{
288#if defined(_MSC_VER)     /* Visual Studio */
289    return _byteswap_uint64(in);
290#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
291  || (defined(__clang__) && __has_builtin(__builtin_bswap64))
292    return __builtin_bswap64(in);
293#else
294    return  ((in << 56) & 0xff00000000000000ULL) |
295            ((in << 40) & 0x00ff000000000000ULL) |
296            ((in << 24) & 0x0000ff0000000000ULL) |
297            ((in << 8)  & 0x000000ff00000000ULL) |
298            ((in >> 8)  & 0x00000000ff000000ULL) |
299            ((in >> 24) & 0x0000000000ff0000ULL) |
300            ((in >> 40) & 0x000000000000ff00ULL) |
301            ((in >> 56) & 0x00000000000000ffULL);
302#endif
303}
304
305MEM_STATIC size_t MEM_swapST(size_t in)
306{
307    if (MEM_32bits())
308        return (size_t)MEM_swap32((U32)in);
309    else
310        return (size_t)MEM_swap64((U64)in);
311}
312
313/*=== Little endian r/w ===*/
314
315MEM_STATIC U16 MEM_readLE16(const void* memPtr)
316{
317    if (MEM_isLittleEndian())
318        return MEM_read16(memPtr);
319    else {
320        const BYTE* p = (const BYTE*)memPtr;
321        return (U16)(p[0] + (p[1]<<8));
322    }
323}
324
325MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
326{
327    if (MEM_isLittleEndian()) {
328        MEM_write16(memPtr, val);
329    } else {
330        BYTE* p = (BYTE*)memPtr;
331        p[0] = (BYTE)val;
332        p[1] = (BYTE)(val>>8);
333    }
334}
335
336MEM_STATIC U32 MEM_readLE24(const void* memPtr)
337{
338    return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
339}
340
341MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
342{
343    MEM_writeLE16(memPtr, (U16)val);
344    ((BYTE*)memPtr)[2] = (BYTE)(val>>16);
345}
346
347MEM_STATIC U32 MEM_readLE32(const void* memPtr)
348{
349    if (MEM_isLittleEndian())
350        return MEM_read32(memPtr);
351    else
352        return MEM_swap32(MEM_read32(memPtr));
353}
354
355MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
356{
357    if (MEM_isLittleEndian())
358        MEM_write32(memPtr, val32);
359    else
360        MEM_write32(memPtr, MEM_swap32(val32));
361}
362
363MEM_STATIC U64 MEM_readLE64(const void* memPtr)
364{
365    if (MEM_isLittleEndian())
366        return MEM_read64(memPtr);
367    else
368        return MEM_swap64(MEM_read64(memPtr));
369}
370
371MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
372{
373    if (MEM_isLittleEndian())
374        MEM_write64(memPtr, val64);
375    else
376        MEM_write64(memPtr, MEM_swap64(val64));
377}
378
379MEM_STATIC size_t MEM_readLEST(const void* memPtr)
380{
381    if (MEM_32bits())
382        return (size_t)MEM_readLE32(memPtr);
383    else
384        return (size_t)MEM_readLE64(memPtr);
385}
386
387MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
388{
389    if (MEM_32bits())
390        MEM_writeLE32(memPtr, (U32)val);
391    else
392        MEM_writeLE64(memPtr, (U64)val);
393}
394
395/*=== Big endian r/w ===*/
396
397MEM_STATIC U32 MEM_readBE32(const void* memPtr)
398{
399    if (MEM_isLittleEndian())
400        return MEM_swap32(MEM_read32(memPtr));
401    else
402        return MEM_read32(memPtr);
403}
404
405MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
406{
407    if (MEM_isLittleEndian())
408        MEM_write32(memPtr, MEM_swap32(val32));
409    else
410        MEM_write32(memPtr, val32);
411}
412
413MEM_STATIC U64 MEM_readBE64(const void* memPtr)
414{
415    if (MEM_isLittleEndian())
416        return MEM_swap64(MEM_read64(memPtr));
417    else
418        return MEM_read64(memPtr);
419}
420
421MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
422{
423    if (MEM_isLittleEndian())
424        MEM_write64(memPtr, MEM_swap64(val64));
425    else
426        MEM_write64(memPtr, val64);
427}
428
429MEM_STATIC size_t MEM_readBEST(const void* memPtr)
430{
431    if (MEM_32bits())
432        return (size_t)MEM_readBE32(memPtr);
433    else
434        return (size_t)MEM_readBE64(memPtr);
435}
436
437MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
438{
439    if (MEM_32bits())
440        MEM_writeBE32(memPtr, (U32)val);
441    else
442        MEM_writeBE64(memPtr, (U64)val);
443}
444
445
446#if defined (__cplusplus)
447}
448#endif
449
450#endif /* MEM_H_MODULE */
451