1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012,2021 by Delphix. All rights reserved.
28 */
29
30#include <sys/spa.h>
31#include <sys/spa_impl.h>
32#include <sys/vdev.h>
33#include <sys/vdev_impl.h>
34#include <sys/zio.h>
35#include <sys/zio_checksum.h>
36
37#include <sys/fm/fs/zfs.h>
38#include <sys/fm/protocol.h>
39#include <sys/fm/util.h>
40#include <sys/sysevent.h>
41
42/*
43 * This general routine is responsible for generating all the different ZFS
44 * ereports.  The payload is dependent on the class, and which arguments are
45 * supplied to the function:
46 *
47 * 	EREPORT			POOL	VDEV	IO
48 * 	block			X	X	X
49 * 	data			X		X
50 * 	device			X	X
51 * 	pool			X
52 *
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
55 *
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58 * to chain together all ereports associated with a logical piece of data.  For
59 * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60 * layered diagram:
61 *
62 * 	+---------------+
63 * 	| Aggregate I/O |	No associated logical data or device
64 * 	+---------------+
65 *              |
66 *              V
67 * 	+---------------+	Reads associated with a piece of logical data.
68 * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69 * 	+---------------+       mirrors, gang blocks, retries, etc.
70 *              |
71 *              V
72 * 	+---------------+	Reads associated with a particular device, but
73 * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74 * 	+---------------+	and I/O aggregation.
75 *
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer.  But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
80 *
81 * Purely physical I/O always have unique ENAs.  They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data.  When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
86 * ENA.
87 *
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
95 *
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs.  Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO.  When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
103 */
104
105#ifdef _KERNEL
106/*
107 * Duplicate ereport Detection
108 *
109 * Some ereports are retained momentarily for detecting duplicates.  These
110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111 * tree of recent unique ereports.
112 *
113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114 * task is used to purge stale entries.
115 */
116static list_t recent_events_list;
117static avl_tree_t recent_events_tree;
118static kmutex_t recent_events_lock;
119static taskqid_t recent_events_cleaner_tqid;
120
121/*
122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
123 *
124 * This setting can be changed dynamically and setting it to zero
125 * disables duplicate detection.
126 */
127static unsigned int zfs_zevent_retain_max = 2000;
128
129/*
130 * The lifespan for a recent ereport entry. The default of 15 minutes is
131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132 * over a period of 10 minutes.
133 */
134static unsigned int zfs_zevent_retain_expire_secs = 900;
135
136typedef enum zfs_subclass {
137	ZSC_IO,
138	ZSC_DATA,
139	ZSC_CHECKSUM
140} zfs_subclass_t;
141
142typedef struct {
143	/* common criteria */
144	uint64_t	re_pool_guid;
145	uint64_t	re_vdev_guid;
146	int		re_io_error;
147	uint64_t	re_io_size;
148	uint64_t	re_io_offset;
149	zfs_subclass_t	re_subclass;
150	zio_priority_t	re_io_priority;
151
152	/* logical zio criteria (optional) */
153	zbookmark_phys_t re_io_bookmark;
154
155	/* internal state */
156	avl_node_t	re_tree_link;
157	list_node_t	re_list_link;
158	uint64_t	re_timestamp;
159} recent_events_node_t;
160
161static int
162recent_events_compare(const void *a, const void *b)
163{
164	const recent_events_node_t *node1 = a;
165	const recent_events_node_t *node2 = b;
166	int cmp;
167
168	/*
169	 * The comparison order here is somewhat arbitrary.
170	 * What's important is that if every criteria matches, then it
171	 * is a duplicate (i.e. compare returns 0)
172	 */
173	if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174		return (cmp);
175	if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176		return (cmp);
177	if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178		return (cmp);
179	if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180		return (cmp);
181	if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182		return (cmp);
183	if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184		return (cmp);
185	if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186		return (cmp);
187
188	const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189	const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
190
191	if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192		return (cmp);
193	if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194		return (cmp);
195	if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196		return (cmp);
197	if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198		return (cmp);
199
200	return (0);
201}
202
203/*
204 * workaround: vdev properties don't have inheritance
205 */
206static uint64_t
207vdev_prop_get_inherited(vdev_t *vd, vdev_prop_t prop)
208{
209	uint64_t propdef, propval;
210
211	propdef = vdev_prop_default_numeric(prop);
212	switch (prop) {
213		case VDEV_PROP_CHECKSUM_N:
214			propval = vd->vdev_checksum_n;
215			break;
216		case VDEV_PROP_CHECKSUM_T:
217			propval = vd->vdev_checksum_t;
218			break;
219		case VDEV_PROP_IO_N:
220			propval = vd->vdev_io_n;
221			break;
222		case VDEV_PROP_IO_T:
223			propval = vd->vdev_io_t;
224			break;
225		case VDEV_PROP_SLOW_IO_N:
226			propval = vd->vdev_slow_io_n;
227			break;
228		case VDEV_PROP_SLOW_IO_T:
229			propval = vd->vdev_slow_io_t;
230			break;
231		default:
232			propval = propdef;
233			break;
234	}
235
236	if (propval != propdef)
237		return (propval);
238
239	if (vd->vdev_parent == NULL)
240		return (propdef);
241
242	return (vdev_prop_get_inherited(vd->vdev_parent, prop));
243}
244
245static void zfs_ereport_schedule_cleaner(void);
246
247/*
248 * background task to clean stale recent event nodes.
249 */
250static void
251zfs_ereport_cleaner(void *arg)
252{
253	recent_events_node_t *entry;
254	uint64_t now = gethrtime();
255
256	/*
257	 * purge expired entries
258	 */
259	mutex_enter(&recent_events_lock);
260	while ((entry = list_tail(&recent_events_list)) != NULL) {
261		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
262		if (age <= zfs_zevent_retain_expire_secs)
263			break;
264
265		/* remove expired node */
266		avl_remove(&recent_events_tree, entry);
267		list_remove(&recent_events_list, entry);
268		kmem_free(entry, sizeof (*entry));
269	}
270
271	/* Restart the cleaner if more entries remain */
272	recent_events_cleaner_tqid = 0;
273	if (!list_is_empty(&recent_events_list))
274		zfs_ereport_schedule_cleaner();
275
276	mutex_exit(&recent_events_lock);
277}
278
279static void
280zfs_ereport_schedule_cleaner(void)
281{
282	ASSERT(MUTEX_HELD(&recent_events_lock));
283
284	uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
285
286	recent_events_cleaner_tqid = taskq_dispatch_delay(
287	    system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
288	    ddi_get_lbolt() + NSEC_TO_TICK(timeout));
289}
290
291/*
292 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
293 */
294void
295zfs_ereport_clear(spa_t *spa, vdev_t *vd)
296{
297	uint64_t vdev_guid, pool_guid;
298
299	ASSERT(vd != NULL || spa != NULL);
300	if (vd == NULL) {
301		vdev_guid = 0;
302		pool_guid = spa_guid(spa);
303	} else {
304		vdev_guid = vd->vdev_guid;
305		pool_guid = 0;
306	}
307
308	mutex_enter(&recent_events_lock);
309
310	recent_events_node_t *next = list_head(&recent_events_list);
311	while (next != NULL) {
312		recent_events_node_t *entry = next;
313
314		next = list_next(&recent_events_list, next);
315
316		if (entry->re_vdev_guid == vdev_guid ||
317		    entry->re_pool_guid == pool_guid) {
318			avl_remove(&recent_events_tree, entry);
319			list_remove(&recent_events_list, entry);
320			kmem_free(entry, sizeof (*entry));
321		}
322	}
323
324	mutex_exit(&recent_events_lock);
325}
326
327/*
328 * Check if an ereport would be a duplicate of one recently posted.
329 *
330 * An ereport is considered a duplicate if the set of criteria in
331 * recent_events_node_t all match.
332 *
333 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
334 * are candidates for duplicate checking.
335 */
336static boolean_t
337zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
338    const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
339{
340	recent_events_node_t search = {0}, *entry;
341
342	if (vd == NULL || zio == NULL)
343		return (B_FALSE);
344
345	if (zfs_zevent_retain_max == 0)
346		return (B_FALSE);
347
348	if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
349		search.re_subclass = ZSC_IO;
350	else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
351		search.re_subclass = ZSC_DATA;
352	else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
353		search.re_subclass = ZSC_CHECKSUM;
354	else
355		return (B_FALSE);
356
357	search.re_pool_guid = spa_guid(spa);
358	search.re_vdev_guid = vd->vdev_guid;
359	search.re_io_error = zio->io_error;
360	search.re_io_priority = zio->io_priority;
361	/* if size is supplied use it over what's in zio */
362	if (size) {
363		search.re_io_size = size;
364		search.re_io_offset = offset;
365	} else {
366		search.re_io_size = zio->io_size;
367		search.re_io_offset = zio->io_offset;
368	}
369
370	/* grab optional logical zio criteria */
371	if (zb != NULL) {
372		search.re_io_bookmark.zb_objset = zb->zb_objset;
373		search.re_io_bookmark.zb_object = zb->zb_object;
374		search.re_io_bookmark.zb_level = zb->zb_level;
375		search.re_io_bookmark.zb_blkid = zb->zb_blkid;
376	}
377
378	uint64_t now = gethrtime();
379
380	mutex_enter(&recent_events_lock);
381
382	/* check if we have seen this one recently */
383	entry = avl_find(&recent_events_tree, &search, NULL);
384	if (entry != NULL) {
385		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
386
387		/*
388		 * There is still an active cleaner (since we're here).
389		 * Reset the last seen time for this duplicate entry
390		 * so that its lifespand gets extended.
391		 */
392		list_remove(&recent_events_list, entry);
393		list_insert_head(&recent_events_list, entry);
394		entry->re_timestamp = now;
395
396		zfs_zevent_track_duplicate();
397		mutex_exit(&recent_events_lock);
398
399		return (age <= zfs_zevent_retain_expire_secs);
400	}
401
402	if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
403		/* recycle oldest node */
404		entry = list_tail(&recent_events_list);
405		ASSERT(entry != NULL);
406		list_remove(&recent_events_list, entry);
407		avl_remove(&recent_events_tree, entry);
408	} else {
409		entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
410	}
411
412	/* record this as a recent ereport */
413	*entry = search;
414	avl_add(&recent_events_tree, entry);
415	list_insert_head(&recent_events_list, entry);
416	entry->re_timestamp = now;
417
418	/* Start a cleaner if not already scheduled */
419	if (recent_events_cleaner_tqid == 0)
420		zfs_ereport_schedule_cleaner();
421
422	mutex_exit(&recent_events_lock);
423	return (B_FALSE);
424}
425
426void
427zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
428{
429	if (nvl)
430		fm_nvlist_destroy(nvl, FM_NVA_FREE);
431
432	if (detector)
433		fm_nvlist_destroy(detector, FM_NVA_FREE);
434}
435
436/*
437 * We want to rate limit ZIO delay, deadman, and checksum events so as to not
438 * flood zevent consumers when a disk is acting up.
439 *
440 * Returns 1 if we're ratelimiting, 0 if not.
441 */
442static int
443zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
444{
445	int rc = 0;
446	/*
447	 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
448	 * are.  Invert it to get our return value.
449	 */
450	if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
451		rc = !zfs_ratelimit(&vd->vdev_delay_rl);
452	} else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
453		rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
454	} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
455		rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
456	}
457
458	if (rc)	{
459		/* We're rate limiting */
460		fm_erpt_dropped_increment();
461	}
462
463	return (rc);
464}
465
466/*
467 * Return B_TRUE if the event actually posted, B_FALSE if not.
468 */
469static boolean_t
470zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
471    const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
472    zio_t *zio, uint64_t stateoroffset, uint64_t size)
473{
474	nvlist_t *ereport, *detector;
475
476	uint64_t ena;
477	char class[64];
478
479	if ((ereport = fm_nvlist_create(NULL)) == NULL)
480		return (B_FALSE);
481
482	if ((detector = fm_nvlist_create(NULL)) == NULL) {
483		fm_nvlist_destroy(ereport, FM_NVA_FREE);
484		return (B_FALSE);
485	}
486
487	/*
488	 * Serialize ereport generation
489	 */
490	mutex_enter(&spa->spa_errlist_lock);
491
492	/*
493	 * Determine the ENA to use for this event.  If we are in a loading
494	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
495	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
496	 */
497	if (spa_load_state(spa) != SPA_LOAD_NONE) {
498		if (spa->spa_ena == 0)
499			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
500		ena = spa->spa_ena;
501	} else if (zio != NULL && zio->io_logical != NULL) {
502		if (zio->io_logical->io_ena == 0)
503			zio->io_logical->io_ena =
504			    fm_ena_generate(0, FM_ENA_FMT1);
505		ena = zio->io_logical->io_ena;
506	} else {
507		ena = fm_ena_generate(0, FM_ENA_FMT1);
508	}
509
510	/*
511	 * Construct the full class, detector, and other standard FMA fields.
512	 */
513	(void) snprintf(class, sizeof (class), "%s.%s",
514	    ZFS_ERROR_CLASS, subclass);
515
516	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
517	    vd != NULL ? vd->vdev_guid : 0);
518
519	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
520
521	/*
522	 * Construct the per-ereport payload, depending on which parameters are
523	 * passed in.
524	 */
525
526	/*
527	 * Generic payload members common to all ereports.
528	 */
529	fm_payload_set(ereport,
530	    FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
531	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
532	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
533	    (uint64_t)spa_state(spa),
534	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
535	    (int32_t)spa_load_state(spa), NULL);
536
537	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
538	    DATA_TYPE_STRING,
539	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
540	    FM_EREPORT_FAILMODE_WAIT :
541	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
542	    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
543	    NULL);
544
545	if (vd != NULL) {
546		vdev_t *pvd = vd->vdev_parent;
547		vdev_queue_t *vq = &vd->vdev_queue;
548		vdev_stat_t *vs = &vd->vdev_stat;
549		vdev_t *spare_vd;
550		uint64_t *spare_guids;
551		char **spare_paths;
552		int i, spare_count;
553
554		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
555		    DATA_TYPE_UINT64, vd->vdev_guid,
556		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
557		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
558		if (vd->vdev_path != NULL)
559			fm_payload_set(ereport,
560			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
561			    DATA_TYPE_STRING, vd->vdev_path, NULL);
562		if (vd->vdev_devid != NULL)
563			fm_payload_set(ereport,
564			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
565			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
566		if (vd->vdev_fru != NULL)
567			fm_payload_set(ereport,
568			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
569			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
570		if (vd->vdev_enc_sysfs_path != NULL)
571			fm_payload_set(ereport,
572			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
573			    DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
574		if (vd->vdev_ashift)
575			fm_payload_set(ereport,
576			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
577			    DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
578
579		if (vq != NULL) {
580			fm_payload_set(ereport,
581			    FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
582			    DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
583			fm_payload_set(ereport,
584			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
585			    DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
586		}
587
588		if (vs != NULL) {
589			fm_payload_set(ereport,
590			    FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
591			    DATA_TYPE_UINT64, vs->vs_read_errors,
592			    FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
593			    DATA_TYPE_UINT64, vs->vs_write_errors,
594			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
595			    DATA_TYPE_UINT64, vs->vs_checksum_errors,
596			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
597			    DATA_TYPE_UINT64, vs->vs_slow_ios,
598			    NULL);
599		}
600
601		if (pvd != NULL) {
602			fm_payload_set(ereport,
603			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
604			    DATA_TYPE_UINT64, pvd->vdev_guid,
605			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
606			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
607			    NULL);
608			if (pvd->vdev_path)
609				fm_payload_set(ereport,
610				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
611				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
612			if (pvd->vdev_devid)
613				fm_payload_set(ereport,
614				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
615				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
616		}
617
618		spare_count = spa->spa_spares.sav_count;
619		spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
620		    KM_SLEEP);
621		spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
622		    KM_SLEEP);
623
624		for (i = 0; i < spare_count; i++) {
625			spare_vd = spa->spa_spares.sav_vdevs[i];
626			if (spare_vd) {
627				spare_paths[i] = spare_vd->vdev_path;
628				spare_guids[i] = spare_vd->vdev_guid;
629			}
630		}
631
632		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
633		    DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
634		    FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
635		    DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
636
637		kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
638		kmem_free(spare_paths, sizeof (char *) * spare_count);
639	}
640
641	if (zio != NULL) {
642		/*
643		 * Payload common to all I/Os.
644		 */
645		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
646		    DATA_TYPE_INT32, zio->io_error, NULL);
647		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
648		    DATA_TYPE_INT32, zio->io_flags, NULL);
649		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
650		    DATA_TYPE_UINT32, zio->io_stage, NULL);
651		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
652		    DATA_TYPE_UINT32, zio->io_pipeline, NULL);
653		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
654		    DATA_TYPE_UINT64, zio->io_delay, NULL);
655		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
656		    DATA_TYPE_UINT64, zio->io_timestamp, NULL);
657		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
658		    DATA_TYPE_UINT64, zio->io_delta, NULL);
659		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
660		    DATA_TYPE_UINT32, zio->io_priority, NULL);
661
662		/*
663		 * If the 'size' parameter is non-zero, it indicates this is a
664		 * RAID-Z or other I/O where the physical offset and length are
665		 * provided for us, instead of within the zio_t.
666		 */
667		if (vd != NULL) {
668			if (size)
669				fm_payload_set(ereport,
670				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
671				    DATA_TYPE_UINT64, stateoroffset,
672				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
673				    DATA_TYPE_UINT64, size, NULL);
674			else
675				fm_payload_set(ereport,
676				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
677				    DATA_TYPE_UINT64, zio->io_offset,
678				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
679				    DATA_TYPE_UINT64, zio->io_size, NULL);
680		}
681	} else if (vd != NULL) {
682		/*
683		 * If we have a vdev but no zio, this is a device fault, and the
684		 * 'stateoroffset' parameter indicates the previous state of the
685		 * vdev.
686		 */
687		fm_payload_set(ereport,
688		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
689		    DATA_TYPE_UINT64, stateoroffset, NULL);
690	}
691
692	/*
693	 * Payload for I/Os with corresponding logical information.
694	 */
695	if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
696		fm_payload_set(ereport,
697		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
698		    DATA_TYPE_UINT64, zb->zb_objset,
699		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
700		    DATA_TYPE_UINT64, zb->zb_object,
701		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
702		    DATA_TYPE_INT64, zb->zb_level,
703		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
704		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
705	}
706
707	/*
708	 * Payload for tuning the zed
709	 */
710	if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
711		uint64_t cksum_n, cksum_t;
712
713		cksum_n = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_N);
714		if (cksum_n != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N))
715			fm_payload_set(ereport,
716			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N,
717			    DATA_TYPE_UINT64,
718			    cksum_n,
719			    NULL);
720
721		cksum_t = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_T);
722		if (cksum_t != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T))
723			fm_payload_set(ereport,
724			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T,
725			    DATA_TYPE_UINT64,
726			    cksum_t,
727			    NULL);
728	}
729
730	if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) {
731		uint64_t io_n, io_t;
732
733		io_n = vdev_prop_get_inherited(vd, VDEV_PROP_IO_N);
734		if (io_n != vdev_prop_default_numeric(VDEV_PROP_IO_N))
735			fm_payload_set(ereport,
736			    FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N,
737			    DATA_TYPE_UINT64,
738			    io_n,
739			    NULL);
740
741		io_t = vdev_prop_get_inherited(vd, VDEV_PROP_IO_T);
742		if (io_t != vdev_prop_default_numeric(VDEV_PROP_IO_T))
743			fm_payload_set(ereport,
744			    FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T,
745			    DATA_TYPE_UINT64,
746			    io_t,
747			    NULL);
748	}
749
750	if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
751		uint64_t slow_io_n, slow_io_t;
752
753		slow_io_n = vdev_prop_get_inherited(vd, VDEV_PROP_SLOW_IO_N);
754		if (slow_io_n != vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N))
755			fm_payload_set(ereport,
756			    FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_N,
757			    DATA_TYPE_UINT64,
758			    slow_io_n,
759			    NULL);
760
761		slow_io_t = vdev_prop_get_inherited(vd, VDEV_PROP_SLOW_IO_T);
762		if (slow_io_t != vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T))
763			fm_payload_set(ereport,
764			    FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_T,
765			    DATA_TYPE_UINT64,
766			    slow_io_t,
767			    NULL);
768	}
769
770	mutex_exit(&spa->spa_errlist_lock);
771
772	*ereport_out = ereport;
773	*detector_out = detector;
774	return (B_TRUE);
775}
776
777/* if it's <= 128 bytes, save the corruption directly */
778#define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
779
780#define	MAX_RANGES		16
781
782typedef struct zfs_ecksum_info {
783	/* inline arrays of bits set and cleared. */
784	uint64_t zei_bits_set[ZFM_MAX_INLINE];
785	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
786
787	/*
788	 * for each range, the number of bits set and cleared.  The Hamming
789	 * distance between the good and bad buffers is the sum of them all.
790	 */
791	uint32_t zei_range_sets[MAX_RANGES];
792	uint32_t zei_range_clears[MAX_RANGES];
793
794	struct zei_ranges {
795		uint32_t	zr_start;
796		uint32_t	zr_end;
797	} zei_ranges[MAX_RANGES];
798
799	size_t	zei_range_count;
800	uint32_t zei_mingap;
801	uint32_t zei_allowed_mingap;
802
803} zfs_ecksum_info_t;
804
805static void
806update_bad_bits(uint64_t value_arg, uint32_t *count)
807{
808	size_t i;
809	size_t bits = 0;
810	uint64_t value = BE_64(value_arg);
811
812	/* We store the bits in big-endian (largest-first) order */
813	for (i = 0; i < 64; i++) {
814		if (value & (1ull << i))
815			++bits;
816	}
817	/* update the count of bits changed */
818	*count += bits;
819}
820
821/*
822 * We've now filled up the range array, and need to increase "mingap" and
823 * shrink the range list accordingly.  zei_mingap is always the smallest
824 * distance between array entries, so we set the new_allowed_gap to be
825 * one greater than that.  We then go through the list, joining together
826 * any ranges which are closer than the new_allowed_gap.
827 *
828 * By construction, there will be at least one.  We also update zei_mingap
829 * to the new smallest gap, to prepare for our next invocation.
830 */
831static void
832zei_shrink_ranges(zfs_ecksum_info_t *eip)
833{
834	uint32_t mingap = UINT32_MAX;
835	uint32_t new_allowed_gap = eip->zei_mingap + 1;
836
837	size_t idx, output;
838	size_t max = eip->zei_range_count;
839
840	struct zei_ranges *r = eip->zei_ranges;
841
842	ASSERT3U(eip->zei_range_count, >, 0);
843	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
844
845	output = idx = 0;
846	while (idx < max - 1) {
847		uint32_t start = r[idx].zr_start;
848		uint32_t end = r[idx].zr_end;
849
850		while (idx < max - 1) {
851			idx++;
852
853			uint32_t nstart = r[idx].zr_start;
854			uint32_t nend = r[idx].zr_end;
855
856			uint32_t gap = nstart - end;
857			if (gap < new_allowed_gap) {
858				end = nend;
859				continue;
860			}
861			if (gap < mingap)
862				mingap = gap;
863			break;
864		}
865		r[output].zr_start = start;
866		r[output].zr_end = end;
867		output++;
868	}
869	ASSERT3U(output, <, eip->zei_range_count);
870	eip->zei_range_count = output;
871	eip->zei_mingap = mingap;
872	eip->zei_allowed_mingap = new_allowed_gap;
873}
874
875static void
876zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
877{
878	struct zei_ranges *r = eip->zei_ranges;
879	size_t count = eip->zei_range_count;
880
881	if (count >= MAX_RANGES) {
882		zei_shrink_ranges(eip);
883		count = eip->zei_range_count;
884	}
885	if (count == 0) {
886		eip->zei_mingap = UINT32_MAX;
887		eip->zei_allowed_mingap = 1;
888	} else {
889		int gap = start - r[count - 1].zr_end;
890
891		if (gap < eip->zei_allowed_mingap) {
892			r[count - 1].zr_end = end;
893			return;
894		}
895		if (gap < eip->zei_mingap)
896			eip->zei_mingap = gap;
897	}
898	r[count].zr_start = start;
899	r[count].zr_end = end;
900	eip->zei_range_count++;
901}
902
903static size_t
904zei_range_total_size(zfs_ecksum_info_t *eip)
905{
906	struct zei_ranges *r = eip->zei_ranges;
907	size_t count = eip->zei_range_count;
908	size_t result = 0;
909	size_t idx;
910
911	for (idx = 0; idx < count; idx++)
912		result += (r[idx].zr_end - r[idx].zr_start);
913
914	return (result);
915}
916
917static zfs_ecksum_info_t *
918annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
919    const abd_t *goodabd, const abd_t *badabd, size_t size,
920    boolean_t drop_if_identical)
921{
922	const uint64_t *good;
923	const uint64_t *bad;
924
925	size_t nui64s = size / sizeof (uint64_t);
926
927	size_t inline_size;
928	int no_inline = 0;
929	size_t idx;
930	size_t range;
931
932	size_t offset = 0;
933	ssize_t start = -1;
934
935	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
936
937	/* don't do any annotation for injected checksum errors */
938	if (info != NULL && info->zbc_injected)
939		return (eip);
940
941	if (info != NULL && info->zbc_has_cksum) {
942		fm_payload_set(ereport,
943		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
944		    DATA_TYPE_STRING,
945		    info->zbc_checksum_name,
946		    NULL);
947
948		if (info->zbc_byteswapped) {
949			fm_payload_set(ereport,
950			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
951			    DATA_TYPE_BOOLEAN, 1,
952			    NULL);
953		}
954	}
955
956	if (badabd == NULL || goodabd == NULL)
957		return (eip);
958
959	ASSERT3U(nui64s, <=, UINT32_MAX);
960	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
961	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
962	ASSERT3U(size, <=, UINT32_MAX);
963
964	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
965	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
966
967	/* build up the range list by comparing the two buffers. */
968	for (idx = 0; idx < nui64s; idx++) {
969		if (good[idx] == bad[idx]) {
970			if (start == -1)
971				continue;
972
973			zei_add_range(eip, start, idx);
974			start = -1;
975		} else {
976			if (start != -1)
977				continue;
978
979			start = idx;
980		}
981	}
982	if (start != -1)
983		zei_add_range(eip, start, idx);
984
985	/* See if it will fit in our inline buffers */
986	inline_size = zei_range_total_size(eip);
987	if (inline_size > ZFM_MAX_INLINE)
988		no_inline = 1;
989
990	/*
991	 * If there is no change and we want to drop if the buffers are
992	 * identical, do so.
993	 */
994	if (inline_size == 0 && drop_if_identical) {
995		kmem_free(eip, sizeof (*eip));
996		abd_return_buf((abd_t *)goodabd, (void *)good, size);
997		abd_return_buf((abd_t *)badabd, (void *)bad, size);
998		return (NULL);
999	}
1000
1001	/*
1002	 * Now walk through the ranges, filling in the details of the
1003	 * differences.  Also convert our uint64_t-array offsets to byte
1004	 * offsets.
1005	 */
1006	for (range = 0; range < eip->zei_range_count; range++) {
1007		size_t start = eip->zei_ranges[range].zr_start;
1008		size_t end = eip->zei_ranges[range].zr_end;
1009
1010		for (idx = start; idx < end; idx++) {
1011			uint64_t set, cleared;
1012
1013			// bits set in bad, but not in good
1014			set = ((~good[idx]) & bad[idx]);
1015			// bits set in good, but not in bad
1016			cleared = (good[idx] & (~bad[idx]));
1017
1018			if (!no_inline) {
1019				ASSERT3U(offset, <, inline_size);
1020				eip->zei_bits_set[offset] = set;
1021				eip->zei_bits_cleared[offset] = cleared;
1022				offset++;
1023			}
1024
1025			update_bad_bits(set, &eip->zei_range_sets[range]);
1026			update_bad_bits(cleared, &eip->zei_range_clears[range]);
1027		}
1028
1029		/* convert to byte offsets */
1030		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
1031		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
1032	}
1033
1034	abd_return_buf((abd_t *)goodabd, (void *)good, size);
1035	abd_return_buf((abd_t *)badabd, (void *)bad, size);
1036
1037	eip->zei_allowed_mingap	*= sizeof (uint64_t);
1038	inline_size		*= sizeof (uint64_t);
1039
1040	/* fill in ereport */
1041	fm_payload_set(ereport,
1042	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
1043	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
1044	    (uint32_t *)eip->zei_ranges,
1045	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
1046	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
1047	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
1048	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
1049	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
1050	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
1051	    NULL);
1052
1053	if (!no_inline) {
1054		fm_payload_set(ereport,
1055		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
1056		    DATA_TYPE_UINT8_ARRAY,
1057		    inline_size, (uint8_t *)eip->zei_bits_set,
1058		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
1059		    DATA_TYPE_UINT8_ARRAY,
1060		    inline_size, (uint8_t *)eip->zei_bits_cleared,
1061		    NULL);
1062	}
1063	return (eip);
1064}
1065#else
1066void
1067zfs_ereport_clear(spa_t *spa, vdev_t *vd)
1068{
1069	(void) spa, (void) vd;
1070}
1071#endif
1072
1073/*
1074 * Make sure our event is still valid for the given zio/vdev/pool.  For example,
1075 * we don't want to keep logging events for a faulted or missing vdev.
1076 */
1077boolean_t
1078zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
1079{
1080#ifdef _KERNEL
1081	/*
1082	 * If we are doing a spa_tryimport() or in recovery mode,
1083	 * ignore errors.
1084	 */
1085	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
1086	    spa_load_state(spa) == SPA_LOAD_RECOVER)
1087		return (B_FALSE);
1088
1089	/*
1090	 * If we are in the middle of opening a pool, and the previous attempt
1091	 * failed, don't bother logging any new ereports - we're just going to
1092	 * get the same diagnosis anyway.
1093	 */
1094	if (spa_load_state(spa) != SPA_LOAD_NONE &&
1095	    spa->spa_last_open_failed)
1096		return (B_FALSE);
1097
1098	if (zio != NULL) {
1099		/* If this is not a read or write zio, ignore the error */
1100		if (zio->io_type != ZIO_TYPE_READ &&
1101		    zio->io_type != ZIO_TYPE_WRITE)
1102			return (B_FALSE);
1103
1104		if (vd != NULL) {
1105			/*
1106			 * If the vdev has already been marked as failing due
1107			 * to a failed probe, then ignore any subsequent I/O
1108			 * errors, as the DE will automatically fault the vdev
1109			 * on the first such failure.  This also catches cases
1110			 * where vdev_remove_wanted is set and the device has
1111			 * not yet been asynchronously placed into the REMOVED
1112			 * state.
1113			 */
1114			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1115				return (B_FALSE);
1116
1117			/*
1118			 * Ignore checksum errors for reads from DTL regions of
1119			 * leaf vdevs.
1120			 */
1121			if (zio->io_type == ZIO_TYPE_READ &&
1122			    zio->io_error == ECKSUM &&
1123			    vd->vdev_ops->vdev_op_leaf &&
1124			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1125				return (B_FALSE);
1126		}
1127	}
1128
1129	/*
1130	 * For probe failure, we want to avoid posting ereports if we've
1131	 * already removed the device in the meantime.
1132	 */
1133	if (vd != NULL &&
1134	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1135	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1136		return (B_FALSE);
1137
1138	/* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1139	if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1140	    (zio != NULL) && (!zio->io_timestamp)) {
1141		return (B_FALSE);
1142	}
1143#else
1144	(void) subclass, (void) spa, (void) vd, (void) zio;
1145#endif
1146	return (B_TRUE);
1147}
1148
1149/*
1150 * Post an ereport for the given subclass
1151 *
1152 * Returns
1153 * - 0 if an event was posted
1154 * - EINVAL if there was a problem posting event
1155 * - EBUSY if the event was rate limited
1156 * - EALREADY if the event was already posted (duplicate)
1157 */
1158int
1159zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1160    const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1161{
1162	int rc = 0;
1163#ifdef _KERNEL
1164	nvlist_t *ereport = NULL;
1165	nvlist_t *detector = NULL;
1166
1167	if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1168		return (EINVAL);
1169
1170	if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1171		return (SET_ERROR(EALREADY));
1172
1173	if (zfs_is_ratelimiting_event(subclass, vd))
1174		return (SET_ERROR(EBUSY));
1175
1176	if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1177	    zb, zio, state, 0))
1178		return (SET_ERROR(EINVAL));	/* couldn't post event */
1179
1180	if (ereport == NULL)
1181		return (SET_ERROR(EINVAL));
1182
1183	/* Cleanup is handled by the callback function */
1184	rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1185#else
1186	(void) subclass, (void) spa, (void) vd, (void) zb, (void) zio,
1187	    (void) state;
1188#endif
1189	return (rc);
1190}
1191
1192/*
1193 * Prepare a checksum ereport
1194 *
1195 * Returns
1196 * - 0 if an event was posted
1197 * - EINVAL if there was a problem posting event
1198 * - EBUSY if the event was rate limited
1199 * - EALREADY if the event was already posted (duplicate)
1200 */
1201int
1202zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1203    struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
1204{
1205	zio_cksum_report_t *report;
1206
1207#ifdef _KERNEL
1208	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1209		return (SET_ERROR(EINVAL));
1210
1211	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1212	    offset, length))
1213		return (SET_ERROR(EALREADY));
1214
1215	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1216		return (SET_ERROR(EBUSY));
1217#else
1218	(void) zb, (void) offset;
1219#endif
1220
1221	report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1222
1223	zio_vsd_default_cksum_report(zio, report);
1224
1225	/* copy the checksum failure information if it was provided */
1226	if (info != NULL) {
1227		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1228		memcpy(report->zcr_ckinfo, info, sizeof (*info));
1229	}
1230
1231	report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1232	report->zcr_align =
1233	    vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1234	report->zcr_length = length;
1235
1236#ifdef _KERNEL
1237	(void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1238	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1239
1240	if (report->zcr_ereport == NULL) {
1241		zfs_ereport_free_checksum(report);
1242		return (0);
1243	}
1244#endif
1245
1246	mutex_enter(&spa->spa_errlist_lock);
1247	report->zcr_next = zio->io_logical->io_cksum_report;
1248	zio->io_logical->io_cksum_report = report;
1249	mutex_exit(&spa->spa_errlist_lock);
1250	return (0);
1251}
1252
1253void
1254zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1255    const abd_t *bad_data, boolean_t drop_if_identical)
1256{
1257#ifdef _KERNEL
1258	zfs_ecksum_info_t *info;
1259
1260	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1261	    good_data, bad_data, report->zcr_length, drop_if_identical);
1262	if (info != NULL)
1263		zfs_zevent_post(report->zcr_ereport,
1264		    report->zcr_detector, zfs_zevent_post_cb);
1265	else
1266		zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1267
1268	report->zcr_ereport = report->zcr_detector = NULL;
1269	if (info != NULL)
1270		kmem_free(info, sizeof (*info));
1271#else
1272	(void) report, (void) good_data, (void) bad_data,
1273	    (void) drop_if_identical;
1274#endif
1275}
1276
1277void
1278zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1279{
1280#ifdef _KERNEL
1281	if (rpt->zcr_ereport != NULL) {
1282		fm_nvlist_destroy(rpt->zcr_ereport,
1283		    FM_NVA_FREE);
1284		fm_nvlist_destroy(rpt->zcr_detector,
1285		    FM_NVA_FREE);
1286	}
1287#endif
1288	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1289
1290	if (rpt->zcr_ckinfo != NULL)
1291		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1292
1293	kmem_free(rpt, sizeof (*rpt));
1294}
1295
1296/*
1297 * Post a checksum ereport
1298 *
1299 * Returns
1300 * - 0 if an event was posted
1301 * - EINVAL if there was a problem posting event
1302 * - EBUSY if the event was rate limited
1303 * - EALREADY if the event was already posted (duplicate)
1304 */
1305int
1306zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1307    struct zio *zio, uint64_t offset, uint64_t length,
1308    const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1309{
1310	int rc = 0;
1311#ifdef _KERNEL
1312	nvlist_t *ereport = NULL;
1313	nvlist_t *detector = NULL;
1314	zfs_ecksum_info_t *info;
1315
1316	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1317		return (SET_ERROR(EINVAL));
1318
1319	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1320	    offset, length))
1321		return (SET_ERROR(EALREADY));
1322
1323	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1324		return (SET_ERROR(EBUSY));
1325
1326	if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1327	    spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1328		return (SET_ERROR(EINVAL));
1329	}
1330
1331	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1332	    B_FALSE);
1333
1334	if (info != NULL) {
1335		rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1336		kmem_free(info, sizeof (*info));
1337	}
1338#else
1339	(void) spa, (void) vd, (void) zb, (void) zio, (void) offset,
1340	    (void) length, (void) good_data, (void) bad_data, (void) zbc;
1341#endif
1342	return (rc);
1343}
1344
1345/*
1346 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1347 * change in the pool.  All sysevents are listed in sys/sysevent/eventdefs.h
1348 * and are designed to be consumed by the ZFS Event Daemon (ZED).  For
1349 * additional details refer to the zed(8) man page.
1350 */
1351nvlist_t *
1352zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1353    nvlist_t *aux)
1354{
1355	nvlist_t *resource = NULL;
1356#ifdef _KERNEL
1357	char class[64];
1358
1359	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1360		return (NULL);
1361
1362	if ((resource = fm_nvlist_create(NULL)) == NULL)
1363		return (NULL);
1364
1365	(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1366	    ZFS_ERROR_CLASS, name);
1367	VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1368	VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1369	VERIFY0(nvlist_add_string(resource,
1370	    FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1371	VERIFY0(nvlist_add_uint64(resource,
1372	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1373	VERIFY0(nvlist_add_uint64(resource,
1374	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1375	VERIFY0(nvlist_add_int32(resource,
1376	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1377
1378	if (vd) {
1379		VERIFY0(nvlist_add_uint64(resource,
1380		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1381		VERIFY0(nvlist_add_uint64(resource,
1382		    FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1383		if (vd->vdev_path != NULL)
1384			VERIFY0(nvlist_add_string(resource,
1385			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1386		if (vd->vdev_devid != NULL)
1387			VERIFY0(nvlist_add_string(resource,
1388			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1389		if (vd->vdev_fru != NULL)
1390			VERIFY0(nvlist_add_string(resource,
1391			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1392		if (vd->vdev_enc_sysfs_path != NULL)
1393			VERIFY0(nvlist_add_string(resource,
1394			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1395			    vd->vdev_enc_sysfs_path));
1396	}
1397
1398	/* also copy any optional payload data */
1399	if (aux) {
1400		nvpair_t *elem = NULL;
1401
1402		while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1403			(void) nvlist_add_nvpair(resource, elem);
1404	}
1405#else
1406	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1407#endif
1408	return (resource);
1409}
1410
1411static void
1412zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1413    nvlist_t *aux)
1414{
1415#ifdef _KERNEL
1416	nvlist_t *resource;
1417
1418	resource = zfs_event_create(spa, vd, type, name, aux);
1419	if (resource)
1420		zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1421#else
1422	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1423#endif
1424}
1425
1426/*
1427 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1428 * has been removed from the system.  This will cause the DE to ignore any
1429 * recent I/O errors, inferring that they are due to the asynchronous device
1430 * removal.
1431 */
1432void
1433zfs_post_remove(spa_t *spa, vdev_t *vd)
1434{
1435	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1436}
1437
1438/*
1439 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1440 * has the 'autoreplace' property set, and therefore any broken vdevs will be
1441 * handled by higher level logic, and no vdev fault should be generated.
1442 */
1443void
1444zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1445{
1446	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1447}
1448
1449/*
1450 * The 'resource.fs.zfs.statechange' event is an internal signal that the
1451 * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
1452 * cause the retire agent to repair any outstanding fault management cases
1453 * open because the device was not found (fault.fs.zfs.device).
1454 */
1455void
1456zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1457{
1458#ifdef _KERNEL
1459	nvlist_t *aux;
1460
1461	/*
1462	 * Add optional supplemental keys to payload
1463	 */
1464	aux = fm_nvlist_create(NULL);
1465	if (vd && aux) {
1466		if (vd->vdev_physpath) {
1467			fnvlist_add_string(aux,
1468			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1469			    vd->vdev_physpath);
1470		}
1471		if (vd->vdev_enc_sysfs_path) {
1472			fnvlist_add_string(aux,
1473			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1474			    vd->vdev_enc_sysfs_path);
1475		}
1476
1477		fnvlist_add_uint64(aux,
1478		    FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1479	}
1480
1481	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1482	    aux);
1483
1484	if (aux)
1485		fm_nvlist_destroy(aux, FM_NVA_FREE);
1486#else
1487	(void) spa, (void) vd, (void) laststate;
1488#endif
1489}
1490
1491#ifdef _KERNEL
1492void
1493zfs_ereport_init(void)
1494{
1495	mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1496	list_create(&recent_events_list, sizeof (recent_events_node_t),
1497	    offsetof(recent_events_node_t, re_list_link));
1498	avl_create(&recent_events_tree,  recent_events_compare,
1499	    sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1500	    re_tree_link));
1501}
1502
1503/*
1504 * This 'early' fini needs to run before zfs_fini() which on Linux waits
1505 * for the system_delay_taskq to drain.
1506 */
1507void
1508zfs_ereport_taskq_fini(void)
1509{
1510	mutex_enter(&recent_events_lock);
1511	if (recent_events_cleaner_tqid != 0) {
1512		taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1513		recent_events_cleaner_tqid = 0;
1514	}
1515	mutex_exit(&recent_events_lock);
1516}
1517
1518void
1519zfs_ereport_fini(void)
1520{
1521	recent_events_node_t *entry;
1522
1523	while ((entry = list_remove_head(&recent_events_list)) != NULL) {
1524		avl_remove(&recent_events_tree, entry);
1525		kmem_free(entry, sizeof (*entry));
1526	}
1527	avl_destroy(&recent_events_tree);
1528	list_destroy(&recent_events_list);
1529	mutex_destroy(&recent_events_lock);
1530}
1531
1532void
1533zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name)
1534{
1535	nvlist_t *aux;
1536
1537	aux = fm_nvlist_create(NULL);
1538	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name);
1539
1540	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1541	fm_nvlist_destroy(aux, FM_NVA_FREE);
1542}
1543
1544/*
1545 * Post when a event when a zvol is created or removed
1546 *
1547 * This is currently only used by macOS, since it uses the event to create
1548 * symlinks between the volume name (mypool/myvol) and the actual /dev
1549 * device (/dev/disk3).  For example:
1550 *
1551 * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1552 *
1553 * name: The full name of the zvol ("mypool/myvol")
1554 * dev_name: The full /dev name for the zvol ("/dev/disk3")
1555 * raw_name: The raw  /dev name for the zvol ("/dev/rdisk3")
1556 */
1557void
1558zfs_ereport_zvol_post(const char *subclass, const char *name,
1559    const char *dev_name, const char *raw_name)
1560{
1561	nvlist_t *aux;
1562	char *r;
1563
1564	boolean_t locked = mutex_owned(&spa_namespace_lock);
1565	if (!locked) mutex_enter(&spa_namespace_lock);
1566	spa_t *spa = spa_lookup(name);
1567	if (!locked) mutex_exit(&spa_namespace_lock);
1568
1569	if (spa == NULL)
1570		return;
1571
1572	aux = fm_nvlist_create(NULL);
1573	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name);
1574	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME,
1575	    raw_name);
1576	r = strchr(name, '/');
1577	if (r && r[1])
1578		fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]);
1579
1580	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1581	fm_nvlist_destroy(aux, FM_NVA_FREE);
1582}
1583
1584EXPORT_SYMBOL(zfs_ereport_post);
1585EXPORT_SYMBOL(zfs_ereport_is_valid);
1586EXPORT_SYMBOL(zfs_ereport_post_checksum);
1587EXPORT_SYMBOL(zfs_post_remove);
1588EXPORT_SYMBOL(zfs_post_autoreplace);
1589EXPORT_SYMBOL(zfs_post_state_change);
1590
1591ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1592	"Maximum recent zevents records to retain for duplicate checking");
1593ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1594	"Expiration time for recent zevents records");
1595#endif /* _KERNEL */
1596