1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
33 */
34
35#include <sys/zfs_context.h>
36#include <sys/fm/fs/zfs.h>
37#include <sys/spa.h>
38#include <sys/spa_impl.h>
39#include <sys/bpobj.h>
40#include <sys/dmu.h>
41#include <sys/dmu_tx.h>
42#include <sys/dsl_dir.h>
43#include <sys/vdev_impl.h>
44#include <sys/vdev_rebuild.h>
45#include <sys/vdev_draid.h>
46#include <sys/uberblock_impl.h>
47#include <sys/metaslab.h>
48#include <sys/metaslab_impl.h>
49#include <sys/space_map.h>
50#include <sys/space_reftree.h>
51#include <sys/zio.h>
52#include <sys/zap.h>
53#include <sys/fs/zfs.h>
54#include <sys/arc.h>
55#include <sys/zil.h>
56#include <sys/dsl_scan.h>
57#include <sys/vdev_raidz.h>
58#include <sys/abd.h>
59#include <sys/vdev_initialize.h>
60#include <sys/vdev_trim.h>
61#include <sys/vdev_raidz.h>
62#include <sys/zvol.h>
63#include <sys/zfs_ratelimit.h>
64#include "zfs_prop.h"
65
66/*
67 * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
69 * part of the spa_embedded_log_class.  The metaslab with the most free space
70 * in each vdev is selected for this purpose when the pool is opened (or a
71 * vdev is added).  See vdev_metaslab_init().
72 *
73 * Log blocks can be allocated from the following locations.  Each one is tried
74 * in order until the allocation succeeds:
75 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
76 * 2. embedded slog metaslabs (spa_embedded_log_class)
77 * 3. other metaslabs in normal vdevs (spa_normal_class)
78 *
79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
80 * than this number of metaslabs in the vdev.  This ensures that we don't set
81 * aside an unreasonable amount of space for the ZIL.  If set to less than
82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
84 */
85static uint_t zfs_embedded_slog_min_ms = 64;
86
87/* default target for number of metaslabs per top-level vdev */
88static uint_t zfs_vdev_default_ms_count = 200;
89
90/* minimum number of metaslabs per top-level vdev */
91static uint_t zfs_vdev_min_ms_count = 16;
92
93/* practical upper limit of total metaslabs per top-level vdev */
94static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
95
96/* lower limit for metaslab size (512M) */
97static uint_t zfs_vdev_default_ms_shift = 29;
98
99/* upper limit for metaslab size (16G) */
100static uint_t zfs_vdev_max_ms_shift = 34;
101
102int vdev_validate_skip = B_FALSE;
103
104/*
105 * Since the DTL space map of a vdev is not expected to have a lot of
106 * entries, we default its block size to 4K.
107 */
108int zfs_vdev_dtl_sm_blksz = (1 << 12);
109
110/*
111 * Rate limit slow IO (delay) events to this many per second.
112 */
113static unsigned int zfs_slow_io_events_per_second = 20;
114
115/*
116 * Rate limit deadman "hung IO" events to this many per second.
117 */
118static unsigned int zfs_deadman_events_per_second = 1;
119
120/*
121 * Rate limit checksum events after this many checksum errors per second.
122 */
123static unsigned int zfs_checksum_events_per_second = 20;
124
125/*
126 * Ignore errors during scrub/resilver.  Allows to work around resilver
127 * upon import when there are pool errors.
128 */
129static int zfs_scan_ignore_errors = 0;
130
131/*
132 * vdev-wide space maps that have lots of entries written to them at
133 * the end of each transaction can benefit from a higher I/O bandwidth
134 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
135 */
136int zfs_vdev_standard_sm_blksz = (1 << 17);
137
138/*
139 * Tunable parameter for debugging or performance analysis. Setting this
140 * will cause pool corruption on power loss if a volatile out-of-order
141 * write cache is enabled.
142 */
143int zfs_nocacheflush = 0;
144
145/*
146 * Maximum and minimum ashift values that can be automatically set based on
147 * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
148 * is higher than the maximum value, it is intentionally limited here to not
149 * excessively impact pool space efficiency.  Higher ashift values may still
150 * be forced by vdev logical ashift or by user via ashift property, but won't
151 * be set automatically as a performance optimization.
152 */
153uint_t zfs_vdev_max_auto_ashift = 14;
154uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
155
156void
157vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
158{
159	va_list adx;
160	char buf[256];
161
162	va_start(adx, fmt);
163	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
164	va_end(adx);
165
166	if (vd->vdev_path != NULL) {
167		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
168		    vd->vdev_path, buf);
169	} else {
170		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
171		    vd->vdev_ops->vdev_op_type,
172		    (u_longlong_t)vd->vdev_id,
173		    (u_longlong_t)vd->vdev_guid, buf);
174	}
175}
176
177void
178vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
179{
180	char state[20];
181
182	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
183		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
184		    (u_longlong_t)vd->vdev_id,
185		    vd->vdev_ops->vdev_op_type);
186		return;
187	}
188
189	switch (vd->vdev_state) {
190	case VDEV_STATE_UNKNOWN:
191		(void) snprintf(state, sizeof (state), "unknown");
192		break;
193	case VDEV_STATE_CLOSED:
194		(void) snprintf(state, sizeof (state), "closed");
195		break;
196	case VDEV_STATE_OFFLINE:
197		(void) snprintf(state, sizeof (state), "offline");
198		break;
199	case VDEV_STATE_REMOVED:
200		(void) snprintf(state, sizeof (state), "removed");
201		break;
202	case VDEV_STATE_CANT_OPEN:
203		(void) snprintf(state, sizeof (state), "can't open");
204		break;
205	case VDEV_STATE_FAULTED:
206		(void) snprintf(state, sizeof (state), "faulted");
207		break;
208	case VDEV_STATE_DEGRADED:
209		(void) snprintf(state, sizeof (state), "degraded");
210		break;
211	case VDEV_STATE_HEALTHY:
212		(void) snprintf(state, sizeof (state), "healthy");
213		break;
214	default:
215		(void) snprintf(state, sizeof (state), "<state %u>",
216		    (uint_t)vd->vdev_state);
217	}
218
219	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
220	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
221	    vd->vdev_islog ? " (log)" : "",
222	    (u_longlong_t)vd->vdev_guid,
223	    vd->vdev_path ? vd->vdev_path : "N/A", state);
224
225	for (uint64_t i = 0; i < vd->vdev_children; i++)
226		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
227}
228
229/*
230 * Virtual device management.
231 */
232
233static vdev_ops_t *const vdev_ops_table[] = {
234	&vdev_root_ops,
235	&vdev_raidz_ops,
236	&vdev_draid_ops,
237	&vdev_draid_spare_ops,
238	&vdev_mirror_ops,
239	&vdev_replacing_ops,
240	&vdev_spare_ops,
241	&vdev_disk_ops,
242	&vdev_file_ops,
243	&vdev_missing_ops,
244	&vdev_hole_ops,
245	&vdev_indirect_ops,
246	NULL
247};
248
249/*
250 * Given a vdev type, return the appropriate ops vector.
251 */
252static vdev_ops_t *
253vdev_getops(const char *type)
254{
255	vdev_ops_t *ops, *const *opspp;
256
257	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
258		if (strcmp(ops->vdev_op_type, type) == 0)
259			break;
260
261	return (ops);
262}
263
264/*
265 * Given a vdev and a metaslab class, find which metaslab group we're
266 * interested in. All vdevs may belong to two different metaslab classes.
267 * Dedicated slog devices use only the primary metaslab group, rather than a
268 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
269 */
270metaslab_group_t *
271vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
272{
273	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
274	    vd->vdev_log_mg != NULL)
275		return (vd->vdev_log_mg);
276	else
277		return (vd->vdev_mg);
278}
279
280void
281vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
282    range_seg64_t *physical_rs, range_seg64_t *remain_rs)
283{
284	(void) vd, (void) remain_rs;
285
286	physical_rs->rs_start = logical_rs->rs_start;
287	physical_rs->rs_end = logical_rs->rs_end;
288}
289
290/*
291 * Derive the enumerated allocation bias from string input.
292 * String origin is either the per-vdev zap or zpool(8).
293 */
294static vdev_alloc_bias_t
295vdev_derive_alloc_bias(const char *bias)
296{
297	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
298
299	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
300		alloc_bias = VDEV_BIAS_LOG;
301	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
302		alloc_bias = VDEV_BIAS_SPECIAL;
303	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
304		alloc_bias = VDEV_BIAS_DEDUP;
305
306	return (alloc_bias);
307}
308
309/*
310 * Default asize function: return the MAX of psize with the asize of
311 * all children.  This is what's used by anything other than RAID-Z.
312 */
313uint64_t
314vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
315{
316	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
317	uint64_t csize;
318
319	for (int c = 0; c < vd->vdev_children; c++) {
320		csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
321		asize = MAX(asize, csize);
322	}
323
324	return (asize);
325}
326
327uint64_t
328vdev_default_min_asize(vdev_t *vd)
329{
330	return (vd->vdev_min_asize);
331}
332
333/*
334 * Get the minimum allocatable size. We define the allocatable size as
335 * the vdev's asize rounded to the nearest metaslab. This allows us to
336 * replace or attach devices which don't have the same physical size but
337 * can still satisfy the same number of allocations.
338 */
339uint64_t
340vdev_get_min_asize(vdev_t *vd)
341{
342	vdev_t *pvd = vd->vdev_parent;
343
344	/*
345	 * If our parent is NULL (inactive spare or cache) or is the root,
346	 * just return our own asize.
347	 */
348	if (pvd == NULL)
349		return (vd->vdev_asize);
350
351	/*
352	 * The top-level vdev just returns the allocatable size rounded
353	 * to the nearest metaslab.
354	 */
355	if (vd == vd->vdev_top)
356		return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
357		    uint64_t));
358
359	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
360}
361
362void
363vdev_set_min_asize(vdev_t *vd)
364{
365	vd->vdev_min_asize = vdev_get_min_asize(vd);
366
367	for (int c = 0; c < vd->vdev_children; c++)
368		vdev_set_min_asize(vd->vdev_child[c]);
369}
370
371/*
372 * Get the minimal allocation size for the top-level vdev.
373 */
374uint64_t
375vdev_get_min_alloc(vdev_t *vd)
376{
377	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
378
379	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
380		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
381
382	return (min_alloc);
383}
384
385/*
386 * Get the parity level for a top-level vdev.
387 */
388uint64_t
389vdev_get_nparity(vdev_t *vd)
390{
391	uint64_t nparity = 0;
392
393	if (vd->vdev_ops->vdev_op_nparity != NULL)
394		nparity = vd->vdev_ops->vdev_op_nparity(vd);
395
396	return (nparity);
397}
398
399static int
400vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
401{
402	spa_t *spa = vd->vdev_spa;
403	objset_t *mos = spa->spa_meta_objset;
404	uint64_t objid;
405	int err;
406
407	if (vd->vdev_root_zap != 0) {
408		objid = vd->vdev_root_zap;
409	} else if (vd->vdev_top_zap != 0) {
410		objid = vd->vdev_top_zap;
411	} else if (vd->vdev_leaf_zap != 0) {
412		objid = vd->vdev_leaf_zap;
413	} else {
414		return (EINVAL);
415	}
416
417	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
418	    sizeof (uint64_t), 1, value);
419
420	if (err == ENOENT)
421		*value = vdev_prop_default_numeric(prop);
422
423	return (err);
424}
425
426/*
427 * Get the number of data disks for a top-level vdev.
428 */
429uint64_t
430vdev_get_ndisks(vdev_t *vd)
431{
432	uint64_t ndisks = 1;
433
434	if (vd->vdev_ops->vdev_op_ndisks != NULL)
435		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
436
437	return (ndisks);
438}
439
440vdev_t *
441vdev_lookup_top(spa_t *spa, uint64_t vdev)
442{
443	vdev_t *rvd = spa->spa_root_vdev;
444
445	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
446
447	if (vdev < rvd->vdev_children) {
448		ASSERT(rvd->vdev_child[vdev] != NULL);
449		return (rvd->vdev_child[vdev]);
450	}
451
452	return (NULL);
453}
454
455vdev_t *
456vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
457{
458	vdev_t *mvd;
459
460	if (vd->vdev_guid == guid)
461		return (vd);
462
463	for (int c = 0; c < vd->vdev_children; c++)
464		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
465		    NULL)
466			return (mvd);
467
468	return (NULL);
469}
470
471static int
472vdev_count_leaves_impl(vdev_t *vd)
473{
474	int n = 0;
475
476	if (vd->vdev_ops->vdev_op_leaf)
477		return (1);
478
479	for (int c = 0; c < vd->vdev_children; c++)
480		n += vdev_count_leaves_impl(vd->vdev_child[c]);
481
482	return (n);
483}
484
485int
486vdev_count_leaves(spa_t *spa)
487{
488	int rc;
489
490	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
491	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
492	spa_config_exit(spa, SCL_VDEV, FTAG);
493
494	return (rc);
495}
496
497void
498vdev_add_child(vdev_t *pvd, vdev_t *cvd)
499{
500	size_t oldsize, newsize;
501	uint64_t id = cvd->vdev_id;
502	vdev_t **newchild;
503
504	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
505	ASSERT(cvd->vdev_parent == NULL);
506
507	cvd->vdev_parent = pvd;
508
509	if (pvd == NULL)
510		return;
511
512	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
513
514	oldsize = pvd->vdev_children * sizeof (vdev_t *);
515	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
516	newsize = pvd->vdev_children * sizeof (vdev_t *);
517
518	newchild = kmem_alloc(newsize, KM_SLEEP);
519	if (pvd->vdev_child != NULL) {
520		memcpy(newchild, pvd->vdev_child, oldsize);
521		kmem_free(pvd->vdev_child, oldsize);
522	}
523
524	pvd->vdev_child = newchild;
525	pvd->vdev_child[id] = cvd;
526
527	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
528	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
529
530	/*
531	 * Walk up all ancestors to update guid sum.
532	 */
533	for (; pvd != NULL; pvd = pvd->vdev_parent)
534		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
535
536	if (cvd->vdev_ops->vdev_op_leaf) {
537		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
538		cvd->vdev_spa->spa_leaf_list_gen++;
539	}
540}
541
542void
543vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
544{
545	int c;
546	uint_t id = cvd->vdev_id;
547
548	ASSERT(cvd->vdev_parent == pvd);
549
550	if (pvd == NULL)
551		return;
552
553	ASSERT(id < pvd->vdev_children);
554	ASSERT(pvd->vdev_child[id] == cvd);
555
556	pvd->vdev_child[id] = NULL;
557	cvd->vdev_parent = NULL;
558
559	for (c = 0; c < pvd->vdev_children; c++)
560		if (pvd->vdev_child[c])
561			break;
562
563	if (c == pvd->vdev_children) {
564		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
565		pvd->vdev_child = NULL;
566		pvd->vdev_children = 0;
567	}
568
569	if (cvd->vdev_ops->vdev_op_leaf) {
570		spa_t *spa = cvd->vdev_spa;
571		list_remove(&spa->spa_leaf_list, cvd);
572		spa->spa_leaf_list_gen++;
573	}
574
575	/*
576	 * Walk up all ancestors to update guid sum.
577	 */
578	for (; pvd != NULL; pvd = pvd->vdev_parent)
579		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
580}
581
582/*
583 * Remove any holes in the child array.
584 */
585void
586vdev_compact_children(vdev_t *pvd)
587{
588	vdev_t **newchild, *cvd;
589	int oldc = pvd->vdev_children;
590	int newc;
591
592	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
593
594	if (oldc == 0)
595		return;
596
597	for (int c = newc = 0; c < oldc; c++)
598		if (pvd->vdev_child[c])
599			newc++;
600
601	if (newc > 0) {
602		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
603
604		for (int c = newc = 0; c < oldc; c++) {
605			if ((cvd = pvd->vdev_child[c]) != NULL) {
606				newchild[newc] = cvd;
607				cvd->vdev_id = newc++;
608			}
609		}
610	} else {
611		newchild = NULL;
612	}
613
614	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
615	pvd->vdev_child = newchild;
616	pvd->vdev_children = newc;
617}
618
619/*
620 * Allocate and minimally initialize a vdev_t.
621 */
622vdev_t *
623vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
624{
625	vdev_t *vd;
626	vdev_indirect_config_t *vic;
627
628	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
629	vic = &vd->vdev_indirect_config;
630
631	if (spa->spa_root_vdev == NULL) {
632		ASSERT(ops == &vdev_root_ops);
633		spa->spa_root_vdev = vd;
634		spa->spa_load_guid = spa_generate_guid(NULL);
635	}
636
637	if (guid == 0 && ops != &vdev_hole_ops) {
638		if (spa->spa_root_vdev == vd) {
639			/*
640			 * The root vdev's guid will also be the pool guid,
641			 * which must be unique among all pools.
642			 */
643			guid = spa_generate_guid(NULL);
644		} else {
645			/*
646			 * Any other vdev's guid must be unique within the pool.
647			 */
648			guid = spa_generate_guid(spa);
649		}
650		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
651	}
652
653	vd->vdev_spa = spa;
654	vd->vdev_id = id;
655	vd->vdev_guid = guid;
656	vd->vdev_guid_sum = guid;
657	vd->vdev_ops = ops;
658	vd->vdev_state = VDEV_STATE_CLOSED;
659	vd->vdev_ishole = (ops == &vdev_hole_ops);
660	vic->vic_prev_indirect_vdev = UINT64_MAX;
661
662	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
663	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
664	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
665	    0, 0);
666
667	/*
668	 * Initialize rate limit structs for events.  We rate limit ZIO delay
669	 * and checksum events so that we don't overwhelm ZED with thousands
670	 * of events when a disk is acting up.
671	 */
672	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
673	    1);
674	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
675	    1);
676	zfs_ratelimit_init(&vd->vdev_checksum_rl,
677	    &zfs_checksum_events_per_second, 1);
678
679	/*
680	 * Default Thresholds for tuning ZED
681	 */
682	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
683	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
684	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
685	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
686	vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
687	vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
688
689	list_link_init(&vd->vdev_config_dirty_node);
690	list_link_init(&vd->vdev_state_dirty_node);
691	list_link_init(&vd->vdev_initialize_node);
692	list_link_init(&vd->vdev_leaf_node);
693	list_link_init(&vd->vdev_trim_node);
694
695	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
696	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
697	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
698	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
699
700	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
701	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
702	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
703	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
704
705	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
706	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
707	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
708	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
709	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
710	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
711	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
712
713	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
714	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
715
716	for (int t = 0; t < DTL_TYPES; t++) {
717		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
718		    0);
719	}
720
721	txg_list_create(&vd->vdev_ms_list, spa,
722	    offsetof(struct metaslab, ms_txg_node));
723	txg_list_create(&vd->vdev_dtl_list, spa,
724	    offsetof(struct vdev, vdev_dtl_node));
725	vd->vdev_stat.vs_timestamp = gethrtime();
726	vdev_queue_init(vd);
727
728	return (vd);
729}
730
731/*
732 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
733 * creating a new vdev or loading an existing one - the behavior is slightly
734 * different for each case.
735 */
736int
737vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
738    int alloctype)
739{
740	vdev_ops_t *ops;
741	const char *type;
742	uint64_t guid = 0, islog;
743	vdev_t *vd;
744	vdev_indirect_config_t *vic;
745	const char *tmp = NULL;
746	int rc;
747	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
748	boolean_t top_level = (parent && !parent->vdev_parent);
749
750	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
751
752	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
753		return (SET_ERROR(EINVAL));
754
755	if ((ops = vdev_getops(type)) == NULL)
756		return (SET_ERROR(EINVAL));
757
758	/*
759	 * If this is a load, get the vdev guid from the nvlist.
760	 * Otherwise, vdev_alloc_common() will generate one for us.
761	 */
762	if (alloctype == VDEV_ALLOC_LOAD) {
763		uint64_t label_id;
764
765		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
766		    label_id != id)
767			return (SET_ERROR(EINVAL));
768
769		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
770			return (SET_ERROR(EINVAL));
771	} else if (alloctype == VDEV_ALLOC_SPARE) {
772		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
773			return (SET_ERROR(EINVAL));
774	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
775		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
776			return (SET_ERROR(EINVAL));
777	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
778		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
779			return (SET_ERROR(EINVAL));
780	}
781
782	/*
783	 * The first allocated vdev must be of type 'root'.
784	 */
785	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
786		return (SET_ERROR(EINVAL));
787
788	/*
789	 * Determine whether we're a log vdev.
790	 */
791	islog = 0;
792	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
793	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
794		return (SET_ERROR(ENOTSUP));
795
796	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
797		return (SET_ERROR(ENOTSUP));
798
799	if (top_level && alloctype == VDEV_ALLOC_ADD) {
800		const char *bias;
801
802		/*
803		 * If creating a top-level vdev, check for allocation
804		 * classes input.
805		 */
806		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
807		    &bias) == 0) {
808			alloc_bias = vdev_derive_alloc_bias(bias);
809
810			/* spa_vdev_add() expects feature to be enabled */
811			if (spa->spa_load_state != SPA_LOAD_CREATE &&
812			    !spa_feature_is_enabled(spa,
813			    SPA_FEATURE_ALLOCATION_CLASSES)) {
814				return (SET_ERROR(ENOTSUP));
815			}
816		}
817
818		/* spa_vdev_add() expects feature to be enabled */
819		if (ops == &vdev_draid_ops &&
820		    spa->spa_load_state != SPA_LOAD_CREATE &&
821		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
822			return (SET_ERROR(ENOTSUP));
823		}
824	}
825
826	/*
827	 * Initialize the vdev specific data.  This is done before calling
828	 * vdev_alloc_common() since it may fail and this simplifies the
829	 * error reporting and cleanup code paths.
830	 */
831	void *tsd = NULL;
832	if (ops->vdev_op_init != NULL) {
833		rc = ops->vdev_op_init(spa, nv, &tsd);
834		if (rc != 0) {
835			return (rc);
836		}
837	}
838
839	vd = vdev_alloc_common(spa, id, guid, ops);
840	vd->vdev_tsd = tsd;
841	vd->vdev_islog = islog;
842
843	if (top_level && alloc_bias != VDEV_BIAS_NONE)
844		vd->vdev_alloc_bias = alloc_bias;
845
846	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
847		vd->vdev_path = spa_strdup(tmp);
848
849	/*
850	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
851	 * fault on a vdev and want it to persist across imports (like with
852	 * zpool offline -f).
853	 */
854	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
855	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
856		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
857		vd->vdev_faulted = 1;
858		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
859	}
860
861	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
862		vd->vdev_devid = spa_strdup(tmp);
863	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
864		vd->vdev_physpath = spa_strdup(tmp);
865
866	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
867	    &tmp) == 0)
868		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
869
870	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
871		vd->vdev_fru = spa_strdup(tmp);
872
873	/*
874	 * Set the whole_disk property.  If it's not specified, leave the value
875	 * as -1.
876	 */
877	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
878	    &vd->vdev_wholedisk) != 0)
879		vd->vdev_wholedisk = -1ULL;
880
881	vic = &vd->vdev_indirect_config;
882
883	ASSERT0(vic->vic_mapping_object);
884	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
885	    &vic->vic_mapping_object);
886	ASSERT0(vic->vic_births_object);
887	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
888	    &vic->vic_births_object);
889	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
890	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
891	    &vic->vic_prev_indirect_vdev);
892
893	/*
894	 * Look for the 'not present' flag.  This will only be set if the device
895	 * was not present at the time of import.
896	 */
897	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
898	    &vd->vdev_not_present);
899
900	/*
901	 * Get the alignment requirement. Ignore pool ashift for vdev
902	 * attach case.
903	 */
904	if (alloctype != VDEV_ALLOC_ATTACH) {
905		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
906		    &vd->vdev_ashift);
907	} else {
908		vd->vdev_attaching = B_TRUE;
909	}
910
911	/*
912	 * Retrieve the vdev creation time.
913	 */
914	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
915	    &vd->vdev_crtxg);
916
917	if (vd->vdev_ops == &vdev_root_ops &&
918	    (alloctype == VDEV_ALLOC_LOAD ||
919	    alloctype == VDEV_ALLOC_SPLIT ||
920	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
921		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
922		    &vd->vdev_root_zap);
923	}
924
925	/*
926	 * If we're a top-level vdev, try to load the allocation parameters.
927	 */
928	if (top_level &&
929	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
930		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
931		    &vd->vdev_ms_array);
932		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
933		    &vd->vdev_ms_shift);
934		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
935		    &vd->vdev_asize);
936		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
937		    &vd->vdev_noalloc);
938		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
939		    &vd->vdev_removing);
940		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
941		    &vd->vdev_top_zap);
942		vd->vdev_rz_expanding = nvlist_exists(nv,
943		    ZPOOL_CONFIG_RAIDZ_EXPANDING);
944	} else {
945		ASSERT0(vd->vdev_top_zap);
946	}
947
948	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
949		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
950		    alloctype == VDEV_ALLOC_ADD ||
951		    alloctype == VDEV_ALLOC_SPLIT ||
952		    alloctype == VDEV_ALLOC_ROOTPOOL);
953		/* Note: metaslab_group_create() is now deferred */
954	}
955
956	if (vd->vdev_ops->vdev_op_leaf &&
957	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
958		(void) nvlist_lookup_uint64(nv,
959		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
960	} else {
961		ASSERT0(vd->vdev_leaf_zap);
962	}
963
964	/*
965	 * If we're a leaf vdev, try to load the DTL object and other state.
966	 */
967
968	if (vd->vdev_ops->vdev_op_leaf &&
969	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
970	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
971		if (alloctype == VDEV_ALLOC_LOAD) {
972			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
973			    &vd->vdev_dtl_object);
974			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
975			    &vd->vdev_unspare);
976		}
977
978		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
979			uint64_t spare = 0;
980
981			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
982			    &spare) == 0 && spare)
983				spa_spare_add(vd);
984		}
985
986		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
987		    &vd->vdev_offline);
988
989		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
990		    &vd->vdev_resilver_txg);
991
992		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
993		    &vd->vdev_rebuild_txg);
994
995		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
996			vdev_defer_resilver(vd);
997
998		/*
999		 * In general, when importing a pool we want to ignore the
1000		 * persistent fault state, as the diagnosis made on another
1001		 * system may not be valid in the current context.  The only
1002		 * exception is if we forced a vdev to a persistently faulted
1003		 * state with 'zpool offline -f'.  The persistent fault will
1004		 * remain across imports until cleared.
1005		 *
1006		 * Local vdevs will remain in the faulted state.
1007		 */
1008		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1009		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
1010			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1011			    &vd->vdev_faulted);
1012			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1013			    &vd->vdev_degraded);
1014			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1015			    &vd->vdev_removed);
1016
1017			if (vd->vdev_faulted || vd->vdev_degraded) {
1018				const char *aux;
1019
1020				vd->vdev_label_aux =
1021				    VDEV_AUX_ERR_EXCEEDED;
1022				if (nvlist_lookup_string(nv,
1023				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1024				    strcmp(aux, "external") == 0)
1025					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1026				else
1027					vd->vdev_faulted = 0ULL;
1028			}
1029		}
1030	}
1031
1032	/*
1033	 * Add ourselves to the parent's list of children.
1034	 */
1035	vdev_add_child(parent, vd);
1036
1037	*vdp = vd;
1038
1039	return (0);
1040}
1041
1042void
1043vdev_free(vdev_t *vd)
1044{
1045	spa_t *spa = vd->vdev_spa;
1046
1047	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1048	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1049	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1050	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1051
1052	/*
1053	 * Scan queues are normally destroyed at the end of a scan. If the
1054	 * queue exists here, that implies the vdev is being removed while
1055	 * the scan is still running.
1056	 */
1057	if (vd->vdev_scan_io_queue != NULL) {
1058		mutex_enter(&vd->vdev_scan_io_queue_lock);
1059		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1060		vd->vdev_scan_io_queue = NULL;
1061		mutex_exit(&vd->vdev_scan_io_queue_lock);
1062	}
1063
1064	/*
1065	 * vdev_free() implies closing the vdev first.  This is simpler than
1066	 * trying to ensure complicated semantics for all callers.
1067	 */
1068	vdev_close(vd);
1069
1070	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1071	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1072
1073	/*
1074	 * Free all children.
1075	 */
1076	for (int c = 0; c < vd->vdev_children; c++)
1077		vdev_free(vd->vdev_child[c]);
1078
1079	ASSERT(vd->vdev_child == NULL);
1080	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1081
1082	if (vd->vdev_ops->vdev_op_fini != NULL)
1083		vd->vdev_ops->vdev_op_fini(vd);
1084
1085	/*
1086	 * Discard allocation state.
1087	 */
1088	if (vd->vdev_mg != NULL) {
1089		vdev_metaslab_fini(vd);
1090		metaslab_group_destroy(vd->vdev_mg);
1091		vd->vdev_mg = NULL;
1092	}
1093	if (vd->vdev_log_mg != NULL) {
1094		ASSERT0(vd->vdev_ms_count);
1095		metaslab_group_destroy(vd->vdev_log_mg);
1096		vd->vdev_log_mg = NULL;
1097	}
1098
1099	ASSERT0(vd->vdev_stat.vs_space);
1100	ASSERT0(vd->vdev_stat.vs_dspace);
1101	ASSERT0(vd->vdev_stat.vs_alloc);
1102
1103	/*
1104	 * Remove this vdev from its parent's child list.
1105	 */
1106	vdev_remove_child(vd->vdev_parent, vd);
1107
1108	ASSERT(vd->vdev_parent == NULL);
1109	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1110
1111	/*
1112	 * Clean up vdev structure.
1113	 */
1114	vdev_queue_fini(vd);
1115
1116	if (vd->vdev_path)
1117		spa_strfree(vd->vdev_path);
1118	if (vd->vdev_devid)
1119		spa_strfree(vd->vdev_devid);
1120	if (vd->vdev_physpath)
1121		spa_strfree(vd->vdev_physpath);
1122
1123	if (vd->vdev_enc_sysfs_path)
1124		spa_strfree(vd->vdev_enc_sysfs_path);
1125
1126	if (vd->vdev_fru)
1127		spa_strfree(vd->vdev_fru);
1128
1129	if (vd->vdev_isspare)
1130		spa_spare_remove(vd);
1131	if (vd->vdev_isl2cache)
1132		spa_l2cache_remove(vd);
1133
1134	txg_list_destroy(&vd->vdev_ms_list);
1135	txg_list_destroy(&vd->vdev_dtl_list);
1136
1137	mutex_enter(&vd->vdev_dtl_lock);
1138	space_map_close(vd->vdev_dtl_sm);
1139	for (int t = 0; t < DTL_TYPES; t++) {
1140		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1141		range_tree_destroy(vd->vdev_dtl[t]);
1142	}
1143	mutex_exit(&vd->vdev_dtl_lock);
1144
1145	EQUIV(vd->vdev_indirect_births != NULL,
1146	    vd->vdev_indirect_mapping != NULL);
1147	if (vd->vdev_indirect_births != NULL) {
1148		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1149		vdev_indirect_births_close(vd->vdev_indirect_births);
1150	}
1151
1152	if (vd->vdev_obsolete_sm != NULL) {
1153		ASSERT(vd->vdev_removing ||
1154		    vd->vdev_ops == &vdev_indirect_ops);
1155		space_map_close(vd->vdev_obsolete_sm);
1156		vd->vdev_obsolete_sm = NULL;
1157	}
1158	range_tree_destroy(vd->vdev_obsolete_segments);
1159	rw_destroy(&vd->vdev_indirect_rwlock);
1160	mutex_destroy(&vd->vdev_obsolete_lock);
1161
1162	mutex_destroy(&vd->vdev_dtl_lock);
1163	mutex_destroy(&vd->vdev_stat_lock);
1164	mutex_destroy(&vd->vdev_probe_lock);
1165	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1166
1167	mutex_destroy(&vd->vdev_initialize_lock);
1168	mutex_destroy(&vd->vdev_initialize_io_lock);
1169	cv_destroy(&vd->vdev_initialize_io_cv);
1170	cv_destroy(&vd->vdev_initialize_cv);
1171
1172	mutex_destroy(&vd->vdev_trim_lock);
1173	mutex_destroy(&vd->vdev_autotrim_lock);
1174	mutex_destroy(&vd->vdev_trim_io_lock);
1175	cv_destroy(&vd->vdev_trim_cv);
1176	cv_destroy(&vd->vdev_autotrim_cv);
1177	cv_destroy(&vd->vdev_autotrim_kick_cv);
1178	cv_destroy(&vd->vdev_trim_io_cv);
1179
1180	mutex_destroy(&vd->vdev_rebuild_lock);
1181	cv_destroy(&vd->vdev_rebuild_cv);
1182
1183	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1184	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1185	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1186
1187	if (vd == spa->spa_root_vdev)
1188		spa->spa_root_vdev = NULL;
1189
1190	kmem_free(vd, sizeof (vdev_t));
1191}
1192
1193/*
1194 * Transfer top-level vdev state from svd to tvd.
1195 */
1196static void
1197vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1198{
1199	spa_t *spa = svd->vdev_spa;
1200	metaslab_t *msp;
1201	vdev_t *vd;
1202	int t;
1203
1204	ASSERT(tvd == tvd->vdev_top);
1205
1206	tvd->vdev_ms_array = svd->vdev_ms_array;
1207	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1208	tvd->vdev_ms_count = svd->vdev_ms_count;
1209	tvd->vdev_top_zap = svd->vdev_top_zap;
1210
1211	svd->vdev_ms_array = 0;
1212	svd->vdev_ms_shift = 0;
1213	svd->vdev_ms_count = 0;
1214	svd->vdev_top_zap = 0;
1215
1216	if (tvd->vdev_mg)
1217		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1218	if (tvd->vdev_log_mg)
1219		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1220	tvd->vdev_mg = svd->vdev_mg;
1221	tvd->vdev_log_mg = svd->vdev_log_mg;
1222	tvd->vdev_ms = svd->vdev_ms;
1223
1224	svd->vdev_mg = NULL;
1225	svd->vdev_log_mg = NULL;
1226	svd->vdev_ms = NULL;
1227
1228	if (tvd->vdev_mg != NULL)
1229		tvd->vdev_mg->mg_vd = tvd;
1230	if (tvd->vdev_log_mg != NULL)
1231		tvd->vdev_log_mg->mg_vd = tvd;
1232
1233	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1234	svd->vdev_checkpoint_sm = NULL;
1235
1236	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1237	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1238
1239	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1240	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1241	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1242
1243	svd->vdev_stat.vs_alloc = 0;
1244	svd->vdev_stat.vs_space = 0;
1245	svd->vdev_stat.vs_dspace = 0;
1246
1247	/*
1248	 * State which may be set on a top-level vdev that's in the
1249	 * process of being removed.
1250	 */
1251	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1252	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1253	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1254	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1255	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1256	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1257	ASSERT0(tvd->vdev_noalloc);
1258	ASSERT0(tvd->vdev_removing);
1259	ASSERT0(tvd->vdev_rebuilding);
1260	tvd->vdev_noalloc = svd->vdev_noalloc;
1261	tvd->vdev_removing = svd->vdev_removing;
1262	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1263	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1264	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1265	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1266	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1267	range_tree_swap(&svd->vdev_obsolete_segments,
1268	    &tvd->vdev_obsolete_segments);
1269	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1270	svd->vdev_indirect_config.vic_mapping_object = 0;
1271	svd->vdev_indirect_config.vic_births_object = 0;
1272	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1273	svd->vdev_indirect_mapping = NULL;
1274	svd->vdev_indirect_births = NULL;
1275	svd->vdev_obsolete_sm = NULL;
1276	svd->vdev_noalloc = 0;
1277	svd->vdev_removing = 0;
1278	svd->vdev_rebuilding = 0;
1279
1280	for (t = 0; t < TXG_SIZE; t++) {
1281		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1282			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1283		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1284			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1285		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1286			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1287	}
1288
1289	if (list_link_active(&svd->vdev_config_dirty_node)) {
1290		vdev_config_clean(svd);
1291		vdev_config_dirty(tvd);
1292	}
1293
1294	if (list_link_active(&svd->vdev_state_dirty_node)) {
1295		vdev_state_clean(svd);
1296		vdev_state_dirty(tvd);
1297	}
1298
1299	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1300	svd->vdev_deflate_ratio = 0;
1301
1302	tvd->vdev_islog = svd->vdev_islog;
1303	svd->vdev_islog = 0;
1304
1305	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1306}
1307
1308static void
1309vdev_top_update(vdev_t *tvd, vdev_t *vd)
1310{
1311	if (vd == NULL)
1312		return;
1313
1314	vd->vdev_top = tvd;
1315
1316	for (int c = 0; c < vd->vdev_children; c++)
1317		vdev_top_update(tvd, vd->vdev_child[c]);
1318}
1319
1320/*
1321 * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1322 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1323 */
1324vdev_t *
1325vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1326{
1327	spa_t *spa = cvd->vdev_spa;
1328	vdev_t *pvd = cvd->vdev_parent;
1329	vdev_t *mvd;
1330
1331	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1332
1333	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1334
1335	mvd->vdev_asize = cvd->vdev_asize;
1336	mvd->vdev_min_asize = cvd->vdev_min_asize;
1337	mvd->vdev_max_asize = cvd->vdev_max_asize;
1338	mvd->vdev_psize = cvd->vdev_psize;
1339	mvd->vdev_ashift = cvd->vdev_ashift;
1340	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1341	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1342	mvd->vdev_state = cvd->vdev_state;
1343	mvd->vdev_crtxg = cvd->vdev_crtxg;
1344
1345	vdev_remove_child(pvd, cvd);
1346	vdev_add_child(pvd, mvd);
1347	cvd->vdev_id = mvd->vdev_children;
1348	vdev_add_child(mvd, cvd);
1349	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1350
1351	if (mvd == mvd->vdev_top)
1352		vdev_top_transfer(cvd, mvd);
1353
1354	return (mvd);
1355}
1356
1357/*
1358 * Remove a 1-way mirror/replacing vdev from the tree.
1359 */
1360void
1361vdev_remove_parent(vdev_t *cvd)
1362{
1363	vdev_t *mvd = cvd->vdev_parent;
1364	vdev_t *pvd = mvd->vdev_parent;
1365
1366	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1367
1368	ASSERT(mvd->vdev_children == 1);
1369	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1370	    mvd->vdev_ops == &vdev_replacing_ops ||
1371	    mvd->vdev_ops == &vdev_spare_ops);
1372	cvd->vdev_ashift = mvd->vdev_ashift;
1373	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1374	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1375	vdev_remove_child(mvd, cvd);
1376	vdev_remove_child(pvd, mvd);
1377
1378	/*
1379	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1380	 * Otherwise, we could have detached an offline device, and when we
1381	 * go to import the pool we'll think we have two top-level vdevs,
1382	 * instead of a different version of the same top-level vdev.
1383	 */
1384	if (mvd->vdev_top == mvd) {
1385		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1386		cvd->vdev_orig_guid = cvd->vdev_guid;
1387		cvd->vdev_guid += guid_delta;
1388		cvd->vdev_guid_sum += guid_delta;
1389
1390		/*
1391		 * If pool not set for autoexpand, we need to also preserve
1392		 * mvd's asize to prevent automatic expansion of cvd.
1393		 * Otherwise if we are adjusting the mirror by attaching and
1394		 * detaching children of non-uniform sizes, the mirror could
1395		 * autoexpand, unexpectedly requiring larger devices to
1396		 * re-establish the mirror.
1397		 */
1398		if (!cvd->vdev_spa->spa_autoexpand)
1399			cvd->vdev_asize = mvd->vdev_asize;
1400	}
1401	cvd->vdev_id = mvd->vdev_id;
1402	vdev_add_child(pvd, cvd);
1403	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1404
1405	if (cvd == cvd->vdev_top)
1406		vdev_top_transfer(mvd, cvd);
1407
1408	ASSERT(mvd->vdev_children == 0);
1409	vdev_free(mvd);
1410}
1411
1412/*
1413 * Choose GCD for spa_gcd_alloc.
1414 */
1415static uint64_t
1416vdev_gcd(uint64_t a, uint64_t b)
1417{
1418	while (b != 0) {
1419		uint64_t t = b;
1420		b = a % b;
1421		a = t;
1422	}
1423	return (a);
1424}
1425
1426/*
1427 * Set spa_min_alloc and spa_gcd_alloc.
1428 */
1429static void
1430vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1431{
1432	if (min_alloc < spa->spa_min_alloc)
1433		spa->spa_min_alloc = min_alloc;
1434	if (spa->spa_gcd_alloc == INT_MAX) {
1435		spa->spa_gcd_alloc = min_alloc;
1436	} else {
1437		spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1438		    spa->spa_gcd_alloc);
1439	}
1440}
1441
1442void
1443vdev_metaslab_group_create(vdev_t *vd)
1444{
1445	spa_t *spa = vd->vdev_spa;
1446
1447	/*
1448	 * metaslab_group_create was delayed until allocation bias was available
1449	 */
1450	if (vd->vdev_mg == NULL) {
1451		metaslab_class_t *mc;
1452
1453		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1454			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1455
1456		ASSERT3U(vd->vdev_islog, ==,
1457		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1458
1459		switch (vd->vdev_alloc_bias) {
1460		case VDEV_BIAS_LOG:
1461			mc = spa_log_class(spa);
1462			break;
1463		case VDEV_BIAS_SPECIAL:
1464			mc = spa_special_class(spa);
1465			break;
1466		case VDEV_BIAS_DEDUP:
1467			mc = spa_dedup_class(spa);
1468			break;
1469		default:
1470			mc = spa_normal_class(spa);
1471		}
1472
1473		vd->vdev_mg = metaslab_group_create(mc, vd,
1474		    spa->spa_alloc_count);
1475
1476		if (!vd->vdev_islog) {
1477			vd->vdev_log_mg = metaslab_group_create(
1478			    spa_embedded_log_class(spa), vd, 1);
1479		}
1480
1481		/*
1482		 * The spa ashift min/max only apply for the normal metaslab
1483		 * class. Class destination is late binding so ashift boundary
1484		 * setting had to wait until now.
1485		 */
1486		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1487		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1488			if (vd->vdev_ashift > spa->spa_max_ashift)
1489				spa->spa_max_ashift = vd->vdev_ashift;
1490			if (vd->vdev_ashift < spa->spa_min_ashift)
1491				spa->spa_min_ashift = vd->vdev_ashift;
1492
1493			uint64_t min_alloc = vdev_get_min_alloc(vd);
1494			vdev_spa_set_alloc(spa, min_alloc);
1495		}
1496	}
1497}
1498
1499int
1500vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1501{
1502	spa_t *spa = vd->vdev_spa;
1503	uint64_t oldc = vd->vdev_ms_count;
1504	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1505	metaslab_t **mspp;
1506	int error;
1507	boolean_t expanding = (oldc != 0);
1508
1509	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1510
1511	/*
1512	 * This vdev is not being allocated from yet or is a hole.
1513	 */
1514	if (vd->vdev_ms_shift == 0)
1515		return (0);
1516
1517	ASSERT(!vd->vdev_ishole);
1518
1519	ASSERT(oldc <= newc);
1520
1521	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1522
1523	if (expanding) {
1524		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1525		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1526	}
1527
1528	vd->vdev_ms = mspp;
1529	vd->vdev_ms_count = newc;
1530
1531	for (uint64_t m = oldc; m < newc; m++) {
1532		uint64_t object = 0;
1533		/*
1534		 * vdev_ms_array may be 0 if we are creating the "fake"
1535		 * metaslabs for an indirect vdev for zdb's leak detection.
1536		 * See zdb_leak_init().
1537		 */
1538		if (txg == 0 && vd->vdev_ms_array != 0) {
1539			error = dmu_read(spa->spa_meta_objset,
1540			    vd->vdev_ms_array,
1541			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1542			    DMU_READ_PREFETCH);
1543			if (error != 0) {
1544				vdev_dbgmsg(vd, "unable to read the metaslab "
1545				    "array [error=%d]", error);
1546				return (error);
1547			}
1548		}
1549
1550		error = metaslab_init(vd->vdev_mg, m, object, txg,
1551		    &(vd->vdev_ms[m]));
1552		if (error != 0) {
1553			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1554			    error);
1555			return (error);
1556		}
1557	}
1558
1559	/*
1560	 * Find the emptiest metaslab on the vdev and mark it for use for
1561	 * embedded slog by moving it from the regular to the log metaslab
1562	 * group.
1563	 */
1564	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1565	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1566	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1567		uint64_t slog_msid = 0;
1568		uint64_t smallest = UINT64_MAX;
1569
1570		/*
1571		 * Note, we only search the new metaslabs, because the old
1572		 * (pre-existing) ones may be active (e.g. have non-empty
1573		 * range_tree's), and we don't move them to the new
1574		 * metaslab_t.
1575		 */
1576		for (uint64_t m = oldc; m < newc; m++) {
1577			uint64_t alloc =
1578			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1579			if (alloc < smallest) {
1580				slog_msid = m;
1581				smallest = alloc;
1582			}
1583		}
1584		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1585		/*
1586		 * The metaslab was marked as dirty at the end of
1587		 * metaslab_init(). Remove it from the dirty list so that we
1588		 * can uninitialize and reinitialize it to the new class.
1589		 */
1590		if (txg != 0) {
1591			(void) txg_list_remove_this(&vd->vdev_ms_list,
1592			    slog_ms, txg);
1593		}
1594		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1595		metaslab_fini(slog_ms);
1596		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1597		    &vd->vdev_ms[slog_msid]));
1598	}
1599
1600	if (txg == 0)
1601		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1602
1603	/*
1604	 * If the vdev is marked as non-allocating then don't
1605	 * activate the metaslabs since we want to ensure that
1606	 * no allocations are performed on this device.
1607	 */
1608	if (vd->vdev_noalloc) {
1609		/* track non-allocating vdev space */
1610		spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1611		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1612	} else if (!expanding) {
1613		metaslab_group_activate(vd->vdev_mg);
1614		if (vd->vdev_log_mg != NULL)
1615			metaslab_group_activate(vd->vdev_log_mg);
1616	}
1617
1618	if (txg == 0)
1619		spa_config_exit(spa, SCL_ALLOC, FTAG);
1620
1621	return (0);
1622}
1623
1624void
1625vdev_metaslab_fini(vdev_t *vd)
1626{
1627	if (vd->vdev_checkpoint_sm != NULL) {
1628		ASSERT(spa_feature_is_active(vd->vdev_spa,
1629		    SPA_FEATURE_POOL_CHECKPOINT));
1630		space_map_close(vd->vdev_checkpoint_sm);
1631		/*
1632		 * Even though we close the space map, we need to set its
1633		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1634		 * may be called multiple times for certain operations
1635		 * (i.e. when destroying a pool) so we need to ensure that
1636		 * this clause never executes twice. This logic is similar
1637		 * to the one used for the vdev_ms clause below.
1638		 */
1639		vd->vdev_checkpoint_sm = NULL;
1640	}
1641
1642	if (vd->vdev_ms != NULL) {
1643		metaslab_group_t *mg = vd->vdev_mg;
1644
1645		metaslab_group_passivate(mg);
1646		if (vd->vdev_log_mg != NULL) {
1647			ASSERT(!vd->vdev_islog);
1648			metaslab_group_passivate(vd->vdev_log_mg);
1649		}
1650
1651		uint64_t count = vd->vdev_ms_count;
1652		for (uint64_t m = 0; m < count; m++) {
1653			metaslab_t *msp = vd->vdev_ms[m];
1654			if (msp != NULL)
1655				metaslab_fini(msp);
1656		}
1657		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1658		vd->vdev_ms = NULL;
1659		vd->vdev_ms_count = 0;
1660
1661		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1662			ASSERT0(mg->mg_histogram[i]);
1663			if (vd->vdev_log_mg != NULL)
1664				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1665		}
1666	}
1667	ASSERT0(vd->vdev_ms_count);
1668}
1669
1670typedef struct vdev_probe_stats {
1671	boolean_t	vps_readable;
1672	boolean_t	vps_writeable;
1673	boolean_t	vps_zio_done_probe;
1674	int		vps_flags;
1675} vdev_probe_stats_t;
1676
1677static void
1678vdev_probe_done(zio_t *zio)
1679{
1680	spa_t *spa = zio->io_spa;
1681	vdev_t *vd = zio->io_vd;
1682	vdev_probe_stats_t *vps = zio->io_private;
1683
1684	ASSERT(vd->vdev_probe_zio != NULL);
1685
1686	if (zio->io_type == ZIO_TYPE_READ) {
1687		if (zio->io_error == 0)
1688			vps->vps_readable = 1;
1689		if (zio->io_error == 0 && spa_writeable(spa)) {
1690			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1691			    zio->io_offset, zio->io_size, zio->io_abd,
1692			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1693			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1694		} else {
1695			abd_free(zio->io_abd);
1696		}
1697	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1698		if (zio->io_error == 0)
1699			vps->vps_writeable = 1;
1700		abd_free(zio->io_abd);
1701	} else if (zio->io_type == ZIO_TYPE_NULL) {
1702		zio_t *pio;
1703		zio_link_t *zl;
1704
1705		vd->vdev_cant_read |= !vps->vps_readable;
1706		vd->vdev_cant_write |= !vps->vps_writeable;
1707		vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1708		    vd->vdev_cant_read, vd->vdev_cant_write);
1709
1710		if (vdev_readable(vd) &&
1711		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1712			zio->io_error = 0;
1713		} else {
1714			ASSERT(zio->io_error != 0);
1715			vdev_dbgmsg(vd, "failed probe");
1716			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1717			    spa, vd, NULL, NULL, 0);
1718			zio->io_error = SET_ERROR(ENXIO);
1719
1720			/*
1721			 * If this probe was initiated from zio pipeline, then
1722			 * change the state in a spa_async_request. Probes that
1723			 * were initiated from a vdev_open can change the state
1724			 * as part of the open call.
1725			 */
1726			if (vps->vps_zio_done_probe) {
1727				vd->vdev_fault_wanted = B_TRUE;
1728				spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1729			}
1730		}
1731
1732		mutex_enter(&vd->vdev_probe_lock);
1733		ASSERT(vd->vdev_probe_zio == zio);
1734		vd->vdev_probe_zio = NULL;
1735		mutex_exit(&vd->vdev_probe_lock);
1736
1737		zl = NULL;
1738		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1739			if (!vdev_accessible(vd, pio))
1740				pio->io_error = SET_ERROR(ENXIO);
1741
1742		kmem_free(vps, sizeof (*vps));
1743	}
1744}
1745
1746/*
1747 * Determine whether this device is accessible.
1748 *
1749 * Read and write to several known locations: the pad regions of each
1750 * vdev label but the first, which we leave alone in case it contains
1751 * a VTOC.
1752 */
1753zio_t *
1754vdev_probe(vdev_t *vd, zio_t *zio)
1755{
1756	spa_t *spa = vd->vdev_spa;
1757	vdev_probe_stats_t *vps = NULL;
1758	zio_t *pio;
1759
1760	ASSERT(vd->vdev_ops->vdev_op_leaf);
1761
1762	/*
1763	 * Don't probe the probe.
1764	 */
1765	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1766		return (NULL);
1767
1768	/*
1769	 * To prevent 'probe storms' when a device fails, we create
1770	 * just one probe i/o at a time.  All zios that want to probe
1771	 * this vdev will become parents of the probe io.
1772	 */
1773	mutex_enter(&vd->vdev_probe_lock);
1774
1775	if ((pio = vd->vdev_probe_zio) == NULL) {
1776		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1777
1778		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1779		    ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1780		vps->vps_zio_done_probe = (zio != NULL);
1781
1782		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1783			/*
1784			 * vdev_cant_read and vdev_cant_write can only
1785			 * transition from TRUE to FALSE when we have the
1786			 * SCL_ZIO lock as writer; otherwise they can only
1787			 * transition from FALSE to TRUE.  This ensures that
1788			 * any zio looking at these values can assume that
1789			 * failures persist for the life of the I/O.  That's
1790			 * important because when a device has intermittent
1791			 * connectivity problems, we want to ensure that
1792			 * they're ascribed to the device (ENXIO) and not
1793			 * the zio (EIO).
1794			 *
1795			 * Since we hold SCL_ZIO as writer here, clear both
1796			 * values so the probe can reevaluate from first
1797			 * principles.
1798			 */
1799			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1800			vd->vdev_cant_read = B_FALSE;
1801			vd->vdev_cant_write = B_FALSE;
1802		}
1803
1804		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1805		    vdev_probe_done, vps,
1806		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1807	}
1808
1809	if (zio != NULL)
1810		zio_add_child(zio, pio);
1811
1812	mutex_exit(&vd->vdev_probe_lock);
1813
1814	if (vps == NULL) {
1815		ASSERT(zio != NULL);
1816		return (NULL);
1817	}
1818
1819	for (int l = 1; l < VDEV_LABELS; l++) {
1820		zio_nowait(zio_read_phys(pio, vd,
1821		    vdev_label_offset(vd->vdev_psize, l,
1822		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1823		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1824		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1825		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1826	}
1827
1828	if (zio == NULL)
1829		return (pio);
1830
1831	zio_nowait(pio);
1832	return (NULL);
1833}
1834
1835static void
1836vdev_load_child(void *arg)
1837{
1838	vdev_t *vd = arg;
1839
1840	vd->vdev_load_error = vdev_load(vd);
1841}
1842
1843static void
1844vdev_open_child(void *arg)
1845{
1846	vdev_t *vd = arg;
1847
1848	vd->vdev_open_thread = curthread;
1849	vd->vdev_open_error = vdev_open(vd);
1850	vd->vdev_open_thread = NULL;
1851}
1852
1853static boolean_t
1854vdev_uses_zvols(vdev_t *vd)
1855{
1856#ifdef _KERNEL
1857	if (zvol_is_zvol(vd->vdev_path))
1858		return (B_TRUE);
1859#endif
1860
1861	for (int c = 0; c < vd->vdev_children; c++)
1862		if (vdev_uses_zvols(vd->vdev_child[c]))
1863			return (B_TRUE);
1864
1865	return (B_FALSE);
1866}
1867
1868/*
1869 * Returns B_TRUE if the passed child should be opened.
1870 */
1871static boolean_t
1872vdev_default_open_children_func(vdev_t *vd)
1873{
1874	(void) vd;
1875	return (B_TRUE);
1876}
1877
1878/*
1879 * Open the requested child vdevs.  If any of the leaf vdevs are using
1880 * a ZFS volume then do the opens in a single thread.  This avoids a
1881 * deadlock when the current thread is holding the spa_namespace_lock.
1882 */
1883static void
1884vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1885{
1886	int children = vd->vdev_children;
1887
1888	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1889	    children, children, TASKQ_PREPOPULATE);
1890	vd->vdev_nonrot = B_TRUE;
1891
1892	for (int c = 0; c < children; c++) {
1893		vdev_t *cvd = vd->vdev_child[c];
1894
1895		if (open_func(cvd) == B_FALSE)
1896			continue;
1897
1898		if (tq == NULL || vdev_uses_zvols(vd)) {
1899			cvd->vdev_open_error = vdev_open(cvd);
1900		} else {
1901			VERIFY(taskq_dispatch(tq, vdev_open_child,
1902			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1903		}
1904
1905		vd->vdev_nonrot &= cvd->vdev_nonrot;
1906	}
1907
1908	if (tq != NULL) {
1909		taskq_wait(tq);
1910		taskq_destroy(tq);
1911	}
1912}
1913
1914/*
1915 * Open all child vdevs.
1916 */
1917void
1918vdev_open_children(vdev_t *vd)
1919{
1920	vdev_open_children_impl(vd, vdev_default_open_children_func);
1921}
1922
1923/*
1924 * Conditionally open a subset of child vdevs.
1925 */
1926void
1927vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1928{
1929	vdev_open_children_impl(vd, open_func);
1930}
1931
1932/*
1933 * Compute the raidz-deflation ratio.  Note, we hard-code 128k (1 << 17)
1934 * because it is the "typical" blocksize.  Even though SPA_MAXBLOCKSIZE
1935 * changed, this algorithm can not change, otherwise it would inconsistently
1936 * account for existing bp's.  We also hard-code txg 0 for the same reason
1937 * since expanded RAIDZ vdevs can use a different asize for different birth
1938 * txg's.
1939 */
1940static void
1941vdev_set_deflate_ratio(vdev_t *vd)
1942{
1943	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1944		vd->vdev_deflate_ratio = (1 << 17) /
1945		    (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
1946		    SPA_MINBLOCKSHIFT);
1947	}
1948}
1949
1950/*
1951 * Choose the best of two ashifts, preferring one between logical ashift
1952 * (absolute minimum) and administrator defined maximum, otherwise take
1953 * the biggest of the two.
1954 */
1955uint64_t
1956vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1957{
1958	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1959		if (b <= logical || b > zfs_vdev_max_auto_ashift)
1960			return (a);
1961		else
1962			return (MAX(a, b));
1963	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1964		return (MAX(a, b));
1965	return (b);
1966}
1967
1968/*
1969 * Maximize performance by inflating the configured ashift for top level
1970 * vdevs to be as close to the physical ashift as possible while maintaining
1971 * administrator defined limits and ensuring it doesn't go below the
1972 * logical ashift.
1973 */
1974static void
1975vdev_ashift_optimize(vdev_t *vd)
1976{
1977	ASSERT(vd == vd->vdev_top);
1978
1979	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1980	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1981		vd->vdev_ashift = MIN(
1982		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1983		    MAX(zfs_vdev_min_auto_ashift,
1984		    vd->vdev_physical_ashift));
1985	} else {
1986		/*
1987		 * If the logical and physical ashifts are the same, then
1988		 * we ensure that the top-level vdev's ashift is not smaller
1989		 * than our minimum ashift value. For the unusual case
1990		 * where logical ashift > physical ashift, we can't cap
1991		 * the calculated ashift based on max ashift as that
1992		 * would cause failures.
1993		 * We still check if we need to increase it to match
1994		 * the min ashift.
1995		 */
1996		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1997		    vd->vdev_ashift);
1998	}
1999}
2000
2001/*
2002 * Prepare a virtual device for access.
2003 */
2004int
2005vdev_open(vdev_t *vd)
2006{
2007	spa_t *spa = vd->vdev_spa;
2008	int error;
2009	uint64_t osize = 0;
2010	uint64_t max_osize = 0;
2011	uint64_t asize, max_asize, psize;
2012	uint64_t logical_ashift = 0;
2013	uint64_t physical_ashift = 0;
2014
2015	ASSERT(vd->vdev_open_thread == curthread ||
2016	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2017	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2018	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2019	    vd->vdev_state == VDEV_STATE_OFFLINE);
2020
2021	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2022	vd->vdev_cant_read = B_FALSE;
2023	vd->vdev_cant_write = B_FALSE;
2024	vd->vdev_min_asize = vdev_get_min_asize(vd);
2025
2026	/*
2027	 * If this vdev is not removed, check its fault status.  If it's
2028	 * faulted, bail out of the open.
2029	 */
2030	if (!vd->vdev_removed && vd->vdev_faulted) {
2031		ASSERT(vd->vdev_children == 0);
2032		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2033		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2034		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2035		    vd->vdev_label_aux);
2036		return (SET_ERROR(ENXIO));
2037	} else if (vd->vdev_offline) {
2038		ASSERT(vd->vdev_children == 0);
2039		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2040		return (SET_ERROR(ENXIO));
2041	}
2042
2043	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2044	    &logical_ashift, &physical_ashift);
2045
2046	/* Keep the device in removed state if unplugged */
2047	if (error == ENOENT && vd->vdev_removed) {
2048		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2049		    VDEV_AUX_NONE);
2050		return (error);
2051	}
2052
2053	/*
2054	 * Physical volume size should never be larger than its max size, unless
2055	 * the disk has shrunk while we were reading it or the device is buggy
2056	 * or damaged: either way it's not safe for use, bail out of the open.
2057	 */
2058	if (osize > max_osize) {
2059		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2060		    VDEV_AUX_OPEN_FAILED);
2061		return (SET_ERROR(ENXIO));
2062	}
2063
2064	/*
2065	 * Reset the vdev_reopening flag so that we actually close
2066	 * the vdev on error.
2067	 */
2068	vd->vdev_reopening = B_FALSE;
2069	if (zio_injection_enabled && error == 0)
2070		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2071
2072	if (error) {
2073		if (vd->vdev_removed &&
2074		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2075			vd->vdev_removed = B_FALSE;
2076
2077		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2078			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2079			    vd->vdev_stat.vs_aux);
2080		} else {
2081			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2082			    vd->vdev_stat.vs_aux);
2083		}
2084		return (error);
2085	}
2086
2087	vd->vdev_removed = B_FALSE;
2088
2089	/*
2090	 * Recheck the faulted flag now that we have confirmed that
2091	 * the vdev is accessible.  If we're faulted, bail.
2092	 */
2093	if (vd->vdev_faulted) {
2094		ASSERT(vd->vdev_children == 0);
2095		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2096		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2097		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2098		    vd->vdev_label_aux);
2099		return (SET_ERROR(ENXIO));
2100	}
2101
2102	if (vd->vdev_degraded) {
2103		ASSERT(vd->vdev_children == 0);
2104		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2105		    VDEV_AUX_ERR_EXCEEDED);
2106	} else {
2107		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2108	}
2109
2110	/*
2111	 * For hole or missing vdevs we just return success.
2112	 */
2113	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2114		return (0);
2115
2116	for (int c = 0; c < vd->vdev_children; c++) {
2117		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2118			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2119			    VDEV_AUX_NONE);
2120			break;
2121		}
2122	}
2123
2124	osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2125	max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2126
2127	if (vd->vdev_children == 0) {
2128		if (osize < SPA_MINDEVSIZE) {
2129			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2130			    VDEV_AUX_TOO_SMALL);
2131			return (SET_ERROR(EOVERFLOW));
2132		}
2133		psize = osize;
2134		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2135		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2136		    VDEV_LABEL_END_SIZE);
2137	} else {
2138		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2139		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2140			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2141			    VDEV_AUX_TOO_SMALL);
2142			return (SET_ERROR(EOVERFLOW));
2143		}
2144		psize = 0;
2145		asize = osize;
2146		max_asize = max_osize;
2147	}
2148
2149	/*
2150	 * If the vdev was expanded, record this so that we can re-create the
2151	 * uberblock rings in labels {2,3}, during the next sync.
2152	 */
2153	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2154		vd->vdev_copy_uberblocks = B_TRUE;
2155
2156	vd->vdev_psize = psize;
2157
2158	/*
2159	 * Make sure the allocatable size hasn't shrunk too much.
2160	 */
2161	if (asize < vd->vdev_min_asize) {
2162		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2163		    VDEV_AUX_BAD_LABEL);
2164		return (SET_ERROR(EINVAL));
2165	}
2166
2167	/*
2168	 * We can always set the logical/physical ashift members since
2169	 * their values are only used to calculate the vdev_ashift when
2170	 * the device is first added to the config. These values should
2171	 * not be used for anything else since they may change whenever
2172	 * the device is reopened and we don't store them in the label.
2173	 */
2174	vd->vdev_physical_ashift =
2175	    MAX(physical_ashift, vd->vdev_physical_ashift);
2176	vd->vdev_logical_ashift = MAX(logical_ashift,
2177	    vd->vdev_logical_ashift);
2178
2179	if (vd->vdev_asize == 0) {
2180		/*
2181		 * This is the first-ever open, so use the computed values.
2182		 * For compatibility, a different ashift can be requested.
2183		 */
2184		vd->vdev_asize = asize;
2185		vd->vdev_max_asize = max_asize;
2186
2187		/*
2188		 * If the vdev_ashift was not overridden at creation time,
2189		 * then set it the logical ashift and optimize the ashift.
2190		 */
2191		if (vd->vdev_ashift == 0) {
2192			vd->vdev_ashift = vd->vdev_logical_ashift;
2193
2194			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2195				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2196				    VDEV_AUX_ASHIFT_TOO_BIG);
2197				return (SET_ERROR(EDOM));
2198			}
2199
2200			if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2201				vdev_ashift_optimize(vd);
2202			vd->vdev_attaching = B_FALSE;
2203		}
2204		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2205		    vd->vdev_ashift > ASHIFT_MAX)) {
2206			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2207			    VDEV_AUX_BAD_ASHIFT);
2208			return (SET_ERROR(EDOM));
2209		}
2210	} else {
2211		/*
2212		 * Make sure the alignment required hasn't increased.
2213		 */
2214		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2215		    vd->vdev_ops->vdev_op_leaf) {
2216			(void) zfs_ereport_post(
2217			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2218			    spa, vd, NULL, NULL, 0);
2219			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2220			    VDEV_AUX_BAD_LABEL);
2221			return (SET_ERROR(EDOM));
2222		}
2223		vd->vdev_max_asize = max_asize;
2224	}
2225
2226	/*
2227	 * If all children are healthy we update asize if either:
2228	 * The asize has increased, due to a device expansion caused by dynamic
2229	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2230	 * making the additional space available.
2231	 *
2232	 * The asize has decreased, due to a device shrink usually caused by a
2233	 * vdev replace with a smaller device. This ensures that calculations
2234	 * based of max_asize and asize e.g. esize are always valid. It's safe
2235	 * to do this as we've already validated that asize is greater than
2236	 * vdev_min_asize.
2237	 */
2238	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2239	    ((asize > vd->vdev_asize &&
2240	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2241	    (asize < vd->vdev_asize)))
2242		vd->vdev_asize = asize;
2243
2244	vdev_set_min_asize(vd);
2245
2246	/*
2247	 * Ensure we can issue some IO before declaring the
2248	 * vdev open for business.
2249	 */
2250	if (vd->vdev_ops->vdev_op_leaf &&
2251	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2252		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2253		    VDEV_AUX_ERR_EXCEEDED);
2254		return (error);
2255	}
2256
2257	/*
2258	 * Track the minimum allocation size.
2259	 */
2260	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2261	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2262		uint64_t min_alloc = vdev_get_min_alloc(vd);
2263		vdev_spa_set_alloc(spa, min_alloc);
2264	}
2265
2266	/*
2267	 * If this is a leaf vdev, assess whether a resilver is needed.
2268	 * But don't do this if we are doing a reopen for a scrub, since
2269	 * this would just restart the scrub we are already doing.
2270	 */
2271	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2272		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2273
2274	return (0);
2275}
2276
2277static void
2278vdev_validate_child(void *arg)
2279{
2280	vdev_t *vd = arg;
2281
2282	vd->vdev_validate_thread = curthread;
2283	vd->vdev_validate_error = vdev_validate(vd);
2284	vd->vdev_validate_thread = NULL;
2285}
2286
2287/*
2288 * Called once the vdevs are all opened, this routine validates the label
2289 * contents. This needs to be done before vdev_load() so that we don't
2290 * inadvertently do repair I/Os to the wrong device.
2291 *
2292 * This function will only return failure if one of the vdevs indicates that it
2293 * has since been destroyed or exported.  This is only possible if
2294 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2295 * will be updated but the function will return 0.
2296 */
2297int
2298vdev_validate(vdev_t *vd)
2299{
2300	spa_t *spa = vd->vdev_spa;
2301	taskq_t *tq = NULL;
2302	nvlist_t *label;
2303	uint64_t guid = 0, aux_guid = 0, top_guid;
2304	uint64_t state;
2305	nvlist_t *nvl;
2306	uint64_t txg;
2307	int children = vd->vdev_children;
2308
2309	if (vdev_validate_skip)
2310		return (0);
2311
2312	if (children > 0) {
2313		tq = taskq_create("vdev_validate", children, minclsyspri,
2314		    children, children, TASKQ_PREPOPULATE);
2315	}
2316
2317	for (uint64_t c = 0; c < children; c++) {
2318		vdev_t *cvd = vd->vdev_child[c];
2319
2320		if (tq == NULL || vdev_uses_zvols(cvd)) {
2321			vdev_validate_child(cvd);
2322		} else {
2323			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2324			    TQ_SLEEP) != TASKQID_INVALID);
2325		}
2326	}
2327	if (tq != NULL) {
2328		taskq_wait(tq);
2329		taskq_destroy(tq);
2330	}
2331	for (int c = 0; c < children; c++) {
2332		int error = vd->vdev_child[c]->vdev_validate_error;
2333
2334		if (error != 0)
2335			return (SET_ERROR(EBADF));
2336	}
2337
2338
2339	/*
2340	 * If the device has already failed, or was marked offline, don't do
2341	 * any further validation.  Otherwise, label I/O will fail and we will
2342	 * overwrite the previous state.
2343	 */
2344	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2345		return (0);
2346
2347	/*
2348	 * If we are performing an extreme rewind, we allow for a label that
2349	 * was modified at a point after the current txg.
2350	 * If config lock is not held do not check for the txg. spa_sync could
2351	 * be updating the vdev's label before updating spa_last_synced_txg.
2352	 */
2353	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2354	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2355		txg = UINT64_MAX;
2356	else
2357		txg = spa_last_synced_txg(spa);
2358
2359	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2360		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2361		    VDEV_AUX_BAD_LABEL);
2362		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2363		    "txg %llu", (u_longlong_t)txg);
2364		return (0);
2365	}
2366
2367	/*
2368	 * Determine if this vdev has been split off into another
2369	 * pool.  If so, then refuse to open it.
2370	 */
2371	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2372	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2373		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2374		    VDEV_AUX_SPLIT_POOL);
2375		nvlist_free(label);
2376		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2377		return (0);
2378	}
2379
2380	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2381		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2382		    VDEV_AUX_CORRUPT_DATA);
2383		nvlist_free(label);
2384		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2385		    ZPOOL_CONFIG_POOL_GUID);
2386		return (0);
2387	}
2388
2389	/*
2390	 * If config is not trusted then ignore the spa guid check. This is
2391	 * necessary because if the machine crashed during a re-guid the new
2392	 * guid might have been written to all of the vdev labels, but not the
2393	 * cached config. The check will be performed again once we have the
2394	 * trusted config from the MOS.
2395	 */
2396	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2397		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2398		    VDEV_AUX_CORRUPT_DATA);
2399		nvlist_free(label);
2400		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2401		    "match config (%llu != %llu)", (u_longlong_t)guid,
2402		    (u_longlong_t)spa_guid(spa));
2403		return (0);
2404	}
2405
2406	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2407	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2408	    &aux_guid) != 0)
2409		aux_guid = 0;
2410
2411	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2412		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2413		    VDEV_AUX_CORRUPT_DATA);
2414		nvlist_free(label);
2415		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2416		    ZPOOL_CONFIG_GUID);
2417		return (0);
2418	}
2419
2420	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2421	    != 0) {
2422		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2423		    VDEV_AUX_CORRUPT_DATA);
2424		nvlist_free(label);
2425		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2426		    ZPOOL_CONFIG_TOP_GUID);
2427		return (0);
2428	}
2429
2430	/*
2431	 * If this vdev just became a top-level vdev because its sibling was
2432	 * detached, it will have adopted the parent's vdev guid -- but the
2433	 * label may or may not be on disk yet. Fortunately, either version
2434	 * of the label will have the same top guid, so if we're a top-level
2435	 * vdev, we can safely compare to that instead.
2436	 * However, if the config comes from a cachefile that failed to update
2437	 * after the detach, a top-level vdev will appear as a non top-level
2438	 * vdev in the config. Also relax the constraints if we perform an
2439	 * extreme rewind.
2440	 *
2441	 * If we split this vdev off instead, then we also check the
2442	 * original pool's guid. We don't want to consider the vdev
2443	 * corrupt if it is partway through a split operation.
2444	 */
2445	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2446		boolean_t mismatch = B_FALSE;
2447		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2448			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2449				mismatch = B_TRUE;
2450		} else {
2451			if (vd->vdev_guid != top_guid &&
2452			    vd->vdev_top->vdev_guid != guid)
2453				mismatch = B_TRUE;
2454		}
2455
2456		if (mismatch) {
2457			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2458			    VDEV_AUX_CORRUPT_DATA);
2459			nvlist_free(label);
2460			vdev_dbgmsg(vd, "vdev_validate: config guid "
2461			    "doesn't match label guid");
2462			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2463			    (u_longlong_t)vd->vdev_guid,
2464			    (u_longlong_t)vd->vdev_top->vdev_guid);
2465			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2466			    "aux_guid %llu", (u_longlong_t)guid,
2467			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2468			return (0);
2469		}
2470	}
2471
2472	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2473	    &state) != 0) {
2474		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2475		    VDEV_AUX_CORRUPT_DATA);
2476		nvlist_free(label);
2477		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2478		    ZPOOL_CONFIG_POOL_STATE);
2479		return (0);
2480	}
2481
2482	nvlist_free(label);
2483
2484	/*
2485	 * If this is a verbatim import, no need to check the
2486	 * state of the pool.
2487	 */
2488	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2489	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2490	    state != POOL_STATE_ACTIVE) {
2491		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2492		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2493		return (SET_ERROR(EBADF));
2494	}
2495
2496	/*
2497	 * If we were able to open and validate a vdev that was
2498	 * previously marked permanently unavailable, clear that state
2499	 * now.
2500	 */
2501	if (vd->vdev_not_present)
2502		vd->vdev_not_present = 0;
2503
2504	return (0);
2505}
2506
2507static void
2508vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2509{
2510	if (svd != NULL && *dvd != NULL) {
2511		if (strcmp(svd, *dvd) != 0) {
2512			zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2513			    "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2514			    *dvd, svd);
2515			spa_strfree(*dvd);
2516			*dvd = spa_strdup(svd);
2517		}
2518	} else if (svd != NULL) {
2519		*dvd = spa_strdup(svd);
2520		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2521		    (u_longlong_t)guid, *dvd);
2522	}
2523}
2524
2525static void
2526vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2527{
2528	char *old, *new;
2529
2530	vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2531	    dvd->vdev_guid);
2532
2533	vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2534	    dvd->vdev_guid);
2535
2536	vdev_update_path("vdev_physpath", svd->vdev_physpath,
2537	    &dvd->vdev_physpath, dvd->vdev_guid);
2538
2539	/*
2540	 * Our enclosure sysfs path may have changed between imports
2541	 */
2542	old = dvd->vdev_enc_sysfs_path;
2543	new = svd->vdev_enc_sysfs_path;
2544	if ((old != NULL && new == NULL) ||
2545	    (old == NULL && new != NULL) ||
2546	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2547		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2548		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2549		    old, new);
2550
2551		if (dvd->vdev_enc_sysfs_path)
2552			spa_strfree(dvd->vdev_enc_sysfs_path);
2553
2554		if (svd->vdev_enc_sysfs_path) {
2555			dvd->vdev_enc_sysfs_path = spa_strdup(
2556			    svd->vdev_enc_sysfs_path);
2557		} else {
2558			dvd->vdev_enc_sysfs_path = NULL;
2559		}
2560	}
2561}
2562
2563/*
2564 * Recursively copy vdev paths from one vdev to another. Source and destination
2565 * vdev trees must have same geometry otherwise return error. Intended to copy
2566 * paths from userland config into MOS config.
2567 */
2568int
2569vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2570{
2571	if ((svd->vdev_ops == &vdev_missing_ops) ||
2572	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2573	    (dvd->vdev_ops == &vdev_indirect_ops))
2574		return (0);
2575
2576	if (svd->vdev_ops != dvd->vdev_ops) {
2577		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2578		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2579		return (SET_ERROR(EINVAL));
2580	}
2581
2582	if (svd->vdev_guid != dvd->vdev_guid) {
2583		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2584		    "%llu)", (u_longlong_t)svd->vdev_guid,
2585		    (u_longlong_t)dvd->vdev_guid);
2586		return (SET_ERROR(EINVAL));
2587	}
2588
2589	if (svd->vdev_children != dvd->vdev_children) {
2590		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2591		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2592		    (u_longlong_t)dvd->vdev_children);
2593		return (SET_ERROR(EINVAL));
2594	}
2595
2596	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2597		int error = vdev_copy_path_strict(svd->vdev_child[i],
2598		    dvd->vdev_child[i]);
2599		if (error != 0)
2600			return (error);
2601	}
2602
2603	if (svd->vdev_ops->vdev_op_leaf)
2604		vdev_copy_path_impl(svd, dvd);
2605
2606	return (0);
2607}
2608
2609static void
2610vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2611{
2612	ASSERT(stvd->vdev_top == stvd);
2613	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2614
2615	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2616		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2617	}
2618
2619	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2620		return;
2621
2622	/*
2623	 * The idea here is that while a vdev can shift positions within
2624	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2625	 * step outside of it.
2626	 */
2627	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2628
2629	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2630		return;
2631
2632	ASSERT(vd->vdev_ops->vdev_op_leaf);
2633
2634	vdev_copy_path_impl(vd, dvd);
2635}
2636
2637/*
2638 * Recursively copy vdev paths from one root vdev to another. Source and
2639 * destination vdev trees may differ in geometry. For each destination leaf
2640 * vdev, search a vdev with the same guid and top vdev id in the source.
2641 * Intended to copy paths from userland config into MOS config.
2642 */
2643void
2644vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2645{
2646	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2647	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2648	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2649
2650	for (uint64_t i = 0; i < children; i++) {
2651		vdev_copy_path_search(srvd->vdev_child[i],
2652		    drvd->vdev_child[i]);
2653	}
2654}
2655
2656/*
2657 * Close a virtual device.
2658 */
2659void
2660vdev_close(vdev_t *vd)
2661{
2662	vdev_t *pvd = vd->vdev_parent;
2663	spa_t *spa __maybe_unused = vd->vdev_spa;
2664
2665	ASSERT(vd != NULL);
2666	ASSERT(vd->vdev_open_thread == curthread ||
2667	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2668
2669	/*
2670	 * If our parent is reopening, then we are as well, unless we are
2671	 * going offline.
2672	 */
2673	if (pvd != NULL && pvd->vdev_reopening)
2674		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2675
2676	vd->vdev_ops->vdev_op_close(vd);
2677
2678	/*
2679	 * We record the previous state before we close it, so that if we are
2680	 * doing a reopen(), we don't generate FMA ereports if we notice that
2681	 * it's still faulted.
2682	 */
2683	vd->vdev_prevstate = vd->vdev_state;
2684
2685	if (vd->vdev_offline)
2686		vd->vdev_state = VDEV_STATE_OFFLINE;
2687	else
2688		vd->vdev_state = VDEV_STATE_CLOSED;
2689	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2690}
2691
2692void
2693vdev_hold(vdev_t *vd)
2694{
2695	spa_t *spa = vd->vdev_spa;
2696
2697	ASSERT(spa_is_root(spa));
2698	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2699		return;
2700
2701	for (int c = 0; c < vd->vdev_children; c++)
2702		vdev_hold(vd->vdev_child[c]);
2703
2704	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2705		vd->vdev_ops->vdev_op_hold(vd);
2706}
2707
2708void
2709vdev_rele(vdev_t *vd)
2710{
2711	ASSERT(spa_is_root(vd->vdev_spa));
2712	for (int c = 0; c < vd->vdev_children; c++)
2713		vdev_rele(vd->vdev_child[c]);
2714
2715	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2716		vd->vdev_ops->vdev_op_rele(vd);
2717}
2718
2719/*
2720 * Reopen all interior vdevs and any unopened leaves.  We don't actually
2721 * reopen leaf vdevs which had previously been opened as they might deadlock
2722 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2723 * If the leaf has never been opened then open it, as usual.
2724 */
2725void
2726vdev_reopen(vdev_t *vd)
2727{
2728	spa_t *spa = vd->vdev_spa;
2729
2730	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2731
2732	/* set the reopening flag unless we're taking the vdev offline */
2733	vd->vdev_reopening = !vd->vdev_offline;
2734	vdev_close(vd);
2735	(void) vdev_open(vd);
2736
2737	/*
2738	 * Call vdev_validate() here to make sure we have the same device.
2739	 * Otherwise, a device with an invalid label could be successfully
2740	 * opened in response to vdev_reopen().
2741	 */
2742	if (vd->vdev_aux) {
2743		(void) vdev_validate_aux(vd);
2744		if (vdev_readable(vd) && vdev_writeable(vd) &&
2745		    vd->vdev_aux == &spa->spa_l2cache) {
2746			/*
2747			 * In case the vdev is present we should evict all ARC
2748			 * buffers and pointers to log blocks and reclaim their
2749			 * space before restoring its contents to L2ARC.
2750			 */
2751			if (l2arc_vdev_present(vd)) {
2752				l2arc_rebuild_vdev(vd, B_TRUE);
2753			} else {
2754				l2arc_add_vdev(spa, vd);
2755			}
2756			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2757			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2758		}
2759	} else {
2760		(void) vdev_validate(vd);
2761	}
2762
2763	/*
2764	 * Recheck if resilver is still needed and cancel any
2765	 * scheduled resilver if resilver is unneeded.
2766	 */
2767	if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2768	    spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2769		mutex_enter(&spa->spa_async_lock);
2770		spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2771		mutex_exit(&spa->spa_async_lock);
2772	}
2773
2774	/*
2775	 * Reassess parent vdev's health.
2776	 */
2777	vdev_propagate_state(vd);
2778}
2779
2780int
2781vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2782{
2783	int error;
2784
2785	/*
2786	 * Normally, partial opens (e.g. of a mirror) are allowed.
2787	 * For a create, however, we want to fail the request if
2788	 * there are any components we can't open.
2789	 */
2790	error = vdev_open(vd);
2791
2792	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2793		vdev_close(vd);
2794		return (error ? error : SET_ERROR(ENXIO));
2795	}
2796
2797	/*
2798	 * Recursively load DTLs and initialize all labels.
2799	 */
2800	if ((error = vdev_dtl_load(vd)) != 0 ||
2801	    (error = vdev_label_init(vd, txg, isreplacing ?
2802	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2803		vdev_close(vd);
2804		return (error);
2805	}
2806
2807	return (0);
2808}
2809
2810void
2811vdev_metaslab_set_size(vdev_t *vd)
2812{
2813	uint64_t asize = vd->vdev_asize;
2814	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2815	uint64_t ms_shift;
2816
2817	/*
2818	 * There are two dimensions to the metaslab sizing calculation:
2819	 * the size of the metaslab and the count of metaslabs per vdev.
2820	 *
2821	 * The default values used below are a good balance between memory
2822	 * usage (larger metaslab size means more memory needed for loaded
2823	 * metaslabs; more metaslabs means more memory needed for the
2824	 * metaslab_t structs), metaslab load time (larger metaslabs take
2825	 * longer to load), and metaslab sync time (more metaslabs means
2826	 * more time spent syncing all of them).
2827	 *
2828	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2829	 * The range of the dimensions are as follows:
2830	 *
2831	 *	2^29 <= ms_size  <= 2^34
2832	 *	  16 <= ms_count <= 131,072
2833	 *
2834	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2835	 * at least 512MB (2^29) to minimize fragmentation effects when
2836	 * testing with smaller devices.  However, the count constraint
2837	 * of at least 16 metaslabs will override this minimum size goal.
2838	 *
2839	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2840	 * size of 16GB.  However, we will cap the total count to 2^17
2841	 * metaslabs to keep our memory footprint in check and let the
2842	 * metaslab size grow from there if that limit is hit.
2843	 *
2844	 * The net effect of applying above constrains is summarized below.
2845	 *
2846	 *   vdev size       metaslab count
2847	 *  --------------|-----------------
2848	 *      < 8GB        ~16
2849	 *  8GB   - 100GB   one per 512MB
2850	 *  100GB - 3TB     ~200
2851	 *  3TB   - 2PB     one per 16GB
2852	 *      > 2PB       ~131,072
2853	 *  --------------------------------
2854	 *
2855	 *  Finally, note that all of the above calculate the initial
2856	 *  number of metaslabs. Expanding a top-level vdev will result
2857	 *  in additional metaslabs being allocated making it possible
2858	 *  to exceed the zfs_vdev_ms_count_limit.
2859	 */
2860
2861	if (ms_count < zfs_vdev_min_ms_count)
2862		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2863	else if (ms_count > zfs_vdev_default_ms_count)
2864		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2865	else
2866		ms_shift = zfs_vdev_default_ms_shift;
2867
2868	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2869		ms_shift = SPA_MAXBLOCKSHIFT;
2870	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2871		ms_shift = zfs_vdev_max_ms_shift;
2872		/* cap the total count to constrain memory footprint */
2873		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2874			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2875	}
2876
2877	vd->vdev_ms_shift = ms_shift;
2878	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2879}
2880
2881void
2882vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2883{
2884	ASSERT(vd == vd->vdev_top);
2885	/* indirect vdevs don't have metaslabs or dtls */
2886	ASSERT(vdev_is_concrete(vd) || flags == 0);
2887	ASSERT(ISP2(flags));
2888	ASSERT(spa_writeable(vd->vdev_spa));
2889
2890	if (flags & VDD_METASLAB)
2891		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2892
2893	if (flags & VDD_DTL)
2894		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2895
2896	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2897}
2898
2899void
2900vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2901{
2902	for (int c = 0; c < vd->vdev_children; c++)
2903		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2904
2905	if (vd->vdev_ops->vdev_op_leaf)
2906		vdev_dirty(vd->vdev_top, flags, vd, txg);
2907}
2908
2909/*
2910 * DTLs.
2911 *
2912 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2913 * the vdev has less than perfect replication.  There are four kinds of DTL:
2914 *
2915 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2916 *
2917 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2918 *
2919 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2920 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2921 *	txgs that was scrubbed.
2922 *
2923 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2924 *	persistent errors or just some device being offline.
2925 *	Unlike the other three, the DTL_OUTAGE map is not generally
2926 *	maintained; it's only computed when needed, typically to
2927 *	determine whether a device can be detached.
2928 *
2929 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2930 * either has the data or it doesn't.
2931 *
2932 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2933 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2934 * if any child is less than fully replicated, then so is its parent.
2935 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2936 * comprising only those txgs which appear in 'maxfaults' or more children;
2937 * those are the txgs we don't have enough replication to read.  For example,
2938 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2939 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2940 * two child DTL_MISSING maps.
2941 *
2942 * It should be clear from the above that to compute the DTLs and outage maps
2943 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2944 * Therefore, that is all we keep on disk.  When loading the pool, or after
2945 * a configuration change, we generate all other DTLs from first principles.
2946 */
2947void
2948vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2949{
2950	range_tree_t *rt = vd->vdev_dtl[t];
2951
2952	ASSERT(t < DTL_TYPES);
2953	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2954	ASSERT(spa_writeable(vd->vdev_spa));
2955
2956	mutex_enter(&vd->vdev_dtl_lock);
2957	if (!range_tree_contains(rt, txg, size))
2958		range_tree_add(rt, txg, size);
2959	mutex_exit(&vd->vdev_dtl_lock);
2960}
2961
2962boolean_t
2963vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2964{
2965	range_tree_t *rt = vd->vdev_dtl[t];
2966	boolean_t dirty = B_FALSE;
2967
2968	ASSERT(t < DTL_TYPES);
2969	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2970
2971	/*
2972	 * While we are loading the pool, the DTLs have not been loaded yet.
2973	 * This isn't a problem but it can result in devices being tried
2974	 * which are known to not have the data.  In which case, the import
2975	 * is relying on the checksum to ensure that we get the right data.
2976	 * Note that while importing we are only reading the MOS, which is
2977	 * always checksummed.
2978	 */
2979	mutex_enter(&vd->vdev_dtl_lock);
2980	if (!range_tree_is_empty(rt))
2981		dirty = range_tree_contains(rt, txg, size);
2982	mutex_exit(&vd->vdev_dtl_lock);
2983
2984	return (dirty);
2985}
2986
2987boolean_t
2988vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2989{
2990	range_tree_t *rt = vd->vdev_dtl[t];
2991	boolean_t empty;
2992
2993	mutex_enter(&vd->vdev_dtl_lock);
2994	empty = range_tree_is_empty(rt);
2995	mutex_exit(&vd->vdev_dtl_lock);
2996
2997	return (empty);
2998}
2999
3000/*
3001 * Check if the txg falls within the range which must be
3002 * resilvered.  DVAs outside this range can always be skipped.
3003 */
3004boolean_t
3005vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3006    uint64_t phys_birth)
3007{
3008	(void) dva, (void) psize;
3009
3010	/* Set by sequential resilver. */
3011	if (phys_birth == TXG_UNKNOWN)
3012		return (B_TRUE);
3013
3014	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3015}
3016
3017/*
3018 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3019 */
3020boolean_t
3021vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3022    uint64_t phys_birth)
3023{
3024	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3025
3026	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3027	    vd->vdev_ops->vdev_op_leaf)
3028		return (B_TRUE);
3029
3030	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3031	    phys_birth));
3032}
3033
3034/*
3035 * Returns the lowest txg in the DTL range.
3036 */
3037static uint64_t
3038vdev_dtl_min(vdev_t *vd)
3039{
3040	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3041	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3042	ASSERT0(vd->vdev_children);
3043
3044	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3045}
3046
3047/*
3048 * Returns the highest txg in the DTL.
3049 */
3050static uint64_t
3051vdev_dtl_max(vdev_t *vd)
3052{
3053	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3054	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3055	ASSERT0(vd->vdev_children);
3056
3057	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3058}
3059
3060/*
3061 * Determine if a resilvering vdev should remove any DTL entries from
3062 * its range. If the vdev was resilvering for the entire duration of the
3063 * scan then it should excise that range from its DTLs. Otherwise, this
3064 * vdev is considered partially resilvered and should leave its DTL
3065 * entries intact. The comment in vdev_dtl_reassess() describes how we
3066 * excise the DTLs.
3067 */
3068static boolean_t
3069vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3070{
3071	ASSERT0(vd->vdev_children);
3072
3073	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3074		return (B_FALSE);
3075
3076	if (vd->vdev_resilver_deferred)
3077		return (B_FALSE);
3078
3079	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3080		return (B_TRUE);
3081
3082	if (rebuild_done) {
3083		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3084		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3085
3086		/* Rebuild not initiated by attach */
3087		if (vd->vdev_rebuild_txg == 0)
3088			return (B_TRUE);
3089
3090		/*
3091		 * When a rebuild completes without error then all missing data
3092		 * up to the rebuild max txg has been reconstructed and the DTL
3093		 * is eligible for excision.
3094		 */
3095		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3096		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3097			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3098			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3099			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3100			return (B_TRUE);
3101		}
3102	} else {
3103		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3104		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3105
3106		/* Resilver not initiated by attach */
3107		if (vd->vdev_resilver_txg == 0)
3108			return (B_TRUE);
3109
3110		/*
3111		 * When a resilver is initiated the scan will assign the
3112		 * scn_max_txg value to the highest txg value that exists
3113		 * in all DTLs. If this device's max DTL is not part of this
3114		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3115		 * then it is not eligible for excision.
3116		 */
3117		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3118			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3119			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3120			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3121			return (B_TRUE);
3122		}
3123	}
3124
3125	return (B_FALSE);
3126}
3127
3128/*
3129 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3130 * write operations will be issued to the pool.
3131 */
3132void
3133vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3134    boolean_t scrub_done, boolean_t rebuild_done)
3135{
3136	spa_t *spa = vd->vdev_spa;
3137	avl_tree_t reftree;
3138	int minref;
3139
3140	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3141
3142	for (int c = 0; c < vd->vdev_children; c++)
3143		vdev_dtl_reassess(vd->vdev_child[c], txg,
3144		    scrub_txg, scrub_done, rebuild_done);
3145
3146	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3147		return;
3148
3149	if (vd->vdev_ops->vdev_op_leaf) {
3150		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3151		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3152		boolean_t check_excise = B_FALSE;
3153		boolean_t wasempty = B_TRUE;
3154
3155		mutex_enter(&vd->vdev_dtl_lock);
3156
3157		/*
3158		 * If requested, pretend the scan or rebuild completed cleanly.
3159		 */
3160		if (zfs_scan_ignore_errors) {
3161			if (scn != NULL)
3162				scn->scn_phys.scn_errors = 0;
3163			if (vr != NULL)
3164				vr->vr_rebuild_phys.vrp_errors = 0;
3165		}
3166
3167		if (scrub_txg != 0 &&
3168		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3169			wasempty = B_FALSE;
3170			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3171			    "dtl:%llu/%llu errors:%llu",
3172			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3173			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3174			    (u_longlong_t)vdev_dtl_min(vd),
3175			    (u_longlong_t)vdev_dtl_max(vd),
3176			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3177		}
3178
3179		/*
3180		 * If we've completed a scrub/resilver or a rebuild cleanly
3181		 * then determine if this vdev should remove any DTLs. We
3182		 * only want to excise regions on vdevs that were available
3183		 * during the entire duration of this scan.
3184		 */
3185		if (rebuild_done &&
3186		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3187			check_excise = B_TRUE;
3188		} else {
3189			if (spa->spa_scrub_started ||
3190			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3191				check_excise = B_TRUE;
3192			}
3193		}
3194
3195		if (scrub_txg && check_excise &&
3196		    vdev_dtl_should_excise(vd, rebuild_done)) {
3197			/*
3198			 * We completed a scrub, resilver or rebuild up to
3199			 * scrub_txg.  If we did it without rebooting, then
3200			 * the scrub dtl will be valid, so excise the old
3201			 * region and fold in the scrub dtl.  Otherwise,
3202			 * leave the dtl as-is if there was an error.
3203			 *
3204			 * There's little trick here: to excise the beginning
3205			 * of the DTL_MISSING map, we put it into a reference
3206			 * tree and then add a segment with refcnt -1 that
3207			 * covers the range [0, scrub_txg).  This means
3208			 * that each txg in that range has refcnt -1 or 0.
3209			 * We then add DTL_SCRUB with a refcnt of 2, so that
3210			 * entries in the range [0, scrub_txg) will have a
3211			 * positive refcnt -- either 1 or 2.  We then convert
3212			 * the reference tree into the new DTL_MISSING map.
3213			 */
3214			space_reftree_create(&reftree);
3215			space_reftree_add_map(&reftree,
3216			    vd->vdev_dtl[DTL_MISSING], 1);
3217			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3218			space_reftree_add_map(&reftree,
3219			    vd->vdev_dtl[DTL_SCRUB], 2);
3220			space_reftree_generate_map(&reftree,
3221			    vd->vdev_dtl[DTL_MISSING], 1);
3222			space_reftree_destroy(&reftree);
3223
3224			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3225				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3226				    (u_longlong_t)vdev_dtl_min(vd),
3227				    (u_longlong_t)vdev_dtl_max(vd));
3228			} else if (!wasempty) {
3229				zfs_dbgmsg("DTL_MISSING is now empty");
3230			}
3231		}
3232		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3233		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3234		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3235		if (scrub_done)
3236			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3237		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3238		if (!vdev_readable(vd))
3239			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3240		else
3241			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3242			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3243
3244		/*
3245		 * If the vdev was resilvering or rebuilding and no longer
3246		 * has any DTLs then reset the appropriate flag and dirty
3247		 * the top level so that we persist the change.
3248		 */
3249		if (txg != 0 &&
3250		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3251		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3252			if (vd->vdev_rebuild_txg != 0) {
3253				vd->vdev_rebuild_txg = 0;
3254				vdev_config_dirty(vd->vdev_top);
3255			} else if (vd->vdev_resilver_txg != 0) {
3256				vd->vdev_resilver_txg = 0;
3257				vdev_config_dirty(vd->vdev_top);
3258			}
3259		}
3260
3261		mutex_exit(&vd->vdev_dtl_lock);
3262
3263		if (txg != 0)
3264			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3265	} else {
3266		mutex_enter(&vd->vdev_dtl_lock);
3267		for (int t = 0; t < DTL_TYPES; t++) {
3268			/* account for child's outage in parent's missing map */
3269			int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3270			if (t == DTL_SCRUB) {
3271				/* leaf vdevs only */
3272				continue;
3273			}
3274			if (t == DTL_PARTIAL) {
3275				/* i.e. non-zero */
3276				minref = 1;
3277			} else if (vdev_get_nparity(vd) != 0) {
3278				/* RAIDZ, DRAID */
3279				minref = vdev_get_nparity(vd) + 1;
3280			} else {
3281				/* any kind of mirror */
3282				minref = vd->vdev_children;
3283			}
3284			space_reftree_create(&reftree);
3285			for (int c = 0; c < vd->vdev_children; c++) {
3286				vdev_t *cvd = vd->vdev_child[c];
3287				mutex_enter(&cvd->vdev_dtl_lock);
3288				space_reftree_add_map(&reftree,
3289				    cvd->vdev_dtl[s], 1);
3290				mutex_exit(&cvd->vdev_dtl_lock);
3291			}
3292			space_reftree_generate_map(&reftree,
3293			    vd->vdev_dtl[t], minref);
3294			space_reftree_destroy(&reftree);
3295		}
3296		mutex_exit(&vd->vdev_dtl_lock);
3297	}
3298
3299	if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3300		raidz_dtl_reassessed(vd);
3301	}
3302}
3303
3304/*
3305 * Iterate over all the vdevs except spare, and post kobj events
3306 */
3307void
3308vdev_post_kobj_evt(vdev_t *vd)
3309{
3310	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3311	    vd->vdev_kobj_flag == B_FALSE) {
3312		vd->vdev_kobj_flag = B_TRUE;
3313		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3314	}
3315
3316	for (int c = 0; c < vd->vdev_children; c++)
3317		vdev_post_kobj_evt(vd->vdev_child[c]);
3318}
3319
3320/*
3321 * Iterate over all the vdevs except spare, and clear kobj events
3322 */
3323void
3324vdev_clear_kobj_evt(vdev_t *vd)
3325{
3326	vd->vdev_kobj_flag = B_FALSE;
3327
3328	for (int c = 0; c < vd->vdev_children; c++)
3329		vdev_clear_kobj_evt(vd->vdev_child[c]);
3330}
3331
3332int
3333vdev_dtl_load(vdev_t *vd)
3334{
3335	spa_t *spa = vd->vdev_spa;
3336	objset_t *mos = spa->spa_meta_objset;
3337	range_tree_t *rt;
3338	int error = 0;
3339
3340	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3341		ASSERT(vdev_is_concrete(vd));
3342
3343		/*
3344		 * If the dtl cannot be sync'd there is no need to open it.
3345		 */
3346		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3347			return (0);
3348
3349		error = space_map_open(&vd->vdev_dtl_sm, mos,
3350		    vd->vdev_dtl_object, 0, -1ULL, 0);
3351		if (error)
3352			return (error);
3353		ASSERT(vd->vdev_dtl_sm != NULL);
3354
3355		rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3356		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3357		if (error == 0) {
3358			mutex_enter(&vd->vdev_dtl_lock);
3359			range_tree_walk(rt, range_tree_add,
3360			    vd->vdev_dtl[DTL_MISSING]);
3361			mutex_exit(&vd->vdev_dtl_lock);
3362		}
3363
3364		range_tree_vacate(rt, NULL, NULL);
3365		range_tree_destroy(rt);
3366
3367		return (error);
3368	}
3369
3370	for (int c = 0; c < vd->vdev_children; c++) {
3371		error = vdev_dtl_load(vd->vdev_child[c]);
3372		if (error != 0)
3373			break;
3374	}
3375
3376	return (error);
3377}
3378
3379static void
3380vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3381{
3382	spa_t *spa = vd->vdev_spa;
3383	objset_t *mos = spa->spa_meta_objset;
3384	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3385	const char *string;
3386
3387	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3388
3389	string =
3390	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3391	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3392	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3393
3394	ASSERT(string != NULL);
3395	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3396	    1, strlen(string) + 1, string, tx));
3397
3398	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3399		spa_activate_allocation_classes(spa, tx);
3400	}
3401}
3402
3403void
3404vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3405{
3406	spa_t *spa = vd->vdev_spa;
3407
3408	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3409	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3410	    zapobj, tx));
3411}
3412
3413uint64_t
3414vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3415{
3416	spa_t *spa = vd->vdev_spa;
3417	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3418	    DMU_OT_NONE, 0, tx);
3419
3420	ASSERT(zap != 0);
3421	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3422	    zap, tx));
3423
3424	return (zap);
3425}
3426
3427void
3428vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3429{
3430	if (vd->vdev_ops != &vdev_hole_ops &&
3431	    vd->vdev_ops != &vdev_missing_ops &&
3432	    vd->vdev_ops != &vdev_root_ops &&
3433	    !vd->vdev_top->vdev_removing) {
3434		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3435			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3436		}
3437		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3438			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3439			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3440				vdev_zap_allocation_data(vd, tx);
3441		}
3442	}
3443	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3444	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3445		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3446			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3447		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3448	}
3449
3450	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3451		vdev_construct_zaps(vd->vdev_child[i], tx);
3452	}
3453}
3454
3455static void
3456vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3457{
3458	spa_t *spa = vd->vdev_spa;
3459	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3460	objset_t *mos = spa->spa_meta_objset;
3461	range_tree_t *rtsync;
3462	dmu_tx_t *tx;
3463	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3464
3465	ASSERT(vdev_is_concrete(vd));
3466	ASSERT(vd->vdev_ops->vdev_op_leaf);
3467
3468	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3469
3470	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3471		mutex_enter(&vd->vdev_dtl_lock);
3472		space_map_free(vd->vdev_dtl_sm, tx);
3473		space_map_close(vd->vdev_dtl_sm);
3474		vd->vdev_dtl_sm = NULL;
3475		mutex_exit(&vd->vdev_dtl_lock);
3476
3477		/*
3478		 * We only destroy the leaf ZAP for detached leaves or for
3479		 * removed log devices. Removed data devices handle leaf ZAP
3480		 * cleanup later, once cancellation is no longer possible.
3481		 */
3482		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3483		    vd->vdev_top->vdev_islog)) {
3484			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3485			vd->vdev_leaf_zap = 0;
3486		}
3487
3488		dmu_tx_commit(tx);
3489		return;
3490	}
3491
3492	if (vd->vdev_dtl_sm == NULL) {
3493		uint64_t new_object;
3494
3495		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3496		VERIFY3U(new_object, !=, 0);
3497
3498		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3499		    0, -1ULL, 0));
3500		ASSERT(vd->vdev_dtl_sm != NULL);
3501	}
3502
3503	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3504
3505	mutex_enter(&vd->vdev_dtl_lock);
3506	range_tree_walk(rt, range_tree_add, rtsync);
3507	mutex_exit(&vd->vdev_dtl_lock);
3508
3509	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3510	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3511	range_tree_vacate(rtsync, NULL, NULL);
3512
3513	range_tree_destroy(rtsync);
3514
3515	/*
3516	 * If the object for the space map has changed then dirty
3517	 * the top level so that we update the config.
3518	 */
3519	if (object != space_map_object(vd->vdev_dtl_sm)) {
3520		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3521		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3522		    (u_longlong_t)object,
3523		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3524		vdev_config_dirty(vd->vdev_top);
3525	}
3526
3527	dmu_tx_commit(tx);
3528}
3529
3530/*
3531 * Determine whether the specified vdev can be offlined/detached/removed
3532 * without losing data.
3533 */
3534boolean_t
3535vdev_dtl_required(vdev_t *vd)
3536{
3537	spa_t *spa = vd->vdev_spa;
3538	vdev_t *tvd = vd->vdev_top;
3539	uint8_t cant_read = vd->vdev_cant_read;
3540	boolean_t required;
3541
3542	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3543
3544	if (vd == spa->spa_root_vdev || vd == tvd)
3545		return (B_TRUE);
3546
3547	/*
3548	 * Temporarily mark the device as unreadable, and then determine
3549	 * whether this results in any DTL outages in the top-level vdev.
3550	 * If not, we can safely offline/detach/remove the device.
3551	 */
3552	vd->vdev_cant_read = B_TRUE;
3553	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3554	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3555	vd->vdev_cant_read = cant_read;
3556	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3557
3558	if (!required && zio_injection_enabled) {
3559		required = !!zio_handle_device_injection(vd, NULL,
3560		    SET_ERROR(ECHILD));
3561	}
3562
3563	return (required);
3564}
3565
3566/*
3567 * Determine if resilver is needed, and if so the txg range.
3568 */
3569boolean_t
3570vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3571{
3572	boolean_t needed = B_FALSE;
3573	uint64_t thismin = UINT64_MAX;
3574	uint64_t thismax = 0;
3575
3576	if (vd->vdev_children == 0) {
3577		mutex_enter(&vd->vdev_dtl_lock);
3578		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3579		    vdev_writeable(vd)) {
3580
3581			thismin = vdev_dtl_min(vd);
3582			thismax = vdev_dtl_max(vd);
3583			needed = B_TRUE;
3584		}
3585		mutex_exit(&vd->vdev_dtl_lock);
3586	} else {
3587		for (int c = 0; c < vd->vdev_children; c++) {
3588			vdev_t *cvd = vd->vdev_child[c];
3589			uint64_t cmin, cmax;
3590
3591			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3592				thismin = MIN(thismin, cmin);
3593				thismax = MAX(thismax, cmax);
3594				needed = B_TRUE;
3595			}
3596		}
3597	}
3598
3599	if (needed && minp) {
3600		*minp = thismin;
3601		*maxp = thismax;
3602	}
3603	return (needed);
3604}
3605
3606/*
3607 * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3608 * will contain either the checkpoint spacemap object or zero if none exists.
3609 * All other errors are returned to the caller.
3610 */
3611int
3612vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3613{
3614	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3615
3616	if (vd->vdev_top_zap == 0) {
3617		*sm_obj = 0;
3618		return (0);
3619	}
3620
3621	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3622	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3623	if (error == ENOENT) {
3624		*sm_obj = 0;
3625		error = 0;
3626	}
3627
3628	return (error);
3629}
3630
3631int
3632vdev_load(vdev_t *vd)
3633{
3634	int children = vd->vdev_children;
3635	int error = 0;
3636	taskq_t *tq = NULL;
3637
3638	/*
3639	 * It's only worthwhile to use the taskq for the root vdev, because the
3640	 * slow part is metaslab_init, and that only happens for top-level
3641	 * vdevs.
3642	 */
3643	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3644		tq = taskq_create("vdev_load", children, minclsyspri,
3645		    children, children, TASKQ_PREPOPULATE);
3646	}
3647
3648	/*
3649	 * Recursively load all children.
3650	 */
3651	for (int c = 0; c < vd->vdev_children; c++) {
3652		vdev_t *cvd = vd->vdev_child[c];
3653
3654		if (tq == NULL || vdev_uses_zvols(cvd)) {
3655			cvd->vdev_load_error = vdev_load(cvd);
3656		} else {
3657			VERIFY(taskq_dispatch(tq, vdev_load_child,
3658			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3659		}
3660	}
3661
3662	if (tq != NULL) {
3663		taskq_wait(tq);
3664		taskq_destroy(tq);
3665	}
3666
3667	for (int c = 0; c < vd->vdev_children; c++) {
3668		int error = vd->vdev_child[c]->vdev_load_error;
3669
3670		if (error != 0)
3671			return (error);
3672	}
3673
3674	vdev_set_deflate_ratio(vd);
3675
3676	if (vd->vdev_ops == &vdev_raidz_ops) {
3677		error = vdev_raidz_load(vd);
3678		if (error != 0)
3679			return (error);
3680	}
3681
3682	/*
3683	 * On spa_load path, grab the allocation bias from our zap
3684	 */
3685	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3686		spa_t *spa = vd->vdev_spa;
3687		char bias_str[64];
3688
3689		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3690		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3691		    bias_str);
3692		if (error == 0) {
3693			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3694			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3695		} else if (error != ENOENT) {
3696			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3697			    VDEV_AUX_CORRUPT_DATA);
3698			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3699			    "failed [error=%d]",
3700			    (u_longlong_t)vd->vdev_top_zap, error);
3701			return (error);
3702		}
3703	}
3704
3705	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3706		spa_t *spa = vd->vdev_spa;
3707		uint64_t failfast;
3708
3709		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3710		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3711		    1, &failfast);
3712		if (error == 0) {
3713			vd->vdev_failfast = failfast & 1;
3714		} else if (error == ENOENT) {
3715			vd->vdev_failfast = vdev_prop_default_numeric(
3716			    VDEV_PROP_FAILFAST);
3717		} else {
3718			vdev_dbgmsg(vd,
3719			    "vdev_load: zap_lookup(top_zap=%llu) "
3720			    "failed [error=%d]",
3721			    (u_longlong_t)vd->vdev_top_zap, error);
3722		}
3723	}
3724
3725	/*
3726	 * Load any rebuild state from the top-level vdev zap.
3727	 */
3728	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3729		error = vdev_rebuild_load(vd);
3730		if (error && error != ENOTSUP) {
3731			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3732			    VDEV_AUX_CORRUPT_DATA);
3733			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3734			    "failed [error=%d]", error);
3735			return (error);
3736		}
3737	}
3738
3739	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3740		uint64_t zapobj;
3741
3742		if (vd->vdev_top_zap != 0)
3743			zapobj = vd->vdev_top_zap;
3744		else
3745			zapobj = vd->vdev_leaf_zap;
3746
3747		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3748		    &vd->vdev_checksum_n);
3749		if (error && error != ENOENT)
3750			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3751			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3752
3753		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3754		    &vd->vdev_checksum_t);
3755		if (error && error != ENOENT)
3756			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3757			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3758
3759		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3760		    &vd->vdev_io_n);
3761		if (error && error != ENOENT)
3762			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3763			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3764
3765		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3766		    &vd->vdev_io_t);
3767		if (error && error != ENOENT)
3768			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3769			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3770
3771		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3772		    &vd->vdev_slow_io_n);
3773		if (error && error != ENOENT)
3774			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3775			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3776
3777		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3778		    &vd->vdev_slow_io_t);
3779		if (error && error != ENOENT)
3780			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3781			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3782	}
3783
3784	/*
3785	 * If this is a top-level vdev, initialize its metaslabs.
3786	 */
3787	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3788		vdev_metaslab_group_create(vd);
3789
3790		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3791			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3792			    VDEV_AUX_CORRUPT_DATA);
3793			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3794			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3795			    (u_longlong_t)vd->vdev_asize);
3796			return (SET_ERROR(ENXIO));
3797		}
3798
3799		error = vdev_metaslab_init(vd, 0);
3800		if (error != 0) {
3801			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3802			    "[error=%d]", error);
3803			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3804			    VDEV_AUX_CORRUPT_DATA);
3805			return (error);
3806		}
3807
3808		uint64_t checkpoint_sm_obj;
3809		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3810		if (error == 0 && checkpoint_sm_obj != 0) {
3811			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3812			ASSERT(vd->vdev_asize != 0);
3813			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3814
3815			error = space_map_open(&vd->vdev_checkpoint_sm,
3816			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3817			    vd->vdev_ashift);
3818			if (error != 0) {
3819				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3820				    "failed for checkpoint spacemap (obj %llu) "
3821				    "[error=%d]",
3822				    (u_longlong_t)checkpoint_sm_obj, error);
3823				return (error);
3824			}
3825			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3826
3827			/*
3828			 * Since the checkpoint_sm contains free entries
3829			 * exclusively we can use space_map_allocated() to
3830			 * indicate the cumulative checkpointed space that
3831			 * has been freed.
3832			 */
3833			vd->vdev_stat.vs_checkpoint_space =
3834			    -space_map_allocated(vd->vdev_checkpoint_sm);
3835			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3836			    vd->vdev_stat.vs_checkpoint_space;
3837		} else if (error != 0) {
3838			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3839			    "checkpoint space map object from vdev ZAP "
3840			    "[error=%d]", error);
3841			return (error);
3842		}
3843	}
3844
3845	/*
3846	 * If this is a leaf vdev, load its DTL.
3847	 */
3848	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3849		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3850		    VDEV_AUX_CORRUPT_DATA);
3851		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3852		    "[error=%d]", error);
3853		return (error);
3854	}
3855
3856	uint64_t obsolete_sm_object;
3857	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3858	if (error == 0 && obsolete_sm_object != 0) {
3859		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3860		ASSERT(vd->vdev_asize != 0);
3861		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3862
3863		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3864		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3865			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3866			    VDEV_AUX_CORRUPT_DATA);
3867			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3868			    "obsolete spacemap (obj %llu) [error=%d]",
3869			    (u_longlong_t)obsolete_sm_object, error);
3870			return (error);
3871		}
3872	} else if (error != 0) {
3873		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3874		    "space map object from vdev ZAP [error=%d]", error);
3875		return (error);
3876	}
3877
3878	return (0);
3879}
3880
3881/*
3882 * The special vdev case is used for hot spares and l2cache devices.  Its
3883 * sole purpose it to set the vdev state for the associated vdev.  To do this,
3884 * we make sure that we can open the underlying device, then try to read the
3885 * label, and make sure that the label is sane and that it hasn't been
3886 * repurposed to another pool.
3887 */
3888int
3889vdev_validate_aux(vdev_t *vd)
3890{
3891	nvlist_t *label;
3892	uint64_t guid, version;
3893	uint64_t state;
3894
3895	if (!vdev_readable(vd))
3896		return (0);
3897
3898	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3899		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3900		    VDEV_AUX_CORRUPT_DATA);
3901		return (-1);
3902	}
3903
3904	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3905	    !SPA_VERSION_IS_SUPPORTED(version) ||
3906	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3907	    guid != vd->vdev_guid ||
3908	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3909		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3910		    VDEV_AUX_CORRUPT_DATA);
3911		nvlist_free(label);
3912		return (-1);
3913	}
3914
3915	/*
3916	 * We don't actually check the pool state here.  If it's in fact in
3917	 * use by another pool, we update this fact on the fly when requested.
3918	 */
3919	nvlist_free(label);
3920	return (0);
3921}
3922
3923static void
3924vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3925{
3926	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3927
3928	if (vd->vdev_top_zap == 0)
3929		return;
3930
3931	uint64_t object = 0;
3932	int err = zap_lookup(mos, vd->vdev_top_zap,
3933	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3934	if (err == ENOENT)
3935		return;
3936	VERIFY0(err);
3937
3938	VERIFY0(dmu_object_free(mos, object, tx));
3939	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3940	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3941}
3942
3943/*
3944 * Free the objects used to store this vdev's spacemaps, and the array
3945 * that points to them.
3946 */
3947void
3948vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3949{
3950	if (vd->vdev_ms_array == 0)
3951		return;
3952
3953	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3954	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3955	size_t array_bytes = array_count * sizeof (uint64_t);
3956	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3957	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3958	    array_bytes, smobj_array, 0));
3959
3960	for (uint64_t i = 0; i < array_count; i++) {
3961		uint64_t smobj = smobj_array[i];
3962		if (smobj == 0)
3963			continue;
3964
3965		space_map_free_obj(mos, smobj, tx);
3966	}
3967
3968	kmem_free(smobj_array, array_bytes);
3969	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3970	vdev_destroy_ms_flush_data(vd, tx);
3971	vd->vdev_ms_array = 0;
3972}
3973
3974static void
3975vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3976{
3977	spa_t *spa = vd->vdev_spa;
3978
3979	ASSERT(vd->vdev_islog);
3980	ASSERT(vd == vd->vdev_top);
3981	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3982
3983	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3984
3985	vdev_destroy_spacemaps(vd, tx);
3986	if (vd->vdev_top_zap != 0) {
3987		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3988		vd->vdev_top_zap = 0;
3989	}
3990
3991	dmu_tx_commit(tx);
3992}
3993
3994void
3995vdev_sync_done(vdev_t *vd, uint64_t txg)
3996{
3997	metaslab_t *msp;
3998	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3999
4000	ASSERT(vdev_is_concrete(vd));
4001
4002	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4003	    != NULL)
4004		metaslab_sync_done(msp, txg);
4005
4006	if (reassess) {
4007		metaslab_sync_reassess(vd->vdev_mg);
4008		if (vd->vdev_log_mg != NULL)
4009			metaslab_sync_reassess(vd->vdev_log_mg);
4010	}
4011}
4012
4013void
4014vdev_sync(vdev_t *vd, uint64_t txg)
4015{
4016	spa_t *spa = vd->vdev_spa;
4017	vdev_t *lvd;
4018	metaslab_t *msp;
4019
4020	ASSERT3U(txg, ==, spa->spa_syncing_txg);
4021	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4022	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
4023		ASSERT(vd->vdev_removing ||
4024		    vd->vdev_ops == &vdev_indirect_ops);
4025
4026		vdev_indirect_sync_obsolete(vd, tx);
4027
4028		/*
4029		 * If the vdev is indirect, it can't have dirty
4030		 * metaslabs or DTLs.
4031		 */
4032		if (vd->vdev_ops == &vdev_indirect_ops) {
4033			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4034			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4035			dmu_tx_commit(tx);
4036			return;
4037		}
4038	}
4039
4040	ASSERT(vdev_is_concrete(vd));
4041
4042	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4043	    !vd->vdev_removing) {
4044		ASSERT(vd == vd->vdev_top);
4045		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4046		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4047		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4048		ASSERT(vd->vdev_ms_array != 0);
4049		vdev_config_dirty(vd);
4050	}
4051
4052	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4053		metaslab_sync(msp, txg);
4054		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4055	}
4056
4057	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4058		vdev_dtl_sync(lvd, txg);
4059
4060	/*
4061	 * If this is an empty log device being removed, destroy the
4062	 * metadata associated with it.
4063	 */
4064	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4065		vdev_remove_empty_log(vd, txg);
4066
4067	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4068	dmu_tx_commit(tx);
4069}
4070
4071/*
4072 * Return the amount of space that should be (or was) allocated for the given
4073 * psize (compressed block size) in the given TXG. Note that for expanded
4074 * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4075 * vdev_raidz_asize().
4076 */
4077uint64_t
4078vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4079{
4080	return (vd->vdev_ops->vdev_op_asize(vd, psize, txg));
4081}
4082
4083uint64_t
4084vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4085{
4086	return (vdev_psize_to_asize_txg(vd, psize, 0));
4087}
4088
4089/*
4090 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
4091 * not be opened, and no I/O is attempted.
4092 */
4093int
4094vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4095{
4096	vdev_t *vd, *tvd;
4097
4098	spa_vdev_state_enter(spa, SCL_NONE);
4099
4100	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4101		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4102
4103	if (!vd->vdev_ops->vdev_op_leaf)
4104		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4105
4106	tvd = vd->vdev_top;
4107
4108	/*
4109	 * If user did a 'zpool offline -f' then make the fault persist across
4110	 * reboots.
4111	 */
4112	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4113		/*
4114		 * There are two kinds of forced faults: temporary and
4115		 * persistent.  Temporary faults go away at pool import, while
4116		 * persistent faults stay set.  Both types of faults can be
4117		 * cleared with a zpool clear.
4118		 *
4119		 * We tell if a vdev is persistently faulted by looking at the
4120		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4121		 * import then it's a persistent fault.  Otherwise, it's
4122		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4123		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4124		 * tells vdev_config_generate() (which gets run later) to set
4125		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4126		 */
4127		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4128		vd->vdev_tmpoffline = B_FALSE;
4129		aux = VDEV_AUX_EXTERNAL;
4130	} else {
4131		vd->vdev_tmpoffline = B_TRUE;
4132	}
4133
4134	/*
4135	 * We don't directly use the aux state here, but if we do a
4136	 * vdev_reopen(), we need this value to be present to remember why we
4137	 * were faulted.
4138	 */
4139	vd->vdev_label_aux = aux;
4140
4141	/*
4142	 * Faulted state takes precedence over degraded.
4143	 */
4144	vd->vdev_delayed_close = B_FALSE;
4145	vd->vdev_faulted = 1ULL;
4146	vd->vdev_degraded = 0ULL;
4147	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4148
4149	/*
4150	 * If this device has the only valid copy of the data, then
4151	 * back off and simply mark the vdev as degraded instead.
4152	 */
4153	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4154		vd->vdev_degraded = 1ULL;
4155		vd->vdev_faulted = 0ULL;
4156
4157		/*
4158		 * If we reopen the device and it's not dead, only then do we
4159		 * mark it degraded.
4160		 */
4161		vdev_reopen(tvd);
4162
4163		if (vdev_readable(vd))
4164			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4165	}
4166
4167	return (spa_vdev_state_exit(spa, vd, 0));
4168}
4169
4170/*
4171 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4172 * user that something is wrong.  The vdev continues to operate as normal as far
4173 * as I/O is concerned.
4174 */
4175int
4176vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4177{
4178	vdev_t *vd;
4179
4180	spa_vdev_state_enter(spa, SCL_NONE);
4181
4182	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4183		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4184
4185	if (!vd->vdev_ops->vdev_op_leaf)
4186		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4187
4188	/*
4189	 * If the vdev is already faulted, then don't do anything.
4190	 */
4191	if (vd->vdev_faulted || vd->vdev_degraded)
4192		return (spa_vdev_state_exit(spa, NULL, 0));
4193
4194	vd->vdev_degraded = 1ULL;
4195	if (!vdev_is_dead(vd))
4196		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4197		    aux);
4198
4199	return (spa_vdev_state_exit(spa, vd, 0));
4200}
4201
4202int
4203vdev_remove_wanted(spa_t *spa, uint64_t guid)
4204{
4205	vdev_t *vd;
4206
4207	spa_vdev_state_enter(spa, SCL_NONE);
4208
4209	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4210		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4211
4212	/*
4213	 * If the vdev is already removed, or expanding which can trigger
4214	 * repartition add/remove events, then don't do anything.
4215	 */
4216	if (vd->vdev_removed || vd->vdev_expanding)
4217		return (spa_vdev_state_exit(spa, NULL, 0));
4218
4219	/*
4220	 * Confirm the vdev has been removed, otherwise don't do anything.
4221	 */
4222	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4223		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4224
4225	vd->vdev_remove_wanted = B_TRUE;
4226	spa_async_request(spa, SPA_ASYNC_REMOVE);
4227
4228	return (spa_vdev_state_exit(spa, vd, 0));
4229}
4230
4231
4232/*
4233 * Online the given vdev.
4234 *
4235 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4236 * spare device should be detached when the device finishes resilvering.
4237 * Second, the online should be treated like a 'test' online case, so no FMA
4238 * events are generated if the device fails to open.
4239 */
4240int
4241vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4242{
4243	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4244	boolean_t wasoffline;
4245	vdev_state_t oldstate;
4246
4247	spa_vdev_state_enter(spa, SCL_NONE);
4248
4249	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4250		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4251
4252	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4253	oldstate = vd->vdev_state;
4254
4255	tvd = vd->vdev_top;
4256	vd->vdev_offline = B_FALSE;
4257	vd->vdev_tmpoffline = B_FALSE;
4258	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4259	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4260
4261	/* XXX - L2ARC 1.0 does not support expansion */
4262	if (!vd->vdev_aux) {
4263		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4264			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4265			    spa->spa_autoexpand);
4266		vd->vdev_expansion_time = gethrestime_sec();
4267	}
4268
4269	vdev_reopen(tvd);
4270	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4271
4272	if (!vd->vdev_aux) {
4273		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4274			pvd->vdev_expanding = B_FALSE;
4275	}
4276
4277	if (newstate)
4278		*newstate = vd->vdev_state;
4279	if ((flags & ZFS_ONLINE_UNSPARE) &&
4280	    !vdev_is_dead(vd) && vd->vdev_parent &&
4281	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4282	    vd->vdev_parent->vdev_child[0] == vd)
4283		vd->vdev_unspare = B_TRUE;
4284
4285	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4286
4287		/* XXX - L2ARC 1.0 does not support expansion */
4288		if (vd->vdev_aux)
4289			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4290		spa->spa_ccw_fail_time = 0;
4291		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4292	}
4293
4294	/* Restart initializing if necessary */
4295	mutex_enter(&vd->vdev_initialize_lock);
4296	if (vdev_writeable(vd) &&
4297	    vd->vdev_initialize_thread == NULL &&
4298	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4299		(void) vdev_initialize(vd);
4300	}
4301	mutex_exit(&vd->vdev_initialize_lock);
4302
4303	/*
4304	 * Restart trimming if necessary. We do not restart trimming for cache
4305	 * devices here. This is triggered by l2arc_rebuild_vdev()
4306	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4307	 * space for upcoming writes.
4308	 */
4309	mutex_enter(&vd->vdev_trim_lock);
4310	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4311	    vd->vdev_trim_thread == NULL &&
4312	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4313		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4314		    vd->vdev_trim_secure);
4315	}
4316	mutex_exit(&vd->vdev_trim_lock);
4317
4318	if (wasoffline ||
4319	    (oldstate < VDEV_STATE_DEGRADED &&
4320	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4321		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4322
4323		/*
4324		 * Asynchronously detach spare vdev if resilver or
4325		 * rebuild is not required
4326		 */
4327		if (vd->vdev_unspare &&
4328		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4329		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4330		    !vdev_rebuild_active(tvd))
4331			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4332	}
4333	return (spa_vdev_state_exit(spa, vd, 0));
4334}
4335
4336static int
4337vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4338{
4339	vdev_t *vd, *tvd;
4340	int error = 0;
4341	uint64_t generation;
4342	metaslab_group_t *mg;
4343
4344top:
4345	spa_vdev_state_enter(spa, SCL_ALLOC);
4346
4347	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4348		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4349
4350	if (!vd->vdev_ops->vdev_op_leaf)
4351		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4352
4353	if (vd->vdev_ops == &vdev_draid_spare_ops)
4354		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4355
4356	tvd = vd->vdev_top;
4357	mg = tvd->vdev_mg;
4358	generation = spa->spa_config_generation + 1;
4359
4360	/*
4361	 * If the device isn't already offline, try to offline it.
4362	 */
4363	if (!vd->vdev_offline) {
4364		/*
4365		 * If this device has the only valid copy of some data,
4366		 * don't allow it to be offlined. Log devices are always
4367		 * expendable.
4368		 */
4369		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4370		    vdev_dtl_required(vd))
4371			return (spa_vdev_state_exit(spa, NULL,
4372			    SET_ERROR(EBUSY)));
4373
4374		/*
4375		 * If the top-level is a slog and it has had allocations
4376		 * then proceed.  We check that the vdev's metaslab group
4377		 * is not NULL since it's possible that we may have just
4378		 * added this vdev but not yet initialized its metaslabs.
4379		 */
4380		if (tvd->vdev_islog && mg != NULL) {
4381			/*
4382			 * Prevent any future allocations.
4383			 */
4384			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4385			metaslab_group_passivate(mg);
4386			(void) spa_vdev_state_exit(spa, vd, 0);
4387
4388			error = spa_reset_logs(spa);
4389
4390			/*
4391			 * If the log device was successfully reset but has
4392			 * checkpointed data, do not offline it.
4393			 */
4394			if (error == 0 &&
4395			    tvd->vdev_checkpoint_sm != NULL) {
4396				ASSERT3U(space_map_allocated(
4397				    tvd->vdev_checkpoint_sm), !=, 0);
4398				error = ZFS_ERR_CHECKPOINT_EXISTS;
4399			}
4400
4401			spa_vdev_state_enter(spa, SCL_ALLOC);
4402
4403			/*
4404			 * Check to see if the config has changed.
4405			 */
4406			if (error || generation != spa->spa_config_generation) {
4407				metaslab_group_activate(mg);
4408				if (error)
4409					return (spa_vdev_state_exit(spa,
4410					    vd, error));
4411				(void) spa_vdev_state_exit(spa, vd, 0);
4412				goto top;
4413			}
4414			ASSERT0(tvd->vdev_stat.vs_alloc);
4415		}
4416
4417		/*
4418		 * Offline this device and reopen its top-level vdev.
4419		 * If the top-level vdev is a log device then just offline
4420		 * it. Otherwise, if this action results in the top-level
4421		 * vdev becoming unusable, undo it and fail the request.
4422		 */
4423		vd->vdev_offline = B_TRUE;
4424		vdev_reopen(tvd);
4425
4426		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4427		    vdev_is_dead(tvd)) {
4428			vd->vdev_offline = B_FALSE;
4429			vdev_reopen(tvd);
4430			return (spa_vdev_state_exit(spa, NULL,
4431			    SET_ERROR(EBUSY)));
4432		}
4433
4434		/*
4435		 * Add the device back into the metaslab rotor so that
4436		 * once we online the device it's open for business.
4437		 */
4438		if (tvd->vdev_islog && mg != NULL)
4439			metaslab_group_activate(mg);
4440	}
4441
4442	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4443
4444	return (spa_vdev_state_exit(spa, vd, 0));
4445}
4446
4447int
4448vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4449{
4450	int error;
4451
4452	mutex_enter(&spa->spa_vdev_top_lock);
4453	error = vdev_offline_locked(spa, guid, flags);
4454	mutex_exit(&spa->spa_vdev_top_lock);
4455
4456	return (error);
4457}
4458
4459/*
4460 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4461 * vdev_offline(), we assume the spa config is locked.  We also clear all
4462 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4463 */
4464void
4465vdev_clear(spa_t *spa, vdev_t *vd)
4466{
4467	vdev_t *rvd = spa->spa_root_vdev;
4468
4469	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4470
4471	if (vd == NULL)
4472		vd = rvd;
4473
4474	vd->vdev_stat.vs_read_errors = 0;
4475	vd->vdev_stat.vs_write_errors = 0;
4476	vd->vdev_stat.vs_checksum_errors = 0;
4477	vd->vdev_stat.vs_slow_ios = 0;
4478
4479	for (int c = 0; c < vd->vdev_children; c++)
4480		vdev_clear(spa, vd->vdev_child[c]);
4481
4482	/*
4483	 * It makes no sense to "clear" an indirect  or removed vdev.
4484	 */
4485	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4486		return;
4487
4488	/*
4489	 * If we're in the FAULTED state or have experienced failed I/O, then
4490	 * clear the persistent state and attempt to reopen the device.  We
4491	 * also mark the vdev config dirty, so that the new faulted state is
4492	 * written out to disk.
4493	 */
4494	if (vd->vdev_faulted || vd->vdev_degraded ||
4495	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4496		/*
4497		 * When reopening in response to a clear event, it may be due to
4498		 * a fmadm repair request.  In this case, if the device is
4499		 * still broken, we want to still post the ereport again.
4500		 */
4501		vd->vdev_forcefault = B_TRUE;
4502
4503		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4504		vd->vdev_cant_read = B_FALSE;
4505		vd->vdev_cant_write = B_FALSE;
4506		vd->vdev_stat.vs_aux = 0;
4507
4508		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4509
4510		vd->vdev_forcefault = B_FALSE;
4511
4512		if (vd != rvd && vdev_writeable(vd->vdev_top))
4513			vdev_state_dirty(vd->vdev_top);
4514
4515		/* If a resilver isn't required, check if vdevs can be culled */
4516		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4517		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4518		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4519			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4520
4521		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4522	}
4523
4524	/*
4525	 * When clearing a FMA-diagnosed fault, we always want to
4526	 * unspare the device, as we assume that the original spare was
4527	 * done in response to the FMA fault.
4528	 */
4529	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4530	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4531	    vd->vdev_parent->vdev_child[0] == vd)
4532		vd->vdev_unspare = B_TRUE;
4533
4534	/* Clear recent error events cache (i.e. duplicate events tracking) */
4535	zfs_ereport_clear(spa, vd);
4536}
4537
4538boolean_t
4539vdev_is_dead(vdev_t *vd)
4540{
4541	/*
4542	 * Holes and missing devices are always considered "dead".
4543	 * This simplifies the code since we don't have to check for
4544	 * these types of devices in the various code paths.
4545	 * Instead we rely on the fact that we skip over dead devices
4546	 * before issuing I/O to them.
4547	 */
4548	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4549	    vd->vdev_ops == &vdev_hole_ops ||
4550	    vd->vdev_ops == &vdev_missing_ops);
4551}
4552
4553boolean_t
4554vdev_readable(vdev_t *vd)
4555{
4556	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4557}
4558
4559boolean_t
4560vdev_writeable(vdev_t *vd)
4561{
4562	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4563	    vdev_is_concrete(vd));
4564}
4565
4566boolean_t
4567vdev_allocatable(vdev_t *vd)
4568{
4569	uint64_t state = vd->vdev_state;
4570
4571	/*
4572	 * We currently allow allocations from vdevs which may be in the
4573	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4574	 * fails to reopen then we'll catch it later when we're holding
4575	 * the proper locks.  Note that we have to get the vdev state
4576	 * in a local variable because although it changes atomically,
4577	 * we're asking two separate questions about it.
4578	 */
4579	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4580	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4581	    vd->vdev_mg->mg_initialized);
4582}
4583
4584boolean_t
4585vdev_accessible(vdev_t *vd, zio_t *zio)
4586{
4587	ASSERT(zio->io_vd == vd);
4588
4589	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4590		return (B_FALSE);
4591
4592	if (zio->io_type == ZIO_TYPE_READ)
4593		return (!vd->vdev_cant_read);
4594
4595	if (zio->io_type == ZIO_TYPE_WRITE)
4596		return (!vd->vdev_cant_write);
4597
4598	return (B_TRUE);
4599}
4600
4601static void
4602vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4603{
4604	/*
4605	 * Exclude the dRAID spare when aggregating to avoid double counting
4606	 * the ops and bytes.  These IOs are counted by the physical leaves.
4607	 */
4608	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4609		return;
4610
4611	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4612		vs->vs_ops[t] += cvs->vs_ops[t];
4613		vs->vs_bytes[t] += cvs->vs_bytes[t];
4614	}
4615
4616	cvs->vs_scan_removing = cvd->vdev_removing;
4617}
4618
4619/*
4620 * Get extended stats
4621 */
4622static void
4623vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4624{
4625	(void) cvd;
4626
4627	int t, b;
4628	for (t = 0; t < ZIO_TYPES; t++) {
4629		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4630			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4631
4632		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4633			vsx->vsx_total_histo[t][b] +=
4634			    cvsx->vsx_total_histo[t][b];
4635		}
4636	}
4637
4638	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4639		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4640			vsx->vsx_queue_histo[t][b] +=
4641			    cvsx->vsx_queue_histo[t][b];
4642		}
4643		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4644		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4645
4646		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4647			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4648
4649		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4650			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4651	}
4652
4653}
4654
4655boolean_t
4656vdev_is_spacemap_addressable(vdev_t *vd)
4657{
4658	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4659		return (B_TRUE);
4660
4661	/*
4662	 * If double-word space map entries are not enabled we assume
4663	 * 47 bits of the space map entry are dedicated to the entry's
4664	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4665	 * to calculate the maximum address that can be described by a
4666	 * space map entry for the given device.
4667	 */
4668	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4669
4670	if (shift >= 63) /* detect potential overflow */
4671		return (B_TRUE);
4672
4673	return (vd->vdev_asize < (1ULL << shift));
4674}
4675
4676/*
4677 * Get statistics for the given vdev.
4678 */
4679static void
4680vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4681{
4682	int t;
4683	/*
4684	 * If we're getting stats on the root vdev, aggregate the I/O counts
4685	 * over all top-level vdevs (i.e. the direct children of the root).
4686	 */
4687	if (!vd->vdev_ops->vdev_op_leaf) {
4688		if (vs) {
4689			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4690			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4691		}
4692		if (vsx)
4693			memset(vsx, 0, sizeof (*vsx));
4694
4695		for (int c = 0; c < vd->vdev_children; c++) {
4696			vdev_t *cvd = vd->vdev_child[c];
4697			vdev_stat_t *cvs = &cvd->vdev_stat;
4698			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4699
4700			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4701			if (vs)
4702				vdev_get_child_stat(cvd, vs, cvs);
4703			if (vsx)
4704				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4705		}
4706	} else {
4707		/*
4708		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4709		 * other leaf stats are updated in vdev_stat_update().
4710		 */
4711		if (!vsx)
4712			return;
4713
4714		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4715
4716		for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4717			vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4718			vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4719		}
4720	}
4721}
4722
4723void
4724vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4725{
4726	vdev_t *tvd = vd->vdev_top;
4727	mutex_enter(&vd->vdev_stat_lock);
4728	if (vs) {
4729		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4730		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4731		vs->vs_state = vd->vdev_state;
4732		vs->vs_rsize = vdev_get_min_asize(vd);
4733
4734		if (vd->vdev_ops->vdev_op_leaf) {
4735			vs->vs_pspace = vd->vdev_psize;
4736			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4737			    VDEV_LABEL_END_SIZE;
4738			/*
4739			 * Report initializing progress. Since we don't
4740			 * have the initializing locks held, this is only
4741			 * an estimate (although a fairly accurate one).
4742			 */
4743			vs->vs_initialize_bytes_done =
4744			    vd->vdev_initialize_bytes_done;
4745			vs->vs_initialize_bytes_est =
4746			    vd->vdev_initialize_bytes_est;
4747			vs->vs_initialize_state = vd->vdev_initialize_state;
4748			vs->vs_initialize_action_time =
4749			    vd->vdev_initialize_action_time;
4750
4751			/*
4752			 * Report manual TRIM progress. Since we don't have
4753			 * the manual TRIM locks held, this is only an
4754			 * estimate (although fairly accurate one).
4755			 */
4756			vs->vs_trim_notsup = !vd->vdev_has_trim;
4757			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4758			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4759			vs->vs_trim_state = vd->vdev_trim_state;
4760			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4761
4762			/* Set when there is a deferred resilver. */
4763			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4764		}
4765
4766		/*
4767		 * Report expandable space on top-level, non-auxiliary devices
4768		 * only. The expandable space is reported in terms of metaslab
4769		 * sized units since that determines how much space the pool
4770		 * can expand.
4771		 */
4772		if (vd->vdev_aux == NULL && tvd != NULL) {
4773			vs->vs_esize = P2ALIGN_TYPED(
4774			    vd->vdev_max_asize - vd->vdev_asize,
4775			    1ULL << tvd->vdev_ms_shift, uint64_t);
4776		}
4777
4778		vs->vs_configured_ashift = vd->vdev_top != NULL
4779		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4780		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4781		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4782			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4783		else
4784			vs->vs_physical_ashift = 0;
4785
4786		/*
4787		 * Report fragmentation and rebuild progress for top-level,
4788		 * non-auxiliary, concrete devices.
4789		 */
4790		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4791		    vdev_is_concrete(vd)) {
4792			/*
4793			 * The vdev fragmentation rating doesn't take into
4794			 * account the embedded slog metaslab (vdev_log_mg).
4795			 * Since it's only one metaslab, it would have a tiny
4796			 * impact on the overall fragmentation.
4797			 */
4798			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4799			    vd->vdev_mg->mg_fragmentation : 0;
4800		}
4801		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4802		    tvd ? tvd->vdev_noalloc : 0);
4803	}
4804
4805	vdev_get_stats_ex_impl(vd, vs, vsx);
4806	mutex_exit(&vd->vdev_stat_lock);
4807}
4808
4809void
4810vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4811{
4812	return (vdev_get_stats_ex(vd, vs, NULL));
4813}
4814
4815void
4816vdev_clear_stats(vdev_t *vd)
4817{
4818	mutex_enter(&vd->vdev_stat_lock);
4819	vd->vdev_stat.vs_space = 0;
4820	vd->vdev_stat.vs_dspace = 0;
4821	vd->vdev_stat.vs_alloc = 0;
4822	mutex_exit(&vd->vdev_stat_lock);
4823}
4824
4825void
4826vdev_scan_stat_init(vdev_t *vd)
4827{
4828	vdev_stat_t *vs = &vd->vdev_stat;
4829
4830	for (int c = 0; c < vd->vdev_children; c++)
4831		vdev_scan_stat_init(vd->vdev_child[c]);
4832
4833	mutex_enter(&vd->vdev_stat_lock);
4834	vs->vs_scan_processed = 0;
4835	mutex_exit(&vd->vdev_stat_lock);
4836}
4837
4838void
4839vdev_stat_update(zio_t *zio, uint64_t psize)
4840{
4841	spa_t *spa = zio->io_spa;
4842	vdev_t *rvd = spa->spa_root_vdev;
4843	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4844	vdev_t *pvd;
4845	uint64_t txg = zio->io_txg;
4846/* Suppress ASAN false positive */
4847#ifdef __SANITIZE_ADDRESS__
4848	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4849	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4850#else
4851	vdev_stat_t *vs = &vd->vdev_stat;
4852	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4853#endif
4854	zio_type_t type = zio->io_type;
4855	int flags = zio->io_flags;
4856
4857	/*
4858	 * If this i/o is a gang leader, it didn't do any actual work.
4859	 */
4860	if (zio->io_gang_tree)
4861		return;
4862
4863	if (zio->io_error == 0) {
4864		/*
4865		 * If this is a root i/o, don't count it -- we've already
4866		 * counted the top-level vdevs, and vdev_get_stats() will
4867		 * aggregate them when asked.  This reduces contention on
4868		 * the root vdev_stat_lock and implicitly handles blocks
4869		 * that compress away to holes, for which there is no i/o.
4870		 * (Holes never create vdev children, so all the counters
4871		 * remain zero, which is what we want.)
4872		 *
4873		 * Note: this only applies to successful i/o (io_error == 0)
4874		 * because unlike i/o counts, errors are not additive.
4875		 * When reading a ditto block, for example, failure of
4876		 * one top-level vdev does not imply a root-level error.
4877		 */
4878		if (vd == rvd)
4879			return;
4880
4881		ASSERT(vd == zio->io_vd);
4882
4883		if (flags & ZIO_FLAG_IO_BYPASS)
4884			return;
4885
4886		mutex_enter(&vd->vdev_stat_lock);
4887
4888		if (flags & ZIO_FLAG_IO_REPAIR) {
4889			/*
4890			 * Repair is the result of a resilver issued by the
4891			 * scan thread (spa_sync).
4892			 */
4893			if (flags & ZIO_FLAG_SCAN_THREAD) {
4894				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4895				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4896				uint64_t *processed = &scn_phys->scn_processed;
4897
4898				if (vd->vdev_ops->vdev_op_leaf)
4899					atomic_add_64(processed, psize);
4900				vs->vs_scan_processed += psize;
4901			}
4902
4903			/*
4904			 * Repair is the result of a rebuild issued by the
4905			 * rebuild thread (vdev_rebuild_thread).  To avoid
4906			 * double counting repaired bytes the virtual dRAID
4907			 * spare vdev is excluded from the processed bytes.
4908			 */
4909			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4910				vdev_t *tvd = vd->vdev_top;
4911				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4912				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4913				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4914
4915				if (vd->vdev_ops->vdev_op_leaf &&
4916				    vd->vdev_ops != &vdev_draid_spare_ops) {
4917					atomic_add_64(rebuilt, psize);
4918				}
4919				vs->vs_rebuild_processed += psize;
4920			}
4921
4922			if (flags & ZIO_FLAG_SELF_HEAL)
4923				vs->vs_self_healed += psize;
4924		}
4925
4926		/*
4927		 * The bytes/ops/histograms are recorded at the leaf level and
4928		 * aggregated into the higher level vdevs in vdev_get_stats().
4929		 */
4930		if (vd->vdev_ops->vdev_op_leaf &&
4931		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4932			zio_type_t vs_type = type;
4933			zio_priority_t priority = zio->io_priority;
4934
4935			/*
4936			 * TRIM ops and bytes are reported to user space as
4937			 * ZIO_TYPE_FLUSH.  This is done to preserve the
4938			 * vdev_stat_t structure layout for user space.
4939			 */
4940			if (type == ZIO_TYPE_TRIM)
4941				vs_type = ZIO_TYPE_FLUSH;
4942
4943			/*
4944			 * Solely for the purposes of 'zpool iostat -lqrw'
4945			 * reporting use the priority to categorize the IO.
4946			 * Only the following are reported to user space:
4947			 *
4948			 *   ZIO_PRIORITY_SYNC_READ,
4949			 *   ZIO_PRIORITY_SYNC_WRITE,
4950			 *   ZIO_PRIORITY_ASYNC_READ,
4951			 *   ZIO_PRIORITY_ASYNC_WRITE,
4952			 *   ZIO_PRIORITY_SCRUB,
4953			 *   ZIO_PRIORITY_TRIM,
4954			 *   ZIO_PRIORITY_REBUILD.
4955			 */
4956			if (priority == ZIO_PRIORITY_INITIALIZING) {
4957				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4958				priority = ZIO_PRIORITY_ASYNC_WRITE;
4959			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4960				priority = ((type == ZIO_TYPE_WRITE) ?
4961				    ZIO_PRIORITY_ASYNC_WRITE :
4962				    ZIO_PRIORITY_ASYNC_READ);
4963			}
4964
4965			vs->vs_ops[vs_type]++;
4966			vs->vs_bytes[vs_type] += psize;
4967
4968			if (flags & ZIO_FLAG_DELEGATED) {
4969				vsx->vsx_agg_histo[priority]
4970				    [RQ_HISTO(zio->io_size)]++;
4971			} else {
4972				vsx->vsx_ind_histo[priority]
4973				    [RQ_HISTO(zio->io_size)]++;
4974			}
4975
4976			if (zio->io_delta && zio->io_delay) {
4977				vsx->vsx_queue_histo[priority]
4978				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4979				vsx->vsx_disk_histo[type]
4980				    [L_HISTO(zio->io_delay)]++;
4981				vsx->vsx_total_histo[type]
4982				    [L_HISTO(zio->io_delta)]++;
4983			}
4984		}
4985
4986		mutex_exit(&vd->vdev_stat_lock);
4987		return;
4988	}
4989
4990	if (flags & ZIO_FLAG_SPECULATIVE)
4991		return;
4992
4993	/*
4994	 * If this is an I/O error that is going to be retried, then ignore the
4995	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4996	 * hard errors, when in reality they can happen for any number of
4997	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4998	 */
4999	if (zio->io_error == EIO &&
5000	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5001		return;
5002
5003	/*
5004	 * Intent logs writes won't propagate their error to the root
5005	 * I/O so don't mark these types of failures as pool-level
5006	 * errors.
5007	 */
5008	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5009		return;
5010
5011	if (type == ZIO_TYPE_WRITE && txg != 0 &&
5012	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
5013	    (flags & ZIO_FLAG_SCAN_THREAD) ||
5014	    spa->spa_claiming)) {
5015		/*
5016		 * This is either a normal write (not a repair), or it's
5017		 * a repair induced by the scrub thread, or it's a repair
5018		 * made by zil_claim() during spa_load() in the first txg.
5019		 * In the normal case, we commit the DTL change in the same
5020		 * txg as the block was born.  In the scrub-induced repair
5021		 * case, we know that scrubs run in first-pass syncing context,
5022		 * so we commit the DTL change in spa_syncing_txg(spa).
5023		 * In the zil_claim() case, we commit in spa_first_txg(spa).
5024		 *
5025		 * We currently do not make DTL entries for failed spontaneous
5026		 * self-healing writes triggered by normal (non-scrubbing)
5027		 * reads, because we have no transactional context in which to
5028		 * do so -- and it's not clear that it'd be desirable anyway.
5029		 */
5030		if (vd->vdev_ops->vdev_op_leaf) {
5031			uint64_t commit_txg = txg;
5032			if (flags & ZIO_FLAG_SCAN_THREAD) {
5033				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5034				ASSERT(spa_sync_pass(spa) == 1);
5035				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5036				commit_txg = spa_syncing_txg(spa);
5037			} else if (spa->spa_claiming) {
5038				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5039				commit_txg = spa_first_txg(spa);
5040			}
5041			ASSERT(commit_txg >= spa_syncing_txg(spa));
5042			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5043				return;
5044			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5045				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5046			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5047		}
5048		if (vd != rvd)
5049			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5050	}
5051}
5052
5053int64_t
5054vdev_deflated_space(vdev_t *vd, int64_t space)
5055{
5056	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5057	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5058
5059	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5060}
5061
5062/*
5063 * Update the in-core space usage stats for this vdev, its metaslab class,
5064 * and the root vdev.
5065 */
5066void
5067vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5068    int64_t space_delta)
5069{
5070	(void) defer_delta;
5071	int64_t dspace_delta;
5072	spa_t *spa = vd->vdev_spa;
5073	vdev_t *rvd = spa->spa_root_vdev;
5074
5075	ASSERT(vd == vd->vdev_top);
5076
5077	/*
5078	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5079	 * factor.  We must calculate this here and not at the root vdev
5080	 * because the root vdev's psize-to-asize is simply the max of its
5081	 * children's, thus not accurate enough for us.
5082	 */
5083	dspace_delta = vdev_deflated_space(vd, space_delta);
5084
5085	mutex_enter(&vd->vdev_stat_lock);
5086	/* ensure we won't underflow */
5087	if (alloc_delta < 0) {
5088		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5089	}
5090
5091	vd->vdev_stat.vs_alloc += alloc_delta;
5092	vd->vdev_stat.vs_space += space_delta;
5093	vd->vdev_stat.vs_dspace += dspace_delta;
5094	mutex_exit(&vd->vdev_stat_lock);
5095
5096	/* every class but log contributes to root space stats */
5097	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5098		ASSERT(!vd->vdev_isl2cache);
5099		mutex_enter(&rvd->vdev_stat_lock);
5100		rvd->vdev_stat.vs_alloc += alloc_delta;
5101		rvd->vdev_stat.vs_space += space_delta;
5102		rvd->vdev_stat.vs_dspace += dspace_delta;
5103		mutex_exit(&rvd->vdev_stat_lock);
5104	}
5105	/* Note: metaslab_class_space_update moved to metaslab_space_update */
5106}
5107
5108/*
5109 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5110 * so that it will be written out next time the vdev configuration is synced.
5111 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5112 */
5113void
5114vdev_config_dirty(vdev_t *vd)
5115{
5116	spa_t *spa = vd->vdev_spa;
5117	vdev_t *rvd = spa->spa_root_vdev;
5118	int c;
5119
5120	ASSERT(spa_writeable(spa));
5121
5122	/*
5123	 * If this is an aux vdev (as with l2cache and spare devices), then we
5124	 * update the vdev config manually and set the sync flag.
5125	 */
5126	if (vd->vdev_aux != NULL) {
5127		spa_aux_vdev_t *sav = vd->vdev_aux;
5128		nvlist_t **aux;
5129		uint_t naux;
5130
5131		for (c = 0; c < sav->sav_count; c++) {
5132			if (sav->sav_vdevs[c] == vd)
5133				break;
5134		}
5135
5136		if (c == sav->sav_count) {
5137			/*
5138			 * We're being removed.  There's nothing more to do.
5139			 */
5140			ASSERT(sav->sav_sync == B_TRUE);
5141			return;
5142		}
5143
5144		sav->sav_sync = B_TRUE;
5145
5146		if (nvlist_lookup_nvlist_array(sav->sav_config,
5147		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5148			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5149			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5150		}
5151
5152		ASSERT(c < naux);
5153
5154		/*
5155		 * Setting the nvlist in the middle if the array is a little
5156		 * sketchy, but it will work.
5157		 */
5158		nvlist_free(aux[c]);
5159		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5160
5161		return;
5162	}
5163
5164	/*
5165	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5166	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5167	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5168	 * so this is sufficient to ensure mutual exclusion.
5169	 */
5170	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5171	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5172	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5173
5174	if (vd == rvd) {
5175		for (c = 0; c < rvd->vdev_children; c++)
5176			vdev_config_dirty(rvd->vdev_child[c]);
5177	} else {
5178		ASSERT(vd == vd->vdev_top);
5179
5180		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5181		    vdev_is_concrete(vd)) {
5182			list_insert_head(&spa->spa_config_dirty_list, vd);
5183		}
5184	}
5185}
5186
5187void
5188vdev_config_clean(vdev_t *vd)
5189{
5190	spa_t *spa = vd->vdev_spa;
5191
5192	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5193	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5194	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5195
5196	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5197	list_remove(&spa->spa_config_dirty_list, vd);
5198}
5199
5200/*
5201 * Mark a top-level vdev's state as dirty, so that the next pass of
5202 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5203 * the state changes from larger config changes because they require
5204 * much less locking, and are often needed for administrative actions.
5205 */
5206void
5207vdev_state_dirty(vdev_t *vd)
5208{
5209	spa_t *spa = vd->vdev_spa;
5210
5211	ASSERT(spa_writeable(spa));
5212	ASSERT(vd == vd->vdev_top);
5213
5214	/*
5215	 * The state list is protected by the SCL_STATE lock.  The caller
5216	 * must either hold SCL_STATE as writer, or must be the sync thread
5217	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5218	 * so this is sufficient to ensure mutual exclusion.
5219	 */
5220	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5221	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5222	    spa_config_held(spa, SCL_STATE, RW_READER)));
5223
5224	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5225	    vdev_is_concrete(vd))
5226		list_insert_head(&spa->spa_state_dirty_list, vd);
5227}
5228
5229void
5230vdev_state_clean(vdev_t *vd)
5231{
5232	spa_t *spa = vd->vdev_spa;
5233
5234	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5235	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5236	    spa_config_held(spa, SCL_STATE, RW_READER)));
5237
5238	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5239	list_remove(&spa->spa_state_dirty_list, vd);
5240}
5241
5242/*
5243 * Propagate vdev state up from children to parent.
5244 */
5245void
5246vdev_propagate_state(vdev_t *vd)
5247{
5248	spa_t *spa = vd->vdev_spa;
5249	vdev_t *rvd = spa->spa_root_vdev;
5250	int degraded = 0, faulted = 0;
5251	int corrupted = 0;
5252	vdev_t *child;
5253
5254	if (vd->vdev_children > 0) {
5255		for (int c = 0; c < vd->vdev_children; c++) {
5256			child = vd->vdev_child[c];
5257
5258			/*
5259			 * Don't factor holes or indirect vdevs into the
5260			 * decision.
5261			 */
5262			if (!vdev_is_concrete(child))
5263				continue;
5264
5265			if (!vdev_readable(child) ||
5266			    (!vdev_writeable(child) && spa_writeable(spa))) {
5267				/*
5268				 * Root special: if there is a top-level log
5269				 * device, treat the root vdev as if it were
5270				 * degraded.
5271				 */
5272				if (child->vdev_islog && vd == rvd)
5273					degraded++;
5274				else
5275					faulted++;
5276			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5277				degraded++;
5278			}
5279
5280			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5281				corrupted++;
5282		}
5283
5284		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5285
5286		/*
5287		 * Root special: if there is a top-level vdev that cannot be
5288		 * opened due to corrupted metadata, then propagate the root
5289		 * vdev's aux state as 'corrupt' rather than 'insufficient
5290		 * replicas'.
5291		 */
5292		if (corrupted && vd == rvd &&
5293		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5294			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5295			    VDEV_AUX_CORRUPT_DATA);
5296	}
5297
5298	if (vd->vdev_parent)
5299		vdev_propagate_state(vd->vdev_parent);
5300}
5301
5302/*
5303 * Set a vdev's state.  If this is during an open, we don't update the parent
5304 * state, because we're in the process of opening children depth-first.
5305 * Otherwise, we propagate the change to the parent.
5306 *
5307 * If this routine places a device in a faulted state, an appropriate ereport is
5308 * generated.
5309 */
5310void
5311vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5312{
5313	uint64_t save_state;
5314	spa_t *spa = vd->vdev_spa;
5315
5316	if (state == vd->vdev_state) {
5317		/*
5318		 * Since vdev_offline() code path is already in an offline
5319		 * state we can miss a statechange event to OFFLINE. Check
5320		 * the previous state to catch this condition.
5321		 */
5322		if (vd->vdev_ops->vdev_op_leaf &&
5323		    (state == VDEV_STATE_OFFLINE) &&
5324		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5325			/* post an offline state change */
5326			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5327		}
5328		vd->vdev_stat.vs_aux = aux;
5329		return;
5330	}
5331
5332	save_state = vd->vdev_state;
5333
5334	vd->vdev_state = state;
5335	vd->vdev_stat.vs_aux = aux;
5336
5337	/*
5338	 * If we are setting the vdev state to anything but an open state, then
5339	 * always close the underlying device unless the device has requested
5340	 * a delayed close (i.e. we're about to remove or fault the device).
5341	 * Otherwise, we keep accessible but invalid devices open forever.
5342	 * We don't call vdev_close() itself, because that implies some extra
5343	 * checks (offline, etc) that we don't want here.  This is limited to
5344	 * leaf devices, because otherwise closing the device will affect other
5345	 * children.
5346	 */
5347	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5348	    vd->vdev_ops->vdev_op_leaf)
5349		vd->vdev_ops->vdev_op_close(vd);
5350
5351	if (vd->vdev_removed &&
5352	    state == VDEV_STATE_CANT_OPEN &&
5353	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5354		/*
5355		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5356		 * device was previously marked removed and someone attempted to
5357		 * reopen it.  If this failed due to a nonexistent device, then
5358		 * keep the device in the REMOVED state.  We also let this be if
5359		 * it is one of our special test online cases, which is only
5360		 * attempting to online the device and shouldn't generate an FMA
5361		 * fault.
5362		 */
5363		vd->vdev_state = VDEV_STATE_REMOVED;
5364		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5365	} else if (state == VDEV_STATE_REMOVED) {
5366		vd->vdev_removed = B_TRUE;
5367	} else if (state == VDEV_STATE_CANT_OPEN) {
5368		/*
5369		 * If we fail to open a vdev during an import or recovery, we
5370		 * mark it as "not available", which signifies that it was
5371		 * never there to begin with.  Failure to open such a device
5372		 * is not considered an error.
5373		 */
5374		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5375		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5376		    vd->vdev_ops->vdev_op_leaf)
5377			vd->vdev_not_present = 1;
5378
5379		/*
5380		 * Post the appropriate ereport.  If the 'prevstate' field is
5381		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5382		 * that this is part of a vdev_reopen().  In this case, we don't
5383		 * want to post the ereport if the device was already in the
5384		 * CANT_OPEN state beforehand.
5385		 *
5386		 * If the 'checkremove' flag is set, then this is an attempt to
5387		 * online the device in response to an insertion event.  If we
5388		 * hit this case, then we have detected an insertion event for a
5389		 * faulted or offline device that wasn't in the removed state.
5390		 * In this scenario, we don't post an ereport because we are
5391		 * about to replace the device, or attempt an online with
5392		 * vdev_forcefault, which will generate the fault for us.
5393		 */
5394		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5395		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5396		    vd != spa->spa_root_vdev) {
5397			const char *class;
5398
5399			switch (aux) {
5400			case VDEV_AUX_OPEN_FAILED:
5401				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5402				break;
5403			case VDEV_AUX_CORRUPT_DATA:
5404				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5405				break;
5406			case VDEV_AUX_NO_REPLICAS:
5407				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5408				break;
5409			case VDEV_AUX_BAD_GUID_SUM:
5410				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5411				break;
5412			case VDEV_AUX_TOO_SMALL:
5413				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5414				break;
5415			case VDEV_AUX_BAD_LABEL:
5416				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5417				break;
5418			case VDEV_AUX_BAD_ASHIFT:
5419				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5420				break;
5421			default:
5422				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5423			}
5424
5425			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5426			    save_state);
5427		}
5428
5429		/* Erase any notion of persistent removed state */
5430		vd->vdev_removed = B_FALSE;
5431	} else {
5432		vd->vdev_removed = B_FALSE;
5433	}
5434
5435	/*
5436	 * Notify ZED of any significant state-change on a leaf vdev.
5437	 *
5438	 */
5439	if (vd->vdev_ops->vdev_op_leaf) {
5440		/* preserve original state from a vdev_reopen() */
5441		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5442		    (vd->vdev_prevstate != vd->vdev_state) &&
5443		    (save_state <= VDEV_STATE_CLOSED))
5444			save_state = vd->vdev_prevstate;
5445
5446		/* filter out state change due to initial vdev_open */
5447		if (save_state > VDEV_STATE_CLOSED)
5448			zfs_post_state_change(spa, vd, save_state);
5449	}
5450
5451	if (!isopen && vd->vdev_parent)
5452		vdev_propagate_state(vd->vdev_parent);
5453}
5454
5455boolean_t
5456vdev_children_are_offline(vdev_t *vd)
5457{
5458	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5459
5460	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5461		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5462			return (B_FALSE);
5463	}
5464
5465	return (B_TRUE);
5466}
5467
5468/*
5469 * Check the vdev configuration to ensure that it's capable of supporting
5470 * a root pool. We do not support partial configuration.
5471 */
5472boolean_t
5473vdev_is_bootable(vdev_t *vd)
5474{
5475	if (!vd->vdev_ops->vdev_op_leaf) {
5476		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5477
5478		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5479			return (B_FALSE);
5480	}
5481
5482	for (int c = 0; c < vd->vdev_children; c++) {
5483		if (!vdev_is_bootable(vd->vdev_child[c]))
5484			return (B_FALSE);
5485	}
5486	return (B_TRUE);
5487}
5488
5489boolean_t
5490vdev_is_concrete(vdev_t *vd)
5491{
5492	vdev_ops_t *ops = vd->vdev_ops;
5493	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5494	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5495		return (B_FALSE);
5496	} else {
5497		return (B_TRUE);
5498	}
5499}
5500
5501/*
5502 * Determine if a log device has valid content.  If the vdev was
5503 * removed or faulted in the MOS config then we know that
5504 * the content on the log device has already been written to the pool.
5505 */
5506boolean_t
5507vdev_log_state_valid(vdev_t *vd)
5508{
5509	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5510	    !vd->vdev_removed)
5511		return (B_TRUE);
5512
5513	for (int c = 0; c < vd->vdev_children; c++)
5514		if (vdev_log_state_valid(vd->vdev_child[c]))
5515			return (B_TRUE);
5516
5517	return (B_FALSE);
5518}
5519
5520/*
5521 * Expand a vdev if possible.
5522 */
5523void
5524vdev_expand(vdev_t *vd, uint64_t txg)
5525{
5526	ASSERT(vd->vdev_top == vd);
5527	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5528	ASSERT(vdev_is_concrete(vd));
5529
5530	vdev_set_deflate_ratio(vd);
5531
5532	if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5533	    vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5534	    (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5535	    vdev_is_concrete(vd)) {
5536		vdev_metaslab_group_create(vd);
5537		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5538		vdev_config_dirty(vd);
5539	}
5540}
5541
5542/*
5543 * Split a vdev.
5544 */
5545void
5546vdev_split(vdev_t *vd)
5547{
5548	vdev_t *cvd, *pvd = vd->vdev_parent;
5549
5550	VERIFY3U(pvd->vdev_children, >, 1);
5551
5552	vdev_remove_child(pvd, vd);
5553	vdev_compact_children(pvd);
5554
5555	ASSERT3P(pvd->vdev_child, !=, NULL);
5556
5557	cvd = pvd->vdev_child[0];
5558	if (pvd->vdev_children == 1) {
5559		vdev_remove_parent(cvd);
5560		cvd->vdev_splitting = B_TRUE;
5561	}
5562	vdev_propagate_state(cvd);
5563}
5564
5565void
5566vdev_deadman(vdev_t *vd, const char *tag)
5567{
5568	for (int c = 0; c < vd->vdev_children; c++) {
5569		vdev_t *cvd = vd->vdev_child[c];
5570
5571		vdev_deadman(cvd, tag);
5572	}
5573
5574	if (vd->vdev_ops->vdev_op_leaf) {
5575		vdev_queue_t *vq = &vd->vdev_queue;
5576
5577		mutex_enter(&vq->vq_lock);
5578		if (vq->vq_active > 0) {
5579			spa_t *spa = vd->vdev_spa;
5580			zio_t *fio;
5581			uint64_t delta;
5582
5583			zfs_dbgmsg("slow vdev: %s has %u active IOs",
5584			    vd->vdev_path, vq->vq_active);
5585
5586			/*
5587			 * Look at the head of all the pending queues,
5588			 * if any I/O has been outstanding for longer than
5589			 * the spa_deadman_synctime invoke the deadman logic.
5590			 */
5591			fio = list_head(&vq->vq_active_list);
5592			delta = gethrtime() - fio->io_timestamp;
5593			if (delta > spa_deadman_synctime(spa))
5594				zio_deadman(fio, tag);
5595		}
5596		mutex_exit(&vq->vq_lock);
5597	}
5598}
5599
5600void
5601vdev_defer_resilver(vdev_t *vd)
5602{
5603	ASSERT(vd->vdev_ops->vdev_op_leaf);
5604
5605	vd->vdev_resilver_deferred = B_TRUE;
5606	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5607}
5608
5609/*
5610 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5611 * B_TRUE if we have devices that need to be resilvered and are available to
5612 * accept resilver I/Os.
5613 */
5614boolean_t
5615vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5616{
5617	boolean_t resilver_needed = B_FALSE;
5618	spa_t *spa = vd->vdev_spa;
5619
5620	for (int c = 0; c < vd->vdev_children; c++) {
5621		vdev_t *cvd = vd->vdev_child[c];
5622		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5623	}
5624
5625	if (vd == spa->spa_root_vdev &&
5626	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5627		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5628		vdev_config_dirty(vd);
5629		spa->spa_resilver_deferred = B_FALSE;
5630		return (resilver_needed);
5631	}
5632
5633	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5634	    !vd->vdev_ops->vdev_op_leaf)
5635		return (resilver_needed);
5636
5637	vd->vdev_resilver_deferred = B_FALSE;
5638
5639	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5640	    vdev_resilver_needed(vd, NULL, NULL));
5641}
5642
5643boolean_t
5644vdev_xlate_is_empty(range_seg64_t *rs)
5645{
5646	return (rs->rs_start == rs->rs_end);
5647}
5648
5649/*
5650 * Translate a logical range to the first contiguous physical range for the
5651 * specified vdev_t.  This function is initially called with a leaf vdev and
5652 * will walk each parent vdev until it reaches a top-level vdev. Once the
5653 * top-level is reached the physical range is initialized and the recursive
5654 * function begins to unwind. As it unwinds it calls the parent's vdev
5655 * specific translation function to do the real conversion.
5656 */
5657void
5658vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5659    range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5660{
5661	/*
5662	 * Walk up the vdev tree
5663	 */
5664	if (vd != vd->vdev_top) {
5665		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5666		    remain_rs);
5667	} else {
5668		/*
5669		 * We've reached the top-level vdev, initialize the physical
5670		 * range to the logical range and set an empty remaining
5671		 * range then start to unwind.
5672		 */
5673		physical_rs->rs_start = logical_rs->rs_start;
5674		physical_rs->rs_end = logical_rs->rs_end;
5675
5676		remain_rs->rs_start = logical_rs->rs_start;
5677		remain_rs->rs_end = logical_rs->rs_start;
5678
5679		return;
5680	}
5681
5682	vdev_t *pvd = vd->vdev_parent;
5683	ASSERT3P(pvd, !=, NULL);
5684	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5685
5686	/*
5687	 * As this recursive function unwinds, translate the logical
5688	 * range into its physical and any remaining components by calling
5689	 * the vdev specific translate function.
5690	 */
5691	range_seg64_t intermediate = { 0 };
5692	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5693
5694	physical_rs->rs_start = intermediate.rs_start;
5695	physical_rs->rs_end = intermediate.rs_end;
5696}
5697
5698void
5699vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5700    vdev_xlate_func_t *func, void *arg)
5701{
5702	range_seg64_t iter_rs = *logical_rs;
5703	range_seg64_t physical_rs;
5704	range_seg64_t remain_rs;
5705
5706	while (!vdev_xlate_is_empty(&iter_rs)) {
5707
5708		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5709
5710		/*
5711		 * With raidz and dRAID, it's possible that the logical range
5712		 * does not live on this leaf vdev. Only when there is a non-
5713		 * zero physical size call the provided function.
5714		 */
5715		if (!vdev_xlate_is_empty(&physical_rs))
5716			func(arg, &physical_rs);
5717
5718		iter_rs = remain_rs;
5719	}
5720}
5721
5722static char *
5723vdev_name(vdev_t *vd, char *buf, int buflen)
5724{
5725	if (vd->vdev_path == NULL) {
5726		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5727			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5728		} else if (!vd->vdev_ops->vdev_op_leaf) {
5729			snprintf(buf, buflen, "%s-%llu",
5730			    vd->vdev_ops->vdev_op_type,
5731			    (u_longlong_t)vd->vdev_id);
5732		}
5733	} else {
5734		strlcpy(buf, vd->vdev_path, buflen);
5735	}
5736	return (buf);
5737}
5738
5739/*
5740 * Look at the vdev tree and determine whether any devices are currently being
5741 * replaced.
5742 */
5743boolean_t
5744vdev_replace_in_progress(vdev_t *vdev)
5745{
5746	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5747
5748	if (vdev->vdev_ops == &vdev_replacing_ops)
5749		return (B_TRUE);
5750
5751	/*
5752	 * A 'spare' vdev indicates that we have a replace in progress, unless
5753	 * it has exactly two children, and the second, the hot spare, has
5754	 * finished being resilvered.
5755	 */
5756	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5757	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5758		return (B_TRUE);
5759
5760	for (int i = 0; i < vdev->vdev_children; i++) {
5761		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5762			return (B_TRUE);
5763	}
5764
5765	return (B_FALSE);
5766}
5767
5768/*
5769 * Add a (source=src, propname=propval) list to an nvlist.
5770 */
5771static void
5772vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5773    uint64_t intval, zprop_source_t src)
5774{
5775	nvlist_t *propval;
5776
5777	propval = fnvlist_alloc();
5778	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5779
5780	if (strval != NULL)
5781		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5782	else
5783		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5784
5785	fnvlist_add_nvlist(nvl, propname, propval);
5786	nvlist_free(propval);
5787}
5788
5789static void
5790vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5791{
5792	vdev_t *vd;
5793	nvlist_t *nvp = arg;
5794	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5795	objset_t *mos = spa->spa_meta_objset;
5796	nvpair_t *elem = NULL;
5797	uint64_t vdev_guid;
5798	uint64_t objid;
5799	nvlist_t *nvprops;
5800
5801	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5802	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5803	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5804
5805	/* this vdev could get removed while waiting for this sync task */
5806	if (vd == NULL)
5807		return;
5808
5809	/*
5810	 * Set vdev property values in the vdev props mos object.
5811	 */
5812	if (vd->vdev_root_zap != 0) {
5813		objid = vd->vdev_root_zap;
5814	} else if (vd->vdev_top_zap != 0) {
5815		objid = vd->vdev_top_zap;
5816	} else if (vd->vdev_leaf_zap != 0) {
5817		objid = vd->vdev_leaf_zap;
5818	} else {
5819		panic("unexpected vdev type");
5820	}
5821
5822	mutex_enter(&spa->spa_props_lock);
5823
5824	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5825		uint64_t intval;
5826		const char *strval;
5827		vdev_prop_t prop;
5828		const char *propname = nvpair_name(elem);
5829		zprop_type_t proptype;
5830
5831		switch (prop = vdev_name_to_prop(propname)) {
5832		case VDEV_PROP_USERPROP:
5833			if (vdev_prop_user(propname)) {
5834				strval = fnvpair_value_string(elem);
5835				if (strlen(strval) == 0) {
5836					/* remove the property if value == "" */
5837					(void) zap_remove(mos, objid, propname,
5838					    tx);
5839				} else {
5840					VERIFY0(zap_update(mos, objid, propname,
5841					    1, strlen(strval) + 1, strval, tx));
5842				}
5843				spa_history_log_internal(spa, "vdev set", tx,
5844				    "vdev_guid=%llu: %s=%s",
5845				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5846				    strval);
5847			}
5848			break;
5849		default:
5850			/* normalize the property name */
5851			propname = vdev_prop_to_name(prop);
5852			proptype = vdev_prop_get_type(prop);
5853
5854			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5855				ASSERT(proptype == PROP_TYPE_STRING);
5856				strval = fnvpair_value_string(elem);
5857				VERIFY0(zap_update(mos, objid, propname,
5858				    1, strlen(strval) + 1, strval, tx));
5859				spa_history_log_internal(spa, "vdev set", tx,
5860				    "vdev_guid=%llu: %s=%s",
5861				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5862				    strval);
5863			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5864				intval = fnvpair_value_uint64(elem);
5865
5866				if (proptype == PROP_TYPE_INDEX) {
5867					const char *unused;
5868					VERIFY0(vdev_prop_index_to_string(
5869					    prop, intval, &unused));
5870				}
5871				VERIFY0(zap_update(mos, objid, propname,
5872				    sizeof (uint64_t), 1, &intval, tx));
5873				spa_history_log_internal(spa, "vdev set", tx,
5874				    "vdev_guid=%llu: %s=%lld",
5875				    (u_longlong_t)vdev_guid,
5876				    nvpair_name(elem), (longlong_t)intval);
5877			} else {
5878				panic("invalid vdev property type %u",
5879				    nvpair_type(elem));
5880			}
5881		}
5882
5883	}
5884
5885	mutex_exit(&spa->spa_props_lock);
5886}
5887
5888int
5889vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5890{
5891	spa_t *spa = vd->vdev_spa;
5892	nvpair_t *elem = NULL;
5893	uint64_t vdev_guid;
5894	nvlist_t *nvprops;
5895	int error = 0;
5896
5897	ASSERT(vd != NULL);
5898
5899	/* Check that vdev has a zap we can use */
5900	if (vd->vdev_root_zap == 0 &&
5901	    vd->vdev_top_zap == 0 &&
5902	    vd->vdev_leaf_zap == 0)
5903		return (SET_ERROR(EINVAL));
5904
5905	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5906	    &vdev_guid) != 0)
5907		return (SET_ERROR(EINVAL));
5908
5909	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5910	    &nvprops) != 0)
5911		return (SET_ERROR(EINVAL));
5912
5913	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5914		return (SET_ERROR(EINVAL));
5915
5916	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5917		const char *propname = nvpair_name(elem);
5918		vdev_prop_t prop = vdev_name_to_prop(propname);
5919		uint64_t intval = 0;
5920		const char *strval = NULL;
5921
5922		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5923			error = EINVAL;
5924			goto end;
5925		}
5926
5927		if (vdev_prop_readonly(prop)) {
5928			error = EROFS;
5929			goto end;
5930		}
5931
5932		/* Special Processing */
5933		switch (prop) {
5934		case VDEV_PROP_PATH:
5935			if (vd->vdev_path == NULL) {
5936				error = EROFS;
5937				break;
5938			}
5939			if (nvpair_value_string(elem, &strval) != 0) {
5940				error = EINVAL;
5941				break;
5942			}
5943			/* New path must start with /dev/ */
5944			if (strncmp(strval, "/dev/", 5)) {
5945				error = EINVAL;
5946				break;
5947			}
5948			error = spa_vdev_setpath(spa, vdev_guid, strval);
5949			break;
5950		case VDEV_PROP_ALLOCATING:
5951			if (nvpair_value_uint64(elem, &intval) != 0) {
5952				error = EINVAL;
5953				break;
5954			}
5955			if (intval != vd->vdev_noalloc)
5956				break;
5957			if (intval == 0)
5958				error = spa_vdev_noalloc(spa, vdev_guid);
5959			else
5960				error = spa_vdev_alloc(spa, vdev_guid);
5961			break;
5962		case VDEV_PROP_FAILFAST:
5963			if (nvpair_value_uint64(elem, &intval) != 0) {
5964				error = EINVAL;
5965				break;
5966			}
5967			vd->vdev_failfast = intval & 1;
5968			break;
5969		case VDEV_PROP_CHECKSUM_N:
5970			if (nvpair_value_uint64(elem, &intval) != 0) {
5971				error = EINVAL;
5972				break;
5973			}
5974			vd->vdev_checksum_n = intval;
5975			break;
5976		case VDEV_PROP_CHECKSUM_T:
5977			if (nvpair_value_uint64(elem, &intval) != 0) {
5978				error = EINVAL;
5979				break;
5980			}
5981			vd->vdev_checksum_t = intval;
5982			break;
5983		case VDEV_PROP_IO_N:
5984			if (nvpair_value_uint64(elem, &intval) != 0) {
5985				error = EINVAL;
5986				break;
5987			}
5988			vd->vdev_io_n = intval;
5989			break;
5990		case VDEV_PROP_IO_T:
5991			if (nvpair_value_uint64(elem, &intval) != 0) {
5992				error = EINVAL;
5993				break;
5994			}
5995			vd->vdev_io_t = intval;
5996			break;
5997		case VDEV_PROP_SLOW_IO_N:
5998			if (nvpair_value_uint64(elem, &intval) != 0) {
5999				error = EINVAL;
6000				break;
6001			}
6002			vd->vdev_slow_io_n = intval;
6003			break;
6004		case VDEV_PROP_SLOW_IO_T:
6005			if (nvpair_value_uint64(elem, &intval) != 0) {
6006				error = EINVAL;
6007				break;
6008			}
6009			vd->vdev_slow_io_t = intval;
6010			break;
6011		default:
6012			/* Most processing is done in vdev_props_set_sync */
6013			break;
6014		}
6015end:
6016		if (error != 0) {
6017			intval = error;
6018			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6019			return (error);
6020		}
6021	}
6022
6023	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6024	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6025}
6026
6027int
6028vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6029{
6030	spa_t *spa = vd->vdev_spa;
6031	objset_t *mos = spa->spa_meta_objset;
6032	int err = 0;
6033	uint64_t objid;
6034	uint64_t vdev_guid;
6035	nvpair_t *elem = NULL;
6036	nvlist_t *nvprops = NULL;
6037	uint64_t intval = 0;
6038	char *strval = NULL;
6039	const char *propname = NULL;
6040	vdev_prop_t prop;
6041
6042	ASSERT(vd != NULL);
6043	ASSERT(mos != NULL);
6044
6045	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6046	    &vdev_guid) != 0)
6047		return (SET_ERROR(EINVAL));
6048
6049	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6050
6051	if (vd->vdev_root_zap != 0) {
6052		objid = vd->vdev_root_zap;
6053	} else if (vd->vdev_top_zap != 0) {
6054		objid = vd->vdev_top_zap;
6055	} else if (vd->vdev_leaf_zap != 0) {
6056		objid = vd->vdev_leaf_zap;
6057	} else {
6058		return (SET_ERROR(EINVAL));
6059	}
6060	ASSERT(objid != 0);
6061
6062	mutex_enter(&spa->spa_props_lock);
6063
6064	if (nvprops != NULL) {
6065		char namebuf[64] = { 0 };
6066
6067		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6068			intval = 0;
6069			strval = NULL;
6070			propname = nvpair_name(elem);
6071			prop = vdev_name_to_prop(propname);
6072			zprop_source_t src = ZPROP_SRC_DEFAULT;
6073			uint64_t integer_size, num_integers;
6074
6075			switch (prop) {
6076			/* Special Read-only Properties */
6077			case VDEV_PROP_NAME:
6078				strval = vdev_name(vd, namebuf,
6079				    sizeof (namebuf));
6080				if (strval == NULL)
6081					continue;
6082				vdev_prop_add_list(outnvl, propname, strval, 0,
6083				    ZPROP_SRC_NONE);
6084				continue;
6085			case VDEV_PROP_CAPACITY:
6086				/* percent used */
6087				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6088				    (vd->vdev_stat.vs_alloc * 100 /
6089				    vd->vdev_stat.vs_dspace);
6090				vdev_prop_add_list(outnvl, propname, NULL,
6091				    intval, ZPROP_SRC_NONE);
6092				continue;
6093			case VDEV_PROP_STATE:
6094				vdev_prop_add_list(outnvl, propname, NULL,
6095				    vd->vdev_state, ZPROP_SRC_NONE);
6096				continue;
6097			case VDEV_PROP_GUID:
6098				vdev_prop_add_list(outnvl, propname, NULL,
6099				    vd->vdev_guid, ZPROP_SRC_NONE);
6100				continue;
6101			case VDEV_PROP_ASIZE:
6102				vdev_prop_add_list(outnvl, propname, NULL,
6103				    vd->vdev_asize, ZPROP_SRC_NONE);
6104				continue;
6105			case VDEV_PROP_PSIZE:
6106				vdev_prop_add_list(outnvl, propname, NULL,
6107				    vd->vdev_psize, ZPROP_SRC_NONE);
6108				continue;
6109			case VDEV_PROP_ASHIFT:
6110				vdev_prop_add_list(outnvl, propname, NULL,
6111				    vd->vdev_ashift, ZPROP_SRC_NONE);
6112				continue;
6113			case VDEV_PROP_SIZE:
6114				vdev_prop_add_list(outnvl, propname, NULL,
6115				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6116				continue;
6117			case VDEV_PROP_FREE:
6118				vdev_prop_add_list(outnvl, propname, NULL,
6119				    vd->vdev_stat.vs_dspace -
6120				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6121				continue;
6122			case VDEV_PROP_ALLOCATED:
6123				vdev_prop_add_list(outnvl, propname, NULL,
6124				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6125				continue;
6126			case VDEV_PROP_EXPANDSZ:
6127				vdev_prop_add_list(outnvl, propname, NULL,
6128				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6129				continue;
6130			case VDEV_PROP_FRAGMENTATION:
6131				vdev_prop_add_list(outnvl, propname, NULL,
6132				    vd->vdev_stat.vs_fragmentation,
6133				    ZPROP_SRC_NONE);
6134				continue;
6135			case VDEV_PROP_PARITY:
6136				vdev_prop_add_list(outnvl, propname, NULL,
6137				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6138				continue;
6139			case VDEV_PROP_PATH:
6140				if (vd->vdev_path == NULL)
6141					continue;
6142				vdev_prop_add_list(outnvl, propname,
6143				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6144				continue;
6145			case VDEV_PROP_DEVID:
6146				if (vd->vdev_devid == NULL)
6147					continue;
6148				vdev_prop_add_list(outnvl, propname,
6149				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6150				continue;
6151			case VDEV_PROP_PHYS_PATH:
6152				if (vd->vdev_physpath == NULL)
6153					continue;
6154				vdev_prop_add_list(outnvl, propname,
6155				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6156				continue;
6157			case VDEV_PROP_ENC_PATH:
6158				if (vd->vdev_enc_sysfs_path == NULL)
6159					continue;
6160				vdev_prop_add_list(outnvl, propname,
6161				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6162				continue;
6163			case VDEV_PROP_FRU:
6164				if (vd->vdev_fru == NULL)
6165					continue;
6166				vdev_prop_add_list(outnvl, propname,
6167				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6168				continue;
6169			case VDEV_PROP_PARENT:
6170				if (vd->vdev_parent != NULL) {
6171					strval = vdev_name(vd->vdev_parent,
6172					    namebuf, sizeof (namebuf));
6173					vdev_prop_add_list(outnvl, propname,
6174					    strval, 0, ZPROP_SRC_NONE);
6175				}
6176				continue;
6177			case VDEV_PROP_CHILDREN:
6178				if (vd->vdev_children > 0)
6179					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6180					    KM_SLEEP);
6181				for (uint64_t i = 0; i < vd->vdev_children;
6182				    i++) {
6183					const char *vname;
6184
6185					vname = vdev_name(vd->vdev_child[i],
6186					    namebuf, sizeof (namebuf));
6187					if (vname == NULL)
6188						vname = "(unknown)";
6189					if (strlen(strval) > 0)
6190						strlcat(strval, ",",
6191						    ZAP_MAXVALUELEN);
6192					strlcat(strval, vname, ZAP_MAXVALUELEN);
6193				}
6194				if (strval != NULL) {
6195					vdev_prop_add_list(outnvl, propname,
6196					    strval, 0, ZPROP_SRC_NONE);
6197					kmem_free(strval, ZAP_MAXVALUELEN);
6198				}
6199				continue;
6200			case VDEV_PROP_NUMCHILDREN:
6201				vdev_prop_add_list(outnvl, propname, NULL,
6202				    vd->vdev_children, ZPROP_SRC_NONE);
6203				continue;
6204			case VDEV_PROP_READ_ERRORS:
6205				vdev_prop_add_list(outnvl, propname, NULL,
6206				    vd->vdev_stat.vs_read_errors,
6207				    ZPROP_SRC_NONE);
6208				continue;
6209			case VDEV_PROP_WRITE_ERRORS:
6210				vdev_prop_add_list(outnvl, propname, NULL,
6211				    vd->vdev_stat.vs_write_errors,
6212				    ZPROP_SRC_NONE);
6213				continue;
6214			case VDEV_PROP_CHECKSUM_ERRORS:
6215				vdev_prop_add_list(outnvl, propname, NULL,
6216				    vd->vdev_stat.vs_checksum_errors,
6217				    ZPROP_SRC_NONE);
6218				continue;
6219			case VDEV_PROP_INITIALIZE_ERRORS:
6220				vdev_prop_add_list(outnvl, propname, NULL,
6221				    vd->vdev_stat.vs_initialize_errors,
6222				    ZPROP_SRC_NONE);
6223				continue;
6224			case VDEV_PROP_OPS_NULL:
6225				vdev_prop_add_list(outnvl, propname, NULL,
6226				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6227				    ZPROP_SRC_NONE);
6228				continue;
6229			case VDEV_PROP_OPS_READ:
6230				vdev_prop_add_list(outnvl, propname, NULL,
6231				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6232				    ZPROP_SRC_NONE);
6233				continue;
6234			case VDEV_PROP_OPS_WRITE:
6235				vdev_prop_add_list(outnvl, propname, NULL,
6236				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6237				    ZPROP_SRC_NONE);
6238				continue;
6239			case VDEV_PROP_OPS_FREE:
6240				vdev_prop_add_list(outnvl, propname, NULL,
6241				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6242				    ZPROP_SRC_NONE);
6243				continue;
6244			case VDEV_PROP_OPS_CLAIM:
6245				vdev_prop_add_list(outnvl, propname, NULL,
6246				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6247				    ZPROP_SRC_NONE);
6248				continue;
6249			case VDEV_PROP_OPS_TRIM:
6250				/*
6251				 * TRIM ops and bytes are reported to user
6252				 * space as ZIO_TYPE_FLUSH.  This is done to
6253				 * preserve the vdev_stat_t structure layout
6254				 * for user space.
6255				 */
6256				vdev_prop_add_list(outnvl, propname, NULL,
6257				    vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6258				    ZPROP_SRC_NONE);
6259				continue;
6260			case VDEV_PROP_BYTES_NULL:
6261				vdev_prop_add_list(outnvl, propname, NULL,
6262				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6263				    ZPROP_SRC_NONE);
6264				continue;
6265			case VDEV_PROP_BYTES_READ:
6266				vdev_prop_add_list(outnvl, propname, NULL,
6267				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6268				    ZPROP_SRC_NONE);
6269				continue;
6270			case VDEV_PROP_BYTES_WRITE:
6271				vdev_prop_add_list(outnvl, propname, NULL,
6272				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6273				    ZPROP_SRC_NONE);
6274				continue;
6275			case VDEV_PROP_BYTES_FREE:
6276				vdev_prop_add_list(outnvl, propname, NULL,
6277				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6278				    ZPROP_SRC_NONE);
6279				continue;
6280			case VDEV_PROP_BYTES_CLAIM:
6281				vdev_prop_add_list(outnvl, propname, NULL,
6282				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6283				    ZPROP_SRC_NONE);
6284				continue;
6285			case VDEV_PROP_BYTES_TRIM:
6286				/*
6287				 * TRIM ops and bytes are reported to user
6288				 * space as ZIO_TYPE_FLUSH.  This is done to
6289				 * preserve the vdev_stat_t structure layout
6290				 * for user space.
6291				 */
6292				vdev_prop_add_list(outnvl, propname, NULL,
6293				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6294				    ZPROP_SRC_NONE);
6295				continue;
6296			case VDEV_PROP_REMOVING:
6297				vdev_prop_add_list(outnvl, propname, NULL,
6298				    vd->vdev_removing, ZPROP_SRC_NONE);
6299				continue;
6300			case VDEV_PROP_RAIDZ_EXPANDING:
6301				/* Only expose this for raidz */
6302				if (vd->vdev_ops == &vdev_raidz_ops) {
6303					vdev_prop_add_list(outnvl, propname,
6304					    NULL, vd->vdev_rz_expanding,
6305					    ZPROP_SRC_NONE);
6306				}
6307				continue;
6308			/* Numeric Properites */
6309			case VDEV_PROP_ALLOCATING:
6310				/* Leaf vdevs cannot have this property */
6311				if (vd->vdev_mg == NULL &&
6312				    vd->vdev_top != NULL) {
6313					src = ZPROP_SRC_NONE;
6314					intval = ZPROP_BOOLEAN_NA;
6315				} else {
6316					err = vdev_prop_get_int(vd, prop,
6317					    &intval);
6318					if (err && err != ENOENT)
6319						break;
6320
6321					if (intval ==
6322					    vdev_prop_default_numeric(prop))
6323						src = ZPROP_SRC_DEFAULT;
6324					else
6325						src = ZPROP_SRC_LOCAL;
6326				}
6327
6328				vdev_prop_add_list(outnvl, propname, NULL,
6329				    intval, src);
6330				break;
6331			case VDEV_PROP_FAILFAST:
6332				src = ZPROP_SRC_LOCAL;
6333				strval = NULL;
6334
6335				err = zap_lookup(mos, objid, nvpair_name(elem),
6336				    sizeof (uint64_t), 1, &intval);
6337				if (err == ENOENT) {
6338					intval = vdev_prop_default_numeric(
6339					    prop);
6340					err = 0;
6341				} else if (err) {
6342					break;
6343				}
6344				if (intval == vdev_prop_default_numeric(prop))
6345					src = ZPROP_SRC_DEFAULT;
6346
6347				vdev_prop_add_list(outnvl, propname, strval,
6348				    intval, src);
6349				break;
6350			case VDEV_PROP_CHECKSUM_N:
6351			case VDEV_PROP_CHECKSUM_T:
6352			case VDEV_PROP_IO_N:
6353			case VDEV_PROP_IO_T:
6354			case VDEV_PROP_SLOW_IO_N:
6355			case VDEV_PROP_SLOW_IO_T:
6356				err = vdev_prop_get_int(vd, prop, &intval);
6357				if (err && err != ENOENT)
6358					break;
6359
6360				if (intval == vdev_prop_default_numeric(prop))
6361					src = ZPROP_SRC_DEFAULT;
6362				else
6363					src = ZPROP_SRC_LOCAL;
6364
6365				vdev_prop_add_list(outnvl, propname, NULL,
6366				    intval, src);
6367				break;
6368			/* Text Properties */
6369			case VDEV_PROP_COMMENT:
6370				/* Exists in the ZAP below */
6371				/* FALLTHRU */
6372			case VDEV_PROP_USERPROP:
6373				/* User Properites */
6374				src = ZPROP_SRC_LOCAL;
6375
6376				err = zap_length(mos, objid, nvpair_name(elem),
6377				    &integer_size, &num_integers);
6378				if (err)
6379					break;
6380
6381				switch (integer_size) {
6382				case 8:
6383					/* User properties cannot be integers */
6384					err = EINVAL;
6385					break;
6386				case 1:
6387					/* string property */
6388					strval = kmem_alloc(num_integers,
6389					    KM_SLEEP);
6390					err = zap_lookup(mos, objid,
6391					    nvpair_name(elem), 1,
6392					    num_integers, strval);
6393					if (err) {
6394						kmem_free(strval,
6395						    num_integers);
6396						break;
6397					}
6398					vdev_prop_add_list(outnvl, propname,
6399					    strval, 0, src);
6400					kmem_free(strval, num_integers);
6401					break;
6402				}
6403				break;
6404			default:
6405				err = ENOENT;
6406				break;
6407			}
6408			if (err)
6409				break;
6410		}
6411	} else {
6412		/*
6413		 * Get all properties from the MOS vdev property object.
6414		 */
6415		zap_cursor_t zc;
6416		zap_attribute_t za;
6417		for (zap_cursor_init(&zc, mos, objid);
6418		    (err = zap_cursor_retrieve(&zc, &za)) == 0;
6419		    zap_cursor_advance(&zc)) {
6420			intval = 0;
6421			strval = NULL;
6422			zprop_source_t src = ZPROP_SRC_DEFAULT;
6423			propname = za.za_name;
6424
6425			switch (za.za_integer_length) {
6426			case 8:
6427				/* We do not allow integer user properties */
6428				/* This is likely an internal value */
6429				break;
6430			case 1:
6431				/* string property */
6432				strval = kmem_alloc(za.za_num_integers,
6433				    KM_SLEEP);
6434				err = zap_lookup(mos, objid, za.za_name, 1,
6435				    za.za_num_integers, strval);
6436				if (err) {
6437					kmem_free(strval, za.za_num_integers);
6438					break;
6439				}
6440				vdev_prop_add_list(outnvl, propname, strval, 0,
6441				    src);
6442				kmem_free(strval, za.za_num_integers);
6443				break;
6444
6445			default:
6446				break;
6447			}
6448		}
6449		zap_cursor_fini(&zc);
6450	}
6451
6452	mutex_exit(&spa->spa_props_lock);
6453	if (err && err != ENOENT) {
6454		return (err);
6455	}
6456
6457	return (0);
6458}
6459
6460EXPORT_SYMBOL(vdev_fault);
6461EXPORT_SYMBOL(vdev_degrade);
6462EXPORT_SYMBOL(vdev_online);
6463EXPORT_SYMBOL(vdev_offline);
6464EXPORT_SYMBOL(vdev_clear);
6465
6466ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6467	"Target number of metaslabs per top-level vdev");
6468
6469ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6470	"Default lower limit for metaslab size");
6471
6472ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6473	"Default upper limit for metaslab size");
6474
6475ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6476	"Minimum number of metaslabs per top-level vdev");
6477
6478ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6479	"Practical upper limit of total metaslabs per top-level vdev");
6480
6481ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6482	"Rate limit slow IO (delay) events to this many per second");
6483
6484ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6485	"Rate limit hung IO (deadman) events to this many per second");
6486
6487/* BEGIN CSTYLED */
6488ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6489	"Rate limit checksum events to this many checksum errors per second "
6490	"(do not set below ZED threshold).");
6491/* END CSTYLED */
6492
6493ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6494	"Ignore errors during resilver/scrub");
6495
6496ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6497	"Bypass vdev_validate()");
6498
6499ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6500	"Disable cache flushes");
6501
6502ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6503	"Minimum number of metaslabs required to dedicate one for log blocks");
6504
6505/* BEGIN CSTYLED */
6506ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6507	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6508	"Minimum ashift used when creating new top-level vdevs");
6509
6510ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6511	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6512	"Maximum ashift used when optimizing for logical -> physical sector "
6513	"size on new top-level vdevs");
6514/* END CSTYLED */
6515