1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
28 */
29
30#include <sys/dsl_scan.h>
31#include <sys/dsl_pool.h>
32#include <sys/dsl_dataset.h>
33#include <sys/dsl_prop.h>
34#include <sys/dsl_dir.h>
35#include <sys/dsl_synctask.h>
36#include <sys/dnode.h>
37#include <sys/dmu_tx.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/arc_impl.h>
41#include <sys/zap.h>
42#include <sys/zio.h>
43#include <sys/zfs_context.h>
44#include <sys/fs/zfs.h>
45#include <sys/zfs_znode.h>
46#include <sys/spa_impl.h>
47#include <sys/vdev_impl.h>
48#include <sys/zil_impl.h>
49#include <sys/zio_checksum.h>
50#include <sys/brt.h>
51#include <sys/ddt.h>
52#include <sys/sa.h>
53#include <sys/sa_impl.h>
54#include <sys/zfeature.h>
55#include <sys/abd.h>
56#include <sys/range_tree.h>
57#include <sys/dbuf.h>
58#ifdef _KERNEL
59#include <sys/zfs_vfsops.h>
60#endif
61
62/*
63 * Grand theory statement on scan queue sorting
64 *
65 * Scanning is implemented by recursively traversing all indirection levels
66 * in an object and reading all blocks referenced from said objects. This
67 * results in us approximately traversing the object from lowest logical
68 * offset to the highest. For best performance, we would want the logical
69 * blocks to be physically contiguous. However, this is frequently not the
70 * case with pools given the allocation patterns of copy-on-write filesystems.
71 * So instead, we put the I/Os into a reordering queue and issue them in a
72 * way that will most benefit physical disks (LBA-order).
73 *
74 * Queue management:
75 *
76 * Ideally, we would want to scan all metadata and queue up all block I/O
77 * prior to starting to issue it, because that allows us to do an optimal
78 * sorting job. This can however consume large amounts of memory. Therefore
79 * we continuously monitor the size of the queues and constrain them to 5%
80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81 * limit, we clear out a few of the largest extents at the head of the queues
82 * to make room for more scanning. Hopefully, these extents will be fairly
83 * large and contiguous, allowing us to approach sequential I/O throughput
84 * even without a fully sorted tree.
85 *
86 * Metadata scanning takes place in dsl_scan_visit(), which is called from
87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88 * metadata on the pool, or we need to make room in memory because our
89 * queues are too large, dsl_scan_visit() is postponed and
90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91 * that metadata scanning and queued I/O issuing are mutually exclusive. This
92 * allows us to provide maximum sequential I/O throughput for the majority of
93 * I/O's issued since sequential I/O performance is significantly negatively
94 * impacted if it is interleaved with random I/O.
95 *
96 * Implementation Notes
97 *
98 * One side effect of the queued scanning algorithm is that the scanning code
99 * needs to be notified whenever a block is freed. This is needed to allow
100 * the scanning code to remove these I/Os from the issuing queue. Additionally,
101 * we do not attempt to queue gang blocks to be issued sequentially since this
102 * is very hard to do and would have an extremely limited performance benefit.
103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104 * algorithm.
105 *
106 * Backwards compatibility
107 *
108 * This new algorithm is backwards compatible with the legacy on-disk data
109 * structures (and therefore does not require a new feature flag).
110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111 * will stop scanning metadata (in logical order) and wait for all outstanding
112 * sorted I/O to complete. Once this is done, we write out a checkpoint
113 * bookmark, indicating that we have scanned everything logically before it.
114 * If the pool is imported on a machine without the new sorting algorithm,
115 * the scan simply resumes from the last checkpoint using the legacy algorithm.
116 */
117
118typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119    const zbookmark_phys_t *);
120
121static scan_cb_t dsl_scan_scrub_cb;
122
123static int scan_ds_queue_compare(const void *a, const void *b);
124static int scan_prefetch_queue_compare(const void *a, const void *b);
125static void scan_ds_queue_clear(dsl_scan_t *scn);
126static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128    uint64_t *txg);
129static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
134
135extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136static int zfs_scan_blkstats = 0;
137
138/*
139 * 'zpool status' uses bytes processed per pass to report throughput and
140 * estimate time remaining.  We define a pass to start when the scanning
141 * phase completes for a sequential resilver.  Optionally, this value
142 * may be used to reset the pass statistics every N txgs to provide an
143 * estimated completion time based on currently observed performance.
144 */
145static uint_t zfs_scan_report_txgs = 0;
146
147/*
148 * By default zfs will check to ensure it is not over the hard memory
149 * limit before each txg. If finer-grained control of this is needed
150 * this value can be set to 1 to enable checking before scanning each
151 * block.
152 */
153static int zfs_scan_strict_mem_lim = B_FALSE;
154
155/*
156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157 * to strike a balance here between keeping the vdev queues full of I/Os
158 * at all times and not overflowing the queues to cause long latency,
159 * which would cause long txg sync times. No matter what, we will not
160 * overload the drives with I/O, since that is protected by
161 * zfs_vdev_scrub_max_active.
162 */
163static uint64_t zfs_scan_vdev_limit = 16 << 20;
164
165static uint_t zfs_scan_issue_strategy = 0;
166
167/* don't queue & sort zios, go direct */
168static int zfs_scan_legacy = B_FALSE;
169static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
170
171/*
172 * fill_weight is non-tunable at runtime, so we copy it at module init from
173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174 * break queue sorting.
175 */
176static uint_t zfs_scan_fill_weight = 3;
177static uint64_t fill_weight;
178
179/* See dsl_scan_should_clear() for details on the memory limit tunables */
180static const uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
181static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
182
183
184/* fraction of physmem */
185static uint_t zfs_scan_mem_lim_fact = 20;
186
187/* fraction of mem lim above */
188static uint_t zfs_scan_mem_lim_soft_fact = 20;
189
190/* minimum milliseconds to scrub per txg */
191static uint_t zfs_scrub_min_time_ms = 1000;
192
193/* minimum milliseconds to obsolete per txg */
194static uint_t zfs_obsolete_min_time_ms = 500;
195
196/* minimum milliseconds to free per txg */
197static uint_t zfs_free_min_time_ms = 1000;
198
199/* minimum milliseconds to resilver per txg */
200static uint_t zfs_resilver_min_time_ms = 3000;
201
202static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207/* max number of blocks to free in a single TXG */
208static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209/* max number of dedup blocks to free in a single TXG */
210static uint64_t zfs_max_async_dedup_frees = 100000;
211
212/* set to disable resilver deferring */
213static int zfs_resilver_disable_defer = B_FALSE;
214
215/*
216 * We wait a few txgs after importing a pool to begin scanning so that
217 * the import / mounting code isn't held up by scrub / resilver IO.
218 * Unfortunately, it is a bit difficult to determine exactly how long
219 * this will take since userspace will trigger fs mounts asynchronously
220 * and the kernel will create zvol minors asynchronously. As a result,
221 * the value provided here is a bit arbitrary, but represents a
222 * reasonable estimate of how many txgs it will take to finish fully
223 * importing a pool
224 */
225#define	SCAN_IMPORT_WAIT_TXGS 		5
226
227#define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
228	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
229	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
230
231/*
232 * Enable/disable the processing of the free_bpobj object.
233 */
234static int zfs_free_bpobj_enabled = 1;
235
236/* Error blocks to be scrubbed in one txg. */
237static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
238
239/* the order has to match pool_scan_type */
240static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
241	NULL,
242	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
243	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
244};
245
246/* In core node for the scn->scn_queue. Represents a dataset to be scanned */
247typedef struct {
248	uint64_t	sds_dsobj;
249	uint64_t	sds_txg;
250	avl_node_t	sds_node;
251} scan_ds_t;
252
253/*
254 * This controls what conditions are placed on dsl_scan_sync_state():
255 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
256 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
257 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
258 *	write out the scn_phys_cached version.
259 * See dsl_scan_sync_state for details.
260 */
261typedef enum {
262	SYNC_OPTIONAL,
263	SYNC_MANDATORY,
264	SYNC_CACHED
265} state_sync_type_t;
266
267/*
268 * This struct represents the minimum information needed to reconstruct a
269 * zio for sequential scanning. This is useful because many of these will
270 * accumulate in the sequential IO queues before being issued, so saving
271 * memory matters here.
272 */
273typedef struct scan_io {
274	/* fields from blkptr_t */
275	uint64_t		sio_blk_prop;
276	uint64_t		sio_phys_birth;
277	uint64_t		sio_birth;
278	zio_cksum_t		sio_cksum;
279	uint32_t		sio_nr_dvas;
280
281	/* fields from zio_t */
282	uint32_t		sio_flags;
283	zbookmark_phys_t	sio_zb;
284
285	/* members for queue sorting */
286	union {
287		avl_node_t	sio_addr_node; /* link into issuing queue */
288		list_node_t	sio_list_node; /* link for issuing to disk */
289	} sio_nodes;
290
291	/*
292	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
293	 * depending on how many were in the original bp. Only the
294	 * first DVA is really used for sorting and issuing purposes.
295	 * The other DVAs (if provided) simply exist so that the zio
296	 * layer can find additional copies to repair from in the
297	 * event of an error. This array must go at the end of the
298	 * struct to allow this for the variable number of elements.
299	 */
300	dva_t			sio_dva[];
301} scan_io_t;
302
303#define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
304#define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
305#define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
306#define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
307#define	SIO_GET_END_OFFSET(sio)		\
308	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
309#define	SIO_GET_MUSED(sio)		\
310	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
311
312struct dsl_scan_io_queue {
313	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
314	vdev_t		*q_vd; /* top-level vdev that this queue represents */
315	zio_t		*q_zio; /* scn_zio_root child for waiting on IO */
316
317	/* trees used for sorting I/Os and extents of I/Os */
318	range_tree_t	*q_exts_by_addr;
319	zfs_btree_t	q_exts_by_size;
320	avl_tree_t	q_sios_by_addr;
321	uint64_t	q_sio_memused;
322	uint64_t	q_last_ext_addr;
323
324	/* members for zio rate limiting */
325	uint64_t	q_maxinflight_bytes;
326	uint64_t	q_inflight_bytes;
327	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
328
329	/* per txg statistics */
330	uint64_t	q_total_seg_size_this_txg;
331	uint64_t	q_segs_this_txg;
332	uint64_t	q_total_zio_size_this_txg;
333	uint64_t	q_zios_this_txg;
334};
335
336/* private data for dsl_scan_prefetch_cb() */
337typedef struct scan_prefetch_ctx {
338	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
339	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
340	boolean_t spc_root;		/* is this prefetch for an objset? */
341	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
342	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
343} scan_prefetch_ctx_t;
344
345/* private data for dsl_scan_prefetch() */
346typedef struct scan_prefetch_issue_ctx {
347	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
348	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
349	blkptr_t spic_bp;		/* bp to prefetch */
350	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
351} scan_prefetch_issue_ctx_t;
352
353static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
354    const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
355static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
356    scan_io_t *sio);
357
358static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
359static void scan_io_queues_destroy(dsl_scan_t *scn);
360
361static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
362
363/* sio->sio_nr_dvas must be set so we know which cache to free from */
364static void
365sio_free(scan_io_t *sio)
366{
367	ASSERT3U(sio->sio_nr_dvas, >, 0);
368	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
369
370	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
371}
372
373/* It is up to the caller to set sio->sio_nr_dvas for freeing */
374static scan_io_t *
375sio_alloc(unsigned short nr_dvas)
376{
377	ASSERT3U(nr_dvas, >, 0);
378	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
379
380	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
381}
382
383void
384scan_init(void)
385{
386	/*
387	 * This is used in ext_size_compare() to weight segments
388	 * based on how sparse they are. This cannot be changed
389	 * mid-scan and the tree comparison functions don't currently
390	 * have a mechanism for passing additional context to the
391	 * compare functions. Thus we store this value globally and
392	 * we only allow it to be set at module initialization time
393	 */
394	fill_weight = zfs_scan_fill_weight;
395
396	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
397		char name[36];
398
399		(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
400		sio_cache[i] = kmem_cache_create(name,
401		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
402		    0, NULL, NULL, NULL, NULL, NULL, 0);
403	}
404}
405
406void
407scan_fini(void)
408{
409	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
410		kmem_cache_destroy(sio_cache[i]);
411	}
412}
413
414static inline boolean_t
415dsl_scan_is_running(const dsl_scan_t *scn)
416{
417	return (scn->scn_phys.scn_state == DSS_SCANNING);
418}
419
420boolean_t
421dsl_scan_resilvering(dsl_pool_t *dp)
422{
423	return (dsl_scan_is_running(dp->dp_scan) &&
424	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
425}
426
427static inline void
428sio2bp(const scan_io_t *sio, blkptr_t *bp)
429{
430	memset(bp, 0, sizeof (*bp));
431	bp->blk_prop = sio->sio_blk_prop;
432	BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
433	BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
434	bp->blk_fill = 1;	/* we always only work with data pointers */
435	bp->blk_cksum = sio->sio_cksum;
436
437	ASSERT3U(sio->sio_nr_dvas, >, 0);
438	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
439
440	memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
441}
442
443static inline void
444bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
445{
446	sio->sio_blk_prop = bp->blk_prop;
447	sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
448	sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
449	sio->sio_cksum = bp->blk_cksum;
450	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
451
452	/*
453	 * Copy the DVAs to the sio. We need all copies of the block so
454	 * that the self healing code can use the alternate copies if the
455	 * first is corrupted. We want the DVA at index dva_i to be first
456	 * in the sio since this is the primary one that we want to issue.
457	 */
458	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
459		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
460	}
461}
462
463int
464dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
465{
466	int err;
467	dsl_scan_t *scn;
468	spa_t *spa = dp->dp_spa;
469	uint64_t f;
470
471	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
472	scn->scn_dp = dp;
473
474	/*
475	 * It's possible that we're resuming a scan after a reboot so
476	 * make sure that the scan_async_destroying flag is initialized
477	 * appropriately.
478	 */
479	ASSERT(!scn->scn_async_destroying);
480	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
481	    SPA_FEATURE_ASYNC_DESTROY);
482
483	/*
484	 * Calculate the max number of in-flight bytes for pool-wide
485	 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
486	 * Limits for the issuing phase are done per top-level vdev and
487	 * are handled separately.
488	 */
489	scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
490	    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
491
492	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
493	    offsetof(scan_ds_t, sds_node));
494	mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
495	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
496	    sizeof (scan_prefetch_issue_ctx_t),
497	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
498
499	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
500	    "scrub_func", sizeof (uint64_t), 1, &f);
501	if (err == 0) {
502		/*
503		 * There was an old-style scrub in progress.  Restart a
504		 * new-style scrub from the beginning.
505		 */
506		scn->scn_restart_txg = txg;
507		zfs_dbgmsg("old-style scrub was in progress for %s; "
508		    "restarting new-style scrub in txg %llu",
509		    spa->spa_name,
510		    (longlong_t)scn->scn_restart_txg);
511
512		/*
513		 * Load the queue obj from the old location so that it
514		 * can be freed by dsl_scan_done().
515		 */
516		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
517		    "scrub_queue", sizeof (uint64_t), 1,
518		    &scn->scn_phys.scn_queue_obj);
519	} else {
520		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
521		    DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
522		    ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
523
524		if (err != 0 && err != ENOENT)
525			return (err);
526
527		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
528		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
529		    &scn->scn_phys);
530
531		/*
532		 * Detect if the pool contains the signature of #2094.  If it
533		 * does properly update the scn->scn_phys structure and notify
534		 * the administrator by setting an errata for the pool.
535		 */
536		if (err == EOVERFLOW) {
537			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
538			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
539			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
540			    (23 * sizeof (uint64_t)));
541
542			err = zap_lookup(dp->dp_meta_objset,
543			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
544			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
545			if (err == 0) {
546				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
547
548				if (overflow & ~DSL_SCAN_FLAGS_MASK ||
549				    scn->scn_async_destroying) {
550					spa->spa_errata =
551					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
552					return (EOVERFLOW);
553				}
554
555				memcpy(&scn->scn_phys, zaptmp,
556				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
557				scn->scn_phys.scn_flags = overflow;
558
559				/* Required scrub already in progress. */
560				if (scn->scn_phys.scn_state == DSS_FINISHED ||
561				    scn->scn_phys.scn_state == DSS_CANCELED)
562					spa->spa_errata =
563					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
564			}
565		}
566
567		if (err == ENOENT)
568			return (0);
569		else if (err)
570			return (err);
571
572		/*
573		 * We might be restarting after a reboot, so jump the issued
574		 * counter to how far we've scanned. We know we're consistent
575		 * up to here.
576		 */
577		scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
578		    scn->scn_phys.scn_skipped;
579
580		if (dsl_scan_is_running(scn) &&
581		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
582			/*
583			 * A new-type scrub was in progress on an old
584			 * pool, and the pool was accessed by old
585			 * software.  Restart from the beginning, since
586			 * the old software may have changed the pool in
587			 * the meantime.
588			 */
589			scn->scn_restart_txg = txg;
590			zfs_dbgmsg("new-style scrub for %s was modified "
591			    "by old software; restarting in txg %llu",
592			    spa->spa_name,
593			    (longlong_t)scn->scn_restart_txg);
594		} else if (dsl_scan_resilvering(dp)) {
595			/*
596			 * If a resilver is in progress and there are already
597			 * errors, restart it instead of finishing this scan and
598			 * then restarting it. If there haven't been any errors
599			 * then remember that the incore DTL is valid.
600			 */
601			if (scn->scn_phys.scn_errors > 0) {
602				scn->scn_restart_txg = txg;
603				zfs_dbgmsg("resilver can't excise DTL_MISSING "
604				    "when finished; restarting on %s in txg "
605				    "%llu",
606				    spa->spa_name,
607				    (u_longlong_t)scn->scn_restart_txg);
608			} else {
609				/* it's safe to excise DTL when finished */
610				spa->spa_scrub_started = B_TRUE;
611			}
612		}
613	}
614
615	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
616
617	/* reload the queue into the in-core state */
618	if (scn->scn_phys.scn_queue_obj != 0) {
619		zap_cursor_t zc;
620		zap_attribute_t za;
621
622		for (zap_cursor_init(&zc, dp->dp_meta_objset,
623		    scn->scn_phys.scn_queue_obj);
624		    zap_cursor_retrieve(&zc, &za) == 0;
625		    (void) zap_cursor_advance(&zc)) {
626			scan_ds_queue_insert(scn,
627			    zfs_strtonum(za.za_name, NULL),
628			    za.za_first_integer);
629		}
630		zap_cursor_fini(&zc);
631	}
632
633	spa_scan_stat_init(spa);
634	vdev_scan_stat_init(spa->spa_root_vdev);
635
636	return (0);
637}
638
639void
640dsl_scan_fini(dsl_pool_t *dp)
641{
642	if (dp->dp_scan != NULL) {
643		dsl_scan_t *scn = dp->dp_scan;
644
645		if (scn->scn_taskq != NULL)
646			taskq_destroy(scn->scn_taskq);
647
648		scan_ds_queue_clear(scn);
649		avl_destroy(&scn->scn_queue);
650		mutex_destroy(&scn->scn_queue_lock);
651		scan_ds_prefetch_queue_clear(scn);
652		avl_destroy(&scn->scn_prefetch_queue);
653
654		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
655		dp->dp_scan = NULL;
656	}
657}
658
659static boolean_t
660dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
661{
662	return (scn->scn_restart_txg != 0 &&
663	    scn->scn_restart_txg <= tx->tx_txg);
664}
665
666boolean_t
667dsl_scan_resilver_scheduled(dsl_pool_t *dp)
668{
669	return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
670	    (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
671}
672
673boolean_t
674dsl_scan_scrubbing(const dsl_pool_t *dp)
675{
676	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
677
678	return (scn_phys->scn_state == DSS_SCANNING &&
679	    scn_phys->scn_func == POOL_SCAN_SCRUB);
680}
681
682boolean_t
683dsl_errorscrubbing(const dsl_pool_t *dp)
684{
685	dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
686
687	return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
688	    errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
689}
690
691boolean_t
692dsl_errorscrub_is_paused(const dsl_scan_t *scn)
693{
694	return (dsl_errorscrubbing(scn->scn_dp) &&
695	    scn->errorscrub_phys.dep_paused_flags);
696}
697
698boolean_t
699dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
700{
701	return (dsl_scan_scrubbing(scn->scn_dp) &&
702	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
703}
704
705static void
706dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
707{
708	scn->errorscrub_phys.dep_cursor =
709	    zap_cursor_serialize(&scn->errorscrub_cursor);
710
711	VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
712	    DMU_POOL_DIRECTORY_OBJECT,
713	    DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
714	    &scn->errorscrub_phys, tx));
715}
716
717static void
718dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
719{
720	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
721	pool_scan_func_t *funcp = arg;
722	dsl_pool_t *dp = scn->scn_dp;
723	spa_t *spa = dp->dp_spa;
724
725	ASSERT(!dsl_scan_is_running(scn));
726	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
727	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
728
729	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
730	scn->errorscrub_phys.dep_func = *funcp;
731	scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
732	scn->errorscrub_phys.dep_start_time = gethrestime_sec();
733	scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
734	scn->errorscrub_phys.dep_examined = 0;
735	scn->errorscrub_phys.dep_errors = 0;
736	scn->errorscrub_phys.dep_cursor = 0;
737	zap_cursor_init_serialized(&scn->errorscrub_cursor,
738	    spa->spa_meta_objset, spa->spa_errlog_last,
739	    scn->errorscrub_phys.dep_cursor);
740
741	vdev_config_dirty(spa->spa_root_vdev);
742	spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
743
744	dsl_errorscrub_sync_state(scn, tx);
745
746	spa_history_log_internal(spa, "error scrub setup", tx,
747	    "func=%u mintxg=%u maxtxg=%llu",
748	    *funcp, 0, (u_longlong_t)tx->tx_txg);
749}
750
751static int
752dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
753{
754	(void) arg;
755	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
756
757	if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
758		return (SET_ERROR(EBUSY));
759	}
760
761	if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
762		return (ECANCELED);
763	}
764	return (0);
765}
766
767/*
768 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
769 * Because we can be running in the block sorting algorithm, we do not always
770 * want to write out the record, only when it is "safe" to do so. This safety
771 * condition is achieved by making sure that the sorting queues are empty
772 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
773 * is inconsistent with how much actual scanning progress has been made. The
774 * kind of sync to be performed is specified by the sync_type argument. If the
775 * sync is optional, we only sync if the queues are empty. If the sync is
776 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
777 * third possible state is a "cached" sync. This is done in response to:
778 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
779 *	destroyed, so we wouldn't be able to restart scanning from it.
780 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
781 *	superseded by a newer snapshot.
782 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
783 *	swapped with its clone.
784 * In all cases, a cached sync simply rewrites the last record we've written,
785 * just slightly modified. For the modifications that are performed to the
786 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
787 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
788 */
789static void
790dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
791{
792	int i;
793	spa_t *spa = scn->scn_dp->dp_spa;
794
795	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
796	if (scn->scn_queues_pending == 0) {
797		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
798			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
799			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
800
801			if (q == NULL)
802				continue;
803
804			mutex_enter(&vd->vdev_scan_io_queue_lock);
805			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
806			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
807			    NULL);
808			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
809			mutex_exit(&vd->vdev_scan_io_queue_lock);
810		}
811
812		if (scn->scn_phys.scn_queue_obj != 0)
813			scan_ds_queue_sync(scn, tx);
814		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
815		    DMU_POOL_DIRECTORY_OBJECT,
816		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
817		    &scn->scn_phys, tx));
818		memcpy(&scn->scn_phys_cached, &scn->scn_phys,
819		    sizeof (scn->scn_phys));
820
821		if (scn->scn_checkpointing)
822			zfs_dbgmsg("finish scan checkpoint for %s",
823			    spa->spa_name);
824
825		scn->scn_checkpointing = B_FALSE;
826		scn->scn_last_checkpoint = ddi_get_lbolt();
827	} else if (sync_type == SYNC_CACHED) {
828		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
829		    DMU_POOL_DIRECTORY_OBJECT,
830		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
831		    &scn->scn_phys_cached, tx));
832	}
833}
834
835int
836dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
837{
838	(void) arg;
839	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
840	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
841
842	if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
843	    dsl_errorscrubbing(scn->scn_dp))
844		return (SET_ERROR(EBUSY));
845
846	return (0);
847}
848
849void
850dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
851{
852	(void) arg;
853	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
854	pool_scan_func_t *funcp = arg;
855	dmu_object_type_t ot = 0;
856	dsl_pool_t *dp = scn->scn_dp;
857	spa_t *spa = dp->dp_spa;
858
859	ASSERT(!dsl_scan_is_running(scn));
860	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
861	memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
862
863	/*
864	 * If we are starting a fresh scrub, we erase the error scrub
865	 * information from disk.
866	 */
867	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
868	dsl_errorscrub_sync_state(scn, tx);
869
870	scn->scn_phys.scn_func = *funcp;
871	scn->scn_phys.scn_state = DSS_SCANNING;
872	scn->scn_phys.scn_min_txg = 0;
873	scn->scn_phys.scn_max_txg = tx->tx_txg;
874	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
875	scn->scn_phys.scn_start_time = gethrestime_sec();
876	scn->scn_phys.scn_errors = 0;
877	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
878	scn->scn_issued_before_pass = 0;
879	scn->scn_restart_txg = 0;
880	scn->scn_done_txg = 0;
881	scn->scn_last_checkpoint = 0;
882	scn->scn_checkpointing = B_FALSE;
883	spa_scan_stat_init(spa);
884	vdev_scan_stat_init(spa->spa_root_vdev);
885
886	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
887		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
888
889		/* rewrite all disk labels */
890		vdev_config_dirty(spa->spa_root_vdev);
891
892		if (vdev_resilver_needed(spa->spa_root_vdev,
893		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
894			nvlist_t *aux = fnvlist_alloc();
895			fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
896			    "healing");
897			spa_event_notify(spa, NULL, aux,
898			    ESC_ZFS_RESILVER_START);
899			nvlist_free(aux);
900		} else {
901			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
902		}
903
904		spa->spa_scrub_started = B_TRUE;
905		/*
906		 * If this is an incremental scrub, limit the DDT scrub phase
907		 * to just the auto-ditto class (for correctness); the rest
908		 * of the scrub should go faster using top-down pruning.
909		 */
910		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
911			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
912
913		/*
914		 * When starting a resilver clear any existing rebuild state.
915		 * This is required to prevent stale rebuild status from
916		 * being reported when a rebuild is run, then a resilver and
917		 * finally a scrub.  In which case only the scrub status
918		 * should be reported by 'zpool status'.
919		 */
920		if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
921			vdev_t *rvd = spa->spa_root_vdev;
922			for (uint64_t i = 0; i < rvd->vdev_children; i++) {
923				vdev_t *vd = rvd->vdev_child[i];
924				vdev_rebuild_clear_sync(
925				    (void *)(uintptr_t)vd->vdev_id, tx);
926			}
927		}
928	}
929
930	/* back to the generic stuff */
931
932	if (zfs_scan_blkstats) {
933		if (dp->dp_blkstats == NULL) {
934			dp->dp_blkstats =
935			    vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
936		}
937		memset(&dp->dp_blkstats->zab_type, 0,
938		    sizeof (dp->dp_blkstats->zab_type));
939	} else {
940		if (dp->dp_blkstats) {
941			vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
942			dp->dp_blkstats = NULL;
943		}
944	}
945
946	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
947		ot = DMU_OT_ZAP_OTHER;
948
949	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
950	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
951
952	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
953
954	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
955
956	spa_history_log_internal(spa, "scan setup", tx,
957	    "func=%u mintxg=%llu maxtxg=%llu",
958	    *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
959	    (u_longlong_t)scn->scn_phys.scn_max_txg);
960}
961
962/*
963 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
964 * error scrub or resilver. Can also be called to resume a paused scrub or
965 * error scrub.
966 */
967int
968dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
969{
970	spa_t *spa = dp->dp_spa;
971	dsl_scan_t *scn = dp->dp_scan;
972
973	/*
974	 * Purge all vdev caches and probe all devices.  We do this here
975	 * rather than in sync context because this requires a writer lock
976	 * on the spa_config lock, which we can't do from sync context.  The
977	 * spa_scrub_reopen flag indicates that vdev_open() should not
978	 * attempt to start another scrub.
979	 */
980	spa_vdev_state_enter(spa, SCL_NONE);
981	spa->spa_scrub_reopen = B_TRUE;
982	vdev_reopen(spa->spa_root_vdev);
983	spa->spa_scrub_reopen = B_FALSE;
984	(void) spa_vdev_state_exit(spa, NULL, 0);
985
986	if (func == POOL_SCAN_RESILVER) {
987		dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
988		return (0);
989	}
990
991	if (func == POOL_SCAN_ERRORSCRUB) {
992		if (dsl_errorscrub_is_paused(dp->dp_scan)) {
993			/*
994			 * got error scrub start cmd, resume paused error scrub.
995			 */
996			int err = dsl_scrub_set_pause_resume(scn->scn_dp,
997			    POOL_SCRUB_NORMAL);
998			if (err == 0) {
999				spa_event_notify(spa, NULL, NULL,
1000				    ESC_ZFS_ERRORSCRUB_RESUME);
1001				return (ECANCELED);
1002			}
1003			return (SET_ERROR(err));
1004		}
1005
1006		return (dsl_sync_task(spa_name(dp->dp_spa),
1007		    dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1008		    &func, 0, ZFS_SPACE_CHECK_RESERVED));
1009	}
1010
1011	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1012		/* got scrub start cmd, resume paused scrub */
1013		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1014		    POOL_SCRUB_NORMAL);
1015		if (err == 0) {
1016			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1017			return (SET_ERROR(ECANCELED));
1018		}
1019		return (SET_ERROR(err));
1020	}
1021
1022	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1023	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
1024}
1025
1026static void
1027dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1028{
1029	dsl_pool_t *dp = scn->scn_dp;
1030	spa_t *spa = dp->dp_spa;
1031
1032	if (complete) {
1033		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1034		spa_history_log_internal(spa, "error scrub done", tx,
1035		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1036	} else {
1037		spa_history_log_internal(spa, "error scrub canceled", tx,
1038		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1039	}
1040
1041	scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1042	spa->spa_scrub_active = B_FALSE;
1043	spa_errlog_rotate(spa);
1044	scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1045	zap_cursor_fini(&scn->errorscrub_cursor);
1046
1047	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1048		spa->spa_errata = 0;
1049
1050	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1051}
1052
1053static void
1054dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1055{
1056	static const char *old_names[] = {
1057		"scrub_bookmark",
1058		"scrub_ddt_bookmark",
1059		"scrub_ddt_class_max",
1060		"scrub_queue",
1061		"scrub_min_txg",
1062		"scrub_max_txg",
1063		"scrub_func",
1064		"scrub_errors",
1065		NULL
1066	};
1067
1068	dsl_pool_t *dp = scn->scn_dp;
1069	spa_t *spa = dp->dp_spa;
1070	int i;
1071
1072	/* Remove any remnants of an old-style scrub. */
1073	for (i = 0; old_names[i]; i++) {
1074		(void) zap_remove(dp->dp_meta_objset,
1075		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1076	}
1077
1078	if (scn->scn_phys.scn_queue_obj != 0) {
1079		VERIFY0(dmu_object_free(dp->dp_meta_objset,
1080		    scn->scn_phys.scn_queue_obj, tx));
1081		scn->scn_phys.scn_queue_obj = 0;
1082	}
1083	scan_ds_queue_clear(scn);
1084	scan_ds_prefetch_queue_clear(scn);
1085
1086	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1087
1088	/*
1089	 * If we were "restarted" from a stopped state, don't bother
1090	 * with anything else.
1091	 */
1092	if (!dsl_scan_is_running(scn)) {
1093		ASSERT(!scn->scn_is_sorted);
1094		return;
1095	}
1096
1097	if (scn->scn_is_sorted) {
1098		scan_io_queues_destroy(scn);
1099		scn->scn_is_sorted = B_FALSE;
1100
1101		if (scn->scn_taskq != NULL) {
1102			taskq_destroy(scn->scn_taskq);
1103			scn->scn_taskq = NULL;
1104		}
1105	}
1106
1107	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1108
1109	spa_notify_waiters(spa);
1110
1111	if (dsl_scan_restarting(scn, tx))
1112		spa_history_log_internal(spa, "scan aborted, restarting", tx,
1113		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1114	else if (!complete)
1115		spa_history_log_internal(spa, "scan cancelled", tx,
1116		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1117	else
1118		spa_history_log_internal(spa, "scan done", tx,
1119		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1120
1121	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1122		spa->spa_scrub_active = B_FALSE;
1123
1124		/*
1125		 * If the scrub/resilver completed, update all DTLs to
1126		 * reflect this.  Whether it succeeded or not, vacate
1127		 * all temporary scrub DTLs.
1128		 *
1129		 * As the scrub does not currently support traversing
1130		 * data that have been freed but are part of a checkpoint,
1131		 * we don't mark the scrub as done in the DTLs as faults
1132		 * may still exist in those vdevs.
1133		 */
1134		if (complete &&
1135		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1136			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1137			    scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1138
1139			if (scn->scn_phys.scn_min_txg) {
1140				nvlist_t *aux = fnvlist_alloc();
1141				fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1142				    "healing");
1143				spa_event_notify(spa, NULL, aux,
1144				    ESC_ZFS_RESILVER_FINISH);
1145				nvlist_free(aux);
1146			} else {
1147				spa_event_notify(spa, NULL, NULL,
1148				    ESC_ZFS_SCRUB_FINISH);
1149			}
1150		} else {
1151			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1152			    0, B_TRUE, B_FALSE);
1153		}
1154		spa_errlog_rotate(spa);
1155
1156		/*
1157		 * Don't clear flag until after vdev_dtl_reassess to ensure that
1158		 * DTL_MISSING will get updated when possible.
1159		 */
1160		spa->spa_scrub_started = B_FALSE;
1161
1162		/*
1163		 * We may have finished replacing a device.
1164		 * Let the async thread assess this and handle the detach.
1165		 */
1166		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1167
1168		/*
1169		 * Clear any resilver_deferred flags in the config.
1170		 * If there are drives that need resilvering, kick
1171		 * off an asynchronous request to start resilver.
1172		 * vdev_clear_resilver_deferred() may update the config
1173		 * before the resilver can restart. In the event of
1174		 * a crash during this period, the spa loading code
1175		 * will find the drives that need to be resilvered
1176		 * and start the resilver then.
1177		 */
1178		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1179		    vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1180			spa_history_log_internal(spa,
1181			    "starting deferred resilver", tx, "errors=%llu",
1182			    (u_longlong_t)spa_approx_errlog_size(spa));
1183			spa_async_request(spa, SPA_ASYNC_RESILVER);
1184		}
1185
1186		/* Clear recent error events (i.e. duplicate events tracking) */
1187		if (complete)
1188			zfs_ereport_clear(spa, NULL);
1189	}
1190
1191	scn->scn_phys.scn_end_time = gethrestime_sec();
1192
1193	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1194		spa->spa_errata = 0;
1195
1196	ASSERT(!dsl_scan_is_running(scn));
1197}
1198
1199static int
1200dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1201{
1202	pool_scrub_cmd_t *cmd = arg;
1203	dsl_pool_t *dp = dmu_tx_pool(tx);
1204	dsl_scan_t *scn = dp->dp_scan;
1205
1206	if (*cmd == POOL_SCRUB_PAUSE) {
1207		/*
1208		 * can't pause a error scrub when there is no in-progress
1209		 * error scrub.
1210		 */
1211		if (!dsl_errorscrubbing(dp))
1212			return (SET_ERROR(ENOENT));
1213
1214		/* can't pause a paused error scrub */
1215		if (dsl_errorscrub_is_paused(scn))
1216			return (SET_ERROR(EBUSY));
1217	} else if (*cmd != POOL_SCRUB_NORMAL) {
1218		return (SET_ERROR(ENOTSUP));
1219	}
1220
1221	return (0);
1222}
1223
1224static void
1225dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1226{
1227	pool_scrub_cmd_t *cmd = arg;
1228	dsl_pool_t *dp = dmu_tx_pool(tx);
1229	spa_t *spa = dp->dp_spa;
1230	dsl_scan_t *scn = dp->dp_scan;
1231
1232	if (*cmd == POOL_SCRUB_PAUSE) {
1233		spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1234		scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1235		dsl_errorscrub_sync_state(scn, tx);
1236		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1237	} else {
1238		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1239		if (dsl_errorscrub_is_paused(scn)) {
1240			/*
1241			 * We need to keep track of how much time we spend
1242			 * paused per pass so that we can adjust the error scrub
1243			 * rate shown in the output of 'zpool status'.
1244			 */
1245			spa->spa_scan_pass_errorscrub_spent_paused +=
1246			    gethrestime_sec() -
1247			    spa->spa_scan_pass_errorscrub_pause;
1248
1249			spa->spa_scan_pass_errorscrub_pause = 0;
1250			scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1251
1252			zap_cursor_init_serialized(
1253			    &scn->errorscrub_cursor,
1254			    spa->spa_meta_objset, spa->spa_errlog_last,
1255			    scn->errorscrub_phys.dep_cursor);
1256
1257			dsl_errorscrub_sync_state(scn, tx);
1258		}
1259	}
1260}
1261
1262static int
1263dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1264{
1265	(void) arg;
1266	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1267	/* can't cancel a error scrub when there is no one in-progress */
1268	if (!dsl_errorscrubbing(scn->scn_dp))
1269		return (SET_ERROR(ENOENT));
1270	return (0);
1271}
1272
1273static void
1274dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1275{
1276	(void) arg;
1277	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1278
1279	dsl_errorscrub_done(scn, B_FALSE, tx);
1280	dsl_errorscrub_sync_state(scn, tx);
1281	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1282	    ESC_ZFS_ERRORSCRUB_ABORT);
1283}
1284
1285static int
1286dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1287{
1288	(void) arg;
1289	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1290
1291	if (!dsl_scan_is_running(scn))
1292		return (SET_ERROR(ENOENT));
1293	return (0);
1294}
1295
1296static void
1297dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1298{
1299	(void) arg;
1300	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1301
1302	dsl_scan_done(scn, B_FALSE, tx);
1303	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1304	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1305}
1306
1307int
1308dsl_scan_cancel(dsl_pool_t *dp)
1309{
1310	if (dsl_errorscrubbing(dp)) {
1311		return (dsl_sync_task(spa_name(dp->dp_spa),
1312		    dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1313		    NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1314	}
1315	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1316	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1317}
1318
1319static int
1320dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1321{
1322	pool_scrub_cmd_t *cmd = arg;
1323	dsl_pool_t *dp = dmu_tx_pool(tx);
1324	dsl_scan_t *scn = dp->dp_scan;
1325
1326	if (*cmd == POOL_SCRUB_PAUSE) {
1327		/* can't pause a scrub when there is no in-progress scrub */
1328		if (!dsl_scan_scrubbing(dp))
1329			return (SET_ERROR(ENOENT));
1330
1331		/* can't pause a paused scrub */
1332		if (dsl_scan_is_paused_scrub(scn))
1333			return (SET_ERROR(EBUSY));
1334	} else if (*cmd != POOL_SCRUB_NORMAL) {
1335		return (SET_ERROR(ENOTSUP));
1336	}
1337
1338	return (0);
1339}
1340
1341static void
1342dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1343{
1344	pool_scrub_cmd_t *cmd = arg;
1345	dsl_pool_t *dp = dmu_tx_pool(tx);
1346	spa_t *spa = dp->dp_spa;
1347	dsl_scan_t *scn = dp->dp_scan;
1348
1349	if (*cmd == POOL_SCRUB_PAUSE) {
1350		/* can't pause a scrub when there is no in-progress scrub */
1351		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1352		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1353		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1354		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1355		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1356		spa_notify_waiters(spa);
1357	} else {
1358		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1359		if (dsl_scan_is_paused_scrub(scn)) {
1360			/*
1361			 * We need to keep track of how much time we spend
1362			 * paused per pass so that we can adjust the scrub rate
1363			 * shown in the output of 'zpool status'
1364			 */
1365			spa->spa_scan_pass_scrub_spent_paused +=
1366			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1367			spa->spa_scan_pass_scrub_pause = 0;
1368			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1369			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1370			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1371		}
1372	}
1373}
1374
1375/*
1376 * Set scrub pause/resume state if it makes sense to do so
1377 */
1378int
1379dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1380{
1381	if (dsl_errorscrubbing(dp)) {
1382		return (dsl_sync_task(spa_name(dp->dp_spa),
1383		    dsl_errorscrub_pause_resume_check,
1384		    dsl_errorscrub_pause_resume_sync, &cmd, 3,
1385		    ZFS_SPACE_CHECK_RESERVED));
1386	}
1387	return (dsl_sync_task(spa_name(dp->dp_spa),
1388	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1389	    ZFS_SPACE_CHECK_RESERVED));
1390}
1391
1392
1393/* start a new scan, or restart an existing one. */
1394void
1395dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1396{
1397	if (txg == 0) {
1398		dmu_tx_t *tx;
1399		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1400		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1401
1402		txg = dmu_tx_get_txg(tx);
1403		dp->dp_scan->scn_restart_txg = txg;
1404		dmu_tx_commit(tx);
1405	} else {
1406		dp->dp_scan->scn_restart_txg = txg;
1407	}
1408	zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1409	    dp->dp_spa->spa_name, (longlong_t)txg);
1410}
1411
1412void
1413dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1414{
1415	zio_free(dp->dp_spa, txg, bp);
1416}
1417
1418void
1419dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1420{
1421	ASSERT(dsl_pool_sync_context(dp));
1422	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1423}
1424
1425static int
1426scan_ds_queue_compare(const void *a, const void *b)
1427{
1428	const scan_ds_t *sds_a = a, *sds_b = b;
1429
1430	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1431		return (-1);
1432	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1433		return (0);
1434	return (1);
1435}
1436
1437static void
1438scan_ds_queue_clear(dsl_scan_t *scn)
1439{
1440	void *cookie = NULL;
1441	scan_ds_t *sds;
1442	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1443		kmem_free(sds, sizeof (*sds));
1444	}
1445}
1446
1447static boolean_t
1448scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1449{
1450	scan_ds_t srch, *sds;
1451
1452	srch.sds_dsobj = dsobj;
1453	sds = avl_find(&scn->scn_queue, &srch, NULL);
1454	if (sds != NULL && txg != NULL)
1455		*txg = sds->sds_txg;
1456	return (sds != NULL);
1457}
1458
1459static void
1460scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1461{
1462	scan_ds_t *sds;
1463	avl_index_t where;
1464
1465	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1466	sds->sds_dsobj = dsobj;
1467	sds->sds_txg = txg;
1468
1469	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1470	avl_insert(&scn->scn_queue, sds, where);
1471}
1472
1473static void
1474scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1475{
1476	scan_ds_t srch, *sds;
1477
1478	srch.sds_dsobj = dsobj;
1479
1480	sds = avl_find(&scn->scn_queue, &srch, NULL);
1481	VERIFY(sds != NULL);
1482	avl_remove(&scn->scn_queue, sds);
1483	kmem_free(sds, sizeof (*sds));
1484}
1485
1486static void
1487scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1488{
1489	dsl_pool_t *dp = scn->scn_dp;
1490	spa_t *spa = dp->dp_spa;
1491	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1492	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1493
1494	ASSERT0(scn->scn_queues_pending);
1495	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1496
1497	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1498	    scn->scn_phys.scn_queue_obj, tx));
1499	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1500	    DMU_OT_NONE, 0, tx);
1501	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1502	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1503		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1504		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1505		    sds->sds_txg, tx));
1506	}
1507}
1508
1509/*
1510 * Computes the memory limit state that we're currently in. A sorted scan
1511 * needs quite a bit of memory to hold the sorting queue, so we need to
1512 * reasonably constrain the size so it doesn't impact overall system
1513 * performance. We compute two limits:
1514 * 1) Hard memory limit: if the amount of memory used by the sorting
1515 *	queues on a pool gets above this value, we stop the metadata
1516 *	scanning portion and start issuing the queued up and sorted
1517 *	I/Os to reduce memory usage.
1518 *	This limit is calculated as a fraction of physmem (by default 5%).
1519 *	We constrain the lower bound of the hard limit to an absolute
1520 *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1521 *	the upper bound to 5% of the total pool size - no chance we'll
1522 *	ever need that much memory, but just to keep the value in check.
1523 * 2) Soft memory limit: once we hit the hard memory limit, we start
1524 *	issuing I/O to reduce queue memory usage, but we don't want to
1525 *	completely empty out the queues, since we might be able to find I/Os
1526 *	that will fill in the gaps of our non-sequential IOs at some point
1527 *	in the future. So we stop the issuing of I/Os once the amount of
1528 *	memory used drops below the soft limit (at which point we stop issuing
1529 *	I/O and start scanning metadata again).
1530 *
1531 *	This limit is calculated by subtracting a fraction of the hard
1532 *	limit from the hard limit. By default this fraction is 5%, so
1533 *	the soft limit is 95% of the hard limit. We cap the size of the
1534 *	difference between the hard and soft limits at an absolute
1535 *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1536 *	sufficient to not cause too frequent switching between the
1537 *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1538 *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1539 *	that should take at least a decent fraction of a second).
1540 */
1541static boolean_t
1542dsl_scan_should_clear(dsl_scan_t *scn)
1543{
1544	spa_t *spa = scn->scn_dp->dp_spa;
1545	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1546	uint64_t alloc, mlim_hard, mlim_soft, mused;
1547
1548	alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1549	alloc += metaslab_class_get_alloc(spa_special_class(spa));
1550	alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1551
1552	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1553	    zfs_scan_mem_lim_min);
1554	mlim_hard = MIN(mlim_hard, alloc / 20);
1555	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1556	    zfs_scan_mem_lim_soft_max);
1557	mused = 0;
1558	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1559		vdev_t *tvd = rvd->vdev_child[i];
1560		dsl_scan_io_queue_t *queue;
1561
1562		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1563		queue = tvd->vdev_scan_io_queue;
1564		if (queue != NULL) {
1565			/*
1566			 * # of extents in exts_by_addr = # in exts_by_size.
1567			 * B-tree efficiency is ~75%, but can be as low as 50%.
1568			 */
1569			mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1570			    ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1571			    3 / 2) + queue->q_sio_memused;
1572		}
1573		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1574	}
1575
1576	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1577
1578	if (mused == 0)
1579		ASSERT0(scn->scn_queues_pending);
1580
1581	/*
1582	 * If we are above our hard limit, we need to clear out memory.
1583	 * If we are below our soft limit, we need to accumulate sequential IOs.
1584	 * Otherwise, we should keep doing whatever we are currently doing.
1585	 */
1586	if (mused >= mlim_hard)
1587		return (B_TRUE);
1588	else if (mused < mlim_soft)
1589		return (B_FALSE);
1590	else
1591		return (scn->scn_clearing);
1592}
1593
1594static boolean_t
1595dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1596{
1597	/* we never skip user/group accounting objects */
1598	if (zb && (int64_t)zb->zb_object < 0)
1599		return (B_FALSE);
1600
1601	if (scn->scn_suspending)
1602		return (B_TRUE); /* we're already suspending */
1603
1604	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1605		return (B_FALSE); /* we're resuming */
1606
1607	/* We only know how to resume from level-0 and objset blocks. */
1608	if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1609		return (B_FALSE);
1610
1611	/*
1612	 * We suspend if:
1613	 *  - we have scanned for at least the minimum time (default 1 sec
1614	 *    for scrub, 3 sec for resilver), and either we have sufficient
1615	 *    dirty data that we are starting to write more quickly
1616	 *    (default 30%), someone is explicitly waiting for this txg
1617	 *    to complete, or we have used up all of the time in the txg
1618	 *    timeout (default 5 sec).
1619	 *  or
1620	 *  - the spa is shutting down because this pool is being exported
1621	 *    or the machine is rebooting.
1622	 *  or
1623	 *  - the scan queue has reached its memory use limit
1624	 */
1625	uint64_t curr_time_ns = gethrtime();
1626	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1627	uint64_t sync_time_ns = curr_time_ns -
1628	    scn->scn_dp->dp_spa->spa_sync_starttime;
1629	uint64_t dirty_min_bytes = zfs_dirty_data_max *
1630	    zfs_vdev_async_write_active_min_dirty_percent / 100;
1631	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1632	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1633
1634	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1635	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1636	    txg_sync_waiting(scn->scn_dp) ||
1637	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1638	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1639	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1640		if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1641			dprintf("suspending at first available bookmark "
1642			    "%llx/%llx/%llx/%llx\n",
1643			    (longlong_t)zb->zb_objset,
1644			    (longlong_t)zb->zb_object,
1645			    (longlong_t)zb->zb_level,
1646			    (longlong_t)zb->zb_blkid);
1647			SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1648			    zb->zb_objset, 0, 0, 0);
1649		} else if (zb != NULL) {
1650			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1651			    (longlong_t)zb->zb_objset,
1652			    (longlong_t)zb->zb_object,
1653			    (longlong_t)zb->zb_level,
1654			    (longlong_t)zb->zb_blkid);
1655			scn->scn_phys.scn_bookmark = *zb;
1656		} else {
1657#ifdef ZFS_DEBUG
1658			dsl_scan_phys_t *scnp = &scn->scn_phys;
1659			dprintf("suspending at at DDT bookmark "
1660			    "%llx/%llx/%llx/%llx\n",
1661			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1662			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1663			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1664			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1665#endif
1666		}
1667		scn->scn_suspending = B_TRUE;
1668		return (B_TRUE);
1669	}
1670	return (B_FALSE);
1671}
1672
1673static boolean_t
1674dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1675{
1676	/*
1677	 * We suspend if:
1678	 *  - we have scrubbed for at least the minimum time (default 1 sec
1679	 *    for error scrub), someone is explicitly waiting for this txg
1680	 *    to complete, or we have used up all of the time in the txg
1681	 *    timeout (default 5 sec).
1682	 *  or
1683	 *  - the spa is shutting down because this pool is being exported
1684	 *    or the machine is rebooting.
1685	 */
1686	uint64_t curr_time_ns = gethrtime();
1687	uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1688	uint64_t sync_time_ns = curr_time_ns -
1689	    scn->scn_dp->dp_spa->spa_sync_starttime;
1690	int mintime = zfs_scrub_min_time_ms;
1691
1692	if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1693	    (txg_sync_waiting(scn->scn_dp) ||
1694	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1695	    spa_shutting_down(scn->scn_dp->dp_spa)) {
1696		if (zb) {
1697			dprintf("error scrub suspending at bookmark "
1698			    "%llx/%llx/%llx/%llx\n",
1699			    (longlong_t)zb->zb_objset,
1700			    (longlong_t)zb->zb_object,
1701			    (longlong_t)zb->zb_level,
1702			    (longlong_t)zb->zb_blkid);
1703		}
1704		return (B_TRUE);
1705	}
1706	return (B_FALSE);
1707}
1708
1709typedef struct zil_scan_arg {
1710	dsl_pool_t	*zsa_dp;
1711	zil_header_t	*zsa_zh;
1712} zil_scan_arg_t;
1713
1714static int
1715dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1716    uint64_t claim_txg)
1717{
1718	(void) zilog;
1719	zil_scan_arg_t *zsa = arg;
1720	dsl_pool_t *dp = zsa->zsa_dp;
1721	dsl_scan_t *scn = dp->dp_scan;
1722	zil_header_t *zh = zsa->zsa_zh;
1723	zbookmark_phys_t zb;
1724
1725	ASSERT(!BP_IS_REDACTED(bp));
1726	if (BP_IS_HOLE(bp) ||
1727	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1728		return (0);
1729
1730	/*
1731	 * One block ("stubby") can be allocated a long time ago; we
1732	 * want to visit that one because it has been allocated
1733	 * (on-disk) even if it hasn't been claimed (even though for
1734	 * scrub there's nothing to do to it).
1735	 */
1736	if (claim_txg == 0 &&
1737	    BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1738		return (0);
1739
1740	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1741	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1742
1743	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1744	return (0);
1745}
1746
1747static int
1748dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1749    uint64_t claim_txg)
1750{
1751	(void) zilog;
1752	if (lrc->lrc_txtype == TX_WRITE) {
1753		zil_scan_arg_t *zsa = arg;
1754		dsl_pool_t *dp = zsa->zsa_dp;
1755		dsl_scan_t *scn = dp->dp_scan;
1756		zil_header_t *zh = zsa->zsa_zh;
1757		const lr_write_t *lr = (const lr_write_t *)lrc;
1758		const blkptr_t *bp = &lr->lr_blkptr;
1759		zbookmark_phys_t zb;
1760
1761		ASSERT(!BP_IS_REDACTED(bp));
1762		if (BP_IS_HOLE(bp) ||
1763		    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1764			return (0);
1765
1766		/*
1767		 * birth can be < claim_txg if this record's txg is
1768		 * already txg sync'ed (but this log block contains
1769		 * other records that are not synced)
1770		 */
1771		if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1772			return (0);
1773
1774		ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1775		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1776		    lr->lr_foid, ZB_ZIL_LEVEL,
1777		    lr->lr_offset / BP_GET_LSIZE(bp));
1778
1779		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1780	}
1781	return (0);
1782}
1783
1784static void
1785dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1786{
1787	uint64_t claim_txg = zh->zh_claim_txg;
1788	zil_scan_arg_t zsa = { dp, zh };
1789	zilog_t *zilog;
1790
1791	ASSERT(spa_writeable(dp->dp_spa));
1792
1793	/*
1794	 * We only want to visit blocks that have been claimed but not yet
1795	 * replayed (or, in read-only mode, blocks that *would* be claimed).
1796	 */
1797	if (claim_txg == 0)
1798		return;
1799
1800	zilog = zil_alloc(dp->dp_meta_objset, zh);
1801
1802	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1803	    claim_txg, B_FALSE);
1804
1805	zil_free(zilog);
1806}
1807
1808/*
1809 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1810 * here is to sort the AVL tree by the order each block will be needed.
1811 */
1812static int
1813scan_prefetch_queue_compare(const void *a, const void *b)
1814{
1815	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1816	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1817	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1818
1819	return (zbookmark_compare(spc_a->spc_datablkszsec,
1820	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1821	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1822}
1823
1824static void
1825scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1826{
1827	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1828		zfs_refcount_destroy(&spc->spc_refcnt);
1829		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1830	}
1831}
1832
1833static scan_prefetch_ctx_t *
1834scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1835{
1836	scan_prefetch_ctx_t *spc;
1837
1838	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1839	zfs_refcount_create(&spc->spc_refcnt);
1840	zfs_refcount_add(&spc->spc_refcnt, tag);
1841	spc->spc_scn = scn;
1842	if (dnp != NULL) {
1843		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1844		spc->spc_indblkshift = dnp->dn_indblkshift;
1845		spc->spc_root = B_FALSE;
1846	} else {
1847		spc->spc_datablkszsec = 0;
1848		spc->spc_indblkshift = 0;
1849		spc->spc_root = B_TRUE;
1850	}
1851
1852	return (spc);
1853}
1854
1855static void
1856scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1857{
1858	zfs_refcount_add(&spc->spc_refcnt, tag);
1859}
1860
1861static void
1862scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1863{
1864	spa_t *spa = scn->scn_dp->dp_spa;
1865	void *cookie = NULL;
1866	scan_prefetch_issue_ctx_t *spic = NULL;
1867
1868	mutex_enter(&spa->spa_scrub_lock);
1869	while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1870	    &cookie)) != NULL) {
1871		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1872		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1873	}
1874	mutex_exit(&spa->spa_scrub_lock);
1875}
1876
1877static boolean_t
1878dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1879    const zbookmark_phys_t *zb)
1880{
1881	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1882	dnode_phys_t tmp_dnp;
1883	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1884
1885	if (zb->zb_objset != last_zb->zb_objset)
1886		return (B_TRUE);
1887	if ((int64_t)zb->zb_object < 0)
1888		return (B_FALSE);
1889
1890	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1891	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1892
1893	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1894		return (B_TRUE);
1895
1896	return (B_FALSE);
1897}
1898
1899static void
1900dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1901{
1902	avl_index_t idx;
1903	dsl_scan_t *scn = spc->spc_scn;
1904	spa_t *spa = scn->scn_dp->dp_spa;
1905	scan_prefetch_issue_ctx_t *spic;
1906
1907	if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1908		return;
1909
1910	if (BP_IS_HOLE(bp) ||
1911	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1912	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1913	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1914		return;
1915
1916	if (dsl_scan_check_prefetch_resume(spc, zb))
1917		return;
1918
1919	scan_prefetch_ctx_add_ref(spc, scn);
1920	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1921	spic->spic_spc = spc;
1922	spic->spic_bp = *bp;
1923	spic->spic_zb = *zb;
1924
1925	/*
1926	 * Add the IO to the queue of blocks to prefetch. This allows us to
1927	 * prioritize blocks that we will need first for the main traversal
1928	 * thread.
1929	 */
1930	mutex_enter(&spa->spa_scrub_lock);
1931	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1932		/* this block is already queued for prefetch */
1933		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1934		scan_prefetch_ctx_rele(spc, scn);
1935		mutex_exit(&spa->spa_scrub_lock);
1936		return;
1937	}
1938
1939	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1940	cv_broadcast(&spa->spa_scrub_io_cv);
1941	mutex_exit(&spa->spa_scrub_lock);
1942}
1943
1944static void
1945dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1946    uint64_t objset, uint64_t object)
1947{
1948	int i;
1949	zbookmark_phys_t zb;
1950	scan_prefetch_ctx_t *spc;
1951
1952	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1953		return;
1954
1955	SET_BOOKMARK(&zb, objset, object, 0, 0);
1956
1957	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1958
1959	for (i = 0; i < dnp->dn_nblkptr; i++) {
1960		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1961		zb.zb_blkid = i;
1962		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1963	}
1964
1965	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1966		zb.zb_level = 0;
1967		zb.zb_blkid = DMU_SPILL_BLKID;
1968		dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1969	}
1970
1971	scan_prefetch_ctx_rele(spc, FTAG);
1972}
1973
1974static void
1975dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1976    arc_buf_t *buf, void *private)
1977{
1978	(void) zio;
1979	scan_prefetch_ctx_t *spc = private;
1980	dsl_scan_t *scn = spc->spc_scn;
1981	spa_t *spa = scn->scn_dp->dp_spa;
1982
1983	/* broadcast that the IO has completed for rate limiting purposes */
1984	mutex_enter(&spa->spa_scrub_lock);
1985	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1986	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1987	cv_broadcast(&spa->spa_scrub_io_cv);
1988	mutex_exit(&spa->spa_scrub_lock);
1989
1990	/* if there was an error or we are done prefetching, just cleanup */
1991	if (buf == NULL || scn->scn_prefetch_stop)
1992		goto out;
1993
1994	if (BP_GET_LEVEL(bp) > 0) {
1995		int i;
1996		blkptr_t *cbp;
1997		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1998		zbookmark_phys_t czb;
1999
2000		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2001			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2002			    zb->zb_level - 1, zb->zb_blkid * epb + i);
2003			dsl_scan_prefetch(spc, cbp, &czb);
2004		}
2005	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2006		dnode_phys_t *cdnp;
2007		int i;
2008		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2009
2010		for (i = 0, cdnp = buf->b_data; i < epb;
2011		    i += cdnp->dn_extra_slots + 1,
2012		    cdnp += cdnp->dn_extra_slots + 1) {
2013			dsl_scan_prefetch_dnode(scn, cdnp,
2014			    zb->zb_objset, zb->zb_blkid * epb + i);
2015		}
2016	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2017		objset_phys_t *osp = buf->b_data;
2018
2019		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2020		    zb->zb_objset, DMU_META_DNODE_OBJECT);
2021
2022		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2023			if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2024				dsl_scan_prefetch_dnode(scn,
2025				    &osp->os_projectused_dnode, zb->zb_objset,
2026				    DMU_PROJECTUSED_OBJECT);
2027			}
2028			dsl_scan_prefetch_dnode(scn,
2029			    &osp->os_groupused_dnode, zb->zb_objset,
2030			    DMU_GROUPUSED_OBJECT);
2031			dsl_scan_prefetch_dnode(scn,
2032			    &osp->os_userused_dnode, zb->zb_objset,
2033			    DMU_USERUSED_OBJECT);
2034		}
2035	}
2036
2037out:
2038	if (buf != NULL)
2039		arc_buf_destroy(buf, private);
2040	scan_prefetch_ctx_rele(spc, scn);
2041}
2042
2043static void
2044dsl_scan_prefetch_thread(void *arg)
2045{
2046	dsl_scan_t *scn = arg;
2047	spa_t *spa = scn->scn_dp->dp_spa;
2048	scan_prefetch_issue_ctx_t *spic;
2049
2050	/* loop until we are told to stop */
2051	while (!scn->scn_prefetch_stop) {
2052		arc_flags_t flags = ARC_FLAG_NOWAIT |
2053		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2054		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2055
2056		mutex_enter(&spa->spa_scrub_lock);
2057
2058		/*
2059		 * Wait until we have an IO to issue and are not above our
2060		 * maximum in flight limit.
2061		 */
2062		while (!scn->scn_prefetch_stop &&
2063		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2064		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2065			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2066		}
2067
2068		/* recheck if we should stop since we waited for the cv */
2069		if (scn->scn_prefetch_stop) {
2070			mutex_exit(&spa->spa_scrub_lock);
2071			break;
2072		}
2073
2074		/* remove the prefetch IO from the tree */
2075		spic = avl_first(&scn->scn_prefetch_queue);
2076		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2077		avl_remove(&scn->scn_prefetch_queue, spic);
2078
2079		mutex_exit(&spa->spa_scrub_lock);
2080
2081		if (BP_IS_PROTECTED(&spic->spic_bp)) {
2082			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2083			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2084			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2085			zio_flags |= ZIO_FLAG_RAW;
2086		}
2087
2088		/* We don't need data L1 buffer since we do not prefetch L0. */
2089		blkptr_t *bp = &spic->spic_bp;
2090		if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2091		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2092			flags |= ARC_FLAG_NO_BUF;
2093
2094		/* issue the prefetch asynchronously */
2095		(void) arc_read(scn->scn_zio_root, spa, bp,
2096		    dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2097		    zio_flags, &flags, &spic->spic_zb);
2098
2099		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2100	}
2101
2102	ASSERT(scn->scn_prefetch_stop);
2103
2104	/* free any prefetches we didn't get to complete */
2105	mutex_enter(&spa->spa_scrub_lock);
2106	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2107		avl_remove(&scn->scn_prefetch_queue, spic);
2108		scan_prefetch_ctx_rele(spic->spic_spc, scn);
2109		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2110	}
2111	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2112	mutex_exit(&spa->spa_scrub_lock);
2113}
2114
2115static boolean_t
2116dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2117    const zbookmark_phys_t *zb)
2118{
2119	/*
2120	 * We never skip over user/group accounting objects (obj<0)
2121	 */
2122	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2123	    (int64_t)zb->zb_object >= 0) {
2124		/*
2125		 * If we already visited this bp & everything below (in
2126		 * a prior txg sync), don't bother doing it again.
2127		 */
2128		if (zbookmark_subtree_completed(dnp, zb,
2129		    &scn->scn_phys.scn_bookmark))
2130			return (B_TRUE);
2131
2132		/*
2133		 * If we found the block we're trying to resume from, or
2134		 * we went past it, zero it out to indicate that it's OK
2135		 * to start checking for suspending again.
2136		 */
2137		if (zbookmark_subtree_tbd(dnp, zb,
2138		    &scn->scn_phys.scn_bookmark)) {
2139			dprintf("resuming at %llx/%llx/%llx/%llx\n",
2140			    (longlong_t)zb->zb_objset,
2141			    (longlong_t)zb->zb_object,
2142			    (longlong_t)zb->zb_level,
2143			    (longlong_t)zb->zb_blkid);
2144			memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2145		}
2146	}
2147	return (B_FALSE);
2148}
2149
2150static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2151    dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2152    dmu_objset_type_t ostype, dmu_tx_t *tx);
2153inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2154    dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2155    dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2156
2157/*
2158 * Return nonzero on i/o error.
2159 * Return new buf to write out in *bufp.
2160 */
2161inline __attribute__((always_inline)) static int
2162dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2163    dnode_phys_t *dnp, const blkptr_t *bp,
2164    const zbookmark_phys_t *zb, dmu_tx_t *tx)
2165{
2166	dsl_pool_t *dp = scn->scn_dp;
2167	spa_t *spa = dp->dp_spa;
2168	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2169	int err;
2170
2171	ASSERT(!BP_IS_REDACTED(bp));
2172
2173	/*
2174	 * There is an unlikely case of encountering dnodes with contradicting
2175	 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2176	 * or modified before commit 4254acb was merged. As it is not possible
2177	 * to know which of the two is correct, report an error.
2178	 */
2179	if (dnp != NULL &&
2180	    dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2181		scn->scn_phys.scn_errors++;
2182		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2183		return (SET_ERROR(EINVAL));
2184	}
2185
2186	if (BP_GET_LEVEL(bp) > 0) {
2187		arc_flags_t flags = ARC_FLAG_WAIT;
2188		int i;
2189		blkptr_t *cbp;
2190		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2191		arc_buf_t *buf;
2192
2193		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2194		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2195		if (err) {
2196			scn->scn_phys.scn_errors++;
2197			return (err);
2198		}
2199		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2200			zbookmark_phys_t czb;
2201
2202			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2203			    zb->zb_level - 1,
2204			    zb->zb_blkid * epb + i);
2205			dsl_scan_visitbp(cbp, &czb, dnp,
2206			    ds, scn, ostype, tx);
2207		}
2208		arc_buf_destroy(buf, &buf);
2209	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2210		arc_flags_t flags = ARC_FLAG_WAIT;
2211		dnode_phys_t *cdnp;
2212		int i;
2213		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2214		arc_buf_t *buf;
2215
2216		if (BP_IS_PROTECTED(bp)) {
2217			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2218			zio_flags |= ZIO_FLAG_RAW;
2219		}
2220
2221		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2222		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2223		if (err) {
2224			scn->scn_phys.scn_errors++;
2225			return (err);
2226		}
2227		for (i = 0, cdnp = buf->b_data; i < epb;
2228		    i += cdnp->dn_extra_slots + 1,
2229		    cdnp += cdnp->dn_extra_slots + 1) {
2230			dsl_scan_visitdnode(scn, ds, ostype,
2231			    cdnp, zb->zb_blkid * epb + i, tx);
2232		}
2233
2234		arc_buf_destroy(buf, &buf);
2235	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2236		arc_flags_t flags = ARC_FLAG_WAIT;
2237		objset_phys_t *osp;
2238		arc_buf_t *buf;
2239
2240		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2241		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2242		if (err) {
2243			scn->scn_phys.scn_errors++;
2244			return (err);
2245		}
2246
2247		osp = buf->b_data;
2248
2249		dsl_scan_visitdnode(scn, ds, osp->os_type,
2250		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2251
2252		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2253			/*
2254			 * We also always visit user/group/project accounting
2255			 * objects, and never skip them, even if we are
2256			 * suspending. This is necessary so that the
2257			 * space deltas from this txg get integrated.
2258			 */
2259			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2260				dsl_scan_visitdnode(scn, ds, osp->os_type,
2261				    &osp->os_projectused_dnode,
2262				    DMU_PROJECTUSED_OBJECT, tx);
2263			dsl_scan_visitdnode(scn, ds, osp->os_type,
2264			    &osp->os_groupused_dnode,
2265			    DMU_GROUPUSED_OBJECT, tx);
2266			dsl_scan_visitdnode(scn, ds, osp->os_type,
2267			    &osp->os_userused_dnode,
2268			    DMU_USERUSED_OBJECT, tx);
2269		}
2270		arc_buf_destroy(buf, &buf);
2271	} else if (!zfs_blkptr_verify(spa, bp,
2272	    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2273		/*
2274		 * Sanity check the block pointer contents, this is handled
2275		 * by arc_read() for the cases above.
2276		 */
2277		scn->scn_phys.scn_errors++;
2278		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2279		return (SET_ERROR(EINVAL));
2280	}
2281
2282	return (0);
2283}
2284
2285inline __attribute__((always_inline)) static void
2286dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2287    dmu_objset_type_t ostype, dnode_phys_t *dnp,
2288    uint64_t object, dmu_tx_t *tx)
2289{
2290	int j;
2291
2292	for (j = 0; j < dnp->dn_nblkptr; j++) {
2293		zbookmark_phys_t czb;
2294
2295		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2296		    dnp->dn_nlevels - 1, j);
2297		dsl_scan_visitbp(&dnp->dn_blkptr[j],
2298		    &czb, dnp, ds, scn, ostype, tx);
2299	}
2300
2301	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2302		zbookmark_phys_t czb;
2303		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2304		    0, DMU_SPILL_BLKID);
2305		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2306		    &czb, dnp, ds, scn, ostype, tx);
2307	}
2308}
2309
2310/*
2311 * The arguments are in this order because mdb can only print the
2312 * first 5; we want them to be useful.
2313 */
2314static void
2315dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2316    dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2317    dmu_objset_type_t ostype, dmu_tx_t *tx)
2318{
2319	dsl_pool_t *dp = scn->scn_dp;
2320
2321	if (dsl_scan_check_suspend(scn, zb))
2322		return;
2323
2324	if (dsl_scan_check_resume(scn, dnp, zb))
2325		return;
2326
2327	scn->scn_visited_this_txg++;
2328
2329	if (BP_IS_HOLE(bp)) {
2330		scn->scn_holes_this_txg++;
2331		return;
2332	}
2333
2334	if (BP_IS_REDACTED(bp)) {
2335		ASSERT(dsl_dataset_feature_is_active(ds,
2336		    SPA_FEATURE_REDACTED_DATASETS));
2337		return;
2338	}
2339
2340	/*
2341	 * Check if this block contradicts any filesystem flags.
2342	 */
2343	spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2344	if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2345		ASSERT(dsl_dataset_feature_is_active(ds, f));
2346
2347	f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2348	if (f != SPA_FEATURE_NONE)
2349		ASSERT(dsl_dataset_feature_is_active(ds, f));
2350
2351	f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2352	if (f != SPA_FEATURE_NONE)
2353		ASSERT(dsl_dataset_feature_is_active(ds, f));
2354
2355	if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2356		scn->scn_lt_min_this_txg++;
2357		return;
2358	}
2359
2360	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2361		return;
2362
2363	/*
2364	 * If dsl_scan_ddt() has already visited this block, it will have
2365	 * already done any translations or scrubbing, so don't call the
2366	 * callback again.
2367	 */
2368	if (ddt_class_contains(dp->dp_spa,
2369	    scn->scn_phys.scn_ddt_class_max, bp)) {
2370		scn->scn_ddt_contained_this_txg++;
2371		return;
2372	}
2373
2374	/*
2375	 * If this block is from the future (after cur_max_txg), then we
2376	 * are doing this on behalf of a deleted snapshot, and we will
2377	 * revisit the future block on the next pass of this dataset.
2378	 * Don't scan it now unless we need to because something
2379	 * under it was modified.
2380	 */
2381	if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2382		scn->scn_gt_max_this_txg++;
2383		return;
2384	}
2385
2386	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2387}
2388
2389static void
2390dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2391    dmu_tx_t *tx)
2392{
2393	zbookmark_phys_t zb;
2394	scan_prefetch_ctx_t *spc;
2395
2396	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2397	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2398
2399	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2400		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2401		    zb.zb_objset, 0, 0, 0);
2402	} else {
2403		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2404	}
2405
2406	scn->scn_objsets_visited_this_txg++;
2407
2408	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2409	dsl_scan_prefetch(spc, bp, &zb);
2410	scan_prefetch_ctx_rele(spc, FTAG);
2411
2412	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2413
2414	dprintf_ds(ds, "finished scan%s", "");
2415}
2416
2417static void
2418ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2419{
2420	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2421		if (ds->ds_is_snapshot) {
2422			/*
2423			 * Note:
2424			 *  - scn_cur_{min,max}_txg stays the same.
2425			 *  - Setting the flag is not really necessary if
2426			 *    scn_cur_max_txg == scn_max_txg, because there
2427			 *    is nothing after this snapshot that we care
2428			 *    about.  However, we set it anyway and then
2429			 *    ignore it when we retraverse it in
2430			 *    dsl_scan_visitds().
2431			 */
2432			scn_phys->scn_bookmark.zb_objset =
2433			    dsl_dataset_phys(ds)->ds_next_snap_obj;
2434			zfs_dbgmsg("destroying ds %llu on %s; currently "
2435			    "traversing; reset zb_objset to %llu",
2436			    (u_longlong_t)ds->ds_object,
2437			    ds->ds_dir->dd_pool->dp_spa->spa_name,
2438			    (u_longlong_t)dsl_dataset_phys(ds)->
2439			    ds_next_snap_obj);
2440			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2441		} else {
2442			SET_BOOKMARK(&scn_phys->scn_bookmark,
2443			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2444			zfs_dbgmsg("destroying ds %llu on %s; currently "
2445			    "traversing; reset bookmark to -1,0,0,0",
2446			    (u_longlong_t)ds->ds_object,
2447			    ds->ds_dir->dd_pool->dp_spa->spa_name);
2448		}
2449	}
2450}
2451
2452/*
2453 * Invoked when a dataset is destroyed. We need to make sure that:
2454 *
2455 * 1) If it is the dataset that was currently being scanned, we write
2456 *	a new dsl_scan_phys_t and marking the objset reference in it
2457 *	as destroyed.
2458 * 2) Remove it from the work queue, if it was present.
2459 *
2460 * If the dataset was actually a snapshot, instead of marking the dataset
2461 * as destroyed, we instead substitute the next snapshot in line.
2462 */
2463void
2464dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2465{
2466	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2467	dsl_scan_t *scn = dp->dp_scan;
2468	uint64_t mintxg;
2469
2470	if (!dsl_scan_is_running(scn))
2471		return;
2472
2473	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2474	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2475
2476	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2477		scan_ds_queue_remove(scn, ds->ds_object);
2478		if (ds->ds_is_snapshot)
2479			scan_ds_queue_insert(scn,
2480			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2481	}
2482
2483	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2484	    ds->ds_object, &mintxg) == 0) {
2485		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2486		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2487		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2488		if (ds->ds_is_snapshot) {
2489			/*
2490			 * We keep the same mintxg; it could be >
2491			 * ds_creation_txg if the previous snapshot was
2492			 * deleted too.
2493			 */
2494			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2495			    scn->scn_phys.scn_queue_obj,
2496			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2497			    mintxg, tx) == 0);
2498			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2499			    "replacing with %llu",
2500			    (u_longlong_t)ds->ds_object,
2501			    dp->dp_spa->spa_name,
2502			    (u_longlong_t)dsl_dataset_phys(ds)->
2503			    ds_next_snap_obj);
2504		} else {
2505			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2506			    "removing",
2507			    (u_longlong_t)ds->ds_object,
2508			    dp->dp_spa->spa_name);
2509		}
2510	}
2511
2512	/*
2513	 * dsl_scan_sync() should be called after this, and should sync
2514	 * out our changed state, but just to be safe, do it here.
2515	 */
2516	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2517}
2518
2519static void
2520ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2521{
2522	if (scn_bookmark->zb_objset == ds->ds_object) {
2523		scn_bookmark->zb_objset =
2524		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2525		zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2526		    "reset zb_objset to %llu",
2527		    (u_longlong_t)ds->ds_object,
2528		    ds->ds_dir->dd_pool->dp_spa->spa_name,
2529		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2530	}
2531}
2532
2533/*
2534 * Called when a dataset is snapshotted. If we were currently traversing
2535 * this snapshot, we reset our bookmark to point at the newly created
2536 * snapshot. We also modify our work queue to remove the old snapshot and
2537 * replace with the new one.
2538 */
2539void
2540dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2541{
2542	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2543	dsl_scan_t *scn = dp->dp_scan;
2544	uint64_t mintxg;
2545
2546	if (!dsl_scan_is_running(scn))
2547		return;
2548
2549	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2550
2551	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2552	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2553
2554	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2555		scan_ds_queue_remove(scn, ds->ds_object);
2556		scan_ds_queue_insert(scn,
2557		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2558	}
2559
2560	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2561	    ds->ds_object, &mintxg) == 0) {
2562		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2563		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2564		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2565		    scn->scn_phys.scn_queue_obj,
2566		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2567		zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2568		    "replacing with %llu",
2569		    (u_longlong_t)ds->ds_object,
2570		    dp->dp_spa->spa_name,
2571		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2572	}
2573
2574	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2575}
2576
2577static void
2578ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2579    zbookmark_phys_t *scn_bookmark)
2580{
2581	if (scn_bookmark->zb_objset == ds1->ds_object) {
2582		scn_bookmark->zb_objset = ds2->ds_object;
2583		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2584		    "reset zb_objset to %llu",
2585		    (u_longlong_t)ds1->ds_object,
2586		    ds1->ds_dir->dd_pool->dp_spa->spa_name,
2587		    (u_longlong_t)ds2->ds_object);
2588	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2589		scn_bookmark->zb_objset = ds1->ds_object;
2590		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2591		    "reset zb_objset to %llu",
2592		    (u_longlong_t)ds2->ds_object,
2593		    ds2->ds_dir->dd_pool->dp_spa->spa_name,
2594		    (u_longlong_t)ds1->ds_object);
2595	}
2596}
2597
2598/*
2599 * Called when an origin dataset and its clone are swapped.  If we were
2600 * currently traversing the dataset, we need to switch to traversing the
2601 * newly promoted clone.
2602 */
2603void
2604dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2605{
2606	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2607	dsl_scan_t *scn = dp->dp_scan;
2608	uint64_t mintxg1, mintxg2;
2609	boolean_t ds1_queued, ds2_queued;
2610
2611	if (!dsl_scan_is_running(scn))
2612		return;
2613
2614	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2615	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2616
2617	/*
2618	 * Handle the in-memory scan queue.
2619	 */
2620	ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2621	ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2622
2623	/* Sanity checking. */
2624	if (ds1_queued) {
2625		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2626		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2627	}
2628	if (ds2_queued) {
2629		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2630		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2631	}
2632
2633	if (ds1_queued && ds2_queued) {
2634		/*
2635		 * If both are queued, we don't need to do anything.
2636		 * The swapping code below would not handle this case correctly,
2637		 * since we can't insert ds2 if it is already there. That's
2638		 * because scan_ds_queue_insert() prohibits a duplicate insert
2639		 * and panics.
2640		 */
2641	} else if (ds1_queued) {
2642		scan_ds_queue_remove(scn, ds1->ds_object);
2643		scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2644	} else if (ds2_queued) {
2645		scan_ds_queue_remove(scn, ds2->ds_object);
2646		scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2647	}
2648
2649	/*
2650	 * Handle the on-disk scan queue.
2651	 * The on-disk state is an out-of-date version of the in-memory state,
2652	 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2653	 * be different. Therefore we need to apply the swap logic to the
2654	 * on-disk state independently of the in-memory state.
2655	 */
2656	ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2657	    scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2658	ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2659	    scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2660
2661	/* Sanity checking. */
2662	if (ds1_queued) {
2663		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2664		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2665	}
2666	if (ds2_queued) {
2667		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2668		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2669	}
2670
2671	if (ds1_queued && ds2_queued) {
2672		/*
2673		 * If both are queued, we don't need to do anything.
2674		 * Alternatively, we could check for EEXIST from
2675		 * zap_add_int_key() and back out to the original state, but
2676		 * that would be more work than checking for this case upfront.
2677		 */
2678	} else if (ds1_queued) {
2679		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2680		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2681		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2682		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2683		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2684		    "replacing with %llu",
2685		    (u_longlong_t)ds1->ds_object,
2686		    dp->dp_spa->spa_name,
2687		    (u_longlong_t)ds2->ds_object);
2688	} else if (ds2_queued) {
2689		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2690		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2691		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2692		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2693		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2694		    "replacing with %llu",
2695		    (u_longlong_t)ds2->ds_object,
2696		    dp->dp_spa->spa_name,
2697		    (u_longlong_t)ds1->ds_object);
2698	}
2699
2700	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2701}
2702
2703static int
2704enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2705{
2706	uint64_t originobj = *(uint64_t *)arg;
2707	dsl_dataset_t *ds;
2708	int err;
2709	dsl_scan_t *scn = dp->dp_scan;
2710
2711	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2712		return (0);
2713
2714	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2715	if (err)
2716		return (err);
2717
2718	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2719		dsl_dataset_t *prev;
2720		err = dsl_dataset_hold_obj(dp,
2721		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2722
2723		dsl_dataset_rele(ds, FTAG);
2724		if (err)
2725			return (err);
2726		ds = prev;
2727	}
2728	mutex_enter(&scn->scn_queue_lock);
2729	scan_ds_queue_insert(scn, ds->ds_object,
2730	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2731	mutex_exit(&scn->scn_queue_lock);
2732	dsl_dataset_rele(ds, FTAG);
2733	return (0);
2734}
2735
2736static void
2737dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2738{
2739	dsl_pool_t *dp = scn->scn_dp;
2740	dsl_dataset_t *ds;
2741
2742	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2743
2744	if (scn->scn_phys.scn_cur_min_txg >=
2745	    scn->scn_phys.scn_max_txg) {
2746		/*
2747		 * This can happen if this snapshot was created after the
2748		 * scan started, and we already completed a previous snapshot
2749		 * that was created after the scan started.  This snapshot
2750		 * only references blocks with:
2751		 *
2752		 *	birth < our ds_creation_txg
2753		 *	cur_min_txg is no less than ds_creation_txg.
2754		 *	We have already visited these blocks.
2755		 * or
2756		 *	birth > scn_max_txg
2757		 *	The scan requested not to visit these blocks.
2758		 *
2759		 * Subsequent snapshots (and clones) can reference our
2760		 * blocks, or blocks with even higher birth times.
2761		 * Therefore we do not need to visit them either,
2762		 * so we do not add them to the work queue.
2763		 *
2764		 * Note that checking for cur_min_txg >= cur_max_txg
2765		 * is not sufficient, because in that case we may need to
2766		 * visit subsequent snapshots.  This happens when min_txg > 0,
2767		 * which raises cur_min_txg.  In this case we will visit
2768		 * this dataset but skip all of its blocks, because the
2769		 * rootbp's birth time is < cur_min_txg.  Then we will
2770		 * add the next snapshots/clones to the work queue.
2771		 */
2772		char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2773		dsl_dataset_name(ds, dsname);
2774		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2775		    "cur_min_txg (%llu) >= max_txg (%llu)",
2776		    (longlong_t)dsobj, dsname,
2777		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2778		    (longlong_t)scn->scn_phys.scn_max_txg);
2779		kmem_free(dsname, MAXNAMELEN);
2780
2781		goto out;
2782	}
2783
2784	/*
2785	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2786	 * snapshots can have ZIL block pointers (which may be the same
2787	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2788	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2789	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2790	 * rather than in scan_recurse(), because the regular snapshot
2791	 * block-sharing rules don't apply to it.
2792	 */
2793	if (!dsl_dataset_is_snapshot(ds) &&
2794	    (dp->dp_origin_snap == NULL ||
2795	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2796		objset_t *os;
2797		if (dmu_objset_from_ds(ds, &os) != 0) {
2798			goto out;
2799		}
2800		dsl_scan_zil(dp, &os->os_zil_header);
2801	}
2802
2803	/*
2804	 * Iterate over the bps in this ds.
2805	 */
2806	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2807	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2808	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2809	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2810
2811	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2812	dsl_dataset_name(ds, dsname);
2813	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2814	    "suspending=%u",
2815	    (longlong_t)dsobj, dsname,
2816	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2817	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2818	    (int)scn->scn_suspending);
2819	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2820
2821	if (scn->scn_suspending)
2822		goto out;
2823
2824	/*
2825	 * We've finished this pass over this dataset.
2826	 */
2827
2828	/*
2829	 * If we did not completely visit this dataset, do another pass.
2830	 */
2831	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2832		zfs_dbgmsg("incomplete pass on %s; visiting again",
2833		    dp->dp_spa->spa_name);
2834		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2835		scan_ds_queue_insert(scn, ds->ds_object,
2836		    scn->scn_phys.scn_cur_max_txg);
2837		goto out;
2838	}
2839
2840	/*
2841	 * Add descendant datasets to work queue.
2842	 */
2843	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2844		scan_ds_queue_insert(scn,
2845		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2846		    dsl_dataset_phys(ds)->ds_creation_txg);
2847	}
2848	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2849		boolean_t usenext = B_FALSE;
2850		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2851			uint64_t count;
2852			/*
2853			 * A bug in a previous version of the code could
2854			 * cause upgrade_clones_cb() to not set
2855			 * ds_next_snap_obj when it should, leading to a
2856			 * missing entry.  Therefore we can only use the
2857			 * next_clones_obj when its count is correct.
2858			 */
2859			int err = zap_count(dp->dp_meta_objset,
2860			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2861			if (err == 0 &&
2862			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2863				usenext = B_TRUE;
2864		}
2865
2866		if (usenext) {
2867			zap_cursor_t zc;
2868			zap_attribute_t za;
2869			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2870			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2871			    zap_cursor_retrieve(&zc, &za) == 0;
2872			    (void) zap_cursor_advance(&zc)) {
2873				scan_ds_queue_insert(scn,
2874				    zfs_strtonum(za.za_name, NULL),
2875				    dsl_dataset_phys(ds)->ds_creation_txg);
2876			}
2877			zap_cursor_fini(&zc);
2878		} else {
2879			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2880			    enqueue_clones_cb, &ds->ds_object,
2881			    DS_FIND_CHILDREN));
2882		}
2883	}
2884
2885out:
2886	dsl_dataset_rele(ds, FTAG);
2887}
2888
2889static int
2890enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2891{
2892	(void) arg;
2893	dsl_dataset_t *ds;
2894	int err;
2895	dsl_scan_t *scn = dp->dp_scan;
2896
2897	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2898	if (err)
2899		return (err);
2900
2901	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2902		dsl_dataset_t *prev;
2903		err = dsl_dataset_hold_obj(dp,
2904		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2905		if (err) {
2906			dsl_dataset_rele(ds, FTAG);
2907			return (err);
2908		}
2909
2910		/*
2911		 * If this is a clone, we don't need to worry about it for now.
2912		 */
2913		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2914			dsl_dataset_rele(ds, FTAG);
2915			dsl_dataset_rele(prev, FTAG);
2916			return (0);
2917		}
2918		dsl_dataset_rele(ds, FTAG);
2919		ds = prev;
2920	}
2921
2922	mutex_enter(&scn->scn_queue_lock);
2923	scan_ds_queue_insert(scn, ds->ds_object,
2924	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2925	mutex_exit(&scn->scn_queue_lock);
2926	dsl_dataset_rele(ds, FTAG);
2927	return (0);
2928}
2929
2930void
2931dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2932    ddt_entry_t *dde, dmu_tx_t *tx)
2933{
2934	(void) tx;
2935	const ddt_key_t *ddk = &dde->dde_key;
2936	ddt_phys_t *ddp = dde->dde_phys;
2937	blkptr_t bp;
2938	zbookmark_phys_t zb = { 0 };
2939
2940	if (!dsl_scan_is_running(scn))
2941		return;
2942
2943	/*
2944	 * This function is special because it is the only thing
2945	 * that can add scan_io_t's to the vdev scan queues from
2946	 * outside dsl_scan_sync(). For the most part this is ok
2947	 * as long as it is called from within syncing context.
2948	 * However, dsl_scan_sync() expects that no new sio's will
2949	 * be added between when all the work for a scan is done
2950	 * and the next txg when the scan is actually marked as
2951	 * completed. This check ensures we do not issue new sio's
2952	 * during this period.
2953	 */
2954	if (scn->scn_done_txg != 0)
2955		return;
2956
2957	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2958		if (ddp->ddp_phys_birth == 0 ||
2959		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2960			continue;
2961		ddt_bp_create(checksum, ddk, ddp, &bp);
2962
2963		scn->scn_visited_this_txg++;
2964		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2965	}
2966}
2967
2968/*
2969 * Scrub/dedup interaction.
2970 *
2971 * If there are N references to a deduped block, we don't want to scrub it
2972 * N times -- ideally, we should scrub it exactly once.
2973 *
2974 * We leverage the fact that the dde's replication class (ddt_class_t)
2975 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2976 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2977 *
2978 * To prevent excess scrubbing, the scrub begins by walking the DDT
2979 * to find all blocks with refcnt > 1, and scrubs each of these once.
2980 * Since there are two replication classes which contain blocks with
2981 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2982 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2983 *
2984 * There would be nothing more to say if a block's refcnt couldn't change
2985 * during a scrub, but of course it can so we must account for changes
2986 * in a block's replication class.
2987 *
2988 * Here's an example of what can occur:
2989 *
2990 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2991 * when visited during the top-down scrub phase, it will be scrubbed twice.
2992 * This negates our scrub optimization, but is otherwise harmless.
2993 *
2994 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2995 * on each visit during the top-down scrub phase, it will never be scrubbed.
2996 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2997 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2998 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2999 * while a scrub is in progress, it scrubs the block right then.
3000 */
3001static void
3002dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3003{
3004	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3005	ddt_entry_t dde = {{{{0}}}};
3006	int error;
3007	uint64_t n = 0;
3008
3009	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
3010		ddt_t *ddt;
3011
3012		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3013			break;
3014		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3015		    (longlong_t)ddb->ddb_class,
3016		    (longlong_t)ddb->ddb_type,
3017		    (longlong_t)ddb->ddb_checksum,
3018		    (longlong_t)ddb->ddb_cursor);
3019
3020		/* There should be no pending changes to the dedup table */
3021		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3022		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3023
3024		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
3025		n++;
3026
3027		if (dsl_scan_check_suspend(scn, NULL))
3028			break;
3029	}
3030
3031	zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
3032	    "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
3033	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
3034
3035	ASSERT(error == 0 || error == ENOENT);
3036	ASSERT(error != ENOENT ||
3037	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3038}
3039
3040static uint64_t
3041dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3042{
3043	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3044	if (ds->ds_is_snapshot)
3045		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3046	return (smt);
3047}
3048
3049static void
3050dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3051{
3052	scan_ds_t *sds;
3053	dsl_pool_t *dp = scn->scn_dp;
3054
3055	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3056	    scn->scn_phys.scn_ddt_class_max) {
3057		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3058		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3059		dsl_scan_ddt(scn, tx);
3060		if (scn->scn_suspending)
3061			return;
3062	}
3063
3064	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3065		/* First do the MOS & ORIGIN */
3066
3067		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3068		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3069		dsl_scan_visit_rootbp(scn, NULL,
3070		    &dp->dp_meta_rootbp, tx);
3071		if (scn->scn_suspending)
3072			return;
3073
3074		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3075			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3076			    enqueue_cb, NULL, DS_FIND_CHILDREN));
3077		} else {
3078			dsl_scan_visitds(scn,
3079			    dp->dp_origin_snap->ds_object, tx);
3080		}
3081		ASSERT(!scn->scn_suspending);
3082	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
3083	    ZB_DESTROYED_OBJSET) {
3084		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3085		/*
3086		 * If we were suspended, continue from here. Note if the
3087		 * ds we were suspended on was deleted, the zb_objset may
3088		 * be -1, so we will skip this and find a new objset
3089		 * below.
3090		 */
3091		dsl_scan_visitds(scn, dsobj, tx);
3092		if (scn->scn_suspending)
3093			return;
3094	}
3095
3096	/*
3097	 * In case we suspended right at the end of the ds, zero the
3098	 * bookmark so we don't think that we're still trying to resume.
3099	 */
3100	memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3101
3102	/*
3103	 * Keep pulling things out of the dataset avl queue. Updates to the
3104	 * persistent zap-object-as-queue happen only at checkpoints.
3105	 */
3106	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3107		dsl_dataset_t *ds;
3108		uint64_t dsobj = sds->sds_dsobj;
3109		uint64_t txg = sds->sds_txg;
3110
3111		/* dequeue and free the ds from the queue */
3112		scan_ds_queue_remove(scn, dsobj);
3113		sds = NULL;
3114
3115		/* set up min / max txg */
3116		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3117		if (txg != 0) {
3118			scn->scn_phys.scn_cur_min_txg =
3119			    MAX(scn->scn_phys.scn_min_txg, txg);
3120		} else {
3121			scn->scn_phys.scn_cur_min_txg =
3122			    MAX(scn->scn_phys.scn_min_txg,
3123			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
3124		}
3125		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3126		dsl_dataset_rele(ds, FTAG);
3127
3128		dsl_scan_visitds(scn, dsobj, tx);
3129		if (scn->scn_suspending)
3130			return;
3131	}
3132
3133	/* No more objsets to fetch, we're done */
3134	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3135	ASSERT0(scn->scn_suspending);
3136}
3137
3138static uint64_t
3139dsl_scan_count_data_disks(spa_t *spa)
3140{
3141	vdev_t *rvd = spa->spa_root_vdev;
3142	uint64_t i, leaves = 0;
3143
3144	for (i = 0; i < rvd->vdev_children; i++) {
3145		vdev_t *vd = rvd->vdev_child[i];
3146		if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3147			continue;
3148		leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3149	}
3150	return (leaves);
3151}
3152
3153static void
3154scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3155{
3156	int i;
3157	uint64_t cur_size = 0;
3158
3159	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3160		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3161	}
3162
3163	q->q_total_zio_size_this_txg += cur_size;
3164	q->q_zios_this_txg++;
3165}
3166
3167static void
3168scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3169    uint64_t end)
3170{
3171	q->q_total_seg_size_this_txg += end - start;
3172	q->q_segs_this_txg++;
3173}
3174
3175static boolean_t
3176scan_io_queue_check_suspend(dsl_scan_t *scn)
3177{
3178	/* See comment in dsl_scan_check_suspend() */
3179	uint64_t curr_time_ns = gethrtime();
3180	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3181	uint64_t sync_time_ns = curr_time_ns -
3182	    scn->scn_dp->dp_spa->spa_sync_starttime;
3183	uint64_t dirty_min_bytes = zfs_dirty_data_max *
3184	    zfs_vdev_async_write_active_min_dirty_percent / 100;
3185	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3186	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3187
3188	return ((NSEC2MSEC(scan_time_ns) > mintime &&
3189	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3190	    txg_sync_waiting(scn->scn_dp) ||
3191	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3192	    spa_shutting_down(scn->scn_dp->dp_spa));
3193}
3194
3195/*
3196 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3197 * disk. This consumes the io_list and frees the scan_io_t's. This is
3198 * called when emptying queues, either when we're up against the memory
3199 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3200 * processing the list before we finished. Any sios that were not issued
3201 * will remain in the io_list.
3202 */
3203static boolean_t
3204scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3205{
3206	dsl_scan_t *scn = queue->q_scn;
3207	scan_io_t *sio;
3208	boolean_t suspended = B_FALSE;
3209
3210	while ((sio = list_head(io_list)) != NULL) {
3211		blkptr_t bp;
3212
3213		if (scan_io_queue_check_suspend(scn)) {
3214			suspended = B_TRUE;
3215			break;
3216		}
3217
3218		sio2bp(sio, &bp);
3219		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3220		    &sio->sio_zb, queue);
3221		(void) list_remove_head(io_list);
3222		scan_io_queues_update_zio_stats(queue, &bp);
3223		sio_free(sio);
3224	}
3225	return (suspended);
3226}
3227
3228/*
3229 * This function removes sios from an IO queue which reside within a given
3230 * range_seg_t and inserts them (in offset order) into a list. Note that
3231 * we only ever return a maximum of 32 sios at once. If there are more sios
3232 * to process within this segment that did not make it onto the list we
3233 * return B_TRUE and otherwise B_FALSE.
3234 */
3235static boolean_t
3236scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
3237{
3238	scan_io_t *srch_sio, *sio, *next_sio;
3239	avl_index_t idx;
3240	uint_t num_sios = 0;
3241	int64_t bytes_issued = 0;
3242
3243	ASSERT(rs != NULL);
3244	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3245
3246	srch_sio = sio_alloc(1);
3247	srch_sio->sio_nr_dvas = 1;
3248	SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
3249
3250	/*
3251	 * The exact start of the extent might not contain any matching zios,
3252	 * so if that's the case, examine the next one in the tree.
3253	 */
3254	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3255	sio_free(srch_sio);
3256
3257	if (sio == NULL)
3258		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3259
3260	while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3261	    queue->q_exts_by_addr) && num_sios <= 32) {
3262		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
3263		    queue->q_exts_by_addr));
3264		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
3265		    queue->q_exts_by_addr));
3266
3267		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3268		avl_remove(&queue->q_sios_by_addr, sio);
3269		if (avl_is_empty(&queue->q_sios_by_addr))
3270			atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3271		queue->q_sio_memused -= SIO_GET_MUSED(sio);
3272
3273		bytes_issued += SIO_GET_ASIZE(sio);
3274		num_sios++;
3275		list_insert_tail(list, sio);
3276		sio = next_sio;
3277	}
3278
3279	/*
3280	 * We limit the number of sios we process at once to 32 to avoid
3281	 * biting off more than we can chew. If we didn't take everything
3282	 * in the segment we update it to reflect the work we were able to
3283	 * complete. Otherwise, we remove it from the range tree entirely.
3284	 */
3285	if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3286	    queue->q_exts_by_addr)) {
3287		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3288		    -bytes_issued);
3289		range_tree_resize_segment(queue->q_exts_by_addr, rs,
3290		    SIO_GET_OFFSET(sio), rs_get_end(rs,
3291		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3292		queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3293		return (B_TRUE);
3294	} else {
3295		uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
3296		uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
3297		range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
3298		queue->q_last_ext_addr = -1;
3299		return (B_FALSE);
3300	}
3301}
3302
3303/*
3304 * This is called from the queue emptying thread and selects the next
3305 * extent from which we are to issue I/Os. The behavior of this function
3306 * depends on the state of the scan, the current memory consumption and
3307 * whether or not we are performing a scan shutdown.
3308 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3309 * 	needs to perform a checkpoint
3310 * 2) We select the largest available extent if we are up against the
3311 * 	memory limit.
3312 * 3) Otherwise we don't select any extents.
3313 */
3314static range_seg_t *
3315scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3316{
3317	dsl_scan_t *scn = queue->q_scn;
3318	range_tree_t *rt = queue->q_exts_by_addr;
3319
3320	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3321	ASSERT(scn->scn_is_sorted);
3322
3323	if (!scn->scn_checkpointing && !scn->scn_clearing)
3324		return (NULL);
3325
3326	/*
3327	 * During normal clearing, we want to issue our largest segments
3328	 * first, keeping IO as sequential as possible, and leaving the
3329	 * smaller extents for later with the hope that they might eventually
3330	 * grow to larger sequential segments. However, when the scan is
3331	 * checkpointing, no new extents will be added to the sorting queue,
3332	 * so the way we are sorted now is as good as it will ever get.
3333	 * In this case, we instead switch to issuing extents in LBA order.
3334	 */
3335	if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3336	    zfs_scan_issue_strategy == 1)
3337		return (range_tree_first(rt));
3338
3339	/*
3340	 * Try to continue previous extent if it is not completed yet.  After
3341	 * shrink in scan_io_queue_gather() it may no longer be the best, but
3342	 * otherwise we leave shorter remnant every txg.
3343	 */
3344	uint64_t start;
3345	uint64_t size = 1ULL << rt->rt_shift;
3346	range_seg_t *addr_rs;
3347	if (queue->q_last_ext_addr != -1) {
3348		start = queue->q_last_ext_addr;
3349		addr_rs = range_tree_find(rt, start, size);
3350		if (addr_rs != NULL)
3351			return (addr_rs);
3352	}
3353
3354	/*
3355	 * Nothing to continue, so find new best extent.
3356	 */
3357	uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3358	if (v == NULL)
3359		return (NULL);
3360	queue->q_last_ext_addr = start = *v << rt->rt_shift;
3361
3362	/*
3363	 * We need to get the original entry in the by_addr tree so we can
3364	 * modify it.
3365	 */
3366	addr_rs = range_tree_find(rt, start, size);
3367	ASSERT3P(addr_rs, !=, NULL);
3368	ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3369	ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3370	return (addr_rs);
3371}
3372
3373static void
3374scan_io_queues_run_one(void *arg)
3375{
3376	dsl_scan_io_queue_t *queue = arg;
3377	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3378	boolean_t suspended = B_FALSE;
3379	range_seg_t *rs;
3380	scan_io_t *sio;
3381	zio_t *zio;
3382	list_t sio_list;
3383
3384	ASSERT(queue->q_scn->scn_is_sorted);
3385
3386	list_create(&sio_list, sizeof (scan_io_t),
3387	    offsetof(scan_io_t, sio_nodes.sio_list_node));
3388	zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3389	    NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3390	mutex_enter(q_lock);
3391	queue->q_zio = zio;
3392
3393	/* Calculate maximum in-flight bytes for this vdev. */
3394	queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3395	    (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3396
3397	/* reset per-queue scan statistics for this txg */
3398	queue->q_total_seg_size_this_txg = 0;
3399	queue->q_segs_this_txg = 0;
3400	queue->q_total_zio_size_this_txg = 0;
3401	queue->q_zios_this_txg = 0;
3402
3403	/* loop until we run out of time or sios */
3404	while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3405		uint64_t seg_start = 0, seg_end = 0;
3406		boolean_t more_left;
3407
3408		ASSERT(list_is_empty(&sio_list));
3409
3410		/* loop while we still have sios left to process in this rs */
3411		do {
3412			scan_io_t *first_sio, *last_sio;
3413
3414			/*
3415			 * We have selected which extent needs to be
3416			 * processed next. Gather up the corresponding sios.
3417			 */
3418			more_left = scan_io_queue_gather(queue, rs, &sio_list);
3419			ASSERT(!list_is_empty(&sio_list));
3420			first_sio = list_head(&sio_list);
3421			last_sio = list_tail(&sio_list);
3422
3423			seg_end = SIO_GET_END_OFFSET(last_sio);
3424			if (seg_start == 0)
3425				seg_start = SIO_GET_OFFSET(first_sio);
3426
3427			/*
3428			 * Issuing sios can take a long time so drop the
3429			 * queue lock. The sio queue won't be updated by
3430			 * other threads since we're in syncing context so
3431			 * we can be sure that our trees will remain exactly
3432			 * as we left them.
3433			 */
3434			mutex_exit(q_lock);
3435			suspended = scan_io_queue_issue(queue, &sio_list);
3436			mutex_enter(q_lock);
3437
3438			if (suspended)
3439				break;
3440		} while (more_left);
3441
3442		/* update statistics for debugging purposes */
3443		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3444
3445		if (suspended)
3446			break;
3447	}
3448
3449	/*
3450	 * If we were suspended in the middle of processing,
3451	 * requeue any unfinished sios and exit.
3452	 */
3453	while ((sio = list_remove_head(&sio_list)) != NULL)
3454		scan_io_queue_insert_impl(queue, sio);
3455
3456	queue->q_zio = NULL;
3457	mutex_exit(q_lock);
3458	zio_nowait(zio);
3459	list_destroy(&sio_list);
3460}
3461
3462/*
3463 * Performs an emptying run on all scan queues in the pool. This just
3464 * punches out one thread per top-level vdev, each of which processes
3465 * only that vdev's scan queue. We can parallelize the I/O here because
3466 * we know that each queue's I/Os only affect its own top-level vdev.
3467 *
3468 * This function waits for the queue runs to complete, and must be
3469 * called from dsl_scan_sync (or in general, syncing context).
3470 */
3471static void
3472scan_io_queues_run(dsl_scan_t *scn)
3473{
3474	spa_t *spa = scn->scn_dp->dp_spa;
3475
3476	ASSERT(scn->scn_is_sorted);
3477	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3478
3479	if (scn->scn_queues_pending == 0)
3480		return;
3481
3482	if (scn->scn_taskq == NULL) {
3483		int nthreads = spa->spa_root_vdev->vdev_children;
3484
3485		/*
3486		 * We need to make this taskq *always* execute as many
3487		 * threads in parallel as we have top-level vdevs and no
3488		 * less, otherwise strange serialization of the calls to
3489		 * scan_io_queues_run_one can occur during spa_sync runs
3490		 * and that significantly impacts performance.
3491		 */
3492		scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3493		    minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3494	}
3495
3496	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3497		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3498
3499		mutex_enter(&vd->vdev_scan_io_queue_lock);
3500		if (vd->vdev_scan_io_queue != NULL) {
3501			VERIFY(taskq_dispatch(scn->scn_taskq,
3502			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
3503			    TQ_SLEEP) != TASKQID_INVALID);
3504		}
3505		mutex_exit(&vd->vdev_scan_io_queue_lock);
3506	}
3507
3508	/*
3509	 * Wait for the queues to finish issuing their IOs for this run
3510	 * before we return. There may still be IOs in flight at this
3511	 * point.
3512	 */
3513	taskq_wait(scn->scn_taskq);
3514}
3515
3516static boolean_t
3517dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3518{
3519	uint64_t elapsed_nanosecs;
3520
3521	if (zfs_recover)
3522		return (B_FALSE);
3523
3524	if (zfs_async_block_max_blocks != 0 &&
3525	    scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3526		return (B_TRUE);
3527	}
3528
3529	if (zfs_max_async_dedup_frees != 0 &&
3530	    scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3531		return (B_TRUE);
3532	}
3533
3534	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3535	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3536	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3537	    txg_sync_waiting(scn->scn_dp)) ||
3538	    spa_shutting_down(scn->scn_dp->dp_spa));
3539}
3540
3541static int
3542dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3543{
3544	dsl_scan_t *scn = arg;
3545
3546	if (!scn->scn_is_bptree ||
3547	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3548		if (dsl_scan_async_block_should_pause(scn))
3549			return (SET_ERROR(ERESTART));
3550	}
3551
3552	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3553	    dmu_tx_get_txg(tx), bp, 0));
3554	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3555	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3556	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3557	scn->scn_visited_this_txg++;
3558	if (BP_GET_DEDUP(bp))
3559		scn->scn_dedup_frees_this_txg++;
3560	return (0);
3561}
3562
3563static void
3564dsl_scan_update_stats(dsl_scan_t *scn)
3565{
3566	spa_t *spa = scn->scn_dp->dp_spa;
3567	uint64_t i;
3568	uint64_t seg_size_total = 0, zio_size_total = 0;
3569	uint64_t seg_count_total = 0, zio_count_total = 0;
3570
3571	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3572		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3573		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3574
3575		if (queue == NULL)
3576			continue;
3577
3578		seg_size_total += queue->q_total_seg_size_this_txg;
3579		zio_size_total += queue->q_total_zio_size_this_txg;
3580		seg_count_total += queue->q_segs_this_txg;
3581		zio_count_total += queue->q_zios_this_txg;
3582	}
3583
3584	if (seg_count_total == 0 || zio_count_total == 0) {
3585		scn->scn_avg_seg_size_this_txg = 0;
3586		scn->scn_avg_zio_size_this_txg = 0;
3587		scn->scn_segs_this_txg = 0;
3588		scn->scn_zios_this_txg = 0;
3589		return;
3590	}
3591
3592	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3593	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3594	scn->scn_segs_this_txg = seg_count_total;
3595	scn->scn_zios_this_txg = zio_count_total;
3596}
3597
3598static int
3599bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3600    dmu_tx_t *tx)
3601{
3602	ASSERT(!bp_freed);
3603	return (dsl_scan_free_block_cb(arg, bp, tx));
3604}
3605
3606static int
3607dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3608    dmu_tx_t *tx)
3609{
3610	ASSERT(!bp_freed);
3611	dsl_scan_t *scn = arg;
3612	const dva_t *dva = &bp->blk_dva[0];
3613
3614	if (dsl_scan_async_block_should_pause(scn))
3615		return (SET_ERROR(ERESTART));
3616
3617	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3618	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3619	    DVA_GET_ASIZE(dva), tx);
3620	scn->scn_visited_this_txg++;
3621	return (0);
3622}
3623
3624boolean_t
3625dsl_scan_active(dsl_scan_t *scn)
3626{
3627	spa_t *spa = scn->scn_dp->dp_spa;
3628	uint64_t used = 0, comp, uncomp;
3629	boolean_t clones_left;
3630
3631	if (spa->spa_load_state != SPA_LOAD_NONE)
3632		return (B_FALSE);
3633	if (spa_shutting_down(spa))
3634		return (B_FALSE);
3635	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3636	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3637		return (B_TRUE);
3638
3639	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3640		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3641		    &used, &comp, &uncomp);
3642	}
3643	clones_left = spa_livelist_delete_check(spa);
3644	return ((used != 0) || (clones_left));
3645}
3646
3647boolean_t
3648dsl_errorscrub_active(dsl_scan_t *scn)
3649{
3650	spa_t *spa = scn->scn_dp->dp_spa;
3651	if (spa->spa_load_state != SPA_LOAD_NONE)
3652		return (B_FALSE);
3653	if (spa_shutting_down(spa))
3654		return (B_FALSE);
3655	if (dsl_errorscrubbing(scn->scn_dp))
3656		return (B_TRUE);
3657	return (B_FALSE);
3658}
3659
3660static boolean_t
3661dsl_scan_check_deferred(vdev_t *vd)
3662{
3663	boolean_t need_resilver = B_FALSE;
3664
3665	for (int c = 0; c < vd->vdev_children; c++) {
3666		need_resilver |=
3667		    dsl_scan_check_deferred(vd->vdev_child[c]);
3668	}
3669
3670	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3671	    !vd->vdev_ops->vdev_op_leaf)
3672		return (need_resilver);
3673
3674	if (!vd->vdev_resilver_deferred)
3675		need_resilver = B_TRUE;
3676
3677	return (need_resilver);
3678}
3679
3680static boolean_t
3681dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3682    uint64_t phys_birth)
3683{
3684	vdev_t *vd;
3685
3686	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3687
3688	if (vd->vdev_ops == &vdev_indirect_ops) {
3689		/*
3690		 * The indirect vdev can point to multiple
3691		 * vdevs.  For simplicity, always create
3692		 * the resilver zio_t. zio_vdev_io_start()
3693		 * will bypass the child resilver i/o's if
3694		 * they are on vdevs that don't have DTL's.
3695		 */
3696		return (B_TRUE);
3697	}
3698
3699	if (DVA_GET_GANG(dva)) {
3700		/*
3701		 * Gang members may be spread across multiple
3702		 * vdevs, so the best estimate we have is the
3703		 * scrub range, which has already been checked.
3704		 * XXX -- it would be better to change our
3705		 * allocation policy to ensure that all
3706		 * gang members reside on the same vdev.
3707		 */
3708		return (B_TRUE);
3709	}
3710
3711	/*
3712	 * Check if the top-level vdev must resilver this offset.
3713	 * When the offset does not intersect with a dirty leaf DTL
3714	 * then it may be possible to skip the resilver IO.  The psize
3715	 * is provided instead of asize to simplify the check for RAIDZ.
3716	 */
3717	if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3718		return (B_FALSE);
3719
3720	/*
3721	 * Check that this top-level vdev has a device under it which
3722	 * is resilvering and is not deferred.
3723	 */
3724	if (!dsl_scan_check_deferred(vd))
3725		return (B_FALSE);
3726
3727	return (B_TRUE);
3728}
3729
3730static int
3731dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3732{
3733	dsl_scan_t *scn = dp->dp_scan;
3734	spa_t *spa = dp->dp_spa;
3735	int err = 0;
3736
3737	if (spa_suspend_async_destroy(spa))
3738		return (0);
3739
3740	if (zfs_free_bpobj_enabled &&
3741	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3742		scn->scn_is_bptree = B_FALSE;
3743		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3744		scn->scn_zio_root = zio_root(spa, NULL,
3745		    NULL, ZIO_FLAG_MUSTSUCCEED);
3746		err = bpobj_iterate(&dp->dp_free_bpobj,
3747		    bpobj_dsl_scan_free_block_cb, scn, tx);
3748		VERIFY0(zio_wait(scn->scn_zio_root));
3749		scn->scn_zio_root = NULL;
3750
3751		if (err != 0 && err != ERESTART)
3752			zfs_panic_recover("error %u from bpobj_iterate()", err);
3753	}
3754
3755	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3756		ASSERT(scn->scn_async_destroying);
3757		scn->scn_is_bptree = B_TRUE;
3758		scn->scn_zio_root = zio_root(spa, NULL,
3759		    NULL, ZIO_FLAG_MUSTSUCCEED);
3760		err = bptree_iterate(dp->dp_meta_objset,
3761		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3762		VERIFY0(zio_wait(scn->scn_zio_root));
3763		scn->scn_zio_root = NULL;
3764
3765		if (err == EIO || err == ECKSUM) {
3766			err = 0;
3767		} else if (err != 0 && err != ERESTART) {
3768			zfs_panic_recover("error %u from "
3769			    "traverse_dataset_destroyed()", err);
3770		}
3771
3772		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3773			/* finished; deactivate async destroy feature */
3774			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3775			ASSERT(!spa_feature_is_active(spa,
3776			    SPA_FEATURE_ASYNC_DESTROY));
3777			VERIFY0(zap_remove(dp->dp_meta_objset,
3778			    DMU_POOL_DIRECTORY_OBJECT,
3779			    DMU_POOL_BPTREE_OBJ, tx));
3780			VERIFY0(bptree_free(dp->dp_meta_objset,
3781			    dp->dp_bptree_obj, tx));
3782			dp->dp_bptree_obj = 0;
3783			scn->scn_async_destroying = B_FALSE;
3784			scn->scn_async_stalled = B_FALSE;
3785		} else {
3786			/*
3787			 * If we didn't make progress, mark the async
3788			 * destroy as stalled, so that we will not initiate
3789			 * a spa_sync() on its behalf.  Note that we only
3790			 * check this if we are not finished, because if the
3791			 * bptree had no blocks for us to visit, we can
3792			 * finish without "making progress".
3793			 */
3794			scn->scn_async_stalled =
3795			    (scn->scn_visited_this_txg == 0);
3796		}
3797	}
3798	if (scn->scn_visited_this_txg) {
3799		zfs_dbgmsg("freed %llu blocks in %llums from "
3800		    "free_bpobj/bptree on %s in txg %llu; err=%u",
3801		    (longlong_t)scn->scn_visited_this_txg,
3802		    (longlong_t)
3803		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3804		    spa->spa_name, (longlong_t)tx->tx_txg, err);
3805		scn->scn_visited_this_txg = 0;
3806		scn->scn_dedup_frees_this_txg = 0;
3807
3808		/*
3809		 * Write out changes to the DDT and the BRT that may be required
3810		 * as a result of the blocks freed.  This ensures that the DDT
3811		 * and the BRT are clean when a scrub/resilver runs.
3812		 */
3813		ddt_sync(spa, tx->tx_txg);
3814		brt_sync(spa, tx->tx_txg);
3815	}
3816	if (err != 0)
3817		return (err);
3818	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3819	    zfs_free_leak_on_eio &&
3820	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3821	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3822	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3823		/*
3824		 * We have finished background destroying, but there is still
3825		 * some space left in the dp_free_dir. Transfer this leaked
3826		 * space to the dp_leak_dir.
3827		 */
3828		if (dp->dp_leak_dir == NULL) {
3829			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3830			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3831			    LEAK_DIR_NAME, tx);
3832			VERIFY0(dsl_pool_open_special_dir(dp,
3833			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3834			rrw_exit(&dp->dp_config_rwlock, FTAG);
3835		}
3836		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3837		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3838		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3839		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3840		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3841		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3842		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3843		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3844	}
3845
3846	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3847	    !spa_livelist_delete_check(spa)) {
3848		/* finished; verify that space accounting went to zero */
3849		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3850		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3851		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3852	}
3853
3854	spa_notify_waiters(spa);
3855
3856	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3857	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3858	    DMU_POOL_OBSOLETE_BPOBJ));
3859	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3860		ASSERT(spa_feature_is_active(dp->dp_spa,
3861		    SPA_FEATURE_OBSOLETE_COUNTS));
3862
3863		scn->scn_is_bptree = B_FALSE;
3864		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3865		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3866		    dsl_scan_obsolete_block_cb, scn, tx);
3867		if (err != 0 && err != ERESTART)
3868			zfs_panic_recover("error %u from bpobj_iterate()", err);
3869
3870		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3871			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3872	}
3873	return (0);
3874}
3875
3876static void
3877name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3878{
3879	zb->zb_objset = zfs_strtonum(buf, &buf);
3880	ASSERT(*buf == ':');
3881	zb->zb_object = zfs_strtonum(buf + 1, &buf);
3882	ASSERT(*buf == ':');
3883	zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3884	ASSERT(*buf == ':');
3885	zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3886	ASSERT(*buf == '\0');
3887}
3888
3889static void
3890name_to_object(char *buf, uint64_t *obj)
3891{
3892	*obj = zfs_strtonum(buf, &buf);
3893	ASSERT(*buf == '\0');
3894}
3895
3896static void
3897read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3898{
3899	dsl_pool_t *dp = scn->scn_dp;
3900	dsl_dataset_t *ds;
3901	objset_t *os;
3902	if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3903		return;
3904
3905	if (dmu_objset_from_ds(ds, &os) != 0) {
3906		dsl_dataset_rele(ds, FTAG);
3907		return;
3908	}
3909
3910	/*
3911	 * If the key is not loaded dbuf_dnode_findbp() will error out with
3912	 * EACCES. However in that case dnode_hold() will eventually call
3913	 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3914	 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3915	 * Avoid this by checking here if the keys are loaded, if not return.
3916	 * If the keys are not loaded the head_errlog feature is meaningless
3917	 * as we cannot figure out the birth txg of the block pointer.
3918	 */
3919	if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3920	    ZFS_KEYSTATUS_UNAVAILABLE) {
3921		dsl_dataset_rele(ds, FTAG);
3922		return;
3923	}
3924
3925	dnode_t *dn;
3926	blkptr_t bp;
3927
3928	if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3929		dsl_dataset_rele(ds, FTAG);
3930		return;
3931	}
3932
3933	rw_enter(&dn->dn_struct_rwlock, RW_READER);
3934	int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3935	    NULL);
3936
3937	if (error) {
3938		rw_exit(&dn->dn_struct_rwlock);
3939		dnode_rele(dn, FTAG);
3940		dsl_dataset_rele(ds, FTAG);
3941		return;
3942	}
3943
3944	if (!error && BP_IS_HOLE(&bp)) {
3945		rw_exit(&dn->dn_struct_rwlock);
3946		dnode_rele(dn, FTAG);
3947		dsl_dataset_rele(ds, FTAG);
3948		return;
3949	}
3950
3951	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
3952	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
3953
3954	/* If it's an intent log block, failure is expected. */
3955	if (zb.zb_level == ZB_ZIL_LEVEL)
3956		zio_flags |= ZIO_FLAG_SPECULATIVE;
3957
3958	ASSERT(!BP_IS_EMBEDDED(&bp));
3959	scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
3960	rw_exit(&dn->dn_struct_rwlock);
3961	dnode_rele(dn, FTAG);
3962	dsl_dataset_rele(ds, FTAG);
3963}
3964
3965/*
3966 * We keep track of the scrubbed error blocks in "count". This will be used
3967 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
3968 * function is modelled after check_filesystem().
3969 */
3970static int
3971scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
3972    int *count)
3973{
3974	dsl_dataset_t *ds;
3975	dsl_pool_t *dp = spa->spa_dsl_pool;
3976	dsl_scan_t *scn = dp->dp_scan;
3977
3978	int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
3979	if (error != 0)
3980		return (error);
3981
3982	uint64_t latest_txg;
3983	uint64_t txg_to_consider = spa->spa_syncing_txg;
3984	boolean_t check_snapshot = B_TRUE;
3985
3986	error = find_birth_txg(ds, zep, &latest_txg);
3987
3988	/*
3989	 * If find_birth_txg() errors out, then err on the side of caution and
3990	 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
3991	 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
3992	 * scrub all objects.
3993	 */
3994	if (error == 0 && zep->zb_birth == latest_txg) {
3995		/* Block neither free nor re written. */
3996		zbookmark_phys_t zb;
3997		zep_to_zb(fs, zep, &zb);
3998		scn->scn_zio_root = zio_root(spa, NULL, NULL,
3999		    ZIO_FLAG_CANFAIL);
4000		/* We have already acquired the config lock for spa */
4001		read_by_block_level(scn, zb);
4002
4003		(void) zio_wait(scn->scn_zio_root);
4004		scn->scn_zio_root = NULL;
4005
4006		scn->errorscrub_phys.dep_examined++;
4007		scn->errorscrub_phys.dep_to_examine--;
4008		(*count)++;
4009		if ((*count) == zfs_scrub_error_blocks_per_txg ||
4010		    dsl_error_scrub_check_suspend(scn, &zb)) {
4011			dsl_dataset_rele(ds, FTAG);
4012			return (SET_ERROR(EFAULT));
4013		}
4014
4015		check_snapshot = B_FALSE;
4016	} else if (error == 0) {
4017		txg_to_consider = latest_txg;
4018	}
4019
4020	/*
4021	 * Retrieve the number of snapshots if the dataset is not a snapshot.
4022	 */
4023	uint64_t snap_count = 0;
4024	if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4025
4026		error = zap_count(spa->spa_meta_objset,
4027		    dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4028
4029		if (error != 0) {
4030			dsl_dataset_rele(ds, FTAG);
4031			return (error);
4032		}
4033	}
4034
4035	if (snap_count == 0) {
4036		/* Filesystem without snapshots. */
4037		dsl_dataset_rele(ds, FTAG);
4038		return (0);
4039	}
4040
4041	uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4042	uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4043
4044	dsl_dataset_rele(ds, FTAG);
4045
4046	/* Check only snapshots created from this file system. */
4047	while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4048	    snap_obj_txg <= txg_to_consider) {
4049
4050		error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4051		if (error != 0)
4052			return (error);
4053
4054		if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4055			snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4056			snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4057			dsl_dataset_rele(ds, FTAG);
4058			continue;
4059		}
4060
4061		boolean_t affected = B_TRUE;
4062		if (check_snapshot) {
4063			uint64_t blk_txg;
4064			error = find_birth_txg(ds, zep, &blk_txg);
4065
4066			/*
4067			 * Scrub the snapshot also when zb_birth == 0 or when
4068			 * find_birth_txg() returns an error.
4069			 */
4070			affected = (error == 0 && zep->zb_birth == blk_txg) ||
4071			    (error != 0) || (zep->zb_birth == 0);
4072		}
4073
4074		/* Scrub snapshots. */
4075		if (affected) {
4076			zbookmark_phys_t zb;
4077			zep_to_zb(snap_obj, zep, &zb);
4078			scn->scn_zio_root = zio_root(spa, NULL, NULL,
4079			    ZIO_FLAG_CANFAIL);
4080			/* We have already acquired the config lock for spa */
4081			read_by_block_level(scn, zb);
4082
4083			(void) zio_wait(scn->scn_zio_root);
4084			scn->scn_zio_root = NULL;
4085
4086			scn->errorscrub_phys.dep_examined++;
4087			scn->errorscrub_phys.dep_to_examine--;
4088			(*count)++;
4089			if ((*count) == zfs_scrub_error_blocks_per_txg ||
4090			    dsl_error_scrub_check_suspend(scn, &zb)) {
4091				dsl_dataset_rele(ds, FTAG);
4092				return (EFAULT);
4093			}
4094		}
4095		snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4096		snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4097		dsl_dataset_rele(ds, FTAG);
4098	}
4099	return (0);
4100}
4101
4102void
4103dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4104{
4105	spa_t *spa = dp->dp_spa;
4106	dsl_scan_t *scn = dp->dp_scan;
4107
4108	/*
4109	 * Only process scans in sync pass 1.
4110	 */
4111
4112	if (spa_sync_pass(spa) > 1)
4113		return;
4114
4115	/*
4116	 * If the spa is shutting down, then stop scanning. This will
4117	 * ensure that the scan does not dirty any new data during the
4118	 * shutdown phase.
4119	 */
4120	if (spa_shutting_down(spa))
4121		return;
4122
4123	if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4124		return;
4125	}
4126
4127	if (dsl_scan_resilvering(scn->scn_dp)) {
4128		/* cancel the error scrub if resilver started */
4129		dsl_scan_cancel(scn->scn_dp);
4130		return;
4131	}
4132
4133	spa->spa_scrub_active = B_TRUE;
4134	scn->scn_sync_start_time = gethrtime();
4135
4136	/*
4137	 * zfs_scan_suspend_progress can be set to disable scrub progress.
4138	 * See more detailed comment in dsl_scan_sync().
4139	 */
4140	if (zfs_scan_suspend_progress) {
4141		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4142		int mintime = zfs_scrub_min_time_ms;
4143
4144		while (zfs_scan_suspend_progress &&
4145		    !txg_sync_waiting(scn->scn_dp) &&
4146		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4147		    NSEC2MSEC(scan_time_ns) < mintime) {
4148			delay(hz);
4149			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4150		}
4151		return;
4152	}
4153
4154	int i = 0;
4155	zap_attribute_t *za;
4156	zbookmark_phys_t *zb;
4157	boolean_t limit_exceeded = B_FALSE;
4158
4159	za = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4160	zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4161
4162	if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4163		for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4164		    zap_cursor_advance(&scn->errorscrub_cursor)) {
4165			name_to_bookmark(za->za_name, zb);
4166
4167			scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4168			    NULL, ZIO_FLAG_CANFAIL);
4169			dsl_pool_config_enter(dp, FTAG);
4170			read_by_block_level(scn, *zb);
4171			dsl_pool_config_exit(dp, FTAG);
4172
4173			(void) zio_wait(scn->scn_zio_root);
4174			scn->scn_zio_root = NULL;
4175
4176			scn->errorscrub_phys.dep_examined += 1;
4177			scn->errorscrub_phys.dep_to_examine -= 1;
4178			i++;
4179			if (i == zfs_scrub_error_blocks_per_txg ||
4180			    dsl_error_scrub_check_suspend(scn, zb)) {
4181				limit_exceeded = B_TRUE;
4182				break;
4183			}
4184		}
4185
4186		if (!limit_exceeded)
4187			dsl_errorscrub_done(scn, B_TRUE, tx);
4188
4189		dsl_errorscrub_sync_state(scn, tx);
4190		kmem_free(za, sizeof (*za));
4191		kmem_free(zb, sizeof (*zb));
4192		return;
4193	}
4194
4195	int error = 0;
4196	for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4197	    zap_cursor_advance(&scn->errorscrub_cursor)) {
4198
4199		zap_cursor_t *head_ds_cursor;
4200		zap_attribute_t *head_ds_attr;
4201		zbookmark_err_phys_t head_ds_block;
4202
4203		head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4204		head_ds_attr = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4205
4206		uint64_t head_ds_err_obj = za->za_first_integer;
4207		uint64_t head_ds;
4208		name_to_object(za->za_name, &head_ds);
4209		boolean_t config_held = B_FALSE;
4210		uint64_t top_affected_fs;
4211
4212		for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4213		    head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4214		    head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4215
4216			name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4217
4218			/*
4219			 * In case we are called from spa_sync the pool
4220			 * config is already held.
4221			 */
4222			if (!dsl_pool_config_held(dp)) {
4223				dsl_pool_config_enter(dp, FTAG);
4224				config_held = B_TRUE;
4225			}
4226
4227			error = find_top_affected_fs(spa,
4228			    head_ds, &head_ds_block, &top_affected_fs);
4229			if (error)
4230				break;
4231
4232			error = scrub_filesystem(spa, top_affected_fs,
4233			    &head_ds_block, &i);
4234
4235			if (error == SET_ERROR(EFAULT)) {
4236				limit_exceeded = B_TRUE;
4237				break;
4238			}
4239		}
4240
4241		zap_cursor_fini(head_ds_cursor);
4242		kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4243		kmem_free(head_ds_attr, sizeof (*head_ds_attr));
4244
4245		if (config_held)
4246			dsl_pool_config_exit(dp, FTAG);
4247	}
4248
4249	kmem_free(za, sizeof (*za));
4250	kmem_free(zb, sizeof (*zb));
4251	if (!limit_exceeded)
4252		dsl_errorscrub_done(scn, B_TRUE, tx);
4253
4254	dsl_errorscrub_sync_state(scn, tx);
4255}
4256
4257/*
4258 * This is the primary entry point for scans that is called from syncing
4259 * context. Scans must happen entirely during syncing context so that we
4260 * can guarantee that blocks we are currently scanning will not change out
4261 * from under us. While a scan is active, this function controls how quickly
4262 * transaction groups proceed, instead of the normal handling provided by
4263 * txg_sync_thread().
4264 */
4265void
4266dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4267{
4268	int err = 0;
4269	dsl_scan_t *scn = dp->dp_scan;
4270	spa_t *spa = dp->dp_spa;
4271	state_sync_type_t sync_type = SYNC_OPTIONAL;
4272
4273	if (spa->spa_resilver_deferred &&
4274	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4275		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4276
4277	/*
4278	 * Check for scn_restart_txg before checking spa_load_state, so
4279	 * that we can restart an old-style scan while the pool is being
4280	 * imported (see dsl_scan_init). We also restart scans if there
4281	 * is a deferred resilver and the user has manually disabled
4282	 * deferred resilvers via the tunable.
4283	 */
4284	if (dsl_scan_restarting(scn, tx) ||
4285	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
4286		pool_scan_func_t func = POOL_SCAN_SCRUB;
4287		dsl_scan_done(scn, B_FALSE, tx);
4288		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4289			func = POOL_SCAN_RESILVER;
4290		zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
4291		    func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
4292		dsl_scan_setup_sync(&func, tx);
4293	}
4294
4295	/*
4296	 * Only process scans in sync pass 1.
4297	 */
4298	if (spa_sync_pass(spa) > 1)
4299		return;
4300
4301	/*
4302	 * If the spa is shutting down, then stop scanning. This will
4303	 * ensure that the scan does not dirty any new data during the
4304	 * shutdown phase.
4305	 */
4306	if (spa_shutting_down(spa))
4307		return;
4308
4309	/*
4310	 * If the scan is inactive due to a stalled async destroy, try again.
4311	 */
4312	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4313		return;
4314
4315	/* reset scan statistics */
4316	scn->scn_visited_this_txg = 0;
4317	scn->scn_dedup_frees_this_txg = 0;
4318	scn->scn_holes_this_txg = 0;
4319	scn->scn_lt_min_this_txg = 0;
4320	scn->scn_gt_max_this_txg = 0;
4321	scn->scn_ddt_contained_this_txg = 0;
4322	scn->scn_objsets_visited_this_txg = 0;
4323	scn->scn_avg_seg_size_this_txg = 0;
4324	scn->scn_segs_this_txg = 0;
4325	scn->scn_avg_zio_size_this_txg = 0;
4326	scn->scn_zios_this_txg = 0;
4327	scn->scn_suspending = B_FALSE;
4328	scn->scn_sync_start_time = gethrtime();
4329	spa->spa_scrub_active = B_TRUE;
4330
4331	/*
4332	 * First process the async destroys.  If we suspend, don't do
4333	 * any scrubbing or resilvering.  This ensures that there are no
4334	 * async destroys while we are scanning, so the scan code doesn't
4335	 * have to worry about traversing it.  It is also faster to free the
4336	 * blocks than to scrub them.
4337	 */
4338	err = dsl_process_async_destroys(dp, tx);
4339	if (err != 0)
4340		return;
4341
4342	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4343		return;
4344
4345	/*
4346	 * Wait a few txgs after importing to begin scanning so that
4347	 * we can get the pool imported quickly.
4348	 */
4349	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4350		return;
4351
4352	/*
4353	 * zfs_scan_suspend_progress can be set to disable scan progress.
4354	 * We don't want to spin the txg_sync thread, so we add a delay
4355	 * here to simulate the time spent doing a scan. This is mostly
4356	 * useful for testing and debugging.
4357	 */
4358	if (zfs_scan_suspend_progress) {
4359		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4360		uint_t mintime = (scn->scn_phys.scn_func ==
4361		    POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4362		    zfs_scrub_min_time_ms;
4363
4364		while (zfs_scan_suspend_progress &&
4365		    !txg_sync_waiting(scn->scn_dp) &&
4366		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4367		    NSEC2MSEC(scan_time_ns) < mintime) {
4368			delay(hz);
4369			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4370		}
4371		return;
4372	}
4373
4374	/*
4375	 * Disabled by default, set zfs_scan_report_txgs to report
4376	 * average performance over the last zfs_scan_report_txgs TXGs.
4377	 */
4378	if (zfs_scan_report_txgs != 0 &&
4379	    tx->tx_txg % zfs_scan_report_txgs == 0) {
4380		scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4381		spa_scan_stat_init(spa);
4382	}
4383
4384	/*
4385	 * It is possible to switch from unsorted to sorted at any time,
4386	 * but afterwards the scan will remain sorted unless reloaded from
4387	 * a checkpoint after a reboot.
4388	 */
4389	if (!zfs_scan_legacy) {
4390		scn->scn_is_sorted = B_TRUE;
4391		if (scn->scn_last_checkpoint == 0)
4392			scn->scn_last_checkpoint = ddi_get_lbolt();
4393	}
4394
4395	/*
4396	 * For sorted scans, determine what kind of work we will be doing
4397	 * this txg based on our memory limitations and whether or not we
4398	 * need to perform a checkpoint.
4399	 */
4400	if (scn->scn_is_sorted) {
4401		/*
4402		 * If we are over our checkpoint interval, set scn_clearing
4403		 * so that we can begin checkpointing immediately. The
4404		 * checkpoint allows us to save a consistent bookmark
4405		 * representing how much data we have scrubbed so far.
4406		 * Otherwise, use the memory limit to determine if we should
4407		 * scan for metadata or start issue scrub IOs. We accumulate
4408		 * metadata until we hit our hard memory limit at which point
4409		 * we issue scrub IOs until we are at our soft memory limit.
4410		 */
4411		if (scn->scn_checkpointing ||
4412		    ddi_get_lbolt() - scn->scn_last_checkpoint >
4413		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4414			if (!scn->scn_checkpointing)
4415				zfs_dbgmsg("begin scan checkpoint for %s",
4416				    spa->spa_name);
4417
4418			scn->scn_checkpointing = B_TRUE;
4419			scn->scn_clearing = B_TRUE;
4420		} else {
4421			boolean_t should_clear = dsl_scan_should_clear(scn);
4422			if (should_clear && !scn->scn_clearing) {
4423				zfs_dbgmsg("begin scan clearing for %s",
4424				    spa->spa_name);
4425				scn->scn_clearing = B_TRUE;
4426			} else if (!should_clear && scn->scn_clearing) {
4427				zfs_dbgmsg("finish scan clearing for %s",
4428				    spa->spa_name);
4429				scn->scn_clearing = B_FALSE;
4430			}
4431		}
4432	} else {
4433		ASSERT0(scn->scn_checkpointing);
4434		ASSERT0(scn->scn_clearing);
4435	}
4436
4437	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4438		/* Need to scan metadata for more blocks to scrub */
4439		dsl_scan_phys_t *scnp = &scn->scn_phys;
4440		taskqid_t prefetch_tqid;
4441
4442		/*
4443		 * Calculate the max number of in-flight bytes for pool-wide
4444		 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4445		 * Limits for the issuing phase are done per top-level vdev and
4446		 * are handled separately.
4447		 */
4448		scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4449		    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4450
4451		if (scnp->scn_ddt_bookmark.ddb_class <=
4452		    scnp->scn_ddt_class_max) {
4453			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4454			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4455			    "ddt bm=%llu/%llu/%llu/%llx",
4456			    spa->spa_name,
4457			    (longlong_t)tx->tx_txg,
4458			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4459			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4460			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4461			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4462		} else {
4463			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4464			    "bm=%llu/%llu/%llu/%llu",
4465			    spa->spa_name,
4466			    (longlong_t)tx->tx_txg,
4467			    (longlong_t)scnp->scn_bookmark.zb_objset,
4468			    (longlong_t)scnp->scn_bookmark.zb_object,
4469			    (longlong_t)scnp->scn_bookmark.zb_level,
4470			    (longlong_t)scnp->scn_bookmark.zb_blkid);
4471		}
4472
4473		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4474		    NULL, ZIO_FLAG_CANFAIL);
4475
4476		scn->scn_prefetch_stop = B_FALSE;
4477		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4478		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4479		ASSERT(prefetch_tqid != TASKQID_INVALID);
4480
4481		dsl_pool_config_enter(dp, FTAG);
4482		dsl_scan_visit(scn, tx);
4483		dsl_pool_config_exit(dp, FTAG);
4484
4485		mutex_enter(&dp->dp_spa->spa_scrub_lock);
4486		scn->scn_prefetch_stop = B_TRUE;
4487		cv_broadcast(&spa->spa_scrub_io_cv);
4488		mutex_exit(&dp->dp_spa->spa_scrub_lock);
4489
4490		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4491		(void) zio_wait(scn->scn_zio_root);
4492		scn->scn_zio_root = NULL;
4493
4494		zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4495		    "(%llu os's, %llu holes, %llu < mintxg, "
4496		    "%llu in ddt, %llu > maxtxg)",
4497		    (longlong_t)scn->scn_visited_this_txg,
4498		    spa->spa_name,
4499		    (longlong_t)NSEC2MSEC(gethrtime() -
4500		    scn->scn_sync_start_time),
4501		    (longlong_t)scn->scn_objsets_visited_this_txg,
4502		    (longlong_t)scn->scn_holes_this_txg,
4503		    (longlong_t)scn->scn_lt_min_this_txg,
4504		    (longlong_t)scn->scn_ddt_contained_this_txg,
4505		    (longlong_t)scn->scn_gt_max_this_txg);
4506
4507		if (!scn->scn_suspending) {
4508			ASSERT0(avl_numnodes(&scn->scn_queue));
4509			scn->scn_done_txg = tx->tx_txg + 1;
4510			if (scn->scn_is_sorted) {
4511				scn->scn_checkpointing = B_TRUE;
4512				scn->scn_clearing = B_TRUE;
4513				scn->scn_issued_before_pass +=
4514				    spa->spa_scan_pass_issued;
4515				spa_scan_stat_init(spa);
4516			}
4517			zfs_dbgmsg("scan complete for %s txg %llu",
4518			    spa->spa_name,
4519			    (longlong_t)tx->tx_txg);
4520		}
4521	} else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4522		ASSERT(scn->scn_clearing);
4523
4524		/* need to issue scrubbing IOs from per-vdev queues */
4525		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4526		    NULL, ZIO_FLAG_CANFAIL);
4527		scan_io_queues_run(scn);
4528		(void) zio_wait(scn->scn_zio_root);
4529		scn->scn_zio_root = NULL;
4530
4531		/* calculate and dprintf the current memory usage */
4532		(void) dsl_scan_should_clear(scn);
4533		dsl_scan_update_stats(scn);
4534
4535		zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4536		    "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4537		    (longlong_t)scn->scn_zios_this_txg,
4538		    spa->spa_name,
4539		    (longlong_t)scn->scn_segs_this_txg,
4540		    (longlong_t)NSEC2MSEC(gethrtime() -
4541		    scn->scn_sync_start_time),
4542		    (longlong_t)scn->scn_avg_zio_size_this_txg,
4543		    (longlong_t)scn->scn_avg_seg_size_this_txg);
4544	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4545		/* Finished with everything. Mark the scrub as complete */
4546		zfs_dbgmsg("scan issuing complete txg %llu for %s",
4547		    (longlong_t)tx->tx_txg,
4548		    spa->spa_name);
4549		ASSERT3U(scn->scn_done_txg, !=, 0);
4550		ASSERT0(spa->spa_scrub_inflight);
4551		ASSERT0(scn->scn_queues_pending);
4552		dsl_scan_done(scn, B_TRUE, tx);
4553		sync_type = SYNC_MANDATORY;
4554	}
4555
4556	dsl_scan_sync_state(scn, tx, sync_type);
4557}
4558
4559static void
4560count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4561{
4562	/*
4563	 * Don't count embedded bp's, since we already did the work of
4564	 * scanning these when we scanned the containing block.
4565	 */
4566	if (BP_IS_EMBEDDED(bp))
4567		return;
4568
4569	/*
4570	 * Update the spa's stats on how many bytes we have issued.
4571	 * Sequential scrubs create a zio for each DVA of the bp. Each
4572	 * of these will include all DVAs for repair purposes, but the
4573	 * zio code will only try the first one unless there is an issue.
4574	 * Therefore, we should only count the first DVA for these IOs.
4575	 */
4576	atomic_add_64(&spa->spa_scan_pass_issued,
4577	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4578}
4579
4580static void
4581count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4582{
4583	if (BP_IS_EMBEDDED(bp))
4584		return;
4585	atomic_add_64(&scn->scn_phys.scn_skipped,
4586	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4587}
4588
4589static void
4590count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4591{
4592	/*
4593	 * If we resume after a reboot, zab will be NULL; don't record
4594	 * incomplete stats in that case.
4595	 */
4596	if (zab == NULL)
4597		return;
4598
4599	for (int i = 0; i < 4; i++) {
4600		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4601		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4602
4603		if (t & DMU_OT_NEWTYPE)
4604			t = DMU_OT_OTHER;
4605		zfs_blkstat_t *zb = &zab->zab_type[l][t];
4606		int equal;
4607
4608		zb->zb_count++;
4609		zb->zb_asize += BP_GET_ASIZE(bp);
4610		zb->zb_lsize += BP_GET_LSIZE(bp);
4611		zb->zb_psize += BP_GET_PSIZE(bp);
4612		zb->zb_gangs += BP_COUNT_GANG(bp);
4613
4614		switch (BP_GET_NDVAS(bp)) {
4615		case 2:
4616			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4617			    DVA_GET_VDEV(&bp->blk_dva[1]))
4618				zb->zb_ditto_2_of_2_samevdev++;
4619			break;
4620		case 3:
4621			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4622			    DVA_GET_VDEV(&bp->blk_dva[1])) +
4623			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4624			    DVA_GET_VDEV(&bp->blk_dva[2])) +
4625			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4626			    DVA_GET_VDEV(&bp->blk_dva[2]));
4627			if (equal == 1)
4628				zb->zb_ditto_2_of_3_samevdev++;
4629			else if (equal == 3)
4630				zb->zb_ditto_3_of_3_samevdev++;
4631			break;
4632		}
4633	}
4634}
4635
4636static void
4637scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4638{
4639	avl_index_t idx;
4640	dsl_scan_t *scn = queue->q_scn;
4641
4642	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4643
4644	if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4645		atomic_add_64(&scn->scn_queues_pending, 1);
4646	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4647		/* block is already scheduled for reading */
4648		sio_free(sio);
4649		return;
4650	}
4651	avl_insert(&queue->q_sios_by_addr, sio, idx);
4652	queue->q_sio_memused += SIO_GET_MUSED(sio);
4653	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4654	    SIO_GET_ASIZE(sio));
4655}
4656
4657/*
4658 * Given all the info we got from our metadata scanning process, we
4659 * construct a scan_io_t and insert it into the scan sorting queue. The
4660 * I/O must already be suitable for us to process. This is controlled
4661 * by dsl_scan_enqueue().
4662 */
4663static void
4664scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4665    int zio_flags, const zbookmark_phys_t *zb)
4666{
4667	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4668
4669	ASSERT0(BP_IS_GANG(bp));
4670	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4671
4672	bp2sio(bp, sio, dva_i);
4673	sio->sio_flags = zio_flags;
4674	sio->sio_zb = *zb;
4675
4676	queue->q_last_ext_addr = -1;
4677	scan_io_queue_insert_impl(queue, sio);
4678}
4679
4680/*
4681 * Given a set of I/O parameters as discovered by the metadata traversal
4682 * process, attempts to place the I/O into the sorted queues (if allowed),
4683 * or immediately executes the I/O.
4684 */
4685static void
4686dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4687    const zbookmark_phys_t *zb)
4688{
4689	spa_t *spa = dp->dp_spa;
4690
4691	ASSERT(!BP_IS_EMBEDDED(bp));
4692
4693	/*
4694	 * Gang blocks are hard to issue sequentially, so we just issue them
4695	 * here immediately instead of queuing them.
4696	 */
4697	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4698		scan_exec_io(dp, bp, zio_flags, zb, NULL);
4699		return;
4700	}
4701
4702	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4703		dva_t dva;
4704		vdev_t *vdev;
4705
4706		dva = bp->blk_dva[i];
4707		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4708		ASSERT(vdev != NULL);
4709
4710		mutex_enter(&vdev->vdev_scan_io_queue_lock);
4711		if (vdev->vdev_scan_io_queue == NULL)
4712			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4713		ASSERT(dp->dp_scan != NULL);
4714		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4715		    i, zio_flags, zb);
4716		mutex_exit(&vdev->vdev_scan_io_queue_lock);
4717	}
4718}
4719
4720static int
4721dsl_scan_scrub_cb(dsl_pool_t *dp,
4722    const blkptr_t *bp, const zbookmark_phys_t *zb)
4723{
4724	dsl_scan_t *scn = dp->dp_scan;
4725	spa_t *spa = dp->dp_spa;
4726	uint64_t phys_birth = BP_GET_BIRTH(bp);
4727	size_t psize = BP_GET_PSIZE(bp);
4728	boolean_t needs_io = B_FALSE;
4729	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4730
4731	count_block(dp->dp_blkstats, bp);
4732	if (phys_birth <= scn->scn_phys.scn_min_txg ||
4733	    phys_birth >= scn->scn_phys.scn_max_txg) {
4734		count_block_skipped(scn, bp, B_TRUE);
4735		return (0);
4736	}
4737
4738	/* Embedded BP's have phys_birth==0, so we reject them above. */
4739	ASSERT(!BP_IS_EMBEDDED(bp));
4740
4741	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4742	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4743		zio_flags |= ZIO_FLAG_SCRUB;
4744		needs_io = B_TRUE;
4745	} else {
4746		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4747		zio_flags |= ZIO_FLAG_RESILVER;
4748		needs_io = B_FALSE;
4749	}
4750
4751	/* If it's an intent log block, failure is expected. */
4752	if (zb->zb_level == ZB_ZIL_LEVEL)
4753		zio_flags |= ZIO_FLAG_SPECULATIVE;
4754
4755	for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4756		const dva_t *dva = &bp->blk_dva[d];
4757
4758		/*
4759		 * Keep track of how much data we've examined so that
4760		 * zpool(8) status can make useful progress reports.
4761		 */
4762		uint64_t asize = DVA_GET_ASIZE(dva);
4763		scn->scn_phys.scn_examined += asize;
4764		spa->spa_scan_pass_exam += asize;
4765
4766		/* if it's a resilver, this may not be in the target range */
4767		if (!needs_io)
4768			needs_io = dsl_scan_need_resilver(spa, dva, psize,
4769			    phys_birth);
4770	}
4771
4772	if (needs_io && !zfs_no_scrub_io) {
4773		dsl_scan_enqueue(dp, bp, zio_flags, zb);
4774	} else {
4775		count_block_skipped(scn, bp, B_TRUE);
4776	}
4777
4778	/* do not relocate this block */
4779	return (0);
4780}
4781
4782static void
4783dsl_scan_scrub_done(zio_t *zio)
4784{
4785	spa_t *spa = zio->io_spa;
4786	blkptr_t *bp = zio->io_bp;
4787	dsl_scan_io_queue_t *queue = zio->io_private;
4788
4789	abd_free(zio->io_abd);
4790
4791	if (queue == NULL) {
4792		mutex_enter(&spa->spa_scrub_lock);
4793		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4794		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4795		cv_broadcast(&spa->spa_scrub_io_cv);
4796		mutex_exit(&spa->spa_scrub_lock);
4797	} else {
4798		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4799		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4800		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4801		cv_broadcast(&queue->q_zio_cv);
4802		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4803	}
4804
4805	if (zio->io_error && (zio->io_error != ECKSUM ||
4806	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4807		if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4808		    !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4809			atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4810			    ->errorscrub_phys.dep_errors);
4811		} else {
4812			atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4813			    .scn_errors);
4814		}
4815	}
4816}
4817
4818/*
4819 * Given a scanning zio's information, executes the zio. The zio need
4820 * not necessarily be only sortable, this function simply executes the
4821 * zio, no matter what it is. The optional queue argument allows the
4822 * caller to specify that they want per top level vdev IO rate limiting
4823 * instead of the legacy global limiting.
4824 */
4825static void
4826scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4827    const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4828{
4829	spa_t *spa = dp->dp_spa;
4830	dsl_scan_t *scn = dp->dp_scan;
4831	size_t size = BP_GET_PSIZE(bp);
4832	abd_t *data = abd_alloc_for_io(size, B_FALSE);
4833	zio_t *pio;
4834
4835	if (queue == NULL) {
4836		ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4837		mutex_enter(&spa->spa_scrub_lock);
4838		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4839			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4840		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4841		mutex_exit(&spa->spa_scrub_lock);
4842		pio = scn->scn_zio_root;
4843	} else {
4844		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4845
4846		ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4847		mutex_enter(q_lock);
4848		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4849			cv_wait(&queue->q_zio_cv, q_lock);
4850		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4851		pio = queue->q_zio;
4852		mutex_exit(q_lock);
4853	}
4854
4855	ASSERT(pio != NULL);
4856	count_block_issued(spa, bp, queue == NULL);
4857	zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4858	    queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4859}
4860
4861/*
4862 * This is the primary extent sorting algorithm. We balance two parameters:
4863 * 1) how many bytes of I/O are in an extent
4864 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4865 * Since we allow extents to have gaps between their constituent I/Os, it's
4866 * possible to have a fairly large extent that contains the same amount of
4867 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4868 * The algorithm sorts based on a score calculated from the extent's size,
4869 * the relative fill volume (in %) and a "fill weight" parameter that controls
4870 * the split between whether we prefer larger extents or more well populated
4871 * extents:
4872 *
4873 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4874 *
4875 * Example:
4876 * 1) assume extsz = 64 MiB
4877 * 2) assume fill = 32 MiB (extent is half full)
4878 * 3) assume fill_weight = 3
4879 * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4880 *	SCORE = 32M + (50 * 3 * 32M) / 100
4881 *	SCORE = 32M + (4800M / 100)
4882 *	SCORE = 32M + 48M
4883 *	         ^     ^
4884 *	         |     +--- final total relative fill-based score
4885 *	         +--------- final total fill-based score
4886 *	SCORE = 80M
4887 *
4888 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4889 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4890 * Note that as an optimization, we replace multiplication and division by
4891 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4892 *
4893 * Since we do not care if one extent is only few percent better than another,
4894 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4895 * put into otherwise unused due to ashift high bits of offset.  This allows
4896 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4897 * with single operation.  Plus it makes scrubs more sequential and reduces
4898 * chances that minor extent change move it within the B-tree.
4899 */
4900__attribute__((always_inline)) inline
4901static int
4902ext_size_compare(const void *x, const void *y)
4903{
4904	const uint64_t *a = x, *b = y;
4905
4906	return (TREE_CMP(*a, *b));
4907}
4908
4909ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4910    ext_size_compare)
4911
4912static void
4913ext_size_create(range_tree_t *rt, void *arg)
4914{
4915	(void) rt;
4916	zfs_btree_t *size_tree = arg;
4917
4918	zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4919	    sizeof (uint64_t));
4920}
4921
4922static void
4923ext_size_destroy(range_tree_t *rt, void *arg)
4924{
4925	(void) rt;
4926	zfs_btree_t *size_tree = arg;
4927	ASSERT0(zfs_btree_numnodes(size_tree));
4928
4929	zfs_btree_destroy(size_tree);
4930}
4931
4932static uint64_t
4933ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
4934{
4935	(void) rt;
4936	uint64_t size = rsg->rs_end - rsg->rs_start;
4937	uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
4938	    fill_weight * rsg->rs_fill) >> 7);
4939	ASSERT3U(rt->rt_shift, >=, 8);
4940	return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
4941}
4942
4943static void
4944ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
4945{
4946	zfs_btree_t *size_tree = arg;
4947	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4948	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4949	zfs_btree_add(size_tree, &v);
4950}
4951
4952static void
4953ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
4954{
4955	zfs_btree_t *size_tree = arg;
4956	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4957	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4958	zfs_btree_remove(size_tree, &v);
4959}
4960
4961static void
4962ext_size_vacate(range_tree_t *rt, void *arg)
4963{
4964	zfs_btree_t *size_tree = arg;
4965	zfs_btree_clear(size_tree);
4966	zfs_btree_destroy(size_tree);
4967
4968	ext_size_create(rt, arg);
4969}
4970
4971static const range_tree_ops_t ext_size_ops = {
4972	.rtop_create = ext_size_create,
4973	.rtop_destroy = ext_size_destroy,
4974	.rtop_add = ext_size_add,
4975	.rtop_remove = ext_size_remove,
4976	.rtop_vacate = ext_size_vacate
4977};
4978
4979/*
4980 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4981 * based on LBA-order (from lowest to highest).
4982 */
4983static int
4984sio_addr_compare(const void *x, const void *y)
4985{
4986	const scan_io_t *a = x, *b = y;
4987
4988	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4989}
4990
4991/* IO queues are created on demand when they are needed. */
4992static dsl_scan_io_queue_t *
4993scan_io_queue_create(vdev_t *vd)
4994{
4995	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4996	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4997
4998	q->q_scn = scn;
4999	q->q_vd = vd;
5000	q->q_sio_memused = 0;
5001	q->q_last_ext_addr = -1;
5002	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5003	q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
5004	    &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
5005	avl_create(&q->q_sios_by_addr, sio_addr_compare,
5006	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5007
5008	return (q);
5009}
5010
5011/*
5012 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5013 * No further execution of I/O occurs, anything pending in the queue is
5014 * simply freed without being executed.
5015 */
5016void
5017dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5018{
5019	dsl_scan_t *scn = queue->q_scn;
5020	scan_io_t *sio;
5021	void *cookie = NULL;
5022
5023	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5024
5025	if (!avl_is_empty(&queue->q_sios_by_addr))
5026		atomic_add_64(&scn->scn_queues_pending, -1);
5027	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5028	    NULL) {
5029		ASSERT(range_tree_contains(queue->q_exts_by_addr,
5030		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5031		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5032		sio_free(sio);
5033	}
5034
5035	ASSERT0(queue->q_sio_memused);
5036	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5037	range_tree_destroy(queue->q_exts_by_addr);
5038	avl_destroy(&queue->q_sios_by_addr);
5039	cv_destroy(&queue->q_zio_cv);
5040
5041	kmem_free(queue, sizeof (*queue));
5042}
5043
5044/*
5045 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5046 * called on behalf of vdev_top_transfer when creating or destroying
5047 * a mirror vdev due to zpool attach/detach.
5048 */
5049void
5050dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5051{
5052	mutex_enter(&svd->vdev_scan_io_queue_lock);
5053	mutex_enter(&tvd->vdev_scan_io_queue_lock);
5054
5055	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5056	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5057	svd->vdev_scan_io_queue = NULL;
5058	if (tvd->vdev_scan_io_queue != NULL)
5059		tvd->vdev_scan_io_queue->q_vd = tvd;
5060
5061	mutex_exit(&tvd->vdev_scan_io_queue_lock);
5062	mutex_exit(&svd->vdev_scan_io_queue_lock);
5063}
5064
5065static void
5066scan_io_queues_destroy(dsl_scan_t *scn)
5067{
5068	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5069
5070	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5071		vdev_t *tvd = rvd->vdev_child[i];
5072
5073		mutex_enter(&tvd->vdev_scan_io_queue_lock);
5074		if (tvd->vdev_scan_io_queue != NULL)
5075			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5076		tvd->vdev_scan_io_queue = NULL;
5077		mutex_exit(&tvd->vdev_scan_io_queue_lock);
5078	}
5079}
5080
5081static void
5082dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5083{
5084	dsl_pool_t *dp = spa->spa_dsl_pool;
5085	dsl_scan_t *scn = dp->dp_scan;
5086	vdev_t *vdev;
5087	kmutex_t *q_lock;
5088	dsl_scan_io_queue_t *queue;
5089	scan_io_t *srch_sio, *sio;
5090	avl_index_t idx;
5091	uint64_t start, size;
5092
5093	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5094	ASSERT(vdev != NULL);
5095	q_lock = &vdev->vdev_scan_io_queue_lock;
5096	queue = vdev->vdev_scan_io_queue;
5097
5098	mutex_enter(q_lock);
5099	if (queue == NULL) {
5100		mutex_exit(q_lock);
5101		return;
5102	}
5103
5104	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5105	bp2sio(bp, srch_sio, dva_i);
5106	start = SIO_GET_OFFSET(srch_sio);
5107	size = SIO_GET_ASIZE(srch_sio);
5108
5109	/*
5110	 * We can find the zio in two states:
5111	 * 1) Cold, just sitting in the queue of zio's to be issued at
5112	 *	some point in the future. In this case, all we do is
5113	 *	remove the zio from the q_sios_by_addr tree, decrement
5114	 *	its data volume from the containing range_seg_t and
5115	 *	resort the q_exts_by_size tree to reflect that the
5116	 *	range_seg_t has lost some of its 'fill'. We don't shorten
5117	 *	the range_seg_t - this is usually rare enough not to be
5118	 *	worth the extra hassle of trying keep track of precise
5119	 *	extent boundaries.
5120	 * 2) Hot, where the zio is currently in-flight in
5121	 *	dsl_scan_issue_ios. In this case, we can't simply
5122	 *	reach in and stop the in-flight zio's, so we instead
5123	 *	block the caller. Eventually, dsl_scan_issue_ios will
5124	 *	be done with issuing the zio's it gathered and will
5125	 *	signal us.
5126	 */
5127	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5128	sio_free(srch_sio);
5129
5130	if (sio != NULL) {
5131		blkptr_t tmpbp;
5132
5133		/* Got it while it was cold in the queue */
5134		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5135		ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5136		avl_remove(&queue->q_sios_by_addr, sio);
5137		if (avl_is_empty(&queue->q_sios_by_addr))
5138			atomic_add_64(&scn->scn_queues_pending, -1);
5139		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5140
5141		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
5142		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5143
5144		/* count the block as though we skipped it */
5145		sio2bp(sio, &tmpbp);
5146		count_block_skipped(scn, &tmpbp, B_FALSE);
5147
5148		sio_free(sio);
5149	}
5150	mutex_exit(q_lock);
5151}
5152
5153/*
5154 * Callback invoked when a zio_free() zio is executing. This needs to be
5155 * intercepted to prevent the zio from deallocating a particular portion
5156 * of disk space and it then getting reallocated and written to, while we
5157 * still have it queued up for processing.
5158 */
5159void
5160dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5161{
5162	dsl_pool_t *dp = spa->spa_dsl_pool;
5163	dsl_scan_t *scn = dp->dp_scan;
5164
5165	ASSERT(!BP_IS_EMBEDDED(bp));
5166	ASSERT(scn != NULL);
5167	if (!dsl_scan_is_running(scn))
5168		return;
5169
5170	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5171		dsl_scan_freed_dva(spa, bp, i);
5172}
5173
5174/*
5175 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5176 * not started, start it. Otherwise, only restart if max txg in DTL range is
5177 * greater than the max txg in the current scan. If the DTL max is less than
5178 * the scan max, then the vdev has not missed any new data since the resilver
5179 * started, so a restart is not needed.
5180 */
5181void
5182dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5183{
5184	uint64_t min, max;
5185
5186	if (!vdev_resilver_needed(vd, &min, &max))
5187		return;
5188
5189	if (!dsl_scan_resilvering(dp)) {
5190		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5191		return;
5192	}
5193
5194	if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5195		return;
5196
5197	/* restart is needed, check if it can be deferred */
5198	if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5199		vdev_defer_resilver(vd);
5200	else
5201		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5202}
5203
5204ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5205	"Max bytes in flight per leaf vdev for scrubs and resilvers");
5206
5207ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5208	"Min millisecs to scrub per txg");
5209
5210ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5211	"Min millisecs to obsolete per txg");
5212
5213ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5214	"Min millisecs to free per txg");
5215
5216ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5217	"Min millisecs to resilver per txg");
5218
5219ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5220	"Set to prevent scans from progressing");
5221
5222ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5223	"Set to disable scrub I/O");
5224
5225ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5226	"Set to disable scrub prefetching");
5227
5228ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5229	"Max number of blocks freed in one txg");
5230
5231ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5232	"Max number of dedup blocks freed in one txg");
5233
5234ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5235	"Enable processing of the free_bpobj");
5236
5237ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5238	"Enable block statistics calculation during scrub");
5239
5240ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5241	"Fraction of RAM for scan hard limit");
5242
5243ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5244	"IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5245
5246ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5247	"Scrub using legacy non-sequential method");
5248
5249ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5250	"Scan progress on-disk checkpointing interval");
5251
5252ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5253	"Max gap in bytes between sequential scrub / resilver I/Os");
5254
5255ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5256	"Fraction of hard limit used as soft limit");
5257
5258ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5259	"Tunable to attempt to reduce lock contention");
5260
5261ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5262	"Tunable to adjust bias towards more filled segments during scans");
5263
5264ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5265	"Tunable to report resilver performance over the last N txgs");
5266
5267ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5268	"Process all resilvers immediately");
5269
5270ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5271	"Error blocks to be scrubbed in one txg");
5272/* END CSTYLED */
5273