1/*
2 * Implement fast Fletcher4 using superscalar pipelines.
3 *
4 * Use regular C code to compute
5 * Fletcher4 in four incremental 64-bit parallel accumulator streams,
6 * and then combine the streams to form the final four checksum words.
7 * This implementation is a derivative of the AVX SIMD implementation by
8 * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
9 *
10 * Copyright (C) 2016 Romain Dolbeau.
11 *
12 * Authors:
13 *	Romain Dolbeau <romain.dolbeau@atos.net>
14 *
15 * This software is available to you under a choice of one of two
16 * licenses.  You may choose to be licensed under the terms of the GNU
17 * General Public License (GPL) Version 2, available from the file
18 * COPYING in the main directory of this source tree, or the
19 * OpenIB.org BSD license below:
20 *
21 *     Redistribution and use in source and binary forms, with or
22 *     without modification, are permitted provided that the following
23 *     conditions are met:
24 *
25 *	- Redistributions of source code must retain the above
26 *	  copyright notice, this list of conditions and the following
27 *	  disclaimer.
28 *
29 *	- Redistributions in binary form must reproduce the above
30 *	  copyright notice, this list of conditions and the following
31 *	  disclaimer in the documentation and/or other materials
32 *	  provided with the distribution.
33 *
34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
41 * SOFTWARE.
42 */
43
44#include <sys/param.h>
45#include <sys/byteorder.h>
46#include <sys/spa_checksum.h>
47#include <sys/string.h>
48#include <zfs_fletcher.h>
49
50static void
51fletcher_4_superscalar4_init(fletcher_4_ctx_t *ctx)
52{
53	memset(ctx->superscalar, 0, 4 * sizeof (zfs_fletcher_superscalar_t));
54}
55
56static void
57fletcher_4_superscalar4_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
58{
59	uint64_t A, B, C, D;
60
61	A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1] +
62	    ctx->superscalar[0].v[2] + ctx->superscalar[0].v[3];
63	B = 0 - ctx->superscalar[0].v[1] - 2 * ctx->superscalar[0].v[2] -
64	    3 * ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
65	    4 * ctx->superscalar[1].v[1] + 4 * ctx->superscalar[1].v[2] +
66	    4 * ctx->superscalar[1].v[3];
67
68	C = ctx->superscalar[0].v[2] + 3 * ctx->superscalar[0].v[3] -
69	    6 * ctx->superscalar[1].v[0] - 10 * ctx->superscalar[1].v[1] -
70	    14 * ctx->superscalar[1].v[2] - 18 * ctx->superscalar[1].v[3] +
71	    16 * ctx->superscalar[2].v[0] + 16 * ctx->superscalar[2].v[1] +
72	    16 * ctx->superscalar[2].v[2] + 16 * ctx->superscalar[2].v[3];
73
74	D = 0 - ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
75	    10 * ctx->superscalar[1].v[1] + 20 * ctx->superscalar[1].v[2] +
76	    34 * ctx->superscalar[1].v[3] - 48 * ctx->superscalar[2].v[0] -
77	    64 * ctx->superscalar[2].v[1] - 80 * ctx->superscalar[2].v[2] -
78	    96 * ctx->superscalar[2].v[3] + 64 * ctx->superscalar[3].v[0] +
79	    64 * ctx->superscalar[3].v[1] + 64 * ctx->superscalar[3].v[2] +
80	    64 * ctx->superscalar[3].v[3];
81
82	ZIO_SET_CHECKSUM(zcp, A, B, C, D);
83}
84
85static void
86fletcher_4_superscalar4_native(fletcher_4_ctx_t *ctx,
87    const void *buf, uint64_t size)
88{
89	const uint32_t *ip = buf;
90	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
91	uint64_t a, b, c, d;
92	uint64_t a2, b2, c2, d2;
93	uint64_t a3, b3, c3, d3;
94	uint64_t a4, b4, c4, d4;
95
96	a = ctx->superscalar[0].v[0];
97	b = ctx->superscalar[1].v[0];
98	c = ctx->superscalar[2].v[0];
99	d = ctx->superscalar[3].v[0];
100	a2 = ctx->superscalar[0].v[1];
101	b2 = ctx->superscalar[1].v[1];
102	c2 = ctx->superscalar[2].v[1];
103	d2 = ctx->superscalar[3].v[1];
104	a3 = ctx->superscalar[0].v[2];
105	b3 = ctx->superscalar[1].v[2];
106	c3 = ctx->superscalar[2].v[2];
107	d3 = ctx->superscalar[3].v[2];
108	a4 = ctx->superscalar[0].v[3];
109	b4 = ctx->superscalar[1].v[3];
110	c4 = ctx->superscalar[2].v[3];
111	d4 = ctx->superscalar[3].v[3];
112
113	do {
114		a += ip[0];
115		a2 += ip[1];
116		a3 += ip[2];
117		a4 += ip[3];
118		b += a;
119		b2 += a2;
120		b3 += a3;
121		b4 += a4;
122		c += b;
123		c2 += b2;
124		c3 += b3;
125		c4 += b4;
126		d += c;
127		d2 += c2;
128		d3 += c3;
129		d4 += c4;
130	} while ((ip += 4) < ipend);
131
132	ctx->superscalar[0].v[0] = a;
133	ctx->superscalar[1].v[0] = b;
134	ctx->superscalar[2].v[0] = c;
135	ctx->superscalar[3].v[0] = d;
136	ctx->superscalar[0].v[1] = a2;
137	ctx->superscalar[1].v[1] = b2;
138	ctx->superscalar[2].v[1] = c2;
139	ctx->superscalar[3].v[1] = d2;
140	ctx->superscalar[0].v[2] = a3;
141	ctx->superscalar[1].v[2] = b3;
142	ctx->superscalar[2].v[2] = c3;
143	ctx->superscalar[3].v[2] = d3;
144	ctx->superscalar[0].v[3] = a4;
145	ctx->superscalar[1].v[3] = b4;
146	ctx->superscalar[2].v[3] = c4;
147	ctx->superscalar[3].v[3] = d4;
148}
149
150static void
151fletcher_4_superscalar4_byteswap(fletcher_4_ctx_t *ctx,
152    const void *buf, uint64_t size)
153{
154	const uint32_t *ip = buf;
155	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
156	uint64_t a, b, c, d;
157	uint64_t a2, b2, c2, d2;
158	uint64_t a3, b3, c3, d3;
159	uint64_t a4, b4, c4, d4;
160
161	a = ctx->superscalar[0].v[0];
162	b = ctx->superscalar[1].v[0];
163	c = ctx->superscalar[2].v[0];
164	d = ctx->superscalar[3].v[0];
165	a2 = ctx->superscalar[0].v[1];
166	b2 = ctx->superscalar[1].v[1];
167	c2 = ctx->superscalar[2].v[1];
168	d2 = ctx->superscalar[3].v[1];
169	a3 = ctx->superscalar[0].v[2];
170	b3 = ctx->superscalar[1].v[2];
171	c3 = ctx->superscalar[2].v[2];
172	d3 = ctx->superscalar[3].v[2];
173	a4 = ctx->superscalar[0].v[3];
174	b4 = ctx->superscalar[1].v[3];
175	c4 = ctx->superscalar[2].v[3];
176	d4 = ctx->superscalar[3].v[3];
177
178	do {
179		a += BSWAP_32(ip[0]);
180		a2 += BSWAP_32(ip[1]);
181		a3 += BSWAP_32(ip[2]);
182		a4 += BSWAP_32(ip[3]);
183		b += a;
184		b2 += a2;
185		b3 += a3;
186		b4 += a4;
187		c += b;
188		c2 += b2;
189		c3 += b3;
190		c4 += b4;
191		d += c;
192		d2 += c2;
193		d3 += c3;
194		d4 += c4;
195	} while ((ip += 4) < ipend);
196
197	ctx->superscalar[0].v[0] = a;
198	ctx->superscalar[1].v[0] = b;
199	ctx->superscalar[2].v[0] = c;
200	ctx->superscalar[3].v[0] = d;
201	ctx->superscalar[0].v[1] = a2;
202	ctx->superscalar[1].v[1] = b2;
203	ctx->superscalar[2].v[1] = c2;
204	ctx->superscalar[3].v[1] = d2;
205	ctx->superscalar[0].v[2] = a3;
206	ctx->superscalar[1].v[2] = b3;
207	ctx->superscalar[2].v[2] = c3;
208	ctx->superscalar[3].v[2] = d3;
209	ctx->superscalar[0].v[3] = a4;
210	ctx->superscalar[1].v[3] = b4;
211	ctx->superscalar[2].v[3] = c4;
212	ctx->superscalar[3].v[3] = d4;
213}
214
215static boolean_t fletcher_4_superscalar4_valid(void)
216{
217	return (B_TRUE);
218}
219
220const fletcher_4_ops_t fletcher_4_superscalar4_ops = {
221	.init_native = fletcher_4_superscalar4_init,
222	.compute_native = fletcher_4_superscalar4_native,
223	.fini_native = fletcher_4_superscalar4_fini,
224	.init_byteswap = fletcher_4_superscalar4_init,
225	.compute_byteswap = fletcher_4_superscalar4_byteswap,
226	.fini_byteswap = fletcher_4_superscalar4_fini,
227	.valid = fletcher_4_superscalar4_valid,
228	.uses_fpu = B_FALSE,
229	.name = "superscalar4"
230};
231