1/*
2 * Implement fast Fletcher4 with AVX2 instructions. (x86_64)
3 *
4 * Use the 256-bit AVX2 SIMD instructions and registers to compute
5 * Fletcher4 in four incremental 64-bit parallel accumulator streams,
6 * and then combine the streams to form the final four checksum words.
7 *
8 * Copyright (C) 2015 Intel Corporation.
9 *
10 * Authors:
11 *      James Guilford <james.guilford@intel.com>
12 *      Jinshan Xiong <jinshan.xiong@intel.com>
13 *
14 * This software is available to you under a choice of one of two
15 * licenses.  You may choose to be licensed under the terms of the GNU
16 * General Public License (GPL) Version 2, available from the file
17 * COPYING in the main directory of this source tree, or the
18 * OpenIB.org BSD license below:
19 *
20 *     Redistribution and use in source and binary forms, with or
21 *     without modification, are permitted provided that the following
22 *     conditions are met:
23 *
24 *      - Redistributions of source code must retain the above
25 *        copyright notice, this list of conditions and the following
26 *        disclaimer.
27 *
28 *      - Redistributions in binary form must reproduce the above
29 *        copyright notice, this list of conditions and the following
30 *        disclaimer in the documentation and/or other materials
31 *        provided with the distribution.
32 *
33 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
34 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
35 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
36 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
37 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
38 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
39 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
40 * SOFTWARE.
41 */
42
43#if defined(HAVE_AVX) && defined(HAVE_AVX2)
44
45#include <sys/spa_checksum.h>
46#include <sys/string.h>
47#include <sys/simd.h>
48#include <zfs_fletcher.h>
49
50static void
51fletcher_4_avx2_init(fletcher_4_ctx_t *ctx)
52{
53	memset(ctx->avx, 0, 4 * sizeof (zfs_fletcher_avx_t));
54}
55
56static void
57fletcher_4_avx2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
58{
59	uint64_t A, B, C, D;
60
61	A = ctx->avx[0].v[0] + ctx->avx[0].v[1] +
62	    ctx->avx[0].v[2] + ctx->avx[0].v[3];
63	B = 0 - ctx->avx[0].v[1] - 2 * ctx->avx[0].v[2] - 3 * ctx->avx[0].v[3] +
64	    4 * ctx->avx[1].v[0] + 4 * ctx->avx[1].v[1] + 4 * ctx->avx[1].v[2] +
65	    4 * ctx->avx[1].v[3];
66
67	C = ctx->avx[0].v[2] + 3 * ctx->avx[0].v[3] - 6 * ctx->avx[1].v[0] -
68	    10 * ctx->avx[1].v[1] - 14 * ctx->avx[1].v[2] -
69	    18 * ctx->avx[1].v[3] + 16 * ctx->avx[2].v[0] +
70	    16 * ctx->avx[2].v[1] + 16 * ctx->avx[2].v[2] +
71	    16 * ctx->avx[2].v[3];
72
73	D = 0 - ctx->avx[0].v[3] + 4 * ctx->avx[1].v[0] +
74	    10 * ctx->avx[1].v[1] + 20 * ctx->avx[1].v[2] +
75	    34 * ctx->avx[1].v[3] - 48 * ctx->avx[2].v[0] -
76	    64 * ctx->avx[2].v[1] - 80 * ctx->avx[2].v[2] -
77	    96 * ctx->avx[2].v[3] + 64 * ctx->avx[3].v[0] +
78	    64 * ctx->avx[3].v[1] + 64 * ctx->avx[3].v[2] +
79	    64 * ctx->avx[3].v[3];
80
81	ZIO_SET_CHECKSUM(zcp, A, B, C, D);
82}
83
84#define	FLETCHER_4_AVX2_RESTORE_CTX(ctx)				\
85{									\
86	asm volatile("vmovdqu %0, %%ymm0" :: "m" ((ctx)->avx[0]));	\
87	asm volatile("vmovdqu %0, %%ymm1" :: "m" ((ctx)->avx[1]));	\
88	asm volatile("vmovdqu %0, %%ymm2" :: "m" ((ctx)->avx[2]));	\
89	asm volatile("vmovdqu %0, %%ymm3" :: "m" ((ctx)->avx[3]));	\
90}
91
92#define	FLETCHER_4_AVX2_SAVE_CTX(ctx)					\
93{									\
94	asm volatile("vmovdqu %%ymm0, %0" : "=m" ((ctx)->avx[0]));	\
95	asm volatile("vmovdqu %%ymm1, %0" : "=m" ((ctx)->avx[1]));	\
96	asm volatile("vmovdqu %%ymm2, %0" : "=m" ((ctx)->avx[2]));	\
97	asm volatile("vmovdqu %%ymm3, %0" : "=m" ((ctx)->avx[3]));	\
98}
99
100
101static void
102fletcher_4_avx2_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
103{
104	const uint64_t *ip = buf;
105	const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
106
107	FLETCHER_4_AVX2_RESTORE_CTX(ctx);
108
109	do {
110		asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip));
111		asm volatile("vpaddq %ymm4, %ymm0, %ymm0");
112		asm volatile("vpaddq %ymm0, %ymm1, %ymm1");
113		asm volatile("vpaddq %ymm1, %ymm2, %ymm2");
114		asm volatile("vpaddq %ymm2, %ymm3, %ymm3");
115	} while ((ip += 2) < ipend);
116
117	FLETCHER_4_AVX2_SAVE_CTX(ctx);
118	asm volatile("vzeroupper");
119}
120
121static void
122fletcher_4_avx2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
123{
124	static const zfs_fletcher_avx_t mask = {
125		.v = { 0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B,
126		    0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B }
127	};
128	const uint64_t *ip = buf;
129	const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
130
131	FLETCHER_4_AVX2_RESTORE_CTX(ctx);
132
133	asm volatile("vmovdqu %0, %%ymm5" :: "m" (mask));
134
135	do {
136		asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip));
137		asm volatile("vpshufb %ymm5, %ymm4, %ymm4");
138
139		asm volatile("vpaddq %ymm4, %ymm0, %ymm0");
140		asm volatile("vpaddq %ymm0, %ymm1, %ymm1");
141		asm volatile("vpaddq %ymm1, %ymm2, %ymm2");
142		asm volatile("vpaddq %ymm2, %ymm3, %ymm3");
143	} while ((ip += 2) < ipend);
144
145	FLETCHER_4_AVX2_SAVE_CTX(ctx);
146	asm volatile("vzeroupper");
147}
148
149static boolean_t fletcher_4_avx2_valid(void)
150{
151	return (kfpu_allowed() && zfs_avx_available() && zfs_avx2_available());
152}
153
154const fletcher_4_ops_t fletcher_4_avx2_ops = {
155	.init_native = fletcher_4_avx2_init,
156	.fini_native = fletcher_4_avx2_fini,
157	.compute_native = fletcher_4_avx2_native,
158	.init_byteswap = fletcher_4_avx2_init,
159	.fini_byteswap = fletcher_4_avx2_fini,
160	.compute_byteswap = fletcher_4_avx2_byteswap,
161	.valid = fletcher_4_avx2_valid,
162	.uses_fpu = B_TRUE,
163	.name = "avx2"
164};
165
166#endif /* defined(HAVE_AVX) && defined(HAVE_AVX2) */
167