1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27 * Copyright (c) 2023, 2024, Klara Inc.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/spa_impl.h>
32#include <sys/vdev_disk.h>
33#include <sys/vdev_impl.h>
34#include <sys/vdev_trim.h>
35#include <sys/abd.h>
36#include <sys/fs/zfs.h>
37#include <sys/zio.h>
38#include <linux/blkpg.h>
39#include <linux/msdos_fs.h>
40#include <linux/vfs_compat.h>
41#ifdef HAVE_LINUX_BLK_CGROUP_HEADER
42#include <linux/blk-cgroup.h>
43#endif
44
45/*
46 * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
47 * block_device. Since it carries the block_device inside, its convenient to
48 * just use the handle as a proxy.
49 *
50 * Linux 6.9.x uses a file for the same purpose.
51 *
52 * For pre-6.8, we just emulate this with a cast, since we don't need any of
53 * the other fields inside the handle.
54 */
55#if defined(HAVE_BDEV_OPEN_BY_PATH)
56typedef struct bdev_handle zfs_bdev_handle_t;
57#define	BDH_BDEV(bdh)		((bdh)->bdev)
58#define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
59#define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
60#define	BDH_ERR_PTR(err)	(ERR_PTR(err))
61#elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
62typedef struct file zfs_bdev_handle_t;
63#define	BDH_BDEV(bdh)		(file_bdev(bdh))
64#define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
65#define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
66#define	BDH_ERR_PTR(err)	(ERR_PTR(err))
67#else
68typedef void zfs_bdev_handle_t;
69#define	BDH_BDEV(bdh)		((struct block_device *)bdh)
70#define	BDH_IS_ERR(bdh)		(IS_ERR(BDH_BDEV(bdh)))
71#define	BDH_PTR_ERR(bdh)	(PTR_ERR(BDH_BDEV(bdh)))
72#define	BDH_ERR_PTR(err)	(ERR_PTR(err))
73#endif
74
75typedef struct vdev_disk {
76	zfs_bdev_handle_t		*vd_bdh;
77	krwlock_t			vd_lock;
78} vdev_disk_t;
79
80/*
81 * Maximum number of segments to add to a bio (min 4). If this is higher than
82 * the maximum allowed by the device queue or the kernel itself, it will be
83 * clamped. Setting it to zero will cause the kernel's ideal size to be used.
84 */
85uint_t zfs_vdev_disk_max_segs = 0;
86
87/*
88 * Unique identifier for the exclusive vdev holder.
89 */
90static void *zfs_vdev_holder = VDEV_HOLDER;
91
92/*
93 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
94 * device is missing. The missing path may be transient since the links
95 * can be briefly removed and recreated in response to udev events.
96 */
97static uint_t zfs_vdev_open_timeout_ms = 1000;
98
99/*
100 * Size of the "reserved" partition, in blocks.
101 */
102#define	EFI_MIN_RESV_SIZE	(16 * 1024)
103
104/*
105 * BIO request failfast mask.
106 */
107
108static unsigned int zfs_vdev_failfast_mask = 1;
109
110/*
111 * Convert SPA mode flags into bdev open mode flags.
112 */
113#ifdef HAVE_BLK_MODE_T
114typedef blk_mode_t vdev_bdev_mode_t;
115#define	VDEV_BDEV_MODE_READ	BLK_OPEN_READ
116#define	VDEV_BDEV_MODE_WRITE	BLK_OPEN_WRITE
117#define	VDEV_BDEV_MODE_EXCL	BLK_OPEN_EXCL
118#define	VDEV_BDEV_MODE_MASK	(BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
119#else
120typedef fmode_t vdev_bdev_mode_t;
121#define	VDEV_BDEV_MODE_READ	FMODE_READ
122#define	VDEV_BDEV_MODE_WRITE	FMODE_WRITE
123#define	VDEV_BDEV_MODE_EXCL	FMODE_EXCL
124#define	VDEV_BDEV_MODE_MASK	(FMODE_READ|FMODE_WRITE|FMODE_EXCL)
125#endif
126
127static vdev_bdev_mode_t
128vdev_bdev_mode(spa_mode_t smode)
129{
130	ASSERT3U(smode, !=, SPA_MODE_UNINIT);
131	ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
132
133	vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
134
135	if (smode & SPA_MODE_READ)
136		bmode |= VDEV_BDEV_MODE_READ;
137
138	if (smode & SPA_MODE_WRITE)
139		bmode |= VDEV_BDEV_MODE_WRITE;
140
141	ASSERT(bmode & VDEV_BDEV_MODE_MASK);
142	ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
143
144	return (bmode);
145}
146
147/*
148 * Returns the usable capacity (in bytes) for the partition or disk.
149 */
150static uint64_t
151bdev_capacity(struct block_device *bdev)
152{
153	return (i_size_read(bdev->bd_inode));
154}
155
156#if !defined(HAVE_BDEV_WHOLE)
157static inline struct block_device *
158bdev_whole(struct block_device *bdev)
159{
160	return (bdev->bd_contains);
161}
162#endif
163
164#if defined(HAVE_BDEVNAME)
165#define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
166#else
167static inline void
168vdev_bdevname(struct block_device *bdev, char *name)
169{
170	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
171}
172#endif
173
174/*
175 * Returns the maximum expansion capacity of the block device (in bytes).
176 *
177 * It is possible to expand a vdev when it has been created as a wholedisk
178 * and the containing block device has increased in capacity.  Or when the
179 * partition containing the pool has been manually increased in size.
180 *
181 * This function is only responsible for calculating the potential expansion
182 * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
183 * responsible for verifying the expected partition layout in the wholedisk
184 * case, and updating the partition table if appropriate.  Once the partition
185 * size has been increased the additional capacity will be visible using
186 * bdev_capacity().
187 *
188 * The returned maximum expansion capacity is always expected to be larger, or
189 * at the very least equal, to its usable capacity to prevent overestimating
190 * the pool expandsize.
191 */
192static uint64_t
193bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
194{
195	uint64_t psize;
196	int64_t available;
197
198	if (wholedisk && bdev != bdev_whole(bdev)) {
199		/*
200		 * When reporting maximum expansion capacity for a wholedisk
201		 * deduct any capacity which is expected to be lost due to
202		 * alignment restrictions.  Over reporting this value isn't
203		 * harmful and would only result in slightly less capacity
204		 * than expected post expansion.
205		 * The estimated available space may be slightly smaller than
206		 * bdev_capacity() for devices where the number of sectors is
207		 * not a multiple of the alignment size and the partition layout
208		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
209		 * "reserved" EFI partition: in such cases return the device
210		 * usable capacity.
211		 */
212		available = i_size_read(bdev_whole(bdev)->bd_inode) -
213		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
214		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
215		psize = MAX(available, bdev_capacity(bdev));
216	} else {
217		psize = bdev_capacity(bdev);
218	}
219
220	return (psize);
221}
222
223static void
224vdev_disk_error(zio_t *zio)
225{
226	/*
227	 * This function can be called in interrupt context, for instance while
228	 * handling IRQs coming from a misbehaving disk device; use printk()
229	 * which is safe from any context.
230	 */
231	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
232	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
233	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
234	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
235	    zio->io_flags);
236}
237
238static void
239vdev_disk_kobj_evt_post(vdev_t *v)
240{
241	vdev_disk_t *vd = v->vdev_tsd;
242	if (vd && vd->vd_bdh) {
243		spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
244	} else {
245		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
246		    v->vdev_path);
247	}
248}
249
250static zfs_bdev_handle_t *
251vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
252{
253	vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
254
255#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
256	return (bdev_file_open_by_path(path, bmode, holder, NULL));
257#elif defined(HAVE_BDEV_OPEN_BY_PATH)
258	return (bdev_open_by_path(path, bmode, holder, NULL));
259#elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
260	return (blkdev_get_by_path(path, bmode, holder, NULL));
261#else
262	return (blkdev_get_by_path(path, bmode, holder));
263#endif
264}
265
266static void
267vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
268{
269#if defined(HAVE_BDEV_RELEASE)
270	return (bdev_release(bdh));
271#elif defined(HAVE_BLKDEV_PUT_HOLDER)
272	return (blkdev_put(BDH_BDEV(bdh), holder));
273#elif defined(HAVE_BLKDEV_PUT)
274	return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
275#else
276	fput(bdh);
277#endif
278}
279
280static int
281vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
282    uint64_t *logical_ashift, uint64_t *physical_ashift)
283{
284	zfs_bdev_handle_t *bdh;
285	spa_mode_t smode = spa_mode(v->vdev_spa);
286	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
287	vdev_disk_t *vd;
288
289	/* Must have a pathname and it must be absolute. */
290	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
291		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
292		vdev_dbgmsg(v, "invalid vdev_path");
293		return (SET_ERROR(EINVAL));
294	}
295
296	/*
297	 * Reopen the device if it is currently open.  When expanding a
298	 * partition force re-scanning the partition table if userland
299	 * did not take care of this already. We need to do this while closed
300	 * in order to get an accurate updated block device size.  Then
301	 * since udev may need to recreate the device links increase the
302	 * open retry timeout before reporting the device as unavailable.
303	 */
304	vd = v->vdev_tsd;
305	if (vd) {
306		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
307		boolean_t reread_part = B_FALSE;
308
309		rw_enter(&vd->vd_lock, RW_WRITER);
310		bdh = vd->vd_bdh;
311		vd->vd_bdh = NULL;
312
313		if (bdh) {
314			struct block_device *bdev = BDH_BDEV(bdh);
315			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
316				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
317				/*
318				 * If userland has BLKPG_RESIZE_PARTITION,
319				 * then it should have updated the partition
320				 * table already. We can detect this by
321				 * comparing our current physical size
322				 * with that of the device. If they are
323				 * the same, then we must not have
324				 * BLKPG_RESIZE_PARTITION or it failed to
325				 * update the partition table online. We
326				 * fallback to rescanning the partition
327				 * table from the kernel below. However,
328				 * if the capacity already reflects the
329				 * updated partition, then we skip
330				 * rescanning the partition table here.
331				 */
332				if (v->vdev_psize == bdev_capacity(bdev))
333					reread_part = B_TRUE;
334			}
335
336			vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
337		}
338
339		if (reread_part) {
340			bdh = vdev_blkdev_get_by_path(disk_name, smode,
341			    zfs_vdev_holder);
342			if (!BDH_IS_ERR(bdh)) {
343				int error =
344				    vdev_bdev_reread_part(BDH_BDEV(bdh));
345				vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
346				if (error == 0) {
347					timeout = MSEC2NSEC(
348					    zfs_vdev_open_timeout_ms * 2);
349				}
350			}
351		}
352	} else {
353		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
354
355		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
356		rw_enter(&vd->vd_lock, RW_WRITER);
357	}
358
359	/*
360	 * Devices are always opened by the path provided at configuration
361	 * time.  This means that if the provided path is a udev by-id path
362	 * then drives may be re-cabled without an issue.  If the provided
363	 * path is a udev by-path path, then the physical location information
364	 * will be preserved.  This can be critical for more complicated
365	 * configurations where drives are located in specific physical
366	 * locations to maximize the systems tolerance to component failure.
367	 *
368	 * Alternatively, you can provide your own udev rule to flexibly map
369	 * the drives as you see fit.  It is not advised that you use the
370	 * /dev/[hd]d devices which may be reordered due to probing order.
371	 * Devices in the wrong locations will be detected by the higher
372	 * level vdev validation.
373	 *
374	 * The specified paths may be briefly removed and recreated in
375	 * response to udev events.  This should be exceptionally unlikely
376	 * because the zpool command makes every effort to verify these paths
377	 * have already settled prior to reaching this point.  Therefore,
378	 * a ENOENT failure at this point is highly likely to be transient
379	 * and it is reasonable to sleep and retry before giving up.  In
380	 * practice delays have been observed to be on the order of 100ms.
381	 *
382	 * When ERESTARTSYS is returned it indicates the block device is
383	 * a zvol which could not be opened due to the deadlock detection
384	 * logic in zvol_open().  Extend the timeout and retry the open
385	 * subsequent attempts are expected to eventually succeed.
386	 */
387	hrtime_t start = gethrtime();
388	bdh = BDH_ERR_PTR(-ENXIO);
389	while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
390		bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
391		    zfs_vdev_holder);
392		if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
393			/*
394			 * There is no point of waiting since device is removed
395			 * explicitly
396			 */
397			if (v->vdev_removed)
398				break;
399
400			schedule_timeout_interruptible(MSEC_TO_TICK(10));
401		} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
402			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
403			continue;
404		} else if (BDH_IS_ERR(bdh)) {
405			break;
406		}
407	}
408
409	if (BDH_IS_ERR(bdh)) {
410		int error = -BDH_PTR_ERR(bdh);
411		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
412		    (u_longlong_t)(gethrtime() - start),
413		    (u_longlong_t)timeout);
414		vd->vd_bdh = NULL;
415		v->vdev_tsd = vd;
416		rw_exit(&vd->vd_lock);
417		return (SET_ERROR(error));
418	} else {
419		vd->vd_bdh = bdh;
420		v->vdev_tsd = vd;
421		rw_exit(&vd->vd_lock);
422	}
423
424	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
425
426	/*  Determine the physical block size */
427	int physical_block_size = bdev_physical_block_size(bdev);
428
429	/*  Determine the logical block size */
430	int logical_block_size = bdev_logical_block_size(bdev);
431
432	/*
433	 * If the device has a write cache, clear the nowritecache flag,
434	 * so that we start issuing flush requests again.
435	 */
436	v->vdev_nowritecache = !zfs_bdev_has_write_cache(bdev);
437
438	/* Set when device reports it supports TRIM. */
439	v->vdev_has_trim = bdev_discard_supported(bdev);
440
441	/* Set when device reports it supports secure TRIM. */
442	v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
443
444	/* Inform the ZIO pipeline that we are non-rotational */
445	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
446
447	/* Physical volume size in bytes for the partition */
448	*psize = bdev_capacity(bdev);
449
450	/* Physical volume size in bytes including possible expansion space */
451	*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
452
453	/* Based on the minimum sector size set the block size */
454	*physical_ashift = highbit64(MAX(physical_block_size,
455	    SPA_MINBLOCKSIZE)) - 1;
456
457	*logical_ashift = highbit64(MAX(logical_block_size,
458	    SPA_MINBLOCKSIZE)) - 1;
459
460	return (0);
461}
462
463static void
464vdev_disk_close(vdev_t *v)
465{
466	vdev_disk_t *vd = v->vdev_tsd;
467
468	if (v->vdev_reopening || vd == NULL)
469		return;
470
471	if (vd->vd_bdh != NULL)
472		vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
473		    zfs_vdev_holder);
474
475	rw_destroy(&vd->vd_lock);
476	kmem_free(vd, sizeof (vdev_disk_t));
477	v->vdev_tsd = NULL;
478}
479
480static inline void
481vdev_submit_bio_impl(struct bio *bio)
482{
483#ifdef HAVE_1ARG_SUBMIT_BIO
484	(void) submit_bio(bio);
485#else
486	(void) submit_bio(bio_data_dir(bio), bio);
487#endif
488}
489
490/*
491 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
492 * replace it with preempt_schedule under the following condition:
493 */
494#if defined(CONFIG_ARM64) && \
495    defined(CONFIG_PREEMPTION) && \
496    defined(CONFIG_BLK_CGROUP)
497#define	preempt_schedule_notrace(x) preempt_schedule(x)
498#endif
499
500/*
501 * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
502 * as an argument removing the need to set it with bio_set_dev().  This
503 * removes the need for all of the following compatibility code.
504 */
505#if !defined(HAVE_BIO_ALLOC_4ARG)
506
507#ifdef HAVE_BIO_SET_DEV
508#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
509/*
510 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
511 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
512 * As a side effect the function was converted to GPL-only.  Define our
513 * own version when needed which uses rcu_read_lock_sched().
514 *
515 * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
516 * part, moving blkg_tryget into the private one. Define our own version.
517 */
518#if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
519static inline bool
520vdev_blkg_tryget(struct blkcg_gq *blkg)
521{
522	struct percpu_ref *ref = &blkg->refcnt;
523	unsigned long __percpu *count;
524	bool rc;
525
526	rcu_read_lock_sched();
527
528	if (__ref_is_percpu(ref, &count)) {
529		this_cpu_inc(*count);
530		rc = true;
531	} else {
532#ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
533		rc = atomic_long_inc_not_zero(&ref->data->count);
534#else
535		rc = atomic_long_inc_not_zero(&ref->count);
536#endif
537	}
538
539	rcu_read_unlock_sched();
540
541	return (rc);
542}
543#else
544#define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
545#endif
546#ifdef HAVE_BIO_SET_DEV_MACRO
547/*
548 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
549 * GPL-only bio_associate_blkg() symbol thus inadvertently converting
550 * the entire macro.  Provide a minimal version which always assigns the
551 * request queue's root_blkg to the bio.
552 */
553static inline void
554vdev_bio_associate_blkg(struct bio *bio)
555{
556#if defined(HAVE_BIO_BDEV_DISK)
557	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
558#else
559	struct request_queue *q = bio->bi_disk->queue;
560#endif
561
562	ASSERT3P(q, !=, NULL);
563	ASSERT3P(bio->bi_blkg, ==, NULL);
564
565	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
566		bio->bi_blkg = q->root_blkg;
567}
568
569#define	bio_associate_blkg vdev_bio_associate_blkg
570#else
571static inline void
572vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
573{
574#if defined(HAVE_BIO_BDEV_DISK)
575	struct request_queue *q = bdev->bd_disk->queue;
576#else
577	struct request_queue *q = bio->bi_disk->queue;
578#endif
579	bio_clear_flag(bio, BIO_REMAPPED);
580	if (bio->bi_bdev != bdev)
581		bio_clear_flag(bio, BIO_THROTTLED);
582	bio->bi_bdev = bdev;
583
584	ASSERT3P(q, !=, NULL);
585	ASSERT3P(bio->bi_blkg, ==, NULL);
586
587	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
588		bio->bi_blkg = q->root_blkg;
589}
590#define	bio_set_dev		vdev_bio_set_dev
591#endif
592#endif
593#else
594/*
595 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
596 */
597static inline void
598bio_set_dev(struct bio *bio, struct block_device *bdev)
599{
600	bio->bi_bdev = bdev;
601}
602#endif /* HAVE_BIO_SET_DEV */
603#endif /* !HAVE_BIO_ALLOC_4ARG */
604
605static inline void
606vdev_submit_bio(struct bio *bio)
607{
608	struct bio_list *bio_list = current->bio_list;
609	current->bio_list = NULL;
610	vdev_submit_bio_impl(bio);
611	current->bio_list = bio_list;
612}
613
614static inline struct bio *
615vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
616    unsigned short nr_vecs)
617{
618	struct bio *bio;
619
620#ifdef HAVE_BIO_ALLOC_4ARG
621	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
622#else
623	bio = bio_alloc(gfp_mask, nr_vecs);
624	if (likely(bio != NULL))
625		bio_set_dev(bio, bdev);
626#endif
627
628	return (bio);
629}
630
631static inline uint_t
632vdev_bio_max_segs(struct block_device *bdev)
633{
634	/*
635	 * Smallest of the device max segs and the tuneable max segs. Minimum
636	 * 4, so there's room to finish split pages if they come up.
637	 */
638	const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
639	const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
640	    MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
641	const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
642
643#ifdef HAVE_BIO_MAX_SEGS
644	return (bio_max_segs(max_segs));
645#else
646	return (MIN(max_segs, BIO_MAX_PAGES));
647#endif
648}
649
650static inline uint_t
651vdev_bio_max_bytes(struct block_device *bdev)
652{
653	return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
654}
655
656
657/*
658 * Virtual block IO object (VBIO)
659 *
660 * Linux block IO (BIO) objects have a limit on how many data segments (pages)
661 * they can hold. Depending on how they're allocated and structured, a large
662 * ZIO can require more than one BIO to be submitted to the kernel, which then
663 * all have to complete before we can return the completed ZIO back to ZFS.
664 *
665 * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
666 * translate a ZIO down into the kernel block layer and back again.
667 *
668 * Note that these are only used for data ZIOs (read/write). Meta-operations
669 * (flush/trim) don't need multiple BIOs and so can just make the call
670 * directly.
671 */
672typedef struct {
673	zio_t		*vbio_zio;	/* parent zio */
674
675	struct block_device *vbio_bdev;	/* blockdev to submit bios to */
676
677	abd_t		*vbio_abd;	/* abd carrying borrowed linear buf */
678
679	uint_t		vbio_max_segs;	/* max segs per bio */
680
681	uint_t		vbio_max_bytes;	/* max bytes per bio */
682	uint_t		vbio_lbs_mask;	/* logical block size mask */
683
684	uint64_t	vbio_offset;	/* start offset of next bio */
685
686	struct bio	*vbio_bio;	/* pointer to the current bio */
687	int		vbio_flags;	/* bio flags */
688} vbio_t;
689
690static vbio_t *
691vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
692{
693	vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
694
695	vbio->vbio_zio = zio;
696	vbio->vbio_bdev = bdev;
697	vbio->vbio_abd = NULL;
698	vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
699	vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
700	vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
701	vbio->vbio_offset = zio->io_offset;
702	vbio->vbio_bio = NULL;
703	vbio->vbio_flags = flags;
704
705	return (vbio);
706}
707
708BIO_END_IO_PROTO(vbio_completion, bio, error);
709
710static int
711vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
712{
713	struct bio *bio = vbio->vbio_bio;
714	uint_t ssize;
715
716	while (size > 0) {
717		if (bio == NULL) {
718			/* New BIO, allocate and set up */
719			bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
720			    vbio->vbio_max_segs);
721			VERIFY(bio);
722
723			BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
724			bio_set_op_attrs(bio,
725			    vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
726			    WRITE : READ, vbio->vbio_flags);
727
728			if (vbio->vbio_bio) {
729				bio_chain(vbio->vbio_bio, bio);
730				vdev_submit_bio(vbio->vbio_bio);
731			}
732			vbio->vbio_bio = bio;
733		}
734
735		/*
736		 * Only load as much of the current page data as will fit in
737		 * the space left in the BIO, respecting lbs alignment. Older
738		 * kernels will error if we try to overfill the BIO, while
739		 * newer ones will accept it and split the BIO. This ensures
740		 * everything works on older kernels, and avoids an additional
741		 * overhead on the new.
742		 */
743		ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
744		    vbio->vbio_lbs_mask);
745		if (ssize > 0 &&
746		    bio_add_page(bio, page, ssize, offset) == ssize) {
747			/* Accepted, adjust and load any remaining. */
748			size -= ssize;
749			offset += ssize;
750			continue;
751		}
752
753		/* No room, set up for a new BIO and loop */
754		vbio->vbio_offset += BIO_BI_SIZE(bio);
755
756		/* Signal new BIO allocation wanted */
757		bio = NULL;
758	}
759
760	return (0);
761}
762
763/* Iterator callback to submit ABD pages to the vbio. */
764static int
765vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
766{
767	vbio_t *vbio = priv;
768	return (vbio_add_page(vbio, page, len, off));
769}
770
771/* Create some BIOs, fill them with data and submit them */
772static void
773vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
774{
775	/*
776	 * We plug so we can submit the BIOs as we go and only unplug them when
777	 * they are fully created and submitted. This is important; if we don't
778	 * plug, then the kernel may start executing earlier BIOs while we're
779	 * still creating and executing later ones, and if the device goes
780	 * away while that's happening, older kernels can get confused and
781	 * trample memory.
782	 */
783	struct blk_plug plug;
784	blk_start_plug(&plug);
785
786	(void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
787	ASSERT(vbio->vbio_bio);
788
789	vbio->vbio_bio->bi_end_io = vbio_completion;
790	vbio->vbio_bio->bi_private = vbio;
791
792	/*
793	 * Once submitted, vbio_bio now owns vbio (through bi_private) and we
794	 * can't touch it again. The bio may complete and vbio_completion() be
795	 * called and free the vbio before this task is run again, so we must
796	 * consider it invalid from this point.
797	 */
798	vdev_submit_bio(vbio->vbio_bio);
799
800	blk_finish_plug(&plug);
801}
802
803/* IO completion callback */
804BIO_END_IO_PROTO(vbio_completion, bio, error)
805{
806	vbio_t *vbio = bio->bi_private;
807	zio_t *zio = vbio->vbio_zio;
808
809	ASSERT(zio);
810
811	/* Capture and log any errors */
812#ifdef HAVE_1ARG_BIO_END_IO_T
813	zio->io_error = BIO_END_IO_ERROR(bio);
814#else
815	zio->io_error = 0;
816	if (error)
817		zio->io_error = -(error);
818	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
819		zio->io_error = EIO;
820#endif
821	ASSERT3U(zio->io_error, >=, 0);
822
823	if (zio->io_error)
824		vdev_disk_error(zio);
825
826	/* Return the BIO to the kernel */
827	bio_put(bio);
828
829	/*
830	 * If we copied the ABD before issuing it, clean up and return the copy
831	 * to the ADB, with changes if appropriate.
832	 */
833	if (vbio->vbio_abd != NULL) {
834		void *buf = abd_to_buf(vbio->vbio_abd);
835		abd_free(vbio->vbio_abd);
836		vbio->vbio_abd = NULL;
837
838		if (zio->io_type == ZIO_TYPE_READ)
839			abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
840		else
841			abd_return_buf(zio->io_abd, buf, zio->io_size);
842	}
843
844	/* Final cleanup */
845	kmem_free(vbio, sizeof (vbio_t));
846
847	/* All done, submit for processing */
848	zio_delay_interrupt(zio);
849}
850
851/*
852 * Iterator callback to count ABD pages and check their size & alignment.
853 *
854 * On Linux, each BIO segment can take a page pointer, and an offset+length of
855 * the data within that page. A page can be arbitrarily large ("compound"
856 * pages) but we still have to ensure the data portion is correctly sized and
857 * aligned to the logical block size, to ensure that if the kernel wants to
858 * split the BIO, the two halves will still be properly aligned.
859 *
860 * NOTE: if you change this function, change the copy in
861 * tests/zfs-tests/tests/functional/vdev_disk/page_alignment.c, and add test
862 * data there to validate the change you're making.
863 *
864 */
865typedef struct {
866	uint_t  bmask;
867	uint_t  npages;
868	uint_t  end;
869} vdev_disk_check_pages_t;
870
871static int
872vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
873{
874	(void) page;
875	vdev_disk_check_pages_t *s = priv;
876
877	/*
878	 * If we didn't finish on a block size boundary last time, then there
879	 * would be a gap if we tried to use this ABD as-is, so abort.
880	 */
881	if (s->end != 0)
882		return (1);
883
884	/*
885	 * Note if we're taking less than a full block, so we can check it
886	 * above on the next call.
887	 */
888	s->end = (off+len) & s->bmask;
889
890	/* All blocks after the first must start on a block size boundary. */
891	if (s->npages != 0 && (off & s->bmask) != 0)
892		return (1);
893
894	s->npages++;
895	return (0);
896}
897
898/*
899 * Check if we can submit the pages in this ABD to the kernel as-is. Returns
900 * the number of pages, or 0 if it can't be submitted like this.
901 */
902static boolean_t
903vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
904{
905	vdev_disk_check_pages_t s = {
906	    .bmask = bdev_logical_block_size(bdev)-1,
907	    .npages = 0,
908	    .end = 0,
909	};
910
911	if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
912		return (B_FALSE);
913
914	return (B_TRUE);
915}
916
917static int
918vdev_disk_io_rw(zio_t *zio)
919{
920	vdev_t *v = zio->io_vd;
921	vdev_disk_t *vd = v->vdev_tsd;
922	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
923	int flags = 0;
924
925	/*
926	 * Accessing outside the block device is never allowed.
927	 */
928	if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) {
929		vdev_dbgmsg(zio->io_vd,
930		    "Illegal access %llu size %llu, device size %llu",
931		    (u_longlong_t)zio->io_offset,
932		    (u_longlong_t)zio->io_size,
933		    (u_longlong_t)i_size_read(bdev->bd_inode));
934		return (SET_ERROR(EIO));
935	}
936
937	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
938	    v->vdev_failfast == B_TRUE) {
939		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
940		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
941	}
942
943	/*
944	 * Check alignment of the incoming ABD. If any part of it would require
945	 * submitting a page that is not aligned to the logical block size,
946	 * then we take a copy into a linear buffer and submit that instead.
947	 * This should be impossible on a 512b LBS, and fairly rare on 4K,
948	 * usually requiring abnormally-small data blocks (eg gang blocks)
949	 * mixed into the same ABD as larger ones (eg aggregated).
950	 */
951	abd_t *abd = zio->io_abd;
952	if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
953		void *buf;
954		if (zio->io_type == ZIO_TYPE_READ)
955			buf = abd_borrow_buf(zio->io_abd, zio->io_size);
956		else
957			buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
958
959		/*
960		 * Wrap the copy in an abd_t, so we can use the same iterators
961		 * to count and fill the vbio later.
962		 */
963		abd = abd_get_from_buf(buf, zio->io_size);
964
965		/*
966		 * False here would mean the borrowed copy has an invalid
967		 * alignment too, which would mean we've somehow been passed a
968		 * linear ABD with an interior page that has a non-zero offset
969		 * or a size not a multiple of PAGE_SIZE. This is not possible.
970		 * It would mean either zio_buf_alloc() or its underlying
971		 * allocators have done something extremely strange, or our
972		 * math in vdev_disk_check_pages() is wrong. In either case,
973		 * something in seriously wrong and its not safe to continue.
974		 */
975		VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
976	}
977
978	/* Allocate vbio, with a pointer to the borrowed ABD if necessary */
979	vbio_t *vbio = vbio_alloc(zio, bdev, flags);
980	if (abd != zio->io_abd)
981		vbio->vbio_abd = abd;
982
983	/* Fill it with data pages and submit it to the kernel */
984	vbio_submit(vbio, abd, zio->io_size);
985	return (0);
986}
987
988/* ========== */
989
990/*
991 * This is the classic, battle-tested BIO submission code. Until we're totally
992 * sure that the new code is safe and correct in all cases, this will remain
993 * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
994 * load time.
995 *
996 * These functions have been renamed to vdev_classic_* to make it clear what
997 * they belong to, but their implementations are unchanged.
998 */
999
1000/*
1001 * Virtual device vector for disks.
1002 */
1003typedef struct dio_request {
1004	zio_t			*dr_zio;	/* Parent ZIO */
1005	atomic_t		dr_ref;		/* References */
1006	int			dr_error;	/* Bio error */
1007	int			dr_bio_count;	/* Count of bio's */
1008	struct bio		*dr_bio[];	/* Attached bio's */
1009} dio_request_t;
1010
1011static dio_request_t *
1012vdev_classic_dio_alloc(int bio_count)
1013{
1014	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
1015	    sizeof (struct bio *) * bio_count, KM_SLEEP);
1016	atomic_set(&dr->dr_ref, 0);
1017	dr->dr_bio_count = bio_count;
1018	dr->dr_error = 0;
1019
1020	for (int i = 0; i < dr->dr_bio_count; i++)
1021		dr->dr_bio[i] = NULL;
1022
1023	return (dr);
1024}
1025
1026static void
1027vdev_classic_dio_free(dio_request_t *dr)
1028{
1029	int i;
1030
1031	for (i = 0; i < dr->dr_bio_count; i++)
1032		if (dr->dr_bio[i])
1033			bio_put(dr->dr_bio[i]);
1034
1035	kmem_free(dr, sizeof (dio_request_t) +
1036	    sizeof (struct bio *) * dr->dr_bio_count);
1037}
1038
1039static void
1040vdev_classic_dio_get(dio_request_t *dr)
1041{
1042	atomic_inc(&dr->dr_ref);
1043}
1044
1045static void
1046vdev_classic_dio_put(dio_request_t *dr)
1047{
1048	int rc = atomic_dec_return(&dr->dr_ref);
1049
1050	/*
1051	 * Free the dio_request when the last reference is dropped and
1052	 * ensure zio_interpret is called only once with the correct zio
1053	 */
1054	if (rc == 0) {
1055		zio_t *zio = dr->dr_zio;
1056		int error = dr->dr_error;
1057
1058		vdev_classic_dio_free(dr);
1059
1060		if (zio) {
1061			zio->io_error = error;
1062			ASSERT3S(zio->io_error, >=, 0);
1063			if (zio->io_error)
1064				vdev_disk_error(zio);
1065
1066			zio_delay_interrupt(zio);
1067		}
1068	}
1069}
1070
1071BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error)
1072{
1073	dio_request_t *dr = bio->bi_private;
1074
1075	if (dr->dr_error == 0) {
1076#ifdef HAVE_1ARG_BIO_END_IO_T
1077		dr->dr_error = BIO_END_IO_ERROR(bio);
1078#else
1079		if (error)
1080			dr->dr_error = -(error);
1081		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1082			dr->dr_error = EIO;
1083#endif
1084	}
1085
1086	/* Drop reference acquired by vdev_classic_physio */
1087	vdev_classic_dio_put(dr);
1088}
1089
1090static inline unsigned int
1091vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
1092{
1093	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
1094	    bio_size, abd_offset);
1095
1096#ifdef HAVE_BIO_MAX_SEGS
1097	return (bio_max_segs(nr_segs));
1098#else
1099	return (MIN(nr_segs, BIO_MAX_PAGES));
1100#endif
1101}
1102
1103static int
1104vdev_classic_physio(zio_t *zio)
1105{
1106	vdev_t *v = zio->io_vd;
1107	vdev_disk_t *vd = v->vdev_tsd;
1108	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
1109	size_t io_size = zio->io_size;
1110	uint64_t io_offset = zio->io_offset;
1111	int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
1112	int flags = 0;
1113
1114	dio_request_t *dr;
1115	uint64_t abd_offset;
1116	uint64_t bio_offset;
1117	int bio_size;
1118	int bio_count = 16;
1119	int error = 0;
1120	struct blk_plug plug;
1121	unsigned short nr_vecs;
1122
1123	/*
1124	 * Accessing outside the block device is never allowed.
1125	 */
1126	if (io_offset + io_size > bdev->bd_inode->i_size) {
1127		vdev_dbgmsg(zio->io_vd,
1128		    "Illegal access %llu size %llu, device size %llu",
1129		    (u_longlong_t)io_offset,
1130		    (u_longlong_t)io_size,
1131		    (u_longlong_t)i_size_read(bdev->bd_inode));
1132		return (SET_ERROR(EIO));
1133	}
1134
1135retry:
1136	dr = vdev_classic_dio_alloc(bio_count);
1137
1138	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
1139	    zio->io_vd->vdev_failfast == B_TRUE) {
1140		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
1141		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
1142	}
1143
1144	dr->dr_zio = zio;
1145
1146	/*
1147	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
1148	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
1149	 * can cover at least 128KB and at most 1MB.  When the required number
1150	 * of iovec's exceeds this, we are forced to break the IO in multiple
1151	 * bio's and wait for them all to complete.  This is likely if the
1152	 * recordsize property is increased beyond 1MB.  The default
1153	 * bio_count=16 should typically accommodate the maximum-size zio of
1154	 * 16MB.
1155	 */
1156
1157	abd_offset = 0;
1158	bio_offset = io_offset;
1159	bio_size = io_size;
1160	for (int i = 0; i <= dr->dr_bio_count; i++) {
1161
1162		/* Finished constructing bio's for given buffer */
1163		if (bio_size <= 0)
1164			break;
1165
1166		/*
1167		 * If additional bio's are required, we have to retry, but
1168		 * this should be rare - see the comment above.
1169		 */
1170		if (dr->dr_bio_count == i) {
1171			vdev_classic_dio_free(dr);
1172			bio_count *= 2;
1173			goto retry;
1174		}
1175
1176		nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
1177		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
1178		if (unlikely(dr->dr_bio[i] == NULL)) {
1179			vdev_classic_dio_free(dr);
1180			return (SET_ERROR(ENOMEM));
1181		}
1182
1183		/* Matching put called by vdev_classic_physio_completion */
1184		vdev_classic_dio_get(dr);
1185
1186		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
1187		dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
1188		dr->dr_bio[i]->bi_private = dr;
1189		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
1190
1191		/* Remaining size is returned to become the new size */
1192		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
1193		    bio_size, abd_offset);
1194
1195		/* Advance in buffer and construct another bio if needed */
1196		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1197		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1198	}
1199
1200	/* Extra reference to protect dio_request during vdev_submit_bio */
1201	vdev_classic_dio_get(dr);
1202
1203	if (dr->dr_bio_count > 1)
1204		blk_start_plug(&plug);
1205
1206	/* Submit all bio's associated with this dio */
1207	for (int i = 0; i < dr->dr_bio_count; i++) {
1208		if (dr->dr_bio[i])
1209			vdev_submit_bio(dr->dr_bio[i]);
1210	}
1211
1212	if (dr->dr_bio_count > 1)
1213		blk_finish_plug(&plug);
1214
1215	vdev_classic_dio_put(dr);
1216
1217	return (error);
1218}
1219
1220/* ========== */
1221
1222BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
1223{
1224	zio_t *zio = bio->bi_private;
1225#ifdef HAVE_1ARG_BIO_END_IO_T
1226	zio->io_error = BIO_END_IO_ERROR(bio);
1227#else
1228	zio->io_error = -error;
1229#endif
1230
1231	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
1232		zio->io_vd->vdev_nowritecache = B_TRUE;
1233
1234	bio_put(bio);
1235	ASSERT3S(zio->io_error, >=, 0);
1236	if (zio->io_error)
1237		vdev_disk_error(zio);
1238	zio_interrupt(zio);
1239}
1240
1241static int
1242vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
1243{
1244	struct request_queue *q;
1245	struct bio *bio;
1246
1247	q = bdev_get_queue(bdev);
1248	if (!q)
1249		return (SET_ERROR(ENXIO));
1250
1251	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
1252	if (unlikely(bio == NULL))
1253		return (SET_ERROR(ENOMEM));
1254
1255	bio->bi_end_io = vdev_disk_io_flush_completion;
1256	bio->bi_private = zio;
1257	bio_set_flush(bio);
1258	vdev_submit_bio(bio);
1259	invalidate_bdev(bdev);
1260
1261	return (0);
1262}
1263
1264BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
1265{
1266	zio_t *zio = bio->bi_private;
1267#ifdef HAVE_1ARG_BIO_END_IO_T
1268	zio->io_error = BIO_END_IO_ERROR(bio);
1269#else
1270	zio->io_error = -error;
1271#endif
1272	bio_put(bio);
1273	if (zio->io_error)
1274		vdev_disk_error(zio);
1275	zio_interrupt(zio);
1276}
1277
1278/*
1279 * Wrappers for the different secure erase and discard APIs. We use async
1280 * when available; in this case, *biop is set to the last bio in the chain.
1281 */
1282static int
1283vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector,
1284    sector_t nsect, struct bio **biop)
1285{
1286	*biop = NULL;
1287	int error;
1288
1289#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1290	error = blkdev_issue_secure_erase(BDH_BDEV(bdh),
1291	    sector, nsect, GFP_NOFS);
1292#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1293	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1294	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop);
1295#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1296	error = blkdev_issue_discard(BDH_BDEV(bdh),
1297	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE);
1298#else
1299#error "unsupported kernel"
1300#endif
1301
1302	return (error);
1303}
1304
1305static int
1306vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector,
1307    sector_t nsect, struct bio **biop)
1308{
1309	*biop = NULL;
1310	int error;
1311
1312#if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1313	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1314	    sector, nsect, GFP_NOFS, 0, biop);
1315#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
1316	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1317	    sector, nsect, GFP_NOFS, biop);
1318#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1319	error = blkdev_issue_discard(BDH_BDEV(bdh),
1320	    sector, nsect, GFP_NOFS, 0);
1321#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
1322	error = blkdev_issue_discard(BDH_BDEV(bdh),
1323	    sector, nsect, GFP_NOFS);
1324#else
1325#error "unsupported kernel"
1326#endif
1327
1328	return (error);
1329}
1330
1331/*
1332 * Entry point for TRIM ops. This calls the right wrapper for secure erase or
1333 * discard, and then does the appropriate finishing work for error vs success
1334 * and async vs sync.
1335 */
1336static int
1337vdev_disk_io_trim(zio_t *zio)
1338{
1339	int error;
1340	struct bio *bio;
1341
1342	zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh;
1343	sector_t sector = zio->io_offset >> 9;
1344	sector_t nsects = zio->io_size >> 9;
1345
1346	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
1347		error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio);
1348	else
1349		error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio);
1350
1351	if (error != 0)
1352		return (SET_ERROR(-error));
1353
1354	if (bio == NULL) {
1355		/*
1356		 * This was a synchronous op that completed successfully, so
1357		 * return it to ZFS immediately.
1358		 */
1359		zio_interrupt(zio);
1360	} else {
1361		/*
1362		 * This was an asynchronous op; set up completion callback and
1363		 * issue it.
1364		 */
1365		bio->bi_private = zio;
1366		bio->bi_end_io = vdev_disk_discard_end_io;
1367		vdev_submit_bio(bio);
1368	}
1369
1370	return (0);
1371}
1372
1373int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
1374
1375static void
1376vdev_disk_io_start(zio_t *zio)
1377{
1378	vdev_t *v = zio->io_vd;
1379	vdev_disk_t *vd = v->vdev_tsd;
1380	int error;
1381
1382	/*
1383	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
1384	 * Nothing to be done here but return failure.
1385	 */
1386	if (vd == NULL) {
1387		zio->io_error = ENXIO;
1388		zio_interrupt(zio);
1389		return;
1390	}
1391
1392	rw_enter(&vd->vd_lock, RW_READER);
1393
1394	/*
1395	 * If the vdev is closed, it's likely due to a failed reopen and is
1396	 * in the UNAVAIL state.  Nothing to be done here but return failure.
1397	 */
1398	if (vd->vd_bdh == NULL) {
1399		rw_exit(&vd->vd_lock);
1400		zio->io_error = ENXIO;
1401		zio_interrupt(zio);
1402		return;
1403	}
1404
1405	switch (zio->io_type) {
1406	case ZIO_TYPE_FLUSH:
1407
1408		if (!vdev_readable(v)) {
1409			/* Drive not there, can't flush */
1410			error = SET_ERROR(ENXIO);
1411		} else if (zfs_nocacheflush) {
1412			/* Flushing disabled by operator, declare success */
1413			error = 0;
1414		} else if (v->vdev_nowritecache) {
1415			/* This vdev not capable of flushing */
1416			error = SET_ERROR(ENOTSUP);
1417		} else {
1418			/*
1419			 * Issue the flush. If successful, the response will
1420			 * be handled in the completion callback, so we're done.
1421			 */
1422			error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
1423			if (error == 0) {
1424				rw_exit(&vd->vd_lock);
1425				return;
1426			}
1427		}
1428
1429		/* Couldn't issue the flush, so set the error and return it */
1430		rw_exit(&vd->vd_lock);
1431		zio->io_error = error;
1432		zio_execute(zio);
1433		return;
1434
1435	case ZIO_TYPE_TRIM:
1436		error = vdev_disk_io_trim(zio);
1437		rw_exit(&vd->vd_lock);
1438		if (error) {
1439			zio->io_error = error;
1440			zio_execute(zio);
1441		}
1442		return;
1443
1444	case ZIO_TYPE_READ:
1445	case ZIO_TYPE_WRITE:
1446		zio->io_target_timestamp = zio_handle_io_delay(zio);
1447		error = vdev_disk_io_rw_fn(zio);
1448		rw_exit(&vd->vd_lock);
1449		if (error) {
1450			zio->io_error = error;
1451			zio_interrupt(zio);
1452		}
1453		return;
1454
1455	default:
1456		/*
1457		 * Getting here means our parent vdev has made a very strange
1458		 * request of us, and shouldn't happen. Assert here to force a
1459		 * crash in dev builds, but in production return the IO
1460		 * unhandled. The pool will likely suspend anyway but that's
1461		 * nicer than crashing the kernel.
1462		 */
1463		ASSERT3S(zio->io_type, ==, -1);
1464
1465		rw_exit(&vd->vd_lock);
1466		zio->io_error = SET_ERROR(ENOTSUP);
1467		zio_interrupt(zio);
1468		return;
1469	}
1470
1471	__builtin_unreachable();
1472}
1473
1474static void
1475vdev_disk_io_done(zio_t *zio)
1476{
1477	/*
1478	 * If the device returned EIO, we revalidate the media.  If it is
1479	 * determined the media has changed this triggers the asynchronous
1480	 * removal of the device from the configuration.
1481	 */
1482	if (zio->io_error == EIO) {
1483		vdev_t *v = zio->io_vd;
1484		vdev_disk_t *vd = v->vdev_tsd;
1485
1486		if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
1487			invalidate_bdev(BDH_BDEV(vd->vd_bdh));
1488			v->vdev_remove_wanted = B_TRUE;
1489			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1490		}
1491	}
1492}
1493
1494static void
1495vdev_disk_hold(vdev_t *vd)
1496{
1497	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1498
1499	/* We must have a pathname, and it must be absolute. */
1500	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
1501		return;
1502
1503	/*
1504	 * Only prefetch path and devid info if the device has
1505	 * never been opened.
1506	 */
1507	if (vd->vdev_tsd != NULL)
1508		return;
1509
1510}
1511
1512static void
1513vdev_disk_rele(vdev_t *vd)
1514{
1515	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1516
1517	/* XXX: Implement me as a vnode rele for the device */
1518}
1519
1520/*
1521 * BIO submission method. See comment above about vdev_classic.
1522 * Set zfs_vdev_disk_classic=0 for new, =1 for classic
1523 */
1524static uint_t zfs_vdev_disk_classic = 0;	/* default new */
1525
1526/* Set submission function from module parameter */
1527static int
1528vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp)
1529{
1530	int err = param_set_uint(buf, kp);
1531	if (err < 0)
1532		return (SET_ERROR(err));
1533
1534	vdev_disk_io_rw_fn =
1535	    zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw;
1536
1537	printk(KERN_INFO "ZFS: forcing %s BIO submission\n",
1538	    zfs_vdev_disk_classic ? "classic" : "new");
1539
1540	return (0);
1541}
1542
1543/*
1544 * At first use vdev use, set the submission function from the default value if
1545 * it hasn't been set already.
1546 */
1547static int
1548vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
1549{
1550	(void) spa;
1551	(void) nv;
1552	(void) tsd;
1553
1554	if (vdev_disk_io_rw_fn == NULL)
1555		vdev_disk_io_rw_fn = zfs_vdev_disk_classic ?
1556		    vdev_classic_physio : vdev_disk_io_rw;
1557
1558	return (0);
1559}
1560
1561vdev_ops_t vdev_disk_ops = {
1562	.vdev_op_init = vdev_disk_init,
1563	.vdev_op_fini = NULL,
1564	.vdev_op_open = vdev_disk_open,
1565	.vdev_op_close = vdev_disk_close,
1566	.vdev_op_asize = vdev_default_asize,
1567	.vdev_op_min_asize = vdev_default_min_asize,
1568	.vdev_op_min_alloc = NULL,
1569	.vdev_op_io_start = vdev_disk_io_start,
1570	.vdev_op_io_done = vdev_disk_io_done,
1571	.vdev_op_state_change = NULL,
1572	.vdev_op_need_resilver = NULL,
1573	.vdev_op_hold = vdev_disk_hold,
1574	.vdev_op_rele = vdev_disk_rele,
1575	.vdev_op_remap = NULL,
1576	.vdev_op_xlate = vdev_default_xlate,
1577	.vdev_op_rebuild_asize = NULL,
1578	.vdev_op_metaslab_init = NULL,
1579	.vdev_op_config_generate = NULL,
1580	.vdev_op_nparity = NULL,
1581	.vdev_op_ndisks = NULL,
1582	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
1583	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
1584	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1585};
1586
1587/*
1588 * The zfs_vdev_scheduler module option has been deprecated. Setting this
1589 * value no longer has any effect.  It has not yet been entirely removed
1590 * to allow the module to be loaded if this option is specified in the
1591 * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
1592 */
1593static int
1594param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1595{
1596	int error = param_set_charp(val, kp);
1597	if (error == 0) {
1598		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1599		    "is not supported.\n");
1600	}
1601
1602	return (error);
1603}
1604
1605static const char *zfs_vdev_scheduler = "unused";
1606module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1607    param_get_charp, &zfs_vdev_scheduler, 0644);
1608MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1609
1610int
1611param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1612{
1613	uint_t val;
1614	int error;
1615
1616	error = kstrtouint(buf, 0, &val);
1617	if (error < 0)
1618		return (SET_ERROR(error));
1619
1620	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1621		return (SET_ERROR(-EINVAL));
1622
1623	error = param_set_uint(buf, kp);
1624	if (error < 0)
1625		return (SET_ERROR(error));
1626
1627	return (0);
1628}
1629
1630int
1631param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1632{
1633	uint_t val;
1634	int error;
1635
1636	error = kstrtouint(buf, 0, &val);
1637	if (error < 0)
1638		return (SET_ERROR(error));
1639
1640	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1641		return (SET_ERROR(-EINVAL));
1642
1643	error = param_set_uint(buf, kp);
1644	if (error < 0)
1645		return (SET_ERROR(error));
1646
1647	return (0);
1648}
1649
1650ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1651	"Timeout before determining that a device is missing");
1652
1653ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1654	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1655
1656ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
1657	"Maximum number of data segments to add to an IO request (min 4)");
1658
1659ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic,
1660    vdev_disk_param_set_classic, param_get_uint, ZMOD_RD,
1661	"Use classic BIO submission method");
1662