155714Skris/*
255714Skris * CDDL HEADER START
355714Skris *
455714Skris * The contents of this file are subject to the terms of the
555714Skris * Common Development and Distribution License (the "License").
655714Skris * You may not use this file except in compliance with the License.
755714Skris *
8280304Sjkim * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
955714Skris * or https://opensource.org/licenses/CDDL-1.0.
1055714Skris * See the License for the specific language governing permissions
1155714Skris * and limitations under the License.
1255714Skris *
1355714Skris * When distributing Covered Code, include this CDDL HEADER in each
1455714Skris * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15280304Sjkim * If applicable, add the following below this CDDL HEADER, with the
1655714Skris * fields enclosed by brackets "[]" replaced with your own identifying
1755714Skris * information: Portions Copyright [yyyy] [name of copyright owner]
1855714Skris *
1955714Skris * CDDL HEADER END
2055714Skris */
2155714Skris/*
22280304Sjkim * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
2355714Skris * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
2455714Skris * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
2555714Skris */
2655714Skris
2755714Skris/*
2855714Skris * ZFS control directory (a.k.a. ".zfs")
2955714Skris *
3055714Skris * This directory provides a common location for all ZFS meta-objects.
3155714Skris * Currently, this is only the 'snapshot' directory, but this may expand in the
3255714Skris * future.  The elements are built using the GFS primitives, as the hierarchy
3355714Skris * does not actually exist on disk.
3455714Skris *
3555714Skris * For 'snapshot', we don't want to have all snapshots always mounted, because
3655714Skris * this would take up a huge amount of space in /etc/mnttab.  We have three
37280304Sjkim * types of objects:
3855714Skris *
3955714Skris * 	ctldir ------> snapshotdir -------> snapshot
40280304Sjkim *                                             |
4155714Skris *                                             |
4255714Skris *                                             V
4355714Skris *                                         mounted fs
4455714Skris *
4555714Skris * The 'snapshot' node contains just enough information to lookup '..' and act
4655714Skris * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
4755714Skris * perform an automount of the underlying filesystem and return the
4855714Skris * corresponding vnode.
4955714Skris *
5055714Skris * All mounts are handled automatically by the kernel, but unmounts are
5155714Skris * (currently) handled from user land.  The main reason is that there is no
52280304Sjkim * reliable way to auto-unmount the filesystem when it's "no longer in use".
5355714Skris * When the user unmounts a filesystem, we call zfsctl_unmount(), which
5455714Skris * unmounts any snapshots within the snapshot directory.
5555714Skris *
5655714Skris * The '.zfs', '.zfs/snapshot', and all directories created under
5755714Skris * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
5855714Skris * share the same vfs_t as the head filesystem (what '.zfs' lives under).
5955714Skris *
6055714Skris * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
6155714Skris * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
6255714Skris * However, vnodes within these mounted on file systems have their v_vfsp
6355714Skris * fields set to the head filesystem to make NFS happy (see
6455714Skris * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
6555714Skris * so that it cannot be freed until all snapshots have been unmounted.
6655714Skris */
6755714Skris
6855714Skris#include <sys/types.h>
69109998Smarkm#include <sys/param.h>
7055714Skris#include <sys/libkern.h>
7155714Skris#include <sys/dirent.h>
72280304Sjkim#include <sys/zfs_context.h>
73280304Sjkim#include <sys/zfs_ctldir.h>
74280304Sjkim#include <sys/zfs_ioctl.h>
75280304Sjkim#include <sys/zfs_vfsops.h>
76280304Sjkim#include <sys/namei.h>
77280304Sjkim#include <sys/stat.h>
78280304Sjkim#include <sys/dmu.h>
79280304Sjkim#include <sys/dsl_dataset.h>
80280304Sjkim#include <sys/dsl_destroy.h>
81280304Sjkim#include <sys/dsl_deleg.h>
82280304Sjkim#include <sys/mount.h>
83280304Sjkim#include <sys/zap.h>
84280304Sjkim#include <sys/sysproto.h>
8555714Skris
8655714Skris#include "zfs_namecheck.h"
87280304Sjkim
88280304Sjkim#include <sys/kernel.h>
89280304Sjkim#include <sys/ccompat.h>
9055714Skris
91280304Sjkim/* Common access mode for all virtual directories under the ctldir */
92280304Sjkimconst uint16_t zfsctl_ctldir_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
93280304Sjkim    S_IROTH | S_IXOTH;
94280304Sjkim
95280304Sjkim/*
9655714Skris * "Synthetic" filesystem implementation.
97280304Sjkim */
98280304Sjkim
99280304Sjkim/*
100280304Sjkim * Assert that A implies B.
101280304Sjkim */
102280304Sjkim#define	KASSERT_IMPLY(A, B, msg)	KASSERT(!(A) || (B), (msg));
103280304Sjkim
104109998Smarkmstatic MALLOC_DEFINE(M_SFSNODES, "sfs_nodes", "synthetic-fs nodes");
105280304Sjkim
106280304Sjkimtypedef struct sfs_node {
107280304Sjkim	char		sn_name[ZFS_MAX_DATASET_NAME_LEN];
108280304Sjkim	uint64_t	sn_parent_id;
109109998Smarkm	uint64_t	sn_id;
110280304Sjkim} sfs_node_t;
111280304Sjkim
112280304Sjkim/*
113280304Sjkim * Check the parent's ID as well as the node's to account for a chance
114280304Sjkim * that IDs originating from different domains (snapshot IDs, artificial
115280304Sjkim * IDs, znode IDs) may clash.
116280304Sjkim */
117280304Sjkimstatic int
118280304Sjkimsfs_compare_ids(struct vnode *vp, void *arg)
119280304Sjkim{
120280304Sjkim	sfs_node_t *n1 = vp->v_data;
121280304Sjkim	sfs_node_t *n2 = arg;
122280304Sjkim	bool equal;
123280304Sjkim
12455714Skris	equal = n1->sn_id == n2->sn_id &&
12555714Skris	    n1->sn_parent_id == n2->sn_parent_id;
126280304Sjkim
127280304Sjkim	/* Zero means equality. */
128280304Sjkim	return (!equal);
129280304Sjkim}
130280304Sjkim
13155714Skrisstatic int
132280304Sjkimsfs_vnode_get(const struct mount *mp, int flags, uint64_t parent_id,
133280304Sjkim    uint64_t id, struct vnode **vpp)
134280304Sjkim{
13555714Skris	sfs_node_t search;
136280304Sjkim	int err;
137280304Sjkim
138280304Sjkim	search.sn_id = id;
139280304Sjkim	search.sn_parent_id = parent_id;
14055714Skris	err = vfs_hash_get(mp, (uint32_t)id, flags, curthread, vpp,
141280304Sjkim	    sfs_compare_ids, &search);
142280304Sjkim	return (err);
143280304Sjkim}
144280304Sjkim
145280304Sjkimstatic int
146280304Sjkimsfs_vnode_insert(struct vnode *vp, int flags, uint64_t parent_id,
147280304Sjkim    uint64_t id, struct vnode **vpp)
148280304Sjkim{
149280304Sjkim	int err;
150280304Sjkim
151280304Sjkim	KASSERT(vp->v_data != NULL, ("sfs_vnode_insert with NULL v_data"));
152280304Sjkim	err = vfs_hash_insert(vp, (uint32_t)id, flags, curthread, vpp,
153280304Sjkim	    sfs_compare_ids, vp->v_data);
154280304Sjkim	return (err);
155280304Sjkim}
156280304Sjkim
157280304Sjkimstatic void
158280304Sjkimsfs_vnode_remove(struct vnode *vp)
159280304Sjkim{
160280304Sjkim	vfs_hash_remove(vp);
161280304Sjkim}
162280304Sjkim
163280304Sjkimtypedef void sfs_vnode_setup_fn(vnode_t *vp, void *arg);
164280304Sjkim
165280304Sjkimstatic int
166280304Sjkimsfs_vgetx(struct mount *mp, int flags, uint64_t parent_id, uint64_t id,
167280304Sjkim    const char *tag, struct vop_vector *vops,
168280304Sjkim    sfs_vnode_setup_fn setup, void *arg,
169280304Sjkim    struct vnode **vpp)
170280304Sjkim{
171280304Sjkim	struct vnode *vp;
172280304Sjkim	int error;
173280304Sjkim
174280304Sjkim	error = sfs_vnode_get(mp, flags, parent_id, id, vpp);
175280304Sjkim	if (error != 0 || *vpp != NULL) {
176280304Sjkim		KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
177280304Sjkim		    "sfs vnode with no data");
178280304Sjkim		return (error);
179280304Sjkim	}
180280304Sjkim
181280304Sjkim	/* Allocate a new vnode/inode. */
182280304Sjkim	error = getnewvnode(tag, mp, vops, &vp);
18355714Skris	if (error != 0) {
18455714Skris		*vpp = NULL;
185280304Sjkim		return (error);
186280304Sjkim	}
187280304Sjkim
188280304Sjkim	/*
189280304Sjkim	 * Exclusively lock the vnode vnode while it's being constructed.
19055714Skris	 */
191280304Sjkim	lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
192280304Sjkim	error = insmntque(vp, mp);
193280304Sjkim	if (error != 0) {
19455714Skris		*vpp = NULL;
195280304Sjkim		return (error);
196280304Sjkim	}
197280304Sjkim
198280304Sjkim	setup(vp, arg);
19955714Skris
200280304Sjkim	error = sfs_vnode_insert(vp, flags, parent_id, id, vpp);
201280304Sjkim	if (error != 0 || *vpp != NULL) {
202280304Sjkim		KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
203280304Sjkim		    "sfs vnode with no data");
204280304Sjkim		return (error);
205280304Sjkim	}
206280304Sjkim
207280304Sjkim#if __FreeBSD_version >= 1400077
208280304Sjkim	vn_set_state(vp, VSTATE_CONSTRUCTED);
209280304Sjkim#endif
210280304Sjkim
211280304Sjkim	*vpp = vp;
212280304Sjkim	return (0);
213280304Sjkim}
214280304Sjkim
215280304Sjkimstatic void
216280304Sjkimsfs_print_node(sfs_node_t *node)
217280304Sjkim{
218280304Sjkim	printf("\tname = %s\n", node->sn_name);
219280304Sjkim	printf("\tparent_id = %ju\n", (uintmax_t)node->sn_parent_id);
220280304Sjkim	printf("\tid = %ju\n", (uintmax_t)node->sn_id);
221280304Sjkim}
222280304Sjkim
223280304Sjkimstatic sfs_node_t *
224280304Sjkimsfs_alloc_node(size_t size, const char *name, uint64_t parent_id, uint64_t id)
225280304Sjkim{
226280304Sjkim	struct sfs_node *node;
227280304Sjkim
228280304Sjkim	KASSERT(strlen(name) < sizeof (node->sn_name),
229280304Sjkim	    ("sfs node name is too long"));
230280304Sjkim	KASSERT(size >= sizeof (*node), ("sfs node size is too small"));
231280304Sjkim	node = malloc(size, M_SFSNODES, M_WAITOK | M_ZERO);
232280304Sjkim	strlcpy(node->sn_name, name, sizeof (node->sn_name));
233280304Sjkim	node->sn_parent_id = parent_id;
234280304Sjkim	node->sn_id = id;
235280304Sjkim
236280304Sjkim	return (node);
237280304Sjkim}
238280304Sjkim
239280304Sjkimstatic void
240280304Sjkimsfs_destroy_node(sfs_node_t *node)
241280304Sjkim{
24255714Skris	free(node, M_SFSNODES);
24359191Skris}
24459191Skris
245280304Sjkimstatic void *
246280304Sjkimsfs_reclaim_vnode(vnode_t *vp)
247280304Sjkim{
248280304Sjkim	void *data;
249280304Sjkim
250280304Sjkim	sfs_vnode_remove(vp);
251280304Sjkim	data = vp->v_data;
252280304Sjkim	vp->v_data = NULL;
253280304Sjkim	return (data);
254280304Sjkim}
255280304Sjkim
256280304Sjkimstatic int
257280304Sjkimsfs_readdir_common(uint64_t parent_id, uint64_t id, struct vop_readdir_args *ap,
258280304Sjkim    zfs_uio_t *uio, off_t *offp)
259280304Sjkim{
260280304Sjkim	struct dirent entry;
261280304Sjkim	int error;
262280304Sjkim
263280304Sjkim	/* Reset ncookies for subsequent use of vfs_read_dirent. */
264280304Sjkim	if (ap->a_ncookies != NULL)
265280304Sjkim		*ap->a_ncookies = 0;
266280304Sjkim
267280304Sjkim	if (zfs_uio_resid(uio) < sizeof (entry))
268280304Sjkim		return (SET_ERROR(EINVAL));
269280304Sjkim
270280304Sjkim	if (zfs_uio_offset(uio) < 0)
271280304Sjkim		return (SET_ERROR(EINVAL));
272280304Sjkim	if (zfs_uio_offset(uio) == 0) {
273280304Sjkim		entry.d_fileno = id;
274280304Sjkim		entry.d_type = DT_DIR;
27559191Skris		entry.d_name[0] = '.';
27659191Skris		entry.d_name[1] = '\0';
277280304Sjkim		entry.d_namlen = 1;
278		entry.d_reclen = sizeof (entry);
279		error = vfs_read_dirent(ap, &entry, zfs_uio_offset(uio));
280		if (error != 0)
281			return (SET_ERROR(error));
282	}
283
284	if (zfs_uio_offset(uio) < sizeof (entry))
285		return (SET_ERROR(EINVAL));
286	if (zfs_uio_offset(uio) == sizeof (entry)) {
287		entry.d_fileno = parent_id;
288		entry.d_type = DT_DIR;
289		entry.d_name[0] = '.';
290		entry.d_name[1] = '.';
291		entry.d_name[2] = '\0';
292		entry.d_namlen = 2;
293		entry.d_reclen = sizeof (entry);
294		error = vfs_read_dirent(ap, &entry, zfs_uio_offset(uio));
295		if (error != 0)
296			return (SET_ERROR(error));
297	}
298
299	if (offp != NULL)
300		*offp = 2 * sizeof (entry);
301	return (0);
302}
303
304
305/*
306 * .zfs inode namespace
307 *
308 * We need to generate unique inode numbers for all files and directories
309 * within the .zfs pseudo-filesystem.  We use the following scheme:
310 *
311 * 	ENTRY			ZFSCTL_INODE
312 * 	.zfs			1
313 * 	.zfs/snapshot		2
314 * 	.zfs/snapshot/<snap>	objectid(snap)
315 */
316#define	ZFSCTL_INO_SNAP(id)	(id)
317
318static struct vop_vector zfsctl_ops_root;
319static struct vop_vector zfsctl_ops_snapdir;
320static struct vop_vector zfsctl_ops_snapshot;
321
322void
323zfsctl_init(void)
324{
325}
326
327void
328zfsctl_fini(void)
329{
330}
331
332boolean_t
333zfsctl_is_node(vnode_t *vp)
334{
335	return (vn_matchops(vp, zfsctl_ops_root) ||
336	    vn_matchops(vp, zfsctl_ops_snapdir) ||
337	    vn_matchops(vp, zfsctl_ops_snapshot));
338
339}
340
341typedef struct zfsctl_root {
342	sfs_node_t	node;
343	sfs_node_t	*snapdir;
344	timestruc_t	cmtime;
345} zfsctl_root_t;
346
347
348/*
349 * Create the '.zfs' directory.
350 */
351void
352zfsctl_create(zfsvfs_t *zfsvfs)
353{
354	zfsctl_root_t *dot_zfs;
355	sfs_node_t *snapdir;
356	vnode_t *rvp;
357	uint64_t crtime[2];
358
359	ASSERT3P(zfsvfs->z_ctldir, ==, NULL);
360
361	snapdir = sfs_alloc_node(sizeof (*snapdir), "snapshot", ZFSCTL_INO_ROOT,
362	    ZFSCTL_INO_SNAPDIR);
363	dot_zfs = (zfsctl_root_t *)sfs_alloc_node(sizeof (*dot_zfs), ".zfs", 0,
364	    ZFSCTL_INO_ROOT);
365	dot_zfs->snapdir = snapdir;
366
367	VERIFY0(VFS_ROOT(zfsvfs->z_vfs, LK_EXCLUSIVE, &rvp));
368	VERIFY0(sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
369	    &crtime, sizeof (crtime)));
370	ZFS_TIME_DECODE(&dot_zfs->cmtime, crtime);
371	vput(rvp);
372
373	zfsvfs->z_ctldir = dot_zfs;
374}
375
376/*
377 * Destroy the '.zfs' directory.  Only called when the filesystem is unmounted.
378 * The nodes must not have any associated vnodes by now as they should be
379 * vflush-ed.
380 */
381void
382zfsctl_destroy(zfsvfs_t *zfsvfs)
383{
384	sfs_destroy_node(zfsvfs->z_ctldir->snapdir);
385	sfs_destroy_node((sfs_node_t *)zfsvfs->z_ctldir);
386	zfsvfs->z_ctldir = NULL;
387}
388
389static int
390zfsctl_fs_root_vnode(struct mount *mp, void *arg __unused, int flags,
391    struct vnode **vpp)
392{
393	return (VFS_ROOT(mp, flags, vpp));
394}
395
396static void
397zfsctl_common_vnode_setup(vnode_t *vp, void *arg)
398{
399	ASSERT_VOP_ELOCKED(vp, __func__);
400
401	/* We support shared locking. */
402	VN_LOCK_ASHARE(vp);
403	vp->v_type = VDIR;
404	vp->v_data = arg;
405}
406
407static int
408zfsctl_root_vnode(struct mount *mp, void *arg __unused, int flags,
409    struct vnode **vpp)
410{
411	void *node;
412	int err;
413
414	node = ((zfsvfs_t *)mp->mnt_data)->z_ctldir;
415	err = sfs_vgetx(mp, flags, 0, ZFSCTL_INO_ROOT, "zfs", &zfsctl_ops_root,
416	    zfsctl_common_vnode_setup, node, vpp);
417	return (err);
418}
419
420static int
421zfsctl_snapdir_vnode(struct mount *mp, void *arg __unused, int flags,
422    struct vnode **vpp)
423{
424	void *node;
425	int err;
426
427	node = ((zfsvfs_t *)mp->mnt_data)->z_ctldir->snapdir;
428	err = sfs_vgetx(mp, flags, ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, "zfs",
429	    &zfsctl_ops_snapdir, zfsctl_common_vnode_setup, node, vpp);
430	return (err);
431}
432
433/*
434 * Given a root znode, retrieve the associated .zfs directory.
435 * Add a hold to the vnode and return it.
436 */
437int
438zfsctl_root(zfsvfs_t *zfsvfs, int flags, vnode_t **vpp)
439{
440	int error;
441
442	error = zfsctl_root_vnode(zfsvfs->z_vfs, NULL, flags, vpp);
443	return (error);
444}
445
446/*
447 * Common open routine.  Disallow any write access.
448 */
449static int
450zfsctl_common_open(struct vop_open_args *ap)
451{
452	int flags = ap->a_mode;
453
454	if (flags & FWRITE)
455		return (SET_ERROR(EACCES));
456
457	return (0);
458}
459
460/*
461 * Common close routine.  Nothing to do here.
462 */
463static int
464zfsctl_common_close(struct vop_close_args *ap)
465{
466	(void) ap;
467	return (0);
468}
469
470/*
471 * Common access routine.  Disallow writes.
472 */
473static int
474zfsctl_common_access(struct vop_access_args *ap)
475{
476	accmode_t accmode = ap->a_accmode;
477
478	if (accmode & VWRITE)
479		return (SET_ERROR(EACCES));
480	return (0);
481}
482
483/*
484 * Common getattr function.  Fill in basic information.
485 */
486static void
487zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
488{
489	timestruc_t	now;
490	sfs_node_t *node;
491
492	node = vp->v_data;
493
494	vap->va_uid = 0;
495	vap->va_gid = 0;
496	vap->va_rdev = 0;
497	/*
498	 * We are a purely virtual object, so we have no
499	 * blocksize or allocated blocks.
500	 */
501	vap->va_blksize = 0;
502	vap->va_nblocks = 0;
503	vap->va_gen = 0;
504	vn_fsid(vp, vap);
505	vap->va_mode = zfsctl_ctldir_mode;
506	vap->va_type = VDIR;
507	/*
508	 * We live in the now (for atime).
509	 */
510	gethrestime(&now);
511	vap->va_atime = now;
512	/* FreeBSD: Reset chflags(2) flags. */
513	vap->va_flags = 0;
514
515	vap->va_nodeid = node->sn_id;
516
517	/* At least '.' and '..'. */
518	vap->va_nlink = 2;
519}
520
521#ifndef _OPENSOLARIS_SYS_VNODE_H_
522struct vop_fid_args {
523	struct vnode *a_vp;
524	struct fid *a_fid;
525};
526#endif
527
528static int
529zfsctl_common_fid(struct vop_fid_args *ap)
530{
531	vnode_t		*vp = ap->a_vp;
532	fid_t		*fidp = (void *)ap->a_fid;
533	sfs_node_t	*node = vp->v_data;
534	uint64_t	object = node->sn_id;
535	zfid_short_t	*zfid;
536	int		i;
537
538	zfid = (zfid_short_t *)fidp;
539	zfid->zf_len = SHORT_FID_LEN;
540
541	for (i = 0; i < sizeof (zfid->zf_object); i++)
542		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
543
544	/* .zfs nodes always have a generation number of 0 */
545	for (i = 0; i < sizeof (zfid->zf_gen); i++)
546		zfid->zf_gen[i] = 0;
547
548	return (0);
549}
550
551#ifndef _SYS_SYSPROTO_H_
552struct vop_reclaim_args {
553	struct vnode *a_vp;
554	struct thread *a_td;
555};
556#endif
557
558static int
559zfsctl_common_reclaim(struct vop_reclaim_args *ap)
560{
561	vnode_t *vp = ap->a_vp;
562
563	(void) sfs_reclaim_vnode(vp);
564	return (0);
565}
566
567#ifndef _SYS_SYSPROTO_H_
568struct vop_print_args {
569	struct vnode *a_vp;
570};
571#endif
572
573static int
574zfsctl_common_print(struct vop_print_args *ap)
575{
576	sfs_print_node(ap->a_vp->v_data);
577	return (0);
578}
579
580#ifndef _SYS_SYSPROTO_H_
581struct vop_getattr_args {
582	struct vnode *a_vp;
583	struct vattr *a_vap;
584	struct ucred *a_cred;
585};
586#endif
587
588/*
589 * Get root directory attributes.
590 */
591static int
592zfsctl_root_getattr(struct vop_getattr_args *ap)
593{
594	struct vnode *vp = ap->a_vp;
595	struct vattr *vap = ap->a_vap;
596	zfsctl_root_t *node = vp->v_data;
597
598	zfsctl_common_getattr(vp, vap);
599	vap->va_ctime = node->cmtime;
600	vap->va_mtime = vap->va_ctime;
601	vap->va_birthtime = vap->va_ctime;
602	vap->va_nlink += 1; /* snapdir */
603	vap->va_size = vap->va_nlink;
604	return (0);
605}
606
607/*
608 * When we lookup "." we still can be asked to lock it
609 * differently, can't we?
610 */
611static int
612zfsctl_relock_dot(vnode_t *dvp, int ltype)
613{
614	vref(dvp);
615	if (ltype != VOP_ISLOCKED(dvp)) {
616		if (ltype == LK_EXCLUSIVE)
617			vn_lock(dvp, LK_UPGRADE | LK_RETRY);
618		else /* if (ltype == LK_SHARED) */
619			vn_lock(dvp, LK_DOWNGRADE | LK_RETRY);
620
621		/* Relock for the "." case may left us with reclaimed vnode. */
622		if (VN_IS_DOOMED(dvp)) {
623			vrele(dvp);
624			return (SET_ERROR(ENOENT));
625		}
626	}
627	return (0);
628}
629
630/*
631 * Special case the handling of "..".
632 */
633static int
634zfsctl_root_lookup(struct vop_lookup_args *ap)
635{
636	struct componentname *cnp = ap->a_cnp;
637	vnode_t *dvp = ap->a_dvp;
638	vnode_t **vpp = ap->a_vpp;
639	int flags = ap->a_cnp->cn_flags;
640	int lkflags = ap->a_cnp->cn_lkflags;
641	int nameiop = ap->a_cnp->cn_nameiop;
642	int err;
643
644	ASSERT3S(dvp->v_type, ==, VDIR);
645
646	if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
647		return (SET_ERROR(ENOTSUP));
648
649	if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
650		err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
651		if (err == 0)
652			*vpp = dvp;
653	} else if ((flags & ISDOTDOT) != 0) {
654		err = vn_vget_ino_gen(dvp, zfsctl_fs_root_vnode, NULL,
655		    lkflags, vpp);
656	} else if (strncmp(cnp->cn_nameptr, "snapshot", cnp->cn_namelen) == 0) {
657		err = zfsctl_snapdir_vnode(dvp->v_mount, NULL, lkflags, vpp);
658	} else {
659		err = SET_ERROR(ENOENT);
660	}
661	if (err != 0)
662		*vpp = NULL;
663	return (err);
664}
665
666static int
667zfsctl_root_readdir(struct vop_readdir_args *ap)
668{
669	struct dirent entry;
670	vnode_t *vp = ap->a_vp;
671	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
672	zfsctl_root_t *node = vp->v_data;
673	zfs_uio_t uio;
674	int *eofp = ap->a_eofflag;
675	off_t dots_offset;
676	int error;
677
678	zfs_uio_init(&uio, ap->a_uio);
679
680	ASSERT3S(vp->v_type, ==, VDIR);
681
682	/*
683	 * FIXME: this routine only ever emits 3 entries and does not tolerate
684	 * being called with a buffer too small to handle all of them.
685	 *
686	 * The check below facilitates the idiom of repeating calls until the
687	 * count to return is 0.
688	 */
689	if (zfs_uio_offset(&uio) == 3 * sizeof(entry)) {
690		return (0);
691	}
692
693	error = sfs_readdir_common(zfsvfs->z_root, ZFSCTL_INO_ROOT, ap, &uio,
694	    &dots_offset);
695	if (error != 0) {
696		if (error == ENAMETOOLONG) /* ran out of destination space */
697			error = 0;
698		return (error);
699	}
700	if (zfs_uio_offset(&uio) != dots_offset)
701		return (SET_ERROR(EINVAL));
702
703	_Static_assert(sizeof (node->snapdir->sn_name) <= sizeof (entry.d_name),
704	    "node->snapdir->sn_name too big for entry.d_name");
705	entry.d_fileno = node->snapdir->sn_id;
706	entry.d_type = DT_DIR;
707	strcpy(entry.d_name, node->snapdir->sn_name);
708	entry.d_namlen = strlen(entry.d_name);
709	entry.d_reclen = sizeof (entry);
710	error = vfs_read_dirent(ap, &entry, zfs_uio_offset(&uio));
711	if (error != 0) {
712		if (error == ENAMETOOLONG)
713			error = 0;
714		return (SET_ERROR(error));
715	}
716	if (eofp != NULL)
717		*eofp = 1;
718	return (0);
719}
720
721static int
722zfsctl_root_vptocnp(struct vop_vptocnp_args *ap)
723{
724	static const char dotzfs_name[4] = ".zfs";
725	vnode_t *dvp;
726	int error;
727
728	if (*ap->a_buflen < sizeof (dotzfs_name))
729		return (SET_ERROR(ENOMEM));
730
731	error = vn_vget_ino_gen(ap->a_vp, zfsctl_fs_root_vnode, NULL,
732	    LK_SHARED, &dvp);
733	if (error != 0)
734		return (SET_ERROR(error));
735
736	VOP_UNLOCK1(dvp);
737	*ap->a_vpp = dvp;
738	*ap->a_buflen -= sizeof (dotzfs_name);
739	memcpy(ap->a_buf + *ap->a_buflen, dotzfs_name, sizeof (dotzfs_name));
740	return (0);
741}
742
743static int
744zfsctl_common_pathconf(struct vop_pathconf_args *ap)
745{
746	/*
747	 * We care about ACL variables so that user land utilities like ls
748	 * can display them correctly.  Since the ctldir's st_dev is set to be
749	 * the same as the parent dataset, we must support all variables that
750	 * it supports.
751	 */
752	switch (ap->a_name) {
753	case _PC_LINK_MAX:
754		*ap->a_retval = MIN(LONG_MAX, ZFS_LINK_MAX);
755		return (0);
756
757	case _PC_FILESIZEBITS:
758		*ap->a_retval = 64;
759		return (0);
760
761	case _PC_MIN_HOLE_SIZE:
762		*ap->a_retval = (int)SPA_MINBLOCKSIZE;
763		return (0);
764
765	case _PC_ACL_EXTENDED:
766		*ap->a_retval = 0;
767		return (0);
768
769	case _PC_ACL_NFS4:
770		*ap->a_retval = 1;
771		return (0);
772
773	case _PC_ACL_PATH_MAX:
774		*ap->a_retval = ACL_MAX_ENTRIES;
775		return (0);
776
777	case _PC_NAME_MAX:
778		*ap->a_retval = NAME_MAX;
779		return (0);
780
781	default:
782		return (vop_stdpathconf(ap));
783	}
784}
785
786/*
787 * Returns a trivial ACL
788 */
789static int
790zfsctl_common_getacl(struct vop_getacl_args *ap)
791{
792	int i;
793
794	if (ap->a_type != ACL_TYPE_NFS4)
795		return (EINVAL);
796
797	acl_nfs4_sync_acl_from_mode(ap->a_aclp, zfsctl_ctldir_mode, 0);
798	/*
799	 * acl_nfs4_sync_acl_from_mode assumes that the owner can always modify
800	 * attributes.  That is not the case for the ctldir, so we must clear
801	 * those bits.  We also must clear ACL_READ_NAMED_ATTRS, because xattrs
802	 * aren't supported by the ctldir.
803	 */
804	for (i = 0; i < ap->a_aclp->acl_cnt; i++) {
805		struct acl_entry *entry;
806		entry = &(ap->a_aclp->acl_entry[i]);
807		entry->ae_perm &= ~(ACL_WRITE_ACL | ACL_WRITE_OWNER |
808		    ACL_WRITE_ATTRIBUTES | ACL_WRITE_NAMED_ATTRS |
809		    ACL_READ_NAMED_ATTRS);
810	}
811
812	return (0);
813}
814
815static struct vop_vector zfsctl_ops_root = {
816	.vop_default =	&default_vnodeops,
817#if __FreeBSD_version >= 1300121
818	.vop_fplookup_vexec = VOP_EAGAIN,
819#endif
820#if __FreeBSD_version >= 1300139
821	.vop_fplookup_symlink = VOP_EAGAIN,
822#endif
823	.vop_open =	zfsctl_common_open,
824	.vop_close =	zfsctl_common_close,
825	.vop_ioctl =	VOP_EINVAL,
826	.vop_getattr =	zfsctl_root_getattr,
827	.vop_access =	zfsctl_common_access,
828	.vop_readdir =	zfsctl_root_readdir,
829	.vop_lookup =	zfsctl_root_lookup,
830	.vop_inactive =	VOP_NULL,
831	.vop_reclaim =	zfsctl_common_reclaim,
832	.vop_fid =	zfsctl_common_fid,
833	.vop_print =	zfsctl_common_print,
834	.vop_vptocnp =	zfsctl_root_vptocnp,
835	.vop_pathconf =	zfsctl_common_pathconf,
836	.vop_getacl =	zfsctl_common_getacl,
837#if __FreeBSD_version >= 1400043
838	.vop_add_writecount =	vop_stdadd_writecount_nomsync,
839#endif
840};
841VFS_VOP_VECTOR_REGISTER(zfsctl_ops_root);
842
843static int
844zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
845{
846	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
847
848	dmu_objset_name(os, zname);
849	if (strlen(zname) + 1 + strlen(name) >= len)
850		return (SET_ERROR(ENAMETOOLONG));
851	(void) strcat(zname, "@");
852	(void) strcat(zname, name);
853	return (0);
854}
855
856static int
857zfsctl_snapshot_lookup(vnode_t *vp, const char *name, uint64_t *id)
858{
859	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
860	int err;
861
862	err = dsl_dataset_snap_lookup(dmu_objset_ds(os), name, id);
863	return (err);
864}
865
866/*
867 * Given a vnode get a root vnode of a filesystem mounted on top of
868 * the vnode, if any.  The root vnode is referenced and locked.
869 * If no filesystem is mounted then the orinal vnode remains referenced
870 * and locked.  If any error happens the orinal vnode is unlocked and
871 * released.
872 */
873static int
874zfsctl_mounted_here(vnode_t **vpp, int flags)
875{
876	struct mount *mp;
877	int err;
878
879	ASSERT_VOP_LOCKED(*vpp, __func__);
880	ASSERT3S((*vpp)->v_type, ==, VDIR);
881
882	if ((mp = (*vpp)->v_mountedhere) != NULL) {
883		err = vfs_busy(mp, 0);
884		KASSERT(err == 0, ("vfs_busy(mp, 0) failed with %d", err));
885		KASSERT(vrefcnt(*vpp) > 1, ("unreferenced mountpoint"));
886		vput(*vpp);
887		err = VFS_ROOT(mp, flags, vpp);
888		vfs_unbusy(mp);
889		return (err);
890	}
891	return (EJUSTRETURN);
892}
893
894typedef struct {
895	const char *snap_name;
896	uint64_t    snap_id;
897} snapshot_setup_arg_t;
898
899static void
900zfsctl_snapshot_vnode_setup(vnode_t *vp, void *arg)
901{
902	snapshot_setup_arg_t *ssa = arg;
903	sfs_node_t *node;
904
905	ASSERT_VOP_ELOCKED(vp, __func__);
906
907	node = sfs_alloc_node(sizeof (sfs_node_t),
908	    ssa->snap_name, ZFSCTL_INO_SNAPDIR, ssa->snap_id);
909	zfsctl_common_vnode_setup(vp, node);
910
911	/* We have to support recursive locking. */
912	VN_LOCK_AREC(vp);
913}
914
915/*
916 * Lookup entry point for the 'snapshot' directory.  Try to open the
917 * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
918 * Perform a mount of the associated dataset on top of the vnode.
919 * There are four possibilities:
920 * - the snapshot node and vnode do not exist
921 * - the snapshot vnode is covered by the mounted snapshot
922 * - the snapshot vnode is not covered yet, the mount operation is in progress
923 * - the snapshot vnode is not covered, because the snapshot has been unmounted
924 * The last two states are transient and should be relatively short-lived.
925 */
926static int
927zfsctl_snapdir_lookup(struct vop_lookup_args *ap)
928{
929	vnode_t *dvp = ap->a_dvp;
930	vnode_t **vpp = ap->a_vpp;
931	struct componentname *cnp = ap->a_cnp;
932	char name[NAME_MAX + 1];
933	char fullname[ZFS_MAX_DATASET_NAME_LEN];
934	char *mountpoint;
935	size_t mountpoint_len;
936	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
937	uint64_t snap_id;
938	int nameiop = cnp->cn_nameiop;
939	int lkflags = cnp->cn_lkflags;
940	int flags = cnp->cn_flags;
941	int err;
942
943	ASSERT3S(dvp->v_type, ==, VDIR);
944
945	if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
946		return (SET_ERROR(ENOTSUP));
947
948	if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
949		err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
950		if (err == 0)
951			*vpp = dvp;
952		return (err);
953	}
954	if (flags & ISDOTDOT) {
955		err = vn_vget_ino_gen(dvp, zfsctl_root_vnode, NULL, lkflags,
956		    vpp);
957		return (err);
958	}
959
960	if (cnp->cn_namelen >= sizeof (name))
961		return (SET_ERROR(ENAMETOOLONG));
962
963	strlcpy(name, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_namelen + 1);
964	err = zfsctl_snapshot_lookup(dvp, name, &snap_id);
965	if (err != 0)
966		return (SET_ERROR(ENOENT));
967
968	for (;;) {
969		snapshot_setup_arg_t ssa;
970
971		ssa.snap_name = name;
972		ssa.snap_id = snap_id;
973		err = sfs_vgetx(dvp->v_mount, LK_SHARED, ZFSCTL_INO_SNAPDIR,
974		    snap_id, "zfs", &zfsctl_ops_snapshot,
975		    zfsctl_snapshot_vnode_setup, &ssa, vpp);
976		if (err != 0)
977			return (err);
978
979		/* Check if a new vnode has just been created. */
980		if (VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE)
981			break;
982
983		/*
984		 * Check if a snapshot is already mounted on top of the vnode.
985		 */
986		err = zfsctl_mounted_here(vpp, lkflags);
987		if (err != EJUSTRETURN)
988			return (err);
989
990		/*
991		 * If the vnode is not covered, then either the mount operation
992		 * is in progress or the snapshot has already been unmounted
993		 * but the vnode hasn't been inactivated and reclaimed yet.
994		 * We can try to re-use the vnode in the latter case.
995		 */
996		VI_LOCK(*vpp);
997		if (((*vpp)->v_iflag & VI_MOUNT) == 0) {
998			VI_UNLOCK(*vpp);
999			/*
1000			 * Upgrade to exclusive lock in order to:
1001			 * - avoid race conditions
1002			 * - satisfy the contract of mount_snapshot()
1003			 */
1004			err = VOP_LOCK(*vpp, LK_TRYUPGRADE);
1005			if (err == 0)
1006				break;
1007		} else {
1008			VI_UNLOCK(*vpp);
1009		}
1010
1011		/*
1012		 * In this state we can loop on uncontested locks and starve
1013		 * the thread doing the lengthy, non-trivial mount operation.
1014		 * So, yield to prevent that from happening.
1015		 */
1016		vput(*vpp);
1017		kern_yield(PRI_USER);
1018	}
1019
1020	VERIFY0(zfsctl_snapshot_zname(dvp, name, sizeof (fullname), fullname));
1021
1022	mountpoint_len = strlen(dvp->v_vfsp->mnt_stat.f_mntonname) +
1023	    strlen("/" ZFS_CTLDIR_NAME "/snapshot/") + strlen(name) + 1;
1024	mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
1025	(void) snprintf(mountpoint, mountpoint_len,
1026	    "%s/" ZFS_CTLDIR_NAME "/snapshot/%s",
1027	    dvp->v_vfsp->mnt_stat.f_mntonname, name);
1028
1029	err = mount_snapshot(curthread, vpp, "zfs", mountpoint, fullname, 0,
1030	    dvp->v_vfsp);
1031	kmem_free(mountpoint, mountpoint_len);
1032	if (err == 0) {
1033		/*
1034		 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
1035		 *
1036		 * This is where we lie about our v_vfsp in order to
1037		 * make .zfs/snapshot/<snapname> accessible over NFS
1038		 * without requiring manual mounts of <snapname>.
1039		 */
1040		ASSERT3P(VTOZ(*vpp)->z_zfsvfs, !=, zfsvfs);
1041		VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
1042
1043		/* Clear the root flag (set via VFS_ROOT) as well. */
1044		(*vpp)->v_vflag &= ~VV_ROOT;
1045	}
1046
1047	if (err != 0)
1048		*vpp = NULL;
1049	return (err);
1050}
1051
1052static int
1053zfsctl_snapdir_readdir(struct vop_readdir_args *ap)
1054{
1055	char snapname[ZFS_MAX_DATASET_NAME_LEN];
1056	struct dirent entry;
1057	vnode_t *vp = ap->a_vp;
1058	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1059	zfs_uio_t uio;
1060	int *eofp = ap->a_eofflag;
1061	off_t dots_offset;
1062	int error;
1063
1064	zfs_uio_init(&uio, ap->a_uio);
1065
1066	ASSERT3S(vp->v_type, ==, VDIR);
1067
1068	error = sfs_readdir_common(ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, ap,
1069	    &uio, &dots_offset);
1070	if (error != 0) {
1071		if (error == ENAMETOOLONG) /* ran out of destination space */
1072			error = 0;
1073		return (error);
1074	}
1075
1076	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1077		return (error);
1078	for (;;) {
1079		uint64_t cookie;
1080		uint64_t id;
1081
1082		cookie = zfs_uio_offset(&uio) - dots_offset;
1083
1084		dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
1085		error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof (snapname),
1086		    snapname, &id, &cookie, NULL);
1087		dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
1088		if (error != 0) {
1089			if (error == ENOENT) {
1090				if (eofp != NULL)
1091					*eofp = 1;
1092				error = 0;
1093			}
1094			zfs_exit(zfsvfs, FTAG);
1095			return (error);
1096		}
1097
1098		entry.d_fileno = id;
1099		entry.d_type = DT_DIR;
1100		strcpy(entry.d_name, snapname);
1101		entry.d_namlen = strlen(entry.d_name);
1102		entry.d_reclen = sizeof (entry);
1103		error = vfs_read_dirent(ap, &entry, zfs_uio_offset(&uio));
1104		if (error != 0) {
1105			if (error == ENAMETOOLONG)
1106				error = 0;
1107			zfs_exit(zfsvfs, FTAG);
1108			return (SET_ERROR(error));
1109		}
1110		zfs_uio_setoffset(&uio, cookie + dots_offset);
1111	}
1112	__builtin_unreachable();
1113}
1114
1115static int
1116zfsctl_snapdir_getattr(struct vop_getattr_args *ap)
1117{
1118	vnode_t *vp = ap->a_vp;
1119	vattr_t *vap = ap->a_vap;
1120	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1121	dsl_dataset_t *ds;
1122	uint64_t snap_count;
1123	int err;
1124
1125	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1126		return (err);
1127	ds = dmu_objset_ds(zfsvfs->z_os);
1128	zfsctl_common_getattr(vp, vap);
1129	vap->va_ctime = dmu_objset_snap_cmtime(zfsvfs->z_os);
1130	vap->va_mtime = vap->va_ctime;
1131	vap->va_birthtime = vap->va_ctime;
1132	if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
1133		err = zap_count(dmu_objset_pool(ds->ds_objset)->dp_meta_objset,
1134		    dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
1135		if (err != 0) {
1136			zfs_exit(zfsvfs, FTAG);
1137			return (err);
1138		}
1139		vap->va_nlink += snap_count;
1140	}
1141	vap->va_size = vap->va_nlink;
1142
1143	zfs_exit(zfsvfs, FTAG);
1144	return (0);
1145}
1146
1147static struct vop_vector zfsctl_ops_snapdir = {
1148	.vop_default =	&default_vnodeops,
1149#if __FreeBSD_version >= 1300121
1150	.vop_fplookup_vexec = VOP_EAGAIN,
1151#endif
1152#if __FreeBSD_version >= 1300139
1153	.vop_fplookup_symlink = VOP_EAGAIN,
1154#endif
1155	.vop_open =	zfsctl_common_open,
1156	.vop_close =	zfsctl_common_close,
1157	.vop_getattr =	zfsctl_snapdir_getattr,
1158	.vop_access =	zfsctl_common_access,
1159	.vop_readdir =	zfsctl_snapdir_readdir,
1160	.vop_lookup =	zfsctl_snapdir_lookup,
1161	.vop_reclaim =	zfsctl_common_reclaim,
1162	.vop_fid =	zfsctl_common_fid,
1163	.vop_print =	zfsctl_common_print,
1164	.vop_pathconf =	zfsctl_common_pathconf,
1165	.vop_getacl =	zfsctl_common_getacl,
1166#if __FreeBSD_version >= 1400043
1167	.vop_add_writecount =	vop_stdadd_writecount_nomsync,
1168#endif
1169};
1170VFS_VOP_VECTOR_REGISTER(zfsctl_ops_snapdir);
1171
1172
1173static int
1174zfsctl_snapshot_inactive(struct vop_inactive_args *ap)
1175{
1176	vnode_t *vp = ap->a_vp;
1177
1178	vrecycle(vp);
1179	return (0);
1180}
1181
1182static int
1183zfsctl_snapshot_reclaim(struct vop_reclaim_args *ap)
1184{
1185	vnode_t *vp = ap->a_vp;
1186	void *data = vp->v_data;
1187
1188	sfs_reclaim_vnode(vp);
1189	sfs_destroy_node(data);
1190	return (0);
1191}
1192
1193static int
1194zfsctl_snapshot_vptocnp(struct vop_vptocnp_args *ap)
1195{
1196	struct mount *mp;
1197	vnode_t *dvp;
1198	vnode_t *vp;
1199	sfs_node_t *node;
1200	size_t len;
1201	int locked;
1202	int error;
1203
1204	vp = ap->a_vp;
1205	node = vp->v_data;
1206	len = strlen(node->sn_name);
1207	if (*ap->a_buflen < len)
1208		return (SET_ERROR(ENOMEM));
1209
1210	/*
1211	 * Prevent unmounting of the snapshot while the vnode lock
1212	 * is not held.  That is not strictly required, but allows
1213	 * us to assert that an uncovered snapshot vnode is never
1214	 * "leaked".
1215	 */
1216	mp = vp->v_mountedhere;
1217	if (mp == NULL)
1218		return (SET_ERROR(ENOENT));
1219	error = vfs_busy(mp, 0);
1220	KASSERT(error == 0, ("vfs_busy(mp, 0) failed with %d", error));
1221
1222	/*
1223	 * We can vput the vnode as we can now depend on the reference owned
1224	 * by the busied mp.  But we also need to hold the vnode, because
1225	 * the reference may go after vfs_unbusy() which has to be called
1226	 * before we can lock the vnode again.
1227	 */
1228	locked = VOP_ISLOCKED(vp);
1229#if __FreeBSD_version >= 1300045
1230	enum vgetstate vs = vget_prep(vp);
1231#else
1232	vhold(vp);
1233#endif
1234	vput(vp);
1235
1236	/* Look up .zfs/snapshot, our parent. */
1237	error = zfsctl_snapdir_vnode(vp->v_mount, NULL, LK_SHARED, &dvp);
1238	if (error == 0) {
1239		VOP_UNLOCK1(dvp);
1240		*ap->a_vpp = dvp;
1241		*ap->a_buflen -= len;
1242		memcpy(ap->a_buf + *ap->a_buflen, node->sn_name, len);
1243	}
1244	vfs_unbusy(mp);
1245#if __FreeBSD_version >= 1300045
1246	vget_finish(vp, locked | LK_RETRY, vs);
1247#else
1248	vget(vp, locked | LK_VNHELD | LK_RETRY, curthread);
1249#endif
1250	return (error);
1251}
1252
1253/*
1254 * These VP's should never see the light of day.  They should always
1255 * be covered.
1256 */
1257static struct vop_vector zfsctl_ops_snapshot = {
1258	.vop_default =		NULL, /* ensure very restricted access */
1259#if __FreeBSD_version >= 1300121
1260	.vop_fplookup_vexec =	VOP_EAGAIN,
1261#endif
1262#if __FreeBSD_version >= 1300139
1263	.vop_fplookup_symlink = VOP_EAGAIN,
1264#endif
1265	.vop_open =		zfsctl_common_open,
1266	.vop_close =		zfsctl_common_close,
1267	.vop_inactive =		zfsctl_snapshot_inactive,
1268#if __FreeBSD_version >= 1300045
1269	.vop_need_inactive = vop_stdneed_inactive,
1270#endif
1271	.vop_reclaim =		zfsctl_snapshot_reclaim,
1272	.vop_vptocnp =		zfsctl_snapshot_vptocnp,
1273	.vop_lock1 =		vop_stdlock,
1274	.vop_unlock =		vop_stdunlock,
1275	.vop_islocked =		vop_stdislocked,
1276	.vop_advlockpurge =	vop_stdadvlockpurge, /* called by vgone */
1277	.vop_print =		zfsctl_common_print,
1278#if __FreeBSD_version >= 1400043
1279	.vop_add_writecount =	vop_stdadd_writecount_nomsync,
1280#endif
1281};
1282VFS_VOP_VECTOR_REGISTER(zfsctl_ops_snapshot);
1283
1284int
1285zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1286{
1287	zfsvfs_t *zfsvfs __unused = vfsp->vfs_data;
1288	vnode_t *vp;
1289	int error;
1290
1291	ASSERT3P(zfsvfs->z_ctldir, !=, NULL);
1292	*zfsvfsp = NULL;
1293	error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
1294	    ZFSCTL_INO_SNAPDIR, objsetid, &vp);
1295	if (error == 0 && vp != NULL) {
1296		/*
1297		 * XXX Probably need to at least reference, if not busy, the mp.
1298		 */
1299		if (vp->v_mountedhere != NULL)
1300			*zfsvfsp = vp->v_mountedhere->mnt_data;
1301		vput(vp);
1302	}
1303	if (*zfsvfsp == NULL)
1304		return (SET_ERROR(EINVAL));
1305	return (0);
1306}
1307
1308/*
1309 * Unmount any snapshots for the given filesystem.  This is called from
1310 * zfs_umount() - if we have a ctldir, then go through and unmount all the
1311 * snapshots.
1312 */
1313int
1314zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1315{
1316	char snapname[ZFS_MAX_DATASET_NAME_LEN];
1317	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1318	struct mount *mp;
1319	vnode_t *vp;
1320	uint64_t cookie;
1321	int error;
1322
1323	ASSERT3P(zfsvfs->z_ctldir, !=, NULL);
1324
1325	cookie = 0;
1326	for (;;) {
1327		uint64_t id;
1328
1329		dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
1330		error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof (snapname),
1331		    snapname, &id, &cookie, NULL);
1332		dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
1333		if (error != 0) {
1334			if (error == ENOENT)
1335				error = 0;
1336			break;
1337		}
1338
1339		for (;;) {
1340			error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
1341			    ZFSCTL_INO_SNAPDIR, id, &vp);
1342			if (error != 0 || vp == NULL)
1343				break;
1344
1345			mp = vp->v_mountedhere;
1346
1347			/*
1348			 * v_mountedhere being NULL means that the
1349			 * (uncovered) vnode is in a transient state
1350			 * (mounting or unmounting), so loop until it
1351			 * settles down.
1352			 */
1353			if (mp != NULL)
1354				break;
1355			vput(vp);
1356		}
1357		if (error != 0)
1358			break;
1359		if (vp == NULL)
1360			continue;	/* no mountpoint, nothing to do */
1361
1362		/*
1363		 * The mount-point vnode is kept locked to avoid spurious EBUSY
1364		 * from a concurrent umount.
1365		 * The vnode lock must have recursive locking enabled.
1366		 */
1367		vfs_ref(mp);
1368		error = dounmount(mp, fflags, curthread);
1369		KASSERT_IMPLY(error == 0, vrefcnt(vp) == 1,
1370		    ("extra references after unmount"));
1371		vput(vp);
1372		if (error != 0)
1373			break;
1374	}
1375	KASSERT_IMPLY((fflags & MS_FORCE) != 0, error == 0,
1376	    ("force unmounting failed"));
1377	return (error);
1378}
1379
1380int
1381zfsctl_snapshot_unmount(const char *snapname, int flags __unused)
1382{
1383	vfs_t *vfsp = NULL;
1384	zfsvfs_t *zfsvfs = NULL;
1385
1386	if (strchr(snapname, '@') == NULL)
1387		return (0);
1388
1389	int err = getzfsvfs(snapname, &zfsvfs);
1390	if (err != 0) {
1391		ASSERT3P(zfsvfs, ==, NULL);
1392		return (0);
1393	}
1394	vfsp = zfsvfs->z_vfs;
1395
1396	ASSERT(!dsl_pool_config_held(dmu_objset_pool(zfsvfs->z_os)));
1397
1398	vfs_ref(vfsp);
1399	vfs_unbusy(vfsp);
1400	return (dounmount(vfsp, MS_FORCE, curthread));
1401}
1402