1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2019, Klara Inc.
32 * Copyright (c) 2019, Datto Inc.
33 */
34
35#ifndef _SYS_SPA_H
36#define	_SYS_SPA_H
37
38#include <sys/avl.h>
39#include <sys/zfs_context.h>
40#include <sys/kstat.h>
41#include <sys/nvpair.h>
42#include <sys/sysmacros.h>
43#include <sys/types.h>
44#include <sys/fs/zfs.h>
45#include <sys/spa_checksum.h>
46#include <sys/dmu.h>
47#include <sys/space_map.h>
48#include <sys/bitops.h>
49
50#ifdef	__cplusplus
51extern "C" {
52#endif
53
54/*
55 * Forward references that lots of things need.
56 */
57typedef struct spa spa_t;
58typedef struct vdev vdev_t;
59typedef struct metaslab metaslab_t;
60typedef struct metaslab_group metaslab_group_t;
61typedef struct metaslab_class metaslab_class_t;
62typedef struct zio zio_t;
63typedef struct zilog zilog_t;
64typedef struct spa_aux_vdev spa_aux_vdev_t;
65typedef struct zbookmark_phys zbookmark_phys_t;
66typedef struct zbookmark_err_phys zbookmark_err_phys_t;
67
68struct bpobj;
69struct bplist;
70struct dsl_pool;
71struct dsl_dataset;
72struct dsl_crypto_params;
73
74/*
75 * Alignment Shift (ashift) is an immutable, internal top-level vdev property
76 * which can only be set at vdev creation time. Physical writes are always done
77 * according to it, which makes 2^ashift the smallest possible IO on a vdev.
78 *
79 * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
80 * (2^16 = 65,536).
81 */
82#define	ASHIFT_MIN		9
83#define	ASHIFT_MAX		16
84
85/*
86 * Size of block to hold the configuration data (a packed nvlist)
87 */
88#define	SPA_CONFIG_BLOCKSIZE	(1ULL << 14)
89
90/*
91 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
92 * The ASIZE encoding should be at least 64 times larger (6 more bits)
93 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
94 * overhead, three DVAs per bp, plus one more bit in case we do anything
95 * else that expands the ASIZE.
96 */
97#define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
98#define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
99#define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
100
101#define	SPA_COMPRESSBITS	7
102#define	SPA_VDEVBITS		24
103#define	SPA_COMPRESSMASK	((1U << SPA_COMPRESSBITS) - 1)
104
105/*
106 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
107 * The members of the dva_t should be considered opaque outside the SPA.
108 */
109typedef struct dva {
110	uint64_t	dva_word[2];
111} dva_t;
112
113
114/*
115 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
116 * secret and is suitable for use in MAC algorithms as the key.
117 */
118typedef struct zio_cksum_salt {
119	uint8_t		zcs_bytes[32];
120} zio_cksum_salt_t;
121
122/*
123 * Each block is described by its DVAs, time of birth, checksum, etc.
124 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
125 *
126 *	64	56	48	40	32	24	16	8	0
127 *	+-------+-------+-------+-------+-------+-------+-------+-------+
128 * 0	|  pad  |	  vdev1         | pad   |	  ASIZE		|
129 *	+-------+-------+-------+-------+-------+-------+-------+-------+
130 * 1	|G|			 offset1				|
131 *	+-------+-------+-------+-------+-------+-------+-------+-------+
132 * 2	|  pad  |	  vdev2         | pad   |	  ASIZE		|
133 *	+-------+-------+-------+-------+-------+-------+-------+-------+
134 * 3	|G|			 offset2				|
135 *	+-------+-------+-------+-------+-------+-------+-------+-------+
136 * 4	|  pad  |	  vdev3         | pad   |	  ASIZE		|
137 *	+-------+-------+-------+-------+-------+-------+-------+-------+
138 * 5	|G|			 offset3				|
139 *	+-------+-------+-------+-------+-------+-------+-------+-------+
140 * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
141 *	+-------+-------+-------+-------+-------+-------+-------+-------+
142 * 7	|			padding					|
143 *	+-------+-------+-------+-------+-------+-------+-------+-------+
144 * 8	|			padding					|
145 *	+-------+-------+-------+-------+-------+-------+-------+-------+
146 * 9	|			physical birth txg			|
147 *	+-------+-------+-------+-------+-------+-------+-------+-------+
148 * a	|			logical birth txg			|
149 *	+-------+-------+-------+-------+-------+-------+-------+-------+
150 * b	|			fill count				|
151 *	+-------+-------+-------+-------+-------+-------+-------+-------+
152 * c	|			checksum[0]				|
153 *	+-------+-------+-------+-------+-------+-------+-------+-------+
154 * d	|			checksum[1]				|
155 *	+-------+-------+-------+-------+-------+-------+-------+-------+
156 * e	|			checksum[2]				|
157 *	+-------+-------+-------+-------+-------+-------+-------+-------+
158 * f	|			checksum[3]				|
159 *	+-------+-------+-------+-------+-------+-------+-------+-------+
160 *
161 * Legend:
162 *
163 * vdev		virtual device ID
164 * offset	offset into virtual device
165 * LSIZE	logical size
166 * PSIZE	physical size (after compression)
167 * ASIZE	allocated size (including RAID-Z parity and gang block headers)
168 * cksum	checksum function
169 * comp		compression function
170 * G		gang block indicator
171 * B		byteorder (endianness)
172 * D		dedup
173 * X		encryption
174 * E		blkptr_t contains embedded data (see below)
175 * lvl		level of indirection
176 * type		DMU object type
177 * phys birth	txg when dva[0] was written; zero if same as logical birth txg
178 *              note that typically all the dva's would be written in this
179 *              txg, but they could be different if they were moved by
180 *              device removal.
181 * log. birth	transaction group in which the block was logically born
182 * fill count	number of non-zero blocks under this bp
183 * checksum[4]	256-bit checksum of the data this bp describes
184 */
185
186/*
187 * The blkptr_t's of encrypted blocks also need to store the encryption
188 * parameters so that the block can be decrypted. This layout is as follows:
189 *
190 *	64	56	48	40	32	24	16	8	0
191 *	+-------+-------+-------+-------+-------+-------+-------+-------+
192 * 0	|		vdev1		| pad   |	  ASIZE		|
193 *	+-------+-------+-------+-------+-------+-------+-------+-------+
194 * 1	|G|			 offset1				|
195 *	+-------+-------+-------+-------+-------+-------+-------+-------+
196 * 2	|		vdev2		| pad   |	  ASIZE		|
197 *	+-------+-------+-------+-------+-------+-------+-------+-------+
198 * 3	|G|			 offset2				|
199 *	+-------+-------+-------+-------+-------+-------+-------+-------+
200 * 4	|			salt					|
201 *	+-------+-------+-------+-------+-------+-------+-------+-------+
202 * 5	|			IV1					|
203 *	+-------+-------+-------+-------+-------+-------+-------+-------+
204 * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
205 *	+-------+-------+-------+-------+-------+-------+-------+-------+
206 * 7	|			padding					|
207 *	+-------+-------+-------+-------+-------+-------+-------+-------+
208 * 8	|			padding					|
209 *	+-------+-------+-------+-------+-------+-------+-------+-------+
210 * 9	|			physical birth txg			|
211 *	+-------+-------+-------+-------+-------+-------+-------+-------+
212 * a	|			logical birth txg			|
213 *	+-------+-------+-------+-------+-------+-------+-------+-------+
214 * b	|		IV2		|	    fill count		|
215 *	+-------+-------+-------+-------+-------+-------+-------+-------+
216 * c	|			checksum[0]				|
217 *	+-------+-------+-------+-------+-------+-------+-------+-------+
218 * d	|			checksum[1]				|
219 *	+-------+-------+-------+-------+-------+-------+-------+-------+
220 * e	|			MAC[0]					|
221 *	+-------+-------+-------+-------+-------+-------+-------+-------+
222 * f	|			MAC[1]					|
223 *	+-------+-------+-------+-------+-------+-------+-------+-------+
224 *
225 * Legend:
226 *
227 * salt		Salt for generating encryption keys
228 * IV1		First 64 bits of encryption IV
229 * X		Block requires encryption handling (set to 1)
230 * E		blkptr_t contains embedded data (set to 0, see below)
231 * fill count	number of non-zero blocks under this bp (truncated to 32 bits)
232 * IV2		Last 32 bits of encryption IV
233 * checksum[2]	128-bit checksum of the data this bp describes
234 * MAC[2]	128-bit message authentication code for this data
235 *
236 * The X bit being set indicates that this block is one of 3 types. If this is
237 * a level 0 block with an encrypted object type, the block is encrypted
238 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
239 * object type, this block is authenticated with an HMAC (see
240 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
241 * words to store a checksum-of-MACs from the level below (see
242 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
243 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
244 * refers to any of these 3 kinds of blocks.
245 *
246 * The additional encryption parameters are the salt, IV, and MAC which are
247 * explained in greater detail in the block comment at the top of zio_crypt.c.
248 * The MAC occupies half of the checksum space since it serves a very similar
249 * purpose: to prevent data corruption on disk. The only functional difference
250 * is that the checksum is used to detect on-disk corruption whether or not the
251 * encryption key is loaded and the MAC provides additional protection against
252 * malicious disk tampering. We use the 3rd DVA to store the salt and first
253 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies
254 * maximum instead of the normal 3. The last 32 bits of the IV are stored in
255 * the upper bits of what is usually the fill count. Note that only blocks at
256 * level 0 or -2 are ever encrypted, which allows us to guarantee that these
257 * 32 bits are not trampled over by other code (see zio_crypt.c for details).
258 * The salt and IV are not used for authenticated bps or bps with an indirect
259 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
260 * for the fill count.
261 */
262
263/*
264 * "Embedded" blkptr_t's don't actually point to a block, instead they
265 * have a data payload embedded in the blkptr_t itself.  See the comment
266 * in blkptr.c for more details.
267 *
268 * The blkptr_t is laid out as follows:
269 *
270 *	64	56	48	40	32	24	16	8	0
271 *	+-------+-------+-------+-------+-------+-------+-------+-------+
272 * 0	|      payload                                                  |
273 * 1	|      payload                                                  |
274 * 2	|      payload                                                  |
275 * 3	|      payload                                                  |
276 * 4	|      payload                                                  |
277 * 5	|      payload                                                  |
278 *	+-------+-------+-------+-------+-------+-------+-------+-------+
279 * 6	|BDX|lvl| type	| etype |E| comp| PSIZE|              LSIZE	|
280 *	+-------+-------+-------+-------+-------+-------+-------+-------+
281 * 7	|      payload                                                  |
282 * 8	|      payload                                                  |
283 * 9	|      payload                                                  |
284 *	+-------+-------+-------+-------+-------+-------+-------+-------+
285 * a	|			logical birth txg			|
286 *	+-------+-------+-------+-------+-------+-------+-------+-------+
287 * b	|      payload                                                  |
288 * c	|      payload                                                  |
289 * d	|      payload                                                  |
290 * e	|      payload                                                  |
291 * f	|      payload                                                  |
292 *	+-------+-------+-------+-------+-------+-------+-------+-------+
293 *
294 * Legend:
295 *
296 * payload		contains the embedded data
297 * B (byteorder)	byteorder (endianness)
298 * D (dedup)		padding (set to zero)
299 * X			encryption (set to zero)
300 * E (embedded)		set to one
301 * lvl			indirection level
302 * type			DMU object type
303 * etype		how to interpret embedded data (BP_EMBEDDED_TYPE_*)
304 * comp			compression function of payload
305 * PSIZE		size of payload after compression, in bytes
306 * LSIZE		logical size of payload, in bytes
307 *			note that 25 bits is enough to store the largest
308 *			"normal" BP's LSIZE (2^16 * 2^9) in bytes
309 * log. birth		transaction group in which the block was logically born
310 *
311 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
312 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
313 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
314 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
315 * BP's so the BP_SET_* macros can be used with them.  etype, PSIZE, LSIZE must
316 * be set with the BPE_SET_* macros.  BP_SET_EMBEDDED() should be called before
317 * other macros, as they assert that they are only used on BP's of the correct
318 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
319 * the payload space for encryption parameters (see the comment above on
320 * how encryption parameters are stored).
321 */
322
323#define	BPE_GET_ETYPE(bp)	\
324	(ASSERT(BP_IS_EMBEDDED(bp)), \
325	BF64_GET((bp)->blk_prop, 40, 8))
326#define	BPE_SET_ETYPE(bp, t)	do { \
327	ASSERT(BP_IS_EMBEDDED(bp)); \
328	BF64_SET((bp)->blk_prop, 40, 8, t); \
329} while (0)
330
331#define	BPE_GET_LSIZE(bp)	\
332	(ASSERT(BP_IS_EMBEDDED(bp)), \
333	BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
334#define	BPE_SET_LSIZE(bp, x)	do { \
335	ASSERT(BP_IS_EMBEDDED(bp)); \
336	BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
337} while (0)
338
339#define	BPE_GET_PSIZE(bp)	\
340	(ASSERT(BP_IS_EMBEDDED(bp)), \
341	BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
342#define	BPE_SET_PSIZE(bp, x)	do { \
343	ASSERT(BP_IS_EMBEDDED(bp)); \
344	BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
345} while (0)
346
347typedef enum bp_embedded_type {
348	BP_EMBEDDED_TYPE_DATA,
349	BP_EMBEDDED_TYPE_RESERVED, /* Reserved for Delphix byteswap feature. */
350	BP_EMBEDDED_TYPE_REDACTED,
351	NUM_BP_EMBEDDED_TYPES
352} bp_embedded_type_t;
353
354#define	BPE_NUM_WORDS 14
355#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
356#define	BPE_IS_PAYLOADWORD(bp, wp) \
357	((wp) != &(bp)->blk_prop && (wp) != (&(bp)->blk_birth_word[1]))
358
359#define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
360#define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
361#define	SPA_SYNC_MIN_VDEVS 3		/* min vdevs to update during sync */
362
363/*
364 * A block is a hole when it has either 1) never been written to, or
365 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
366 * without physically allocating disk space. Holes are represented in the
367 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
368 * done through the BP_IS_HOLE macro. For holes, the logical size, level,
369 * DMU object type, and birth times are all also stored for holes that
370 * were written to at some point (i.e. were punched after having been filled).
371 */
372typedef struct blkptr {
373	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
374	uint64_t	blk_prop;	/* size, compression, type, etc	    */
375	uint64_t	blk_pad[2];	/* Extra space for the future	    */
376	uint64_t	blk_birth_word[2];
377	uint64_t	blk_fill;	/* fill count			    */
378	zio_cksum_t	blk_cksum;	/* 256-bit checksum		    */
379} blkptr_t;
380
381/*
382 * Macros to get and set fields in a bp or DVA.
383 */
384
385/*
386 * Note, for gang blocks, DVA_GET_ASIZE() is the total space allocated for
387 * this gang DVA including its children BP's.  The space allocated at this
388 * DVA's vdev/offset is vdev_gang_header_asize(vdev).
389 */
390#define	DVA_GET_ASIZE(dva)	\
391	BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
392#define	DVA_SET_ASIZE(dva, x)	\
393	BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
394	SPA_MINBLOCKSHIFT, 0, x)
395
396#define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS)
397#define	DVA_SET_VDEV(dva, x)	\
398	BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x)
399
400#define	DVA_GET_OFFSET(dva)	\
401	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
402#define	DVA_SET_OFFSET(dva, x)	\
403	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
404
405#define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
406#define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
407
408#define	BP_GET_LSIZE(bp)	\
409	(BP_IS_EMBEDDED(bp) ?	\
410	(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
411	BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
412#define	BP_SET_LSIZE(bp, x)	do { \
413	ASSERT(!BP_IS_EMBEDDED(bp)); \
414	BF64_SET_SB((bp)->blk_prop, \
415	    0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
416} while (0)
417
418#define	BP_GET_PSIZE(bp)	\
419	(BP_IS_EMBEDDED(bp) ? 0 : \
420	BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
421#define	BP_SET_PSIZE(bp, x)	do { \
422	ASSERT(!BP_IS_EMBEDDED(bp)); \
423	BF64_SET_SB((bp)->blk_prop, \
424	    16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
425} while (0)
426
427#define	BP_GET_COMPRESS(bp)		\
428	BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
429#define	BP_SET_COMPRESS(bp, x)		\
430	BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
431
432#define	BP_IS_EMBEDDED(bp)		BF64_GET((bp)->blk_prop, 39, 1)
433#define	BP_SET_EMBEDDED(bp, x)		BF64_SET((bp)->blk_prop, 39, 1, x)
434
435#define	BP_GET_CHECKSUM(bp)		\
436	(BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
437	BF64_GET((bp)->blk_prop, 40, 8))
438#define	BP_SET_CHECKSUM(bp, x)		do { \
439	ASSERT(!BP_IS_EMBEDDED(bp)); \
440	BF64_SET((bp)->blk_prop, 40, 8, x); \
441} while (0)
442
443#define	BP_GET_TYPE(bp)			BF64_GET((bp)->blk_prop, 48, 8)
444#define	BP_SET_TYPE(bp, x)		BF64_SET((bp)->blk_prop, 48, 8, x)
445
446#define	BP_GET_LEVEL(bp)		BF64_GET((bp)->blk_prop, 56, 5)
447#define	BP_SET_LEVEL(bp, x)		BF64_SET((bp)->blk_prop, 56, 5, x)
448
449/* encrypted, authenticated, and MAC cksum bps use the same bit */
450#define	BP_USES_CRYPT(bp)		BF64_GET((bp)->blk_prop, 61, 1)
451#define	BP_SET_CRYPT(bp, x)		BF64_SET((bp)->blk_prop, 61, 1, x)
452
453#define	BP_IS_ENCRYPTED(bp)			\
454	(BP_USES_CRYPT(bp) &&			\
455	BP_GET_LEVEL(bp) <= 0 &&		\
456	DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
457
458#define	BP_IS_AUTHENTICATED(bp)			\
459	(BP_USES_CRYPT(bp) &&			\
460	BP_GET_LEVEL(bp) <= 0 &&		\
461	!DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
462
463#define	BP_HAS_INDIRECT_MAC_CKSUM(bp)		\
464	(BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
465
466#define	BP_IS_PROTECTED(bp)			\
467	(BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
468
469#define	BP_GET_DEDUP(bp)		BF64_GET((bp)->blk_prop, 62, 1)
470#define	BP_SET_DEDUP(bp, x)		BF64_SET((bp)->blk_prop, 62, 1, x)
471
472#define	BP_GET_BYTEORDER(bp)		BF64_GET((bp)->blk_prop, 63, 1)
473#define	BP_SET_BYTEORDER(bp, x)		BF64_SET((bp)->blk_prop, 63, 1, x)
474
475#define	BP_GET_FREE(bp)			BF64_GET((bp)->blk_fill, 0, 1)
476#define	BP_SET_FREE(bp, x)		BF64_SET((bp)->blk_fill, 0, 1, x)
477
478#define	BP_GET_LOGICAL_BIRTH(bp)	(bp)->blk_birth_word[1]
479#define	BP_SET_LOGICAL_BIRTH(bp, x)	((bp)->blk_birth_word[1] = (x))
480
481#define	BP_GET_PHYSICAL_BIRTH(bp)	(bp)->blk_birth_word[0]
482#define	BP_SET_PHYSICAL_BIRTH(bp, x)	((bp)->blk_birth_word[0] = (x))
483
484#define	BP_GET_BIRTH(bp)					\
485	(BP_IS_EMBEDDED(bp) ? 0 : 				\
486	BP_GET_PHYSICAL_BIRTH(bp) ? BP_GET_PHYSICAL_BIRTH(bp) :	\
487	BP_GET_LOGICAL_BIRTH(bp))
488
489#define	BP_SET_BIRTH(bp, logical, physical)	\
490{						\
491	ASSERT(!BP_IS_EMBEDDED(bp));		\
492	BP_SET_LOGICAL_BIRTH(bp, logical);	\
493	BP_SET_PHYSICAL_BIRTH(bp, 		\
494	    ((logical) == (physical) ? 0 : (physical))); \
495}
496
497#define	BP_GET_FILL(bp)				\
498	((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \
499	((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill))
500
501#define	BP_SET_FILL(bp, fill)			\
502{						\
503	if (BP_IS_ENCRYPTED(bp))			\
504		BF64_SET((bp)->blk_fill, 0, 32, fill); \
505	else					\
506		(bp)->blk_fill = fill;		\
507}
508
509#define	BP_GET_IV2(bp)				\
510	(ASSERT(BP_IS_ENCRYPTED(bp)),		\
511	BF64_GET((bp)->blk_fill, 32, 32))
512#define	BP_SET_IV2(bp, iv2)			\
513{						\
514	ASSERT(BP_IS_ENCRYPTED(bp));		\
515	BF64_SET((bp)->blk_fill, 32, 32, iv2);	\
516}
517
518#define	BP_IS_METADATA(bp)	\
519	(BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
520
521#define	BP_GET_ASIZE(bp)	\
522	(BP_IS_EMBEDDED(bp) ? 0 : \
523	DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
524	DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
525	(DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
526
527#define	BP_GET_UCSIZE(bp)	\
528	(BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
529
530#define	BP_GET_NDVAS(bp)	\
531	(BP_IS_EMBEDDED(bp) ? 0 : \
532	!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
533	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
534	(!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
535
536#define	BP_COUNT_GANG(bp)	\
537	(BP_IS_EMBEDDED(bp) ? 0 : \
538	(DVA_GET_GANG(&(bp)->blk_dva[0]) + \
539	DVA_GET_GANG(&(bp)->blk_dva[1]) + \
540	(DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
541
542#define	DVA_EQUAL(dva1, dva2)	\
543	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
544	(dva1)->dva_word[0] == (dva2)->dva_word[0])
545
546#define	BP_EQUAL(bp1, bp2)	\
547	(BP_GET_BIRTH(bp1) == BP_GET_BIRTH(bp2) &&	\
548	BP_GET_LOGICAL_BIRTH(bp1) == BP_GET_LOGICAL_BIRTH(bp2) &&	\
549	DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) &&	\
550	DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) &&	\
551	DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
552
553
554#define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
555
556#define	BP_IDENTITY(bp)		(ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
557#define	BP_IS_GANG(bp)		\
558	(BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
559#define	DVA_IS_EMPTY(dva)	((dva)->dva_word[0] == 0ULL &&	\
560				(dva)->dva_word[1] == 0ULL)
561#define	BP_IS_HOLE(bp) \
562	(!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
563
564#define	BP_SET_REDACTED(bp) \
565{							\
566	BP_SET_EMBEDDED(bp, B_TRUE);			\
567	BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_REDACTED);	\
568}
569#define	BP_IS_REDACTED(bp) \
570	(BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_REDACTED)
571
572/* BP_IS_RAIDZ(bp) assumes no block compression */
573#define	BP_IS_RAIDZ(bp)		(DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
574				BP_GET_PSIZE(bp))
575
576#define	BP_ZERO(bp)				\
577{						\
578	(bp)->blk_dva[0].dva_word[0] = 0;	\
579	(bp)->blk_dva[0].dva_word[1] = 0;	\
580	(bp)->blk_dva[1].dva_word[0] = 0;	\
581	(bp)->blk_dva[1].dva_word[1] = 0;	\
582	(bp)->blk_dva[2].dva_word[0] = 0;	\
583	(bp)->blk_dva[2].dva_word[1] = 0;	\
584	(bp)->blk_prop = 0;			\
585	(bp)->blk_pad[0] = 0;			\
586	(bp)->blk_pad[1] = 0;			\
587	(bp)->blk_birth_word[0] = 0;		\
588	(bp)->blk_birth_word[1] = 0;		\
589	(bp)->blk_fill = 0;			\
590	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
591}
592
593#ifdef _ZFS_BIG_ENDIAN
594#define	ZFS_HOST_BYTEORDER	(0ULL)
595#else
596#define	ZFS_HOST_BYTEORDER	(1ULL)
597#endif
598
599#define	BP_SHOULD_BYTESWAP(bp)	(BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
600
601#define	BP_SPRINTF_LEN	400
602
603/*
604 * This macro allows code sharing between zfs, libzpool, and mdb.
605 * 'func' is either kmem_scnprintf() or mdb_snprintf().
606 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
607 */
608
609#define	SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
610{									\
611	static const char *const copyname[] =				\
612	    { "zero", "single", "double", "triple" };			\
613	int len = 0;							\
614	int copies = 0;							\
615	const char *crypt_type;						\
616	if (bp != NULL) {						\
617		if (BP_IS_ENCRYPTED(bp)) {				\
618			crypt_type = "encrypted";			\
619			/* LINTED E_SUSPICIOUS_COMPARISON */		\
620		} else if (BP_IS_AUTHENTICATED(bp)) {			\
621			crypt_type = "authenticated";			\
622		} else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {		\
623			crypt_type = "indirect-MAC";			\
624		} else {						\
625			crypt_type = "unencrypted";			\
626		}							\
627	}								\
628	if (bp == NULL) {						\
629		len += func(buf + len, size - len, "<NULL>");		\
630	} else if (BP_IS_HOLE(bp)) {					\
631		len += func(buf + len, size - len,			\
632		    "HOLE [L%llu %s] "					\
633		    "size=%llxL birth=%lluL",				\
634		    (u_longlong_t)BP_GET_LEVEL(bp),			\
635		    type,						\
636		    (u_longlong_t)BP_GET_LSIZE(bp),			\
637		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));		\
638	} else if (BP_IS_EMBEDDED(bp)) {				\
639		len = func(buf + len, size - len,			\
640		    "EMBEDDED [L%llu %s] et=%u %s "			\
641		    "size=%llxL/%llxP birth=%lluL",			\
642		    (u_longlong_t)BP_GET_LEVEL(bp),			\
643		    type,						\
644		    (int)BPE_GET_ETYPE(bp),				\
645		    compress,						\
646		    (u_longlong_t)BPE_GET_LSIZE(bp),			\
647		    (u_longlong_t)BPE_GET_PSIZE(bp),			\
648		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));		\
649	} else if (BP_IS_REDACTED(bp)) {				\
650		len += func(buf + len, size - len,			\
651		    "REDACTED [L%llu %s] size=%llxL birth=%lluL",	\
652		    (u_longlong_t)BP_GET_LEVEL(bp),			\
653		    type,						\
654		    (u_longlong_t)BP_GET_LSIZE(bp),			\
655		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));		\
656	} else {							\
657		for (int d = 0; d < BP_GET_NDVAS(bp); d++) {		\
658			const dva_t *dva = &bp->blk_dva[d];		\
659			if (DVA_IS_VALID(dva))				\
660				copies++;				\
661			len += func(buf + len, size - len,		\
662			    "DVA[%d]=<%llu:%llx:%llx>%c", d,		\
663			    (u_longlong_t)DVA_GET_VDEV(dva),		\
664			    (u_longlong_t)DVA_GET_OFFSET(dva),		\
665			    (u_longlong_t)DVA_GET_ASIZE(dva),		\
666			    ws);					\
667		}							\
668		ASSERT3S(copies, >, 0);					\
669		if (BP_IS_ENCRYPTED(bp)) {				\
670			len += func(buf + len, size - len,		\
671			    "salt=%llx iv=%llx:%llx%c",			\
672			    (u_longlong_t)bp->blk_dva[2].dva_word[0],	\
673			    (u_longlong_t)bp->blk_dva[2].dva_word[1],	\
674			    (u_longlong_t)BP_GET_IV2(bp),		\
675			    ws);					\
676		}							\
677		if (BP_IS_GANG(bp) &&					\
678		    DVA_GET_ASIZE(&bp->blk_dva[2]) <=			\
679		    DVA_GET_ASIZE(&bp->blk_dva[1]) / 2)			\
680			copies--;					\
681		len += func(buf + len, size - len,			\
682		    "[L%llu %s] %s %s %s %s %s %s %s%c"			\
683		    "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c"	\
684		    "cksum=%016llx:%016llx:%016llx:%016llx",		\
685		    (u_longlong_t)BP_GET_LEVEL(bp),			\
686		    type,						\
687		    checksum,						\
688		    compress,						\
689		    crypt_type,						\
690		    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",		\
691		    BP_IS_GANG(bp) ? "gang" : "contiguous",		\
692		    BP_GET_DEDUP(bp) ? "dedup" : "unique",		\
693		    copyname[copies],					\
694		    ws,							\
695		    (u_longlong_t)BP_GET_LSIZE(bp),			\
696		    (u_longlong_t)BP_GET_PSIZE(bp),			\
697		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp),		\
698		    (u_longlong_t)BP_GET_BIRTH(bp),			\
699		    (u_longlong_t)BP_GET_FILL(bp),			\
700		    ws,							\
701		    (u_longlong_t)bp->blk_cksum.zc_word[0],		\
702		    (u_longlong_t)bp->blk_cksum.zc_word[1],		\
703		    (u_longlong_t)bp->blk_cksum.zc_word[2],		\
704		    (u_longlong_t)bp->blk_cksum.zc_word[3]);		\
705	}								\
706	ASSERT(len < size);						\
707}
708
709#define	BP_GET_BUFC_TYPE(bp)						\
710	(BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
711
712typedef enum spa_import_type {
713	SPA_IMPORT_EXISTING,
714	SPA_IMPORT_ASSEMBLE
715} spa_import_type_t;
716
717typedef enum spa_mode {
718	SPA_MODE_UNINIT = 0,
719	SPA_MODE_READ = 1,
720	SPA_MODE_WRITE = 2,
721} spa_mode_t;
722
723/*
724 * Send TRIM commands in-line during normal pool operation while deleting.
725 *	OFF: no
726 *	ON: yes
727 */
728typedef enum {
729	SPA_AUTOTRIM_OFF = 0,	/* default */
730	SPA_AUTOTRIM_ON,
731} spa_autotrim_t;
732
733/*
734 * Reason TRIM command was issued, used internally for accounting purposes.
735 */
736typedef enum trim_type {
737	TRIM_TYPE_MANUAL = 0,
738	TRIM_TYPE_AUTO = 1,
739	TRIM_TYPE_SIMPLE = 2
740} trim_type_t;
741
742/* state manipulation functions */
743extern int spa_open(const char *pool, spa_t **, const void *tag);
744extern int spa_open_rewind(const char *pool, spa_t **, const void *tag,
745    nvlist_t *policy, nvlist_t **config);
746extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
747    size_t buflen);
748extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
749    nvlist_t *zplprops, struct dsl_crypto_params *dcp);
750extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
751    uint64_t flags);
752extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
753extern int spa_destroy(const char *pool);
754extern int spa_checkpoint(const char *pool);
755extern int spa_checkpoint_discard(const char *pool);
756extern int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
757    boolean_t hardforce);
758extern int spa_reset(const char *pool);
759extern void spa_async_request(spa_t *spa, int flag);
760extern void spa_async_unrequest(spa_t *spa, int flag);
761extern void spa_async_suspend(spa_t *spa);
762extern void spa_async_resume(spa_t *spa);
763extern int spa_async_tasks(spa_t *spa);
764extern spa_t *spa_inject_addref(char *pool);
765extern void spa_inject_delref(spa_t *spa);
766extern void spa_scan_stat_init(spa_t *spa);
767extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
768extern int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
769extern int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
770
771#define	SPA_ASYNC_CONFIG_UPDATE			0x01
772#define	SPA_ASYNC_REMOVE			0x02
773#define	SPA_ASYNC_FAULT_VDEV			0x04
774#define	SPA_ASYNC_RESILVER_DONE			0x08
775#define	SPA_ASYNC_RESILVER			0x10
776#define	SPA_ASYNC_AUTOEXPAND			0x20
777#define	SPA_ASYNC_REMOVE_DONE			0x40
778#define	SPA_ASYNC_REMOVE_STOP			0x80
779#define	SPA_ASYNC_INITIALIZE_RESTART		0x100
780#define	SPA_ASYNC_TRIM_RESTART			0x200
781#define	SPA_ASYNC_AUTOTRIM_RESTART		0x400
782#define	SPA_ASYNC_L2CACHE_REBUILD		0x800
783#define	SPA_ASYNC_L2CACHE_TRIM			0x1000
784#define	SPA_ASYNC_REBUILD_DONE			0x2000
785#define	SPA_ASYNC_DETACH_SPARE			0x4000
786
787/* device manipulation */
788extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t ashift_check);
789extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
790    int replacing, int rebuild);
791extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
792    int replace_done);
793extern int spa_vdev_alloc(spa_t *spa, uint64_t guid);
794extern int spa_vdev_noalloc(spa_t *spa, uint64_t guid);
795extern boolean_t spa_vdev_remove_active(spa_t *spa);
796extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
797    nvlist_t *vdev_errlist);
798extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
799    uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist);
800extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
801extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
802extern int spa_vdev_split_mirror(spa_t *spa, const char *newname,
803    nvlist_t *config, nvlist_t *props, boolean_t exp);
804
805/* spare state (which is global across all pools) */
806extern void spa_spare_add(vdev_t *vd);
807extern void spa_spare_remove(vdev_t *vd);
808extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
809extern void spa_spare_activate(vdev_t *vd);
810
811/* L2ARC state (which is global across all pools) */
812extern void spa_l2cache_add(vdev_t *vd);
813extern void spa_l2cache_remove(vdev_t *vd);
814extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
815extern void spa_l2cache_activate(vdev_t *vd);
816extern void spa_l2cache_drop(spa_t *spa);
817
818/* scanning */
819extern int spa_scan(spa_t *spa, pool_scan_func_t func);
820extern int spa_scan_stop(spa_t *spa);
821extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
822
823/* spa syncing */
824extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
825extern void spa_sync_allpools(void);
826
827extern uint_t zfs_sync_pass_deferred_free;
828
829/* spa sync taskqueues */
830taskq_t *spa_sync_tq_create(spa_t *spa, const char *name);
831void spa_sync_tq_destroy(spa_t *spa);
832uint_t spa_acq_allocator(spa_t *spa);
833void spa_rel_allocator(spa_t *spa, uint_t allocator);
834void spa_select_allocator(zio_t *zio);
835
836/* spa namespace global mutex */
837extern kmutex_t spa_namespace_lock;
838extern avl_tree_t spa_namespace_avl;
839extern kcondvar_t spa_namespace_cv;
840
841/*
842 * SPA configuration functions in spa_config.c
843 */
844
845#define	SPA_CONFIG_UPDATE_POOL	0
846#define	SPA_CONFIG_UPDATE_VDEVS	1
847
848extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t, boolean_t);
849extern void spa_config_load(void);
850extern int spa_all_configs(uint64_t *generation, nvlist_t **pools);
851extern void spa_config_set(spa_t *spa, nvlist_t *config);
852extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
853    int getstats);
854extern void spa_config_update(spa_t *spa, int what);
855extern int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv,
856    vdev_t *parent, uint_t id, int atype);
857
858
859/*
860 * Miscellaneous SPA routines in spa_misc.c
861 */
862
863/* Namespace manipulation */
864extern spa_t *spa_lookup(const char *name);
865extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
866extern void spa_remove(spa_t *spa);
867extern spa_t *spa_next(spa_t *prev);
868
869/* Refcount functions */
870extern void spa_open_ref(spa_t *spa, const void *tag);
871extern void spa_close(spa_t *spa, const void *tag);
872extern void spa_async_close(spa_t *spa, const void *tag);
873extern boolean_t spa_refcount_zero(spa_t *spa);
874
875#define	SCL_NONE	0x00
876#define	SCL_CONFIG	0x01
877#define	SCL_STATE	0x02
878#define	SCL_L2ARC	0x04		/* hack until L2ARC 2.0 */
879#define	SCL_ALLOC	0x08
880#define	SCL_ZIO		0x10
881#define	SCL_FREE	0x20
882#define	SCL_VDEV	0x40
883#define	SCL_LOCKS	7
884#define	SCL_ALL		((1 << SCL_LOCKS) - 1)
885#define	SCL_STATE_ALL	(SCL_STATE | SCL_L2ARC | SCL_ZIO)
886
887/* Historical pool statistics */
888typedef struct spa_history_kstat {
889	kmutex_t		lock;
890	uint64_t		count;
891	uint64_t		size;
892	kstat_t			*kstat;
893	void			*priv;
894	list_t			list;
895} spa_history_kstat_t;
896
897typedef struct spa_history_list {
898	uint64_t		size;
899	procfs_list_t		procfs_list;
900} spa_history_list_t;
901
902typedef struct spa_stats {
903	spa_history_list_t	read_history;
904	spa_history_list_t	txg_history;
905	spa_history_kstat_t	tx_assign_histogram;
906	spa_history_list_t	mmp_history;
907	spa_history_kstat_t	state;		/* pool state */
908	spa_history_kstat_t	guid;		/* pool guid */
909	spa_history_kstat_t	iostats;
910} spa_stats_t;
911
912typedef enum txg_state {
913	TXG_STATE_BIRTH		= 0,
914	TXG_STATE_OPEN		= 1,
915	TXG_STATE_QUIESCED	= 2,
916	TXG_STATE_WAIT_FOR_SYNC	= 3,
917	TXG_STATE_SYNCED	= 4,
918	TXG_STATE_COMMITTED	= 5,
919} txg_state_t;
920
921typedef struct txg_stat {
922	vdev_stat_t		vs1;
923	vdev_stat_t		vs2;
924	uint64_t		txg;
925	uint64_t		ndirty;
926} txg_stat_t;
927
928/* Assorted pool IO kstats */
929typedef struct spa_iostats {
930	kstat_named_t	trim_extents_written;
931	kstat_named_t	trim_bytes_written;
932	kstat_named_t	trim_extents_skipped;
933	kstat_named_t	trim_bytes_skipped;
934	kstat_named_t	trim_extents_failed;
935	kstat_named_t	trim_bytes_failed;
936	kstat_named_t	autotrim_extents_written;
937	kstat_named_t	autotrim_bytes_written;
938	kstat_named_t	autotrim_extents_skipped;
939	kstat_named_t	autotrim_bytes_skipped;
940	kstat_named_t	autotrim_extents_failed;
941	kstat_named_t	autotrim_bytes_failed;
942	kstat_named_t	simple_trim_extents_written;
943	kstat_named_t	simple_trim_bytes_written;
944	kstat_named_t	simple_trim_extents_skipped;
945	kstat_named_t	simple_trim_bytes_skipped;
946	kstat_named_t	simple_trim_extents_failed;
947	kstat_named_t	simple_trim_bytes_failed;
948} spa_iostats_t;
949
950extern void spa_stats_init(spa_t *spa);
951extern void spa_stats_destroy(spa_t *spa);
952extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
953    uint32_t aflags);
954extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
955extern int spa_txg_history_set(spa_t *spa,  uint64_t txg,
956    txg_state_t completed_state, hrtime_t completed_time);
957extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
958    struct dsl_pool *);
959extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
960extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
961extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
962extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
963    hrtime_t duration);
964extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
965    uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
966    int error);
967extern void spa_iostats_trim_add(spa_t *spa, trim_type_t type,
968    uint64_t extents_written, uint64_t bytes_written,
969    uint64_t extents_skipped, uint64_t bytes_skipped,
970    uint64_t extents_failed, uint64_t bytes_failed);
971extern void spa_import_progress_add(spa_t *spa);
972extern void spa_import_progress_remove(uint64_t spa_guid);
973extern int spa_import_progress_set_mmp_check(uint64_t pool_guid,
974    uint64_t mmp_sec_remaining);
975extern int spa_import_progress_set_max_txg(uint64_t pool_guid,
976    uint64_t max_txg);
977extern int spa_import_progress_set_state(uint64_t pool_guid,
978    spa_load_state_t spa_load_state);
979extern void spa_import_progress_set_notes(spa_t *spa,
980    const char *fmt, ...) __printflike(2, 3);
981extern void spa_import_progress_set_notes_nolog(spa_t *spa,
982    const char *fmt, ...) __printflike(2, 3);
983
984/* Pool configuration locks */
985extern int spa_config_tryenter(spa_t *spa, int locks, const void *tag,
986    krw_t rw);
987extern void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw);
988extern void spa_config_enter_mmp(spa_t *spa, int locks, const void *tag,
989    krw_t rw);
990extern void spa_config_exit(spa_t *spa, int locks, const void *tag);
991extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
992
993/* Pool vdev add/remove lock */
994extern uint64_t spa_vdev_enter(spa_t *spa);
995extern uint64_t spa_vdev_detach_enter(spa_t *spa, uint64_t guid);
996extern uint64_t spa_vdev_config_enter(spa_t *spa);
997extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
998    int error, const char *tag);
999extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
1000
1001/* Pool vdev state change lock */
1002extern void spa_vdev_state_enter(spa_t *spa, int oplock);
1003extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
1004
1005/* Log state */
1006typedef enum spa_log_state {
1007	SPA_LOG_UNKNOWN = 0,	/* unknown log state */
1008	SPA_LOG_MISSING,	/* missing log(s) */
1009	SPA_LOG_CLEAR,		/* clear the log(s) */
1010	SPA_LOG_GOOD,		/* log(s) are good */
1011} spa_log_state_t;
1012
1013extern spa_log_state_t spa_get_log_state(spa_t *spa);
1014extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
1015extern int spa_reset_logs(spa_t *spa);
1016
1017/* Log claim callback */
1018extern void spa_claim_notify(zio_t *zio);
1019extern void spa_deadman(void *);
1020
1021/* Accessor functions */
1022extern boolean_t spa_shutting_down(spa_t *spa);
1023extern struct dsl_pool *spa_get_dsl(spa_t *spa);
1024extern boolean_t spa_is_initializing(spa_t *spa);
1025extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa);
1026extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
1027extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
1028extern void spa_altroot(spa_t *, char *, size_t);
1029extern uint32_t spa_sync_pass(spa_t *spa);
1030extern char *spa_name(spa_t *spa);
1031extern uint64_t spa_guid(spa_t *spa);
1032extern uint64_t spa_load_guid(spa_t *spa);
1033extern uint64_t spa_last_synced_txg(spa_t *spa);
1034extern uint64_t spa_first_txg(spa_t *spa);
1035extern uint64_t spa_syncing_txg(spa_t *spa);
1036extern uint64_t spa_final_dirty_txg(spa_t *spa);
1037extern uint64_t spa_version(spa_t *spa);
1038extern pool_state_t spa_state(spa_t *spa);
1039extern spa_load_state_t spa_load_state(spa_t *spa);
1040extern uint64_t spa_freeze_txg(spa_t *spa);
1041extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
1042extern uint64_t spa_get_dspace(spa_t *spa);
1043extern uint64_t spa_get_checkpoint_space(spa_t *spa);
1044extern uint64_t spa_get_slop_space(spa_t *spa);
1045extern void spa_update_dspace(spa_t *spa);
1046extern uint64_t spa_version(spa_t *spa);
1047extern boolean_t spa_deflate(spa_t *spa);
1048extern metaslab_class_t *spa_normal_class(spa_t *spa);
1049extern metaslab_class_t *spa_log_class(spa_t *spa);
1050extern metaslab_class_t *spa_embedded_log_class(spa_t *spa);
1051extern metaslab_class_t *spa_special_class(spa_t *spa);
1052extern metaslab_class_t *spa_dedup_class(spa_t *spa);
1053extern metaslab_class_t *spa_preferred_class(spa_t *spa, uint64_t size,
1054    dmu_object_type_t objtype, uint_t level, uint_t special_smallblk);
1055
1056extern void spa_evicting_os_register(spa_t *, objset_t *os);
1057extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
1058extern void spa_evicting_os_wait(spa_t *spa);
1059extern int spa_max_replication(spa_t *spa);
1060extern int spa_prev_software_version(spa_t *spa);
1061extern uint64_t spa_get_failmode(spa_t *spa);
1062extern uint64_t spa_get_deadman_failmode(spa_t *spa);
1063extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
1064extern boolean_t spa_suspended(spa_t *spa);
1065extern uint64_t spa_bootfs(spa_t *spa);
1066extern uint64_t spa_delegation(spa_t *spa);
1067extern objset_t *spa_meta_objset(spa_t *spa);
1068extern space_map_t *spa_syncing_log_sm(spa_t *spa);
1069extern uint64_t spa_deadman_synctime(spa_t *spa);
1070extern uint64_t spa_deadman_ziotime(spa_t *spa);
1071extern uint64_t spa_dirty_data(spa_t *spa);
1072extern spa_autotrim_t spa_get_autotrim(spa_t *spa);
1073extern int spa_get_allocator(spa_t *spa);
1074extern void spa_set_allocator(spa_t *spa, const char *allocator);
1075
1076/* Miscellaneous support routines */
1077extern void spa_load_failed(spa_t *spa, const char *fmt, ...)
1078    __attribute__((format(printf, 2, 3)));
1079extern void spa_load_note(spa_t *spa, const char *fmt, ...)
1080    __attribute__((format(printf, 2, 3)));
1081extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
1082    dmu_tx_t *tx);
1083extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
1084extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
1085extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
1086extern char *spa_strdup(const char *);
1087extern void spa_strfree(char *);
1088extern uint64_t spa_generate_guid(spa_t *spa);
1089extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
1090extern void spa_freeze(spa_t *spa);
1091extern int spa_change_guid(spa_t *spa);
1092extern void spa_upgrade(spa_t *spa, uint64_t version);
1093extern void spa_evict_all(void);
1094extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
1095    boolean_t l2cache);
1096extern boolean_t spa_has_l2cache(spa_t *, uint64_t guid);
1097extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
1098extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
1099extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
1100extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
1101extern boolean_t spa_has_slogs(spa_t *spa);
1102extern boolean_t spa_is_root(spa_t *spa);
1103extern boolean_t spa_writeable(spa_t *spa);
1104extern boolean_t spa_has_pending_synctask(spa_t *spa);
1105extern int spa_maxblocksize(spa_t *spa);
1106extern int spa_maxdnodesize(spa_t *spa);
1107extern boolean_t spa_has_checkpoint(spa_t *spa);
1108extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa);
1109extern boolean_t spa_suspend_async_destroy(spa_t *spa);
1110extern uint64_t spa_min_claim_txg(spa_t *spa);
1111extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva,
1112    const blkptr_t *bp);
1113typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size,
1114    void *arg);
1115extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp,
1116    spa_remap_cb_t callback, void *arg);
1117extern uint64_t spa_get_last_removal_txg(spa_t *spa);
1118extern boolean_t spa_trust_config(spa_t *spa);
1119extern uint64_t spa_missing_tvds_allowed(spa_t *spa);
1120extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing);
1121extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa);
1122extern uint64_t spa_total_metaslabs(spa_t *spa);
1123extern boolean_t spa_multihost(spa_t *spa);
1124extern uint32_t spa_get_hostid(spa_t *spa);
1125extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *);
1126extern boolean_t spa_livelist_delete_check(spa_t *spa);
1127
1128extern boolean_t spa_mmp_remote_host_activity(spa_t *spa);
1129
1130extern spa_mode_t spa_mode(spa_t *spa);
1131extern uint64_t zfs_strtonum(const char *str, char **nptr);
1132
1133extern char *spa_his_ievent_table[];
1134
1135extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
1136extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
1137    char *his_buf);
1138extern int spa_history_log(spa_t *spa, const char *his_buf);
1139extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
1140extern void spa_history_log_version(spa_t *spa, const char *operation,
1141    dmu_tx_t *tx);
1142extern void spa_history_log_internal(spa_t *spa, const char *operation,
1143    dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1144extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
1145    dmu_tx_t *tx, const char *fmt, ...)  __printflike(4, 5);
1146extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
1147    dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1148
1149extern const char *spa_state_to_name(spa_t *spa);
1150
1151/* error handling */
1152struct zbookmark_phys;
1153extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb,
1154    const uint64_t birth);
1155extern void spa_remove_error(spa_t *spa, zbookmark_phys_t *zb,
1156    uint64_t birth);
1157extern int zfs_ereport_post(const char *clazz, spa_t *spa, vdev_t *vd,
1158    const zbookmark_phys_t *zb, zio_t *zio, uint64_t state);
1159extern boolean_t zfs_ereport_is_valid(const char *clazz, spa_t *spa, vdev_t *vd,
1160    zio_t *zio);
1161extern void zfs_ereport_taskq_fini(void);
1162extern void zfs_ereport_clear(spa_t *spa, vdev_t *vd);
1163extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
1164    const char *name, nvlist_t *aux);
1165extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
1166extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
1167extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
1168extern uint64_t spa_approx_errlog_size(spa_t *spa);
1169extern int spa_get_errlog(spa_t *spa, void *uaddr, uint64_t *count);
1170extern uint64_t spa_get_last_errlog_size(spa_t *spa);
1171extern void spa_errlog_rotate(spa_t *spa);
1172extern void spa_errlog_drain(spa_t *spa);
1173extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
1174extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
1175extern void spa_delete_dataset_errlog(spa_t *spa, uint64_t ds, dmu_tx_t *tx);
1176extern void spa_swap_errlog(spa_t *spa, uint64_t new_head_ds,
1177    uint64_t old_head_ds, dmu_tx_t *tx);
1178extern void sync_error_list(spa_t *spa, avl_tree_t *t, uint64_t *obj,
1179    dmu_tx_t *tx);
1180extern void spa_upgrade_errlog(spa_t *spa, dmu_tx_t *tx);
1181extern int find_top_affected_fs(spa_t *spa, uint64_t head_ds,
1182    zbookmark_err_phys_t *zep, uint64_t *top_affected_fs);
1183extern int find_birth_txg(struct dsl_dataset *ds, zbookmark_err_phys_t *zep,
1184    uint64_t *birth_txg);
1185extern void zep_to_zb(uint64_t dataset, zbookmark_err_phys_t *zep,
1186    zbookmark_phys_t *zb);
1187extern void name_to_errphys(char *buf, zbookmark_err_phys_t *zep);
1188
1189/* vdev mirror */
1190extern void vdev_mirror_stat_init(void);
1191extern void vdev_mirror_stat_fini(void);
1192
1193/* Initialization and termination */
1194extern void spa_init(spa_mode_t mode);
1195extern void spa_fini(void);
1196extern void spa_boot_init(void);
1197
1198/* properties */
1199extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
1200extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
1201extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
1202extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
1203
1204/* asynchronous event notification */
1205extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
1206    const char *name);
1207extern void zfs_ereport_zvol_post(const char *subclass, const char *name,
1208    const char *device_name, const char *raw_name);
1209
1210/* waiting for pool activities to complete */
1211extern int spa_wait(const char *pool, zpool_wait_activity_t activity,
1212    boolean_t *waited);
1213extern int spa_wait_tag(const char *name, zpool_wait_activity_t activity,
1214    uint64_t tag, boolean_t *waited);
1215extern void spa_notify_waiters(spa_t *spa);
1216extern void spa_wake_waiters(spa_t *spa);
1217
1218extern void spa_import_os(spa_t *spa);
1219extern void spa_export_os(spa_t *spa);
1220extern void spa_activate_os(spa_t *spa);
1221extern void spa_deactivate_os(spa_t *spa);
1222
1223/* module param call functions */
1224int param_set_deadman_ziotime(ZFS_MODULE_PARAM_ARGS);
1225int param_set_deadman_synctime(ZFS_MODULE_PARAM_ARGS);
1226int param_set_slop_shift(ZFS_MODULE_PARAM_ARGS);
1227int param_set_deadman_failmode(ZFS_MODULE_PARAM_ARGS);
1228int param_set_active_allocator(ZFS_MODULE_PARAM_ARGS);
1229
1230#ifdef ZFS_DEBUG
1231#define	dprintf_bp(bp, fmt, ...) do {				\
1232	if (zfs_flags & ZFS_DEBUG_DPRINTF) {			\
1233	char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP);	\
1234	snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp));	\
1235	dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf);		\
1236	kmem_free(__blkbuf, BP_SPRINTF_LEN);			\
1237	} \
1238} while (0)
1239#else
1240#define	dprintf_bp(bp, fmt, ...)
1241#endif
1242
1243extern spa_mode_t spa_mode_global;
1244extern int zfs_deadman_enabled;
1245extern uint64_t zfs_deadman_synctime_ms;
1246extern uint64_t zfs_deadman_ziotime_ms;
1247extern uint64_t zfs_deadman_checktime_ms;
1248
1249extern kmem_cache_t *zio_buf_cache[];
1250extern kmem_cache_t *zio_data_buf_cache[];
1251
1252#ifdef	__cplusplus
1253}
1254#endif
1255
1256#endif	/* _SYS_SPA_H */
1257