1/*-
2 * Implementation of Utility functions for all SCSI device types.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions, and the following disclaimer,
15 *    without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 *    derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32#include <sys/param.h>
33#include <sys/types.h>
34#include <sys/stdint.h>
35
36#ifdef _KERNEL
37#include "opt_scsi.h"
38
39#include <sys/systm.h>
40#include <sys/libkern.h>
41#include <sys/kernel.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/mutex.h>
45#include <sys/sysctl.h>
46#include <sys/ctype.h>
47#else
48#include <errno.h>
49#include <stdio.h>
50#include <stdlib.h>
51#include <string.h>
52#include <ctype.h>
53#endif
54
55#include <cam/cam.h>
56#include <cam/cam_ccb.h>
57#include <cam/cam_queue.h>
58#include <cam/cam_xpt.h>
59#include <cam/scsi/scsi_all.h>
60#include <sys/ata.h>
61#include <sys/sbuf.h>
62
63#ifdef _KERNEL
64#include <cam/cam_periph.h>
65#include <cam/cam_xpt_sim.h>
66#include <cam/cam_xpt_periph.h>
67#include <cam/cam_xpt_internal.h>
68#else
69#include <camlib.h>
70#include <stddef.h>
71
72#ifndef FALSE
73#define FALSE   0
74#endif /* FALSE */
75#ifndef TRUE
76#define TRUE    1
77#endif /* TRUE */
78#define ERESTART        -1              /* restart syscall */
79#define EJUSTRETURN     -2              /* don't modify regs, just return */
80#endif /* !_KERNEL */
81
82/*
83 * This is the default number of milliseconds we wait for devices to settle
84 * after a SCSI bus reset.
85 */
86#ifndef SCSI_DELAY
87#define SCSI_DELAY 2000
88#endif
89/*
90 * All devices need _some_ sort of bus settle delay, so we'll set it to
91 * a minimum value of 100ms. Note that this is pertinent only for SPI-
92 * not transport like Fibre Channel or iSCSI where 'delay' is completely
93 * meaningless.
94 */
95#ifndef SCSI_MIN_DELAY
96#define SCSI_MIN_DELAY 100
97#endif
98/*
99 * Make sure the user isn't using seconds instead of milliseconds.
100 */
101#if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
102#error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
103#endif
104
105int scsi_delay;
106
107static int	ascentrycomp(const void *key, const void *member);
108static int	senseentrycomp(const void *key, const void *member);
109static void	fetchtableentries(int sense_key, int asc, int ascq,
110				  struct scsi_inquiry_data *,
111				  const struct sense_key_table_entry **,
112				  const struct asc_table_entry **);
113
114#ifdef _KERNEL
115static void	init_scsi_delay(void);
116static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
117static int	set_scsi_delay(int delay);
118#endif
119
120#if !defined(SCSI_NO_OP_STRINGS)
121
122#define	D	(1 << T_DIRECT)
123#define	T	(1 << T_SEQUENTIAL)
124#define	L	(1 << T_PRINTER)
125#define	P	(1 << T_PROCESSOR)
126#define	W	(1 << T_WORM)
127#define	R	(1 << T_CDROM)
128#define	O	(1 << T_OPTICAL)
129#define	M	(1 << T_CHANGER)
130#define	A	(1 << T_STORARRAY)
131#define	E	(1 << T_ENCLOSURE)
132#define	B	(1 << T_RBC)
133#define	K	(1 << T_OCRW)
134#define	V	(1 << T_ADC)
135#define	F	(1 << T_OSD)
136#define	S	(1 << T_SCANNER)
137#define	C	(1 << T_COMM)
138
139#define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
140
141static struct op_table_entry plextor_cd_ops[] = {
142	{ 0xD8, R, "CD-DA READ" }
143};
144
145static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
146	{
147		/*
148		 * I believe that 0xD8 is the Plextor proprietary command
149		 * to read CD-DA data.  I'm not sure which Plextor CDROM
150		 * models support the command, though.  I know for sure
151		 * that the 4X, 8X, and 12X models do, and presumably the
152		 * 12-20X does.  I don't know about any earlier models,
153		 * though.  If anyone has any more complete information,
154		 * feel free to change this quirk entry.
155		 */
156		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
157		nitems(plextor_cd_ops),
158		plextor_cd_ops
159	}
160};
161
162static struct op_table_entry scsi_op_codes[] = {
163	/*
164	 * From: http://www.t10.org/lists/op-num.txt
165	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
166	 *              and Jung-uk Kim (jkim@FreeBSD.org)
167	 *
168	 * Note:  order is important in this table, scsi_op_desc() currently
169	 * depends on the opcodes in the table being in order to save
170	 * search time.
171	 * Note:  scanner and comm. devices are carried over from the previous
172	 * version because they were removed in the latest spec.
173	 */
174	/* File: OP-NUM.TXT
175	 *
176	 * SCSI Operation Codes
177	 * Numeric Sorted Listing
178	 * as of  5/26/15
179	 *
180	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
181	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
182	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
183	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
184	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
185	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
186	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
187	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
188	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
189	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
190	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
191	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
192	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
193	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
194	 * OP  DTLPWROMAEBKVF  Description
195	 * --  --------------  ---------------------------------------------- */
196	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
197	{ 0x00,	ALL, "TEST UNIT READY" },
198	/* 01   M              REWIND */
199	{ 0x01,	T, "REWIND" },
200	/* 01  Z V ZZZZ        REZERO UNIT */
201	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
202	/* 02  VVVVVV V */
203	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
204	{ 0x03,	ALL, "REQUEST SENSE" },
205	/* 04  M    OO         FORMAT UNIT */
206	{ 0x04,	D | R | O, "FORMAT UNIT" },
207	/* 04   O              FORMAT MEDIUM */
208	{ 0x04,	T, "FORMAT MEDIUM" },
209	/* 04    O             FORMAT */
210	{ 0x04,	L, "FORMAT" },
211	/* 05  VMVVVV V        READ BLOCK LIMITS */
212	{ 0x05,	T, "READ BLOCK LIMITS" },
213	/* 06  VVVVVV V */
214	/* 07  OVV O OV        REASSIGN BLOCKS */
215	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
216	/* 07         O        INITIALIZE ELEMENT STATUS */
217	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
218	/* 08  MOV O OV        READ(6) */
219	{ 0x08,	D | T | W | O, "READ(6)" },
220	/* 08     O            RECEIVE */
221	{ 0x08,	P, "RECEIVE" },
222	/* 08                  GET MESSAGE(6) */
223	{ 0x08, C, "GET MESSAGE(6)" },
224	/* 09  VVVVVV V */
225	/* 0A  OO  O OV        WRITE(6) */
226	{ 0x0A,	D | T | W | O, "WRITE(6)" },
227	/* 0A     M            SEND(6) */
228	{ 0x0A,	P, "SEND(6)" },
229	/* 0A                  SEND MESSAGE(6) */
230	{ 0x0A, C, "SEND MESSAGE(6)" },
231	/* 0A    M             PRINT */
232	{ 0x0A,	L, "PRINT" },
233	/* 0B  Z   ZOZV        SEEK(6) */
234	{ 0x0B,	D | W | R | O, "SEEK(6)" },
235	/* 0B   O              SET CAPACITY */
236	{ 0x0B,	T, "SET CAPACITY" },
237	/* 0B    O             SLEW AND PRINT */
238	{ 0x0B,	L, "SLEW AND PRINT" },
239	/* 0C  VVVVVV V */
240	/* 0D  VVVVVV V */
241	/* 0E  VVVVVV V */
242	/* 0F  VOVVVV V        READ REVERSE(6) */
243	{ 0x0F,	T, "READ REVERSE(6)" },
244	/* 10  VM VVV          WRITE FILEMARKS(6) */
245	{ 0x10,	T, "WRITE FILEMARKS(6)" },
246	/* 10    O             SYNCHRONIZE BUFFER */
247	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
248	/* 11  VMVVVV          SPACE(6) */
249	{ 0x11,	T, "SPACE(6)" },
250	/* 12  MMMMMMMMMMMMMM  INQUIRY */
251	{ 0x12,	ALL, "INQUIRY" },
252	/* 13  V VVVV */
253	/* 13   O              VERIFY(6) */
254	{ 0x13,	T, "VERIFY(6)" },
255	/* 14  VOOVVV          RECOVER BUFFERED DATA */
256	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
257	/* 15  OMO O OOOO OO   MODE SELECT(6) */
258	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
259	/* 16  ZZMZO OOOZ O    RESERVE(6) */
260	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
261	/* 16         Z        RESERVE ELEMENT(6) */
262	{ 0x16,	M, "RESERVE ELEMENT(6)" },
263	/* 17  ZZMZO OOOZ O    RELEASE(6) */
264	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
265	/* 17         Z        RELEASE ELEMENT(6) */
266	{ 0x17,	M, "RELEASE ELEMENT(6)" },
267	/* 18  ZZZZOZO    Z    COPY */
268	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
269	/* 19  VMVVVV          ERASE(6) */
270	{ 0x19,	T, "ERASE(6)" },
271	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
272	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
273	/* 1B  O   OOO O MO O  START STOP UNIT */
274	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
275	/* 1B   O          M   LOAD UNLOAD */
276	{ 0x1B,	T | V, "LOAD UNLOAD" },
277	/* 1B                  SCAN */
278	{ 0x1B, S, "SCAN" },
279	/* 1B    O             STOP PRINT */
280	{ 0x1B,	L, "STOP PRINT" },
281	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
282	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
283	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
284	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
285	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
286	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
287	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
288	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
289	/* 1F */
290	/* 20  V   VVV    V */
291	/* 21  V   VVV    V */
292	/* 22  V   VVV    V */
293	/* 23  V   V V    V */
294	/* 23       O          READ FORMAT CAPACITIES */
295	{ 0x23,	R, "READ FORMAT CAPACITIES" },
296	/* 24  V   VV          SET WINDOW */
297	{ 0x24, S, "SET WINDOW" },
298	/* 25  M   M M   M     READ CAPACITY(10) */
299	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
300	/* 25       O          READ CAPACITY */
301	{ 0x25,	R, "READ CAPACITY" },
302	/* 25             M    READ CARD CAPACITY */
303	{ 0x25,	K, "READ CARD CAPACITY" },
304	/* 25                  GET WINDOW */
305	{ 0x25, S, "GET WINDOW" },
306	/* 26  V   VV */
307	/* 27  V   VV */
308	/* 28  M   MOM   MM    READ(10) */
309	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
310	/* 28                  GET MESSAGE(10) */
311	{ 0x28, C, "GET MESSAGE(10)" },
312	/* 29  V   VVO         READ GENERATION */
313	{ 0x29,	O, "READ GENERATION" },
314	/* 2A  O   MOM   MO    WRITE(10) */
315	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
316	/* 2A                  SEND(10) */
317	{ 0x2A, S, "SEND(10)" },
318	/* 2A                  SEND MESSAGE(10) */
319	{ 0x2A, C, "SEND MESSAGE(10)" },
320	/* 2B  Z   OOO    O    SEEK(10) */
321	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
322	/* 2B   O              LOCATE(10) */
323	{ 0x2B,	T, "LOCATE(10)" },
324	/* 2B         O        POSITION TO ELEMENT */
325	{ 0x2B,	M, "POSITION TO ELEMENT" },
326	/* 2C  V    OO         ERASE(10) */
327	{ 0x2C,	R | O, "ERASE(10)" },
328	/* 2D        O         READ UPDATED BLOCK */
329	{ 0x2D,	O, "READ UPDATED BLOCK" },
330	/* 2D  V */
331	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
332	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
333	/* 2F  O   OOO         VERIFY(10) */
334	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
335	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
336	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
337	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
338	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
339	/* 31                  OBJECT POSITION */
340	{ 0x31, S, "OBJECT POSITION" },
341	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
342	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
343	/* 33  Z   OZO         SET LIMITS(10) */
344	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
345	/* 34  O   O O    O    PRE-FETCH(10) */
346	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
347	/* 34   M              READ POSITION */
348	{ 0x34,	T, "READ POSITION" },
349	/* 34                  GET DATA BUFFER STATUS */
350	{ 0x34, S, "GET DATA BUFFER STATUS" },
351	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
352	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
353	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
354	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
355	/* 37  O     O         READ DEFECT DATA(10) */
356	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
357	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
358	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
359	/* 38      O O    O    MEDIUM SCAN */
360	{ 0x38,	W | O | K, "MEDIUM SCAN" },
361	/* 39  ZZZZOZO    Z    COMPARE */
362	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
363	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
364	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
365	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
366	{ 0x3B,	ALL, "WRITE BUFFER" },
367	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
368	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
369	/* 3D        O         UPDATE BLOCK */
370	{ 0x3D,	O, "UPDATE BLOCK" },
371	/* 3E  O   O O         READ LONG(10) */
372	{ 0x3E,	D | W | O, "READ LONG(10)" },
373	/* 3F  O   O O         WRITE LONG(10) */
374	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
375	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
376	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
377	/* 41  O               WRITE SAME(10) */
378	{ 0x41,	D, "WRITE SAME(10)" },
379	/* 42  O               UNMAP */
380	{ 0x42,	D, "UNMAP" },
381	/* 42       O          READ SUB-CHANNEL */
382	{ 0x42,	R, "READ SUB-CHANNEL" },
383	/* 43       O          READ TOC/PMA/ATIP */
384	{ 0x43,	R, "READ TOC/PMA/ATIP" },
385	/* 44   M          M   REPORT DENSITY SUPPORT */
386	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
387	/* 44                  READ HEADER */
388	/* 45       O          PLAY AUDIO(10) */
389	{ 0x45,	R, "PLAY AUDIO(10)" },
390	/* 46       M          GET CONFIGURATION */
391	{ 0x46,	R, "GET CONFIGURATION" },
392	/* 47       O          PLAY AUDIO MSF */
393	{ 0x47,	R, "PLAY AUDIO MSF" },
394	/* 48  O               SANITIZE */
395	{ 0x48,	D, "SANITIZE" },
396	/* 49 */
397	/* 4A       M          GET EVENT STATUS NOTIFICATION */
398	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
399	/* 4B       O          PAUSE/RESUME */
400	{ 0x4B,	R, "PAUSE/RESUME" },
401	/* 4C  OOOOO OOOO OOO  LOG SELECT */
402	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
403	/* 4D  OOOOO OOOO OMO  LOG SENSE */
404	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
405	/* 4E       O          STOP PLAY/SCAN */
406	{ 0x4E,	R, "STOP PLAY/SCAN" },
407	/* 4F */
408	/* 50  O               XDWRITE(10) */
409	{ 0x50,	D, "XDWRITE(10)" },
410	/* 51  O               XPWRITE(10) */
411	{ 0x51,	D, "XPWRITE(10)" },
412	/* 51       O          READ DISC INFORMATION */
413	{ 0x51,	R, "READ DISC INFORMATION" },
414	/* 52  O               XDREAD(10) */
415	{ 0x52,	D, "XDREAD(10)" },
416	/* 52       O          READ TRACK INFORMATION */
417	{ 0x52,	R, "READ TRACK INFORMATION" },
418	/* 53  O               XDWRITEREAD(10) */
419	{ 0x53,	D, "XDWRITEREAD(10)" },
420	/* 53       O          RESERVE TRACK */
421	{ 0x53,	R, "RESERVE TRACK" },
422	/* 54       O          SEND OPC INFORMATION */
423	{ 0x54,	R, "SEND OPC INFORMATION" },
424	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
425	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
426	/* 56  ZZMZO OOOZ      RESERVE(10) */
427	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
428	/* 56         Z        RESERVE ELEMENT(10) */
429	{ 0x56,	M, "RESERVE ELEMENT(10)" },
430	/* 57  ZZMZO OOOZ      RELEASE(10) */
431	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
432	/* 57         Z        RELEASE ELEMENT(10) */
433	{ 0x57,	M, "RELEASE ELEMENT(10)" },
434	/* 58       O          REPAIR TRACK */
435	{ 0x58,	R, "REPAIR TRACK" },
436	/* 59 */
437	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
438	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
439	/* 5B       O          CLOSE TRACK/SESSION */
440	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
441	/* 5C       O          READ BUFFER CAPACITY */
442	{ 0x5C,	R, "READ BUFFER CAPACITY" },
443	/* 5D       O          SEND CUE SHEET */
444	{ 0x5D,	R, "SEND CUE SHEET" },
445	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
446	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
447	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
448	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
449	/* 7E  OO   O OOOO O   extended CDB */
450	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
451	/* 7F  O            M  variable length CDB (more than 16 bytes) */
452	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
453	/* 80  Z               XDWRITE EXTENDED(16) */
454	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
455	/* 80   M              WRITE FILEMARKS(16) */
456	{ 0x80,	T, "WRITE FILEMARKS(16)" },
457	/* 81  Z               REBUILD(16) */
458	{ 0x81,	D, "REBUILD(16)" },
459	/* 81   O              READ REVERSE(16) */
460	{ 0x81,	T, "READ REVERSE(16)" },
461	/* 82  Z               REGENERATE(16) */
462	{ 0x82,	D, "REGENERATE(16)" },
463	/* 82   O              ALLOW OVERWRITE */
464	{ 0x82,	T, "ALLOW OVERWRITE" },
465	/* 83  OOOOO O    OO   EXTENDED COPY */
466	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
467	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
468	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
469	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
470	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
471	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
472	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
473	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
474	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
475	/* 88  MM  O O   O     READ(16) */
476	{ 0x88,	D | T | W | O | B, "READ(16)" },
477	/* 89  O               COMPARE AND WRITE*/
478	{ 0x89,	D, "COMPARE AND WRITE" },
479	/* 8A  OM  O O   O     WRITE(16) */
480	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
481	/* 8B  O               ORWRITE */
482	{ 0x8B,	D, "ORWRITE" },
483	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
484	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
485	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
486	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
487	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
488	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
489	/* 8F  OO  O O   O     VERIFY(16) */
490	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
491	/* 90  O   O O   O     PRE-FETCH(16) */
492	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
493	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
494	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
495	/* 91   O              SPACE(16) */
496	{ 0x91,	T, "SPACE(16)" },
497	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
498	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
499	/* 92   O              LOCATE(16) */
500	{ 0x92,	T, "LOCATE(16)" },
501	/* 93  O               WRITE SAME(16) */
502	{ 0x93,	D, "WRITE SAME(16)" },
503	/* 93   M              ERASE(16) */
504	{ 0x93,	T, "ERASE(16)" },
505	/* 94  O               ZBC OUT */
506	{ 0x94,	ALL, "ZBC OUT" },
507	/* 95  O               ZBC IN */
508	{ 0x95,	ALL, "ZBC IN" },
509	/* 96 */
510	/* 97 */
511	/* 98 */
512	/* 99 */
513	/* 9A  O               WRITE STREAM(16) */
514	{ 0x9A,	D, "WRITE STREAM(16)" },
515	/* 9B  OOOOOOOOOO OOO  READ BUFFER(16) */
516	{ 0x9B,	ALL & ~(B) , "READ BUFFER(16)" },
517	/* 9C  O              WRITE ATOMIC(16) */
518	{ 0x9C, D, "WRITE ATOMIC(16)" },
519	/* 9D                  SERVICE ACTION BIDIRECTIONAL */
520	{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
521	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
522	/* 9E                  SERVICE ACTION IN(16) */
523	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
524	/* 9F              M   SERVICE ACTION OUT(16) */
525	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
526	/* A0  MMOOO OMMM OMO  REPORT LUNS */
527	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
528	/* A1       O          BLANK */
529	{ 0xA1,	R, "BLANK" },
530	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
531	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
532	/* A2  OO   O      O   SECURITY PROTOCOL IN */
533	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
534	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
535	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536	/* A3       O          SEND KEY */
537	{ 0xA3,	R, "SEND KEY" },
538	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
539	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540	/* A4       O          REPORT KEY */
541	{ 0xA4,	R, "REPORT KEY" },
542	/* A5   O  O OM        MOVE MEDIUM */
543	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
544	/* A5       O          PLAY AUDIO(12) */
545	{ 0xA5,	R, "PLAY AUDIO(12)" },
546	/* A6         O        EXCHANGE MEDIUM */
547	{ 0xA6,	M, "EXCHANGE MEDIUM" },
548	/* A6       O          LOAD/UNLOAD C/DVD */
549	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
550	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
551	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
552	/* A7       O          SET READ AHEAD */
553	{ 0xA7,	R, "SET READ AHEAD" },
554	/* A8  O   OOO         READ(12) */
555	{ 0xA8,	D | W | R | O, "READ(12)" },
556	/* A8                  GET MESSAGE(12) */
557	{ 0xA8, C, "GET MESSAGE(12)" },
558	/* A9              O   SERVICE ACTION OUT(12) */
559	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
560	/* AA  O   OOO         WRITE(12) */
561	{ 0xAA,	D | W | R | O, "WRITE(12)" },
562	/* AA                  SEND MESSAGE(12) */
563	{ 0xAA, C, "SEND MESSAGE(12)" },
564	/* AB       O      O   SERVICE ACTION IN(12) */
565	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
566	/* AC        O         ERASE(12) */
567	{ 0xAC,	O, "ERASE(12)" },
568	/* AC       O          GET PERFORMANCE */
569	{ 0xAC,	R, "GET PERFORMANCE" },
570	/* AD       O          READ DVD STRUCTURE */
571	{ 0xAD,	R, "READ DVD STRUCTURE" },
572	/* AE  O   O O         WRITE AND VERIFY(12) */
573	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
574	/* AF  O   OZO         VERIFY(12) */
575	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
576	/* B0      ZZZ         SEARCH DATA HIGH(12) */
577	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
578	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
579	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
580	/* B2      ZZZ         SEARCH DATA LOW(12) */
581	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
582	/* B3  Z   OZO         SET LIMITS(12) */
583	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
584	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
585	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
587	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
588	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
589	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
590	/* B6         O        SEND VOLUME TAG */
591	{ 0xB6,	M, "SEND VOLUME TAG" },
592	/* B6       O          SET STREAMING */
593	{ 0xB6,	R, "SET STREAMING" },
594	/* B7  O     O         READ DEFECT DATA(12) */
595	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
596	/* B8   O  OZOM        READ ELEMENT STATUS */
597	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
598	/* B9       O          READ CD MSF */
599	{ 0xB9,	R, "READ CD MSF" },
600	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
601	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602	/* BA       O          SCAN */
603	{ 0xBA,	R, "SCAN" },
604	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
605	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606	/* BB       O          SET CD SPEED */
607	{ 0xBB,	R, "SET CD SPEED" },
608	/* BC  O   O OOMO      SPARE (IN) */
609	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
610	/* BD  O   O OOOO      SPARE (OUT) */
611	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
612	/* BD       O          MECHANISM STATUS */
613	{ 0xBD,	R, "MECHANISM STATUS" },
614	/* BE  O   O OOMO      VOLUME SET (IN) */
615	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
616	/* BE       O          READ CD */
617	{ 0xBE,	R, "READ CD" },
618	/* BF  O   O OOOO      VOLUME SET (OUT) */
619	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
620	/* BF       O          SEND DVD STRUCTURE */
621	{ 0xBF,	R, "SEND DVD STRUCTURE" }
622};
623
624const char *
625scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
626{
627	caddr_t match;
628	int i, j;
629	uint32_t opmask;
630	uint16_t pd_type;
631	int       num_ops[2];
632	struct op_table_entry *table[2];
633	int num_tables;
634
635	/*
636	 * If we've got inquiry data, use it to determine what type of
637	 * device we're dealing with here.  Otherwise, assume direct
638	 * access.
639	 */
640	if (inq_data == NULL) {
641		pd_type = T_DIRECT;
642		match = NULL;
643	} else {
644		pd_type = SID_TYPE(inq_data);
645
646		match = cam_quirkmatch((caddr_t)inq_data,
647				       (caddr_t)scsi_op_quirk_table,
648				       nitems(scsi_op_quirk_table),
649				       sizeof(*scsi_op_quirk_table),
650				       scsi_inquiry_match);
651	}
652
653	if (match != NULL) {
654		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
655		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
656		table[1] = scsi_op_codes;
657		num_ops[1] = nitems(scsi_op_codes);
658		num_tables = 2;
659	} else {
660		/*
661		 * If this is true, we have a vendor specific opcode that
662		 * wasn't covered in the quirk table.
663		 */
664		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
665			return("Vendor Specific Command");
666
667		table[0] = scsi_op_codes;
668		num_ops[0] = nitems(scsi_op_codes);
669		num_tables = 1;
670	}
671
672	/* RBC is 'Simplified' Direct Access Device */
673	if (pd_type == T_RBC)
674		pd_type = T_DIRECT;
675
676	/*
677	 * Host managed drives are direct access for the most part.
678	 */
679	if (pd_type == T_ZBC_HM)
680		pd_type = T_DIRECT;
681
682	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
683	if (pd_type == T_NODEVICE)
684		pd_type = T_DIRECT;
685
686	opmask = 1 << pd_type;
687
688	for (j = 0; j < num_tables; j++) {
689		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
690			if ((table[j][i].opcode == opcode)
691			 && ((table[j][i].opmask & opmask) != 0))
692				return(table[j][i].desc);
693		}
694	}
695
696	/*
697	 * If we can't find a match for the command in the table, we just
698	 * assume it's a vendor specifc command.
699	 */
700	return("Vendor Specific Command");
701
702}
703
704#else /* SCSI_NO_OP_STRINGS */
705
706const char *
707scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
708{
709	return("");
710}
711
712#endif
713
714#if !defined(SCSI_NO_SENSE_STRINGS)
715#define SST(asc, ascq, action, desc) \
716	asc, ascq, action, desc
717#else
718const char empty_string[] = "";
719
720#define SST(asc, ascq, action, desc) \
721	asc, ascq, action, empty_string
722#endif
723
724const struct sense_key_table_entry sense_key_table[] =
725{
726	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
727	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
728	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
729	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
730	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
731	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
732	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
733	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
734	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
735	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
736	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
737	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
738	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
739	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
740	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
741	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
742};
743
744static struct asc_table_entry quantum_fireball_entries[] = {
745	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
746	     "Logical unit not ready, initializing cmd. required") }
747};
748
749static struct asc_table_entry sony_mo_entries[] = {
750	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
751	     "Logical unit not ready, cause not reportable") }
752};
753
754static struct asc_table_entry hgst_entries[] = {
755	{ SST(0x04, 0xF0, SS_RDEF,
756	    "Vendor Unique - Logical Unit Not Ready") },
757	{ SST(0x0A, 0x01, SS_RDEF,
758	    "Unrecovered Super Certification Log Write Error") },
759	{ SST(0x0A, 0x02, SS_RDEF,
760	    "Unrecovered Super Certification Log Read Error") },
761	{ SST(0x15, 0x03, SS_RDEF,
762	    "Unrecovered Sector Error") },
763	{ SST(0x3E, 0x04, SS_RDEF,
764	    "Unrecovered Self-Test Hard-Cache Test Fail") },
765	{ SST(0x3E, 0x05, SS_RDEF,
766	    "Unrecovered Self-Test OTF-Cache Fail") },
767	{ SST(0x40, 0x00, SS_RDEF,
768	    "Unrecovered SAT No Buffer Overflow Error") },
769	{ SST(0x40, 0x01, SS_RDEF,
770	    "Unrecovered SAT Buffer Overflow Error") },
771	{ SST(0x40, 0x02, SS_RDEF,
772	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
773	{ SST(0x40, 0x03, SS_RDEF,
774	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
775	{ SST(0x40, 0x81, SS_RDEF,
776	    "DRAM Failure") },
777	{ SST(0x44, 0x0B, SS_RDEF,
778	    "Vendor Unique - Internal Target Failure") },
779	{ SST(0x44, 0xF2, SS_RDEF,
780	    "Vendor Unique - Internal Target Failure") },
781	{ SST(0x44, 0xF6, SS_RDEF,
782	    "Vendor Unique - Internal Target Failure") },
783	{ SST(0x44, 0xF9, SS_RDEF,
784	    "Vendor Unique - Internal Target Failure") },
785	{ SST(0x44, 0xFA, SS_RDEF,
786	    "Vendor Unique - Internal Target Failure") },
787	{ SST(0x5D, 0x22, SS_RDEF,
788	    "Extreme Over-Temperature Warning") },
789	{ SST(0x5D, 0x50, SS_RDEF,
790	    "Load/Unload cycle Count Warning") },
791	{ SST(0x81, 0x00, SS_RDEF,
792	    "Vendor Unique - Internal Logic Error") },
793	{ SST(0x85, 0x00, SS_RDEF,
794	    "Vendor Unique - Internal Key Seed Error") },
795};
796
797static struct asc_table_entry seagate_entries[] = {
798	{ SST(0x04, 0xF0, SS_RDEF,
799	    "Logical Unit Not Ready, super certify in Progress") },
800	{ SST(0x08, 0x86, SS_RDEF,
801	    "Write Fault Data Corruption") },
802	{ SST(0x09, 0x0D, SS_RDEF,
803	    "Tracking Failure") },
804	{ SST(0x09, 0x0E, SS_RDEF,
805	    "ETF Failure") },
806	{ SST(0x0B, 0x5D, SS_RDEF,
807	    "Pre-SMART Warning") },
808	{ SST(0x0B, 0x85, SS_RDEF,
809	    "5V Voltage Warning") },
810	{ SST(0x0B, 0x8C, SS_RDEF,
811	    "12V Voltage Warning") },
812	{ SST(0x0C, 0xFF, SS_RDEF,
813	    "Write Error - Too many error recovery revs") },
814	{ SST(0x11, 0xFF, SS_RDEF,
815	    "Unrecovered Read Error - Too many error recovery revs") },
816	{ SST(0x19, 0x0E, SS_RDEF,
817	    "Fewer than 1/2 defect list copies") },
818	{ SST(0x20, 0xF3, SS_RDEF,
819	    "Illegal CDB linked to skip mask cmd") },
820	{ SST(0x24, 0xF0, SS_RDEF,
821	    "Illegal byte in CDB, LBA not matching") },
822	{ SST(0x24, 0xF1, SS_RDEF,
823	    "Illegal byte in CDB, LEN not matching") },
824	{ SST(0x24, 0xF2, SS_RDEF,
825	    "Mask not matching transfer length") },
826	{ SST(0x24, 0xF3, SS_RDEF,
827	    "Drive formatted without plist") },
828	{ SST(0x26, 0x95, SS_RDEF,
829	    "Invalid Field Parameter - CAP File") },
830	{ SST(0x26, 0x96, SS_RDEF,
831	    "Invalid Field Parameter - RAP File") },
832	{ SST(0x26, 0x97, SS_RDEF,
833	    "Invalid Field Parameter - TMS Firmware Tag") },
834	{ SST(0x26, 0x98, SS_RDEF,
835	    "Invalid Field Parameter - Check Sum") },
836	{ SST(0x26, 0x99, SS_RDEF,
837	    "Invalid Field Parameter - Firmware Tag") },
838	{ SST(0x29, 0x08, SS_RDEF,
839	    "Write Log Dump data") },
840	{ SST(0x29, 0x09, SS_RDEF,
841	    "Write Log Dump data") },
842	{ SST(0x29, 0x0A, SS_RDEF,
843	    "Reserved disk space") },
844	{ SST(0x29, 0x0B, SS_RDEF,
845	    "SDBP") },
846	{ SST(0x29, 0x0C, SS_RDEF,
847	    "SDBP") },
848	{ SST(0x31, 0x91, SS_RDEF,
849	    "Format Corrupted World Wide Name (WWN) is Invalid") },
850	{ SST(0x32, 0x03, SS_RDEF,
851	    "Defect List - Length exceeds Command Allocated Length") },
852	{ SST(0x33, 0x00, SS_RDEF,
853	    "Flash not ready for access") },
854	{ SST(0x3F, 0x70, SS_RDEF,
855	    "Invalid RAP block") },
856	{ SST(0x3F, 0x71, SS_RDEF,
857	    "RAP/ETF mismatch") },
858	{ SST(0x3F, 0x90, SS_RDEF,
859	    "Invalid CAP block") },
860	{ SST(0x3F, 0x91, SS_RDEF,
861	    "World Wide Name (WWN) Mismatch") },
862	{ SST(0x40, 0x01, SS_RDEF,
863	    "DRAM Parity Error") },
864	{ SST(0x40, 0x02, SS_RDEF,
865	    "DRAM Parity Error") },
866	{ SST(0x42, 0x0A, SS_RDEF,
867	    "Loopback Test") },
868	{ SST(0x42, 0x0B, SS_RDEF,
869	    "Loopback Test") },
870	{ SST(0x44, 0xF2, SS_RDEF,
871	    "Compare error during data integrity check") },
872	{ SST(0x44, 0xF6, SS_RDEF,
873	    "Unrecoverable error during data integrity check") },
874	{ SST(0x47, 0x80, SS_RDEF,
875	    "Fibre Channel Sequence Error") },
876	{ SST(0x4E, 0x01, SS_RDEF,
877	    "Information Unit Too Short") },
878	{ SST(0x80, 0x00, SS_RDEF,
879	    "General Firmware Error / Command Timeout") },
880	{ SST(0x80, 0x01, SS_RDEF,
881	    "Command Timeout") },
882	{ SST(0x80, 0x02, SS_RDEF,
883	    "Command Timeout") },
884	{ SST(0x80, 0x80, SS_RDEF,
885	    "FC FIFO Error During Read Transfer") },
886	{ SST(0x80, 0x81, SS_RDEF,
887	    "FC FIFO Error During Write Transfer") },
888	{ SST(0x80, 0x82, SS_RDEF,
889	    "DISC FIFO Error During Read Transfer") },
890	{ SST(0x80, 0x83, SS_RDEF,
891	    "DISC FIFO Error During Write Transfer") },
892	{ SST(0x80, 0x84, SS_RDEF,
893	    "LBA Seeded LRC Error on Read") },
894	{ SST(0x80, 0x85, SS_RDEF,
895	    "LBA Seeded LRC Error on Write") },
896	{ SST(0x80, 0x86, SS_RDEF,
897	    "IOEDC Error on Read") },
898	{ SST(0x80, 0x87, SS_RDEF,
899	    "IOEDC Error on Write") },
900	{ SST(0x80, 0x88, SS_RDEF,
901	    "Host Parity Check Failed") },
902	{ SST(0x80, 0x89, SS_RDEF,
903	    "IOEDC error on read detected by formatter") },
904	{ SST(0x80, 0x8A, SS_RDEF,
905	    "Host Parity Errors / Host FIFO Initialization Failed") },
906	{ SST(0x80, 0x8B, SS_RDEF,
907	    "Host Parity Errors") },
908	{ SST(0x80, 0x8C, SS_RDEF,
909	    "Host Parity Errors") },
910	{ SST(0x80, 0x8D, SS_RDEF,
911	    "Host Parity Errors") },
912	{ SST(0x81, 0x00, SS_RDEF,
913	    "LA Check Failed") },
914	{ SST(0x82, 0x00, SS_RDEF,
915	    "Internal client detected insufficient buffer") },
916	{ SST(0x84, 0x00, SS_RDEF,
917	    "Scheduled Diagnostic And Repair") },
918};
919
920static struct scsi_sense_quirk_entry sense_quirk_table[] = {
921	{
922		/*
923		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
924		 * when they really should return 0x04 0x02.
925		 */
926		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
927		/*num_sense_keys*/0,
928		nitems(quantum_fireball_entries),
929		/*sense key entries*/NULL,
930		quantum_fireball_entries
931	},
932	{
933		/*
934		 * This Sony MO drive likes to return 0x04, 0x00 when it
935		 * isn't spun up.
936		 */
937		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
938		/*num_sense_keys*/0,
939		nitems(sony_mo_entries),
940		/*sense key entries*/NULL,
941		sony_mo_entries
942	},
943	{
944		/*
945		 * HGST vendor-specific error codes
946		 */
947		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
948		/*num_sense_keys*/0,
949		nitems(hgst_entries),
950		/*sense key entries*/NULL,
951		hgst_entries
952	},
953	{
954		/*
955		 * SEAGATE vendor-specific error codes
956		 */
957		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
958		/*num_sense_keys*/0,
959		nitems(seagate_entries),
960		/*sense key entries*/NULL,
961		seagate_entries
962	}
963};
964
965const u_int sense_quirk_table_size = nitems(sense_quirk_table);
966
967static struct asc_table_entry asc_table[] = {
968	/*
969	 * From: http://www.t10.org/lists/asc-num.txt
970	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
971	 */
972	/*
973	 * File: ASC-NUM.TXT
974	 *
975	 * SCSI ASC/ASCQ Assignments
976	 * Numeric Sorted Listing
977	 * as of  Sat Mar 25 2023 at 04:30 (using old columns)
978	 *
979	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
980	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
981	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
982	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
983	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
984	 * .  . R - CD DEVICE (MMC)
985	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
986	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
987	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
988	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
989	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
990	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
991	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
992	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
993	 * DTLPWROMAEBKVF
994	 * ASC      ASCQ  Action
995	 * Description
996	 */
997	/* DTLPWROMAEBKVF */
998	{ SST(0x00, 0x00, SS_NOP,
999	    "No additional sense information") },
1000	/*  T             */
1001	{ SST(0x00, 0x01, SS_RDEF,
1002	    "Filemark detected") },
1003	/*  T             */
1004	{ SST(0x00, 0x02, SS_RDEF,
1005	    "End-of-partition/medium detected") },
1006	/*  T             */
1007	{ SST(0x00, 0x03, SS_RDEF,
1008	    "Setmark detected") },
1009	/*  T             */
1010	{ SST(0x00, 0x04, SS_RDEF,
1011	    "Beginning-of-partition/medium detected") },
1012	/*  TL            */
1013	{ SST(0x00, 0x05, SS_RDEF,
1014	    "End-of-data detected") },
1015	/* DTLPWROMAEBKVF */
1016	{ SST(0x00, 0x06, SS_RDEF,
1017	    "I/O process terminated") },
1018	/*  T             */
1019	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1020	    "Programmable early warning detected") },
1021	/*      R         */
1022	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1023	    "Audio play operation in progress") },
1024	/*      R         */
1025	{ SST(0x00, 0x12, SS_NOP,
1026	    "Audio play operation paused") },
1027	/*      R         */
1028	{ SST(0x00, 0x13, SS_NOP,
1029	    "Audio play operation successfully completed") },
1030	/*      R         */
1031	{ SST(0x00, 0x14, SS_RDEF,
1032	    "Audio play operation stopped due to error") },
1033	/*      R         */
1034	{ SST(0x00, 0x15, SS_NOP,
1035	    "No current audio status to return") },
1036	/* DTLPWROMAEBKVF */
1037	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1038	    "Operation in progress") },
1039	/* DTL WROMAEBKVF */
1040	{ SST(0x00, 0x17, SS_RDEF,
1041	    "Cleaning requested") },
1042	/*  T             */
1043	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1044	    "Erase operation in progress") },
1045	/*  T             */
1046	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1047	    "Locate operation in progress") },
1048	/*  T             */
1049	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1050	    "Rewind operation in progress") },
1051	/*  T             */
1052	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1053	    "Set capacity operation in progress") },
1054	/*  T             */
1055	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1056	    "Verify operation in progress") },
1057	/* DT        B    */
1058	{ SST(0x00, 0x1D, SS_NOP,
1059	    "ATA pass through information available") },
1060	/* DT   R MAEBKV  */
1061	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1062	    "Conflicting SA creation request") },
1063	/* DT        B    */
1064	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1065	    "Logical unit transitioning to another power condition") },
1066	/* DT P      B    */
1067	{ SST(0x00, 0x20, SS_NOP,
1068	    "Extended copy information available") },
1069	/* D              */
1070	{ SST(0x00, 0x21, SS_RDEF,	/* XXX TBD */
1071	    "Atomic command aborted due to ACA") },
1072	/* D              */
1073	{ SST(0x00, 0x22, SS_RDEF,	/* XXX TBD */
1074	    "Deferred microcode is pending") },
1075	/* D              */
1076	{ SST(0x00, 0x23, SS_RDEF,	/* XXX TBD */
1077	    "Overlapping atomic command in progress") },
1078	/* D   W O   BK   */
1079	{ SST(0x01, 0x00, SS_RDEF,
1080	    "No index/sector signal") },
1081	/* D   WRO   BK   */
1082	{ SST(0x02, 0x00, SS_FATAL | EIO,
1083	    "No seek complete") },
1084	/* DTL W O   BK   */
1085	{ SST(0x03, 0x00, SS_RDEF,
1086	    "Peripheral device write fault") },
1087	/*  T             */
1088	{ SST(0x03, 0x01, SS_RDEF,
1089	    "No write current") },
1090	/*  T             */
1091	{ SST(0x03, 0x02, SS_RDEF,
1092	    "Excessive write errors") },
1093	/* DTLPWROMAEBKVF */
1094	{ SST(0x04, 0x00, SS_RDEF,
1095	    "Logical unit not ready, cause not reportable") },
1096	/* DTLPWROMAEBKVF */
1097	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1098	    "Logical unit is in process of becoming ready") },
1099	/* DTLPWROMAEBKVF */
1100	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1101	    "Logical unit not ready, initializing command required") },
1102	/* DTLPWROMAEBKVF */
1103	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1104	    "Logical unit not ready, manual intervention required") },
1105	/* DTL  RO   B    */
1106	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1107	    "Logical unit not ready, format in progress") },
1108	/* DT  W O A BK F */
1109	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1110	    "Logical unit not ready, rebuild in progress") },
1111	/* DT  W O A BK   */
1112	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1113	    "Logical unit not ready, recalculation in progress") },
1114	/* DTLPWROMAEBKVF */
1115	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1116	    "Logical unit not ready, operation in progress") },
1117	/*      R         */
1118	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1119	    "Logical unit not ready, long write in progress") },
1120	/* DTLPWROMAEBKVF */
1121	{ SST(0x04, 0x09, SS_FATAL | EBUSY,
1122	    "Logical unit not ready, self-test in progress") },
1123	/* DTLPWROMAEBKVF */
1124	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1125	    "Logical unit not accessible, asymmetric access state transition")},
1126	/* DTLPWROMAEBKVF */
1127	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1128	    "Logical unit not accessible, target port in standby state") },
1129	/* DTLPWROMAEBKVF */
1130	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1131	    "Logical unit not accessible, target port in unavailable state") },
1132	/*              F */
1133	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1134	    "Logical unit not ready, structure check required") },
1135	/* DTL WR MAEBKVF */
1136	{ SST(0x04, 0x0E, SS_RDEF,	/* XXX TBD */
1137	    "Logical unit not ready, security session in progress") },
1138	/* DT  WROM  B    */
1139	{ SST(0x04, 0x10, SS_FATAL | ENODEV,
1140	    "Logical unit not ready, auxiliary memory not accessible") },
1141	/* DT  WRO AEB VF */
1142	{ SST(0x04, 0x11, SS_WAIT | ENXIO,
1143	    "Logical unit not ready, notify (enable spinup) required") },
1144	/*        M    V  */
1145	{ SST(0x04, 0x12, SS_FATAL | ENXIO,
1146	    "Logical unit not ready, offline") },
1147	/* DT   R MAEBKV  */
1148	{ SST(0x04, 0x13, SS_WAIT | EBUSY,
1149	    "Logical unit not ready, SA creation in progress") },
1150	/* D         B    */
1151	{ SST(0x04, 0x14, SS_WAIT | ENOSPC,
1152	    "Logical unit not ready, space allocation in progress") },
1153	/*        M       */
1154	{ SST(0x04, 0x15, SS_FATAL | ENXIO,
1155	    "Logical unit not ready, robotics disabled") },
1156	/*        M       */
1157	{ SST(0x04, 0x16, SS_FATAL | ENXIO,
1158	    "Logical unit not ready, configuration required") },
1159	/*        M       */
1160	{ SST(0x04, 0x17, SS_FATAL | ENXIO,
1161	    "Logical unit not ready, calibration required") },
1162	/*        M       */
1163	{ SST(0x04, 0x18, SS_FATAL | ENXIO,
1164	    "Logical unit not ready, a door is open") },
1165	/*        M       */
1166	{ SST(0x04, 0x19, SS_FATAL | ENODEV,
1167	    "Logical unit not ready, operating in sequential mode") },
1168	/* DT        B    */
1169	{ SST(0x04, 0x1A, SS_WAIT | EBUSY,
1170	    "Logical unit not ready, START/STOP UNIT command in progress") },
1171	/* D         B    */
1172	{ SST(0x04, 0x1B, SS_WAIT | EBUSY,
1173	    "Logical unit not ready, sanitize in progress") },
1174	/* DT     MAEB    */
1175	{ SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1176	    "Logical unit not ready, additional power use not yet granted") },
1177	/* D              */
1178	{ SST(0x04, 0x1D, SS_WAIT | EBUSY,
1179	    "Logical unit not ready, configuration in progress") },
1180	/* D              */
1181	{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
1182	    "Logical unit not ready, microcode activation required") },
1183	/* DTLPWROMAEBKVF */
1184	{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
1185	    "Logical unit not ready, microcode download required") },
1186	/* DTLPWROMAEBKVF */
1187	{ SST(0x04, 0x20, SS_FATAL | ENXIO,
1188	    "Logical unit not ready, logical unit reset required") },
1189	/* DTLPWROMAEBKVF */
1190	{ SST(0x04, 0x21, SS_FATAL | ENXIO,
1191	    "Logical unit not ready, hard reset required") },
1192	/* DTLPWROMAEBKVF */
1193	{ SST(0x04, 0x22, SS_FATAL | ENXIO,
1194	    "Logical unit not ready, power cycle required") },
1195	/* D              */
1196	{ SST(0x04, 0x23, SS_FATAL | ENXIO,
1197	    "Logical unit not ready, affiliation required") },
1198	/* D              */
1199	{ SST(0x04, 0x24, SS_FATAL | EBUSY,
1200	    "Depopulation in progress") },
1201	/* D              */
1202	{ SST(0x04, 0x25, SS_FATAL | EBUSY,
1203	    "Depopulation restoration in progress") },
1204	/* DTL WROMAEBKVF */
1205	{ SST(0x05, 0x00, SS_RDEF,
1206	    "Logical unit does not respond to selection") },
1207	/* D   WROM  BK   */
1208	{ SST(0x06, 0x00, SS_RDEF,
1209	    "No reference position found") },
1210	/* DTL WROM  BK   */
1211	{ SST(0x07, 0x00, SS_RDEF,
1212	    "Multiple peripheral devices selected") },
1213	/* DTL WROMAEBKVF */
1214	{ SST(0x08, 0x00, SS_RDEF,
1215	    "Logical unit communication failure") },
1216	/* DTL WROMAEBKVF */
1217	{ SST(0x08, 0x01, SS_RDEF,
1218	    "Logical unit communication time-out") },
1219	/* DTL WROMAEBKVF */
1220	{ SST(0x08, 0x02, SS_RDEF,
1221	    "Logical unit communication parity error") },
1222	/* DT   ROM  BK   */
1223	{ SST(0x08, 0x03, SS_RDEF,
1224	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1225	/* DTLPWRO    K   */
1226	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1227	    "Unreachable copy target") },
1228	/* DT  WRO   B    */
1229	{ SST(0x09, 0x00, SS_RDEF,
1230	    "Track following error") },
1231	/*     WRO    K   */
1232	{ SST(0x09, 0x01, SS_RDEF,
1233	    "Tracking servo failure") },
1234	/*     WRO    K   */
1235	{ SST(0x09, 0x02, SS_RDEF,
1236	    "Focus servo failure") },
1237	/*     WRO        */
1238	{ SST(0x09, 0x03, SS_RDEF,
1239	    "Spindle servo failure") },
1240	/* DT  WRO   B    */
1241	{ SST(0x09, 0x04, SS_RDEF,
1242	    "Head select fault") },
1243	/* DT   RO   B    */
1244	{ SST(0x09, 0x05, SS_RDEF,
1245	    "Vibration induced tracking error") },
1246	/* DTLPWROMAEBKVF */
1247	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1248	    "Error log overflow") },
1249	/* DTLPWROMAEBKVF */
1250	{ SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1251	    "Warning") },
1252	/* DTLPWROMAEBKVF */
1253	{ SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1254	    "Warning - specified temperature exceeded") },
1255	/* DTLPWROMAEBKVF */
1256	{ SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1257	    "Warning - enclosure degraded") },
1258	/* DTLPWROMAEBKVF */
1259	{ SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1260	    "Warning - background self-test failed") },
1261	/* DTLPWRO AEBKVF */
1262	{ SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1263	    "Warning - background pre-scan detected medium error") },
1264	/* DTLPWRO AEBKVF */
1265	{ SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1266	    "Warning - background medium scan detected medium error") },
1267	/* DTLPWROMAEBKVF */
1268	{ SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1269	    "Warning - non-volatile cache now volatile") },
1270	/* DTLPWROMAEBKVF */
1271	{ SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1272	    "Warning - degraded power to non-volatile cache") },
1273	/* DTLPWROMAEBKVF */
1274	{ SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1275	    "Warning - power loss expected") },
1276	/* D              */
1277	{ SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1278	    "Warning - device statistics notification available") },
1279	/* DTLPWROMAEBKV  */
1280	{ SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1281	    "Warning - High critical temperature limit exceeded") },
1282	/* DTLPWROMAEBKV  */
1283	{ SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1284	    "Warning - Low critical temperature limit exceeded") },
1285	/* DTLPWROMAEBKV  */
1286	{ SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1287	    "Warning - High operating temperature limit exceeded") },
1288	/* DTLPWROMAEBKV  */
1289	{ SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1290	    "Warning - Low operating temperature limit exceeded") },
1291	/* DTLPWROMAEBKV  */
1292	{ SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1293	    "Warning - High citical humidity limit exceeded") },
1294	/* DTLPWROMAEBKV  */
1295	{ SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1296	    "Warning - Low citical humidity limit exceeded") },
1297	/* DTLPWROMAEBKV  */
1298	{ SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1299	    "Warning - High operating humidity limit exceeded") },
1300	/* DTLPWROMAEBKV  */
1301	{ SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1302	    "Warning - Low operating humidity limit exceeded") },
1303	/* DTLPWROMAEBKVF */
1304	{ SST(0x0B, 0x12, SS_NOP | SSQ_PRINT_SENSE,
1305	    "Warning - Microcode security at risk") },
1306	/* DTLPWROMAEBKVF */
1307	{ SST(0x0B, 0x13, SS_NOP | SSQ_PRINT_SENSE,
1308	    "Warning - Microcode digital signature validation failure") },
1309	/* D              */
1310	{ SST(0x0B, 0x14, SS_NOP | SSQ_PRINT_SENSE,
1311	    "Warning - Physical element status change") },
1312	/*  T   R         */
1313	{ SST(0x0C, 0x00, SS_RDEF,
1314	    "Write error") },
1315	/*            K   */
1316	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1317	    "Write error - recovered with auto reallocation") },
1318	/* D   W O   BK   */
1319	{ SST(0x0C, 0x02, SS_RDEF,
1320	    "Write error - auto reallocation failed") },
1321	/* D   W O   BK   */
1322	{ SST(0x0C, 0x03, SS_RDEF,
1323	    "Write error - recommend reassignment") },
1324	/* DT  W O   B    */
1325	{ SST(0x0C, 0x04, SS_RDEF,
1326	    "Compression check miscompare error") },
1327	/* DT  W O   B    */
1328	{ SST(0x0C, 0x05, SS_RDEF,
1329	    "Data expansion occurred during compression") },
1330	/* DT  W O   B    */
1331	{ SST(0x0C, 0x06, SS_RDEF,
1332	    "Block not compressible") },
1333	/*      R         */
1334	{ SST(0x0C, 0x07, SS_RDEF,
1335	    "Write error - recovery needed") },
1336	/*      R         */
1337	{ SST(0x0C, 0x08, SS_RDEF,
1338	    "Write error - recovery failed") },
1339	/*      R         */
1340	{ SST(0x0C, 0x09, SS_RDEF,
1341	    "Write error - loss of streaming") },
1342	/*      R         */
1343	{ SST(0x0C, 0x0A, SS_RDEF,
1344	    "Write error - padding blocks added") },
1345	/* DT  WROM  B    */
1346	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1347	    "Auxiliary memory write error") },
1348	/* DTLPWRO AEBKVF */
1349	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1350	    "Write error - unexpected unsolicited data") },
1351	/* DTLPWRO AEBKVF */
1352	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1353	    "Write error - not enough unsolicited data") },
1354	/* DT  W O   BK   */
1355	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1356	    "Multiple write errors") },
1357	/*      R         */
1358	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1359	    "Defects in error window") },
1360	/* D              */
1361	{ SST(0x0C, 0x10, SS_RDEF,	/* XXX TBD */
1362	    "Incomplete multiple atomic write operations") },
1363	/* D              */
1364	{ SST(0x0C, 0x11, SS_RDEF,	/* XXX TBD */
1365	    "Write error - recovery scan needed") },
1366	/* D              */
1367	{ SST(0x0C, 0x12, SS_RDEF,	/* XXX TBD */
1368	    "Write error - insufficient zone resources") },
1369	/* DTLPWRO A  K   */
1370	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1371	    "Error detected by third party temporary initiator") },
1372	/* DTLPWRO A  K   */
1373	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1374	    "Third party device failure") },
1375	/* DTLPWRO A  K   */
1376	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1377	    "Copy target device not reachable") },
1378	/* DTLPWRO A  K   */
1379	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1380	    "Incorrect copy target device type") },
1381	/* DTLPWRO A  K   */
1382	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1383	    "Copy target device data underrun") },
1384	/* DTLPWRO A  K   */
1385	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1386	    "Copy target device data overrun") },
1387	/* DT PWROMAEBK F */
1388	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1389	    "Invalid information unit") },
1390	/* DT PWROMAEBK F */
1391	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1392	    "Information unit too short") },
1393	/* DT PWROMAEBK F */
1394	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1395	    "Information unit too long") },
1396	/* DT P R MAEBK F */
1397	{ SST(0x0E, 0x03, SS_FATAL | EINVAL,
1398	    "Invalid field in command information unit") },
1399	/* D   W O   BK   */
1400	{ SST(0x10, 0x00, SS_RDEF,
1401	    "ID CRC or ECC error") },
1402	/* DT  W O        */
1403	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1404	    "Logical block guard check failed") },
1405	/* DT  W O        */
1406	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1407	    "Logical block application tag check failed") },
1408	/* DT  W O        */
1409	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1410	    "Logical block reference tag check failed") },
1411	/*  T             */
1412	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1413	    "Logical block protection error on recovered buffer data") },
1414	/*  T             */
1415	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1416	    "Logical block protection method error") },
1417	/* DT  WRO   BK   */
1418	{ SST(0x11, 0x00, SS_FATAL|EIO,
1419	    "Unrecovered read error") },
1420	/* DT  WRO   BK   */
1421	{ SST(0x11, 0x01, SS_FATAL|EIO,
1422	    "Read retries exhausted") },
1423	/* DT  WRO   BK   */
1424	{ SST(0x11, 0x02, SS_FATAL|EIO,
1425	    "Error too long to correct") },
1426	/* DT  W O   BK   */
1427	{ SST(0x11, 0x03, SS_FATAL|EIO,
1428	    "Multiple read errors") },
1429	/* D   W O   BK   */
1430	{ SST(0x11, 0x04, SS_FATAL|EIO,
1431	    "Unrecovered read error - auto reallocate failed") },
1432	/*     WRO   B    */
1433	{ SST(0x11, 0x05, SS_FATAL|EIO,
1434	    "L-EC uncorrectable error") },
1435	/*     WRO   B    */
1436	{ SST(0x11, 0x06, SS_FATAL|EIO,
1437	    "CIRC unrecovered error") },
1438	/*     W O   B    */
1439	{ SST(0x11, 0x07, SS_RDEF,
1440	    "Data re-synchronization error") },
1441	/*  T             */
1442	{ SST(0x11, 0x08, SS_RDEF,
1443	    "Incomplete block read") },
1444	/*  T             */
1445	{ SST(0x11, 0x09, SS_RDEF,
1446	    "No gap found") },
1447	/* DT    O   BK   */
1448	{ SST(0x11, 0x0A, SS_RDEF,
1449	    "Miscorrected error") },
1450	/* D   W O   BK   */
1451	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1452	    "Unrecovered read error - recommend reassignment") },
1453	/* D   W O   BK   */
1454	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1455	    "Unrecovered read error - recommend rewrite the data") },
1456	/* DT  WRO   B    */
1457	{ SST(0x11, 0x0D, SS_RDEF,
1458	    "De-compression CRC error") },
1459	/* DT  WRO   B    */
1460	{ SST(0x11, 0x0E, SS_RDEF,
1461	    "Cannot decompress using declared algorithm") },
1462	/*      R         */
1463	{ SST(0x11, 0x0F, SS_RDEF,
1464	    "Error reading UPC/EAN number") },
1465	/*      R         */
1466	{ SST(0x11, 0x10, SS_RDEF,
1467	    "Error reading ISRC number") },
1468	/*      R         */
1469	{ SST(0x11, 0x11, SS_RDEF,
1470	    "Read error - loss of streaming") },
1471	/* DT  WROM  B    */
1472	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1473	    "Auxiliary memory read error") },
1474	/* DTLPWRO AEBKVF */
1475	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1476	    "Read error - failed retransmission request") },
1477	/* D              */
1478	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1479	    "Read error - LBA marked bad by application client") },
1480	/* D              */
1481	{ SST(0x11, 0x15, SS_FATAL | EIO,
1482	    "Write after sanitize required") },
1483	/* D   W O   BK   */
1484	{ SST(0x12, 0x00, SS_RDEF,
1485	    "Address mark not found for ID field") },
1486	/* D   W O   BK   */
1487	{ SST(0x13, 0x00, SS_RDEF,
1488	    "Address mark not found for data field") },
1489	/* DTL WRO   BK   */
1490	{ SST(0x14, 0x00, SS_RDEF,
1491	    "Recorded entity not found") },
1492	/* DT  WRO   BK   */
1493	{ SST(0x14, 0x01, SS_RDEF,
1494	    "Record not found") },
1495	/*  T             */
1496	{ SST(0x14, 0x02, SS_RDEF,
1497	    "Filemark or setmark not found") },
1498	/*  T             */
1499	{ SST(0x14, 0x03, SS_RDEF,
1500	    "End-of-data not found") },
1501	/*  T             */
1502	{ SST(0x14, 0x04, SS_RDEF,
1503	    "Block sequence error") },
1504	/* DT  W O   BK   */
1505	{ SST(0x14, 0x05, SS_RDEF,
1506	    "Record not found - recommend reassignment") },
1507	/* DT  W O   BK   */
1508	{ SST(0x14, 0x06, SS_RDEF,
1509	    "Record not found - data auto-reallocated") },
1510	/*  T             */
1511	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1512	    "Locate operation failure") },
1513	/* DTL WROM  BK   */
1514	{ SST(0x15, 0x00, SS_RDEF,
1515	    "Random positioning error") },
1516	/* DTL WROM  BK   */
1517	{ SST(0x15, 0x01, SS_RDEF,
1518	    "Mechanical positioning error") },
1519	/* DT  WRO   BK   */
1520	{ SST(0x15, 0x02, SS_RDEF,
1521	    "Positioning error detected by read of medium") },
1522	/* D   W O   BK   */
1523	{ SST(0x16, 0x00, SS_RDEF,
1524	    "Data synchronization mark error") },
1525	/* D   W O   BK   */
1526	{ SST(0x16, 0x01, SS_RDEF,
1527	    "Data sync error - data rewritten") },
1528	/* D   W O   BK   */
1529	{ SST(0x16, 0x02, SS_RDEF,
1530	    "Data sync error - recommend rewrite") },
1531	/* D   W O   BK   */
1532	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1533	    "Data sync error - data auto-reallocated") },
1534	/* D   W O   BK   */
1535	{ SST(0x16, 0x04, SS_RDEF,
1536	    "Data sync error - recommend reassignment") },
1537	/* DT  WRO   BK   */
1538	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1539	    "Recovered data with no error correction applied") },
1540	/* DT  WRO   BK   */
1541	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1542	    "Recovered data with retries") },
1543	/* DT  WRO   BK   */
1544	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1545	    "Recovered data with positive head offset") },
1546	/* DT  WRO   BK   */
1547	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1548	    "Recovered data with negative head offset") },
1549	/*     WRO   B    */
1550	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1551	    "Recovered data with retries and/or CIRC applied") },
1552	/* D   WRO   BK   */
1553	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1554	    "Recovered data using previous sector ID") },
1555	/* D   W O   BK   */
1556	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1557	    "Recovered data without ECC - data auto-reallocated") },
1558	/* D   WRO   BK   */
1559	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1560	    "Recovered data without ECC - recommend reassignment") },
1561	/* D   WRO   BK   */
1562	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1563	    "Recovered data without ECC - recommend rewrite") },
1564	/* D   WRO   BK   */
1565	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1566	    "Recovered data without ECC - data rewritten") },
1567	/* DT  WRO   BK   */
1568	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1569	    "Recovered data with error correction applied") },
1570	/* D   WRO   BK   */
1571	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1572	    "Recovered data with error corr. & retries applied") },
1573	/* D   WRO   BK   */
1574	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1575	    "Recovered data - data auto-reallocated") },
1576	/*      R         */
1577	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1578	    "Recovered data with CIRC") },
1579	/*      R         */
1580	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1581	    "Recovered data with L-EC") },
1582	/* D   WRO   BK   */
1583	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1584	    "Recovered data - recommend reassignment") },
1585	/* D   WRO   BK   */
1586	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1587	    "Recovered data - recommend rewrite") },
1588	/* D   W O   BK   */
1589	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1590	    "Recovered data with ECC - data rewritten") },
1591	/*      R         */
1592	{ SST(0x18, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1593	    "Recovered data with linking") },
1594	/* D     O    K   */
1595	{ SST(0x19, 0x00, SS_RDEF,
1596	    "Defect list error") },
1597	/* D     O    K   */
1598	{ SST(0x19, 0x01, SS_RDEF,
1599	    "Defect list not available") },
1600	/* D     O    K   */
1601	{ SST(0x19, 0x02, SS_RDEF,
1602	    "Defect list error in primary list") },
1603	/* D     O    K   */
1604	{ SST(0x19, 0x03, SS_RDEF,
1605	    "Defect list error in grown list") },
1606	/* DTLPWROMAEBKVF */
1607	{ SST(0x1A, 0x00, SS_RDEF,
1608	    "Parameter list length error") },
1609	/* DTLPWROMAEBKVF */
1610	{ SST(0x1B, 0x00, SS_RDEF,
1611	    "Synchronous data transfer error") },
1612	/* D     O   BK   */
1613	{ SST(0x1C, 0x00, SS_RDEF,
1614	    "Defect list not found") },
1615	/* D     O   BK   */
1616	{ SST(0x1C, 0x01, SS_RDEF,
1617	    "Primary defect list not found") },
1618	/* D     O   BK   */
1619	{ SST(0x1C, 0x02, SS_RDEF,
1620	    "Grown defect list not found") },
1621	/* DT  WRO   BK   */
1622	{ SST(0x1D, 0x00, SS_FATAL,
1623	    "Miscompare during verify operation") },
1624	/* D         B    */
1625	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1626	    "Miscomparable verify of unmapped LBA") },
1627	/* D   W O   BK   */
1628	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1629	    "Recovered ID with ECC correction") },
1630	/* D     O    K   */
1631	{ SST(0x1F, 0x00, SS_RDEF,
1632	    "Partial defect list transfer") },
1633	/* DTLPWROMAEBKVF */
1634	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1635	    "Invalid command operation code") },
1636	/* DT PWROMAEBK   */
1637	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1638	    "Access denied - initiator pending-enrolled") },
1639	/* DT PWROMAEBK   */
1640	{ SST(0x20, 0x02, SS_FATAL | EPERM,
1641	    "Access denied - no access rights") },
1642	/* DT PWROMAEBK   */
1643	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1644	    "Access denied - invalid mgmt ID key") },
1645	/*  T             */
1646	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1647	    "Illegal command while in write capable state") },
1648	/*  T             */
1649	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1650	    "Obsolete") },
1651	/*  T             */
1652	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1653	    "Illegal command while in explicit address mode") },
1654	/*  T             */
1655	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1656	    "Illegal command while in implicit address mode") },
1657	/* DT PWROMAEBK   */
1658	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1659	    "Access denied - enrollment conflict") },
1660	/* DT PWROMAEBK   */
1661	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1662	    "Access denied - invalid LU identifier") },
1663	/* DT PWROMAEBK   */
1664	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1665	    "Access denied - invalid proxy token") },
1666	/* DT PWROMAEBK   */
1667	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1668	    "Access denied - ACL LUN conflict") },
1669	/*  T             */
1670	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1671	    "Illegal command when not in append-only mode") },
1672	/* D              */
1673	{ SST(0x20, 0x0D, SS_FATAL | EINVAL,
1674	    "Not an administrative logical unit") },
1675	/* D              */
1676	{ SST(0x20, 0x0E, SS_FATAL | EINVAL,
1677	    "Not a subsidiary logical unit") },
1678	/* D              */
1679	{ SST(0x20, 0x0F, SS_FATAL | EINVAL,
1680	    "Not a conglomerate logical unit") },
1681	/* DT  WRO   BK   */
1682	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1683	    "Logical block address out of range") },
1684	/* DT  WROM  BK   */
1685	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1686	    "Invalid element address") },
1687	/*      R         */
1688	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1689	    "Invalid address for write") },
1690	/*      R         */
1691	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1692	    "Invalid write crossing layer jump") },
1693	/* D              */
1694	{ SST(0x21, 0x04, SS_RDEF,	/* XXX TBD */
1695	    "Unaligned write command") },
1696	/* D              */
1697	{ SST(0x21, 0x05, SS_RDEF,	/* XXX TBD */
1698	    "Write boundary violation") },
1699	/* D              */
1700	{ SST(0x21, 0x06, SS_RDEF,	/* XXX TBD */
1701	    "Attempt to read invalid data") },
1702	/* D              */
1703	{ SST(0x21, 0x07, SS_RDEF,	/* XXX TBD */
1704	    "Read boundary violation") },
1705	/* D              */
1706	{ SST(0x21, 0x08, SS_FATAL | EINVAL,
1707	    "Misaligned write command") },
1708	/* D              */
1709	{ SST(0x21, 0x09, SS_FATAL | EINVAL,
1710	    "Attempt to access gap zone") },
1711	/* D              */
1712	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1713	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1714	/* DT P      B    */
1715	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1716	    "Invalid token operation, cause not reportable") },
1717	/* DT P      B    */
1718	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1719	    "Invalid token operation, unsupported token type") },
1720	/* DT P      B    */
1721	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1722	    "Invalid token operation, remote token usage not supported") },
1723	/* DT P      B    */
1724	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1725	    "Invalid token operation, remote ROD token creation not supported") },
1726	/* DT P      B    */
1727	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1728	    "Invalid token operation, token unknown") },
1729	/* DT P      B    */
1730	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1731	    "Invalid token operation, token corrupt") },
1732	/* DT P      B    */
1733	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1734	    "Invalid token operation, token revoked") },
1735	/* DT P      B    */
1736	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1737	    "Invalid token operation, token expired") },
1738	/* DT P      B    */
1739	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1740	    "Invalid token operation, token cancelled") },
1741	/* DT P      B    */
1742	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1743	    "Invalid token operation, token deleted") },
1744	/* DT P      B    */
1745	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1746	    "Invalid token operation, invalid token length") },
1747	/* DTLPWROMAEBKVF */
1748	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1749	    "Invalid field in CDB") },
1750	/* DTLPWRO AEBKVF */
1751	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1752	    "CDB decryption error") },
1753	/*  T             */
1754	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1755	    "Obsolete") },
1756	/*  T             */
1757	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1758	    "Obsolete") },
1759	/*              F */
1760	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1761	    "Security audit value frozen") },
1762	/*              F */
1763	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1764	    "Security working key frozen") },
1765	/*              F */
1766	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1767	    "NONCE not unique") },
1768	/*              F */
1769	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1770	    "NONCE timestamp out of range") },
1771	/* DT   R MAEBKV  */
1772	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1773	    "Invalid XCDB") },
1774	/* D              */
1775	{ SST(0x24, 0x09, SS_FATAL | EINVAL,
1776	    "Invalid fast format") },
1777	/* DTLPWROMAEBKVF */
1778	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1779	    "Logical unit not supported") },
1780	/* DTLPWROMAEBKVF */
1781	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1782	    "Invalid field in parameter list") },
1783	/* DTLPWROMAEBKVF */
1784	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1785	    "Parameter not supported") },
1786	/* DTLPWROMAEBKVF */
1787	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1788	    "Parameter value invalid") },
1789	/* DTLPWROMAE K   */
1790	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1791	    "Threshold parameters not supported") },
1792	/* DTLPWROMAEBKVF */
1793	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1794	    "Invalid release of persistent reservation") },
1795	/* DTLPWRO A BK   */
1796	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1797	    "Data decryption error") },
1798	/* DTLPWRO    K   */
1799	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1800	    "Too many target descriptors") },
1801	/* DTLPWRO    K   */
1802	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1803	    "Unsupported target descriptor type code") },
1804	/* DTLPWRO    K   */
1805	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1806	    "Too many segment descriptors") },
1807	/* DTLPWRO    K   */
1808	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1809	    "Unsupported segment descriptor type code") },
1810	/* DTLPWRO    K   */
1811	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1812	    "Unexpected inexact segment") },
1813	/* DTLPWRO    K   */
1814	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1815	    "Inline data length exceeded") },
1816	/* DTLPWRO    K   */
1817	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1818	    "Invalid operation for copy source or destination") },
1819	/* DTLPWRO    K   */
1820	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1821	    "Copy segment granularity violation") },
1822	/* DT PWROMAEBK   */
1823	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1824	    "Invalid parameter while port is enabled") },
1825	/*              F */
1826	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1827	    "Invalid data-out buffer integrity check value") },
1828	/*  T             */
1829	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1830	    "Data decryption key fail limit reached") },
1831	/*  T             */
1832	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1833	    "Incomplete key-associated data set") },
1834	/*  T             */
1835	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1836	    "Vendor specific key reference not found") },
1837	/* D              */
1838	{ SST(0x26, 0x13, SS_RDEF,	/* XXX TBD */
1839	    "Application tag mode page is invalid") },
1840	/*  T             */
1841	{ SST(0x26, 0x14, SS_RDEF,	/* XXX TBD */
1842	    "Tape stream mirroring prevented") },
1843	/*  T              */
1844	{ SST(0x26, 0x15, SS_FATAL | EINVAL,
1845	    "Copy source or copy destination not authorized") },
1846	/* D              */
1847	{ SST(0x26, 0x16, SS_FATAL | EINVAL,
1848	    "Fast copy not possible") },
1849	/* DT  WRO   BK   */
1850	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1851	    "Write protected") },
1852	/* DT  WRO   BK   */
1853	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1854	    "Hardware write protected") },
1855	/* DT  WRO   BK   */
1856	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1857	    "Logical unit software write protected") },
1858	/*  T   R         */
1859	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1860	    "Associated write protect") },
1861	/*  T   R         */
1862	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1863	    "Persistent write protect") },
1864	/*  T   R         */
1865	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1866	    "Permanent write protect") },
1867	/*      R       F */
1868	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1869	    "Conditional write protect") },
1870	/* D         B    */
1871	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1872	    "Space allocation failed write protect") },
1873	/* D              */
1874	{ SST(0x27, 0x08, SS_FATAL | EACCES,
1875	    "Zone is read only") },
1876	/* DTLPWROMAEBKVF */
1877	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1878	    "Not ready to ready change, medium may have changed") },
1879	/* DT  WROM  B    */
1880	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1881	    "Import or export element accessed") },
1882	/*      R         */
1883	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1884	    "Format-layer may have changed") },
1885	/*        M       */
1886	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1887	    "Import/export element accessed, medium changed") },
1888	/*
1889	 * XXX JGibbs - All of these should use the same errno, but I don't
1890	 * think ENXIO is the correct choice.  Should we borrow from
1891	 * the networking errnos?  ECONNRESET anyone?
1892	 */
1893	/* DTLPWROMAEBKVF */
1894	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1895	    "Power on, reset, or bus device reset occurred") },
1896	/* DTLPWROMAEBKVF */
1897	{ SST(0x29, 0x01, SS_RDEF,
1898	    "Power on occurred") },
1899	/* DTLPWROMAEBKVF */
1900	{ SST(0x29, 0x02, SS_RDEF,
1901	    "SCSI bus reset occurred") },
1902	/* DTLPWROMAEBKVF */
1903	{ SST(0x29, 0x03, SS_RDEF,
1904	    "Bus device reset function occurred") },
1905	/* DTLPWROMAEBKVF */
1906	{ SST(0x29, 0x04, SS_RDEF,
1907	    "Device internal reset") },
1908	/* DTLPWROMAEBKVF */
1909	{ SST(0x29, 0x05, SS_RDEF,
1910	    "Transceiver mode changed to single-ended") },
1911	/* DTLPWROMAEBKVF */
1912	{ SST(0x29, 0x06, SS_RDEF,
1913	    "Transceiver mode changed to LVD") },
1914	/* DTLPWROMAEBKVF */
1915	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1916	    "I_T nexus loss occurred") },
1917	/* DTL WROMAEBKVF */
1918	{ SST(0x2A, 0x00, SS_RDEF,
1919	    "Parameters changed") },
1920	/* DTL WROMAEBKVF */
1921	{ SST(0x2A, 0x01, SS_RDEF,
1922	    "Mode parameters changed") },
1923	/* DTL WROMAE K   */
1924	{ SST(0x2A, 0x02, SS_RDEF,
1925	    "Log parameters changed") },
1926	/* DTLPWROMAE K   */
1927	{ SST(0x2A, 0x03, SS_RDEF,
1928	    "Reservations preempted") },
1929	/* DTLPWROMAE     */
1930	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1931	    "Reservations released") },
1932	/* DTLPWROMAE     */
1933	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1934	    "Registrations preempted") },
1935	/* DTLPWROMAEBKVF */
1936	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1937	    "Asymmetric access state changed") },
1938	/* DTLPWROMAEBKVF */
1939	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1940	    "Implicit asymmetric access state transition failed") },
1941	/* DT  WROMAEBKVF */
1942	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1943	    "Priority changed") },
1944	/* D              */
1945	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1946	    "Capacity data has changed") },
1947	/* DT             */
1948	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1949	    "Error history I_T nexus cleared") },
1950	/* DT             */
1951	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1952	    "Error history snapshot released") },
1953	/*              F */
1954	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1955	    "Error recovery attributes have changed") },
1956	/*  T             */
1957	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1958	    "Data encryption capabilities changed") },
1959	/* DT     M E  V  */
1960	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1961	    "Timestamp changed") },
1962	/*  T             */
1963	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1964	    "Data encryption parameters changed by another I_T nexus") },
1965	/*  T             */
1966	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1967	    "Data encryption parameters changed by vendor specific event") },
1968	/*  T             */
1969	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1970	    "Data encryption key instance counter has changed") },
1971	/* DT   R MAEBKV  */
1972	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1973	    "SA creation capabilities data has changed") },
1974	/*  T     M    V  */
1975	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1976	    "Medium removal prevention preempted") },
1977	/* D              */
1978	{ SST(0x2A, 0x16, SS_RDEF,	/* XXX TBD */
1979	    "Zone reset write pointer recommended") },
1980	/* DTLPWRO    K   */
1981	{ SST(0x2B, 0x00, SS_RDEF,
1982	    "Copy cannot execute since host cannot disconnect") },
1983	/* DTLPWROMAEBKVF */
1984	{ SST(0x2C, 0x00, SS_RDEF,
1985	    "Command sequence error") },
1986	/*                */
1987	{ SST(0x2C, 0x01, SS_RDEF,
1988	    "Too many windows specified") },
1989	/*                */
1990	{ SST(0x2C, 0x02, SS_RDEF,
1991	    "Invalid combination of windows specified") },
1992	/*      R         */
1993	{ SST(0x2C, 0x03, SS_RDEF,
1994	    "Current program area is not empty") },
1995	/*      R         */
1996	{ SST(0x2C, 0x04, SS_RDEF,
1997	    "Current program area is empty") },
1998	/*           B    */
1999	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
2000	    "Illegal power condition request") },
2001	/*      R         */
2002	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
2003	    "Persistent prevent conflict") },
2004	/* DTLPWROMAEBKVF */
2005	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
2006	    "Previous busy status") },
2007	/* DTLPWROMAEBKVF */
2008	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
2009	    "Previous task set full status") },
2010	/* DTLPWROM EBKVF */
2011	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
2012	    "Previous reservation conflict status") },
2013	/*              F */
2014	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
2015	    "Partition or collection contains user objects") },
2016	/*  T             */
2017	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
2018	    "Not reserved") },
2019	/* D              */
2020	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
2021	    "ORWRITE generation does not match") },
2022	/* D              */
2023	{ SST(0x2C, 0x0D, SS_RDEF,	/* XXX TBD */
2024	    "Reset write pointer not allowed") },
2025	/* D              */
2026	{ SST(0x2C, 0x0E, SS_RDEF,	/* XXX TBD */
2027	    "Zone is offline") },
2028	/* D              */
2029	{ SST(0x2C, 0x0F, SS_RDEF,	/* XXX TBD */
2030	    "Stream not open") },
2031	/* D              */
2032	{ SST(0x2C, 0x10, SS_RDEF,	/* XXX TBD */
2033	    "Unwritten data in zone") },
2034	/* D              */
2035	{ SST(0x2C, 0x11, SS_FATAL | EINVAL,
2036	    "Descriptor format sense data required") },
2037	/* D              */
2038	{ SST(0x2C, 0x12, SS_FATAL | EINVAL,
2039	    "Zone is inactive") },
2040	/* DTPEROMAEBKVF  */
2041	{ SST(0x2C, 0x13, SS_FATAL | EINVAL,
2042	    "Well known logical unit access required") },
2043	/*  T             */
2044	{ SST(0x2D, 0x00, SS_RDEF,
2045	    "Overwrite error on update in place") },
2046	/*      R         */
2047	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
2048	    "Insufficient time for operation") },
2049	/* D              */
2050	{ SST(0x2E, 0x01, SS_RDEF,	/* XXX TBD */
2051	    "Command timeout before processing") },
2052	/* D              */
2053	{ SST(0x2E, 0x02, SS_RDEF,	/* XXX TBD */
2054	    "Command timeout during processing") },
2055	/* D              */
2056	{ SST(0x2E, 0x03, SS_RDEF,	/* XXX TBD */
2057	    "Command timeout during processing due to error recovery") },
2058	/* DTLPWROMAEBKVF */
2059	{ SST(0x2F, 0x00, SS_RDEF,
2060	    "Commands cleared by another initiator") },
2061	/* D              */
2062	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
2063	    "Commands cleared by power loss notification") },
2064	/* DTLPWROMAEBKVF */
2065	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
2066	    "Commands cleared by device server") },
2067	/* DTLPWROMAEBKVF */
2068	{ SST(0x2F, 0x03, SS_RDEF,	/* XXX TBD */
2069	    "Some commands cleared by queuing layer event") },
2070	/* DT  WROM  BK   */
2071	{ SST(0x30, 0x00, SS_RDEF,
2072	    "Incompatible medium installed") },
2073	/* DT  WRO   BK   */
2074	{ SST(0x30, 0x01, SS_RDEF,
2075	    "Cannot read medium - unknown format") },
2076	/* DT  WRO   BK   */
2077	{ SST(0x30, 0x02, SS_RDEF,
2078	    "Cannot read medium - incompatible format") },
2079	/* DT   R     K   */
2080	{ SST(0x30, 0x03, SS_RDEF,
2081	    "Cleaning cartridge installed") },
2082	/* DT  WRO   BK   */
2083	{ SST(0x30, 0x04, SS_RDEF,
2084	    "Cannot write medium - unknown format") },
2085	/* DT  WRO   BK   */
2086	{ SST(0x30, 0x05, SS_RDEF,
2087	    "Cannot write medium - incompatible format") },
2088	/* DT  WRO   B    */
2089	{ SST(0x30, 0x06, SS_RDEF,
2090	    "Cannot format medium - incompatible medium") },
2091	/* DTL WROMAEBKVF */
2092	{ SST(0x30, 0x07, SS_RDEF,
2093	    "Cleaning failure") },
2094	/*      R         */
2095	{ SST(0x30, 0x08, SS_RDEF,
2096	    "Cannot write - application code mismatch") },
2097	/*      R         */
2098	{ SST(0x30, 0x09, SS_RDEF,
2099	    "Current session not fixated for append") },
2100	/* DT  WRO AEBK   */
2101	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
2102	    "Cleaning request rejected") },
2103	/*  T             */
2104	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
2105	    "WORM medium - overwrite attempted") },
2106	/*  T             */
2107	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
2108	    "WORM medium - integrity check") },
2109	/*      R         */
2110	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
2111	    "Medium not formatted") },
2112	/*        M       */
2113	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
2114	    "Incompatible volume type") },
2115	/*        M       */
2116	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
2117	    "Incompatible volume qualifier") },
2118	/*        M       */
2119	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
2120	    "Cleaning volume expired") },
2121	/* DT  WRO   BK   */
2122	{ SST(0x31, 0x00, SS_FATAL | ENXIO,
2123	    "Medium format corrupted") },
2124	/* D L  RO   B    */
2125	{ SST(0x31, 0x01, SS_RDEF,
2126	    "Format command failed") },
2127	/*      R         */
2128	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
2129	    "Zoned formatting failed due to spare linking") },
2130	/* D         B    */
2131	{ SST(0x31, 0x03, SS_FATAL | EIO,
2132	    "SANITIZE command failed") },
2133	/* D              */
2134	{ SST(0x31, 0x04, SS_FATAL | EIO,
2135	    "Depopulation failed") },
2136	/* D              */
2137	{ SST(0x31, 0x05, SS_FATAL | EIO,
2138	    "Depopulation restoration failed") },
2139	/* D   W O   BK   */
2140	{ SST(0x32, 0x00, SS_RDEF,
2141	    "No defect spare location available") },
2142	/* D   W O   BK   */
2143	{ SST(0x32, 0x01, SS_RDEF,
2144	    "Defect list update failure") },
2145	/*  T             */
2146	{ SST(0x33, 0x00, SS_RDEF,
2147	    "Tape length error") },
2148	/* DTLPWROMAEBKVF */
2149	{ SST(0x34, 0x00, SS_RDEF,
2150	    "Enclosure failure") },
2151	/* DTLPWROMAEBKVF */
2152	{ SST(0x35, 0x00, SS_RDEF,
2153	    "Enclosure services failure") },
2154	/* DTLPWROMAEBKVF */
2155	{ SST(0x35, 0x01, SS_RDEF,
2156	    "Unsupported enclosure function") },
2157	/* DTLPWROMAEBKVF */
2158	{ SST(0x35, 0x02, SS_RDEF,
2159	    "Enclosure services unavailable") },
2160	/* DTLPWROMAEBKVF */
2161	{ SST(0x35, 0x03, SS_RDEF,
2162	    "Enclosure services transfer failure") },
2163	/* DTLPWROMAEBKVF */
2164	{ SST(0x35, 0x04, SS_RDEF,
2165	    "Enclosure services transfer refused") },
2166	/* DTL WROMAEBKVF */
2167	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
2168	    "Enclosure services checksum error") },
2169	/*   L            */
2170	{ SST(0x36, 0x00, SS_RDEF,
2171	    "Ribbon, ink, or toner failure") },
2172	/* DTL WROMAEBKVF */
2173	{ SST(0x37, 0x00, SS_RDEF,
2174	    "Rounded parameter") },
2175	/*           B    */
2176	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
2177	    "Event status notification") },
2178	/*           B    */
2179	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2180	    "ESN - power management class event") },
2181	/*           B    */
2182	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2183	    "ESN - media class event") },
2184	/*           B    */
2185	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2186	    "ESN - device busy class event") },
2187	/* D              */
2188	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2189	    "Thin provisioning soft threshold reached") },
2190	/* D              */
2191	{ SST(0x38, 0x08, SS_NOP | SSQ_PRINT_SENSE,
2192	    "Depopulation interrupted") },
2193	/* DTL WROMAE K   */
2194	{ SST(0x39, 0x00, SS_RDEF,
2195	    "Saving parameters not supported") },
2196	/* DTL WROM  BK   */
2197	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2198	    "Medium not present") },
2199	/* DT  WROM  BK   */
2200	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2201	    "Medium not present - tray closed") },
2202	/* DT  WROM  BK   */
2203	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2204	    "Medium not present - tray open") },
2205	/* DT  WROM  B    */
2206	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2207	    "Medium not present - loadable") },
2208	/* DT  WRO   B    */
2209	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2210	    "Medium not present - medium auxiliary memory accessible") },
2211	/*  TL            */
2212	{ SST(0x3B, 0x00, SS_RDEF,
2213	    "Sequential positioning error") },
2214	/*  T             */
2215	{ SST(0x3B, 0x01, SS_RDEF,
2216	    "Tape position error at beginning-of-medium") },
2217	/*  T             */
2218	{ SST(0x3B, 0x02, SS_RDEF,
2219	    "Tape position error at end-of-medium") },
2220	/*   L            */
2221	{ SST(0x3B, 0x03, SS_RDEF,
2222	    "Tape or electronic vertical forms unit not ready") },
2223	/*   L            */
2224	{ SST(0x3B, 0x04, SS_RDEF,
2225	    "Slew failure") },
2226	/*   L            */
2227	{ SST(0x3B, 0x05, SS_RDEF,
2228	    "Paper jam") },
2229	/*   L            */
2230	{ SST(0x3B, 0x06, SS_RDEF,
2231	    "Failed to sense top-of-form") },
2232	/*   L            */
2233	{ SST(0x3B, 0x07, SS_RDEF,
2234	    "Failed to sense bottom-of-form") },
2235	/*  T             */
2236	{ SST(0x3B, 0x08, SS_RDEF,
2237	    "Reposition error") },
2238	/*                */
2239	{ SST(0x3B, 0x09, SS_RDEF,
2240	    "Read past end of medium") },
2241	/*                */
2242	{ SST(0x3B, 0x0A, SS_RDEF,
2243	    "Read past beginning of medium") },
2244	/*                */
2245	{ SST(0x3B, 0x0B, SS_RDEF,
2246	    "Position past end of medium") },
2247	/*  T             */
2248	{ SST(0x3B, 0x0C, SS_RDEF,
2249	    "Position past beginning of medium") },
2250	/* DT  WROM  BK   */
2251	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2252	    "Medium destination element full") },
2253	/* DT  WROM  BK   */
2254	{ SST(0x3B, 0x0E, SS_RDEF,
2255	    "Medium source element empty") },
2256	/*      R         */
2257	{ SST(0x3B, 0x0F, SS_RDEF,
2258	    "End of medium reached") },
2259	/* DT  WROM  BK   */
2260	{ SST(0x3B, 0x11, SS_RDEF,
2261	    "Medium magazine not accessible") },
2262	/* DT  WROM  BK   */
2263	{ SST(0x3B, 0x12, SS_RDEF,
2264	    "Medium magazine removed") },
2265	/* DT  WROM  BK   */
2266	{ SST(0x3B, 0x13, SS_RDEF,
2267	    "Medium magazine inserted") },
2268	/* DT  WROM  BK   */
2269	{ SST(0x3B, 0x14, SS_RDEF,
2270	    "Medium magazine locked") },
2271	/* DT  WROM  BK   */
2272	{ SST(0x3B, 0x15, SS_RDEF,
2273	    "Medium magazine unlocked") },
2274	/*      R         */
2275	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2276	    "Mechanical positioning or changer error") },
2277	/*              F */
2278	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2279	    "Read past end of user object") },
2280	/*        M       */
2281	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2282	    "Element disabled") },
2283	/*        M       */
2284	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2285	    "Element enabled") },
2286	/*        M       */
2287	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2288	    "Data transfer device removed") },
2289	/*        M       */
2290	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2291	    "Data transfer device inserted") },
2292	/*  T             */
2293	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2294	    "Too many logical objects on partition to support operation") },
2295	/*        M       */
2296	{ SST(0x3B, 0x20, SS_RDEF,	/* XXX TBD */
2297	    "Element static information changed") },
2298	/* DTLPWROMAE K   */
2299	{ SST(0x3D, 0x00, SS_RDEF,
2300	    "Invalid bits in IDENTIFY message") },
2301	/* DTLPWROMAEBKVF */
2302	{ SST(0x3E, 0x00, SS_RDEF,
2303	    "Logical unit has not self-configured yet") },
2304	/* DTLPWROMAEBKVF */
2305	{ SST(0x3E, 0x01, SS_RDEF,
2306	    "Logical unit failure") },
2307	/* DTLPWROMAEBKVF */
2308	{ SST(0x3E, 0x02, SS_RDEF,
2309	    "Timeout on logical unit") },
2310	/* DTLPWROMAEBKVF */
2311	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2312	    "Logical unit failed self-test") },
2313	/* DTLPWROMAEBKVF */
2314	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2315	    "Logical unit unable to update self-test log") },
2316	/* DTLPWROMAEBKVF */
2317	{ SST(0x3F, 0x00, SS_RDEF,
2318	    "Target operating conditions have changed") },
2319	/* DTLPWROMAEBKVF */
2320	{ SST(0x3F, 0x01, SS_RDEF,
2321	    "Microcode has been changed") },
2322	/* DTLPWROM  BK   */
2323	{ SST(0x3F, 0x02, SS_RDEF,
2324	    "Changed operating definition") },
2325	/* DTLPWROMAEBKVF */
2326	{ SST(0x3F, 0x03, SS_RDEF,
2327	    "INQUIRY data has changed") },
2328	/* DT  WROMAEBK   */
2329	{ SST(0x3F, 0x04, SS_RDEF,
2330	    "Component device attached") },
2331	/* DT  WROMAEBK   */
2332	{ SST(0x3F, 0x05, SS_RDEF,
2333	    "Device identifier changed") },
2334	/* DT  WROMAEB    */
2335	{ SST(0x3F, 0x06, SS_RDEF,
2336	    "Redundancy group created or modified") },
2337	/* DT  WROMAEB    */
2338	{ SST(0x3F, 0x07, SS_RDEF,
2339	    "Redundancy group deleted") },
2340	/* DT  WROMAEB    */
2341	{ SST(0x3F, 0x08, SS_RDEF,
2342	    "Spare created or modified") },
2343	/* DT  WROMAEB    */
2344	{ SST(0x3F, 0x09, SS_RDEF,
2345	    "Spare deleted") },
2346	/* DT  WROMAEBK   */
2347	{ SST(0x3F, 0x0A, SS_RDEF,
2348	    "Volume set created or modified") },
2349	/* DT  WROMAEBK   */
2350	{ SST(0x3F, 0x0B, SS_RDEF,
2351	    "Volume set deleted") },
2352	/* DT  WROMAEBK   */
2353	{ SST(0x3F, 0x0C, SS_RDEF,
2354	    "Volume set deassigned") },
2355	/* DT  WROMAEBK   */
2356	{ SST(0x3F, 0x0D, SS_RDEF,
2357	    "Volume set reassigned") },
2358	/* DTLPWROMAE     */
2359	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2360	    "Reported LUNs data has changed") },
2361	/* DTLPWROMAEBKVF */
2362	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2363	    "Echo buffer overwritten") },
2364	/* DT  WROM  B    */
2365	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2366	    "Medium loadable") },
2367	/* DT  WROM  B    */
2368	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2369	    "Medium auxiliary memory accessible") },
2370	/* DTLPWR MAEBK F */
2371	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2372	    "iSCSI IP address added") },
2373	/* DTLPWR MAEBK F */
2374	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2375	    "iSCSI IP address removed") },
2376	/* DTLPWR MAEBK F */
2377	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2378	    "iSCSI IP address changed") },
2379	/* DTLPWR MAEBK   */
2380	{ SST(0x3F, 0x15, SS_RDEF,	/* XXX TBD */
2381	    "Inspect referrals sense descriptors") },
2382	/* DTLPWROMAEBKVF */
2383	{ SST(0x3F, 0x16, SS_RDEF,	/* XXX TBD */
2384	    "Microcode has been changed without reset") },
2385	/* D              */
2386	{ SST(0x3F, 0x17, SS_RDEF,	/* XXX TBD */
2387	    "Zone transition to full") },
2388	/* D              */
2389	{ SST(0x3F, 0x18, SS_RDEF,	/* XXX TBD */
2390	    "Bind completed") },
2391	/* D              */
2392	{ SST(0x3F, 0x19, SS_RDEF,	/* XXX TBD */
2393	    "Bind redirected") },
2394	/* D              */
2395	{ SST(0x3F, 0x1A, SS_RDEF,	/* XXX TBD */
2396	    "Subsidiary binding changed") },
2397	{ SST(0x40, 0x00, SS_RDEF,
2398	    "RAM failure") },		/* deprecated - use 40 NN instead */
2399	/* DTLPWROMAEBKVF */
2400	{ SST(0x40, 0x80, SS_RDEF,
2401	    "Diagnostic failure: ASCQ = Component ID") },
2402	/* DTLPWROMAEBKVF */
2403	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2404	    NULL) },			/* Range 0x80->0xFF */
2405	/* D              */
2406	{ SST(0x41, 0x00, SS_RDEF,
2407	    "Data path failure") },	/* deprecated - use 40 NN instead */
2408	/* D              */
2409	{ SST(0x42, 0x00, SS_RDEF,
2410	    "Power-on or self-test failure") },
2411					/* deprecated - use 40 NN instead */
2412	/* DTLPWROMAEBKVF */
2413	{ SST(0x43, 0x00, SS_RDEF,
2414	    "Message error") },
2415	/* DTLPWROMAEBKVF */
2416	{ SST(0x44, 0x00, SS_FATAL | EIO,
2417	    "Internal target failure") },
2418	/* DT P   MAEBKVF */
2419	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2420	    "Persistent reservation information lost") },
2421	/* DT        B    */
2422	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2423	    "ATA device failed set features") },
2424	/* DTLPWROMAEBKVF */
2425	{ SST(0x45, 0x00, SS_RDEF,
2426	    "Select or reselect failure") },
2427	/* DTLPWROM  BK   */
2428	{ SST(0x46, 0x00, SS_RDEF,
2429	    "Unsuccessful soft reset") },
2430	/* DTLPWROMAEBKVF */
2431	{ SST(0x47, 0x00, SS_RDEF,
2432	    "SCSI parity error") },
2433	/* DTLPWROMAEBKVF */
2434	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2435	    "Data phase CRC error detected") },
2436	/* DTLPWROMAEBKVF */
2437	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2438	    "SCSI parity error detected during ST data phase") },
2439	/* DTLPWROMAEBKVF */
2440	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2441	    "Information unit iuCRC error detected") },
2442	/* DTLPWROMAEBKVF */
2443	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2444	    "Asynchronous information protection error detected") },
2445	/* DTLPWROMAEBKVF */
2446	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2447	    "Protocol service CRC error") },
2448	/* DT     MAEBKVF */
2449	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2450	    "PHY test function in progress") },
2451	/* DT PWROMAEBK   */
2452	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2453	    "Some commands cleared by iSCSI protocol event") },
2454	/* DTLPWROMAEBKVF */
2455	{ SST(0x48, 0x00, SS_RDEF,
2456	    "Initiator detected error message received") },
2457	/* DTLPWROMAEBKVF */
2458	{ SST(0x49, 0x00, SS_RDEF,
2459	    "Invalid message error") },
2460	/* DTLPWROMAEBKVF */
2461	{ SST(0x4A, 0x00, SS_RDEF,
2462	    "Command phase error") },
2463	/* DTLPWROMAEBKVF */
2464	{ SST(0x4B, 0x00, SS_RDEF,
2465	    "Data phase error") },
2466	/* DT PWROMAEBK   */
2467	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2468	    "Invalid target port transfer tag received") },
2469	/* DT PWROMAEBK   */
2470	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2471	    "Too much write data") },
2472	/* DT PWROMAEBK   */
2473	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2474	    "ACK/NAK timeout") },
2475	/* DT PWROMAEBK   */
2476	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2477	    "NAK received") },
2478	/* DT PWROMAEBK   */
2479	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2480	    "Data offset error") },
2481	/* DT PWROMAEBK   */
2482	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2483	    "Initiator response timeout") },
2484	/* DT PWROMAEBK F */
2485	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2486	    "Connection lost") },
2487	/* DT PWROMAEBK F */
2488	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2489	    "Data-in buffer overflow - data buffer size") },
2490	/* DT PWROMAEBK F */
2491	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2492	    "Data-in buffer overflow - data buffer descriptor area") },
2493	/* DT PWROMAEBK F */
2494	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2495	    "Data-in buffer error") },
2496	/* DT PWROMAEBK F */
2497	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2498	    "Data-out buffer overflow - data buffer size") },
2499	/* DT PWROMAEBK F */
2500	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2501	    "Data-out buffer overflow - data buffer descriptor area") },
2502	/* DT PWROMAEBK F */
2503	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2504	    "Data-out buffer error") },
2505	/* DT PWROMAEBK F */
2506	{ SST(0x4B, 0x0E, SS_RDEF,	/* XXX TBD */
2507	    "PCIe fabric error") },
2508	/* DT PWROMAEBK F */
2509	{ SST(0x4B, 0x0F, SS_RDEF,	/* XXX TBD */
2510	    "PCIe completion timeout") },
2511	/* DT PWROMAEBK F */
2512	{ SST(0x4B, 0x10, SS_RDEF,	/* XXX TBD */
2513	    "PCIe completer abort") },
2514	/* DT PWROMAEBK F */
2515	{ SST(0x4B, 0x11, SS_RDEF,	/* XXX TBD */
2516	    "PCIe poisoned TLP received") },
2517	/* DT PWROMAEBK F */
2518	{ SST(0x4B, 0x12, SS_RDEF,	/* XXX TBD */
2519	    "PCIe ECRC check failed") },
2520	/* DT PWROMAEBK F */
2521	{ SST(0x4B, 0x13, SS_RDEF,	/* XXX TBD */
2522	    "PCIe unsupported request") },
2523	/* DT PWROMAEBK F */
2524	{ SST(0x4B, 0x14, SS_RDEF,	/* XXX TBD */
2525	    "PCIe ACS violation") },
2526	/* DT PWROMAEBK F */
2527	{ SST(0x4B, 0x15, SS_RDEF,	/* XXX TBD */
2528	    "PCIe TLP prefix blocket") },
2529	/* DTLPWROMAEBKVF */
2530	{ SST(0x4C, 0x00, SS_RDEF,
2531	    "Logical unit failed self-configuration") },
2532	/* DTLPWROMAEBKVF */
2533	{ SST(0x4D, 0x00, SS_RDEF,
2534	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2535	/* DTLPWROMAEBKVF */
2536	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2537	    NULL) },			/* Range 0x00->0xFF */
2538	/* DTLPWROMAEBKVF */
2539	{ SST(0x4E, 0x00, SS_RDEF,
2540	    "Overlapped commands attempted") },
2541	/*  T             */
2542	{ SST(0x50, 0x00, SS_RDEF,
2543	    "Write append error") },
2544	/*  T             */
2545	{ SST(0x50, 0x01, SS_RDEF,
2546	    "Write append position error") },
2547	/*  T             */
2548	{ SST(0x50, 0x02, SS_RDEF,
2549	    "Position error related to timing") },
2550	/*  T   RO        */
2551	{ SST(0x51, 0x00, SS_RDEF,
2552	    "Erase failure") },
2553	/*      R         */
2554	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2555	    "Erase failure - incomplete erase operation detected") },
2556	/*  T             */
2557	{ SST(0x52, 0x00, SS_RDEF,
2558	    "Cartridge fault") },
2559	/* DTL WROM  BK   */
2560	{ SST(0x53, 0x00, SS_RDEF,
2561	    "Media load or eject failed") },
2562	/*  T             */
2563	{ SST(0x53, 0x01, SS_RDEF,
2564	    "Unload tape failure") },
2565	/* DT  WROM  BK   */
2566	{ SST(0x53, 0x02, SS_RDEF,
2567	    "Medium removal prevented") },
2568	/*        M       */
2569	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2570	    "Medium removal prevented by data transfer element") },
2571	/*  T             */
2572	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2573	    "Medium thread or unthread failure") },
2574	/*        M       */
2575	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2576	    "Volume identifier invalid") },
2577	/*  T             */
2578	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2579	    "Volume identifier missing") },
2580	/*        M       */
2581	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2582	    "Duplicate volume identifier") },
2583	/*        M       */
2584	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2585	    "Element status unknown") },
2586	/*        M       */
2587	{ SST(0x53, 0x09, SS_RDEF,	/* XXX TBD */
2588	    "Data transfer device error - load failed") },
2589	/*        M       */
2590	{ SST(0x53, 0x0A, SS_RDEF,	/* XXX TBD */
2591	    "Data transfer device error - unload failed") },
2592	/*        M       */
2593	{ SST(0x53, 0x0B, SS_RDEF,	/* XXX TBD */
2594	    "Data transfer device error - unload missing") },
2595	/*        M       */
2596	{ SST(0x53, 0x0C, SS_RDEF,	/* XXX TBD */
2597	    "Data transfer device error - eject failed") },
2598	/*        M       */
2599	{ SST(0x53, 0x0D, SS_RDEF,	/* XXX TBD */
2600	    "Data transfer device error - library communication failed") },
2601	/*    P           */
2602	{ SST(0x54, 0x00, SS_RDEF,
2603	    "SCSI to host system interface failure") },
2604	/*    P           */
2605	{ SST(0x55, 0x00, SS_RDEF,
2606	    "System resource failure") },
2607	/* D     O   BK   */
2608	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2609	    "System buffer full") },
2610	/* DTLPWROMAE K   */
2611	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2612	    "Insufficient reservation resources") },
2613	/* DTLPWROMAE K   */
2614	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2615	    "Insufficient resources") },
2616	/* DTLPWROMAE K   */
2617	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2618	    "Insufficient registration resources") },
2619	/* DT PWROMAEBK   */
2620	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2621	    "Insufficient access control resources") },
2622	/* DT  WROM  B    */
2623	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2624	    "Auxiliary memory out of space") },
2625	/*              F */
2626	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2627	    "Quota error") },
2628	/*  T             */
2629	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2630	    "Maximum number of supplemental decryption keys exceeded") },
2631	/*        M       */
2632	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2633	    "Medium auxiliary memory not accessible") },
2634	/*        M       */
2635	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2636	    "Data currently unavailable") },
2637	/* DTLPWROMAEBKVF */
2638	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2639	    "Insufficient power for operation") },
2640	/* DT P      B    */
2641	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2642	    "Insufficient resources to create ROD") },
2643	/* DT P      B    */
2644	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2645	    "Insufficient resources to create ROD token") },
2646	/* D              */
2647	{ SST(0x55, 0x0E, SS_RDEF,	/* XXX TBD */
2648	    "Insufficient zone resources") },
2649	/* D              */
2650	{ SST(0x55, 0x0F, SS_RDEF,	/* XXX TBD */
2651	    "Insufficient zone resources to complete write") },
2652	/* D              */
2653	{ SST(0x55, 0x10, SS_RDEF,	/* XXX TBD */
2654	    "Maximum number of streams open") },
2655	/* D              */
2656	{ SST(0x55, 0x11, SS_RDEF,	/* XXX TBD */
2657	    "Insufficient resources to bind") },
2658	/*      R         */
2659	{ SST(0x57, 0x00, SS_RDEF,
2660	    "Unable to recover table-of-contents") },
2661	/*       O        */
2662	{ SST(0x58, 0x00, SS_RDEF,
2663	    "Generation does not exist") },
2664	/*       O        */
2665	{ SST(0x59, 0x00, SS_RDEF,
2666	    "Updated block read") },
2667	/* DTLPWRO   BK   */
2668	{ SST(0x5A, 0x00, SS_RDEF,
2669	    "Operator request or state change input") },
2670	/* DT  WROM  BK   */
2671	{ SST(0x5A, 0x01, SS_RDEF,
2672	    "Operator medium removal request") },
2673	/* DT  WRO A BK   */
2674	{ SST(0x5A, 0x02, SS_RDEF,
2675	    "Operator selected write protect") },
2676	/* DT  WRO A BK   */
2677	{ SST(0x5A, 0x03, SS_RDEF,
2678	    "Operator selected write permit") },
2679	/* DTLPWROM   K   */
2680	{ SST(0x5B, 0x00, SS_RDEF,
2681	    "Log exception") },
2682	/* DTLPWROM   K   */
2683	{ SST(0x5B, 0x01, SS_RDEF,
2684	    "Threshold condition met") },
2685	/* DTLPWROM   K   */
2686	{ SST(0x5B, 0x02, SS_RDEF,
2687	    "Log counter at maximum") },
2688	/* DTLPWROM   K   */
2689	{ SST(0x5B, 0x03, SS_RDEF,
2690	    "Log list codes exhausted") },
2691	/* D     O        */
2692	{ SST(0x5C, 0x00, SS_RDEF,
2693	    "RPL status change") },
2694	/* D     O        */
2695	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2696	    "Spindles synchronized") },
2697	/* D     O        */
2698	{ SST(0x5C, 0x02, SS_RDEF,
2699	    "Spindles not synchronized") },
2700	/* DTLPWROMAEBKVF */
2701	{ SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2702	    "Failure prediction threshold exceeded") },
2703	/*      R    B    */
2704	{ SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2705	    "Media failure prediction threshold exceeded") },
2706	/*      R         */
2707	{ SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2708	    "Logical unit failure prediction threshold exceeded") },
2709	/*      R         */
2710	{ SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2711	    "Spare area exhaustion prediction threshold exceeded") },
2712	/* D         B    */
2713	{ SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2714	    "Hardware impending failure general hard drive failure") },
2715	/* D         B    */
2716	{ SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2717	    "Hardware impending failure drive error rate too high") },
2718	/* D         B    */
2719	{ SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2720	    "Hardware impending failure data error rate too high") },
2721	/* D         B    */
2722	{ SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2723	    "Hardware impending failure seek error rate too high") },
2724	/* D         B    */
2725	{ SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2726	    "Hardware impending failure too many block reassigns") },
2727	/* D         B    */
2728	{ SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2729	    "Hardware impending failure access times too high") },
2730	/* D         B    */
2731	{ SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2732	    "Hardware impending failure start unit times too high") },
2733	/* D         B    */
2734	{ SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2735	    "Hardware impending failure channel parametrics") },
2736	/* D         B    */
2737	{ SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2738	    "Hardware impending failure controller detected") },
2739	/* D         B    */
2740	{ SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2741	    "Hardware impending failure throughput performance") },
2742	/* D         B    */
2743	{ SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2744	    "Hardware impending failure seek time performance") },
2745	/* D         B    */
2746	{ SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2747	    "Hardware impending failure spin-up retry count") },
2748	/* D         B    */
2749	{ SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2750	    "Hardware impending failure drive calibration retry count") },
2751	/* D         B    */
2752	{ SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2753	    "Hardware impending failure power loss protection circuit") },
2754	/* D         B    */
2755	{ SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2756	    "Controller impending failure general hard drive failure") },
2757	/* D         B    */
2758	{ SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2759	    "Controller impending failure drive error rate too high") },
2760	/* D         B    */
2761	{ SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2762	    "Controller impending failure data error rate too high") },
2763	/* D         B    */
2764	{ SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2765	    "Controller impending failure seek error rate too high") },
2766	/* D         B    */
2767	{ SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2768	    "Controller impending failure too many block reassigns") },
2769	/* D         B    */
2770	{ SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2771	    "Controller impending failure access times too high") },
2772	/* D         B    */
2773	{ SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2774	    "Controller impending failure start unit times too high") },
2775	/* D         B    */
2776	{ SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2777	    "Controller impending failure channel parametrics") },
2778	/* D         B    */
2779	{ SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2780	    "Controller impending failure controller detected") },
2781	/* D         B    */
2782	{ SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2783	    "Controller impending failure throughput performance") },
2784	/* D         B    */
2785	{ SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2786	    "Controller impending failure seek time performance") },
2787	/* D         B    */
2788	{ SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2789	    "Controller impending failure spin-up retry count") },
2790	/* D         B    */
2791	{ SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2792	    "Controller impending failure drive calibration retry count") },
2793	/* D         B    */
2794	{ SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2795	    "Data channel impending failure general hard drive failure") },
2796	/* D         B    */
2797	{ SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2798	    "Data channel impending failure drive error rate too high") },
2799	/* D         B    */
2800	{ SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2801	    "Data channel impending failure data error rate too high") },
2802	/* D         B    */
2803	{ SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2804	    "Data channel impending failure seek error rate too high") },
2805	/* D         B    */
2806	{ SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2807	    "Data channel impending failure too many block reassigns") },
2808	/* D         B    */
2809	{ SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2810	    "Data channel impending failure access times too high") },
2811	/* D         B    */
2812	{ SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2813	    "Data channel impending failure start unit times too high") },
2814	/* D         B    */
2815	{ SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2816	    "Data channel impending failure channel parametrics") },
2817	/* D         B    */
2818	{ SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2819	    "Data channel impending failure controller detected") },
2820	/* D         B    */
2821	{ SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2822	    "Data channel impending failure throughput performance") },
2823	/* D         B    */
2824	{ SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2825	    "Data channel impending failure seek time performance") },
2826	/* D         B    */
2827	{ SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2828	    "Data channel impending failure spin-up retry count") },
2829	/* D         B    */
2830	{ SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2831	    "Data channel impending failure drive calibration retry count") },
2832	/* D         B    */
2833	{ SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2834	    "Servo impending failure general hard drive failure") },
2835	/* D         B    */
2836	{ SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2837	    "Servo impending failure drive error rate too high") },
2838	/* D         B    */
2839	{ SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2840	    "Servo impending failure data error rate too high") },
2841	/* D         B    */
2842	{ SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2843	    "Servo impending failure seek error rate too high") },
2844	/* D         B    */
2845	{ SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2846	    "Servo impending failure too many block reassigns") },
2847	/* D         B    */
2848	{ SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2849	    "Servo impending failure access times too high") },
2850	/* D         B    */
2851	{ SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2852	    "Servo impending failure start unit times too high") },
2853	/* D         B    */
2854	{ SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2855	    "Servo impending failure channel parametrics") },
2856	/* D         B    */
2857	{ SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2858	    "Servo impending failure controller detected") },
2859	/* D         B    */
2860	{ SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2861	    "Servo impending failure throughput performance") },
2862	/* D         B    */
2863	{ SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2864	    "Servo impending failure seek time performance") },
2865	/* D         B    */
2866	{ SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2867	    "Servo impending failure spin-up retry count") },
2868	/* D         B    */
2869	{ SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2870	    "Servo impending failure drive calibration retry count") },
2871	/* D         B    */
2872	{ SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2873	    "Spindle impending failure general hard drive failure") },
2874	/* D         B    */
2875	{ SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2876	    "Spindle impending failure drive error rate too high") },
2877	/* D         B    */
2878	{ SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2879	    "Spindle impending failure data error rate too high") },
2880	/* D         B    */
2881	{ SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2882	    "Spindle impending failure seek error rate too high") },
2883	/* D         B    */
2884	{ SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2885	    "Spindle impending failure too many block reassigns") },
2886	/* D         B    */
2887	{ SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2888	    "Spindle impending failure access times too high") },
2889	/* D         B    */
2890	{ SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2891	    "Spindle impending failure start unit times too high") },
2892	/* D         B    */
2893	{ SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2894	    "Spindle impending failure channel parametrics") },
2895	/* D         B    */
2896	{ SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2897	    "Spindle impending failure controller detected") },
2898	/* D         B    */
2899	{ SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2900	    "Spindle impending failure throughput performance") },
2901	/* D         B    */
2902	{ SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2903	    "Spindle impending failure seek time performance") },
2904	/* D         B    */
2905	{ SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2906	    "Spindle impending failure spin-up retry count") },
2907	/* D         B    */
2908	{ SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2909	    "Spindle impending failure drive calibration retry count") },
2910	/* D         B    */
2911	{ SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2912	    "Firmware impending failure general hard drive failure") },
2913	/* D         B    */
2914	{ SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2915	    "Firmware impending failure drive error rate too high") },
2916	/* D         B    */
2917	{ SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2918	    "Firmware impending failure data error rate too high") },
2919	/* D         B    */
2920	{ SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2921	    "Firmware impending failure seek error rate too high") },
2922	/* D         B    */
2923	{ SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2924	    "Firmware impending failure too many block reassigns") },
2925	/* D         B    */
2926	{ SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2927	    "Firmware impending failure access times too high") },
2928	/* D         B    */
2929	{ SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2930	    "Firmware impending failure start unit times too high") },
2931	/* D         B    */
2932	{ SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2933	    "Firmware impending failure channel parametrics") },
2934	/* D         B    */
2935	{ SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2936	    "Firmware impending failure controller detected") },
2937	/* D         B    */
2938	{ SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2939	    "Firmware impending failure throughput performance") },
2940	/* D         B    */
2941	{ SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2942	    "Firmware impending failure seek time performance") },
2943	/* D         B    */
2944	{ SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2945	    "Firmware impending failure spin-up retry count") },
2946	/* D         B    */
2947	{ SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2948	    "Firmware impending failure drive calibration retry count") },
2949	/* D         B    */
2950	{ SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2951	    "Media impending failure endurance limit met") },
2952	/* DTLPWROMAEBKVF */
2953	{ SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2954	    "Failure prediction threshold exceeded (false)") },
2955	/* DTLPWRO A  K   */
2956	{ SST(0x5E, 0x00, SS_RDEF,
2957	    "Low power condition on") },
2958	/* DTLPWRO A  K   */
2959	{ SST(0x5E, 0x01, SS_RDEF,
2960	    "Idle condition activated by timer") },
2961	/* DTLPWRO A  K   */
2962	{ SST(0x5E, 0x02, SS_RDEF,
2963	    "Standby condition activated by timer") },
2964	/* DTLPWRO A  K   */
2965	{ SST(0x5E, 0x03, SS_RDEF,
2966	    "Idle condition activated by command") },
2967	/* DTLPWRO A  K   */
2968	{ SST(0x5E, 0x04, SS_RDEF,
2969	    "Standby condition activated by command") },
2970	/* DTLPWRO A  K   */
2971	{ SST(0x5E, 0x05, SS_RDEF,
2972	    "Idle-B condition activated by timer") },
2973	/* DTLPWRO A  K   */
2974	{ SST(0x5E, 0x06, SS_RDEF,
2975	    "Idle-B condition activated by command") },
2976	/* DTLPWRO A  K   */
2977	{ SST(0x5E, 0x07, SS_RDEF,
2978	    "Idle-C condition activated by timer") },
2979	/* DTLPWRO A  K   */
2980	{ SST(0x5E, 0x08, SS_RDEF,
2981	    "Idle-C condition activated by command") },
2982	/* DTLPWRO A  K   */
2983	{ SST(0x5E, 0x09, SS_RDEF,
2984	    "Standby-Y condition activated by timer") },
2985	/* DTLPWRO A  K   */
2986	{ SST(0x5E, 0x0A, SS_RDEF,
2987	    "Standby-Y condition activated by command") },
2988	/*           B    */
2989	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2990	    "Power state change to active") },
2991	/*           B    */
2992	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2993	    "Power state change to idle") },
2994	/*           B    */
2995	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2996	    "Power state change to standby") },
2997	/*           B    */
2998	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2999	    "Power state change to sleep") },
3000	/*           BK   */
3001	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
3002	    "Power state change to device control") },
3003	/*                */
3004	{ SST(0x60, 0x00, SS_RDEF,
3005	    "Lamp failure") },
3006	/*                */
3007	{ SST(0x61, 0x00, SS_RDEF,
3008	    "Video acquisition error") },
3009	/*                */
3010	{ SST(0x61, 0x01, SS_RDEF,
3011	    "Unable to acquire video") },
3012	/*                */
3013	{ SST(0x61, 0x02, SS_RDEF,
3014	    "Out of focus") },
3015	/*                */
3016	{ SST(0x62, 0x00, SS_RDEF,
3017	    "Scan head positioning error") },
3018	/*      R         */
3019	{ SST(0x63, 0x00, SS_RDEF,
3020	    "End of user area encountered on this track") },
3021	/*      R         */
3022	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
3023	    "Packet does not fit in available space") },
3024	/*      R         */
3025	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
3026	    "Illegal mode for this track") },
3027	/*      R         */
3028	{ SST(0x64, 0x01, SS_RDEF,
3029	    "Invalid packet size") },
3030	/* DTLPWROMAEBKVF */
3031	{ SST(0x65, 0x00, SS_RDEF,
3032	    "Voltage fault") },
3033	/*                */
3034	{ SST(0x66, 0x00, SS_RDEF,
3035	    "Automatic document feeder cover up") },
3036	/*                */
3037	{ SST(0x66, 0x01, SS_RDEF,
3038	    "Automatic document feeder lift up") },
3039	/*                */
3040	{ SST(0x66, 0x02, SS_RDEF,
3041	    "Document jam in automatic document feeder") },
3042	/*                */
3043	{ SST(0x66, 0x03, SS_RDEF,
3044	    "Document miss feed automatic in document feeder") },
3045	/*         A      */
3046	{ SST(0x67, 0x00, SS_RDEF,
3047	    "Configuration failure") },
3048	/*         A      */
3049	{ SST(0x67, 0x01, SS_RDEF,
3050	    "Configuration of incapable logical units failed") },
3051	/*         A      */
3052	{ SST(0x67, 0x02, SS_RDEF,
3053	    "Add logical unit failed") },
3054	/*         A      */
3055	{ SST(0x67, 0x03, SS_RDEF,
3056	    "Modification of logical unit failed") },
3057	/*         A      */
3058	{ SST(0x67, 0x04, SS_RDEF,
3059	    "Exchange of logical unit failed") },
3060	/*         A      */
3061	{ SST(0x67, 0x05, SS_RDEF,
3062	    "Remove of logical unit failed") },
3063	/*         A      */
3064	{ SST(0x67, 0x06, SS_RDEF,
3065	    "Attachment of logical unit failed") },
3066	/*         A      */
3067	{ SST(0x67, 0x07, SS_RDEF,
3068	    "Creation of logical unit failed") },
3069	/*         A      */
3070	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
3071	    "Assign failure occurred") },
3072	/*         A      */
3073	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
3074	    "Multiply assigned logical unit") },
3075	/* DTLPWROMAEBKVF */
3076	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
3077	    "Set target port groups command failed") },
3078	/* DT        B    */
3079	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
3080	    "ATA device feature not enabled") },
3081	/* D              */
3082	{ SST(0x67, 0x0C, SS_FATAL | EIO,
3083	    "Command rejected") },
3084	/* D              */
3085	{ SST(0x67, 0x0D, SS_FATAL | EINVAL,
3086	    "Explicit bind not allowed") },
3087	/*         A      */
3088	{ SST(0x68, 0x00, SS_RDEF,
3089	    "Logical unit not configured") },
3090	/* D              */
3091	{ SST(0x68, 0x01, SS_RDEF,
3092	    "Subsidiary logical unit not configured") },
3093	/*         A      */
3094	{ SST(0x69, 0x00, SS_RDEF,
3095	    "Data loss on logical unit") },
3096	/*         A      */
3097	{ SST(0x69, 0x01, SS_RDEF,
3098	    "Multiple logical unit failures") },
3099	/*         A      */
3100	{ SST(0x69, 0x02, SS_RDEF,
3101	    "Parity/data mismatch") },
3102	/*         A      */
3103	{ SST(0x6A, 0x00, SS_RDEF,
3104	    "Informational, refer to log") },
3105	/*         A      */
3106	{ SST(0x6B, 0x00, SS_RDEF,
3107	    "State change has occurred") },
3108	/*         A      */
3109	{ SST(0x6B, 0x01, SS_RDEF,
3110	    "Redundancy level got better") },
3111	/*         A      */
3112	{ SST(0x6B, 0x02, SS_RDEF,
3113	    "Redundancy level got worse") },
3114	/*         A      */
3115	{ SST(0x6C, 0x00, SS_RDEF,
3116	    "Rebuild failure occurred") },
3117	/*         A      */
3118	{ SST(0x6D, 0x00, SS_RDEF,
3119	    "Recalculate failure occurred") },
3120	/*         A      */
3121	{ SST(0x6E, 0x00, SS_RDEF,
3122	    "Command to logical unit failed") },
3123	/*      R         */
3124	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
3125	    "Copy protection key exchange failure - authentication failure") },
3126	/*      R         */
3127	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
3128	    "Copy protection key exchange failure - key not present") },
3129	/*      R         */
3130	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
3131	    "Copy protection key exchange failure - key not established") },
3132	/*      R         */
3133	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
3134	    "Read of scrambled sector without authentication") },
3135	/*      R         */
3136	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
3137	    "Media region code is mismatched to logical unit region") },
3138	/*      R         */
3139	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
3140	    "Drive region must be permanent/region reset count error") },
3141	/*      R         */
3142	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
3143	    "Insufficient block count for binding NONCE recording") },
3144	/*      R         */
3145	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
3146	    "Conflict in binding NONCE recording") },
3147	/*      R         */
3148	{ SST(0x6F, 0x08, SS_FATAL | EPERM,
3149	    "Insufficient permission") },
3150	/*      R         */
3151	{ SST(0x6F, 0x09, SS_FATAL | EINVAL,
3152	    "Invalid drive-host pairing server") },
3153	/*      R         */
3154	{ SST(0x6F, 0x0A, SS_RDEF,	/* XXX TBD */
3155	    "Drive-host pairing suspended") },
3156	/*  T             */
3157	{ SST(0x70, 0x00, SS_RDEF,
3158	    "Decompression exception short: ASCQ = Algorithm ID") },
3159	/*  T             */
3160	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3161	    NULL) },			/* Range 0x00 -> 0xFF */
3162	/*  T             */
3163	{ SST(0x71, 0x00, SS_RDEF,
3164	    "Decompression exception long: ASCQ = Algorithm ID") },
3165	/*  T             */
3166	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3167	    NULL) },			/* Range 0x00 -> 0xFF */
3168	/*      R         */
3169	{ SST(0x72, 0x00, SS_RDEF,
3170	    "Session fixation error") },
3171	/*      R         */
3172	{ SST(0x72, 0x01, SS_RDEF,
3173	    "Session fixation error writing lead-in") },
3174	/*      R         */
3175	{ SST(0x72, 0x02, SS_RDEF,
3176	    "Session fixation error writing lead-out") },
3177	/*      R         */
3178	{ SST(0x72, 0x03, SS_RDEF,
3179	    "Session fixation error - incomplete track in session") },
3180	/*      R         */
3181	{ SST(0x72, 0x04, SS_RDEF,
3182	    "Empty or partially written reserved track") },
3183	/*      R         */
3184	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
3185	    "No more track reservations allowed") },
3186	/*      R         */
3187	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
3188	    "RMZ extension is not allowed") },
3189	/*      R         */
3190	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
3191	    "No more test zone extensions are allowed") },
3192	/*      R         */
3193	{ SST(0x73, 0x00, SS_RDEF,
3194	    "CD control error") },
3195	/*      R         */
3196	{ SST(0x73, 0x01, SS_RDEF,
3197	    "Power calibration area almost full") },
3198	/*      R         */
3199	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
3200	    "Power calibration area is full") },
3201	/*      R         */
3202	{ SST(0x73, 0x03, SS_RDEF,
3203	    "Power calibration area error") },
3204	/*      R         */
3205	{ SST(0x73, 0x04, SS_RDEF,
3206	    "Program memory area update failure") },
3207	/*      R         */
3208	{ SST(0x73, 0x05, SS_RDEF,
3209	    "Program memory area is full") },
3210	/*      R         */
3211	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
3212	    "RMA/PMA is almost full") },
3213	/*      R         */
3214	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
3215	    "Current power calibration area almost full") },
3216	/*      R         */
3217	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
3218	    "Current power calibration area is full") },
3219	/*      R         */
3220	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
3221	    "RDZ is full") },
3222	/*  T             */
3223	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
3224	    "Security error") },
3225	/*  T             */
3226	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
3227	    "Unable to decrypt data") },
3228	/*  T             */
3229	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
3230	    "Unencrypted data encountered while decrypting") },
3231	/*  T             */
3232	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
3233	    "Incorrect data encryption key") },
3234	/*  T             */
3235	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
3236	    "Cryptographic integrity validation failed") },
3237	/*  T             */
3238	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
3239	    "Error decrypting data") },
3240	/*  T             */
3241	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
3242	    "Unknown signature verification key") },
3243	/*  T             */
3244	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
3245	    "Encryption parameters not useable") },
3246	/* DT   R M E  VF */
3247	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
3248	    "Digital signature validation failure") },
3249	/*  T             */
3250	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
3251	    "Encryption mode mismatch on read") },
3252	/*  T             */
3253	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
3254	    "Encrypted block not raw read enabled") },
3255	/*  T             */
3256	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
3257	    "Incorrect encryption parameters") },
3258	/* DT   R MAEBKV  */
3259	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
3260	    "Unable to decrypt parameter list") },
3261	/*  T             */
3262	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
3263	    "Encryption algorithm disabled") },
3264	/* DT   R MAEBKV  */
3265	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
3266	    "SA creation parameter value invalid") },
3267	/* DT   R MAEBKV  */
3268	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
3269	    "SA creation parameter value rejected") },
3270	/* DT   R MAEBKV  */
3271	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
3272	    "Invalid SA usage") },
3273	/*  T             */
3274	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
3275	    "Data encryption configuration prevented") },
3276	/* DT   R MAEBKV  */
3277	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3278	    "SA creation parameter not supported") },
3279	/* DT   R MAEBKV  */
3280	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3281	    "Authentication failed") },
3282	/*             V  */
3283	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3284	    "External data encryption key manager access error") },
3285	/*             V  */
3286	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3287	    "External data encryption key manager error") },
3288	/*             V  */
3289	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3290	    "External data encryption key not found") },
3291	/*             V  */
3292	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3293	    "External data encryption request not authorized") },
3294	/*  T             */
3295	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3296	    "External data encryption control timeout") },
3297	/*  T             */
3298	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3299	    "External data encryption control error") },
3300	/* DT   R M E  V  */
3301	{ SST(0x74, 0x71, SS_FATAL | EACCES,
3302	    "Logical unit access not authorized") },
3303	/* D              */
3304	{ SST(0x74, 0x79, SS_FATAL | EACCES,
3305	    "Security conflict in translated device") }
3306};
3307
3308const u_int asc_table_size = nitems(asc_table);
3309
3310struct asc_key
3311{
3312	int asc;
3313	int ascq;
3314};
3315
3316static int
3317ascentrycomp(const void *key, const void *member)
3318{
3319	int asc;
3320	int ascq;
3321	const struct asc_table_entry *table_entry;
3322
3323	asc = ((const struct asc_key *)key)->asc;
3324	ascq = ((const struct asc_key *)key)->ascq;
3325	table_entry = (const struct asc_table_entry *)member;
3326
3327	if (asc >= table_entry->asc) {
3328		if (asc > table_entry->asc)
3329			return (1);
3330
3331		if (ascq <= table_entry->ascq) {
3332			/* Check for ranges */
3333			if (ascq == table_entry->ascq
3334		 	 || ((table_entry->action & SSQ_RANGE) != 0
3335		  	   && ascq >= (table_entry - 1)->ascq))
3336				return (0);
3337			return (-1);
3338		}
3339		return (1);
3340	}
3341	return (-1);
3342}
3343
3344static int
3345senseentrycomp(const void *key, const void *member)
3346{
3347	int sense_key;
3348	const struct sense_key_table_entry *table_entry;
3349
3350	sense_key = *((const int *)key);
3351	table_entry = (const struct sense_key_table_entry *)member;
3352
3353	if (sense_key >= table_entry->sense_key) {
3354		if (sense_key == table_entry->sense_key)
3355			return (0);
3356		return (1);
3357	}
3358	return (-1);
3359}
3360
3361static void
3362fetchtableentries(int sense_key, int asc, int ascq,
3363		  struct scsi_inquiry_data *inq_data,
3364		  const struct sense_key_table_entry **sense_entry,
3365		  const struct asc_table_entry **asc_entry)
3366{
3367	caddr_t match;
3368	const struct asc_table_entry *asc_tables[2];
3369	const struct sense_key_table_entry *sense_tables[2];
3370	struct asc_key asc_ascq;
3371	size_t asc_tables_size[2];
3372	size_t sense_tables_size[2];
3373	int num_asc_tables;
3374	int num_sense_tables;
3375	int i;
3376
3377	/* Default to failure */
3378	*sense_entry = NULL;
3379	*asc_entry = NULL;
3380	match = NULL;
3381	if (inq_data != NULL)
3382		match = cam_quirkmatch((caddr_t)inq_data,
3383				       (caddr_t)sense_quirk_table,
3384				       sense_quirk_table_size,
3385				       sizeof(*sense_quirk_table),
3386				       scsi_inquiry_match);
3387
3388	if (match != NULL) {
3389		struct scsi_sense_quirk_entry *quirk;
3390
3391		quirk = (struct scsi_sense_quirk_entry *)match;
3392		asc_tables[0] = quirk->asc_info;
3393		asc_tables_size[0] = quirk->num_ascs;
3394		asc_tables[1] = asc_table;
3395		asc_tables_size[1] = asc_table_size;
3396		num_asc_tables = 2;
3397		sense_tables[0] = quirk->sense_key_info;
3398		sense_tables_size[0] = quirk->num_sense_keys;
3399		sense_tables[1] = sense_key_table;
3400		sense_tables_size[1] = nitems(sense_key_table);
3401		num_sense_tables = 2;
3402	} else {
3403		asc_tables[0] = asc_table;
3404		asc_tables_size[0] = asc_table_size;
3405		num_asc_tables = 1;
3406		sense_tables[0] = sense_key_table;
3407		sense_tables_size[0] = nitems(sense_key_table);
3408		num_sense_tables = 1;
3409	}
3410
3411	asc_ascq.asc = asc;
3412	asc_ascq.ascq = ascq;
3413	for (i = 0; i < num_asc_tables; i++) {
3414		void *found_entry;
3415
3416		found_entry = bsearch(&asc_ascq, asc_tables[i],
3417				      asc_tables_size[i],
3418				      sizeof(**asc_tables),
3419				      ascentrycomp);
3420
3421		if (found_entry) {
3422			*asc_entry = (struct asc_table_entry *)found_entry;
3423			break;
3424		}
3425	}
3426
3427	for (i = 0; i < num_sense_tables; i++) {
3428		void *found_entry;
3429
3430		found_entry = bsearch(&sense_key, sense_tables[i],
3431				      sense_tables_size[i],
3432				      sizeof(**sense_tables),
3433				      senseentrycomp);
3434
3435		if (found_entry) {
3436			*sense_entry =
3437			    (struct sense_key_table_entry *)found_entry;
3438			break;
3439		}
3440	}
3441}
3442
3443void
3444scsi_sense_desc(int sense_key, int asc, int ascq,
3445		struct scsi_inquiry_data *inq_data,
3446		const char **sense_key_desc, const char **asc_desc)
3447{
3448	const struct asc_table_entry *asc_entry;
3449	const struct sense_key_table_entry *sense_entry;
3450
3451	fetchtableentries(sense_key, asc, ascq,
3452			  inq_data,
3453			  &sense_entry,
3454			  &asc_entry);
3455
3456	if (sense_entry != NULL)
3457		*sense_key_desc = sense_entry->desc;
3458	else
3459		*sense_key_desc = "Invalid Sense Key";
3460
3461	if (asc_entry != NULL)
3462		*asc_desc = asc_entry->desc;
3463	else if (asc >= 0x80 && asc <= 0xff)
3464		*asc_desc = "Vendor Specific ASC";
3465	else if (ascq >= 0x80 && ascq <= 0xff)
3466		*asc_desc = "Vendor Specific ASCQ";
3467	else
3468		*asc_desc = "Reserved ASC/ASCQ pair";
3469}
3470
3471/*
3472 * Given sense and device type information, return the appropriate action.
3473 * If we do not understand the specific error as identified by the ASC/ASCQ
3474 * pair, fall back on the more generic actions derived from the sense key.
3475 */
3476scsi_sense_action
3477scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3478		  uint32_t sense_flags)
3479{
3480	const struct asc_table_entry *asc_entry;
3481	const struct sense_key_table_entry *sense_entry;
3482	int error_code, sense_key, asc, ascq;
3483	scsi_sense_action action;
3484
3485	if (!scsi_extract_sense_ccb((union ccb *)csio,
3486	    &error_code, &sense_key, &asc, &ascq)) {
3487		action = SS_RDEF;
3488	} else if ((error_code == SSD_DEFERRED_ERROR)
3489	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3490		/*
3491		 * XXX dufault@FreeBSD.org
3492		 * This error doesn't relate to the command associated
3493		 * with this request sense.  A deferred error is an error
3494		 * for a command that has already returned GOOD status
3495		 * (see SCSI2 8.2.14.2).
3496		 *
3497		 * By my reading of that section, it looks like the current
3498		 * command has been cancelled, we should now clean things up
3499		 * (hopefully recovering any lost data) and then retry the
3500		 * current command.  There are two easy choices, both wrong:
3501		 *
3502		 * 1. Drop through (like we had been doing), thus treating
3503		 *    this as if the error were for the current command and
3504		 *    return and stop the current command.
3505		 *
3506		 * 2. Issue a retry (like I made it do) thus hopefully
3507		 *    recovering the current transfer, and ignoring the
3508		 *    fact that we've dropped a command.
3509		 *
3510		 * These should probably be handled in a device specific
3511		 * sense handler or punted back up to a user mode daemon
3512		 */
3513		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3514	} else {
3515		fetchtableentries(sense_key, asc, ascq,
3516				  inq_data,
3517				  &sense_entry,
3518				  &asc_entry);
3519
3520		/*
3521		 * Override the 'No additional Sense' entry (0,0)
3522		 * with the error action of the sense key.
3523		 */
3524		if (asc_entry != NULL
3525		 && (asc != 0 || ascq != 0))
3526			action = asc_entry->action;
3527		else if (sense_entry != NULL)
3528			action = sense_entry->action;
3529		else
3530			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3531
3532		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3533			/*
3534			 * The action succeeded but the device wants
3535			 * the user to know that some recovery action
3536			 * was required.
3537			 */
3538			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3539			action |= SS_NOP|SSQ_PRINT_SENSE;
3540		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3541			if ((sense_flags & SF_QUIET_IR) != 0)
3542				action &= ~SSQ_PRINT_SENSE;
3543		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3544			if ((sense_flags & SF_RETRY_UA) != 0
3545			 && (action & SS_MASK) == SS_FAIL) {
3546				action &= ~(SS_MASK|SSQ_MASK);
3547				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3548					  SSQ_PRINT_SENSE;
3549			}
3550			action |= SSQ_UA;
3551		}
3552	}
3553	if ((action & SS_MASK) >= SS_START &&
3554	    (sense_flags & SF_NO_RECOVERY)) {
3555		action &= ~SS_MASK;
3556		action |= SS_FAIL;
3557	} else if ((action & SS_MASK) == SS_RETRY &&
3558	    (sense_flags & SF_NO_RETRY)) {
3559		action &= ~SS_MASK;
3560		action |= SS_FAIL;
3561	}
3562	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3563		action |= SSQ_PRINT_SENSE;
3564	else if ((sense_flags & SF_NO_PRINT) != 0)
3565		action &= ~SSQ_PRINT_SENSE;
3566
3567	return (action);
3568}
3569
3570char *
3571scsi_cdb_string(uint8_t *cdb_ptr, char *cdb_string, size_t len)
3572{
3573	struct sbuf sb;
3574	int error;
3575
3576	if (len == 0)
3577		return ("");
3578
3579	sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3580
3581	scsi_cdb_sbuf(cdb_ptr, &sb);
3582
3583	/* ENOMEM just means that the fixed buffer is full, OK to ignore */
3584	error = sbuf_finish(&sb);
3585	if (error != 0 &&
3586#ifdef _KERNEL
3587	    error != ENOMEM)
3588#else
3589	    errno != ENOMEM)
3590#endif
3591		return ("");
3592
3593	return(sbuf_data(&sb));
3594}
3595
3596void
3597scsi_cdb_sbuf(uint8_t *cdb_ptr, struct sbuf *sb)
3598{
3599	uint8_t cdb_len;
3600	int i;
3601
3602	if (cdb_ptr == NULL)
3603		return;
3604
3605	/*
3606	 * This is taken from the SCSI-3 draft spec.
3607	 * (T10/1157D revision 0.3)
3608	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3609	 * are the command code.
3610	 * Group 0:  six byte commands
3611	 * Group 1:  ten byte commands
3612	 * Group 2:  ten byte commands
3613	 * Group 3:  reserved
3614	 * Group 4:  sixteen byte commands
3615	 * Group 5:  twelve byte commands
3616	 * Group 6:  vendor specific
3617	 * Group 7:  vendor specific
3618	 */
3619	switch((*cdb_ptr >> 5) & 0x7) {
3620		case 0:
3621			cdb_len = 6;
3622			break;
3623		case 1:
3624		case 2:
3625			cdb_len = 10;
3626			break;
3627		case 3:
3628		case 6:
3629		case 7:
3630			/* in this case, just print out the opcode */
3631			cdb_len = 1;
3632			break;
3633		case 4:
3634			cdb_len = 16;
3635			break;
3636		case 5:
3637			cdb_len = 12;
3638			break;
3639	}
3640
3641	for (i = 0; i < cdb_len; i++)
3642		sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3643
3644	return;
3645}
3646
3647const char *
3648scsi_status_string(struct ccb_scsiio *csio)
3649{
3650	switch(csio->scsi_status) {
3651	case SCSI_STATUS_OK:
3652		return("OK");
3653	case SCSI_STATUS_CHECK_COND:
3654		return("Check Condition");
3655	case SCSI_STATUS_BUSY:
3656		return("Busy");
3657	case SCSI_STATUS_INTERMED:
3658		return("Intermediate");
3659	case SCSI_STATUS_INTERMED_COND_MET:
3660		return("Intermediate-Condition Met");
3661	case SCSI_STATUS_RESERV_CONFLICT:
3662		return("Reservation Conflict");
3663	case SCSI_STATUS_CMD_TERMINATED:
3664		return("Command Terminated");
3665	case SCSI_STATUS_QUEUE_FULL:
3666		return("Queue Full");
3667	case SCSI_STATUS_ACA_ACTIVE:
3668		return("ACA Active");
3669	case SCSI_STATUS_TASK_ABORTED:
3670		return("Task Aborted");
3671	default: {
3672		static char unkstr[64];
3673		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3674			 csio->scsi_status);
3675		return(unkstr);
3676	}
3677	}
3678}
3679
3680/*
3681 * scsi_command_string() returns 0 for success and -1 for failure.
3682 */
3683#ifdef _KERNEL
3684int
3685scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3686#else /* !_KERNEL */
3687int
3688scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3689		    struct sbuf *sb)
3690#endif /* _KERNEL/!_KERNEL */
3691{
3692	struct scsi_inquiry_data *inq_data;
3693#ifdef _KERNEL
3694	struct	  ccb_getdev *cgd;
3695#endif /* _KERNEL */
3696
3697#ifdef _KERNEL
3698	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3699		return(-1);
3700	/*
3701	 * Get the device information.
3702	 */
3703	xpt_setup_ccb(&cgd->ccb_h,
3704		      csio->ccb_h.path,
3705		      CAM_PRIORITY_NORMAL);
3706	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3707	xpt_action((union ccb *)cgd);
3708
3709	/*
3710	 * If the device is unconfigured, just pretend that it is a hard
3711	 * drive.  scsi_op_desc() needs this.
3712	 */
3713	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3714		cgd->inq_data.device = T_DIRECT;
3715
3716	inq_data = &cgd->inq_data;
3717
3718#else /* !_KERNEL */
3719
3720	inq_data = &device->inq_data;
3721
3722#endif /* _KERNEL/!_KERNEL */
3723
3724	sbuf_printf(sb, "%s. CDB: ",
3725		    scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
3726	scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
3727
3728#ifdef _KERNEL
3729	xpt_free_ccb((union ccb *)cgd);
3730#endif
3731
3732	return(0);
3733}
3734
3735/*
3736 * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3737 * If iter_func() returns 0, list traversal continues.  If iter_func()
3738 * returns non-zero, list traversal is stopped.
3739 */
3740void
3741scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3742		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3743				   u_int, struct scsi_sense_desc_header *,
3744				   void *), void *arg)
3745{
3746	int cur_pos;
3747	int desc_len;
3748
3749	/*
3750	 * First make sure the extra length field is present.
3751	 */
3752	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3753		return;
3754
3755	/*
3756	 * The length of data actually returned may be different than the
3757	 * extra_len recorded in the structure.
3758	 */
3759	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3760
3761	/*
3762	 * Limit this further by the extra length reported, and the maximum
3763	 * allowed extra length.
3764	 */
3765	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3766
3767	/*
3768	 * Subtract the size of the header from the descriptor length.
3769	 * This is to ensure that we have at least the header left, so we
3770	 * don't have to check that inside the loop.  This can wind up
3771	 * being a negative value.
3772	 */
3773	desc_len -= sizeof(struct scsi_sense_desc_header);
3774
3775	for (cur_pos = 0; cur_pos < desc_len;) {
3776		struct scsi_sense_desc_header *header;
3777
3778		header = (struct scsi_sense_desc_header *)
3779			&sense->sense_desc[cur_pos];
3780
3781		/*
3782		 * Check to make sure we have the entire descriptor.  We
3783		 * don't call iter_func() unless we do.
3784		 *
3785		 * Note that although cur_pos is at the beginning of the
3786		 * descriptor, desc_len already has the header length
3787		 * subtracted.  So the comparison of the length in the
3788		 * header (which does not include the header itself) to
3789		 * desc_len - cur_pos is correct.
3790		 */
3791		if (header->length > (desc_len - cur_pos))
3792			break;
3793
3794		if (iter_func(sense, sense_len, header, arg) != 0)
3795			break;
3796
3797		cur_pos += sizeof(*header) + header->length;
3798	}
3799}
3800
3801struct scsi_find_desc_info {
3802	uint8_t desc_type;
3803	struct scsi_sense_desc_header *header;
3804};
3805
3806static int
3807scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3808		    struct scsi_sense_desc_header *header, void *arg)
3809{
3810	struct scsi_find_desc_info *desc_info;
3811
3812	desc_info = (struct scsi_find_desc_info *)arg;
3813
3814	if (header->desc_type == desc_info->desc_type) {
3815		desc_info->header = header;
3816
3817		/* We found the descriptor, tell the iterator to stop. */
3818		return (1);
3819	} else
3820		return (0);
3821}
3822
3823/*
3824 * Given a descriptor type, return a pointer to it if it is in the sense
3825 * data and not truncated.  Avoiding truncating sense data will simplify
3826 * things significantly for the caller.
3827 */
3828uint8_t *
3829scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3830	       uint8_t desc_type)
3831{
3832	struct scsi_find_desc_info desc_info;
3833
3834	desc_info.desc_type = desc_type;
3835	desc_info.header = NULL;
3836
3837	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3838
3839	return ((uint8_t *)desc_info.header);
3840}
3841
3842/*
3843 * Fill in SCSI descriptor sense data with the specified parameters.
3844 */
3845static void
3846scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
3847    u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3848    int sense_key, int asc, int ascq, va_list ap)
3849{
3850	struct scsi_sense_data_desc *sense;
3851	scsi_sense_elem_type elem_type;
3852	int space, len;
3853	uint8_t *desc, *data;
3854
3855	memset(sense_data, 0, sizeof(*sense_data));
3856	sense = (struct scsi_sense_data_desc *)sense_data;
3857	if (current_error != 0)
3858		sense->error_code = SSD_DESC_CURRENT_ERROR;
3859	else
3860		sense->error_code = SSD_DESC_DEFERRED_ERROR;
3861	sense->sense_key = sense_key;
3862	sense->add_sense_code = asc;
3863	sense->add_sense_code_qual = ascq;
3864	sense->flags = 0;
3865
3866	desc = &sense->sense_desc[0];
3867	space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
3868	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3869	    SSD_ELEM_NONE) {
3870		if (elem_type >= SSD_ELEM_MAX) {
3871			printf("%s: invalid sense type %d\n", __func__,
3872			       elem_type);
3873			break;
3874		}
3875		len = va_arg(ap, int);
3876		data = va_arg(ap, uint8_t *);
3877
3878		switch (elem_type) {
3879		case SSD_ELEM_SKIP:
3880			break;
3881		case SSD_ELEM_DESC:
3882			if (space < len) {
3883				sense->flags |= SSDD_SDAT_OVFL;
3884				break;
3885			}
3886			bcopy(data, desc, len);
3887			desc += len;
3888			space -= len;
3889			break;
3890		case SSD_ELEM_SKS: {
3891			struct scsi_sense_sks *sks = (void *)desc;
3892
3893			if (len > sizeof(sks->sense_key_spec))
3894				break;
3895			if (space < sizeof(*sks)) {
3896				sense->flags |= SSDD_SDAT_OVFL;
3897				break;
3898			}
3899			sks->desc_type = SSD_DESC_SKS;
3900			sks->length = sizeof(*sks) -
3901			    (offsetof(struct scsi_sense_sks, length) + 1);
3902			bcopy(data, &sks->sense_key_spec, len);
3903			desc += sizeof(*sks);
3904			space -= sizeof(*sks);
3905			break;
3906		}
3907		case SSD_ELEM_COMMAND: {
3908			struct scsi_sense_command *cmd = (void *)desc;
3909
3910			if (len > sizeof(cmd->command_info))
3911				break;
3912			if (space < sizeof(*cmd)) {
3913				sense->flags |= SSDD_SDAT_OVFL;
3914				break;
3915			}
3916			cmd->desc_type = SSD_DESC_COMMAND;
3917			cmd->length = sizeof(*cmd) -
3918			    (offsetof(struct scsi_sense_command, length) + 1);
3919			bcopy(data, &cmd->command_info[
3920			    sizeof(cmd->command_info) - len], len);
3921			desc += sizeof(*cmd);
3922			space -= sizeof(*cmd);
3923			break;
3924		}
3925		case SSD_ELEM_INFO: {
3926			struct scsi_sense_info *info = (void *)desc;
3927
3928			if (len > sizeof(info->info))
3929				break;
3930			if (space < sizeof(*info)) {
3931				sense->flags |= SSDD_SDAT_OVFL;
3932				break;
3933			}
3934			info->desc_type = SSD_DESC_INFO;
3935			info->length = sizeof(*info) -
3936			    (offsetof(struct scsi_sense_info, length) + 1);
3937			info->byte2 = SSD_INFO_VALID;
3938			bcopy(data, &info->info[sizeof(info->info) - len], len);
3939			desc += sizeof(*info);
3940			space -= sizeof(*info);
3941			break;
3942		}
3943		case SSD_ELEM_FRU: {
3944			struct scsi_sense_fru *fru = (void *)desc;
3945
3946			if (len > sizeof(fru->fru))
3947				break;
3948			if (space < sizeof(*fru)) {
3949				sense->flags |= SSDD_SDAT_OVFL;
3950				break;
3951			}
3952			fru->desc_type = SSD_DESC_FRU;
3953			fru->length = sizeof(*fru) -
3954			    (offsetof(struct scsi_sense_fru, length) + 1);
3955			fru->fru = *data;
3956			desc += sizeof(*fru);
3957			space -= sizeof(*fru);
3958			break;
3959		}
3960		case SSD_ELEM_STREAM: {
3961			struct scsi_sense_stream *stream = (void *)desc;
3962
3963			if (len > sizeof(stream->byte3))
3964				break;
3965			if (space < sizeof(*stream)) {
3966				sense->flags |= SSDD_SDAT_OVFL;
3967				break;
3968			}
3969			stream->desc_type = SSD_DESC_STREAM;
3970			stream->length = sizeof(*stream) -
3971			    (offsetof(struct scsi_sense_stream, length) + 1);
3972			stream->byte3 = *data;
3973			desc += sizeof(*stream);
3974			space -= sizeof(*stream);
3975			break;
3976		}
3977		default:
3978			/*
3979			 * We shouldn't get here, but if we do, do nothing.
3980			 * We've already consumed the arguments above.
3981			 */
3982			break;
3983		}
3984	}
3985	sense->extra_len = desc - &sense->sense_desc[0];
3986	*sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
3987	    sense->extra_len;
3988}
3989
3990/*
3991 * Fill in SCSI fixed sense data with the specified parameters.
3992 */
3993static void
3994scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
3995    u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3996    int sense_key, int asc, int ascq, va_list ap)
3997{
3998	struct scsi_sense_data_fixed *sense;
3999	scsi_sense_elem_type elem_type;
4000	uint8_t *data;
4001	int len;
4002
4003	memset(sense_data, 0, sizeof(*sense_data));
4004	sense = (struct scsi_sense_data_fixed *)sense_data;
4005	if (current_error != 0)
4006		sense->error_code = SSD_CURRENT_ERROR;
4007	else
4008		sense->error_code = SSD_DEFERRED_ERROR;
4009	sense->flags = sense_key & SSD_KEY;
4010	sense->extra_len = 0;
4011	if (*sense_len >= 13) {
4012		sense->add_sense_code = asc;
4013		sense->extra_len = MAX(sense->extra_len, 5);
4014	} else
4015		sense->flags |= SSD_SDAT_OVFL;
4016	if (*sense_len >= 14) {
4017		sense->add_sense_code_qual = ascq;
4018		sense->extra_len = MAX(sense->extra_len, 6);
4019	} else
4020		sense->flags |= SSD_SDAT_OVFL;
4021
4022	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
4023	    SSD_ELEM_NONE) {
4024		if (elem_type >= SSD_ELEM_MAX) {
4025			printf("%s: invalid sense type %d\n", __func__,
4026			       elem_type);
4027			break;
4028		}
4029		len = va_arg(ap, int);
4030		data = va_arg(ap, uint8_t *);
4031
4032		switch (elem_type) {
4033		case SSD_ELEM_SKIP:
4034			break;
4035		case SSD_ELEM_SKS:
4036			if (len > sizeof(sense->sense_key_spec))
4037				break;
4038			if (*sense_len < 18) {
4039				sense->flags |= SSD_SDAT_OVFL;
4040				break;
4041			}
4042			bcopy(data, &sense->sense_key_spec[0], len);
4043			sense->extra_len = MAX(sense->extra_len, 10);
4044			break;
4045		case SSD_ELEM_COMMAND:
4046			if (*sense_len < 12) {
4047				sense->flags |= SSD_SDAT_OVFL;
4048				break;
4049			}
4050			if (len > sizeof(sense->cmd_spec_info)) {
4051				data += len - sizeof(sense->cmd_spec_info);
4052				len = sizeof(sense->cmd_spec_info);
4053			}
4054			bcopy(data, &sense->cmd_spec_info[
4055			    sizeof(sense->cmd_spec_info) - len], len);
4056			sense->extra_len = MAX(sense->extra_len, 4);
4057			break;
4058		case SSD_ELEM_INFO:
4059			/* Set VALID bit only if no overflow. */
4060			sense->error_code |= SSD_ERRCODE_VALID;
4061			while (len > sizeof(sense->info)) {
4062				if (data[0] != 0)
4063					sense->error_code &= ~SSD_ERRCODE_VALID;
4064				data ++;
4065				len --;
4066			}
4067			bcopy(data, &sense->info[sizeof(sense->info) - len], len);
4068			break;
4069		case SSD_ELEM_FRU:
4070			if (*sense_len < 15) {
4071				sense->flags |= SSD_SDAT_OVFL;
4072				break;
4073			}
4074			sense->fru = *data;
4075			sense->extra_len = MAX(sense->extra_len, 7);
4076			break;
4077		case SSD_ELEM_STREAM:
4078			sense->flags |= *data &
4079			    (SSD_ILI | SSD_EOM | SSD_FILEMARK);
4080			break;
4081		default:
4082
4083			/*
4084			 * We can't handle that in fixed format.  Skip it.
4085			 */
4086			break;
4087		}
4088	}
4089	*sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
4090	    sense->extra_len;
4091}
4092
4093/*
4094 * Fill in SCSI sense data with the specified parameters.  This routine can
4095 * fill in either fixed or descriptor type sense data.
4096 */
4097void
4098scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
4099		      scsi_sense_data_type sense_format, int current_error,
4100		      int sense_key, int asc, int ascq, va_list ap)
4101{
4102
4103	if (*sense_len > SSD_FULL_SIZE)
4104		*sense_len = SSD_FULL_SIZE;
4105	if (sense_format == SSD_TYPE_DESC)
4106		scsi_set_sense_data_desc_va(sense_data, sense_len,
4107		    sense_format, current_error, sense_key, asc, ascq, ap);
4108	else
4109		scsi_set_sense_data_fixed_va(sense_data, sense_len,
4110		    sense_format, current_error, sense_key, asc, ascq, ap);
4111}
4112
4113void
4114scsi_set_sense_data(struct scsi_sense_data *sense_data,
4115		    scsi_sense_data_type sense_format, int current_error,
4116		    int sense_key, int asc, int ascq, ...)
4117{
4118	va_list ap;
4119	u_int	sense_len = SSD_FULL_SIZE;
4120
4121	va_start(ap, ascq);
4122	scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
4123	    current_error, sense_key, asc, ascq, ap);
4124	va_end(ap);
4125}
4126
4127void
4128scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
4129		    scsi_sense_data_type sense_format, int current_error,
4130		    int sense_key, int asc, int ascq, ...)
4131{
4132	va_list ap;
4133
4134	va_start(ap, ascq);
4135	scsi_set_sense_data_va(sense_data, sense_len, sense_format,
4136	    current_error, sense_key, asc, ascq, ap);
4137	va_end(ap);
4138}
4139
4140/*
4141 * Get sense information for three similar sense data types.
4142 */
4143int
4144scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4145		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
4146{
4147	scsi_sense_data_type sense_type;
4148
4149	if (sense_len == 0)
4150		goto bailout;
4151
4152	sense_type = scsi_sense_type(sense_data);
4153
4154	switch (sense_type) {
4155	case SSD_TYPE_DESC: {
4156		struct scsi_sense_data_desc *sense;
4157		uint8_t *desc;
4158
4159		sense = (struct scsi_sense_data_desc *)sense_data;
4160
4161		desc = scsi_find_desc(sense, sense_len, info_type);
4162		if (desc == NULL)
4163			goto bailout;
4164
4165		switch (info_type) {
4166		case SSD_DESC_INFO: {
4167			struct scsi_sense_info *info_desc;
4168
4169			info_desc = (struct scsi_sense_info *)desc;
4170
4171			if ((info_desc->byte2 & SSD_INFO_VALID) == 0)
4172				goto bailout;
4173
4174			*info = scsi_8btou64(info_desc->info);
4175			if (signed_info != NULL)
4176				*signed_info = *info;
4177			break;
4178		}
4179		case SSD_DESC_COMMAND: {
4180			struct scsi_sense_command *cmd_desc;
4181
4182			cmd_desc = (struct scsi_sense_command *)desc;
4183
4184			*info = scsi_8btou64(cmd_desc->command_info);
4185			if (signed_info != NULL)
4186				*signed_info = *info;
4187			break;
4188		}
4189		case SSD_DESC_FRU: {
4190			struct scsi_sense_fru *fru_desc;
4191
4192			fru_desc = (struct scsi_sense_fru *)desc;
4193
4194			if (fru_desc->fru == 0)
4195				goto bailout;
4196
4197			*info = fru_desc->fru;
4198			if (signed_info != NULL)
4199				*signed_info = (int8_t)fru_desc->fru;
4200			break;
4201		}
4202		default:
4203			goto bailout;
4204			break;
4205		}
4206		break;
4207	}
4208	case SSD_TYPE_FIXED: {
4209		struct scsi_sense_data_fixed *sense;
4210
4211		sense = (struct scsi_sense_data_fixed *)sense_data;
4212
4213		switch (info_type) {
4214		case SSD_DESC_INFO: {
4215			uint32_t info_val;
4216
4217			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4218				goto bailout;
4219
4220			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4221				goto bailout;
4222
4223			info_val = scsi_4btoul(sense->info);
4224
4225			*info = info_val;
4226			if (signed_info != NULL)
4227				*signed_info = (int32_t)info_val;
4228			break;
4229		}
4230		case SSD_DESC_COMMAND: {
4231			uint32_t cmd_val;
4232
4233			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4234			     cmd_spec_info) == 0)
4235			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4236				goto bailout;
4237
4238			cmd_val = scsi_4btoul(sense->cmd_spec_info);
4239			if (cmd_val == 0)
4240				goto bailout;
4241
4242			*info = cmd_val;
4243			if (signed_info != NULL)
4244				*signed_info = (int32_t)cmd_val;
4245			break;
4246		}
4247		case SSD_DESC_FRU:
4248			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4249			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4250				goto bailout;
4251
4252			if (sense->fru == 0)
4253				goto bailout;
4254
4255			*info = sense->fru;
4256			if (signed_info != NULL)
4257				*signed_info = (int8_t)sense->fru;
4258			break;
4259		default:
4260			goto bailout;
4261			break;
4262		}
4263		break;
4264	}
4265	default:
4266		goto bailout;
4267		break;
4268	}
4269
4270	return (0);
4271bailout:
4272	return (1);
4273}
4274
4275int
4276scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4277{
4278	scsi_sense_data_type sense_type;
4279
4280	if (sense_len == 0)
4281		goto bailout;
4282
4283	sense_type = scsi_sense_type(sense_data);
4284
4285	switch (sense_type) {
4286	case SSD_TYPE_DESC: {
4287		struct scsi_sense_data_desc *sense;
4288		struct scsi_sense_sks *desc;
4289
4290		sense = (struct scsi_sense_data_desc *)sense_data;
4291
4292		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4293							       SSD_DESC_SKS);
4294		if (desc == NULL)
4295			goto bailout;
4296
4297		if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4298			goto bailout;
4299
4300		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4301		break;
4302	}
4303	case SSD_TYPE_FIXED: {
4304		struct scsi_sense_data_fixed *sense;
4305
4306		sense = (struct scsi_sense_data_fixed *)sense_data;
4307
4308		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4309		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4310			goto bailout;
4311
4312		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4313			goto bailout;
4314
4315		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4316		break;
4317	}
4318	default:
4319		goto bailout;
4320		break;
4321	}
4322	return (0);
4323bailout:
4324	return (1);
4325}
4326
4327/*
4328 * Provide a common interface for fixed and descriptor sense to detect
4329 * whether we have block-specific sense information.  It is clear by the
4330 * presence of the block descriptor in descriptor mode, but we have to
4331 * infer from the inquiry data and ILI bit in fixed mode.
4332 */
4333int
4334scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4335		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4336{
4337	scsi_sense_data_type sense_type;
4338
4339	if (inq_data != NULL) {
4340		switch (SID_TYPE(inq_data)) {
4341		case T_DIRECT:
4342		case T_RBC:
4343		case T_ZBC_HM:
4344			break;
4345		default:
4346			goto bailout;
4347			break;
4348		}
4349	}
4350
4351	sense_type = scsi_sense_type(sense_data);
4352
4353	switch (sense_type) {
4354	case SSD_TYPE_DESC: {
4355		struct scsi_sense_data_desc *sense;
4356		struct scsi_sense_block *block;
4357
4358		sense = (struct scsi_sense_data_desc *)sense_data;
4359
4360		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4361		    sense_len, SSD_DESC_BLOCK);
4362		if (block == NULL)
4363			goto bailout;
4364
4365		*block_bits = block->byte3;
4366		break;
4367	}
4368	case SSD_TYPE_FIXED: {
4369		struct scsi_sense_data_fixed *sense;
4370
4371		sense = (struct scsi_sense_data_fixed *)sense_data;
4372
4373		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4374			goto bailout;
4375
4376		*block_bits = sense->flags & SSD_ILI;
4377		break;
4378	}
4379	default:
4380		goto bailout;
4381		break;
4382	}
4383	return (0);
4384bailout:
4385	return (1);
4386}
4387
4388int
4389scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4390		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4391{
4392	scsi_sense_data_type sense_type;
4393
4394	if (inq_data != NULL) {
4395		switch (SID_TYPE(inq_data)) {
4396		case T_SEQUENTIAL:
4397			break;
4398		default:
4399			goto bailout;
4400			break;
4401		}
4402	}
4403
4404	sense_type = scsi_sense_type(sense_data);
4405
4406	switch (sense_type) {
4407	case SSD_TYPE_DESC: {
4408		struct scsi_sense_data_desc *sense;
4409		struct scsi_sense_stream *stream;
4410
4411		sense = (struct scsi_sense_data_desc *)sense_data;
4412
4413		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4414		    sense_len, SSD_DESC_STREAM);
4415		if (stream == NULL)
4416			goto bailout;
4417
4418		*stream_bits = stream->byte3;
4419		break;
4420	}
4421	case SSD_TYPE_FIXED: {
4422		struct scsi_sense_data_fixed *sense;
4423
4424		sense = (struct scsi_sense_data_fixed *)sense_data;
4425
4426		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4427			goto bailout;
4428
4429		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4430		break;
4431	}
4432	default:
4433		goto bailout;
4434		break;
4435	}
4436	return (0);
4437bailout:
4438	return (1);
4439}
4440
4441void
4442scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4443	       struct scsi_inquiry_data *inq_data, uint64_t info)
4444{
4445	sbuf_printf(sb, "Info: %#jx", info);
4446}
4447
4448void
4449scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4450		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4451{
4452	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4453}
4454
4455void
4456scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4457{
4458	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4459		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4460		    progress, SSD_SKS_PROGRESS_DENOM);
4461}
4462
4463/*
4464 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4465 */
4466int
4467scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4468{
4469
4470	switch (sense_key) {
4471	case SSD_KEY_ILLEGAL_REQUEST: {
4472		struct scsi_sense_sks_field *field;
4473		int bad_command;
4474		char tmpstr[40];
4475
4476		/*Field Pointer*/
4477		field = (struct scsi_sense_sks_field *)sks;
4478
4479		if (field->byte0 & SSD_SKS_FIELD_CMD)
4480			bad_command = 1;
4481		else
4482			bad_command = 0;
4483
4484		tmpstr[0] = '\0';
4485
4486		/* Bit pointer is valid */
4487		if (field->byte0 & SSD_SKS_BPV)
4488			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4489				 field->byte0 & SSD_SKS_BIT_VALUE);
4490
4491		sbuf_printf(sb, "%s byte %d %sis invalid",
4492			    bad_command ? "Command" : "Data",
4493			    scsi_2btoul(field->field), tmpstr);
4494		break;
4495	}
4496	case SSD_KEY_UNIT_ATTENTION: {
4497		struct scsi_sense_sks_overflow *overflow;
4498
4499		overflow = (struct scsi_sense_sks_overflow *)sks;
4500
4501		/*UA Condition Queue Overflow*/
4502		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4503			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4504			    "Overflowed" : "Did Not Overflow??");
4505		break;
4506	}
4507	case SSD_KEY_RECOVERED_ERROR:
4508	case SSD_KEY_HARDWARE_ERROR:
4509	case SSD_KEY_MEDIUM_ERROR: {
4510		struct scsi_sense_sks_retry *retry;
4511
4512		/*Actual Retry Count*/
4513		retry = (struct scsi_sense_sks_retry *)sks;
4514
4515		sbuf_printf(sb, "Actual Retry Count: %d",
4516			    scsi_2btoul(retry->actual_retry_count));
4517		break;
4518	}
4519	case SSD_KEY_NO_SENSE:
4520	case SSD_KEY_NOT_READY: {
4521		struct scsi_sense_sks_progress *progress;
4522		int progress_val;
4523
4524		/*Progress Indication*/
4525		progress = (struct scsi_sense_sks_progress *)sks;
4526		progress_val = scsi_2btoul(progress->progress);
4527
4528		scsi_progress_sbuf(sb, progress_val);
4529		break;
4530	}
4531	case SSD_KEY_COPY_ABORTED: {
4532		struct scsi_sense_sks_segment *segment;
4533		char tmpstr[40];
4534
4535		/*Segment Pointer*/
4536		segment = (struct scsi_sense_sks_segment *)sks;
4537
4538		tmpstr[0] = '\0';
4539
4540		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4541			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4542				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4543
4544		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4545			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4546			    scsi_2btoul(segment->field), tmpstr);
4547		break;
4548	}
4549	default:
4550		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4551			    scsi_2btoul(&sks[1]));
4552		break;
4553	}
4554
4555	return (0);
4556}
4557
4558void
4559scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4560{
4561	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4562}
4563
4564void
4565scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits)
4566{
4567	int need_comma;
4568
4569	need_comma = 0;
4570	/*
4571	 * XXX KDM this needs more descriptive decoding.
4572	 */
4573	sbuf_cat(sb, "Stream Command Sense Data: ");
4574	if (stream_bits & SSD_DESC_STREAM_FM) {
4575		sbuf_cat(sb, "Filemark");
4576		need_comma = 1;
4577	}
4578
4579	if (stream_bits & SSD_DESC_STREAM_EOM) {
4580		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4581		need_comma = 1;
4582	}
4583
4584	if (stream_bits & SSD_DESC_STREAM_ILI)
4585		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4586}
4587
4588void
4589scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits)
4590{
4591
4592	sbuf_cat(sb, "Block Command Sense Data: ");
4593	if (block_bits & SSD_DESC_BLOCK_ILI)
4594		sbuf_cat(sb, "ILI");
4595}
4596
4597void
4598scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4599		     u_int sense_len, uint8_t *cdb, int cdb_len,
4600		     struct scsi_inquiry_data *inq_data,
4601		     struct scsi_sense_desc_header *header)
4602{
4603	struct scsi_sense_info *info;
4604
4605	info = (struct scsi_sense_info *)header;
4606
4607	if ((info->byte2 & SSD_INFO_VALID) == 0)
4608		return;
4609
4610	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4611}
4612
4613void
4614scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4615			u_int sense_len, uint8_t *cdb, int cdb_len,
4616			struct scsi_inquiry_data *inq_data,
4617			struct scsi_sense_desc_header *header)
4618{
4619	struct scsi_sense_command *command;
4620
4621	command = (struct scsi_sense_command *)header;
4622
4623	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4624			  scsi_8btou64(command->command_info));
4625}
4626
4627void
4628scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4629		    u_int sense_len, uint8_t *cdb, int cdb_len,
4630		    struct scsi_inquiry_data *inq_data,
4631		    struct scsi_sense_desc_header *header)
4632{
4633	struct scsi_sense_sks *sks;
4634	int error_code, sense_key, asc, ascq;
4635
4636	sks = (struct scsi_sense_sks *)header;
4637
4638	if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4639		return;
4640
4641	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4642			       &asc, &ascq, /*show_errors*/ 1);
4643
4644	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4645}
4646
4647void
4648scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4649		    u_int sense_len, uint8_t *cdb, int cdb_len,
4650		    struct scsi_inquiry_data *inq_data,
4651		    struct scsi_sense_desc_header *header)
4652{
4653	struct scsi_sense_fru *fru;
4654
4655	fru = (struct scsi_sense_fru *)header;
4656
4657	if (fru->fru == 0)
4658		return;
4659
4660	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4661}
4662
4663void
4664scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4665		       u_int sense_len, uint8_t *cdb, int cdb_len,
4666		       struct scsi_inquiry_data *inq_data,
4667		       struct scsi_sense_desc_header *header)
4668{
4669	struct scsi_sense_stream *stream;
4670
4671	stream = (struct scsi_sense_stream *)header;
4672	scsi_stream_sbuf(sb, stream->byte3);
4673}
4674
4675void
4676scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4677		      u_int sense_len, uint8_t *cdb, int cdb_len,
4678		      struct scsi_inquiry_data *inq_data,
4679		      struct scsi_sense_desc_header *header)
4680{
4681	struct scsi_sense_block *block;
4682
4683	block = (struct scsi_sense_block *)header;
4684	scsi_block_sbuf(sb, block->byte3);
4685}
4686
4687void
4688scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4689			 u_int sense_len, uint8_t *cdb, int cdb_len,
4690			 struct scsi_inquiry_data *inq_data,
4691			 struct scsi_sense_desc_header *header)
4692{
4693	struct scsi_sense_progress *progress;
4694	const char *sense_key_desc;
4695	const char *asc_desc;
4696	int progress_val;
4697
4698	progress = (struct scsi_sense_progress *)header;
4699
4700	/*
4701	 * Get descriptions for the sense key, ASC, and ASCQ in the
4702	 * progress descriptor.  These could be different than the values
4703	 * in the overall sense data.
4704	 */
4705	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4706			progress->add_sense_code_qual, inq_data,
4707			&sense_key_desc, &asc_desc);
4708
4709	progress_val = scsi_2btoul(progress->progress);
4710
4711	/*
4712	 * The progress indicator is for the operation described by the
4713	 * sense key, ASC, and ASCQ in the descriptor.
4714	 */
4715	sbuf_cat(sb, sense_key_desc);
4716	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4717		    progress->add_sense_code_qual, asc_desc);
4718	scsi_progress_sbuf(sb, progress_val);
4719}
4720
4721void
4722scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4723			 u_int sense_len, uint8_t *cdb, int cdb_len,
4724			 struct scsi_inquiry_data *inq_data,
4725			 struct scsi_sense_desc_header *header)
4726{
4727	struct scsi_sense_ata_ret_desc *res;
4728
4729	res = (struct scsi_sense_ata_ret_desc *)header;
4730
4731	sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
4732	    res->status,
4733	    (res->status & 0x80) ? "BSY " : "",
4734	    (res->status & 0x40) ? "DRDY " : "",
4735	    (res->status & 0x20) ? "DF " : "",
4736	    (res->status & 0x10) ? "SERV " : "",
4737	    (res->status & 0x08) ? "DRQ " : "",
4738	    (res->status & 0x04) ? "CORR " : "",
4739	    (res->status & 0x02) ? "IDX " : "",
4740	    (res->status & 0x01) ? "ERR" : "");
4741	if (res->status & 1) {
4742	    sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
4743		res->error,
4744		(res->error & 0x80) ? "ICRC " : "",
4745		(res->error & 0x40) ? "UNC " : "",
4746		(res->error & 0x20) ? "MC " : "",
4747		(res->error & 0x10) ? "IDNF " : "",
4748		(res->error & 0x08) ? "MCR " : "",
4749		(res->error & 0x04) ? "ABRT " : "",
4750		(res->error & 0x02) ? "NM " : "",
4751		(res->error & 0x01) ? "ILI" : "");
4752	}
4753
4754	if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
4755		sbuf_printf(sb, "count: %02x%02x, ",
4756		    res->count_15_8, res->count_7_0);
4757		sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
4758		    res->lba_47_40, res->lba_39_32, res->lba_31_24,
4759		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4760	} else {
4761		sbuf_printf(sb, "count: %02x, ", res->count_7_0);
4762		sbuf_printf(sb, "LBA: %02x%02x%02x, ",
4763		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4764	}
4765	sbuf_printf(sb, "device: %02x, ", res->device);
4766}
4767
4768void
4769scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4770			 u_int sense_len, uint8_t *cdb, int cdb_len,
4771			 struct scsi_inquiry_data *inq_data,
4772			 struct scsi_sense_desc_header *header)
4773{
4774	struct scsi_sense_forwarded *forwarded;
4775	const char *sense_key_desc;
4776	const char *asc_desc;
4777	int error_code, sense_key, asc, ascq;
4778
4779	forwarded = (struct scsi_sense_forwarded *)header;
4780	scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4781	    forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4782	scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4783
4784	sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4785	    sense_key_desc, asc, ascq, asc_desc);
4786}
4787
4788/*
4789 * Generic sense descriptor printing routine.  This is used when we have
4790 * not yet implemented a specific printing routine for this descriptor.
4791 */
4792void
4793scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4794			u_int sense_len, uint8_t *cdb, int cdb_len,
4795			struct scsi_inquiry_data *inq_data,
4796			struct scsi_sense_desc_header *header)
4797{
4798	int i;
4799	uint8_t *buf_ptr;
4800
4801	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4802
4803	buf_ptr = (uint8_t *)&header[1];
4804
4805	for (i = 0; i < header->length; i++, buf_ptr++)
4806		sbuf_printf(sb, " %02x", *buf_ptr);
4807}
4808
4809/*
4810 * Keep this list in numeric order.  This speeds the array traversal.
4811 */
4812struct scsi_sense_desc_printer {
4813	uint8_t desc_type;
4814	/*
4815	 * The function arguments here are the superset of what is needed
4816	 * to print out various different descriptors.  Command and
4817	 * information descriptors need inquiry data and command type.
4818	 * Sense key specific descriptors need the sense key.
4819	 *
4820	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4821	 * information printed may not be fully decoded as a result.
4822	 */
4823	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4824			   u_int sense_len, uint8_t *cdb, int cdb_len,
4825			   struct scsi_inquiry_data *inq_data,
4826			   struct scsi_sense_desc_header *header);
4827} scsi_sense_printers[] = {
4828	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4829	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4830	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4831	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4832	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4833	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4834	{SSD_DESC_ATA, scsi_sense_ata_sbuf},
4835	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4836	{SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf}
4837};
4838
4839void
4840scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4841		     u_int sense_len, uint8_t *cdb, int cdb_len,
4842		     struct scsi_inquiry_data *inq_data,
4843		     struct scsi_sense_desc_header *header)
4844{
4845	u_int i;
4846
4847	for (i = 0; i < nitems(scsi_sense_printers); i++) {
4848		struct scsi_sense_desc_printer *printer;
4849
4850		printer = &scsi_sense_printers[i];
4851
4852		/*
4853		 * The list is sorted, so quit if we've passed our
4854		 * descriptor number.
4855		 */
4856		if (printer->desc_type > header->desc_type)
4857			break;
4858
4859		if (printer->desc_type != header->desc_type)
4860			continue;
4861
4862		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4863				    inq_data, header);
4864
4865		return;
4866	}
4867
4868	/*
4869	 * No specific printing routine, so use the generic routine.
4870	 */
4871	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4872				inq_data, header);
4873}
4874
4875scsi_sense_data_type
4876scsi_sense_type(struct scsi_sense_data *sense_data)
4877{
4878	switch (sense_data->error_code & SSD_ERRCODE) {
4879	case SSD_DESC_CURRENT_ERROR:
4880	case SSD_DESC_DEFERRED_ERROR:
4881		return (SSD_TYPE_DESC);
4882		break;
4883	case SSD_CURRENT_ERROR:
4884	case SSD_DEFERRED_ERROR:
4885		return (SSD_TYPE_FIXED);
4886		break;
4887	default:
4888		break;
4889	}
4890
4891	return (SSD_TYPE_NONE);
4892}
4893
4894struct scsi_print_sense_info {
4895	struct sbuf *sb;
4896	char *path_str;
4897	uint8_t *cdb;
4898	int cdb_len;
4899	struct scsi_inquiry_data *inq_data;
4900};
4901
4902static int
4903scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4904		     struct scsi_sense_desc_header *header, void *arg)
4905{
4906	struct scsi_print_sense_info *print_info;
4907
4908	print_info = (struct scsi_print_sense_info *)arg;
4909
4910	switch (header->desc_type) {
4911	case SSD_DESC_INFO:
4912	case SSD_DESC_FRU:
4913	case SSD_DESC_COMMAND:
4914	case SSD_DESC_SKS:
4915	case SSD_DESC_BLOCK:
4916	case SSD_DESC_STREAM:
4917		/*
4918		 * We have already printed these descriptors, if they are
4919		 * present.
4920		 */
4921		break;
4922	default: {
4923		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4924		scsi_sense_desc_sbuf(print_info->sb,
4925				     (struct scsi_sense_data *)sense, sense_len,
4926				     print_info->cdb, print_info->cdb_len,
4927				     print_info->inq_data, header);
4928		sbuf_putc(print_info->sb, '\n');
4929		break;
4930	}
4931	}
4932
4933	/*
4934	 * Tell the iterator that we want to see more descriptors if they
4935	 * are present.
4936	 */
4937	return (0);
4938}
4939
4940void
4941scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4942		     struct sbuf *sb, char *path_str,
4943		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4944		     int cdb_len)
4945{
4946	int error_code, sense_key, asc, ascq;
4947
4948	sbuf_cat(sb, path_str);
4949
4950	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4951			       &asc, &ascq, /*show_errors*/ 1);
4952
4953	sbuf_cat(sb, "SCSI sense: ");
4954	switch (error_code) {
4955	case SSD_DEFERRED_ERROR:
4956	case SSD_DESC_DEFERRED_ERROR:
4957		sbuf_cat(sb, "Deferred error: ");
4958
4959		/* FALLTHROUGH */
4960	case SSD_CURRENT_ERROR:
4961	case SSD_DESC_CURRENT_ERROR:
4962	{
4963		struct scsi_sense_data_desc *desc_sense;
4964		struct scsi_print_sense_info print_info;
4965		const char *sense_key_desc;
4966		const char *asc_desc;
4967		uint8_t sks[3];
4968		uint64_t val;
4969		uint8_t bits;
4970
4971		/*
4972		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4973		 * these aren't present in the sense data (i.e. the sense
4974		 * data isn't long enough), the -1 values that
4975		 * scsi_extract_sense_len() returns will yield default
4976		 * or error descriptions.
4977		 */
4978		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4979				&sense_key_desc, &asc_desc);
4980
4981		/*
4982		 * We first print the sense key and ASC/ASCQ.
4983		 */
4984		sbuf_cat(sb, sense_key_desc);
4985		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4986
4987		/*
4988		 * Print any block or stream device-specific information.
4989		 */
4990		if (scsi_get_block_info(sense, sense_len, inq_data,
4991		    &bits) == 0 && bits != 0) {
4992			sbuf_cat(sb, path_str);
4993			scsi_block_sbuf(sb, bits);
4994			sbuf_putc(sb, '\n');
4995		} else if (scsi_get_stream_info(sense, sense_len, inq_data,
4996		    &bits) == 0 && bits != 0) {
4997			sbuf_cat(sb, path_str);
4998			scsi_stream_sbuf(sb, bits);
4999			sbuf_putc(sb, '\n');
5000		}
5001
5002		/*
5003		 * Print the info field.
5004		 */
5005		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
5006					&val, NULL) == 0) {
5007			sbuf_cat(sb, path_str);
5008			scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
5009			sbuf_putc(sb, '\n');
5010		}
5011
5012		/*
5013		 * Print the FRU.
5014		 */
5015		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
5016					&val, NULL) == 0) {
5017			sbuf_cat(sb, path_str);
5018			scsi_fru_sbuf(sb, val);
5019			sbuf_putc(sb, '\n');
5020		}
5021
5022		/*
5023		 * Print any command-specific information.
5024		 */
5025		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
5026					&val, NULL) == 0) {
5027			sbuf_cat(sb, path_str);
5028			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
5029			sbuf_putc(sb, '\n');
5030		}
5031
5032		/*
5033		 * Print out any sense-key-specific information.
5034		 */
5035		if (scsi_get_sks(sense, sense_len, sks) == 0) {
5036			sbuf_cat(sb, path_str);
5037			scsi_sks_sbuf(sb, sense_key, sks);
5038			sbuf_putc(sb, '\n');
5039		}
5040
5041		/*
5042		 * If this is fixed sense, we're done.  If we have
5043		 * descriptor sense, we might have more information
5044		 * available.
5045		 */
5046		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
5047			break;
5048
5049		desc_sense = (struct scsi_sense_data_desc *)sense;
5050
5051		print_info.sb = sb;
5052		print_info.path_str = path_str;
5053		print_info.cdb = cdb;
5054		print_info.cdb_len = cdb_len;
5055		print_info.inq_data = inq_data;
5056
5057		/*
5058		 * Print any sense descriptors that we have not already printed.
5059		 */
5060		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
5061				  &print_info);
5062		break;
5063	}
5064	case -1:
5065		/*
5066		 * scsi_extract_sense_len() sets values to -1 if the
5067		 * show_errors flag is set and they aren't present in the
5068		 * sense data.  This means that sense_len is 0.
5069		 */
5070		sbuf_cat(sb, "No sense data present\n");
5071		break;
5072	default: {
5073		sbuf_printf(sb, "Error code 0x%x", error_code);
5074		if (sense->error_code & SSD_ERRCODE_VALID) {
5075			struct scsi_sense_data_fixed *fixed_sense;
5076
5077			fixed_sense = (struct scsi_sense_data_fixed *)sense;
5078
5079			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
5080				uint32_t info;
5081
5082				info = scsi_4btoul(fixed_sense->info);
5083
5084				sbuf_printf(sb, " at block no. %d (decimal)",
5085					    info);
5086			}
5087		}
5088		sbuf_putc(sb, '\n');
5089		break;
5090	}
5091	}
5092}
5093
5094/*
5095 * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5096 */
5097#ifdef _KERNEL
5098int
5099scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5100		scsi_sense_string_flags flags)
5101#else /* !_KERNEL */
5102int
5103scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5104		struct sbuf *sb, scsi_sense_string_flags flags)
5105#endif /* _KERNEL/!_KERNEL */
5106{
5107	struct	  scsi_sense_data *sense;
5108	struct	  scsi_inquiry_data *inq_data;
5109#ifdef _KERNEL
5110	struct	  ccb_getdev *cgd;
5111#endif /* _KERNEL */
5112	char	  path_str[64];
5113
5114#ifndef _KERNEL
5115	if (device == NULL)
5116		return(-1);
5117#endif /* !_KERNEL */
5118	if ((csio == NULL) || (sb == NULL))
5119		return(-1);
5120
5121	/*
5122	 * If the CDB is a physical address, we can't deal with it..
5123	 */
5124	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5125		flags &= ~SSS_FLAG_PRINT_COMMAND;
5126
5127#ifdef _KERNEL
5128	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5129#else /* !_KERNEL */
5130	cam_path_string(device, path_str, sizeof(path_str));
5131#endif /* _KERNEL/!_KERNEL */
5132
5133#ifdef _KERNEL
5134	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5135		return(-1);
5136	/*
5137	 * Get the device information.
5138	 */
5139	xpt_setup_ccb(&cgd->ccb_h,
5140		      csio->ccb_h.path,
5141		      CAM_PRIORITY_NORMAL);
5142	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5143	xpt_action((union ccb *)cgd);
5144
5145	/*
5146	 * If the device is unconfigured, just pretend that it is a hard
5147	 * drive.  scsi_op_desc() needs this.
5148	 */
5149	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5150		cgd->inq_data.device = T_DIRECT;
5151
5152	inq_data = &cgd->inq_data;
5153
5154#else /* !_KERNEL */
5155
5156	inq_data = &device->inq_data;
5157
5158#endif /* _KERNEL/!_KERNEL */
5159
5160	sense = NULL;
5161
5162	if (flags & SSS_FLAG_PRINT_COMMAND) {
5163		sbuf_cat(sb, path_str);
5164
5165#ifdef _KERNEL
5166		scsi_command_string(csio, sb);
5167#else /* !_KERNEL */
5168		scsi_command_string(device, csio, sb);
5169#endif /* _KERNEL/!_KERNEL */
5170		sbuf_putc(sb, '\n');
5171	}
5172
5173	/*
5174	 * If the sense data is a physical pointer, forget it.
5175	 */
5176	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5177		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5178#ifdef _KERNEL
5179			xpt_free_ccb((union ccb*)cgd);
5180#endif /* _KERNEL/!_KERNEL */
5181			return(-1);
5182		} else {
5183			/*
5184			 * bcopy the pointer to avoid unaligned access
5185			 * errors on finicky architectures.  We don't
5186			 * ensure that the sense data is pointer aligned.
5187			 */
5188			bcopy((struct scsi_sense_data **)&csio->sense_data,
5189			    &sense, sizeof(struct scsi_sense_data *));
5190		}
5191	} else {
5192		/*
5193		 * If the physical sense flag is set, but the sense pointer
5194		 * is not also set, we assume that the user is an idiot and
5195		 * return.  (Well, okay, it could be that somehow, the
5196		 * entire csio is physical, but we would have probably core
5197		 * dumped on one of the bogus pointer deferences above
5198		 * already.)
5199		 */
5200		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5201#ifdef _KERNEL
5202			xpt_free_ccb((union ccb*)cgd);
5203#endif /* _KERNEL/!_KERNEL */
5204			return(-1);
5205		} else
5206			sense = &csio->sense_data;
5207	}
5208
5209	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5210	    path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
5211
5212#ifdef _KERNEL
5213	xpt_free_ccb((union ccb*)cgd);
5214#endif /* _KERNEL/!_KERNEL */
5215	return(0);
5216}
5217
5218#ifdef _KERNEL
5219char *
5220scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5221#else /* !_KERNEL */
5222char *
5223scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5224		  char *str, int str_len)
5225#endif /* _KERNEL/!_KERNEL */
5226{
5227	struct sbuf sb;
5228
5229	sbuf_new(&sb, str, str_len, 0);
5230
5231#ifdef _KERNEL
5232	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5233#else /* !_KERNEL */
5234	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5235#endif /* _KERNEL/!_KERNEL */
5236
5237	sbuf_finish(&sb);
5238
5239	return(sbuf_data(&sb));
5240}
5241
5242#ifdef _KERNEL
5243void
5244scsi_sense_print(struct ccb_scsiio *csio)
5245{
5246	struct sbuf sb;
5247	char str[512];
5248
5249	sbuf_new(&sb, str, sizeof(str), 0);
5250
5251	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5252
5253	sbuf_finish(&sb);
5254
5255	sbuf_putbuf(&sb);
5256}
5257
5258#else /* !_KERNEL */
5259void
5260scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5261		 FILE *ofile)
5262{
5263	struct sbuf sb;
5264	char str[512];
5265
5266	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5267		return;
5268
5269	sbuf_new(&sb, str, sizeof(str), 0);
5270
5271	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5272
5273	sbuf_finish(&sb);
5274
5275	fprintf(ofile, "%s", sbuf_data(&sb));
5276}
5277
5278#endif /* _KERNEL/!_KERNEL */
5279
5280/*
5281 * Extract basic sense information.  This is backward-compatible with the
5282 * previous implementation.  For new implementations,
5283 * scsi_extract_sense_len() is recommended.
5284 */
5285void
5286scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5287		   int *sense_key, int *asc, int *ascq)
5288{
5289	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5290			       sense_key, asc, ascq, /*show_errors*/ 0);
5291}
5292
5293/*
5294 * Extract basic sense information from SCSI I/O CCB structure.
5295 */
5296int
5297scsi_extract_sense_ccb(union ccb *ccb,
5298    int *error_code, int *sense_key, int *asc, int *ascq)
5299{
5300	struct scsi_sense_data *sense_data;
5301
5302	/* Make sure there are some sense data we can access. */
5303	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5304	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5305	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5306	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5307	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5308		return (0);
5309
5310	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5311		bcopy((struct scsi_sense_data **)&ccb->csio.sense_data,
5312		    &sense_data, sizeof(struct scsi_sense_data *));
5313	else
5314		sense_data = &ccb->csio.sense_data;
5315	scsi_extract_sense_len(sense_data,
5316	    ccb->csio.sense_len - ccb->csio.sense_resid,
5317	    error_code, sense_key, asc, ascq, 1);
5318	if (*error_code == -1)
5319		return (0);
5320	return (1);
5321}
5322
5323/*
5324 * Extract basic sense information.  If show_errors is set, sense values
5325 * will be set to -1 if they are not present.
5326 */
5327void
5328scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5329		       int *error_code, int *sense_key, int *asc, int *ascq,
5330		       int show_errors)
5331{
5332	/*
5333	 * If we have no length, we have no sense.
5334	 */
5335	if (sense_len == 0) {
5336		if (show_errors == 0) {
5337			*error_code = 0;
5338			*sense_key = 0;
5339			*asc = 0;
5340			*ascq = 0;
5341		} else {
5342			*error_code = -1;
5343			*sense_key = -1;
5344			*asc = -1;
5345			*ascq = -1;
5346		}
5347		return;
5348	}
5349
5350	*error_code = sense_data->error_code & SSD_ERRCODE;
5351
5352	switch (*error_code) {
5353	case SSD_DESC_CURRENT_ERROR:
5354	case SSD_DESC_DEFERRED_ERROR: {
5355		struct scsi_sense_data_desc *sense;
5356
5357		sense = (struct scsi_sense_data_desc *)sense_data;
5358
5359		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5360			*sense_key = sense->sense_key & SSD_KEY;
5361		else
5362			*sense_key = (show_errors) ? -1 : 0;
5363
5364		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5365			*asc = sense->add_sense_code;
5366		else
5367			*asc = (show_errors) ? -1 : 0;
5368
5369		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5370			*ascq = sense->add_sense_code_qual;
5371		else
5372			*ascq = (show_errors) ? -1 : 0;
5373		break;
5374	}
5375	case SSD_CURRENT_ERROR:
5376	case SSD_DEFERRED_ERROR:
5377	default: {
5378		struct scsi_sense_data_fixed *sense;
5379
5380		sense = (struct scsi_sense_data_fixed *)sense_data;
5381
5382		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5383			*sense_key = sense->flags & SSD_KEY;
5384		else
5385			*sense_key = (show_errors) ? -1 : 0;
5386
5387		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5388		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5389			*asc = sense->add_sense_code;
5390		else
5391			*asc = (show_errors) ? -1 : 0;
5392
5393		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5394		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5395			*ascq = sense->add_sense_code_qual;
5396		else
5397			*ascq = (show_errors) ? -1 : 0;
5398		break;
5399	}
5400	}
5401}
5402
5403int
5404scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5405		   int show_errors)
5406{
5407	int error_code, sense_key, asc, ascq;
5408
5409	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5410			       &sense_key, &asc, &ascq, show_errors);
5411
5412	return (sense_key);
5413}
5414
5415int
5416scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5417	     int show_errors)
5418{
5419	int error_code, sense_key, asc, ascq;
5420
5421	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5422			       &sense_key, &asc, &ascq, show_errors);
5423
5424	return (asc);
5425}
5426
5427int
5428scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5429	      int show_errors)
5430{
5431	int error_code, sense_key, asc, ascq;
5432
5433	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5434			       &sense_key, &asc, &ascq, show_errors);
5435
5436	return (ascq);
5437}
5438
5439/*
5440 * This function currently requires at least 36 bytes, or
5441 * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5442 * function needs more or less data in the future, another length should be
5443 * defined in scsi_all.h to indicate the minimum amount of data necessary
5444 * for this routine to function properly.
5445 */
5446void
5447scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5448{
5449	uint8_t type;
5450	char *dtype, *qtype;
5451
5452	type = SID_TYPE(inq_data);
5453
5454	/*
5455	 * Figure out basic device type and qualifier.
5456	 */
5457	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5458		qtype = " (vendor-unique qualifier)";
5459	} else {
5460		switch (SID_QUAL(inq_data)) {
5461		case SID_QUAL_LU_CONNECTED:
5462			qtype = "";
5463			break;
5464
5465		case SID_QUAL_LU_OFFLINE:
5466			qtype = " (offline)";
5467			break;
5468
5469		case SID_QUAL_RSVD:
5470			qtype = " (reserved qualifier)";
5471			break;
5472		default:
5473		case SID_QUAL_BAD_LU:
5474			qtype = " (LUN not supported)";
5475			break;
5476		}
5477	}
5478
5479	switch (type) {
5480	case T_DIRECT:
5481		dtype = "Direct Access";
5482		break;
5483	case T_SEQUENTIAL:
5484		dtype = "Sequential Access";
5485		break;
5486	case T_PRINTER:
5487		dtype = "Printer";
5488		break;
5489	case T_PROCESSOR:
5490		dtype = "Processor";
5491		break;
5492	case T_WORM:
5493		dtype = "WORM";
5494		break;
5495	case T_CDROM:
5496		dtype = "CD-ROM";
5497		break;
5498	case T_SCANNER:
5499		dtype = "Scanner";
5500		break;
5501	case T_OPTICAL:
5502		dtype = "Optical";
5503		break;
5504	case T_CHANGER:
5505		dtype = "Changer";
5506		break;
5507	case T_COMM:
5508		dtype = "Communication";
5509		break;
5510	case T_STORARRAY:
5511		dtype = "Storage Array";
5512		break;
5513	case T_ENCLOSURE:
5514		dtype = "Enclosure Services";
5515		break;
5516	case T_RBC:
5517		dtype = "Simplified Direct Access";
5518		break;
5519	case T_OCRW:
5520		dtype = "Optical Card Read/Write";
5521		break;
5522	case T_OSD:
5523		dtype = "Object-Based Storage";
5524		break;
5525	case T_ADC:
5526		dtype = "Automation/Drive Interface";
5527		break;
5528	case T_ZBC_HM:
5529		dtype = "Host Managed Zoned Block";
5530		break;
5531	case T_NODEVICE:
5532		dtype = "Uninstalled";
5533		break;
5534	default:
5535		dtype = "unknown";
5536		break;
5537	}
5538
5539	scsi_print_inquiry_short_sbuf(sb, inq_data);
5540
5541	sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype);
5542
5543	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5544		sbuf_cat(sb, "SCSI ");
5545	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5546		sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data));
5547	} else {
5548		sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2);
5549	}
5550	sbuf_printf(sb, "device%s\n", qtype);
5551}
5552
5553void
5554scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5555{
5556	struct sbuf	sb;
5557	char		buffer[120];
5558
5559	sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN);
5560	scsi_print_inquiry_sbuf(&sb, inq_data);
5561	sbuf_finish(&sb);
5562	sbuf_putbuf(&sb);
5563}
5564
5565void
5566scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5567{
5568
5569	sbuf_putc(sb, '<');
5570	cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0);
5571	sbuf_putc(sb, ' ');
5572	cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0);
5573	sbuf_putc(sb, ' ');
5574	cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0);
5575	sbuf_cat(sb, "> ");
5576}
5577
5578void
5579scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5580{
5581	struct sbuf	sb;
5582	char		buffer[84];
5583
5584	sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN);
5585	scsi_print_inquiry_short_sbuf(&sb, inq_data);
5586	sbuf_finish(&sb);
5587	sbuf_putbuf(&sb);
5588}
5589
5590/*
5591 * Table of syncrates that don't follow the "divisible by 4"
5592 * rule. This table will be expanded in future SCSI specs.
5593 */
5594static struct {
5595	u_int period_factor;
5596	u_int period;	/* in 100ths of ns */
5597} scsi_syncrates[] = {
5598	{ 0x08, 625 },	/* FAST-160 */
5599	{ 0x09, 1250 },	/* FAST-80 */
5600	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5601	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5602	{ 0x0c, 5000 }	/* FAST-20 */
5603};
5604
5605/*
5606 * Return the frequency in kHz corresponding to the given
5607 * sync period factor.
5608 */
5609u_int
5610scsi_calc_syncsrate(u_int period_factor)
5611{
5612	u_int i;
5613	u_int num_syncrates;
5614
5615	/*
5616	 * It's a bug if period is zero, but if it is anyway, don't
5617	 * die with a divide fault- instead return something which
5618	 * 'approximates' async
5619	 */
5620	if (period_factor == 0) {
5621		return (3300);
5622	}
5623
5624	num_syncrates = nitems(scsi_syncrates);
5625	/* See if the period is in the "exception" table */
5626	for (i = 0; i < num_syncrates; i++) {
5627		if (period_factor == scsi_syncrates[i].period_factor) {
5628			/* Period in kHz */
5629			return (100000000 / scsi_syncrates[i].period);
5630		}
5631	}
5632
5633	/*
5634	 * Wasn't in the table, so use the standard
5635	 * 4 times conversion.
5636	 */
5637	return (10000000 / (period_factor * 4 * 10));
5638}
5639
5640/*
5641 * Return the SCSI sync parameter that corresponds to
5642 * the passed in period in 10ths of ns.
5643 */
5644u_int
5645scsi_calc_syncparam(u_int period)
5646{
5647	u_int i;
5648	u_int num_syncrates;
5649
5650	if (period == 0)
5651		return (~0);	/* Async */
5652
5653	/* Adjust for exception table being in 100ths. */
5654	period *= 10;
5655	num_syncrates = nitems(scsi_syncrates);
5656	/* See if the period is in the "exception" table */
5657	for (i = 0; i < num_syncrates; i++) {
5658		if (period <= scsi_syncrates[i].period) {
5659			/* Period in 100ths of ns */
5660			return (scsi_syncrates[i].period_factor);
5661		}
5662	}
5663
5664	/*
5665	 * Wasn't in the table, so use the standard
5666	 * 1/4 period in ns conversion.
5667	 */
5668	return (period/400);
5669}
5670
5671int
5672scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5673{
5674	struct scsi_vpd_id_descriptor *descr;
5675	struct scsi_vpd_id_naa_basic *naa;
5676	int n;
5677
5678	descr = (struct scsi_vpd_id_descriptor *)bufp;
5679	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5680	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5681		return 0;
5682	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5683		return 0;
5684	n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT;
5685	if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG)
5686		return 0;
5687	return 1;
5688}
5689
5690int
5691scsi_devid_is_sas_target(uint8_t *bufp)
5692{
5693	struct scsi_vpd_id_descriptor *descr;
5694
5695	descr = (struct scsi_vpd_id_descriptor *)bufp;
5696	if (!scsi_devid_is_naa_ieee_reg(bufp))
5697		return 0;
5698	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5699		return 0;
5700	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5701		return 0;
5702	return 1;
5703}
5704
5705int
5706scsi_devid_is_lun_eui64(uint8_t *bufp)
5707{
5708	struct scsi_vpd_id_descriptor *descr;
5709
5710	descr = (struct scsi_vpd_id_descriptor *)bufp;
5711	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5712		return 0;
5713	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5714		return 0;
5715	return 1;
5716}
5717
5718int
5719scsi_devid_is_lun_naa(uint8_t *bufp)
5720{
5721	struct scsi_vpd_id_descriptor *descr;
5722
5723	descr = (struct scsi_vpd_id_descriptor *)bufp;
5724	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5725		return 0;
5726	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5727		return 0;
5728	return 1;
5729}
5730
5731int
5732scsi_devid_is_lun_t10(uint8_t *bufp)
5733{
5734	struct scsi_vpd_id_descriptor *descr;
5735
5736	descr = (struct scsi_vpd_id_descriptor *)bufp;
5737	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5738		return 0;
5739	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5740		return 0;
5741	return 1;
5742}
5743
5744int
5745scsi_devid_is_lun_name(uint8_t *bufp)
5746{
5747	struct scsi_vpd_id_descriptor *descr;
5748
5749	descr = (struct scsi_vpd_id_descriptor *)bufp;
5750	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5751		return 0;
5752	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5753		return 0;
5754	return 1;
5755}
5756
5757int
5758scsi_devid_is_lun_md5(uint8_t *bufp)
5759{
5760	struct scsi_vpd_id_descriptor *descr;
5761
5762	descr = (struct scsi_vpd_id_descriptor *)bufp;
5763	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5764		return 0;
5765	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5766		return 0;
5767	return 1;
5768}
5769
5770int
5771scsi_devid_is_lun_uuid(uint8_t *bufp)
5772{
5773	struct scsi_vpd_id_descriptor *descr;
5774
5775	descr = (struct scsi_vpd_id_descriptor *)bufp;
5776	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5777		return 0;
5778	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5779		return 0;
5780	return 1;
5781}
5782
5783int
5784scsi_devid_is_port_naa(uint8_t *bufp)
5785{
5786	struct scsi_vpd_id_descriptor *descr;
5787
5788	descr = (struct scsi_vpd_id_descriptor *)bufp;
5789	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5790		return 0;
5791	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5792		return 0;
5793	return 1;
5794}
5795
5796struct scsi_vpd_id_descriptor *
5797scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5798    scsi_devid_checkfn_t ck_fn)
5799{
5800	uint8_t *desc_buf_end;
5801
5802	desc_buf_end = (uint8_t *)desc + len;
5803
5804	for (; desc->identifier <= desc_buf_end &&
5805	    desc->identifier + desc->length <= desc_buf_end;
5806	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5807						    + desc->length)) {
5808		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5809			return (desc);
5810	}
5811	return (NULL);
5812}
5813
5814struct scsi_vpd_id_descriptor *
5815scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5816    scsi_devid_checkfn_t ck_fn)
5817{
5818	uint32_t len;
5819
5820	if (page_len < sizeof(*id))
5821		return (NULL);
5822	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5823	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5824	    id->desc_list, len, ck_fn));
5825}
5826
5827int
5828scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5829		      uint32_t valid_len)
5830{
5831	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5832	case SCSI_PROTO_FC: {
5833		struct scsi_transportid_fcp *fcp;
5834		uint64_t n_port_name;
5835
5836		fcp = (struct scsi_transportid_fcp *)hdr;
5837
5838		n_port_name = scsi_8btou64(fcp->n_port_name);
5839
5840		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5841		break;
5842	}
5843	case SCSI_PROTO_SPI: {
5844		struct scsi_transportid_spi *spi;
5845
5846		spi = (struct scsi_transportid_spi *)hdr;
5847
5848		sbuf_printf(sb, "SPI address: %u,%u",
5849			    scsi_2btoul(spi->scsi_addr),
5850			    scsi_2btoul(spi->rel_trgt_port_id));
5851		break;
5852	}
5853	case SCSI_PROTO_SSA:
5854		/*
5855		 * XXX KDM there is no transport ID defined in SPC-4 for
5856		 * SSA.
5857		 */
5858		break;
5859	case SCSI_PROTO_1394: {
5860		struct scsi_transportid_1394 *sbp;
5861		uint64_t eui64;
5862
5863		sbp = (struct scsi_transportid_1394 *)hdr;
5864
5865		eui64 = scsi_8btou64(sbp->eui64);
5866		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5867		break;
5868	}
5869	case SCSI_PROTO_RDMA: {
5870		struct scsi_transportid_rdma *rdma;
5871		unsigned int i;
5872
5873		rdma = (struct scsi_transportid_rdma *)hdr;
5874
5875		sbuf_cat(sb, "RDMA address: 0x");
5876		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5877			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5878		break;
5879	}
5880	case SCSI_PROTO_ISCSI: {
5881		uint32_t add_len, i;
5882		uint8_t *iscsi_name = NULL;
5883		int nul_found = 0;
5884
5885		sbuf_cat(sb, "iSCSI address: ");
5886		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5887		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5888			struct scsi_transportid_iscsi_device *dev;
5889
5890			dev = (struct scsi_transportid_iscsi_device *)hdr;
5891
5892			/*
5893			 * Verify how much additional data we really have.
5894			 */
5895			add_len = scsi_2btoul(dev->additional_length);
5896			add_len = MIN(add_len, valid_len -
5897				__offsetof(struct scsi_transportid_iscsi_device,
5898					   iscsi_name));
5899			iscsi_name = &dev->iscsi_name[0];
5900
5901		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5902			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5903			struct scsi_transportid_iscsi_port *port;
5904
5905			port = (struct scsi_transportid_iscsi_port *)hdr;
5906
5907			add_len = scsi_2btoul(port->additional_length);
5908			add_len = MIN(add_len, valid_len -
5909				__offsetof(struct scsi_transportid_iscsi_port,
5910					   iscsi_name));
5911			iscsi_name = &port->iscsi_name[0];
5912		} else {
5913			sbuf_printf(sb, "unknown format %x",
5914				    (hdr->format_protocol &
5915				     SCSI_TRN_FORMAT_MASK) >>
5916				     SCSI_TRN_FORMAT_SHIFT);
5917			break;
5918		}
5919		if (add_len == 0) {
5920			sbuf_cat(sb, "not enough data");
5921			break;
5922		}
5923		/*
5924		 * This is supposed to be a NUL-terminated ASCII
5925		 * string, but you never know.  So we're going to
5926		 * check.  We need to do this because there is no
5927		 * sbuf equivalent of strncat().
5928		 */
5929		for (i = 0; i < add_len; i++) {
5930			if (iscsi_name[i] == '\0') {
5931				nul_found = 1;
5932				break;
5933			}
5934		}
5935		/*
5936		 * If there is a NUL in the name, we can just use
5937		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5938		 */
5939		if (nul_found != 0)
5940			sbuf_cat(sb, iscsi_name);
5941		else
5942			sbuf_bcat(sb, iscsi_name, add_len);
5943		break;
5944	}
5945	case SCSI_PROTO_SAS: {
5946		struct scsi_transportid_sas *sas;
5947		uint64_t sas_addr;
5948
5949		sas = (struct scsi_transportid_sas *)hdr;
5950
5951		sas_addr = scsi_8btou64(sas->sas_address);
5952		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5953		break;
5954	}
5955	case SCSI_PROTO_ADITP:
5956	case SCSI_PROTO_ATA:
5957	case SCSI_PROTO_UAS:
5958		/*
5959		 * No Transport ID format for ADI, ATA or USB is defined in
5960		 * SPC-4.
5961		 */
5962		sbuf_printf(sb, "No known Transport ID format for protocol "
5963			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5964		break;
5965	case SCSI_PROTO_SOP: {
5966		struct scsi_transportid_sop *sop;
5967		struct scsi_sop_routing_id_norm *rid;
5968
5969		sop = (struct scsi_transportid_sop *)hdr;
5970		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5971
5972		/*
5973		 * Note that there is no alternate format specified in SPC-4
5974		 * for the PCIe routing ID, so we don't really have a way
5975		 * to know whether the second byte of the routing ID is
5976		 * a device and function or just a function.  So we just
5977		 * assume bus,device,function.
5978		 */
5979		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5980			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5981			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5982		break;
5983	}
5984	case SCSI_PROTO_NONE:
5985	default:
5986		sbuf_printf(sb, "Unknown protocol %#x",
5987			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5988		break;
5989	}
5990
5991	return (0);
5992}
5993
5994struct scsi_nv scsi_proto_map[] = {
5995	{ "fcp", SCSI_PROTO_FC },
5996	{ "spi", SCSI_PROTO_SPI },
5997	{ "ssa", SCSI_PROTO_SSA },
5998	{ "sbp", SCSI_PROTO_1394 },
5999	{ "1394", SCSI_PROTO_1394 },
6000	{ "srp", SCSI_PROTO_RDMA },
6001	{ "rdma", SCSI_PROTO_RDMA },
6002	{ "iscsi", SCSI_PROTO_ISCSI },
6003	{ "iqn", SCSI_PROTO_ISCSI },
6004	{ "sas", SCSI_PROTO_SAS },
6005	{ "aditp", SCSI_PROTO_ADITP },
6006	{ "ata", SCSI_PROTO_ATA },
6007	{ "uas", SCSI_PROTO_UAS },
6008	{ "usb", SCSI_PROTO_UAS },
6009	{ "sop", SCSI_PROTO_SOP }
6010};
6011
6012const char *
6013scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
6014{
6015	int i;
6016
6017	for (i = 0; i < num_table_entries; i++) {
6018		if (table[i].value == value)
6019			return (table[i].name);
6020	}
6021
6022	return (NULL);
6023}
6024
6025/*
6026 * Given a name/value table, find a value matching the given name.
6027 * Return values:
6028 *	SCSI_NV_FOUND - match found
6029 *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
6030 *	SCSI_NV_NOT_FOUND - no match found
6031 */
6032scsi_nv_status
6033scsi_get_nv(struct scsi_nv *table, int num_table_entries,
6034	    char *name, int *table_entry, scsi_nv_flags flags)
6035{
6036	int i, num_matches = 0;
6037
6038	for (i = 0; i < num_table_entries; i++) {
6039		size_t table_len, name_len;
6040
6041		table_len = strlen(table[i].name);
6042		name_len = strlen(name);
6043
6044		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
6045		  && (strncasecmp(table[i].name, name, name_len) == 0))
6046		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
6047		 && (strncmp(table[i].name, name, name_len) == 0))) {
6048			*table_entry = i;
6049
6050			/*
6051			 * Check for an exact match.  If we have the same
6052			 * number of characters in the table as the argument,
6053			 * and we already know they're the same, we have
6054			 * an exact match.
6055		 	 */
6056			if (table_len == name_len)
6057				return (SCSI_NV_FOUND);
6058
6059			/*
6060			 * Otherwise, bump up the number of matches.  We'll
6061			 * see later how many we have.
6062			 */
6063			num_matches++;
6064		}
6065	}
6066
6067	if (num_matches > 1)
6068		return (SCSI_NV_AMBIGUOUS);
6069	else if (num_matches == 1)
6070		return (SCSI_NV_FOUND);
6071	else
6072		return (SCSI_NV_NOT_FOUND);
6073}
6074
6075/*
6076 * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
6077 * all 64-bit numbers, the code is similar.
6078 */
6079int
6080scsi_parse_transportid_64bit(int proto_id, char *id_str,
6081			     struct scsi_transportid_header **hdr,
6082			     unsigned int *alloc_len,
6083#ifdef _KERNEL
6084			     struct malloc_type *type, int flags,
6085#endif
6086			     char *error_str, int error_str_len)
6087{
6088	uint64_t value;
6089	char *endptr;
6090	int retval;
6091	size_t alloc_size;
6092
6093	retval = 0;
6094
6095	value = strtouq(id_str, &endptr, 0);
6096	if (*endptr != '\0') {
6097		if (error_str != NULL) {
6098			snprintf(error_str, error_str_len, "%s: error "
6099				 "parsing ID %s, 64-bit number required",
6100				 __func__, id_str);
6101		}
6102		retval = 1;
6103		goto bailout;
6104	}
6105
6106	switch (proto_id) {
6107	case SCSI_PROTO_FC:
6108		alloc_size = sizeof(struct scsi_transportid_fcp);
6109		break;
6110	case SCSI_PROTO_1394:
6111		alloc_size = sizeof(struct scsi_transportid_1394);
6112		break;
6113	case SCSI_PROTO_SAS:
6114		alloc_size = sizeof(struct scsi_transportid_sas);
6115		break;
6116	default:
6117		if (error_str != NULL) {
6118			snprintf(error_str, error_str_len, "%s: unsupported "
6119				 "protocol %d", __func__, proto_id);
6120		}
6121		retval = 1;
6122		goto bailout;
6123		break; /* NOTREACHED */
6124	}
6125#ifdef _KERNEL
6126	*hdr = malloc(alloc_size, type, flags);
6127#else /* _KERNEL */
6128	*hdr = malloc(alloc_size);
6129#endif /*_KERNEL */
6130	if (*hdr == NULL) {
6131		if (error_str != NULL) {
6132			snprintf(error_str, error_str_len, "%s: unable to "
6133				 "allocate %zu bytes", __func__, alloc_size);
6134		}
6135		retval = 1;
6136		goto bailout;
6137	}
6138
6139	*alloc_len = alloc_size;
6140
6141	bzero(*hdr, alloc_size);
6142
6143	switch (proto_id) {
6144	case SCSI_PROTO_FC: {
6145		struct scsi_transportid_fcp *fcp;
6146
6147		fcp = (struct scsi_transportid_fcp *)(*hdr);
6148		fcp->format_protocol = SCSI_PROTO_FC |
6149				       SCSI_TRN_FCP_FORMAT_DEFAULT;
6150		scsi_u64to8b(value, fcp->n_port_name);
6151		break;
6152	}
6153	case SCSI_PROTO_1394: {
6154		struct scsi_transportid_1394 *sbp;
6155
6156		sbp = (struct scsi_transportid_1394 *)(*hdr);
6157		sbp->format_protocol = SCSI_PROTO_1394 |
6158				       SCSI_TRN_1394_FORMAT_DEFAULT;
6159		scsi_u64to8b(value, sbp->eui64);
6160		break;
6161	}
6162	case SCSI_PROTO_SAS: {
6163		struct scsi_transportid_sas *sas;
6164
6165		sas = (struct scsi_transportid_sas *)(*hdr);
6166		sas->format_protocol = SCSI_PROTO_SAS |
6167				       SCSI_TRN_SAS_FORMAT_DEFAULT;
6168		scsi_u64to8b(value, sas->sas_address);
6169		break;
6170	}
6171	default:
6172		break;
6173	}
6174bailout:
6175	return (retval);
6176}
6177
6178/*
6179 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6180 */
6181int
6182scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6183			   unsigned int *alloc_len,
6184#ifdef _KERNEL
6185			   struct malloc_type *type, int flags,
6186#endif
6187			   char *error_str, int error_str_len)
6188{
6189	unsigned long scsi_addr, target_port;
6190	struct scsi_transportid_spi *spi;
6191	char *tmpstr, *endptr;
6192	int retval;
6193
6194	retval = 0;
6195
6196	tmpstr = strsep(&id_str, ",");
6197	if (tmpstr == NULL) {
6198		if (error_str != NULL) {
6199			snprintf(error_str, error_str_len,
6200				 "%s: no ID found", __func__);
6201		}
6202		retval = 1;
6203		goto bailout;
6204	}
6205	scsi_addr = strtoul(tmpstr, &endptr, 0);
6206	if (*endptr != '\0') {
6207		if (error_str != NULL) {
6208			snprintf(error_str, error_str_len, "%s: error "
6209				 "parsing SCSI ID %s, number required",
6210				 __func__, tmpstr);
6211		}
6212		retval = 1;
6213		goto bailout;
6214	}
6215
6216	if (id_str == NULL) {
6217		if (error_str != NULL) {
6218			snprintf(error_str, error_str_len, "%s: no relative "
6219				 "target port found", __func__);
6220		}
6221		retval = 1;
6222		goto bailout;
6223	}
6224
6225	target_port = strtoul(id_str, &endptr, 0);
6226	if (*endptr != '\0') {
6227		if (error_str != NULL) {
6228			snprintf(error_str, error_str_len, "%s: error "
6229				 "parsing relative target port %s, number "
6230				 "required", __func__, id_str);
6231		}
6232		retval = 1;
6233		goto bailout;
6234	}
6235#ifdef _KERNEL
6236	spi = malloc(sizeof(*spi), type, flags);
6237#else
6238	spi = malloc(sizeof(*spi));
6239#endif
6240	if (spi == NULL) {
6241		if (error_str != NULL) {
6242			snprintf(error_str, error_str_len, "%s: unable to "
6243				 "allocate %zu bytes", __func__,
6244				 sizeof(*spi));
6245		}
6246		retval = 1;
6247		goto bailout;
6248	}
6249	*alloc_len = sizeof(*spi);
6250	bzero(spi, sizeof(*spi));
6251
6252	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6253	scsi_ulto2b(scsi_addr, spi->scsi_addr);
6254	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6255
6256	*hdr = (struct scsi_transportid_header *)spi;
6257bailout:
6258	return (retval);
6259}
6260
6261/*
6262 * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
6263 * optionally prefixed by "0x" or "0X".
6264 */
6265int
6266scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6267			    unsigned int *alloc_len,
6268#ifdef _KERNEL
6269			    struct malloc_type *type, int flags,
6270#endif
6271			    char *error_str, int error_str_len)
6272{
6273	struct scsi_transportid_rdma *rdma;
6274	int retval;
6275	size_t id_len, rdma_id_size;
6276	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6277	char *tmpstr;
6278	unsigned int i, j;
6279
6280	retval = 0;
6281	id_len = strlen(id_str);
6282	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6283
6284	/*
6285	 * Check the size.  It needs to be either 32 or 34 characters long.
6286	 */
6287	if ((id_len != (rdma_id_size * 2))
6288	 && (id_len != ((rdma_id_size * 2) + 2))) {
6289		if (error_str != NULL) {
6290			snprintf(error_str, error_str_len, "%s: RDMA ID "
6291				 "must be 32 hex digits (0x prefix "
6292				 "optional), only %zu seen", __func__, id_len);
6293		}
6294		retval = 1;
6295		goto bailout;
6296	}
6297
6298	tmpstr = id_str;
6299	/*
6300	 * If the user gave us 34 characters, the string needs to start
6301	 * with '0x'.
6302	 */
6303	if (id_len == ((rdma_id_size * 2) + 2)) {
6304	 	if ((tmpstr[0] == '0')
6305		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6306			tmpstr += 2;
6307		} else {
6308			if (error_str != NULL) {
6309				snprintf(error_str, error_str_len, "%s: RDMA "
6310					 "ID prefix, if used, must be \"0x\", "
6311					 "got %s", __func__, tmpstr);
6312			}
6313			retval = 1;
6314			goto bailout;
6315		}
6316	}
6317	bzero(rdma_id, sizeof(rdma_id));
6318
6319	/*
6320	 * Convert ASCII hex into binary bytes.  There is no standard
6321	 * 128-bit integer type, and so no strtou128t() routine to convert
6322	 * from hex into a large integer.  In the end, we're not going to
6323	 * an integer, but rather to a byte array, so that and the fact
6324	 * that we require the user to give us 32 hex digits simplifies the
6325	 * logic.
6326	 */
6327	for (i = 0; i < (rdma_id_size * 2); i++) {
6328		int cur_shift;
6329		unsigned char c;
6330
6331		/* Increment the byte array one for every 2 hex digits */
6332		j = i >> 1;
6333
6334		/*
6335		 * The first digit in every pair is the most significant
6336		 * 4 bits.  The second is the least significant 4 bits.
6337		 */
6338		if ((i % 2) == 0)
6339			cur_shift = 4;
6340		else
6341			cur_shift = 0;
6342
6343		c = tmpstr[i];
6344		/* Convert the ASCII hex character into a number */
6345		if (isdigit(c))
6346			c -= '0';
6347		else if (isalpha(c))
6348			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6349		else {
6350			if (error_str != NULL) {
6351				snprintf(error_str, error_str_len, "%s: "
6352					 "RDMA ID must be hex digits, got "
6353					 "invalid character %c", __func__,
6354					 tmpstr[i]);
6355			}
6356			retval = 1;
6357			goto bailout;
6358		}
6359		/*
6360		 * The converted number can't be less than 0; the type is
6361		 * unsigned, and the subtraction logic will not give us
6362		 * a negative number.  So we only need to make sure that
6363		 * the value is not greater than 0xf.  (i.e. make sure the
6364		 * user didn't give us a value like "0x12jklmno").
6365		 */
6366		if (c > 0xf) {
6367			if (error_str != NULL) {
6368				snprintf(error_str, error_str_len, "%s: "
6369					 "RDMA ID must be hex digits, got "
6370					 "invalid character %c", __func__,
6371					 tmpstr[i]);
6372			}
6373			retval = 1;
6374			goto bailout;
6375		}
6376
6377		rdma_id[j] |= c << cur_shift;
6378	}
6379
6380#ifdef _KERNEL
6381	rdma = malloc(sizeof(*rdma), type, flags);
6382#else
6383	rdma = malloc(sizeof(*rdma));
6384#endif
6385	if (rdma == NULL) {
6386		if (error_str != NULL) {
6387			snprintf(error_str, error_str_len, "%s: unable to "
6388				 "allocate %zu bytes", __func__,
6389				 sizeof(*rdma));
6390		}
6391		retval = 1;
6392		goto bailout;
6393	}
6394	*alloc_len = sizeof(*rdma);
6395	bzero(rdma, *alloc_len);
6396
6397	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6398	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6399
6400	*hdr = (struct scsi_transportid_header *)rdma;
6401
6402bailout:
6403	return (retval);
6404}
6405
6406/*
6407 * Parse an iSCSI name.  The format is either just the name:
6408 *
6409 *	iqn.2012-06.com.example:target0
6410 * or the name, separator and initiator session ID:
6411 *
6412 *	iqn.2012-06.com.example:target0,i,0x123
6413 *
6414 * The separator format is exact.
6415 */
6416int
6417scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6418			     unsigned int *alloc_len,
6419#ifdef _KERNEL
6420			     struct malloc_type *type, int flags,
6421#endif
6422			     char *error_str, int error_str_len)
6423{
6424	size_t id_len, sep_len, id_size, name_len;
6425	int retval;
6426	unsigned int i, sep_pos, sep_found;
6427	const char *sep_template = ",i,0x";
6428	const char *iqn_prefix = "iqn.";
6429	struct scsi_transportid_iscsi_device *iscsi;
6430
6431	retval = 0;
6432	sep_found = 0;
6433
6434	id_len = strlen(id_str);
6435	sep_len = strlen(sep_template);
6436
6437	/*
6438	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6439	 * or any other form, is an error.  So look for a comma, and once
6440	 * we find that, the next few characters must match the separator
6441	 * exactly.  Once we get through the separator, there should be at
6442	 * least one character.
6443	 */
6444	for (i = 0, sep_pos = 0; i < id_len; i++) {
6445		if (sep_pos == 0) {
6446		 	if (id_str[i] == sep_template[sep_pos])
6447				sep_pos++;
6448
6449			continue;
6450		}
6451		if (sep_pos < sep_len) {
6452			if (id_str[i] == sep_template[sep_pos]) {
6453				sep_pos++;
6454				continue;
6455			}
6456			if (error_str != NULL) {
6457				snprintf(error_str, error_str_len, "%s: "
6458					 "invalid separator in iSCSI name "
6459					 "\"%s\"",
6460					 __func__, id_str);
6461			}
6462			retval = 1;
6463			goto bailout;
6464		} else {
6465			sep_found = 1;
6466			break;
6467		}
6468	}
6469
6470	/*
6471	 * Check to see whether we have a separator but no digits after it.
6472	 */
6473	if ((sep_pos != 0)
6474	 && (sep_found == 0)) {
6475		if (error_str != NULL) {
6476			snprintf(error_str, error_str_len, "%s: no digits "
6477				 "found after separator in iSCSI name \"%s\"",
6478				 __func__, id_str);
6479		}
6480		retval = 1;
6481		goto bailout;
6482	}
6483
6484	/*
6485	 * The incoming ID string has the "iqn." prefix stripped off.  We
6486	 * need enough space for the base structure (the structures are the
6487	 * same for the two iSCSI forms), the prefix, the ID string and a
6488	 * terminating NUL.
6489	 */
6490	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6491
6492#ifdef _KERNEL
6493	iscsi = malloc(id_size, type, flags);
6494#else
6495	iscsi = malloc(id_size);
6496#endif
6497	if (iscsi == NULL) {
6498		if (error_str != NULL) {
6499			snprintf(error_str, error_str_len, "%s: unable to "
6500				 "allocate %zu bytes", __func__, id_size);
6501		}
6502		retval = 1;
6503		goto bailout;
6504	}
6505	*alloc_len = id_size;
6506	bzero(iscsi, id_size);
6507
6508	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6509	if (sep_found == 0)
6510		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6511	else
6512		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6513	name_len = id_size - sizeof(*iscsi);
6514	scsi_ulto2b(name_len, iscsi->additional_length);
6515	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6516
6517	*hdr = (struct scsi_transportid_header *)iscsi;
6518
6519bailout:
6520	return (retval);
6521}
6522
6523/*
6524 * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6525 * of the form 'bus,device,function' or 'bus,function'.
6526 */
6527int
6528scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6529			   unsigned int *alloc_len,
6530#ifdef _KERNEL
6531			   struct malloc_type *type, int flags,
6532#endif
6533			   char *error_str, int error_str_len)
6534{
6535	struct scsi_transportid_sop *sop;
6536	unsigned long bus, device, function;
6537	char *tmpstr, *endptr;
6538	int retval, device_spec;
6539
6540	retval = 0;
6541	device_spec = 0;
6542	device = 0;
6543
6544	tmpstr = strsep(&id_str, ",");
6545	if ((tmpstr == NULL)
6546	 || (*tmpstr == '\0')) {
6547		if (error_str != NULL) {
6548			snprintf(error_str, error_str_len, "%s: no ID found",
6549				 __func__);
6550		}
6551		retval = 1;
6552		goto bailout;
6553	}
6554	bus = strtoul(tmpstr, &endptr, 0);
6555	if (*endptr != '\0') {
6556		if (error_str != NULL) {
6557			snprintf(error_str, error_str_len, "%s: error "
6558				 "parsing PCIe bus %s, number required",
6559				 __func__, tmpstr);
6560		}
6561		retval = 1;
6562		goto bailout;
6563	}
6564	if ((id_str == NULL)
6565	 || (*id_str == '\0')) {
6566		if (error_str != NULL) {
6567			snprintf(error_str, error_str_len, "%s: no PCIe "
6568				 "device or function found", __func__);
6569		}
6570		retval = 1;
6571		goto bailout;
6572	}
6573	tmpstr = strsep(&id_str, ",");
6574	function = strtoul(tmpstr, &endptr, 0);
6575	if (*endptr != '\0') {
6576		if (error_str != NULL) {
6577			snprintf(error_str, error_str_len, "%s: error "
6578				 "parsing PCIe device/function %s, number "
6579				 "required", __func__, tmpstr);
6580		}
6581		retval = 1;
6582		goto bailout;
6583	}
6584	/*
6585	 * Check to see whether the user specified a third value.  If so,
6586	 * the second is the device.
6587	 */
6588	if (id_str != NULL) {
6589		if (*id_str == '\0') {
6590			if (error_str != NULL) {
6591				snprintf(error_str, error_str_len, "%s: "
6592					 "no PCIe function found", __func__);
6593			}
6594			retval = 1;
6595			goto bailout;
6596		}
6597		device = function;
6598		device_spec = 1;
6599		function = strtoul(id_str, &endptr, 0);
6600		if (*endptr != '\0') {
6601			if (error_str != NULL) {
6602				snprintf(error_str, error_str_len, "%s: "
6603					 "error parsing PCIe function %s, "
6604					 "number required", __func__, id_str);
6605			}
6606			retval = 1;
6607			goto bailout;
6608		}
6609	}
6610	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6611		if (error_str != NULL) {
6612			snprintf(error_str, error_str_len, "%s: bus value "
6613				 "%lu greater than maximum %u", __func__,
6614				 bus, SCSI_TRN_SOP_BUS_MAX);
6615		}
6616		retval = 1;
6617		goto bailout;
6618	}
6619
6620	if ((device_spec != 0)
6621	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6622		if (error_str != NULL) {
6623			snprintf(error_str, error_str_len, "%s: device value "
6624				 "%lu greater than maximum %u", __func__,
6625				 device, SCSI_TRN_SOP_DEV_MAX);
6626		}
6627		retval = 1;
6628		goto bailout;
6629	}
6630
6631	if (((device_spec != 0)
6632	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6633	 || ((device_spec == 0)
6634	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6635		if (error_str != NULL) {
6636			snprintf(error_str, error_str_len, "%s: function value "
6637				 "%lu greater than maximum %u", __func__,
6638				 function, (device_spec == 0) ?
6639				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6640				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6641		}
6642		retval = 1;
6643		goto bailout;
6644	}
6645
6646#ifdef _KERNEL
6647	sop = malloc(sizeof(*sop), type, flags);
6648#else
6649	sop = malloc(sizeof(*sop));
6650#endif
6651	if (sop == NULL) {
6652		if (error_str != NULL) {
6653			snprintf(error_str, error_str_len, "%s: unable to "
6654				 "allocate %zu bytes", __func__, sizeof(*sop));
6655		}
6656		retval = 1;
6657		goto bailout;
6658	}
6659	*alloc_len = sizeof(*sop);
6660	bzero(sop, sizeof(*sop));
6661	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6662	if (device_spec != 0) {
6663		struct scsi_sop_routing_id_norm rid;
6664
6665		rid.bus = bus;
6666		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6667		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6668		      sizeof(sop->routing_id)));
6669	} else {
6670		struct scsi_sop_routing_id_alt rid;
6671
6672		rid.bus = bus;
6673		rid.function = function;
6674		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6675		      sizeof(sop->routing_id)));
6676	}
6677
6678	*hdr = (struct scsi_transportid_header *)sop;
6679bailout:
6680	return (retval);
6681}
6682
6683/*
6684 * transportid_str: NUL-terminated string with format: protcol,id
6685 *		    The ID is protocol specific.
6686 * hdr:		    Storage will be allocated for the transport ID.
6687 * alloc_len:	    The amount of memory allocated is returned here.
6688 * type:	    Malloc bucket (kernel only).
6689 * flags:	    Malloc flags (kernel only).
6690 * error_str:	    If non-NULL, it will contain error information (without
6691 * 		    a terminating newline) if an error is returned.
6692 * error_str_len:   Allocated length of the error string.
6693 *
6694 * Returns 0 for success, non-zero for failure.
6695 */
6696int
6697scsi_parse_transportid(char *transportid_str,
6698		       struct scsi_transportid_header **hdr,
6699		       unsigned int *alloc_len,
6700#ifdef _KERNEL
6701		       struct malloc_type *type, int flags,
6702#endif
6703		       char *error_str, int error_str_len)
6704{
6705	char *tmpstr;
6706	scsi_nv_status status;
6707	u_int num_proto_entries;
6708	int retval, table_entry;
6709
6710	retval = 0;
6711	table_entry = 0;
6712
6713	/*
6714	 * We do allow a period as well as a comma to separate the protocol
6715	 * from the ID string.  This is to accommodate iSCSI names, which
6716	 * start with "iqn.".
6717	 */
6718	tmpstr = strsep(&transportid_str, ",.");
6719	if (tmpstr == NULL) {
6720		if (error_str != NULL) {
6721			snprintf(error_str, error_str_len,
6722				 "%s: transportid_str is NULL", __func__);
6723		}
6724		retval = 1;
6725		goto bailout;
6726	}
6727
6728	num_proto_entries = nitems(scsi_proto_map);
6729	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6730			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6731	if (status != SCSI_NV_FOUND) {
6732		if (error_str != NULL) {
6733			snprintf(error_str, error_str_len, "%s: %s protocol "
6734				 "name %s", __func__,
6735				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6736				 "invalid", tmpstr);
6737		}
6738		retval = 1;
6739		goto bailout;
6740	}
6741	switch (scsi_proto_map[table_entry].value) {
6742	case SCSI_PROTO_FC:
6743	case SCSI_PROTO_1394:
6744	case SCSI_PROTO_SAS:
6745		retval = scsi_parse_transportid_64bit(
6746		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6747		    alloc_len,
6748#ifdef _KERNEL
6749		    type, flags,
6750#endif
6751		    error_str, error_str_len);
6752		break;
6753	case SCSI_PROTO_SPI:
6754		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6755		    alloc_len,
6756#ifdef _KERNEL
6757		    type, flags,
6758#endif
6759		    error_str, error_str_len);
6760		break;
6761	case SCSI_PROTO_RDMA:
6762		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6763		    alloc_len,
6764#ifdef _KERNEL
6765		    type, flags,
6766#endif
6767		    error_str, error_str_len);
6768		break;
6769	case SCSI_PROTO_ISCSI:
6770		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6771		    alloc_len,
6772#ifdef _KERNEL
6773		    type, flags,
6774#endif
6775		    error_str, error_str_len);
6776		break;
6777	case SCSI_PROTO_SOP:
6778		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6779		    alloc_len,
6780#ifdef _KERNEL
6781		    type, flags,
6782#endif
6783		    error_str, error_str_len);
6784		break;
6785	case SCSI_PROTO_SSA:
6786	case SCSI_PROTO_ADITP:
6787	case SCSI_PROTO_ATA:
6788	case SCSI_PROTO_UAS:
6789	case SCSI_PROTO_NONE:
6790	default:
6791		/*
6792		 * There is no format defined for a Transport ID for these
6793		 * protocols.  So even if the user gives us something, we
6794		 * have no way to turn it into a standard SCSI Transport ID.
6795		 */
6796		retval = 1;
6797		if (error_str != NULL) {
6798			snprintf(error_str, error_str_len, "%s: no Transport "
6799				 "ID format exists for protocol %s",
6800				 __func__, tmpstr);
6801		}
6802		goto bailout;
6803		break;	/* NOTREACHED */
6804	}
6805bailout:
6806	return (retval);
6807}
6808
6809struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6810	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6811	  "Remaining Capacity in Partition",
6812	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6813	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6814	  "Maximum Capacity in Partition",
6815	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6816	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6817	  "TapeAlert Flags",
6818	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6819	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6820	  "Load Count",
6821	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6822	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6823	  "MAM Space Remaining",
6824	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6825	  /*parse_str*/ NULL },
6826	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6827	  "Assigning Organization",
6828	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6829	  /*parse_str*/ NULL },
6830	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6831	  "Format Density Code",
6832	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6833	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6834	  "Initialization Count",
6835	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6836	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6837	  "Volume Identifier",
6838	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6839	  /*parse_str*/ NULL },
6840	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6841	  "Volume Change Reference",
6842	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6843	  /*parse_str*/ NULL },
6844	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6845	  "Device Vendor/Serial at Last Load",
6846	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6847	  /*parse_str*/ NULL },
6848	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6849	  "Device Vendor/Serial at Last Load - 1",
6850	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6851	  /*parse_str*/ NULL },
6852	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6853	  "Device Vendor/Serial at Last Load - 2",
6854	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6855	  /*parse_str*/ NULL },
6856	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6857	  "Device Vendor/Serial at Last Load - 3",
6858	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6859	  /*parse_str*/ NULL },
6860	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6861	  "Total MB Written in Medium Life",
6862	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6863	  /*parse_str*/ NULL },
6864	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6865	  "Total MB Read in Medium Life",
6866	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6867	  /*parse_str*/ NULL },
6868	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6869	  "Total MB Written in Current/Last Load",
6870	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6871	  /*parse_str*/ NULL },
6872	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6873	  "Total MB Read in Current/Last Load",
6874	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6875	  /*parse_str*/ NULL },
6876	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6877	  "Logical Position of First Encrypted Block",
6878	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6879	  /*parse_str*/ NULL },
6880	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6881	  "Logical Position of First Unencrypted Block after First "
6882	  "Encrypted Block",
6883	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6884	  /*parse_str*/ NULL },
6885	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6886	  "Medium Usage History",
6887	  /*suffix*/ NULL, /*to_str*/ NULL,
6888	  /*parse_str*/ NULL },
6889	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6890	  "Partition Usage History",
6891	  /*suffix*/ NULL, /*to_str*/ NULL,
6892	  /*parse_str*/ NULL },
6893	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6894	  "Medium Manufacturer",
6895	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6896	  /*parse_str*/ NULL },
6897	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6898	  "Medium Serial Number",
6899	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6900	  /*parse_str*/ NULL },
6901	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6902	  "Medium Length",
6903	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6904	  /*parse_str*/ NULL },
6905	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6906	  SCSI_ATTR_FLAG_FP_1DIGIT,
6907	  "Medium Width",
6908	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6909	  /*parse_str*/ NULL },
6910	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6911	  "Assigning Organization",
6912	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6913	  /*parse_str*/ NULL },
6914	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6915	  "Medium Density Code",
6916	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6917	  /*parse_str*/ NULL },
6918	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6919	  "Medium Manufacture Date",
6920	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6921	  /*parse_str*/ NULL },
6922	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6923	  "MAM Capacity",
6924	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6925	  /*parse_str*/ NULL },
6926	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6927	  "Medium Type",
6928	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6929	  /*parse_str*/ NULL },
6930	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6931	  "Medium Type Information",
6932	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6933	  /*parse_str*/ NULL },
6934	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6935	  "Medium Serial Number",
6936	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6937	  /*parse_str*/ NULL },
6938	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6939	  "Application Vendor",
6940	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6941	  /*parse_str*/ NULL },
6942	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6943	  "Application Name",
6944	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6945	  /*parse_str*/ NULL },
6946	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6947	  "Application Version",
6948	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6949	  /*parse_str*/ NULL },
6950	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6951	  "User Medium Text Label",
6952	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6953	  /*parse_str*/ NULL },
6954	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6955	  "Date and Time Last Written",
6956	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6957	  /*parse_str*/ NULL },
6958	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6959	  "Text Localization Identifier",
6960	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6961	  /*parse_str*/ NULL },
6962	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6963	  "Barcode",
6964	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6965	  /*parse_str*/ NULL },
6966	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6967	  "Owning Host Textual Name",
6968	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6969	  /*parse_str*/ NULL },
6970	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6971	  "Media Pool",
6972	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6973	  /*parse_str*/ NULL },
6974	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6975	  "Partition User Text Label",
6976	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6977	  /*parse_str*/ NULL },
6978	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6979	  "Load/Unload at Partition",
6980	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6981	  /*parse_str*/ NULL },
6982	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6983	  "Application Format Version",
6984	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6985	  /*parse_str*/ NULL },
6986	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6987	  "Volume Coherency Information",
6988	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6989	  /*parse_str*/ NULL },
6990	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6991	  "Spectra MLM Creation",
6992	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6993	  /*parse_str*/ NULL },
6994	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6995	  "Spectra MLM C3",
6996	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6997	  /*parse_str*/ NULL },
6998	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6999	  "Spectra MLM RW",
7000	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7001	  /*parse_str*/ NULL },
7002	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
7003	  "Spectra MLM SDC List",
7004	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7005	  /*parse_str*/ NULL },
7006	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
7007	  "Spectra MLM Post Scan",
7008	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7009	  /*parse_str*/ NULL },
7010	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
7011	  "Spectra MLM Checksum",
7012	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7013	  /*parse_str*/ NULL },
7014	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
7015	  "Spectra MLM Creation",
7016	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7017	  /*parse_str*/ NULL },
7018	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
7019	  "Spectra MLM C3",
7020	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7021	  /*parse_str*/ NULL },
7022	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
7023	  "Spectra MLM RW",
7024	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7025	  /*parse_str*/ NULL },
7026	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
7027	  "Spectra MLM SDC List",
7028	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7029	  /*parse_str*/ NULL },
7030	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
7031	  "Spectra MLM Post Scan",
7032	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7033	  /*parse_str*/ NULL },
7034	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
7035	  "Spectra MLM Checksum",
7036	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7037	  /*parse_str*/ NULL },
7038};
7039
7040/*
7041 * Print out Volume Coherency Information (Attribute 0x080c).
7042 * This field has two variable length members, including one at the
7043 * beginning, so it isn't practical to have a fixed structure definition.
7044 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
7045 * 2013.
7046 */
7047int
7048scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7049			 uint32_t valid_len, uint32_t flags,
7050			 uint32_t output_flags, char *error_str,
7051			 int error_str_len)
7052{
7053	size_t avail_len;
7054	uint32_t field_size;
7055	uint64_t tmp_val;
7056	uint8_t *cur_ptr;
7057	int retval;
7058	int vcr_len, as_len;
7059
7060	retval = 0;
7061	tmp_val = 0;
7062
7063	field_size = scsi_2btoul(hdr->length);
7064	avail_len = valid_len - sizeof(*hdr);
7065	if (field_size > avail_len) {
7066		if (error_str != NULL) {
7067			snprintf(error_str, error_str_len, "Available "
7068				 "length of attribute ID 0x%.4x %zu < field "
7069				 "length %u", scsi_2btoul(hdr->id), avail_len,
7070				 field_size);
7071		}
7072		retval = 1;
7073		goto bailout;
7074	} else if (field_size == 0) {
7075		/*
7076		 * It isn't clear from the spec whether a field length of
7077		 * 0 is invalid here.  It probably is, but be lenient here
7078		 * to avoid inconveniencing the user.
7079		 */
7080		goto bailout;
7081	}
7082	cur_ptr = hdr->attribute;
7083	vcr_len = *cur_ptr;
7084	cur_ptr++;
7085
7086	sbuf_cat(sb, "\n\tVolume Change Reference Value:");
7087
7088	switch (vcr_len) {
7089	case 0:
7090		if (error_str != NULL) {
7091			snprintf(error_str, error_str_len, "Volume Change "
7092				 "Reference value has length of 0");
7093		}
7094		retval = 1;
7095		goto bailout;
7096		break; /*NOTREACHED*/
7097	case 1:
7098		tmp_val = *cur_ptr;
7099		break;
7100	case 2:
7101		tmp_val = scsi_2btoul(cur_ptr);
7102		break;
7103	case 3:
7104		tmp_val = scsi_3btoul(cur_ptr);
7105		break;
7106	case 4:
7107		tmp_val = scsi_4btoul(cur_ptr);
7108		break;
7109	case 8:
7110		tmp_val = scsi_8btou64(cur_ptr);
7111		break;
7112	default:
7113		sbuf_putc(sb, '\n');
7114		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7115		break;
7116	}
7117	if (vcr_len <= 8)
7118		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7119
7120	cur_ptr += vcr_len;
7121	tmp_val = scsi_8btou64(cur_ptr);
7122	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7123
7124	cur_ptr += sizeof(tmp_val);
7125	tmp_val = scsi_8btou64(cur_ptr);
7126	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7127		    (uintmax_t)tmp_val);
7128
7129	/*
7130	 * Figure out how long the Application Client Specific Information
7131	 * is and produce a hexdump.
7132	 */
7133	cur_ptr += sizeof(tmp_val);
7134	as_len = scsi_2btoul(cur_ptr);
7135	cur_ptr += sizeof(uint16_t);
7136	sbuf_cat(sb, "\tApplication Client Specific Information: ");
7137	if (((as_len == SCSI_LTFS_VER0_LEN)
7138	  || (as_len == SCSI_LTFS_VER1_LEN))
7139	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7140		sbuf_cat(sb, "LTFS\n");
7141		cur_ptr += SCSI_LTFS_STR_LEN + 1;
7142		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7143			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7144		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7145		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7146		/* XXX KDM check the length */
7147		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7148	} else {
7149		sbuf_cat(sb, "Unknown\n");
7150		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7151	}
7152
7153bailout:
7154	return (retval);
7155}
7156
7157int
7158scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7159			 uint32_t valid_len, uint32_t flags,
7160			 uint32_t output_flags, char *error_str,
7161			 int error_str_len)
7162{
7163	size_t avail_len;
7164	uint32_t field_size;
7165	struct scsi_attrib_vendser *vendser;
7166	cam_strvis_flags strvis_flags;
7167	int retval = 0;
7168
7169	field_size = scsi_2btoul(hdr->length);
7170	avail_len = valid_len - sizeof(*hdr);
7171	if (field_size > avail_len) {
7172		if (error_str != NULL) {
7173			snprintf(error_str, error_str_len, "Available "
7174				 "length of attribute ID 0x%.4x %zu < field "
7175				 "length %u", scsi_2btoul(hdr->id), avail_len,
7176				 field_size);
7177		}
7178		retval = 1;
7179		goto bailout;
7180	} else if (field_size == 0) {
7181		/*
7182		 * A field size of 0 doesn't make sense here.  The device
7183		 * can at least give you the vendor ID, even if it can't
7184		 * give you the serial number.
7185		 */
7186		if (error_str != NULL) {
7187			snprintf(error_str, error_str_len, "The length of "
7188				 "attribute ID 0x%.4x is 0",
7189				 scsi_2btoul(hdr->id));
7190		}
7191		retval = 1;
7192		goto bailout;
7193	}
7194	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7195
7196	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7197	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7198		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7199		break;
7200	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7201		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7202		break;
7203	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7204	default:
7205		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7206		break;
7207	}
7208	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7209	    strvis_flags);
7210	sbuf_putc(sb, ' ');
7211	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7212	    strvis_flags);
7213bailout:
7214	return (retval);
7215}
7216
7217int
7218scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7219			 uint32_t valid_len, uint32_t flags,
7220			 uint32_t output_flags, char *error_str,
7221			 int error_str_len)
7222{
7223	uint32_t field_size;
7224	ssize_t avail_len;
7225	uint32_t print_len;
7226	uint8_t *num_ptr;
7227	int retval = 0;
7228
7229	field_size = scsi_2btoul(hdr->length);
7230	avail_len = valid_len - sizeof(*hdr);
7231	print_len = MIN(avail_len, field_size);
7232	num_ptr = hdr->attribute;
7233
7234	if (print_len > 0) {
7235		sbuf_putc(sb, '\n');
7236		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7237	}
7238
7239	return (retval);
7240}
7241
7242int
7243scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7244		     uint32_t valid_len, uint32_t flags,
7245		     uint32_t output_flags, char *error_str,
7246		     int error_str_len)
7247{
7248	uint64_t print_number;
7249	size_t avail_len;
7250	uint32_t number_size;
7251	int retval = 0;
7252
7253	number_size = scsi_2btoul(hdr->length);
7254
7255	avail_len = valid_len - sizeof(*hdr);
7256	if (avail_len < number_size) {
7257		if (error_str != NULL) {
7258			snprintf(error_str, error_str_len, "Available "
7259				 "length of attribute ID 0x%.4x %zu < field "
7260				 "length %u", scsi_2btoul(hdr->id), avail_len,
7261				 number_size);
7262		}
7263		retval = 1;
7264		goto bailout;
7265	}
7266
7267	switch (number_size) {
7268	case 0:
7269		/*
7270		 * We don't treat this as an error, since there may be
7271		 * scenarios where a device reports a field but then gives
7272		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
7273		 */
7274		goto bailout;
7275		break; /*NOTREACHED*/
7276	case 1:
7277		print_number = hdr->attribute[0];
7278		break;
7279	case 2:
7280		print_number = scsi_2btoul(hdr->attribute);
7281		break;
7282	case 3:
7283		print_number = scsi_3btoul(hdr->attribute);
7284		break;
7285	case 4:
7286		print_number = scsi_4btoul(hdr->attribute);
7287		break;
7288	case 8:
7289		print_number = scsi_8btou64(hdr->attribute);
7290		break;
7291	default:
7292		/*
7293		 * If we wind up here, the number is too big to print
7294		 * normally, so just do a hexdump.
7295		 */
7296		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7297						  flags, output_flags,
7298						  error_str, error_str_len);
7299		goto bailout;
7300		break;
7301	}
7302
7303	if (flags & SCSI_ATTR_FLAG_FP) {
7304#ifndef _KERNEL
7305		long double num_float;
7306
7307		num_float = (long double)print_number;
7308
7309		if (flags & SCSI_ATTR_FLAG_DIV_10)
7310			num_float /= 10;
7311
7312		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7313			    1 : 0, num_float);
7314#else /* _KERNEL */
7315		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7316			    (print_number / 10) : print_number);
7317#endif /* _KERNEL */
7318	} else if (flags & SCSI_ATTR_FLAG_HEX) {
7319		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7320	} else
7321		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7322
7323bailout:
7324	return (retval);
7325}
7326
7327int
7328scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7329		       uint32_t valid_len, uint32_t flags,
7330		       uint32_t output_flags, char *error_str,
7331		       int error_str_len)
7332{
7333	size_t avail_len;
7334	uint32_t field_size, print_size;
7335	int retval = 0;
7336
7337	avail_len = valid_len - sizeof(*hdr);
7338	field_size = scsi_2btoul(hdr->length);
7339	print_size = MIN(avail_len, field_size);
7340
7341	if (print_size > 0) {
7342		cam_strvis_flags strvis_flags;
7343
7344		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7345		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7346			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7347			break;
7348		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7349			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7350			break;
7351		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7352		default:
7353			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7354			break;
7355		}
7356		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7357	} else if (avail_len < field_size) {
7358		/*
7359		 * We only report an error if the user didn't allocate
7360		 * enough space to hold the full value of this field.  If
7361		 * the field length is 0, that is allowed by the spec.
7362		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7363		 * "This attribute indicates the current volume identifier
7364		 * (see SMC-3) of the medium. If the device server supports
7365		 * this attribute but does not have access to the volume
7366		 * identifier, the device server shall report this attribute
7367		 * with an attribute length value of zero."
7368		 */
7369		if (error_str != NULL) {
7370			snprintf(error_str, error_str_len, "Available "
7371				 "length of attribute ID 0x%.4x %zu < field "
7372				 "length %u", scsi_2btoul(hdr->id), avail_len,
7373				 field_size);
7374		}
7375		retval = 1;
7376	}
7377
7378	return (retval);
7379}
7380
7381int
7382scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7383		      uint32_t valid_len, uint32_t flags,
7384		      uint32_t output_flags, char *error_str,
7385		      int error_str_len)
7386{
7387	size_t avail_len;
7388	uint32_t field_size, print_size;
7389	int retval = 0;
7390	int esc_text = 1;
7391
7392	avail_len = valid_len - sizeof(*hdr);
7393	field_size = scsi_2btoul(hdr->length);
7394	print_size = MIN(avail_len, field_size);
7395
7396	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7397	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7398		esc_text = 0;
7399
7400	if (print_size > 0) {
7401		uint32_t i;
7402
7403		for (i = 0; i < print_size; i++) {
7404			if (hdr->attribute[i] == '\0')
7405				continue;
7406			else if (((unsigned char)hdr->attribute[i] < 0x80)
7407			      || (esc_text == 0))
7408				sbuf_putc(sb, hdr->attribute[i]);
7409			else
7410				sbuf_printf(sb, "%%%02x",
7411				    (unsigned char)hdr->attribute[i]);
7412		}
7413	} else if (avail_len < field_size) {
7414		/*
7415		 * We only report an error if the user didn't allocate
7416		 * enough space to hold the full value of this field.
7417		 */
7418		if (error_str != NULL) {
7419			snprintf(error_str, error_str_len, "Available "
7420				 "length of attribute ID 0x%.4x %zu < field "
7421				 "length %u", scsi_2btoul(hdr->id), avail_len,
7422				 field_size);
7423		}
7424		retval = 1;
7425	}
7426
7427	return (retval);
7428}
7429
7430struct scsi_attrib_table_entry *
7431scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7432		       size_t num_table_entries, uint32_t id)
7433{
7434	uint32_t i;
7435
7436	for (i = 0; i < num_table_entries; i++) {
7437		if (table[i].id == id)
7438			return (&table[i]);
7439	}
7440
7441	return (NULL);
7442}
7443
7444struct scsi_attrib_table_entry *
7445scsi_get_attrib_entry(uint32_t id)
7446{
7447	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7448	    nitems(scsi_mam_attr_table), id));
7449}
7450
7451int
7452scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7453   struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7454   char *error_str, size_t error_str_len)
7455{
7456	int retval;
7457
7458	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7459	case SMA_FORMAT_ASCII:
7460		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7461		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7462		break;
7463	case SMA_FORMAT_BINARY:
7464		if (scsi_2btoul(hdr->length) <= 8)
7465			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7466			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7467			    error_str_len);
7468		else
7469			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7470			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7471			    error_str_len);
7472		break;
7473	case SMA_FORMAT_TEXT:
7474		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7475		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7476		    error_str_len);
7477		break;
7478	default:
7479		if (error_str != NULL) {
7480			snprintf(error_str, error_str_len, "Unknown attribute "
7481			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7482		}
7483		retval = 1;
7484		goto bailout;
7485		break; /*NOTREACHED*/
7486	}
7487
7488	sbuf_trim(sb);
7489
7490bailout:
7491
7492	return (retval);
7493}
7494
7495void
7496scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7497			struct scsi_mam_attribute_header *hdr,
7498			uint32_t valid_len, const char *desc)
7499{
7500	int need_space = 0;
7501	uint32_t len;
7502	uint32_t id;
7503
7504	/*
7505	 * We can't do anything if we don't have enough valid data for the
7506	 * header.
7507	 */
7508	if (valid_len < sizeof(*hdr))
7509		return;
7510
7511	id = scsi_2btoul(hdr->id);
7512	/*
7513	 * Note that we print out the value of the attribute listed in the
7514	 * header, regardless of whether we actually got that many bytes
7515	 * back from the device through the controller.  A truncated result
7516	 * could be the result of a failure to ask for enough data; the
7517	 * header indicates how many bytes are allocated for this attribute
7518	 * in the MAM.
7519	 */
7520	len = scsi_2btoul(hdr->length);
7521
7522	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7523	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7524		return;
7525
7526	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7527	 && (desc != NULL)) {
7528		sbuf_cat(sb, desc);
7529		need_space = 1;
7530	}
7531
7532	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7533		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7534		need_space = 0;
7535	}
7536
7537	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7538		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7539		need_space = 0;
7540	}
7541	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7542		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7543			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7544	}
7545	sbuf_cat(sb, ": ");
7546}
7547
7548int
7549scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7550		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7551		 size_t num_user_entries, int prefer_user_table,
7552		 uint32_t output_flags, char *error_str, int error_str_len)
7553{
7554	int retval;
7555	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7556	struct scsi_attrib_table_entry *entry = NULL;
7557	size_t table1_size = 0, table2_size = 0;
7558	uint32_t id;
7559
7560	retval = 0;
7561
7562	if (valid_len < sizeof(*hdr)) {
7563		retval = 1;
7564		goto bailout;
7565	}
7566
7567	id = scsi_2btoul(hdr->id);
7568
7569	if (user_table != NULL) {
7570		if (prefer_user_table != 0) {
7571			table1 = user_table;
7572			table1_size = num_user_entries;
7573			table2 = scsi_mam_attr_table;
7574			table2_size = nitems(scsi_mam_attr_table);
7575		} else {
7576			table1 = scsi_mam_attr_table;
7577			table1_size = nitems(scsi_mam_attr_table);
7578			table2 = user_table;
7579			table2_size = num_user_entries;
7580		}
7581	} else {
7582		table1 = scsi_mam_attr_table;
7583		table1_size = nitems(scsi_mam_attr_table);
7584	}
7585
7586	entry = scsi_find_attrib_entry(table1, table1_size, id);
7587	if (entry != NULL) {
7588		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7589					entry->desc);
7590		if (entry->to_str == NULL)
7591			goto print_default;
7592		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7593				       output_flags, error_str, error_str_len);
7594		goto bailout;
7595	}
7596	if (table2 != NULL) {
7597		entry = scsi_find_attrib_entry(table2, table2_size, id);
7598		if (entry != NULL) {
7599			if (entry->to_str == NULL)
7600				goto print_default;
7601
7602			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7603						valid_len, entry->desc);
7604			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7605					       output_flags, error_str,
7606					       error_str_len);
7607			goto bailout;
7608		}
7609	}
7610
7611	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7612
7613print_default:
7614	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7615	    error_str, error_str_len);
7616bailout:
7617	if (retval == 0) {
7618	 	if ((entry != NULL)
7619		 && (entry->suffix != NULL))
7620			sbuf_printf(sb, " %s", entry->suffix);
7621
7622		sbuf_trim(sb);
7623		sbuf_putc(sb, '\n');
7624	}
7625
7626	return (retval);
7627}
7628
7629void
7630scsi_test_unit_ready(struct ccb_scsiio *csio, uint32_t retries,
7631		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7632		     uint8_t tag_action, uint8_t sense_len, uint32_t timeout)
7633{
7634	struct scsi_test_unit_ready *scsi_cmd;
7635
7636	cam_fill_csio(csio,
7637		      retries,
7638		      cbfcnp,
7639		      CAM_DIR_NONE,
7640		      tag_action,
7641		      /*data_ptr*/NULL,
7642		      /*dxfer_len*/0,
7643		      sense_len,
7644		      sizeof(*scsi_cmd),
7645		      timeout);
7646
7647	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7648	bzero(scsi_cmd, sizeof(*scsi_cmd));
7649	scsi_cmd->opcode = TEST_UNIT_READY;
7650}
7651
7652void
7653scsi_request_sense(struct ccb_scsiio *csio, uint32_t retries,
7654		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7655		   void *data_ptr, uint8_t dxfer_len, uint8_t tag_action,
7656		   uint8_t sense_len, uint32_t timeout)
7657{
7658	struct scsi_request_sense *scsi_cmd;
7659
7660	cam_fill_csio(csio,
7661		      retries,
7662		      cbfcnp,
7663		      CAM_DIR_IN,
7664		      tag_action,
7665		      data_ptr,
7666		      dxfer_len,
7667		      sense_len,
7668		      sizeof(*scsi_cmd),
7669		      timeout);
7670
7671	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7672	bzero(scsi_cmd, sizeof(*scsi_cmd));
7673	scsi_cmd->opcode = REQUEST_SENSE;
7674	scsi_cmd->length = dxfer_len;
7675}
7676
7677void
7678scsi_inquiry(struct ccb_scsiio *csio, uint32_t retries,
7679	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7680	     uint8_t tag_action, uint8_t *inq_buf, uint32_t inq_len,
7681	     int evpd, uint8_t page_code, uint8_t sense_len,
7682	     uint32_t timeout)
7683{
7684	struct scsi_inquiry *scsi_cmd;
7685
7686	cam_fill_csio(csio,
7687		      retries,
7688		      cbfcnp,
7689		      /*flags*/CAM_DIR_IN,
7690		      tag_action,
7691		      /*data_ptr*/inq_buf,
7692		      /*dxfer_len*/inq_len,
7693		      sense_len,
7694		      sizeof(*scsi_cmd),
7695		      timeout);
7696
7697	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7698	bzero(scsi_cmd, sizeof(*scsi_cmd));
7699	scsi_cmd->opcode = INQUIRY;
7700	if (evpd) {
7701		scsi_cmd->byte2 |= SI_EVPD;
7702		scsi_cmd->page_code = page_code;
7703	}
7704	scsi_ulto2b(inq_len, scsi_cmd->length);
7705}
7706
7707void
7708scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
7709    void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7710    int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7711    uint8_t sense_len, uint32_t timeout)
7712{
7713
7714	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7715	    pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
7716}
7717
7718void
7719scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
7720    void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7721    int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7722    int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
7723{
7724
7725	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7726	    pc, page, 0, param_buf, param_len, minimum_cmd_size,
7727	    sense_len, timeout);
7728}
7729
7730void
7731scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
7732    void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7733    int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
7734    uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
7735    uint32_t timeout)
7736{
7737	uint8_t cdb_len;
7738
7739	/*
7740	 * Use the smallest possible command to perform the operation.
7741	 */
7742	if ((param_len < 256)
7743	 && (minimum_cmd_size < 10)) {
7744		/*
7745		 * We can fit in a 6 byte cdb.
7746		 */
7747		struct scsi_mode_sense_6 *scsi_cmd;
7748
7749		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7750		bzero(scsi_cmd, sizeof(*scsi_cmd));
7751		scsi_cmd->opcode = MODE_SENSE_6;
7752		if (dbd != 0)
7753			scsi_cmd->byte2 |= SMS_DBD;
7754		scsi_cmd->page = pc | page;
7755		scsi_cmd->subpage = subpage;
7756		scsi_cmd->length = param_len;
7757		cdb_len = sizeof(*scsi_cmd);
7758	} else {
7759		/*
7760		 * Need a 10 byte cdb.
7761		 */
7762		struct scsi_mode_sense_10 *scsi_cmd;
7763
7764		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7765		bzero(scsi_cmd, sizeof(*scsi_cmd));
7766		scsi_cmd->opcode = MODE_SENSE_10;
7767		if (dbd != 0)
7768			scsi_cmd->byte2 |= SMS_DBD;
7769		scsi_cmd->page = pc | page;
7770		scsi_cmd->subpage = subpage;
7771		scsi_ulto2b(param_len, scsi_cmd->length);
7772		cdb_len = sizeof(*scsi_cmd);
7773	}
7774	cam_fill_csio(csio,
7775		      retries,
7776		      cbfcnp,
7777		      CAM_DIR_IN,
7778		      tag_action,
7779		      param_buf,
7780		      param_len,
7781		      sense_len,
7782		      cdb_len,
7783		      timeout);
7784}
7785
7786void
7787scsi_mode_select(struct ccb_scsiio *csio, uint32_t retries,
7788		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7789		 uint8_t tag_action, int scsi_page_fmt, int save_pages,
7790		 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7791		 uint32_t timeout)
7792{
7793	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7794			     scsi_page_fmt, save_pages, param_buf,
7795			     param_len, 0, sense_len, timeout);
7796}
7797
7798void
7799scsi_mode_select_len(struct ccb_scsiio *csio, uint32_t retries,
7800		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7801		     uint8_t tag_action, int scsi_page_fmt, int save_pages,
7802		     uint8_t *param_buf, uint32_t param_len,
7803		     int minimum_cmd_size, uint8_t sense_len,
7804		     uint32_t timeout)
7805{
7806	uint8_t cdb_len;
7807
7808	/*
7809	 * Use the smallest possible command to perform the operation.
7810	 */
7811	if ((param_len < 256)
7812	 && (minimum_cmd_size < 10)) {
7813		/*
7814		 * We can fit in a 6 byte cdb.
7815		 */
7816		struct scsi_mode_select_6 *scsi_cmd;
7817
7818		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7819		bzero(scsi_cmd, sizeof(*scsi_cmd));
7820		scsi_cmd->opcode = MODE_SELECT_6;
7821		if (scsi_page_fmt != 0)
7822			scsi_cmd->byte2 |= SMS_PF;
7823		if (save_pages != 0)
7824			scsi_cmd->byte2 |= SMS_SP;
7825		scsi_cmd->length = param_len;
7826		cdb_len = sizeof(*scsi_cmd);
7827	} else {
7828		/*
7829		 * Need a 10 byte cdb.
7830		 */
7831		struct scsi_mode_select_10 *scsi_cmd;
7832
7833		scsi_cmd =
7834		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7835		bzero(scsi_cmd, sizeof(*scsi_cmd));
7836		scsi_cmd->opcode = MODE_SELECT_10;
7837		if (scsi_page_fmt != 0)
7838			scsi_cmd->byte2 |= SMS_PF;
7839		if (save_pages != 0)
7840			scsi_cmd->byte2 |= SMS_SP;
7841		scsi_ulto2b(param_len, scsi_cmd->length);
7842		cdb_len = sizeof(*scsi_cmd);
7843	}
7844	cam_fill_csio(csio,
7845		      retries,
7846		      cbfcnp,
7847		      CAM_DIR_OUT,
7848		      tag_action,
7849		      param_buf,
7850		      param_len,
7851		      sense_len,
7852		      cdb_len,
7853		      timeout);
7854}
7855
7856void
7857scsi_log_sense(struct ccb_scsiio *csio, uint32_t retries,
7858	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7859	       uint8_t tag_action, uint8_t page_code, uint8_t page,
7860	       int save_pages, int ppc, uint32_t paramptr,
7861	       uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7862	       uint32_t timeout)
7863{
7864	struct scsi_log_sense *scsi_cmd;
7865	uint8_t cdb_len;
7866
7867	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7868	bzero(scsi_cmd, sizeof(*scsi_cmd));
7869	scsi_cmd->opcode = LOG_SENSE;
7870	scsi_cmd->page = page_code | page;
7871	if (save_pages != 0)
7872		scsi_cmd->byte2 |= SLS_SP;
7873	if (ppc != 0)
7874		scsi_cmd->byte2 |= SLS_PPC;
7875	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7876	scsi_ulto2b(param_len, scsi_cmd->length);
7877	cdb_len = sizeof(*scsi_cmd);
7878
7879	cam_fill_csio(csio,
7880		      retries,
7881		      cbfcnp,
7882		      /*flags*/CAM_DIR_IN,
7883		      tag_action,
7884		      /*data_ptr*/param_buf,
7885		      /*dxfer_len*/param_len,
7886		      sense_len,
7887		      cdb_len,
7888		      timeout);
7889}
7890
7891void
7892scsi_log_select(struct ccb_scsiio *csio, uint32_t retries,
7893		void (*cbfcnp)(struct cam_periph *, union ccb *),
7894		uint8_t tag_action, uint8_t page_code, int save_pages,
7895		int pc_reset, uint8_t *param_buf, uint32_t param_len,
7896		uint8_t sense_len, uint32_t timeout)
7897{
7898	struct scsi_log_select *scsi_cmd;
7899	uint8_t cdb_len;
7900
7901	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7902	bzero(scsi_cmd, sizeof(*scsi_cmd));
7903	scsi_cmd->opcode = LOG_SELECT;
7904	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7905	if (save_pages != 0)
7906		scsi_cmd->byte2 |= SLS_SP;
7907	if (pc_reset != 0)
7908		scsi_cmd->byte2 |= SLS_PCR;
7909	scsi_ulto2b(param_len, scsi_cmd->length);
7910	cdb_len = sizeof(*scsi_cmd);
7911
7912	cam_fill_csio(csio,
7913		      retries,
7914		      cbfcnp,
7915		      /*flags*/CAM_DIR_OUT,
7916		      tag_action,
7917		      /*data_ptr*/param_buf,
7918		      /*dxfer_len*/param_len,
7919		      sense_len,
7920		      cdb_len,
7921		      timeout);
7922}
7923
7924/*
7925 * Prevent or allow the user to remove the media
7926 */
7927void
7928scsi_prevent(struct ccb_scsiio *csio, uint32_t retries,
7929	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7930	     uint8_t tag_action, uint8_t action,
7931	     uint8_t sense_len, uint32_t timeout)
7932{
7933	struct scsi_prevent *scsi_cmd;
7934
7935	cam_fill_csio(csio,
7936		      retries,
7937		      cbfcnp,
7938		      /*flags*/CAM_DIR_NONE,
7939		      tag_action,
7940		      /*data_ptr*/NULL,
7941		      /*dxfer_len*/0,
7942		      sense_len,
7943		      sizeof(*scsi_cmd),
7944		      timeout);
7945
7946	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7947	bzero(scsi_cmd, sizeof(*scsi_cmd));
7948	scsi_cmd->opcode = PREVENT_ALLOW;
7949	scsi_cmd->how = action;
7950}
7951
7952/* XXX allow specification of address and PMI bit and LBA */
7953void
7954scsi_read_capacity(struct ccb_scsiio *csio, uint32_t retries,
7955		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7956		   uint8_t tag_action,
7957		   struct scsi_read_capacity_data *rcap_buf,
7958		   uint8_t sense_len, uint32_t timeout)
7959{
7960	struct scsi_read_capacity *scsi_cmd;
7961
7962	cam_fill_csio(csio,
7963		      retries,
7964		      cbfcnp,
7965		      /*flags*/CAM_DIR_IN,
7966		      tag_action,
7967		      /*data_ptr*/(uint8_t *)rcap_buf,
7968		      /*dxfer_len*/sizeof(*rcap_buf),
7969		      sense_len,
7970		      sizeof(*scsi_cmd),
7971		      timeout);
7972
7973	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7974	bzero(scsi_cmd, sizeof(*scsi_cmd));
7975	scsi_cmd->opcode = READ_CAPACITY;
7976}
7977
7978void
7979scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7980		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7981		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7982		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7983		      uint32_t timeout)
7984{
7985	struct scsi_read_capacity_16 *scsi_cmd;
7986
7987	cam_fill_csio(csio,
7988		      retries,
7989		      cbfcnp,
7990		      /*flags*/CAM_DIR_IN,
7991		      tag_action,
7992		      /*data_ptr*/(uint8_t *)rcap_buf,
7993		      /*dxfer_len*/rcap_buf_len,
7994		      sense_len,
7995		      sizeof(*scsi_cmd),
7996		      timeout);
7997	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7998	bzero(scsi_cmd, sizeof(*scsi_cmd));
7999	scsi_cmd->opcode = SERVICE_ACTION_IN;
8000	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
8001	scsi_u64to8b(lba, scsi_cmd->addr);
8002	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
8003	if (pmi)
8004		reladr |= SRC16_PMI;
8005	if (reladr)
8006		reladr |= SRC16_RELADR;
8007}
8008
8009void
8010scsi_report_luns(struct ccb_scsiio *csio, uint32_t retries,
8011		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8012		 uint8_t tag_action, uint8_t select_report,
8013		 struct scsi_report_luns_data *rpl_buf, uint32_t alloc_len,
8014		 uint8_t sense_len, uint32_t timeout)
8015{
8016	struct scsi_report_luns *scsi_cmd;
8017
8018	cam_fill_csio(csio,
8019		      retries,
8020		      cbfcnp,
8021		      /*flags*/CAM_DIR_IN,
8022		      tag_action,
8023		      /*data_ptr*/(uint8_t *)rpl_buf,
8024		      /*dxfer_len*/alloc_len,
8025		      sense_len,
8026		      sizeof(*scsi_cmd),
8027		      timeout);
8028	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
8029	bzero(scsi_cmd, sizeof(*scsi_cmd));
8030	scsi_cmd->opcode = REPORT_LUNS;
8031	scsi_cmd->select_report = select_report;
8032	scsi_ulto4b(alloc_len, scsi_cmd->length);
8033}
8034
8035void
8036scsi_report_target_group(struct ccb_scsiio *csio, uint32_t retries,
8037		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8038		 uint8_t tag_action, uint8_t pdf,
8039		 void *buf, uint32_t alloc_len,
8040		 uint8_t sense_len, uint32_t timeout)
8041{
8042	struct scsi_target_group *scsi_cmd;
8043
8044	cam_fill_csio(csio,
8045		      retries,
8046		      cbfcnp,
8047		      /*flags*/CAM_DIR_IN,
8048		      tag_action,
8049		      /*data_ptr*/(uint8_t *)buf,
8050		      /*dxfer_len*/alloc_len,
8051		      sense_len,
8052		      sizeof(*scsi_cmd),
8053		      timeout);
8054	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8055	bzero(scsi_cmd, sizeof(*scsi_cmd));
8056	scsi_cmd->opcode = MAINTENANCE_IN;
8057	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
8058	scsi_ulto4b(alloc_len, scsi_cmd->length);
8059}
8060
8061void
8062scsi_report_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8063		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8064		 uint8_t tag_action, uint8_t pdf,
8065		 void *buf, uint32_t alloc_len,
8066		 uint8_t sense_len, uint32_t timeout)
8067{
8068	struct scsi_timestamp *scsi_cmd;
8069
8070	cam_fill_csio(csio,
8071		      retries,
8072		      cbfcnp,
8073		      /*flags*/CAM_DIR_IN,
8074		      tag_action,
8075		      /*data_ptr*/(uint8_t *)buf,
8076		      /*dxfer_len*/alloc_len,
8077		      sense_len,
8078		      sizeof(*scsi_cmd),
8079		      timeout);
8080	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8081	bzero(scsi_cmd, sizeof(*scsi_cmd));
8082	scsi_cmd->opcode = MAINTENANCE_IN;
8083	scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
8084	scsi_ulto4b(alloc_len, scsi_cmd->length);
8085}
8086
8087void
8088scsi_set_target_group(struct ccb_scsiio *csio, uint32_t retries,
8089		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8090		 uint8_t tag_action, void *buf, uint32_t alloc_len,
8091		 uint8_t sense_len, uint32_t timeout)
8092{
8093	struct scsi_target_group *scsi_cmd;
8094
8095	cam_fill_csio(csio,
8096		      retries,
8097		      cbfcnp,
8098		      /*flags*/CAM_DIR_OUT,
8099		      tag_action,
8100		      /*data_ptr*/(uint8_t *)buf,
8101		      /*dxfer_len*/alloc_len,
8102		      sense_len,
8103		      sizeof(*scsi_cmd),
8104		      timeout);
8105	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8106	bzero(scsi_cmd, sizeof(*scsi_cmd));
8107	scsi_cmd->opcode = MAINTENANCE_OUT;
8108	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
8109	scsi_ulto4b(alloc_len, scsi_cmd->length);
8110}
8111
8112void
8113scsi_create_timestamp(uint8_t *timestamp_6b_buf,
8114		      uint64_t timestamp)
8115{
8116	uint8_t buf[8];
8117	scsi_u64to8b(timestamp, buf);
8118	/*
8119	 * Using memcopy starting at buf[2] because the set timestamp parameters
8120	 * only has six bytes for the timestamp to fit into, and we don't have a
8121	 * scsi_u64to6b function.
8122	 */
8123	memcpy(timestamp_6b_buf, &buf[2], 6);
8124}
8125
8126void
8127scsi_set_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8128		   void (*cbfcnp)(struct cam_periph *, union ccb *),
8129		   uint8_t tag_action, void *buf, uint32_t alloc_len,
8130		   uint8_t sense_len, uint32_t timeout)
8131{
8132	struct scsi_timestamp *scsi_cmd;
8133
8134	cam_fill_csio(csio,
8135		      retries,
8136		      cbfcnp,
8137		      /*flags*/CAM_DIR_OUT,
8138		      tag_action,
8139		      /*data_ptr*/(uint8_t *) buf,
8140		      /*dxfer_len*/alloc_len,
8141		      sense_len,
8142		      sizeof(*scsi_cmd),
8143		      timeout);
8144	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8145	bzero(scsi_cmd, sizeof(*scsi_cmd));
8146	scsi_cmd->opcode = MAINTENANCE_OUT;
8147	scsi_cmd->service_action = SET_TIMESTAMP;
8148	scsi_ulto4b(alloc_len, scsi_cmd->length);
8149}
8150
8151/*
8152 * Syncronize the media to the contents of the cache for
8153 * the given lba/count pair.  Specifying 0/0 means sync
8154 * the whole cache.
8155 */
8156void
8157scsi_synchronize_cache(struct ccb_scsiio *csio, uint32_t retries,
8158		       void (*cbfcnp)(struct cam_periph *, union ccb *),
8159		       uint8_t tag_action, uint32_t begin_lba,
8160		       uint16_t lb_count, uint8_t sense_len,
8161		       uint32_t timeout)
8162{
8163	struct scsi_sync_cache *scsi_cmd;
8164
8165	cam_fill_csio(csio,
8166		      retries,
8167		      cbfcnp,
8168		      /*flags*/CAM_DIR_NONE,
8169		      tag_action,
8170		      /*data_ptr*/NULL,
8171		      /*dxfer_len*/0,
8172		      sense_len,
8173		      sizeof(*scsi_cmd),
8174		      timeout);
8175
8176	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8177	bzero(scsi_cmd, sizeof(*scsi_cmd));
8178	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8179	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8180	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8181}
8182
8183void
8184scsi_read_write(struct ccb_scsiio *csio, uint32_t retries,
8185		void (*cbfcnp)(struct cam_periph *, union ccb *),
8186		uint8_t tag_action, int readop, uint8_t byte2,
8187		int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8188		uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8189		uint32_t timeout)
8190{
8191	int read;
8192	uint8_t cdb_len;
8193
8194	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8195
8196	/*
8197	 * Use the smallest possible command to perform the operation
8198	 * as some legacy hardware does not support the 10 byte commands.
8199	 * If any of the bits in byte2 is set, we have to go with a larger
8200	 * command.
8201	 */
8202	if ((minimum_cmd_size < 10)
8203	 && ((lba & 0x1fffff) == lba)
8204	 && ((block_count & 0xff) == block_count)
8205	 && (byte2 == 0)) {
8206		/*
8207		 * We can fit in a 6 byte cdb.
8208		 */
8209		struct scsi_rw_6 *scsi_cmd;
8210
8211		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8212		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8213		scsi_ulto3b(lba, scsi_cmd->addr);
8214		scsi_cmd->length = block_count & 0xff;
8215		scsi_cmd->control = 0;
8216		cdb_len = sizeof(*scsi_cmd);
8217
8218		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8219			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8220			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8221			   scsi_cmd->length, dxfer_len));
8222	} else if ((minimum_cmd_size < 12)
8223		&& ((block_count & 0xffff) == block_count)
8224		&& ((lba & 0xffffffff) == lba)) {
8225		/*
8226		 * Need a 10 byte cdb.
8227		 */
8228		struct scsi_rw_10 *scsi_cmd;
8229
8230		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8231		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8232		scsi_cmd->byte2 = byte2;
8233		scsi_ulto4b(lba, scsi_cmd->addr);
8234		scsi_cmd->reserved = 0;
8235		scsi_ulto2b(block_count, scsi_cmd->length);
8236		scsi_cmd->control = 0;
8237		cdb_len = sizeof(*scsi_cmd);
8238
8239		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8240			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8241			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8242			   scsi_cmd->addr[3], scsi_cmd->length[0],
8243			   scsi_cmd->length[1], dxfer_len));
8244	} else if ((minimum_cmd_size < 16)
8245		&& ((block_count & 0xffffffff) == block_count)
8246		&& ((lba & 0xffffffff) == lba)) {
8247		/*
8248		 * The block count is too big for a 10 byte CDB, use a 12
8249		 * byte CDB.
8250		 */
8251		struct scsi_rw_12 *scsi_cmd;
8252
8253		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8254		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8255		scsi_cmd->byte2 = byte2;
8256		scsi_ulto4b(lba, scsi_cmd->addr);
8257		scsi_cmd->reserved = 0;
8258		scsi_ulto4b(block_count, scsi_cmd->length);
8259		scsi_cmd->control = 0;
8260		cdb_len = sizeof(*scsi_cmd);
8261
8262		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8263			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8264			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8265			   scsi_cmd->addr[3], scsi_cmd->length[0],
8266			   scsi_cmd->length[1], scsi_cmd->length[2],
8267			   scsi_cmd->length[3], dxfer_len));
8268	} else {
8269		/*
8270		 * 16 byte CDB.  We'll only get here if the LBA is larger
8271		 * than 2^32, or if the user asks for a 16 byte command.
8272		 */
8273		struct scsi_rw_16 *scsi_cmd;
8274
8275		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8276		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8277		scsi_cmd->byte2 = byte2;
8278		scsi_u64to8b(lba, scsi_cmd->addr);
8279		scsi_cmd->reserved = 0;
8280		scsi_ulto4b(block_count, scsi_cmd->length);
8281		scsi_cmd->control = 0;
8282		cdb_len = sizeof(*scsi_cmd);
8283	}
8284	cam_fill_csio(csio,
8285		      retries,
8286		      cbfcnp,
8287		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8288		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8289		      tag_action,
8290		      data_ptr,
8291		      dxfer_len,
8292		      sense_len,
8293		      cdb_len,
8294		      timeout);
8295}
8296
8297void
8298scsi_write_same(struct ccb_scsiio *csio, uint32_t retries,
8299		void (*cbfcnp)(struct cam_periph *, union ccb *),
8300		uint8_t tag_action, uint8_t byte2,
8301		int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8302		uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8303		uint32_t timeout)
8304{
8305	uint8_t cdb_len;
8306	if ((minimum_cmd_size < 16) &&
8307	    ((block_count & 0xffff) == block_count) &&
8308	    ((lba & 0xffffffff) == lba)) {
8309		/*
8310		 * Need a 10 byte cdb.
8311		 */
8312		struct scsi_write_same_10 *scsi_cmd;
8313
8314		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8315		scsi_cmd->opcode = WRITE_SAME_10;
8316		scsi_cmd->byte2 = byte2;
8317		scsi_ulto4b(lba, scsi_cmd->addr);
8318		scsi_cmd->group = 0;
8319		scsi_ulto2b(block_count, scsi_cmd->length);
8320		scsi_cmd->control = 0;
8321		cdb_len = sizeof(*scsi_cmd);
8322
8323		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8324			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8325			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8326			   scsi_cmd->addr[3], scsi_cmd->length[0],
8327			   scsi_cmd->length[1], dxfer_len));
8328	} else {
8329		/*
8330		 * 16 byte CDB.  We'll only get here if the LBA is larger
8331		 * than 2^32, or if the user asks for a 16 byte command.
8332		 */
8333		struct scsi_write_same_16 *scsi_cmd;
8334
8335		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8336		scsi_cmd->opcode = WRITE_SAME_16;
8337		scsi_cmd->byte2 = byte2;
8338		scsi_u64to8b(lba, scsi_cmd->addr);
8339		scsi_ulto4b(block_count, scsi_cmd->length);
8340		scsi_cmd->group = 0;
8341		scsi_cmd->control = 0;
8342		cdb_len = sizeof(*scsi_cmd);
8343
8344		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8345			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8346			   scsi_cmd->addr[0], scsi_cmd->addr[1],
8347			   scsi_cmd->addr[2], scsi_cmd->addr[3],
8348			   scsi_cmd->addr[4], scsi_cmd->addr[5],
8349			   scsi_cmd->addr[6], scsi_cmd->addr[7],
8350			   scsi_cmd->length[0], scsi_cmd->length[1],
8351			   scsi_cmd->length[2], scsi_cmd->length[3],
8352			   dxfer_len));
8353	}
8354	cam_fill_csio(csio,
8355		      retries,
8356		      cbfcnp,
8357		      /*flags*/CAM_DIR_OUT,
8358		      tag_action,
8359		      data_ptr,
8360		      dxfer_len,
8361		      sense_len,
8362		      cdb_len,
8363		      timeout);
8364}
8365
8366void
8367scsi_ata_identify(struct ccb_scsiio *csio, uint32_t retries,
8368		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8369		  uint8_t tag_action, uint8_t *data_ptr,
8370		  uint16_t dxfer_len, uint8_t sense_len,
8371		  uint32_t timeout)
8372{
8373	scsi_ata_pass(csio,
8374		      retries,
8375		      cbfcnp,
8376		      /*flags*/CAM_DIR_IN,
8377		      tag_action,
8378		      /*protocol*/AP_PROTO_PIO_IN,
8379		      /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8380				   AP_FLAG_BYT_BLOK_BLOCKS |
8381				   AP_FLAG_TLEN_SECT_CNT,
8382		      /*features*/0,
8383		      /*sector_count*/dxfer_len / 512,
8384		      /*lba*/0,
8385		      /*command*/ATA_ATA_IDENTIFY,
8386		      /*device*/ 0,
8387		      /*icc*/ 0,
8388		      /*auxiliary*/ 0,
8389		      /*control*/0,
8390		      data_ptr,
8391		      dxfer_len,
8392		      /*cdb_storage*/ NULL,
8393		      /*cdb_storage_len*/ 0,
8394		      /*minimum_cmd_size*/ 0,
8395		      sense_len,
8396		      timeout);
8397}
8398
8399void
8400scsi_ata_trim(struct ccb_scsiio *csio, uint32_t retries,
8401	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8402	      uint8_t tag_action, uint16_t block_count,
8403	      uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8404	      uint32_t timeout)
8405{
8406	scsi_ata_pass_16(csio,
8407			 retries,
8408			 cbfcnp,
8409			 /*flags*/CAM_DIR_OUT,
8410			 tag_action,
8411			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8412			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8413			 /*features*/ATA_DSM_TRIM,
8414			 /*sector_count*/block_count,
8415			 /*lba*/0,
8416			 /*command*/ATA_DATA_SET_MANAGEMENT,
8417			 /*control*/0,
8418			 data_ptr,
8419			 dxfer_len,
8420			 sense_len,
8421			 timeout);
8422}
8423
8424int
8425scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8426		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8427		  uint8_t tag_action, uint32_t log_address,
8428		  uint32_t page_number, uint16_t block_count,
8429		  uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8430		  uint8_t sense_len, uint32_t timeout)
8431{
8432	uint8_t command, protocol_out;
8433	uint16_t count_out;
8434	uint64_t lba;
8435	int retval;
8436
8437	retval = 0;
8438
8439	switch (protocol) {
8440	case AP_PROTO_DMA:
8441		count_out = block_count;
8442		command = ATA_READ_LOG_DMA_EXT;
8443		protocol_out = AP_PROTO_DMA;
8444		break;
8445	case AP_PROTO_PIO_IN:
8446	default:
8447		count_out = block_count;
8448		command = ATA_READ_LOG_EXT;
8449		protocol_out = AP_PROTO_PIO_IN;
8450		break;
8451	}
8452
8453	lba = (((uint64_t)page_number & 0xff00) << 32) |
8454	      ((page_number & 0x00ff) << 8) |
8455	      (log_address & 0xff);
8456
8457	protocol_out |= AP_EXTEND;
8458
8459	retval = scsi_ata_pass(csio,
8460			       retries,
8461			       cbfcnp,
8462			       /*flags*/CAM_DIR_IN,
8463			       tag_action,
8464			       /*protocol*/ protocol_out,
8465			       /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8466					    AP_FLAG_BYT_BLOK_BLOCKS |
8467					    AP_FLAG_TDIR_FROM_DEV,
8468			       /*feature*/ 0,
8469			       /*sector_count*/ count_out,
8470			       /*lba*/ lba,
8471			       /*command*/ command,
8472			       /*device*/ 0,
8473			       /*icc*/ 0,
8474			       /*auxiliary*/ 0,
8475			       /*control*/0,
8476			       data_ptr,
8477			       dxfer_len,
8478			       /*cdb_storage*/ NULL,
8479			       /*cdb_storage_len*/ 0,
8480			       /*minimum_cmd_size*/ 0,
8481			       sense_len,
8482			       timeout);
8483
8484	return (retval);
8485}
8486
8487int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries,
8488			 void (*cbfcnp)(struct cam_periph *, union ccb *),
8489			 uint8_t tag_action, uint8_t feature,
8490			 uint64_t lba, uint32_t count,
8491			 uint8_t sense_len, uint32_t timeout)
8492{
8493	return (scsi_ata_pass(csio,
8494		retries,
8495		cbfcnp,
8496		/*flags*/CAM_DIR_NONE,
8497		tag_action,
8498		/*protocol*/AP_PROTO_PIO_IN,
8499		/*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8500			     AP_FLAG_BYT_BLOK_BYTES |
8501			     AP_FLAG_TLEN_SECT_CNT,
8502		/*features*/feature,
8503		/*sector_count*/count,
8504		/*lba*/lba,
8505		/*command*/ATA_SETFEATURES,
8506		/*device*/ 0,
8507		/*icc*/ 0,
8508		/*auxiliary*/0,
8509		/*control*/0,
8510		/*data_ptr*/NULL,
8511		/*dxfer_len*/0,
8512		/*cdb_storage*/NULL,
8513		/*cdb_storage_len*/0,
8514		/*minimum_cmd_size*/0,
8515		sense_len,
8516		timeout));
8517}
8518
8519/*
8520 * Note! This is an unusual CDB building function because it can return
8521 * an error in the event that the command in question requires a variable
8522 * length CDB, but the caller has not given storage space for one or has not
8523 * given enough storage space.  If there is enough space available in the
8524 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8525 */
8526int
8527scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8528	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8529	      uint32_t flags, uint8_t tag_action,
8530	      uint8_t protocol, uint8_t ata_flags, uint16_t features,
8531	      uint16_t sector_count, uint64_t lba, uint8_t command,
8532	      uint8_t device, uint8_t icc, uint32_t auxiliary,
8533	      uint8_t control, uint8_t *data_ptr, uint32_t dxfer_len,
8534	      uint8_t *cdb_storage, size_t cdb_storage_len,
8535	      int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
8536{
8537	uint32_t cam_flags;
8538	uint8_t *cdb_ptr;
8539	int cmd_size;
8540	int retval;
8541	uint8_t cdb_len;
8542
8543	retval = 0;
8544	cam_flags = flags;
8545
8546	/*
8547	 * Round the user's request to the nearest command size that is at
8548	 * least as big as what he requested.
8549	 */
8550	if (minimum_cmd_size <= 12)
8551		cmd_size = 12;
8552	else if (minimum_cmd_size > 16)
8553		cmd_size = 32;
8554	else
8555		cmd_size = 16;
8556
8557	/*
8558	 * If we have parameters that require a 48-bit ATA command, we have to
8559	 * use the 16 byte ATA PASS-THROUGH command at least.
8560	 */
8561	if (((lba > ATA_MAX_28BIT_LBA)
8562	  || (sector_count > 255)
8563	  || (features > 255)
8564	  || (protocol & AP_EXTEND))
8565	 && ((cmd_size < 16)
8566	  || ((protocol & AP_EXTEND) == 0))) {
8567		if (cmd_size < 16)
8568			cmd_size = 16;
8569		protocol |= AP_EXTEND;
8570	}
8571
8572	/*
8573	 * The icc and auxiliary ATA registers are only supported in the
8574	 * 32-byte version of the ATA PASS-THROUGH command.
8575	 */
8576	if ((icc != 0)
8577	 || (auxiliary != 0)) {
8578		cmd_size = 32;
8579		protocol |= AP_EXTEND;
8580	}
8581
8582	if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8583	 && ((cdb_storage == NULL)
8584	  || (cdb_storage_len < cmd_size))) {
8585		retval = 1;
8586		goto bailout;
8587	}
8588
8589	/*
8590	 * At this point we know we have enough space to store the command
8591	 * in one place or another.  We prefer the built-in array, but used
8592	 * the passed in storage if necessary.
8593	 */
8594	if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8595		cdb_ptr = csio->cdb_io.cdb_bytes;
8596	else {
8597		cdb_ptr = cdb_storage;
8598		cam_flags |= CAM_CDB_POINTER;
8599	}
8600
8601	if (cmd_size <= 12) {
8602		struct ata_pass_12 *cdb;
8603
8604		cdb = (struct ata_pass_12 *)cdb_ptr;
8605		cdb_len = sizeof(*cdb);
8606		bzero(cdb, cdb_len);
8607
8608		cdb->opcode = ATA_PASS_12;
8609		cdb->protocol = protocol;
8610		cdb->flags = ata_flags;
8611		cdb->features = features;
8612		cdb->sector_count = sector_count;
8613		cdb->lba_low = lba & 0xff;
8614		cdb->lba_mid = (lba >> 8) & 0xff;
8615		cdb->lba_high = (lba >> 16) & 0xff;
8616		cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8617		cdb->command = command;
8618		cdb->control = control;
8619	} else if (cmd_size <= 16) {
8620		struct ata_pass_16 *cdb;
8621
8622		cdb = (struct ata_pass_16 *)cdb_ptr;
8623		cdb_len = sizeof(*cdb);
8624		bzero(cdb, cdb_len);
8625
8626		cdb->opcode = ATA_PASS_16;
8627		cdb->protocol = protocol;
8628		cdb->flags = ata_flags;
8629		cdb->features = features & 0xff;
8630		cdb->sector_count = sector_count & 0xff;
8631		cdb->lba_low = lba & 0xff;
8632		cdb->lba_mid = (lba >> 8) & 0xff;
8633		cdb->lba_high = (lba >> 16) & 0xff;
8634		/*
8635		 * If AP_EXTEND is set, we're sending a 48-bit command.
8636		 * Otherwise it's a 28-bit command.
8637		 */
8638		if (protocol & AP_EXTEND) {
8639			cdb->lba_low_ext = (lba >> 24) & 0xff;
8640			cdb->lba_mid_ext = (lba >> 32) & 0xff;
8641			cdb->lba_high_ext = (lba >> 40) & 0xff;
8642			cdb->features_ext = (features >> 8) & 0xff;
8643			cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8644			cdb->device = device | ATA_DEV_LBA;
8645		} else {
8646			cdb->lba_low_ext = (lba >> 24) & 0xf;
8647			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8648		}
8649		cdb->command = command;
8650		cdb->control = control;
8651	} else {
8652		struct ata_pass_32 *cdb;
8653		uint8_t tmp_lba[8];
8654
8655		cdb = (struct ata_pass_32 *)cdb_ptr;
8656		cdb_len = sizeof(*cdb);
8657		bzero(cdb, cdb_len);
8658		cdb->opcode = VARIABLE_LEN_CDB;
8659		cdb->control = control;
8660		cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8661							service_action);
8662		scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8663		cdb->protocol = protocol;
8664		cdb->flags = ata_flags;
8665
8666		if ((protocol & AP_EXTEND) == 0) {
8667			lba &= 0x0fffffff;
8668			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8669			features &= 0xff;
8670			sector_count &= 0xff;
8671		} else {
8672			cdb->device = device | ATA_DEV_LBA;
8673		}
8674		scsi_u64to8b(lba, tmp_lba);
8675		bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8676		scsi_ulto2b(features, cdb->features);
8677		scsi_ulto2b(sector_count, cdb->count);
8678		cdb->command = command;
8679		cdb->icc = icc;
8680		scsi_ulto4b(auxiliary, cdb->auxiliary);
8681	}
8682
8683	cam_fill_csio(csio,
8684		      retries,
8685		      cbfcnp,
8686		      cam_flags,
8687		      tag_action,
8688		      data_ptr,
8689		      dxfer_len,
8690		      sense_len,
8691		      cmd_size,
8692		      timeout);
8693bailout:
8694	return (retval);
8695}
8696
8697void
8698scsi_ata_pass_16(struct ccb_scsiio *csio, uint32_t retries,
8699		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8700		 uint32_t flags, uint8_t tag_action,
8701		 uint8_t protocol, uint8_t ata_flags, uint16_t features,
8702		 uint16_t sector_count, uint64_t lba, uint8_t command,
8703		 uint8_t control, uint8_t *data_ptr, uint16_t dxfer_len,
8704		 uint8_t sense_len, uint32_t timeout)
8705{
8706	struct ata_pass_16 *ata_cmd;
8707
8708	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8709	ata_cmd->opcode = ATA_PASS_16;
8710	ata_cmd->protocol = protocol;
8711	ata_cmd->flags = ata_flags;
8712	ata_cmd->features_ext = features >> 8;
8713	ata_cmd->features = features;
8714	ata_cmd->sector_count_ext = sector_count >> 8;
8715	ata_cmd->sector_count = sector_count;
8716	ata_cmd->lba_low = lba;
8717	ata_cmd->lba_mid = lba >> 8;
8718	ata_cmd->lba_high = lba >> 16;
8719	ata_cmd->device = ATA_DEV_LBA;
8720	if (protocol & AP_EXTEND) {
8721		ata_cmd->lba_low_ext = lba >> 24;
8722		ata_cmd->lba_mid_ext = lba >> 32;
8723		ata_cmd->lba_high_ext = lba >> 40;
8724	} else
8725		ata_cmd->device |= (lba >> 24) & 0x0f;
8726	ata_cmd->command = command;
8727	ata_cmd->control = control;
8728
8729	cam_fill_csio(csio,
8730		      retries,
8731		      cbfcnp,
8732		      flags,
8733		      tag_action,
8734		      data_ptr,
8735		      dxfer_len,
8736		      sense_len,
8737		      sizeof(*ata_cmd),
8738		      timeout);
8739}
8740
8741void
8742scsi_unmap(struct ccb_scsiio *csio, uint32_t retries,
8743	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8744	   uint8_t tag_action, uint8_t byte2,
8745	   uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8746	   uint32_t timeout)
8747{
8748	struct scsi_unmap *scsi_cmd;
8749
8750	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8751	scsi_cmd->opcode = UNMAP;
8752	scsi_cmd->byte2 = byte2;
8753	scsi_ulto4b(0, scsi_cmd->reserved);
8754	scsi_cmd->group = 0;
8755	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8756	scsi_cmd->control = 0;
8757
8758	cam_fill_csio(csio,
8759		      retries,
8760		      cbfcnp,
8761		      /*flags*/CAM_DIR_OUT,
8762		      tag_action,
8763		      data_ptr,
8764		      dxfer_len,
8765		      sense_len,
8766		      sizeof(*scsi_cmd),
8767		      timeout);
8768}
8769
8770void
8771scsi_receive_diagnostic_results(struct ccb_scsiio *csio, uint32_t retries,
8772				void (*cbfcnp)(struct cam_periph *, union ccb*),
8773				uint8_t tag_action, int pcv, uint8_t page_code,
8774				uint8_t *data_ptr, uint16_t allocation_length,
8775				uint8_t sense_len, uint32_t timeout)
8776{
8777	struct scsi_receive_diag *scsi_cmd;
8778
8779	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8780	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8781	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8782	if (pcv) {
8783		scsi_cmd->byte2 |= SRD_PCV;
8784		scsi_cmd->page_code = page_code;
8785	}
8786	scsi_ulto2b(allocation_length, scsi_cmd->length);
8787
8788	cam_fill_csio(csio,
8789		      retries,
8790		      cbfcnp,
8791		      /*flags*/CAM_DIR_IN,
8792		      tag_action,
8793		      data_ptr,
8794		      allocation_length,
8795		      sense_len,
8796		      sizeof(*scsi_cmd),
8797		      timeout);
8798}
8799
8800void
8801scsi_send_diagnostic(struct ccb_scsiio *csio, uint32_t retries,
8802		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8803		     uint8_t tag_action, int unit_offline, int device_offline,
8804		     int self_test, int page_format, int self_test_code,
8805		     uint8_t *data_ptr, uint16_t param_list_length,
8806		     uint8_t sense_len, uint32_t timeout)
8807{
8808	struct scsi_send_diag *scsi_cmd;
8809
8810	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8811	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8812	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8813
8814	/*
8815	 * The default self-test mode control and specific test
8816	 * control are mutually exclusive.
8817	 */
8818	if (self_test)
8819		self_test_code = SSD_SELF_TEST_CODE_NONE;
8820
8821	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8822			 & SSD_SELF_TEST_CODE_MASK)
8823			| (unit_offline   ? SSD_UNITOFFL : 0)
8824			| (device_offline ? SSD_DEVOFFL  : 0)
8825			| (self_test      ? SSD_SELFTEST : 0)
8826			| (page_format    ? SSD_PF       : 0);
8827	scsi_ulto2b(param_list_length, scsi_cmd->length);
8828
8829	cam_fill_csio(csio,
8830		      retries,
8831		      cbfcnp,
8832		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8833		      tag_action,
8834		      data_ptr,
8835		      param_list_length,
8836		      sense_len,
8837		      sizeof(*scsi_cmd),
8838		      timeout);
8839}
8840
8841void
8842scsi_get_physical_element_status(struct ccb_scsiio *csio, uint32_t retries,
8843				 void (*cbfcnp)(struct cam_periph *, union ccb *),
8844				 uint8_t tag_action, uint8_t *data_ptr,
8845				 uint16_t allocation_length, uint8_t report_type,
8846				 uint32_t starting_element,
8847				 uint8_t sense_len, uint32_t timeout)
8848{
8849	struct scsi_get_physical_element_status *scsi_cmd;
8850
8851	scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes;
8852	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8853	scsi_cmd->opcode = SERVICE_ACTION_IN;
8854	scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS;
8855	scsi_ulto4b(starting_element, scsi_cmd->starting_element);
8856	scsi_ulto4b(allocation_length, scsi_cmd->allocation_length);
8857
8858	cam_fill_csio(csio,
8859		      retries,
8860		      cbfcnp,
8861		      /*flags*/ CAM_DIR_IN,
8862		      tag_action,
8863		      data_ptr,
8864		      allocation_length,
8865		      sense_len,
8866		      sizeof(*scsi_cmd),
8867		      timeout);
8868}
8869
8870void
8871scsi_remove_element_and_truncate(struct ccb_scsiio *csio, uint32_t retries,
8872				 void (*cbfcnp)(struct cam_periph *, union ccb *),
8873				 uint8_t tag_action,
8874				 uint64_t requested_capacity, uint32_t element_id,
8875				 uint8_t sense_len, uint32_t timeout)
8876{
8877	struct scsi_remove_element_and_truncate *scsi_cmd;
8878
8879	scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes;
8880	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8881	scsi_cmd->opcode = SERVICE_ACTION_IN;
8882	scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE;
8883	scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity);
8884	scsi_ulto4b(element_id, scsi_cmd->element_identifier);
8885
8886	cam_fill_csio(csio,
8887		      retries,
8888		      cbfcnp,
8889		      /*flags*/ CAM_DIR_OUT,
8890		      tag_action,
8891		      NULL,
8892		      0,
8893		      sense_len,
8894		      sizeof(*scsi_cmd),
8895		      timeout);
8896}
8897
8898void
8899scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, uint32_t retries,
8900				  void (*cbfcnp)(struct cam_periph *, union ccb *),
8901				  uint8_t tag_action,
8902				  uint8_t sense_len, uint32_t timeout)
8903{
8904	struct scsi_service_action_in *scsi_cmd;
8905
8906	scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes;
8907	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8908	scsi_cmd->opcode = SERVICE_ACTION_IN;
8909	scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD;
8910
8911	cam_fill_csio(csio,
8912		      retries,
8913		      cbfcnp,
8914		      /*flags*/ CAM_DIR_OUT,
8915		      tag_action,
8916		      NULL,
8917		      0,
8918		      sense_len,
8919		      sizeof(*scsi_cmd),
8920		      timeout);
8921}
8922
8923void
8924scsi_read_buffer(struct ccb_scsiio *csio, uint32_t retries,
8925			void (*cbfcnp)(struct cam_periph *, union ccb*),
8926			uint8_t tag_action, int mode,
8927			uint8_t buffer_id, uint32_t offset,
8928			uint8_t *data_ptr, uint32_t allocation_length,
8929			uint8_t sense_len, uint32_t timeout)
8930{
8931	struct scsi_read_buffer *scsi_cmd;
8932
8933	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8934	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8935	scsi_cmd->opcode = READ_BUFFER;
8936	scsi_cmd->byte2 = mode;
8937	scsi_cmd->buffer_id = buffer_id;
8938	scsi_ulto3b(offset, scsi_cmd->offset);
8939	scsi_ulto3b(allocation_length, scsi_cmd->length);
8940
8941	cam_fill_csio(csio,
8942		      retries,
8943		      cbfcnp,
8944		      /*flags*/CAM_DIR_IN,
8945		      tag_action,
8946		      data_ptr,
8947		      allocation_length,
8948		      sense_len,
8949		      sizeof(*scsi_cmd),
8950		      timeout);
8951}
8952
8953void
8954scsi_write_buffer(struct ccb_scsiio *csio, uint32_t retries,
8955			void (*cbfcnp)(struct cam_periph *, union ccb *),
8956			uint8_t tag_action, int mode,
8957			uint8_t buffer_id, uint32_t offset,
8958			uint8_t *data_ptr, uint32_t param_list_length,
8959			uint8_t sense_len, uint32_t timeout)
8960{
8961	struct scsi_write_buffer *scsi_cmd;
8962
8963	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8964	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8965	scsi_cmd->opcode = WRITE_BUFFER;
8966	scsi_cmd->byte2 = mode;
8967	scsi_cmd->buffer_id = buffer_id;
8968	scsi_ulto3b(offset, scsi_cmd->offset);
8969	scsi_ulto3b(param_list_length, scsi_cmd->length);
8970
8971	cam_fill_csio(csio,
8972		      retries,
8973		      cbfcnp,
8974		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8975		      tag_action,
8976		      data_ptr,
8977		      param_list_length,
8978		      sense_len,
8979		      sizeof(*scsi_cmd),
8980		      timeout);
8981}
8982
8983void
8984scsi_start_stop(struct ccb_scsiio *csio, uint32_t retries,
8985		void (*cbfcnp)(struct cam_periph *, union ccb *),
8986		uint8_t tag_action, int start, int load_eject,
8987		int immediate, uint8_t sense_len, uint32_t timeout)
8988{
8989	struct scsi_start_stop_unit *scsi_cmd;
8990	int extra_flags = 0;
8991
8992	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8993	bzero(scsi_cmd, sizeof(*scsi_cmd));
8994	scsi_cmd->opcode = START_STOP_UNIT;
8995	if (start != 0) {
8996		scsi_cmd->how |= SSS_START;
8997		/* it takes a lot of power to start a drive */
8998		extra_flags |= CAM_HIGH_POWER;
8999	}
9000	if (load_eject != 0)
9001		scsi_cmd->how |= SSS_LOEJ;
9002	if (immediate != 0)
9003		scsi_cmd->byte2 |= SSS_IMMED;
9004
9005	cam_fill_csio(csio,
9006		      retries,
9007		      cbfcnp,
9008		      /*flags*/CAM_DIR_NONE | extra_flags,
9009		      tag_action,
9010		      /*data_ptr*/NULL,
9011		      /*dxfer_len*/0,
9012		      sense_len,
9013		      sizeof(*scsi_cmd),
9014		      timeout);
9015}
9016
9017void
9018scsi_read_attribute(struct ccb_scsiio *csio, uint32_t retries,
9019		    void (*cbfcnp)(struct cam_periph *, union ccb *),
9020		    uint8_t tag_action, uint8_t service_action,
9021		    uint32_t element, uint8_t elem_type, int logical_volume,
9022		    int partition, uint32_t first_attribute, int cache,
9023		    uint8_t *data_ptr, uint32_t length, int sense_len,
9024		    uint32_t timeout)
9025{
9026	struct scsi_read_attribute *scsi_cmd;
9027
9028	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
9029	bzero(scsi_cmd, sizeof(*scsi_cmd));
9030
9031	scsi_cmd->opcode = READ_ATTRIBUTE;
9032	scsi_cmd->service_action = service_action;
9033	scsi_ulto2b(element, scsi_cmd->element);
9034	scsi_cmd->elem_type = elem_type;
9035	scsi_cmd->logical_volume = logical_volume;
9036	scsi_cmd->partition = partition;
9037	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
9038	scsi_ulto4b(length, scsi_cmd->length);
9039	if (cache != 0)
9040		scsi_cmd->cache |= SRA_CACHE;
9041
9042	cam_fill_csio(csio,
9043		      retries,
9044		      cbfcnp,
9045		      /*flags*/CAM_DIR_IN,
9046		      tag_action,
9047		      /*data_ptr*/data_ptr,
9048		      /*dxfer_len*/length,
9049		      sense_len,
9050		      sizeof(*scsi_cmd),
9051		      timeout);
9052}
9053
9054void
9055scsi_write_attribute(struct ccb_scsiio *csio, uint32_t retries,
9056		    void (*cbfcnp)(struct cam_periph *, union ccb *),
9057		    uint8_t tag_action, uint32_t element, int logical_volume,
9058		    int partition, int wtc, uint8_t *data_ptr,
9059		    uint32_t length, int sense_len, uint32_t timeout)
9060{
9061	struct scsi_write_attribute *scsi_cmd;
9062
9063	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
9064	bzero(scsi_cmd, sizeof(*scsi_cmd));
9065
9066	scsi_cmd->opcode = WRITE_ATTRIBUTE;
9067	if (wtc != 0)
9068		scsi_cmd->byte2 = SWA_WTC;
9069	scsi_ulto3b(element, scsi_cmd->element);
9070	scsi_cmd->logical_volume = logical_volume;
9071	scsi_cmd->partition = partition;
9072	scsi_ulto4b(length, scsi_cmd->length);
9073
9074	cam_fill_csio(csio,
9075		      retries,
9076		      cbfcnp,
9077		      /*flags*/CAM_DIR_OUT,
9078		      tag_action,
9079		      /*data_ptr*/data_ptr,
9080		      /*dxfer_len*/length,
9081		      sense_len,
9082		      sizeof(*scsi_cmd),
9083		      timeout);
9084}
9085
9086void
9087scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
9088			   void (*cbfcnp)(struct cam_periph *, union ccb *),
9089			   uint8_t tag_action, int service_action,
9090			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9091			   int timeout)
9092{
9093	struct scsi_per_res_in *scsi_cmd;
9094
9095	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
9096	bzero(scsi_cmd, sizeof(*scsi_cmd));
9097
9098	scsi_cmd->opcode = PERSISTENT_RES_IN;
9099	scsi_cmd->action = service_action;
9100	scsi_ulto2b(dxfer_len, scsi_cmd->length);
9101
9102	cam_fill_csio(csio,
9103		      retries,
9104		      cbfcnp,
9105		      /*flags*/CAM_DIR_IN,
9106		      tag_action,
9107		      data_ptr,
9108		      dxfer_len,
9109		      sense_len,
9110		      sizeof(*scsi_cmd),
9111		      timeout);
9112}
9113
9114void
9115scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
9116			    void (*cbfcnp)(struct cam_periph *, union ccb *),
9117			    uint8_t tag_action, int service_action,
9118			    int scope, int res_type, uint8_t *data_ptr,
9119			    uint32_t dxfer_len, int sense_len, int timeout)
9120{
9121	struct scsi_per_res_out *scsi_cmd;
9122
9123	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
9124	bzero(scsi_cmd, sizeof(*scsi_cmd));
9125
9126	scsi_cmd->opcode = PERSISTENT_RES_OUT;
9127	scsi_cmd->action = service_action;
9128	scsi_cmd->scope_type = scope | res_type;
9129	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9130
9131	cam_fill_csio(csio,
9132		      retries,
9133		      cbfcnp,
9134		      /*flags*/CAM_DIR_OUT,
9135		      tag_action,
9136		      /*data_ptr*/data_ptr,
9137		      /*dxfer_len*/dxfer_len,
9138		      sense_len,
9139		      sizeof(*scsi_cmd),
9140		      timeout);
9141}
9142
9143void
9144scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
9145			  void (*cbfcnp)(struct cam_periph *, union ccb *),
9146			  uint8_t tag_action, uint32_t security_protocol,
9147			  uint32_t security_protocol_specific, int byte4,
9148			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9149			  int timeout)
9150{
9151	struct scsi_security_protocol_in *scsi_cmd;
9152
9153	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
9154	bzero(scsi_cmd, sizeof(*scsi_cmd));
9155
9156	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
9157
9158	scsi_cmd->security_protocol = security_protocol;
9159	scsi_ulto2b(security_protocol_specific,
9160		    scsi_cmd->security_protocol_specific);
9161	scsi_cmd->byte4 = byte4;
9162	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9163
9164	cam_fill_csio(csio,
9165		      retries,
9166		      cbfcnp,
9167		      /*flags*/CAM_DIR_IN,
9168		      tag_action,
9169		      data_ptr,
9170		      dxfer_len,
9171		      sense_len,
9172		      sizeof(*scsi_cmd),
9173		      timeout);
9174}
9175
9176void
9177scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
9178			   void (*cbfcnp)(struct cam_periph *, union ccb *),
9179			   uint8_t tag_action, uint32_t security_protocol,
9180			   uint32_t security_protocol_specific, int byte4,
9181			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9182			   int timeout)
9183{
9184	struct scsi_security_protocol_out *scsi_cmd;
9185
9186	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
9187	bzero(scsi_cmd, sizeof(*scsi_cmd));
9188
9189	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
9190
9191	scsi_cmd->security_protocol = security_protocol;
9192	scsi_ulto2b(security_protocol_specific,
9193		    scsi_cmd->security_protocol_specific);
9194	scsi_cmd->byte4 = byte4;
9195	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9196
9197	cam_fill_csio(csio,
9198		      retries,
9199		      cbfcnp,
9200		      /*flags*/CAM_DIR_OUT,
9201		      tag_action,
9202		      data_ptr,
9203		      dxfer_len,
9204		      sense_len,
9205		      sizeof(*scsi_cmd),
9206		      timeout);
9207}
9208
9209void
9210scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
9211			      void (*cbfcnp)(struct cam_periph *, union ccb *),
9212			      uint8_t tag_action, int options, int req_opcode,
9213			      int req_service_action, uint8_t *data_ptr,
9214			      uint32_t dxfer_len, int sense_len, int timeout)
9215{
9216	struct scsi_report_supported_opcodes *scsi_cmd;
9217
9218	scsi_cmd = (struct scsi_report_supported_opcodes *)
9219	    &csio->cdb_io.cdb_bytes;
9220	bzero(scsi_cmd, sizeof(*scsi_cmd));
9221
9222	scsi_cmd->opcode = MAINTENANCE_IN;
9223	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
9224	scsi_cmd->options = options;
9225	scsi_cmd->requested_opcode = req_opcode;
9226	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
9227	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9228
9229	cam_fill_csio(csio,
9230		      retries,
9231		      cbfcnp,
9232		      /*flags*/CAM_DIR_IN,
9233		      tag_action,
9234		      data_ptr,
9235		      dxfer_len,
9236		      sense_len,
9237		      sizeof(*scsi_cmd),
9238		      timeout);
9239}
9240
9241/*
9242 * Try make as good a match as possible with
9243 * available sub drivers
9244 */
9245int
9246scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9247{
9248	struct scsi_inquiry_pattern *entry;
9249	struct scsi_inquiry_data *inq;
9250
9251	entry = (struct scsi_inquiry_pattern *)table_entry;
9252	inq = (struct scsi_inquiry_data *)inqbuffer;
9253
9254	if (((SID_TYPE(inq) == entry->type)
9255	  || (entry->type == T_ANY))
9256	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9257				   : entry->media_type & SIP_MEDIA_FIXED)
9258	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9259	 && (cam_strmatch(inq->product, entry->product,
9260			  sizeof(inq->product)) == 0)
9261	 && (cam_strmatch(inq->revision, entry->revision,
9262			  sizeof(inq->revision)) == 0)) {
9263		return (0);
9264	}
9265        return (-1);
9266}
9267
9268/*
9269 * Try make as good a match as possible with
9270 * available sub drivers
9271 */
9272int
9273scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9274{
9275	struct scsi_static_inquiry_pattern *entry;
9276	struct scsi_inquiry_data *inq;
9277
9278	entry = (struct scsi_static_inquiry_pattern *)table_entry;
9279	inq = (struct scsi_inquiry_data *)inqbuffer;
9280
9281	if (((SID_TYPE(inq) == entry->type)
9282	  || (entry->type == T_ANY))
9283	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9284				   : entry->media_type & SIP_MEDIA_FIXED)
9285	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9286	 && (cam_strmatch(inq->product, entry->product,
9287			  sizeof(inq->product)) == 0)
9288	 && (cam_strmatch(inq->revision, entry->revision,
9289			  sizeof(inq->revision)) == 0)) {
9290		return (0);
9291	}
9292        return (-1);
9293}
9294
9295/**
9296 * Compare two buffers of vpd device descriptors for a match.
9297 *
9298 * \param lhs      Pointer to first buffer of descriptors to compare.
9299 * \param lhs_len  The length of the first buffer.
9300 * \param rhs	   Pointer to second buffer of descriptors to compare.
9301 * \param rhs_len  The length of the second buffer.
9302 *
9303 * \return  0 on a match, -1 otherwise.
9304 *
9305 * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
9306 * against each element in rhs until all data are exhausted or we have found
9307 * a match.
9308 */
9309int
9310scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
9311{
9312	struct scsi_vpd_id_descriptor *lhs_id;
9313	struct scsi_vpd_id_descriptor *lhs_last;
9314	struct scsi_vpd_id_descriptor *rhs_last;
9315	uint8_t *lhs_end;
9316	uint8_t *rhs_end;
9317
9318	lhs_end = lhs + lhs_len;
9319	rhs_end = rhs + rhs_len;
9320
9321	/*
9322	 * rhs_last and lhs_last are the last possible position of a valid
9323	 * descriptor assuming it had a zero length identifier.  We use
9324	 * these variables to insure we can safely dereference the length
9325	 * field in our loop termination tests.
9326	 */
9327	lhs_last = (struct scsi_vpd_id_descriptor *)
9328	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9329	rhs_last = (struct scsi_vpd_id_descriptor *)
9330	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9331
9332	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
9333	while (lhs_id <= lhs_last
9334	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
9335		struct scsi_vpd_id_descriptor *rhs_id;
9336
9337		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9338		while (rhs_id <= rhs_last
9339		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9340			if ((rhs_id->id_type &
9341			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9342			    (lhs_id->id_type &
9343			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9344			 && rhs_id->length == lhs_id->length
9345			 && memcmp(rhs_id->identifier, lhs_id->identifier,
9346				   rhs_id->length) == 0)
9347				return (0);
9348
9349			rhs_id = (struct scsi_vpd_id_descriptor *)
9350			   (rhs_id->identifier + rhs_id->length);
9351		}
9352		lhs_id = (struct scsi_vpd_id_descriptor *)
9353		   (lhs_id->identifier + lhs_id->length);
9354	}
9355	return (-1);
9356}
9357
9358#ifdef _KERNEL
9359int
9360scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9361{
9362	struct cam_ed *device;
9363	struct scsi_vpd_supported_pages *vpds;
9364	int i, num_pages;
9365
9366	device = periph->path->device;
9367	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9368
9369	if (vpds != NULL) {
9370		num_pages = device->supported_vpds_len -
9371		    SVPD_SUPPORTED_PAGES_HDR_LEN;
9372		for (i = 0; i < num_pages; i++) {
9373			if (vpds->page_list[i] == page_id)
9374				return (1);
9375		}
9376	}
9377
9378	return (0);
9379}
9380
9381static void
9382init_scsi_delay(void)
9383{
9384	int delay;
9385
9386	delay = SCSI_DELAY;
9387	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9388
9389	if (set_scsi_delay(delay) != 0) {
9390		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9391		set_scsi_delay(SCSI_DELAY);
9392	}
9393}
9394SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9395
9396static int
9397sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9398{
9399	int error, delay;
9400
9401	delay = scsi_delay;
9402	error = sysctl_handle_int(oidp, &delay, 0, req);
9403	if (error != 0 || req->newptr == NULL)
9404		return (error);
9405	return (set_scsi_delay(delay));
9406}
9407SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay,
9408    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
9409    0, 0, sysctl_scsi_delay, "I",
9410    "Delay to allow devices to settle after a SCSI bus reset (ms)");
9411
9412static int
9413set_scsi_delay(int delay)
9414{
9415	/*
9416         * If someone sets this to 0, we assume that they want the
9417         * minimum allowable bus settle delay.
9418	 */
9419	if (delay == 0) {
9420		printf("cam: using minimum scsi_delay (%dms)\n",
9421		    SCSI_MIN_DELAY);
9422		delay = SCSI_MIN_DELAY;
9423	}
9424	if (delay < SCSI_MIN_DELAY)
9425		return (EINVAL);
9426	scsi_delay = delay;
9427	return (0);
9428}
9429#endif /* _KERNEL */
9430