1129202Scognet/*-
2129202Scognet * SPDX-License-Identifier: BSD-3-Clause
3129202Scognet *
4129202Scognet * Copyright (c) 1990, 1993, 1994
5129202Scognet *	The Regents of the University of California.  All rights reserved.
6129202Scognet *
7129202Scognet * This code is derived from software contributed to Berkeley by
8129202Scognet * Margo Seltzer.
9129202Scognet *
10129202Scognet * Redistribution and use in source and binary forms, with or without
11129202Scognet * modification, are permitted provided that the following conditions
12129202Scognet * are met:
13129202Scognet * 1. Redistributions of source code must retain the above copyright
14164051Scognet *    notice, this list of conditions and the following disclaimer.
15129202Scognet * 2. Redistributions in binary form must reproduce the above copyright
16129202Scognet *    notice, this list of conditions and the following disclaimer in the
17129202Scognet *    documentation and/or other materials provided with the distribution.
18164051Scognet * 3. Neither the name of the University nor the names of its contributors
19164051Scognet *    may be used to endorse or promote products derived from this software
20164051Scognet *    without specific prior written permission.
21164051Scognet *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/*
36 * PACKAGE: hash
37 * DESCRIPTION:
38 *	Big key/data handling for the hashing package.
39 *
40 * ROUTINES:
41 * External
42 *	__big_keydata
43 *	__big_split
44 *	__big_insert
45 *	__big_return
46 *	__big_delete
47 *	__find_last_page
48 * Internal
49 *	collect_key
50 *	collect_data
51 */
52
53#include <sys/param.h>
54
55#include <errno.h>
56#include <stdio.h>
57#include <stdlib.h>
58#include <string.h>
59
60#ifdef DEBUG
61#include <assert.h>
62#endif
63
64#include <db.h>
65#include "hash.h"
66#include "page.h"
67#include "extern.h"
68
69static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
70static int collect_data(HTAB *, BUFHEAD *, int, int);
71
72/*
73 * Big_insert
74 *
75 * You need to do an insert and the key/data pair is too big
76 *
77 * Returns:
78 * 0 ==> OK
79 *-1 ==> ERROR
80 */
81int
82__big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
83{
84	u_int16_t *p;
85	int key_size, n;
86	unsigned int val_size;
87	u_int16_t space, move_bytes, off;
88	char *cp, *key_data, *val_data;
89
90	cp = bufp->page;		/* Character pointer of p. */
91	p = (u_int16_t *)cp;
92
93	key_data = (char *)key->data;
94	key_size = key->size;
95	val_data = (char *)val->data;
96	val_size = val->size;
97
98	/* First move the Key */
99	for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
100	    space = FREESPACE(p) - BIGOVERHEAD) {
101		move_bytes = MIN(space, key_size);
102		off = OFFSET(p) - move_bytes;
103		memmove(cp + off, key_data, move_bytes);
104		key_size -= move_bytes;
105		key_data += move_bytes;
106		n = p[0];
107		p[++n] = off;
108		p[0] = ++n;
109		FREESPACE(p) = off - PAGE_META(n);
110		OFFSET(p) = off;
111		p[n] = PARTIAL_KEY;
112		bufp = __add_ovflpage(hashp, bufp);
113		if (!bufp)
114			return (-1);
115		n = p[0];
116		if (!key_size) {
117			space = FREESPACE(p);
118			if (space) {
119				move_bytes = MIN(space, val_size);
120				/*
121				 * If the data would fit exactly in the
122				 * remaining space, we must overflow it to the
123				 * next page; otherwise the invariant that the
124				 * data must end on a page with FREESPACE
125				 * non-zero would fail.
126				 */
127				if (space == val_size && val_size == val->size)
128					goto toolarge;
129				off = OFFSET(p) - move_bytes;
130				memmove(cp + off, val_data, move_bytes);
131				val_data += move_bytes;
132				val_size -= move_bytes;
133				p[n] = off;
134				p[n - 2] = FULL_KEY_DATA;
135				FREESPACE(p) = FREESPACE(p) - move_bytes;
136				OFFSET(p) = off;
137			} else {
138			toolarge:
139				p[n - 2] = FULL_KEY;
140			}
141		}
142		p = (u_int16_t *)bufp->page;
143		cp = bufp->page;
144		bufp->flags |= BUF_MOD;
145	}
146
147	/* Now move the data */
148	for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
149	    space = FREESPACE(p) - BIGOVERHEAD) {
150		move_bytes = MIN(space, val_size);
151		/*
152		 * Here's the hack to make sure that if the data ends on the
153		 * same page as the key ends, FREESPACE is at least one.
154		 */
155		if (space == val_size && val_size == val->size)
156			move_bytes--;
157		off = OFFSET(p) - move_bytes;
158		memmove(cp + off, val_data, move_bytes);
159		val_size -= move_bytes;
160		val_data += move_bytes;
161		n = p[0];
162		p[++n] = off;
163		p[0] = ++n;
164		FREESPACE(p) = off - PAGE_META(n);
165		OFFSET(p) = off;
166		if (val_size) {
167			p[n] = FULL_KEY;
168			bufp = __add_ovflpage(hashp, bufp);
169			if (!bufp)
170				return (-1);
171			cp = bufp->page;
172			p = (u_int16_t *)cp;
173		} else
174			p[n] = FULL_KEY_DATA;
175		bufp->flags |= BUF_MOD;
176	}
177	return (0);
178}
179
180/*
181 * Called when bufp's page  contains a partial key (index should be 1)
182 *
183 * All pages in the big key/data pair except bufp are freed.  We cannot
184 * free bufp because the page pointing to it is lost and we can't get rid
185 * of its pointer.
186 *
187 * Returns:
188 * 0 => OK
189 *-1 => ERROR
190 */
191int
192__big_delete(HTAB *hashp, BUFHEAD *bufp)
193{
194	BUFHEAD *last_bfp, *rbufp;
195	u_int16_t *bp, pageno;
196	int key_done, n;
197
198	rbufp = bufp;
199	last_bfp = NULL;
200	bp = (u_int16_t *)bufp->page;
201	pageno = 0;
202	key_done = 0;
203
204	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
205		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
206			key_done = 1;
207
208		/*
209		 * If there is freespace left on a FULL_KEY_DATA page, then
210		 * the data is short and fits entirely on this page, and this
211		 * is the last page.
212		 */
213		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
214			break;
215		pageno = bp[bp[0] - 1];
216		rbufp->flags |= BUF_MOD;
217		rbufp = __get_buf(hashp, pageno, rbufp, 0);
218		if (last_bfp)
219			__free_ovflpage(hashp, last_bfp);
220		last_bfp = rbufp;
221		if (!rbufp)
222			return (-1);		/* Error. */
223		bp = (u_int16_t *)rbufp->page;
224	}
225
226	/*
227	 * If we get here then rbufp points to the last page of the big
228	 * key/data pair.  Bufp points to the first one -- it should now be
229	 * empty pointing to the next page after this pair.  Can't free it
230	 * because we don't have the page pointing to it.
231	 */
232
233	/* This is information from the last page of the pair. */
234	n = bp[0];
235	pageno = bp[n - 1];
236
237	/* Now, bp is the first page of the pair. */
238	bp = (u_int16_t *)bufp->page;
239	if (n > 2) {
240		/* There is an overflow page. */
241		bp[1] = pageno;
242		bp[2] = OVFLPAGE;
243		bufp->ovfl = rbufp->ovfl;
244	} else
245		/* This is the last page. */
246		bufp->ovfl = NULL;
247	n -= 2;
248	bp[0] = n;
249	FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
250	OFFSET(bp) = hashp->BSIZE;
251
252	bufp->flags |= BUF_MOD;
253	if (rbufp)
254		__free_ovflpage(hashp, rbufp);
255	if (last_bfp && last_bfp != rbufp)
256		__free_ovflpage(hashp, last_bfp);
257
258	hashp->NKEYS--;
259	return (0);
260}
261/*
262 * Returns:
263 *  0 = key not found
264 * -1 = get next overflow page
265 * -2 means key not found and this is big key/data
266 * -3 error
267 */
268int
269__find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
270{
271	u_int16_t *bp;
272	char *p;
273	int ksize;
274	u_int16_t bytes;
275	char *kkey;
276
277	bp = (u_int16_t *)bufp->page;
278	p = bufp->page;
279	ksize = size;
280	kkey = key;
281
282	for (bytes = hashp->BSIZE - bp[ndx];
283	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
284	    bytes = hashp->BSIZE - bp[ndx]) {
285		if (memcmp(p + bp[ndx], kkey, bytes))
286			return (-2);
287		kkey += bytes;
288		ksize -= bytes;
289		bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
290		if (!bufp)
291			return (-3);
292		p = bufp->page;
293		bp = (u_int16_t *)p;
294		ndx = 1;
295	}
296
297	if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
298#ifdef HASH_STATISTICS
299		++hash_collisions;
300#endif
301		return (-2);
302	} else
303		return (ndx);
304}
305
306/*
307 * Given the buffer pointer of the first overflow page of a big pair,
308 * find the end of the big pair
309 *
310 * This will set bpp to the buffer header of the last page of the big pair.
311 * It will return the pageno of the overflow page following the last page
312 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
313 * bucket)
314 */
315u_int16_t
316__find_last_page(HTAB *hashp, BUFHEAD **bpp)
317{
318	BUFHEAD *bufp;
319	u_int16_t *bp, pageno;
320	int n;
321
322	bufp = *bpp;
323	bp = (u_int16_t *)bufp->page;
324	for (;;) {
325		n = bp[0];
326
327		/*
328		 * This is the last page if: the tag is FULL_KEY_DATA and
329		 * either only 2 entries OVFLPAGE marker is explicit there
330		 * is freespace on the page.
331		 */
332		if (bp[2] == FULL_KEY_DATA &&
333		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
334			break;
335
336		pageno = bp[n - 1];
337		bufp = __get_buf(hashp, pageno, bufp, 0);
338		if (!bufp)
339			return (0);	/* Need to indicate an error! */
340		bp = (u_int16_t *)bufp->page;
341	}
342
343	*bpp = bufp;
344	if (bp[0] > 2)
345		return (bp[3]);
346	else
347		return (0);
348}
349
350/*
351 * Return the data for the key/data pair that begins on this page at this
352 * index (index should always be 1).
353 */
354int
355__big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
356{
357	BUFHEAD *save_p;
358	u_int16_t *bp, len, off, save_addr;
359	char *tp;
360
361	bp = (u_int16_t *)bufp->page;
362	while (bp[ndx + 1] == PARTIAL_KEY) {
363		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
364		if (!bufp)
365			return (-1);
366		bp = (u_int16_t *)bufp->page;
367		ndx = 1;
368	}
369
370	if (bp[ndx + 1] == FULL_KEY) {
371		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
372		if (!bufp)
373			return (-1);
374		bp = (u_int16_t *)bufp->page;
375		save_p = bufp;
376		save_addr = save_p->addr;
377		off = bp[1];
378		len = 0;
379	} else
380		if (!FREESPACE(bp)) {
381			/*
382			 * This is a hack.  We can't distinguish between
383			 * FULL_KEY_DATA that contains complete data or
384			 * incomplete data, so we require that if the data
385			 * is complete, there is at least 1 byte of free
386			 * space left.
387			 */
388			off = bp[bp[0]];
389			len = bp[1] - off;
390			save_p = bufp;
391			save_addr = bufp->addr;
392			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
393			if (!bufp)
394				return (-1);
395			bp = (u_int16_t *)bufp->page;
396		} else {
397			/* The data is all on one page. */
398			tp = (char *)bp;
399			off = bp[bp[0]];
400			val->data = (u_char *)tp + off;
401			val->size = bp[1] - off;
402			if (set_current) {
403				if (bp[0] == 2) {	/* No more buckets in
404							 * chain */
405					hashp->cpage = NULL;
406					hashp->cbucket++;
407					hashp->cndx = 1;
408				} else {
409					hashp->cpage = __get_buf(hashp,
410					    bp[bp[0] - 1], bufp, 0);
411					if (!hashp->cpage)
412						return (-1);
413					hashp->cndx = 1;
414					if (!((u_int16_t *)
415					    hashp->cpage->page)[0]) {
416						hashp->cbucket++;
417						hashp->cpage = NULL;
418					}
419				}
420			}
421			return (0);
422		}
423
424	val->size = (size_t)collect_data(hashp, bufp, (int)len, set_current);
425	if (val->size == (size_t)-1)
426		return (-1);
427	if (save_p->addr != save_addr) {
428		/* We are pretty short on buffers. */
429		errno = EINVAL;			/* OUT OF BUFFERS */
430		return (-1);
431	}
432	memmove(hashp->tmp_buf, (save_p->page) + off, len);
433	val->data = (u_char *)hashp->tmp_buf;
434	return (0);
435}
436/*
437 * Count how big the total datasize is by recursing through the pages.  Then
438 * allocate a buffer and copy the data as you recurse up.
439 */
440static int
441collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
442{
443	u_int16_t *bp;
444	char *p;
445	BUFHEAD *xbp;
446	u_int16_t save_addr;
447	int mylen, totlen;
448
449	p = bufp->page;
450	bp = (u_int16_t *)p;
451	mylen = hashp->BSIZE - bp[1];
452	save_addr = bufp->addr;
453
454	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
455		totlen = len + mylen;
456		if (hashp->tmp_buf)
457			free(hashp->tmp_buf);
458		if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
459			return (-1);
460		if (set) {
461			hashp->cndx = 1;
462			if (bp[0] == 2) {	/* No more buckets in chain */
463				hashp->cpage = NULL;
464				hashp->cbucket++;
465			} else {
466				hashp->cpage =
467				    __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
468				if (!hashp->cpage)
469					return (-1);
470				else if (!((u_int16_t *)hashp->cpage->page)[0]) {
471					hashp->cbucket++;
472					hashp->cpage = NULL;
473				}
474			}
475		}
476	} else {
477		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
478		if (!xbp || ((totlen =
479		    collect_data(hashp, xbp, len + mylen, set)) < 1))
480			return (-1);
481	}
482	if (bufp->addr != save_addr) {
483		errno = EINVAL;			/* Out of buffers. */
484		return (-1);
485	}
486	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
487	return (totlen);
488}
489
490/*
491 * Fill in the key and data for this big pair.
492 */
493int
494__big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
495{
496	key->size = (size_t)collect_key(hashp, bufp, 0, val, set);
497	if (key->size == (size_t)-1)
498		return (-1);
499	key->data = (u_char *)hashp->tmp_key;
500	return (0);
501}
502
503/*
504 * Count how big the total key size is by recursing through the pages.  Then
505 * collect the data, allocate a buffer and copy the key as you recurse up.
506 */
507static int
508collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
509{
510	BUFHEAD *xbp;
511	char *p;
512	int mylen, totlen;
513	u_int16_t *bp, save_addr;
514
515	p = bufp->page;
516	bp = (u_int16_t *)p;
517	mylen = hashp->BSIZE - bp[1];
518
519	save_addr = bufp->addr;
520	totlen = len + mylen;
521	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
522		if (hashp->tmp_key != NULL)
523			free(hashp->tmp_key);
524		if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
525			return (-1);
526		if (__big_return(hashp, bufp, 1, val, set))
527			return (-1);
528	} else {
529		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
530		if (!xbp || ((totlen =
531		    collect_key(hashp, xbp, totlen, val, set)) < 1))
532			return (-1);
533	}
534	if (bufp->addr != save_addr) {
535		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
536		return (-1);
537	}
538	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
539	return (totlen);
540}
541
542/*
543 * Returns:
544 *  0 => OK
545 * -1 => error
546 */
547int
548__big_split(HTAB *hashp,
549    BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
550    BUFHEAD *np,	/* Pointer to new bucket page */
551    BUFHEAD *big_keyp,	/* Pointer to first page containing the big key/data */
552    int addr,		/* Address of big_keyp */
553    u_int32_t obucket,	/* Old Bucket */
554    SPLIT_RETURN *ret)
555{
556	BUFHEAD *bp, *tmpp;
557	DBT key, val;
558	u_int32_t change;
559	u_int16_t free_space, n, off, *tp;
560
561	bp = big_keyp;
562
563	/* Now figure out where the big key/data goes */
564	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
565		return (-1);
566	change = (__call_hash(hashp, key.data, key.size) != obucket);
567
568	if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) {
569		if (!(ret->nextp =
570		    __get_buf(hashp, ret->next_addr, big_keyp, 0)))
571			return (-1);
572	} else
573		ret->nextp = NULL;
574
575	/* Now make one of np/op point to the big key/data pair */
576#ifdef DEBUG
577	assert(np->ovfl == NULL);
578#endif
579	if (change)
580		tmpp = np;
581	else
582		tmpp = op;
583
584	tmpp->flags |= BUF_MOD;
585#ifdef DEBUG1
586	(void)fprintf(stderr,
587	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
588	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
589#endif
590	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
591	tp = (u_int16_t *)tmpp->page;
592#ifdef DEBUG
593	assert(FREESPACE(tp) >= OVFLSIZE);
594#endif
595	n = tp[0];
596	off = OFFSET(tp);
597	free_space = FREESPACE(tp);
598	tp[++n] = (u_int16_t)addr;
599	tp[++n] = OVFLPAGE;
600	tp[0] = n;
601	OFFSET(tp) = off;
602	FREESPACE(tp) = free_space - OVFLSIZE;
603
604	/*
605	 * Finally, set the new and old return values. BIG_KEYP contains a
606	 * pointer to the last page of the big key_data pair. Make sure that
607	 * big_keyp has no following page (2 elements) or create an empty
608	 * following page.
609	 */
610
611	ret->newp = np;
612	ret->oldp = op;
613
614	tp = (u_int16_t *)big_keyp->page;
615	big_keyp->flags |= BUF_MOD;
616	if (tp[0] > 2) {
617		/*
618		 * There may be either one or two offsets on this page.  If
619		 * there is one, then the overflow page is linked on normally
620		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
621		 * the second offset and needs to get stuffed in after the
622		 * next overflow page is added.
623		 */
624		n = tp[4];
625		free_space = FREESPACE(tp);
626		off = OFFSET(tp);
627		tp[0] -= 2;
628		FREESPACE(tp) = free_space + OVFLSIZE;
629		OFFSET(tp) = off;
630		tmpp = __add_ovflpage(hashp, big_keyp);
631		if (!tmpp)
632			return (-1);
633		tp[4] = n;
634	} else
635		tmpp = big_keyp;
636
637	if (change)
638		ret->newp = tmpp;
639	else
640		ret->oldp = tmpp;
641	return (0);
642}
643