1=pod
2
3=head1 NAME
4
5EVP_KDF-SCRYPT - The scrypt EVP_KDF implementation
6
7=head1 DESCRIPTION
8
9Support for computing the B<scrypt> password-based KDF through the B<EVP_KDF>
10API.
11
12The EVP_KDF-SCRYPT algorithm implements the scrypt password-based key
13derivation function, as described in RFC 7914.  It is memory-hard in the sense
14that it deliberately requires a significant amount of RAM for efficient
15computation. The intention of this is to render brute forcing of passwords on
16systems that lack large amounts of main memory (such as GPUs or ASICs)
17computationally infeasible.
18
19scrypt provides three work factors that can be customized: N, r and p. N, which
20has to be a positive power of two, is the general work factor and scales CPU
21time in an approximately linear fashion. r is the block size of the internally
22used hash function and p is the parallelization factor. Both r and p need to be
23greater than zero. The amount of RAM that scrypt requires for its computation
24is roughly (128 * N * r * p) bytes.
25
26In the original paper of Colin Percival ("Stronger Key Derivation via
27Sequential Memory-Hard Functions", 2009), the suggested values that give a
28computation time of less than 5 seconds on a 2.5 GHz Intel Core 2 Duo are N =
292^20 = 1048576, r = 8, p = 1. Consequently, the required amount of memory for
30this computation is roughly 1 GiB. On a more recent CPU (Intel i7-5930K at 3.5
31GHz), this computation takes about 3 seconds. When N, r or p are not specified,
32they default to 1048576, 8, and 1, respectively. The maximum amount of RAM that
33may be used by scrypt defaults to 1025 MiB.
34
35=head2 Identity
36
37"SCRYPT" is the name for this implementation; it
38can be used with the EVP_KDF_fetch() function.
39
40=head2 Supported parameters
41
42The supported parameters are:
43
44=over 4
45
46=item "pass" (B<OSSL_KDF_PARAM_PASSWORD>) <octet string>
47
48=item "salt" (B<OSSL_KDF_PARAM_SALT>) <octet string>
49
50These parameters work as described in L<EVP_KDF(3)/PARAMETERS>.
51
52=item "n" (B<OSSL_KDF_PARAM_SCRYPT_N>) <unsigned integer>
53
54=item "r" (B<OSSL_KDF_PARAM_SCRYPT_R>) <unsigned integer>
55
56=item "p" (B<OSSL_KDF_PARAM_SCRYPT_P>) <unsigned integer>
57
58=item "maxmem_bytes" (B<OSSL_KDF_PARAM_SCRYPT_MAXMEM>) <unsigned integer>
59
60These parameters configure the scrypt work factors N, r, maxmem and p.
61Both N and maxmem_bytes are parameters of type B<uint64_t>.
62Both r and p are parameters of type B<uint32_t>.
63
64=item "properties" (B<OSSL_KDF_PARAM_PROPERTIES>) <UTF8 string>
65
66This can be used to set the property query string when fetching the
67fixed digest internally. NULL is used if this value is not set.
68
69=back
70
71=head1 NOTES
72
73A context for scrypt can be obtained by calling:
74
75 EVP_KDF *kdf = EVP_KDF_fetch(NULL, "SCRYPT", NULL);
76 EVP_KDF_CTX *kctx = EVP_KDF_CTX_new(kdf);
77
78The output length of an scrypt key derivation is specified via the
79"keylen" parameter to the L<EVP_KDF_derive(3)> function.
80
81=head1 EXAMPLES
82
83This example derives a 64-byte long test vector using scrypt with the password
84"password", salt "NaCl" and N = 1024, r = 8, p = 16.
85
86 EVP_KDF *kdf;
87 EVP_KDF_CTX *kctx;
88 unsigned char out[64];
89 OSSL_PARAM params[6], *p = params;
90
91 kdf = EVP_KDF_fetch(NULL, "SCRYPT", NULL);
92 kctx = EVP_KDF_CTX_new(kdf);
93 EVP_KDF_free(kdf);
94
95 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_PASSWORD,
96                                          "password", (size_t)8);
97 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT,
98                                          "NaCl", (size_t)4);
99 *p++ = OSSL_PARAM_construct_uint64(OSSL_KDF_PARAM_SCRYPT_N, (uint64_t)1024);
100 *p++ = OSSL_PARAM_construct_uint32(OSSL_KDF_PARAM_SCRYPT_R, (uint32_t)8);
101 *p++ = OSSL_PARAM_construct_uint32(OSSL_KDF_PARAM_SCRYPT_P, (uint32_t)16);
102 *p = OSSL_PARAM_construct_end();
103 if (EVP_KDF_derive(kctx, out, sizeof(out), params) <= 0) {
104     error("EVP_KDF_derive");
105 }
106
107 {
108     const unsigned char expected[sizeof(out)] = {
109         0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00,
110         0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe,
111         0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30,
112         0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62,
113         0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88,
114         0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda,
115         0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d,
116         0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40
117     };
118
119     assert(!memcmp(out, expected, sizeof(out)));
120 }
121
122 EVP_KDF_CTX_free(kctx);
123
124=head1 CONFORMING TO
125
126RFC 7914
127
128=head1 SEE ALSO
129
130L<EVP_KDF(3)>,
131L<EVP_KDF_CTX_new(3)>,
132L<EVP_KDF_CTX_free(3)>,
133L<EVP_KDF_CTX_set_params(3)>,
134L<EVP_KDF_derive(3)>,
135L<EVP_KDF(3)/PARAMETERS>
136
137=head1 HISTORY
138
139This functionality was added in OpenSSL 3.0.
140
141=head1 COPYRIGHT
142
143Copyright 2017-2021 The OpenSSL Project Authors. All Rights Reserved.
144
145Licensed under the Apache License 2.0 (the "License").  You may not use
146this file except in compliance with the License.  You can obtain a copy
147in the file LICENSE in the source distribution or at
148L<https://www.openssl.org/source/license.html>.
149
150=cut
151