1/*
2 * Copyright 2013-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/*
11 * AES low level APIs are deprecated for public use, but still ok for internal
12 * use where we're using them to implement the higher level EVP interface, as is
13 * the case here.
14 */
15#include "internal/deprecated.h"
16
17#include <stdio.h>
18#include <string.h>
19#include <openssl/opensslconf.h>
20#include <openssl/evp.h>
21#include <openssl/objects.h>
22#include <openssl/aes.h>
23#include <openssl/sha.h>
24#include <openssl/rand.h>
25#include "internal/cryptlib.h"
26#include "crypto/modes.h"
27#include "internal/constant_time.h"
28#include "crypto/evp.h"
29#include "evp_local.h"
30
31typedef struct {
32    AES_KEY ks;
33    SHA256_CTX head, tail, md;
34    size_t payload_length;      /* AAD length in decrypt case */
35    union {
36        unsigned int tls_ver;
37        unsigned char tls_aad[16]; /* 13 used */
38    } aux;
39} EVP_AES_HMAC_SHA256;
40
41# define NO_PAYLOAD_LENGTH       ((size_t)-1)
42
43#if     defined(AES_ASM) &&     ( \
44        defined(__x86_64)       || defined(__x86_64__)  || \
45        defined(_M_AMD64)       || defined(_M_X64)      )
46
47# define AESNI_CAPABLE   (1<<(57-32))
48
49int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
50                          AES_KEY *key);
51int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
52                          AES_KEY *key);
53
54void aesni_cbc_encrypt(const unsigned char *in,
55                       unsigned char *out,
56                       size_t length,
57                       const AES_KEY *key, unsigned char *ivec, int enc);
58
59int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
60                         const AES_KEY *key, unsigned char iv[16],
61                         SHA256_CTX *ctx, const void *in0);
62
63# define data(ctx) ((EVP_AES_HMAC_SHA256 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
64
65static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx,
66                                          const unsigned char *inkey,
67                                          const unsigned char *iv, int enc)
68{
69    EVP_AES_HMAC_SHA256 *key = data(ctx);
70    int ret;
71
72    if (enc)
73        ret = aesni_set_encrypt_key(inkey,
74                                    EVP_CIPHER_CTX_get_key_length(ctx) * 8,
75                                    &key->ks);
76    else
77        ret = aesni_set_decrypt_key(inkey,
78                                    EVP_CIPHER_CTX_get_key_length(ctx) * 8,
79                                    &key->ks);
80
81    SHA256_Init(&key->head);    /* handy when benchmarking */
82    key->tail = key->head;
83    key->md = key->head;
84
85    key->payload_length = NO_PAYLOAD_LENGTH;
86
87    return ret < 0 ? 0 : 1;
88}
89
90# define STITCHED_CALL
91
92# if !defined(STITCHED_CALL)
93#  define aes_off 0
94# endif
95
96void sha256_block_data_order(void *c, const void *p, size_t len);
97
98static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
99{
100    const unsigned char *ptr = data;
101    size_t res;
102
103    if ((res = c->num)) {
104        res = SHA256_CBLOCK - res;
105        if (len < res)
106            res = len;
107        SHA256_Update(c, ptr, res);
108        ptr += res;
109        len -= res;
110    }
111
112    res = len % SHA256_CBLOCK;
113    len -= res;
114
115    if (len) {
116        sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);
117
118        ptr += len;
119        c->Nh += len >> 29;
120        c->Nl += len <<= 3;
121        if (c->Nl < (unsigned int)len)
122            c->Nh++;
123    }
124
125    if (res)
126        SHA256_Update(c, ptr, res);
127}
128
129# ifdef SHA256_Update
130#  undef SHA256_Update
131# endif
132# define SHA256_Update sha256_update
133
134# if !defined(OPENSSL_NO_MULTIBLOCK)
135
136typedef struct {
137    unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
138} SHA256_MB_CTX;
139typedef struct {
140    const unsigned char *ptr;
141    int blocks;
142} HASH_DESC;
143
144void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
145
146typedef struct {
147    const unsigned char *inp;
148    unsigned char *out;
149    int blocks;
150    u64 iv[2];
151} CIPH_DESC;
152
153void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
154
155static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key,
156                                         unsigned char *out,
157                                         const unsigned char *inp,
158                                         size_t inp_len, int n4x)
159{                               /* n4x is 1 or 2 */
160    HASH_DESC hash_d[8], edges[8];
161    CIPH_DESC ciph_d[8];
162    unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
163    union {
164        u64 q[16];
165        u32 d[32];
166        u8 c[128];
167    } blocks[8];
168    SHA256_MB_CTX *ctx;
169    unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
170        0;
171    size_t ret = 0;
172    u8 *IVs;
173#  if defined(BSWAP8)
174    u64 seqnum;
175#  endif
176
177    /* ask for IVs in bulk */
178    if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
179        return 0;
180
181    /* align */
182    ctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32));
183
184    frag = (unsigned int)inp_len >> (1 + n4x);
185    last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
186    if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
187        frag++;
188        last -= x4 - 1;
189    }
190
191    packlen = 5 + 16 + ((frag + 32 + 16) & -16);
192
193    /* populate descriptors with pointers and IVs */
194    hash_d[0].ptr = inp;
195    ciph_d[0].inp = inp;
196    /* 5+16 is place for header and explicit IV */
197    ciph_d[0].out = out + 5 + 16;
198    memcpy(ciph_d[0].out - 16, IVs, 16);
199    memcpy(ciph_d[0].iv, IVs, 16);
200    IVs += 16;
201
202    for (i = 1; i < x4; i++) {
203        ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
204        ciph_d[i].out = ciph_d[i - 1].out + packlen;
205        memcpy(ciph_d[i].out - 16, IVs, 16);
206        memcpy(ciph_d[i].iv, IVs, 16);
207        IVs += 16;
208    }
209
210#  if defined(BSWAP8)
211    memcpy(blocks[0].c, key->md.data, 8);
212    seqnum = BSWAP8(blocks[0].q[0]);
213#  endif
214    for (i = 0; i < x4; i++) {
215        unsigned int len = (i == (x4 - 1) ? last : frag);
216#  if !defined(BSWAP8)
217        unsigned int carry, j;
218#  endif
219
220        ctx->A[i] = key->md.h[0];
221        ctx->B[i] = key->md.h[1];
222        ctx->C[i] = key->md.h[2];
223        ctx->D[i] = key->md.h[3];
224        ctx->E[i] = key->md.h[4];
225        ctx->F[i] = key->md.h[5];
226        ctx->G[i] = key->md.h[6];
227        ctx->H[i] = key->md.h[7];
228
229        /* fix seqnum */
230#  if defined(BSWAP8)
231        blocks[i].q[0] = BSWAP8(seqnum + i);
232#  else
233        for (carry = i, j = 8; j--;) {
234            blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
235            carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
236        }
237#  endif
238        blocks[i].c[8] = ((u8 *)key->md.data)[8];
239        blocks[i].c[9] = ((u8 *)key->md.data)[9];
240        blocks[i].c[10] = ((u8 *)key->md.data)[10];
241        /* fix length */
242        blocks[i].c[11] = (u8)(len >> 8);
243        blocks[i].c[12] = (u8)(len);
244
245        memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
246        hash_d[i].ptr += 64 - 13;
247        hash_d[i].blocks = (len - (64 - 13)) / 64;
248
249        edges[i].ptr = blocks[i].c;
250        edges[i].blocks = 1;
251    }
252
253    /* hash 13-byte headers and first 64-13 bytes of inputs */
254    sha256_multi_block(ctx, edges, n4x);
255    /* hash bulk inputs */
256#  define MAXCHUNKSIZE    2048
257#  if     MAXCHUNKSIZE%64
258#   error  "MAXCHUNKSIZE is not divisible by 64"
259#  elif   MAXCHUNKSIZE
260    /*
261     * goal is to minimize pressure on L1 cache by moving in shorter steps,
262     * so that hashed data is still in the cache by the time we encrypt it
263     */
264    minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
265    if (minblocks > MAXCHUNKSIZE / 64) {
266        for (i = 0; i < x4; i++) {
267            edges[i].ptr = hash_d[i].ptr;
268            edges[i].blocks = MAXCHUNKSIZE / 64;
269            ciph_d[i].blocks = MAXCHUNKSIZE / 16;
270        }
271        do {
272            sha256_multi_block(ctx, edges, n4x);
273            aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
274
275            for (i = 0; i < x4; i++) {
276                edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
277                hash_d[i].blocks -= MAXCHUNKSIZE / 64;
278                edges[i].blocks = MAXCHUNKSIZE / 64;
279                ciph_d[i].inp += MAXCHUNKSIZE;
280                ciph_d[i].out += MAXCHUNKSIZE;
281                ciph_d[i].blocks = MAXCHUNKSIZE / 16;
282                memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
283            }
284            processed += MAXCHUNKSIZE;
285            minblocks -= MAXCHUNKSIZE / 64;
286        } while (minblocks > MAXCHUNKSIZE / 64);
287    }
288#  endif
289#  undef  MAXCHUNKSIZE
290    sha256_multi_block(ctx, hash_d, n4x);
291
292    memset(blocks, 0, sizeof(blocks));
293    for (i = 0; i < x4; i++) {
294        unsigned int len = (i == (x4 - 1) ? last : frag),
295            off = hash_d[i].blocks * 64;
296        const unsigned char *ptr = hash_d[i].ptr + off;
297
298        off = (len - processed) - (64 - 13) - off; /* remainder actually */
299        memcpy(blocks[i].c, ptr, off);
300        blocks[i].c[off] = 0x80;
301        len += 64 + 13;         /* 64 is HMAC header */
302        len *= 8;               /* convert to bits */
303        if (off < (64 - 8)) {
304#  ifdef BSWAP4
305            blocks[i].d[15] = BSWAP4(len);
306#  else
307            PUTU32(blocks[i].c + 60, len);
308#  endif
309            edges[i].blocks = 1;
310        } else {
311#  ifdef BSWAP4
312            blocks[i].d[31] = BSWAP4(len);
313#  else
314            PUTU32(blocks[i].c + 124, len);
315#  endif
316            edges[i].blocks = 2;
317        }
318        edges[i].ptr = blocks[i].c;
319    }
320
321    /* hash input tails and finalize */
322    sha256_multi_block(ctx, edges, n4x);
323
324    memset(blocks, 0, sizeof(blocks));
325    for (i = 0; i < x4; i++) {
326#  ifdef BSWAP4
327        blocks[i].d[0] = BSWAP4(ctx->A[i]);
328        ctx->A[i] = key->tail.h[0];
329        blocks[i].d[1] = BSWAP4(ctx->B[i]);
330        ctx->B[i] = key->tail.h[1];
331        blocks[i].d[2] = BSWAP4(ctx->C[i]);
332        ctx->C[i] = key->tail.h[2];
333        blocks[i].d[3] = BSWAP4(ctx->D[i]);
334        ctx->D[i] = key->tail.h[3];
335        blocks[i].d[4] = BSWAP4(ctx->E[i]);
336        ctx->E[i] = key->tail.h[4];
337        blocks[i].d[5] = BSWAP4(ctx->F[i]);
338        ctx->F[i] = key->tail.h[5];
339        blocks[i].d[6] = BSWAP4(ctx->G[i]);
340        ctx->G[i] = key->tail.h[6];
341        blocks[i].d[7] = BSWAP4(ctx->H[i]);
342        ctx->H[i] = key->tail.h[7];
343        blocks[i].c[32] = 0x80;
344        blocks[i].d[15] = BSWAP4((64 + 32) * 8);
345#  else
346        PUTU32(blocks[i].c + 0, ctx->A[i]);
347        ctx->A[i] = key->tail.h[0];
348        PUTU32(blocks[i].c + 4, ctx->B[i]);
349        ctx->B[i] = key->tail.h[1];
350        PUTU32(blocks[i].c + 8, ctx->C[i]);
351        ctx->C[i] = key->tail.h[2];
352        PUTU32(blocks[i].c + 12, ctx->D[i]);
353        ctx->D[i] = key->tail.h[3];
354        PUTU32(blocks[i].c + 16, ctx->E[i]);
355        ctx->E[i] = key->tail.h[4];
356        PUTU32(blocks[i].c + 20, ctx->F[i]);
357        ctx->F[i] = key->tail.h[5];
358        PUTU32(blocks[i].c + 24, ctx->G[i]);
359        ctx->G[i] = key->tail.h[6];
360        PUTU32(blocks[i].c + 28, ctx->H[i]);
361        ctx->H[i] = key->tail.h[7];
362        blocks[i].c[32] = 0x80;
363        PUTU32(blocks[i].c + 60, (64 + 32) * 8);
364#  endif
365        edges[i].ptr = blocks[i].c;
366        edges[i].blocks = 1;
367    }
368
369    /* finalize MACs */
370    sha256_multi_block(ctx, edges, n4x);
371
372    for (i = 0; i < x4; i++) {
373        unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
374        unsigned char *out0 = out;
375
376        memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
377        ciph_d[i].inp = ciph_d[i].out;
378
379        out += 5 + 16 + len;
380
381        /* write MAC */
382        PUTU32(out + 0, ctx->A[i]);
383        PUTU32(out + 4, ctx->B[i]);
384        PUTU32(out + 8, ctx->C[i]);
385        PUTU32(out + 12, ctx->D[i]);
386        PUTU32(out + 16, ctx->E[i]);
387        PUTU32(out + 20, ctx->F[i]);
388        PUTU32(out + 24, ctx->G[i]);
389        PUTU32(out + 28, ctx->H[i]);
390        out += 32;
391        len += 32;
392
393        /* pad */
394        pad = 15 - len % 16;
395        for (j = 0; j <= pad; j++)
396            *(out++) = pad;
397        len += pad + 1;
398
399        ciph_d[i].blocks = (len - processed) / 16;
400        len += 16;              /* account for explicit iv */
401
402        /* arrange header */
403        out0[0] = ((u8 *)key->md.data)[8];
404        out0[1] = ((u8 *)key->md.data)[9];
405        out0[2] = ((u8 *)key->md.data)[10];
406        out0[3] = (u8)(len >> 8);
407        out0[4] = (u8)(len);
408
409        ret += len + 5;
410        inp += frag;
411    }
412
413    aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
414
415    OPENSSL_cleanse(blocks, sizeof(blocks));
416    OPENSSL_cleanse(ctx, sizeof(*ctx));
417
418    return ret;
419}
420# endif
421
422static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx,
423                                        unsigned char *out,
424                                        const unsigned char *in, size_t len)
425{
426    EVP_AES_HMAC_SHA256 *key = data(ctx);
427    unsigned int l;
428    size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
429                                                * later */
430        sha_off = 0;
431# if defined(STITCHED_CALL)
432    size_t aes_off = 0, blocks;
433
434    sha_off = SHA256_CBLOCK - key->md.num;
435# endif
436
437    key->payload_length = NO_PAYLOAD_LENGTH;
438
439    if (len % AES_BLOCK_SIZE)
440        return 0;
441
442    if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
443        if (plen == NO_PAYLOAD_LENGTH)
444            plen = len;
445        else if (len !=
446                 ((plen + SHA256_DIGEST_LENGTH +
447                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
448            return 0;
449        else if (key->aux.tls_ver >= TLS1_1_VERSION)
450            iv = AES_BLOCK_SIZE;
451
452# if defined(STITCHED_CALL)
453        /*
454         * Assembly stitch handles AVX-capable processors, but its
455         * performance is not optimal on AMD Jaguar, ~40% worse, for
456         * unknown reasons. Incidentally processor in question supports
457         * AVX, but not AMD-specific XOP extension, which can be used
458         * to identify it and avoid stitch invocation. So that after we
459         * establish that current CPU supports AVX, we even see if it's
460         * either even XOP-capable Bulldozer-based or GenuineIntel one.
461         * But SHAEXT-capable go ahead...
462         */
463        if (((OPENSSL_ia32cap_P[2] & (1 << 29)) ||         /* SHAEXT? */
464             ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */
465              ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32)))   /* XOP? */
466               | (OPENSSL_ia32cap_P[0] & (1 << 30))))) &&  /* "Intel CPU"? */
467            plen > (sha_off + iv) &&
468            (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
469            SHA256_Update(&key->md, in + iv, sha_off);
470
471            (void)aesni_cbc_sha256_enc(in, out, blocks, &key->ks,
472                                       ctx->iv, &key->md, in + iv + sha_off);
473            blocks *= SHA256_CBLOCK;
474            aes_off += blocks;
475            sha_off += blocks;
476            key->md.Nh += blocks >> 29;
477            key->md.Nl += blocks <<= 3;
478            if (key->md.Nl < (unsigned int)blocks)
479                key->md.Nh++;
480        } else {
481            sha_off = 0;
482        }
483# endif
484        sha_off += iv;
485        SHA256_Update(&key->md, in + sha_off, plen - sha_off);
486
487        if (plen != len) {      /* "TLS" mode of operation */
488            if (in != out)
489                memcpy(out + aes_off, in + aes_off, plen - aes_off);
490
491            /* calculate HMAC and append it to payload */
492            SHA256_Final(out + plen, &key->md);
493            key->md = key->tail;
494            SHA256_Update(&key->md, out + plen, SHA256_DIGEST_LENGTH);
495            SHA256_Final(out + plen, &key->md);
496
497            /* pad the payload|hmac */
498            plen += SHA256_DIGEST_LENGTH;
499            for (l = len - plen - 1; plen < len; plen++)
500                out[plen] = l;
501            /* encrypt HMAC|padding at once */
502            aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
503                              &key->ks, ctx->iv, 1);
504        } else {
505            aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
506                              &key->ks, ctx->iv, 1);
507        }
508    } else {
509        union {
510            unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
511            unsigned char c[64 + SHA256_DIGEST_LENGTH];
512        } mac, *pmac;
513
514        /* arrange cache line alignment */
515        pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));
516
517        /* decrypt HMAC|padding at once */
518        aesni_cbc_encrypt(in, out, len, &key->ks,
519                          ctx->iv, 0);
520
521        if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
522            size_t inp_len, mask, j, i;
523            unsigned int res, maxpad, pad, bitlen;
524            int ret = 1;
525            union {
526                unsigned int u[SHA_LBLOCK];
527                unsigned char c[SHA256_CBLOCK];
528            } *data = (void *)key->md.data;
529
530            if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
531                >= TLS1_1_VERSION)
532                iv = AES_BLOCK_SIZE;
533
534            if (len < (iv + SHA256_DIGEST_LENGTH + 1))
535                return 0;
536
537            /* omit explicit iv */
538            out += iv;
539            len -= iv;
540
541            /* figure out payload length */
542            pad = out[len - 1];
543            maxpad = len - (SHA256_DIGEST_LENGTH + 1);
544            maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
545            maxpad &= 255;
546
547            mask = constant_time_ge(maxpad, pad);
548            ret &= mask;
549            /*
550             * If pad is invalid then we will fail the above test but we must
551             * continue anyway because we are in constant time code. However,
552             * we'll use the maxpad value instead of the supplied pad to make
553             * sure we perform well defined pointer arithmetic.
554             */
555            pad = constant_time_select(mask, pad, maxpad);
556
557            inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
558
559            key->aux.tls_aad[plen - 2] = inp_len >> 8;
560            key->aux.tls_aad[plen - 1] = inp_len;
561
562            /* calculate HMAC */
563            key->md = key->head;
564            SHA256_Update(&key->md, key->aux.tls_aad, plen);
565
566# if 1      /* see original reference version in #else */
567            len -= SHA256_DIGEST_LENGTH; /* amend mac */
568            if (len >= (256 + SHA256_CBLOCK)) {
569                j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
570                j += SHA256_CBLOCK - key->md.num;
571                SHA256_Update(&key->md, out, j);
572                out += j;
573                len -= j;
574                inp_len -= j;
575            }
576
577            /* but pretend as if we hashed padded payload */
578            bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
579#  ifdef BSWAP4
580            bitlen = BSWAP4(bitlen);
581#  else
582            mac.c[0] = 0;
583            mac.c[1] = (unsigned char)(bitlen >> 16);
584            mac.c[2] = (unsigned char)(bitlen >> 8);
585            mac.c[3] = (unsigned char)bitlen;
586            bitlen = mac.u[0];
587#  endif
588
589            pmac->u[0] = 0;
590            pmac->u[1] = 0;
591            pmac->u[2] = 0;
592            pmac->u[3] = 0;
593            pmac->u[4] = 0;
594            pmac->u[5] = 0;
595            pmac->u[6] = 0;
596            pmac->u[7] = 0;
597
598            for (res = key->md.num, j = 0; j < len; j++) {
599                size_t c = out[j];
600                mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
601                c &= mask;
602                c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
603                data->c[res++] = (unsigned char)c;
604
605                if (res != SHA256_CBLOCK)
606                    continue;
607
608                /* j is not incremented yet */
609                mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
610                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
611                sha256_block_data_order(&key->md, data, 1);
612                mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
613                pmac->u[0] |= key->md.h[0] & mask;
614                pmac->u[1] |= key->md.h[1] & mask;
615                pmac->u[2] |= key->md.h[2] & mask;
616                pmac->u[3] |= key->md.h[3] & mask;
617                pmac->u[4] |= key->md.h[4] & mask;
618                pmac->u[5] |= key->md.h[5] & mask;
619                pmac->u[6] |= key->md.h[6] & mask;
620                pmac->u[7] |= key->md.h[7] & mask;
621                res = 0;
622            }
623
624            for (i = res; i < SHA256_CBLOCK; i++, j++)
625                data->c[i] = 0;
626
627            if (res > SHA256_CBLOCK - 8) {
628                mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
629                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
630                sha256_block_data_order(&key->md, data, 1);
631                mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
632                pmac->u[0] |= key->md.h[0] & mask;
633                pmac->u[1] |= key->md.h[1] & mask;
634                pmac->u[2] |= key->md.h[2] & mask;
635                pmac->u[3] |= key->md.h[3] & mask;
636                pmac->u[4] |= key->md.h[4] & mask;
637                pmac->u[5] |= key->md.h[5] & mask;
638                pmac->u[6] |= key->md.h[6] & mask;
639                pmac->u[7] |= key->md.h[7] & mask;
640
641                memset(data, 0, SHA256_CBLOCK);
642                j += 64;
643            }
644            data->u[SHA_LBLOCK - 1] = bitlen;
645            sha256_block_data_order(&key->md, data, 1);
646            mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
647            pmac->u[0] |= key->md.h[0] & mask;
648            pmac->u[1] |= key->md.h[1] & mask;
649            pmac->u[2] |= key->md.h[2] & mask;
650            pmac->u[3] |= key->md.h[3] & mask;
651            pmac->u[4] |= key->md.h[4] & mask;
652            pmac->u[5] |= key->md.h[5] & mask;
653            pmac->u[6] |= key->md.h[6] & mask;
654            pmac->u[7] |= key->md.h[7] & mask;
655
656#  ifdef BSWAP4
657            pmac->u[0] = BSWAP4(pmac->u[0]);
658            pmac->u[1] = BSWAP4(pmac->u[1]);
659            pmac->u[2] = BSWAP4(pmac->u[2]);
660            pmac->u[3] = BSWAP4(pmac->u[3]);
661            pmac->u[4] = BSWAP4(pmac->u[4]);
662            pmac->u[5] = BSWAP4(pmac->u[5]);
663            pmac->u[6] = BSWAP4(pmac->u[6]);
664            pmac->u[7] = BSWAP4(pmac->u[7]);
665#  else
666            for (i = 0; i < 8; i++) {
667                res = pmac->u[i];
668                pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
669                pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
670                pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
671                pmac->c[4 * i + 3] = (unsigned char)res;
672            }
673#  endif
674            len += SHA256_DIGEST_LENGTH;
675# else
676            SHA256_Update(&key->md, out, inp_len);
677            res = key->md.num;
678            SHA256_Final(pmac->c, &key->md);
679
680            {
681                unsigned int inp_blocks, pad_blocks;
682
683                /* but pretend as if we hashed padded payload */
684                inp_blocks =
685                    1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
686                res += (unsigned int)(len - inp_len);
687                pad_blocks = res / SHA256_CBLOCK;
688                res %= SHA256_CBLOCK;
689                pad_blocks +=
690                    1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
691                for (; inp_blocks < pad_blocks; inp_blocks++)
692                    sha1_block_data_order(&key->md, data, 1);
693            }
694# endif      /* pre-lucky-13 reference version of above */
695            key->md = key->tail;
696            SHA256_Update(&key->md, pmac->c, SHA256_DIGEST_LENGTH);
697            SHA256_Final(pmac->c, &key->md);
698
699            /* verify HMAC */
700            out += inp_len;
701            len -= inp_len;
702# if 1      /* see original reference version in #else */
703            {
704                unsigned char *p =
705                    out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
706                size_t off = out - p;
707                unsigned int c, cmask;
708
709                for (res = 0, i = 0, j = 0; j < maxpad + SHA256_DIGEST_LENGTH;
710                     j++) {
711                    c = p[j];
712                    cmask =
713                        ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
714                        (sizeof(int) * 8 - 1);
715                    res |= (c ^ pad) & ~cmask; /* ... and padding */
716                    cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
717                    res |= (c ^ pmac->c[i]) & cmask;
718                    i += 1 & cmask;
719                }
720
721                res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
722                ret &= (int)~res;
723            }
724# else      /* pre-lucky-13 reference version of above */
725            for (res = 0, i = 0; i < SHA256_DIGEST_LENGTH; i++)
726                res |= out[i] ^ pmac->c[i];
727            res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
728            ret &= (int)~res;
729
730            /* verify padding */
731            pad = (pad & ~res) | (maxpad & res);
732            out = out + len - 1 - pad;
733            for (res = 0, i = 0; i < pad; i++)
734                res |= out[i] ^ pad;
735
736            res = (0 - res) >> (sizeof(res) * 8 - 1);
737            ret &= (int)~res;
738# endif
739            return ret;
740        } else {
741            SHA256_Update(&key->md, out, len);
742        }
743    }
744
745    return 1;
746}
747
748static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
749                                      void *ptr)
750{
751    EVP_AES_HMAC_SHA256 *key = data(ctx);
752    unsigned int u_arg = (unsigned int)arg;
753
754    switch (type) {
755    case EVP_CTRL_AEAD_SET_MAC_KEY:
756        {
757            unsigned int i;
758            unsigned char hmac_key[64];
759
760            memset(hmac_key, 0, sizeof(hmac_key));
761
762            if (arg < 0)
763                return -1;
764
765            if (u_arg > sizeof(hmac_key)) {
766                SHA256_Init(&key->head);
767                SHA256_Update(&key->head, ptr, arg);
768                SHA256_Final(hmac_key, &key->head);
769            } else {
770                memcpy(hmac_key, ptr, arg);
771            }
772
773            for (i = 0; i < sizeof(hmac_key); i++)
774                hmac_key[i] ^= 0x36; /* ipad */
775            SHA256_Init(&key->head);
776            SHA256_Update(&key->head, hmac_key, sizeof(hmac_key));
777
778            for (i = 0; i < sizeof(hmac_key); i++)
779                hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
780            SHA256_Init(&key->tail);
781            SHA256_Update(&key->tail, hmac_key, sizeof(hmac_key));
782
783            OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
784
785            return 1;
786        }
787    case EVP_CTRL_AEAD_TLS1_AAD:
788        {
789            unsigned char *p = ptr;
790            unsigned int len;
791
792            if (arg != EVP_AEAD_TLS1_AAD_LEN)
793                return -1;
794
795            len = p[arg - 2] << 8 | p[arg - 1];
796
797            if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
798                key->payload_length = len;
799                if ((key->aux.tls_ver =
800                     p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
801                    if (len < AES_BLOCK_SIZE)
802                        return 0;
803                    len -= AES_BLOCK_SIZE;
804                    p[arg - 2] = len >> 8;
805                    p[arg - 1] = len;
806                }
807                key->md = key->head;
808                SHA256_Update(&key->md, p, arg);
809
810                return (int)(((len + SHA256_DIGEST_LENGTH +
811                               AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
812                             - len);
813            } else {
814                memcpy(key->aux.tls_aad, ptr, arg);
815                key->payload_length = arg;
816
817                return SHA256_DIGEST_LENGTH;
818            }
819        }
820# if !defined(OPENSSL_NO_MULTIBLOCK)
821    case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
822        return (int)(5 + 16 + ((arg + 32 + 16) & -16));
823    case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
824        {
825            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
826                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
827            unsigned int n4x = 1, x4;
828            unsigned int frag, last, packlen, inp_len;
829
830            if (arg < 0)
831                return -1;
832
833            if (u_arg < sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
834                return -1;
835
836            inp_len = param->inp[11] << 8 | param->inp[12];
837
838            if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
839                if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
840                    return -1;
841
842                if (inp_len) {
843                    if (inp_len < 4096)
844                        return 0; /* too short */
845
846                    if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
847                        n4x = 2; /* AVX2 */
848                } else if ((n4x = param->interleave / 4) && n4x <= 2)
849                    inp_len = param->len;
850                else
851                    return -1;
852
853                key->md = key->head;
854                SHA256_Update(&key->md, param->inp, 13);
855
856                x4 = 4 * n4x;
857                n4x += 1;
858
859                frag = inp_len >> n4x;
860                last = inp_len + frag - (frag << n4x);
861                if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
862                    frag++;
863                    last -= x4 - 1;
864                }
865
866                packlen = 5 + 16 + ((frag + 32 + 16) & -16);
867                packlen = (packlen << n4x) - packlen;
868                packlen += 5 + 16 + ((last + 32 + 16) & -16);
869
870                param->interleave = x4;
871
872                return (int)packlen;
873            } else
874                return -1;      /* not yet */
875        }
876    case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
877        {
878            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
879                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
880
881            return (int)tls1_1_multi_block_encrypt(key, param->out,
882                                                   param->inp, param->len,
883                                                   param->interleave / 4);
884        }
885    case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
886# endif
887    default:
888        return -1;
889    }
890}
891
892static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = {
893# ifdef NID_aes_128_cbc_hmac_sha256
894    NID_aes_128_cbc_hmac_sha256,
895# else
896    NID_undef,
897# endif
898    AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
899    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
900        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
901    EVP_ORIG_GLOBAL,
902    aesni_cbc_hmac_sha256_init_key,
903    aesni_cbc_hmac_sha256_cipher,
904    NULL,
905    sizeof(EVP_AES_HMAC_SHA256),
906    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
907    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
908    aesni_cbc_hmac_sha256_ctrl,
909    NULL
910};
911
912static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = {
913# ifdef NID_aes_256_cbc_hmac_sha256
914    NID_aes_256_cbc_hmac_sha256,
915# else
916    NID_undef,
917# endif
918    AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
919    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
920        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
921    EVP_ORIG_GLOBAL,
922    aesni_cbc_hmac_sha256_init_key,
923    aesni_cbc_hmac_sha256_cipher,
924    NULL,
925    sizeof(EVP_AES_HMAC_SHA256),
926    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
927    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
928    aesni_cbc_hmac_sha256_ctrl,
929    NULL
930};
931
932const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
933{
934    return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
935            aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
936            &aesni_128_cbc_hmac_sha256_cipher : NULL);
937}
938
939const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
940{
941    return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
942            aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
943            &aesni_256_cbc_hmac_sha256_cipher : NULL);
944}
945#else
946const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
947{
948    return NULL;
949}
950
951const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
952{
953    return NULL;
954}
955#endif
956