1/*
2 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/* Copyright 2011 Google Inc.
11 *
12 * Licensed under the Apache License, Version 2.0 (the "License");
13 *
14 * you may not use this file except in compliance with the License.
15 * You may obtain a copy of the License at
16 *
17 *     http://www.apache.org/licenses/LICENSE-2.0
18 *
19 *  Unless required by applicable law or agreed to in writing, software
20 *  distributed under the License is distributed on an "AS IS" BASIS,
21 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22 *  See the License for the specific language governing permissions and
23 *  limitations under the License.
24 */
25
26/*
27 * ECDSA low level APIs are deprecated for public use, but still ok for
28 * internal use.
29 */
30#include "internal/deprecated.h"
31
32/*
33 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34 *
35 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37 * work which got its smarts from Daniel J. Bernstein's work on the same.
38 */
39
40#include <openssl/e_os2.h>
41
42#include <string.h>
43#include <openssl/err.h>
44#include "ec_local.h"
45
46#include "internal/numbers.h"
47
48#ifndef INT128_MAX
49# error "Your compiler doesn't appear to support 128-bit integer types"
50#endif
51
52typedef uint8_t u8;
53typedef uint64_t u64;
54
55/*
56 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57 * element of this field into 66 bytes where the most significant byte
58 * contains only a single bit. We call this an felem_bytearray.
59 */
60
61typedef u8 felem_bytearray[66];
62
63/*
64 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65 * These values are big-endian.
66 */
67static const felem_bytearray nistp521_curve_params[5] = {
68    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76     0xff, 0xff},
77    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85     0xff, 0xfc},
86    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94     0x3f, 0x00},
95    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103     0xbd, 0x66},
104    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112     0x66, 0x50}
113};
114
115/*-
116 * The representation of field elements.
117 * ------------------------------------
118 *
119 * We represent field elements with nine values. These values are either 64 or
120 * 128 bits and the field element represented is:
121 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123 * 58 bits apart, but are greater than 58 bits in length, the most significant
124 * bits of each limb overlap with the least significant bits of the next.
125 *
126 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127 * 'largefelem' */
128
129#define NLIMBS 9
130
131typedef uint64_t limb;
132typedef limb limb_aX __attribute((__aligned__(1)));
133typedef limb felem[NLIMBS];
134typedef uint128_t largefelem[NLIMBS];
135
136static const limb bottom57bits = 0x1ffffffffffffff;
137static const limb bottom58bits = 0x3ffffffffffffff;
138
139/*
140 * bin66_to_felem takes a little-endian byte array and converts it into felem
141 * form. This assumes that the CPU is little-endian.
142 */
143static void bin66_to_felem(felem out, const u8 in[66])
144{
145    out[0] = (*((limb *) & in[0])) & bottom58bits;
146    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154}
155
156/*
157 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158 * array. This assumes that the CPU is little-endian.
159 */
160static void felem_to_bin66(u8 out[66], const felem in)
161{
162    memset(out, 0, 66);
163    (*((limb *) & out[0])) = in[0];
164    (*((limb_aX *) & out[7])) |= in[1] << 2;
165    (*((limb_aX *) & out[14])) |= in[2] << 4;
166    (*((limb_aX *) & out[21])) |= in[3] << 6;
167    (*((limb_aX *) & out[29])) = in[4];
168    (*((limb_aX *) & out[36])) |= in[5] << 2;
169    (*((limb_aX *) & out[43])) |= in[6] << 4;
170    (*((limb_aX *) & out[50])) |= in[7] << 6;
171    (*((limb_aX *) & out[58])) = in[8];
172}
173
174/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175static int BN_to_felem(felem out, const BIGNUM *bn)
176{
177    felem_bytearray b_out;
178    int num_bytes;
179
180    if (BN_is_negative(bn)) {
181        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182        return 0;
183    }
184    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185    if (num_bytes < 0) {
186        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187        return 0;
188    }
189    bin66_to_felem(out, b_out);
190    return 1;
191}
192
193/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195{
196    felem_bytearray b_out;
197    felem_to_bin66(b_out, in);
198    return BN_lebin2bn(b_out, sizeof(b_out), out);
199}
200
201/*-
202 * Field operations
203 * ----------------
204 */
205
206static void felem_one(felem out)
207{
208    out[0] = 1;
209    out[1] = 0;
210    out[2] = 0;
211    out[3] = 0;
212    out[4] = 0;
213    out[5] = 0;
214    out[6] = 0;
215    out[7] = 0;
216    out[8] = 0;
217}
218
219static void felem_assign(felem out, const felem in)
220{
221    out[0] = in[0];
222    out[1] = in[1];
223    out[2] = in[2];
224    out[3] = in[3];
225    out[4] = in[4];
226    out[5] = in[5];
227    out[6] = in[6];
228    out[7] = in[7];
229    out[8] = in[8];
230}
231
232/* felem_sum64 sets out = out + in. */
233static void felem_sum64(felem out, const felem in)
234{
235    out[0] += in[0];
236    out[1] += in[1];
237    out[2] += in[2];
238    out[3] += in[3];
239    out[4] += in[4];
240    out[5] += in[5];
241    out[6] += in[6];
242    out[7] += in[7];
243    out[8] += in[8];
244}
245
246/* felem_scalar sets out = in * scalar */
247static void felem_scalar(felem out, const felem in, limb scalar)
248{
249    out[0] = in[0] * scalar;
250    out[1] = in[1] * scalar;
251    out[2] = in[2] * scalar;
252    out[3] = in[3] * scalar;
253    out[4] = in[4] * scalar;
254    out[5] = in[5] * scalar;
255    out[6] = in[6] * scalar;
256    out[7] = in[7] * scalar;
257    out[8] = in[8] * scalar;
258}
259
260/* felem_scalar64 sets out = out * scalar */
261static void felem_scalar64(felem out, limb scalar)
262{
263    out[0] *= scalar;
264    out[1] *= scalar;
265    out[2] *= scalar;
266    out[3] *= scalar;
267    out[4] *= scalar;
268    out[5] *= scalar;
269    out[6] *= scalar;
270    out[7] *= scalar;
271    out[8] *= scalar;
272}
273
274/* felem_scalar128 sets out = out * scalar */
275static void felem_scalar128(largefelem out, limb scalar)
276{
277    out[0] *= scalar;
278    out[1] *= scalar;
279    out[2] *= scalar;
280    out[3] *= scalar;
281    out[4] *= scalar;
282    out[5] *= scalar;
283    out[6] *= scalar;
284    out[7] *= scalar;
285    out[8] *= scalar;
286}
287
288/*-
289 * felem_neg sets |out| to |-in|
290 * On entry:
291 *   in[i] < 2^59 + 2^14
292 * On exit:
293 *   out[i] < 2^62
294 */
295static void felem_neg(felem out, const felem in)
296{
297    /* In order to prevent underflow, we subtract from 0 mod p. */
298    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301    out[0] = two62m3 - in[0];
302    out[1] = two62m2 - in[1];
303    out[2] = two62m2 - in[2];
304    out[3] = two62m2 - in[3];
305    out[4] = two62m2 - in[4];
306    out[5] = two62m2 - in[5];
307    out[6] = two62m2 - in[6];
308    out[7] = two62m2 - in[7];
309    out[8] = two62m2 - in[8];
310}
311
312/*-
313 * felem_diff64 subtracts |in| from |out|
314 * On entry:
315 *   in[i] < 2^59 + 2^14
316 * On exit:
317 *   out[i] < out[i] + 2^62
318 */
319static void felem_diff64(felem out, const felem in)
320{
321    /*
322     * In order to prevent underflow, we add 0 mod p before subtracting.
323     */
324    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327    out[0] += two62m3 - in[0];
328    out[1] += two62m2 - in[1];
329    out[2] += two62m2 - in[2];
330    out[3] += two62m2 - in[3];
331    out[4] += two62m2 - in[4];
332    out[5] += two62m2 - in[5];
333    out[6] += two62m2 - in[6];
334    out[7] += two62m2 - in[7];
335    out[8] += two62m2 - in[8];
336}
337
338/*-
339 * felem_diff_128_64 subtracts |in| from |out|
340 * On entry:
341 *   in[i] < 2^62 + 2^17
342 * On exit:
343 *   out[i] < out[i] + 2^63
344 */
345static void felem_diff_128_64(largefelem out, const felem in)
346{
347    /*
348     * In order to prevent underflow, we add 64p mod p (which is equivalent
349     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350     * digit number with all bits set to 1. See "The representation of field
351     * elements" comment above for a description of how limbs are used to
352     * represent a number. 64p is represented with 8 limbs containing a number
353     * with 58 bits set and one limb with a number with 57 bits set.
354     */
355    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358    out[0] += two63m6 - in[0];
359    out[1] += two63m5 - in[1];
360    out[2] += two63m5 - in[2];
361    out[3] += two63m5 - in[3];
362    out[4] += two63m5 - in[4];
363    out[5] += two63m5 - in[5];
364    out[6] += two63m5 - in[6];
365    out[7] += two63m5 - in[7];
366    out[8] += two63m5 - in[8];
367}
368
369/*-
370 * felem_diff_128_64 subtracts |in| from |out|
371 * On entry:
372 *   in[i] < 2^126
373 * On exit:
374 *   out[i] < out[i] + 2^127 - 2^69
375 */
376static void felem_diff128(largefelem out, const largefelem in)
377{
378    /*
379     * In order to prevent underflow, we add 0 mod p before subtracting.
380     */
381    static const uint128_t two127m70 =
382        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383    static const uint128_t two127m69 =
384        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386    out[0] += (two127m70 - in[0]);
387    out[1] += (two127m69 - in[1]);
388    out[2] += (two127m69 - in[2]);
389    out[3] += (two127m69 - in[3]);
390    out[4] += (two127m69 - in[4]);
391    out[5] += (two127m69 - in[5]);
392    out[6] += (two127m69 - in[6]);
393    out[7] += (two127m69 - in[7]);
394    out[8] += (two127m69 - in[8]);
395}
396
397/*-
398 * felem_square sets |out| = |in|^2
399 * On entry:
400 *   in[i] < 2^62
401 * On exit:
402 *   out[i] < 17 * max(in[i]) * max(in[i])
403 */
404static void felem_square_ref(largefelem out, const felem in)
405{
406    felem inx2, inx4;
407    felem_scalar(inx2, in, 2);
408    felem_scalar(inx4, in, 4);
409
410    /*-
411     * We have many cases were we want to do
412     *   in[x] * in[y] +
413     *   in[y] * in[x]
414     * This is obviously just
415     *   2 * in[x] * in[y]
416     * However, rather than do the doubling on the 128 bit result, we
417     * double one of the inputs to the multiplication by reading from
418     * |inx2|
419     */
420
421    out[0] = ((uint128_t) in[0]) * in[0];
422    out[1] = ((uint128_t) in[0]) * inx2[1];
423    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425    out[4] = ((uint128_t) in[0]) * inx2[4] +
426             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427    out[5] = ((uint128_t) in[0]) * inx2[5] +
428             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429    out[6] = ((uint128_t) in[0]) * inx2[6] +
430             ((uint128_t) in[1]) * inx2[5] +
431             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432    out[7] = ((uint128_t) in[0]) * inx2[7] +
433             ((uint128_t) in[1]) * inx2[6] +
434             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435    out[8] = ((uint128_t) in[0]) * inx2[8] +
436             ((uint128_t) in[1]) * inx2[7] +
437             ((uint128_t) in[2]) * inx2[6] +
438             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440    /*
441     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442     * They correspond to locations one bit up from the limbs produced above
443     * so we would have to multiply by two to align them. Again, rather than
444     * operate on the 128-bit result, we double one of the inputs to the
445     * multiplication. If we want to double for both this reason, and the
446     * reason above, then we end up multiplying by four.
447     */
448
449    /* 9 */
450    out[0] += ((uint128_t) in[1]) * inx4[8] +
451              ((uint128_t) in[2]) * inx4[7] +
452              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454    /* 10 */
455    out[1] += ((uint128_t) in[2]) * inx4[8] +
456              ((uint128_t) in[3]) * inx4[7] +
457              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459    /* 11 */
460    out[2] += ((uint128_t) in[3]) * inx4[8] +
461              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463    /* 12 */
464    out[3] += ((uint128_t) in[4]) * inx4[8] +
465              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467    /* 13 */
468    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470    /* 14 */
471    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473    /* 15 */
474    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476    /* 16 */
477    out[7] += ((uint128_t) in[8]) * inx2[8];
478}
479
480/*-
481 * felem_mul sets |out| = |in1| * |in2|
482 * On entry:
483 *   in1[i] < 2^64
484 *   in2[i] < 2^63
485 * On exit:
486 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487 */
488static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489{
490    felem in2x2;
491    felem_scalar(in2x2, in2, 2);
492
493    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495    out[1] = ((uint128_t) in1[0]) * in2[1] +
496             ((uint128_t) in1[1]) * in2[0];
497
498    out[2] = ((uint128_t) in1[0]) * in2[2] +
499             ((uint128_t) in1[1]) * in2[1] +
500             ((uint128_t) in1[2]) * in2[0];
501
502    out[3] = ((uint128_t) in1[0]) * in2[3] +
503             ((uint128_t) in1[1]) * in2[2] +
504             ((uint128_t) in1[2]) * in2[1] +
505             ((uint128_t) in1[3]) * in2[0];
506
507    out[4] = ((uint128_t) in1[0]) * in2[4] +
508             ((uint128_t) in1[1]) * in2[3] +
509             ((uint128_t) in1[2]) * in2[2] +
510             ((uint128_t) in1[3]) * in2[1] +
511             ((uint128_t) in1[4]) * in2[0];
512
513    out[5] = ((uint128_t) in1[0]) * in2[5] +
514             ((uint128_t) in1[1]) * in2[4] +
515             ((uint128_t) in1[2]) * in2[3] +
516             ((uint128_t) in1[3]) * in2[2] +
517             ((uint128_t) in1[4]) * in2[1] +
518             ((uint128_t) in1[5]) * in2[0];
519
520    out[6] = ((uint128_t) in1[0]) * in2[6] +
521             ((uint128_t) in1[1]) * in2[5] +
522             ((uint128_t) in1[2]) * in2[4] +
523             ((uint128_t) in1[3]) * in2[3] +
524             ((uint128_t) in1[4]) * in2[2] +
525             ((uint128_t) in1[5]) * in2[1] +
526             ((uint128_t) in1[6]) * in2[0];
527
528    out[7] = ((uint128_t) in1[0]) * in2[7] +
529             ((uint128_t) in1[1]) * in2[6] +
530             ((uint128_t) in1[2]) * in2[5] +
531             ((uint128_t) in1[3]) * in2[4] +
532             ((uint128_t) in1[4]) * in2[3] +
533             ((uint128_t) in1[5]) * in2[2] +
534             ((uint128_t) in1[6]) * in2[1] +
535             ((uint128_t) in1[7]) * in2[0];
536
537    out[8] = ((uint128_t) in1[0]) * in2[8] +
538             ((uint128_t) in1[1]) * in2[7] +
539             ((uint128_t) in1[2]) * in2[6] +
540             ((uint128_t) in1[3]) * in2[5] +
541             ((uint128_t) in1[4]) * in2[4] +
542             ((uint128_t) in1[5]) * in2[3] +
543             ((uint128_t) in1[6]) * in2[2] +
544             ((uint128_t) in1[7]) * in2[1] +
545             ((uint128_t) in1[8]) * in2[0];
546
547    /* See comment in felem_square about the use of in2x2 here */
548
549    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550              ((uint128_t) in1[2]) * in2x2[7] +
551              ((uint128_t) in1[3]) * in2x2[6] +
552              ((uint128_t) in1[4]) * in2x2[5] +
553              ((uint128_t) in1[5]) * in2x2[4] +
554              ((uint128_t) in1[6]) * in2x2[3] +
555              ((uint128_t) in1[7]) * in2x2[2] +
556              ((uint128_t) in1[8]) * in2x2[1];
557
558    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559              ((uint128_t) in1[3]) * in2x2[7] +
560              ((uint128_t) in1[4]) * in2x2[6] +
561              ((uint128_t) in1[5]) * in2x2[5] +
562              ((uint128_t) in1[6]) * in2x2[4] +
563              ((uint128_t) in1[7]) * in2x2[3] +
564              ((uint128_t) in1[8]) * in2x2[2];
565
566    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567              ((uint128_t) in1[4]) * in2x2[7] +
568              ((uint128_t) in1[5]) * in2x2[6] +
569              ((uint128_t) in1[6]) * in2x2[5] +
570              ((uint128_t) in1[7]) * in2x2[4] +
571              ((uint128_t) in1[8]) * in2x2[3];
572
573    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574              ((uint128_t) in1[5]) * in2x2[7] +
575              ((uint128_t) in1[6]) * in2x2[6] +
576              ((uint128_t) in1[7]) * in2x2[5] +
577              ((uint128_t) in1[8]) * in2x2[4];
578
579    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580              ((uint128_t) in1[6]) * in2x2[7] +
581              ((uint128_t) in1[7]) * in2x2[6] +
582              ((uint128_t) in1[8]) * in2x2[5];
583
584    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585              ((uint128_t) in1[7]) * in2x2[7] +
586              ((uint128_t) in1[8]) * in2x2[6];
587
588    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589              ((uint128_t) in1[8]) * in2x2[7];
590
591    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592}
593
594static const limb bottom52bits = 0xfffffffffffff;
595
596/*-
597 * felem_reduce converts a largefelem to an felem.
598 * On entry:
599 *   in[i] < 2^128
600 * On exit:
601 *   out[i] < 2^59 + 2^14
602 */
603static void felem_reduce(felem out, const largefelem in)
604{
605    u64 overflow1, overflow2;
606
607    out[0] = ((limb) in[0]) & bottom58bits;
608    out[1] = ((limb) in[1]) & bottom58bits;
609    out[2] = ((limb) in[2]) & bottom58bits;
610    out[3] = ((limb) in[3]) & bottom58bits;
611    out[4] = ((limb) in[4]) & bottom58bits;
612    out[5] = ((limb) in[5]) & bottom58bits;
613    out[6] = ((limb) in[6]) & bottom58bits;
614    out[7] = ((limb) in[7]) & bottom58bits;
615    out[8] = ((limb) in[8]) & bottom58bits;
616
617    /* out[i] < 2^58 */
618
619    out[1] += ((limb) in[0]) >> 58;
620    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621    /*-
622     * out[1] < 2^58 + 2^6 + 2^58
623     *        = 2^59 + 2^6
624     */
625    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627    out[2] += ((limb) in[1]) >> 58;
628    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631    out[3] += ((limb) in[2]) >> 58;
632    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635    out[4] += ((limb) in[3]) >> 58;
636    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639    out[5] += ((limb) in[4]) >> 58;
640    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643    out[6] += ((limb) in[5]) >> 58;
644    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647    out[7] += ((limb) in[6]) >> 58;
648    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651    out[8] += ((limb) in[7]) >> 58;
652    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653    /*-
654     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655     *            < 2^59 + 2^13
656     */
657    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659    overflow1 += ((limb) in[8]) >> 58;
660    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666    out[0] += overflow1;        /* out[0] < 2^60 */
667    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669    out[1] += out[0] >> 58;
670    out[0] &= bottom58bits;
671    /*-
672     * out[0] < 2^58
673     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674     *        < 2^59 + 2^14
675     */
676}
677
678#if defined(ECP_NISTP521_ASM)
679void felem_square_wrapper(largefelem out, const felem in);
680void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682static void (*felem_square_p)(largefelem out, const felem in) =
683    felem_square_wrapper;
684static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685    felem_mul_wrapper;
686
687void p521_felem_square(largefelem out, const felem in);
688void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690# if defined(_ARCH_PPC64)
691#  include "crypto/ppc_arch.h"
692# endif
693
694void felem_select(void)
695{
696# if defined(_ARCH_PPC64)
697    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698        felem_square_p = p521_felem_square;
699        felem_mul_p = p521_felem_mul;
700
701        return;
702    }
703# endif
704
705    /* Default */
706    felem_square_p = felem_square_ref;
707    felem_mul_p = felem_mul_ref;
708}
709
710void felem_square_wrapper(largefelem out, const felem in)
711{
712    felem_select();
713    felem_square_p(out, in);
714}
715
716void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717{
718    felem_select();
719    felem_mul_p(out, in1, in2);
720}
721
722# define felem_square felem_square_p
723# define felem_mul felem_mul_p
724#else
725# define felem_square felem_square_ref
726# define felem_mul felem_mul_ref
727#endif
728
729static void felem_square_reduce(felem out, const felem in)
730{
731    largefelem tmp;
732    felem_square(tmp, in);
733    felem_reduce(out, tmp);
734}
735
736static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737{
738    largefelem tmp;
739    felem_mul(tmp, in1, in2);
740    felem_reduce(out, tmp);
741}
742
743/*-
744 * felem_inv calculates |out| = |in|^{-1}
745 *
746 * Based on Fermat's Little Theorem:
747 *   a^p = a (mod p)
748 *   a^{p-1} = 1 (mod p)
749 *   a^{p-2} = a^{-1} (mod p)
750 */
751static void felem_inv(felem out, const felem in)
752{
753    felem ftmp, ftmp2, ftmp3, ftmp4;
754    largefelem tmp;
755    unsigned i;
756
757    felem_square(tmp, in);
758    felem_reduce(ftmp, tmp);    /* 2^1 */
759    felem_mul(tmp, in, ftmp);
760    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761    felem_assign(ftmp2, ftmp);
762    felem_square(tmp, ftmp);
763    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764    felem_mul(tmp, in, ftmp);
765    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766    felem_square(tmp, ftmp);
767    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769    felem_square(tmp, ftmp2);
770    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771    felem_square(tmp, ftmp3);
772    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773    felem_mul(tmp, ftmp3, ftmp2);
774    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776    felem_assign(ftmp2, ftmp3);
777    felem_square(tmp, ftmp3);
778    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779    felem_square(tmp, ftmp3);
780    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781    felem_square(tmp, ftmp3);
782    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783    felem_square(tmp, ftmp3);
784    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785    felem_assign(ftmp4, ftmp3);
786    felem_mul(tmp, ftmp3, ftmp);
787    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788    felem_square(tmp, ftmp4);
789    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790    felem_mul(tmp, ftmp3, ftmp2);
791    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792    felem_assign(ftmp2, ftmp3);
793
794    for (i = 0; i < 8; i++) {
795        felem_square(tmp, ftmp3);
796        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797    }
798    felem_mul(tmp, ftmp3, ftmp2);
799    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800    felem_assign(ftmp2, ftmp3);
801
802    for (i = 0; i < 16; i++) {
803        felem_square(tmp, ftmp3);
804        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805    }
806    felem_mul(tmp, ftmp3, ftmp2);
807    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808    felem_assign(ftmp2, ftmp3);
809
810    for (i = 0; i < 32; i++) {
811        felem_square(tmp, ftmp3);
812        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813    }
814    felem_mul(tmp, ftmp3, ftmp2);
815    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816    felem_assign(ftmp2, ftmp3);
817
818    for (i = 0; i < 64; i++) {
819        felem_square(tmp, ftmp3);
820        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821    }
822    felem_mul(tmp, ftmp3, ftmp2);
823    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824    felem_assign(ftmp2, ftmp3);
825
826    for (i = 0; i < 128; i++) {
827        felem_square(tmp, ftmp3);
828        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829    }
830    felem_mul(tmp, ftmp3, ftmp2);
831    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832    felem_assign(ftmp2, ftmp3);
833
834    for (i = 0; i < 256; i++) {
835        felem_square(tmp, ftmp3);
836        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837    }
838    felem_mul(tmp, ftmp3, ftmp2);
839    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841    for (i = 0; i < 9; i++) {
842        felem_square(tmp, ftmp3);
843        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844    }
845    felem_mul(tmp, ftmp3, ftmp4);
846    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847    felem_mul(tmp, ftmp3, in);
848    felem_reduce(out, tmp);     /* 2^512 - 3 */
849}
850
851/* This is 2^521-1, expressed as an felem */
852static const felem kPrime = {
853    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856};
857
858/*-
859 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860 * otherwise.
861 * On entry:
862 *   in[i] < 2^59 + 2^14
863 */
864static limb felem_is_zero(const felem in)
865{
866    felem ftmp;
867    limb is_zero, is_p;
868    felem_assign(ftmp, in);
869
870    ftmp[0] += ftmp[8] >> 57;
871    ftmp[8] &= bottom57bits;
872    /* ftmp[8] < 2^57 */
873    ftmp[1] += ftmp[0] >> 58;
874    ftmp[0] &= bottom58bits;
875    ftmp[2] += ftmp[1] >> 58;
876    ftmp[1] &= bottom58bits;
877    ftmp[3] += ftmp[2] >> 58;
878    ftmp[2] &= bottom58bits;
879    ftmp[4] += ftmp[3] >> 58;
880    ftmp[3] &= bottom58bits;
881    ftmp[5] += ftmp[4] >> 58;
882    ftmp[4] &= bottom58bits;
883    ftmp[6] += ftmp[5] >> 58;
884    ftmp[5] &= bottom58bits;
885    ftmp[7] += ftmp[6] >> 58;
886    ftmp[6] &= bottom58bits;
887    ftmp[8] += ftmp[7] >> 58;
888    ftmp[7] &= bottom58bits;
889    /* ftmp[8] < 2^57 + 4 */
890
891    /*
892     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893     * than our bound for ftmp[8]. Therefore we only have to check if the
894     * zero is zero or 2^521-1.
895     */
896
897    is_zero = 0;
898    is_zero |= ftmp[0];
899    is_zero |= ftmp[1];
900    is_zero |= ftmp[2];
901    is_zero |= ftmp[3];
902    is_zero |= ftmp[4];
903    is_zero |= ftmp[5];
904    is_zero |= ftmp[6];
905    is_zero |= ftmp[7];
906    is_zero |= ftmp[8];
907
908    is_zero--;
909    /*
910     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911     * can be set is if is_zero was 0 before the decrement.
912     */
913    is_zero = 0 - (is_zero >> 63);
914
915    is_p = ftmp[0] ^ kPrime[0];
916    is_p |= ftmp[1] ^ kPrime[1];
917    is_p |= ftmp[2] ^ kPrime[2];
918    is_p |= ftmp[3] ^ kPrime[3];
919    is_p |= ftmp[4] ^ kPrime[4];
920    is_p |= ftmp[5] ^ kPrime[5];
921    is_p |= ftmp[6] ^ kPrime[6];
922    is_p |= ftmp[7] ^ kPrime[7];
923    is_p |= ftmp[8] ^ kPrime[8];
924
925    is_p--;
926    is_p = 0 - (is_p >> 63);
927
928    is_zero |= is_p;
929    return is_zero;
930}
931
932static int felem_is_zero_int(const void *in)
933{
934    return (int)(felem_is_zero(in) & ((limb) 1));
935}
936
937/*-
938 * felem_contract converts |in| to its unique, minimal representation.
939 * On entry:
940 *   in[i] < 2^59 + 2^14
941 */
942static void felem_contract(felem out, const felem in)
943{
944    limb is_p, is_greater, sign;
945    static const limb two58 = ((limb) 1) << 58;
946
947    felem_assign(out, in);
948
949    out[0] += out[8] >> 57;
950    out[8] &= bottom57bits;
951    /* out[8] < 2^57 */
952    out[1] += out[0] >> 58;
953    out[0] &= bottom58bits;
954    out[2] += out[1] >> 58;
955    out[1] &= bottom58bits;
956    out[3] += out[2] >> 58;
957    out[2] &= bottom58bits;
958    out[4] += out[3] >> 58;
959    out[3] &= bottom58bits;
960    out[5] += out[4] >> 58;
961    out[4] &= bottom58bits;
962    out[6] += out[5] >> 58;
963    out[5] &= bottom58bits;
964    out[7] += out[6] >> 58;
965    out[6] &= bottom58bits;
966    out[8] += out[7] >> 58;
967    out[7] &= bottom58bits;
968    /* out[8] < 2^57 + 4 */
969
970    /*
971     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972     * out. See the comments in felem_is_zero regarding why we don't test for
973     * other multiples of the prime.
974     */
975
976    /*
977     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978     */
979
980    is_p = out[0] ^ kPrime[0];
981    is_p |= out[1] ^ kPrime[1];
982    is_p |= out[2] ^ kPrime[2];
983    is_p |= out[3] ^ kPrime[3];
984    is_p |= out[4] ^ kPrime[4];
985    is_p |= out[5] ^ kPrime[5];
986    is_p |= out[6] ^ kPrime[6];
987    is_p |= out[7] ^ kPrime[7];
988    is_p |= out[8] ^ kPrime[8];
989
990    is_p--;
991    is_p &= is_p << 32;
992    is_p &= is_p << 16;
993    is_p &= is_p << 8;
994    is_p &= is_p << 4;
995    is_p &= is_p << 2;
996    is_p &= is_p << 1;
997    is_p = 0 - (is_p >> 63);
998    is_p = ~is_p;
999
1000    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002    out[0] &= is_p;
1003    out[1] &= is_p;
1004    out[2] &= is_p;
1005    out[3] &= is_p;
1006    out[4] &= is_p;
1007    out[5] &= is_p;
1008    out[6] &= is_p;
1009    out[7] &= is_p;
1010    out[8] &= is_p;
1011
1012    /*
1013     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015     */
1016    is_greater = out[8] >> 57;
1017    is_greater |= is_greater << 32;
1018    is_greater |= is_greater << 16;
1019    is_greater |= is_greater << 8;
1020    is_greater |= is_greater << 4;
1021    is_greater |= is_greater << 2;
1022    is_greater |= is_greater << 1;
1023    is_greater = 0 - (is_greater >> 63);
1024
1025    out[0] -= kPrime[0] & is_greater;
1026    out[1] -= kPrime[1] & is_greater;
1027    out[2] -= kPrime[2] & is_greater;
1028    out[3] -= kPrime[3] & is_greater;
1029    out[4] -= kPrime[4] & is_greater;
1030    out[5] -= kPrime[5] & is_greater;
1031    out[6] -= kPrime[6] & is_greater;
1032    out[7] -= kPrime[7] & is_greater;
1033    out[8] -= kPrime[8] & is_greater;
1034
1035    /* Eliminate negative coefficients */
1036    sign = -(out[0] >> 63);
1037    out[0] += (two58 & sign);
1038    out[1] -= (1 & sign);
1039    sign = -(out[1] >> 63);
1040    out[1] += (two58 & sign);
1041    out[2] -= (1 & sign);
1042    sign = -(out[2] >> 63);
1043    out[2] += (two58 & sign);
1044    out[3] -= (1 & sign);
1045    sign = -(out[3] >> 63);
1046    out[3] += (two58 & sign);
1047    out[4] -= (1 & sign);
1048    sign = -(out[4] >> 63);
1049    out[4] += (two58 & sign);
1050    out[5] -= (1 & sign);
1051    sign = -(out[0] >> 63);
1052    out[5] += (two58 & sign);
1053    out[6] -= (1 & sign);
1054    sign = -(out[6] >> 63);
1055    out[6] += (two58 & sign);
1056    out[7] -= (1 & sign);
1057    sign = -(out[7] >> 63);
1058    out[7] += (two58 & sign);
1059    out[8] -= (1 & sign);
1060    sign = -(out[5] >> 63);
1061    out[5] += (two58 & sign);
1062    out[6] -= (1 & sign);
1063    sign = -(out[6] >> 63);
1064    out[6] += (two58 & sign);
1065    out[7] -= (1 & sign);
1066    sign = -(out[7] >> 63);
1067    out[7] += (two58 & sign);
1068    out[8] -= (1 & sign);
1069}
1070
1071/*-
1072 * Group operations
1073 * ----------------
1074 *
1075 * Building on top of the field operations we have the operations on the
1076 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077 * coordinates */
1078
1079/*-
1080 * point_double calculates 2*(x_in, y_in, z_in)
1081 *
1082 * The method is taken from:
1083 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084 *
1085 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087static void
1088point_double(felem x_out, felem y_out, felem z_out,
1089             const felem x_in, const felem y_in, const felem z_in)
1090{
1091    largefelem tmp, tmp2;
1092    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094    felem_assign(ftmp, x_in);
1095    felem_assign(ftmp2, x_in);
1096
1097    /* delta = z^2 */
1098    felem_square(tmp, z_in);
1099    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101    /* gamma = y^2 */
1102    felem_square(tmp, y_in);
1103    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105    /* beta = x*gamma */
1106    felem_mul(tmp, x_in, gamma);
1107    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109    /* alpha = 3*(x-delta)*(x+delta) */
1110    felem_diff64(ftmp, delta);
1111    /* ftmp[i] < 2^61 */
1112    felem_sum64(ftmp2, delta);
1113    /* ftmp2[i] < 2^60 + 2^15 */
1114    felem_scalar64(ftmp2, 3);
1115    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116    felem_mul(tmp, ftmp, ftmp2);
1117    /*-
1118     * tmp[i] < 17(3*2^121 + 3*2^76)
1119     *        = 61*2^121 + 61*2^76
1120     *        < 64*2^121 + 64*2^76
1121     *        = 2^127 + 2^82
1122     *        < 2^128
1123     */
1124    felem_reduce(alpha, tmp);
1125
1126    /* x' = alpha^2 - 8*beta */
1127    felem_square(tmp, alpha);
1128    /*
1129     * tmp[i] < 17*2^120 < 2^125
1130     */
1131    felem_assign(ftmp, beta);
1132    felem_scalar64(ftmp, 8);
1133    /* ftmp[i] < 2^62 + 2^17 */
1134    felem_diff_128_64(tmp, ftmp);
1135    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136    felem_reduce(x_out, tmp);
1137
1138    /* z' = (y + z)^2 - gamma - delta */
1139    felem_sum64(delta, gamma);
1140    /* delta[i] < 2^60 + 2^15 */
1141    felem_assign(ftmp, y_in);
1142    felem_sum64(ftmp, z_in);
1143    /* ftmp[i] < 2^60 + 2^15 */
1144    felem_square(tmp, ftmp);
1145    /*
1146     * tmp[i] < 17(2^122) < 2^127
1147     */
1148    felem_diff_128_64(tmp, delta);
1149    /* tmp[i] < 2^127 + 2^63 */
1150    felem_reduce(z_out, tmp);
1151
1152    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153    felem_scalar64(beta, 4);
1154    /* beta[i] < 2^61 + 2^16 */
1155    felem_diff64(beta, x_out);
1156    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157    felem_mul(tmp, alpha, beta);
1158    /*-
1159     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162     *        < 2^128
1163     */
1164    felem_square(tmp2, gamma);
1165    /*-
1166     * tmp2[i] < 17*(2^59 + 2^14)^2
1167     *         = 17*(2^118 + 2^74 + 2^28)
1168     */
1169    felem_scalar128(tmp2, 8);
1170    /*-
1171     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173     *         < 2^126
1174     */
1175    felem_diff128(tmp, tmp2);
1176    /*-
1177     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179     *          2^74 + 2^69 + 2^34 + 2^30
1180     *        < 2^128
1181     */
1182    felem_reduce(y_out, tmp);
1183}
1184
1185/* copy_conditional copies in to out iff mask is all ones. */
1186static void copy_conditional(felem out, const felem in, limb mask)
1187{
1188    unsigned i;
1189    for (i = 0; i < NLIMBS; ++i) {
1190        const limb tmp = mask & (in[i] ^ out[i]);
1191        out[i] ^= tmp;
1192    }
1193}
1194
1195/*-
1196 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197 *
1198 * The method is taken from
1199 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201 *
1202 * This function includes a branch for checking whether the two input points
1203 * are equal (while not equal to the point at infinity). See comment below
1204 * on constant-time.
1205 */
1206static void point_add(felem x3, felem y3, felem z3,
1207                      const felem x1, const felem y1, const felem z1,
1208                      const int mixed, const felem x2, const felem y2,
1209                      const felem z2)
1210{
1211    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212    largefelem tmp, tmp2;
1213    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214    limb points_equal;
1215
1216    z1_is_zero = felem_is_zero(z1);
1217    z2_is_zero = felem_is_zero(z2);
1218
1219    /* ftmp = z1z1 = z1**2 */
1220    felem_square(tmp, z1);
1221    felem_reduce(ftmp, tmp);
1222
1223    if (!mixed) {
1224        /* ftmp2 = z2z2 = z2**2 */
1225        felem_square(tmp, z2);
1226        felem_reduce(ftmp2, tmp);
1227
1228        /* u1 = ftmp3 = x1*z2z2 */
1229        felem_mul(tmp, x1, ftmp2);
1230        felem_reduce(ftmp3, tmp);
1231
1232        /* ftmp5 = z1 + z2 */
1233        felem_assign(ftmp5, z1);
1234        felem_sum64(ftmp5, z2);
1235        /* ftmp5[i] < 2^61 */
1236
1237        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238        felem_square(tmp, ftmp5);
1239        /* tmp[i] < 17*2^122 */
1240        felem_diff_128_64(tmp, ftmp);
1241        /* tmp[i] < 17*2^122 + 2^63 */
1242        felem_diff_128_64(tmp, ftmp2);
1243        /* tmp[i] < 17*2^122 + 2^64 */
1244        felem_reduce(ftmp5, tmp);
1245
1246        /* ftmp2 = z2 * z2z2 */
1247        felem_mul(tmp, ftmp2, z2);
1248        felem_reduce(ftmp2, tmp);
1249
1250        /* s1 = ftmp6 = y1 * z2**3 */
1251        felem_mul(tmp, y1, ftmp2);
1252        felem_reduce(ftmp6, tmp);
1253    } else {
1254        /*
1255         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256         */
1257
1258        /* u1 = ftmp3 = x1*z2z2 */
1259        felem_assign(ftmp3, x1);
1260
1261        /* ftmp5 = 2*z1z2 */
1262        felem_scalar(ftmp5, z1, 2);
1263
1264        /* s1 = ftmp6 = y1 * z2**3 */
1265        felem_assign(ftmp6, y1);
1266    }
1267
1268    /* u2 = x2*z1z1 */
1269    felem_mul(tmp, x2, ftmp);
1270    /* tmp[i] < 17*2^120 */
1271
1272    /* h = ftmp4 = u2 - u1 */
1273    felem_diff_128_64(tmp, ftmp3);
1274    /* tmp[i] < 17*2^120 + 2^63 */
1275    felem_reduce(ftmp4, tmp);
1276
1277    x_equal = felem_is_zero(ftmp4);
1278
1279    /* z_out = ftmp5 * h */
1280    felem_mul(tmp, ftmp5, ftmp4);
1281    felem_reduce(z_out, tmp);
1282
1283    /* ftmp = z1 * z1z1 */
1284    felem_mul(tmp, ftmp, z1);
1285    felem_reduce(ftmp, tmp);
1286
1287    /* s2 = tmp = y2 * z1**3 */
1288    felem_mul(tmp, y2, ftmp);
1289    /* tmp[i] < 17*2^120 */
1290
1291    /* r = ftmp5 = (s2 - s1)*2 */
1292    felem_diff_128_64(tmp, ftmp6);
1293    /* tmp[i] < 17*2^120 + 2^63 */
1294    felem_reduce(ftmp5, tmp);
1295    y_equal = felem_is_zero(ftmp5);
1296    felem_scalar64(ftmp5, 2);
1297    /* ftmp5[i] < 2^61 */
1298
1299    /*
1300     * The formulae are incorrect if the points are equal, in affine coordinates
1301     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302     * happens.
1303     *
1304     * We use bitwise operations to avoid potential side-channels introduced by
1305     * the short-circuiting behaviour of boolean operators.
1306     *
1307     * The special case of either point being the point at infinity (z1 and/or
1308     * z2 are zero), is handled separately later on in this function, so we
1309     * avoid jumping to point_double here in those special cases.
1310     *
1311     * Notice the comment below on the implications of this branching for timing
1312     * leaks and why it is considered practically irrelevant.
1313     */
1314    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316    if (points_equal) {
1317        /*
1318         * This is obviously not constant-time but it will almost-never happen
1319         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320         * where the intermediate value gets very close to the group order.
1321         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322         * for the scalar, it's possible for the intermediate value to be a small
1323         * negative multiple of the base point, and for the final signed digit
1324         * to be the same value. We believe that this only occurs for the scalar
1325         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328         * the final digit is also -9G. Since this only happens for a single
1329         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330         * check whether a secret scalar was that exact value, can already do
1331         * so.)
1332         */
1333        point_double(x3, y3, z3, x1, y1, z1);
1334        return;
1335    }
1336
1337    /* I = ftmp = (2h)**2 */
1338    felem_assign(ftmp, ftmp4);
1339    felem_scalar64(ftmp, 2);
1340    /* ftmp[i] < 2^61 */
1341    felem_square(tmp, ftmp);
1342    /* tmp[i] < 17*2^122 */
1343    felem_reduce(ftmp, tmp);
1344
1345    /* J = ftmp2 = h * I */
1346    felem_mul(tmp, ftmp4, ftmp);
1347    felem_reduce(ftmp2, tmp);
1348
1349    /* V = ftmp4 = U1 * I */
1350    felem_mul(tmp, ftmp3, ftmp);
1351    felem_reduce(ftmp4, tmp);
1352
1353    /* x_out = r**2 - J - 2V */
1354    felem_square(tmp, ftmp5);
1355    /* tmp[i] < 17*2^122 */
1356    felem_diff_128_64(tmp, ftmp2);
1357    /* tmp[i] < 17*2^122 + 2^63 */
1358    felem_assign(ftmp3, ftmp4);
1359    felem_scalar64(ftmp4, 2);
1360    /* ftmp4[i] < 2^61 */
1361    felem_diff_128_64(tmp, ftmp4);
1362    /* tmp[i] < 17*2^122 + 2^64 */
1363    felem_reduce(x_out, tmp);
1364
1365    /* y_out = r(V-x_out) - 2 * s1 * J */
1366    felem_diff64(ftmp3, x_out);
1367    /*
1368     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369     */
1370    felem_mul(tmp, ftmp5, ftmp3);
1371    /* tmp[i] < 17*2^122 */
1372    felem_mul(tmp2, ftmp6, ftmp2);
1373    /* tmp2[i] < 17*2^120 */
1374    felem_scalar128(tmp2, 2);
1375    /* tmp2[i] < 17*2^121 */
1376    felem_diff128(tmp, tmp2);
1377        /*-
1378         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380         *        < 2^127
1381         */
1382    felem_reduce(y_out, tmp);
1383
1384    copy_conditional(x_out, x2, z1_is_zero);
1385    copy_conditional(x_out, x1, z2_is_zero);
1386    copy_conditional(y_out, y2, z1_is_zero);
1387    copy_conditional(y_out, y1, z2_is_zero);
1388    copy_conditional(z_out, z2, z1_is_zero);
1389    copy_conditional(z_out, z1, z2_is_zero);
1390    felem_assign(x3, x_out);
1391    felem_assign(y3, y_out);
1392    felem_assign(z3, z_out);
1393}
1394
1395/*-
1396 * Base point pre computation
1397 * --------------------------
1398 *
1399 * Two different sorts of precomputed tables are used in the following code.
1400 * Each contain various points on the curve, where each point is three field
1401 * elements (x, y, z).
1402 *
1403 * For the base point table, z is usually 1 (0 for the point at infinity).
1404 * This table has 16 elements:
1405 * index | bits    | point
1406 * ------+---------+------------------------------
1407 *     0 | 0 0 0 0 | 0G
1408 *     1 | 0 0 0 1 | 1G
1409 *     2 | 0 0 1 0 | 2^130G
1410 *     3 | 0 0 1 1 | (2^130 + 1)G
1411 *     4 | 0 1 0 0 | 2^260G
1412 *     5 | 0 1 0 1 | (2^260 + 1)G
1413 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415 *     8 | 1 0 0 0 | 2^390G
1416 *     9 | 1 0 0 1 | (2^390 + 1)G
1417 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423 *
1424 * The reason for this is so that we can clock bits into four different
1425 * locations when doing simple scalar multiplies against the base point.
1426 *
1427 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429/* gmul is the table of precomputed base points */
1430static const felem gmul[16][3] = {
1431{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539};
1540
1541/*
1542 * select_point selects the |idx|th point from a precomputation table and
1543 * copies it to out.
1544 */
1545 /* pre_comp below is of the size provided in |size| */
1546static void select_point(const limb idx, unsigned int size,
1547                         const felem pre_comp[][3], felem out[3])
1548{
1549    unsigned i, j;
1550    limb *outlimbs = &out[0][0];
1551
1552    memset(out, 0, sizeof(*out) * 3);
1553
1554    for (i = 0; i < size; i++) {
1555        const limb *inlimbs = &pre_comp[i][0][0];
1556        limb mask = i ^ idx;
1557        mask |= mask >> 4;
1558        mask |= mask >> 2;
1559        mask |= mask >> 1;
1560        mask &= 1;
1561        mask--;
1562        for (j = 0; j < NLIMBS * 3; j++)
1563            outlimbs[j] |= inlimbs[j] & mask;
1564    }
1565}
1566
1567/* get_bit returns the |i|th bit in |in| */
1568static char get_bit(const felem_bytearray in, int i)
1569{
1570    if (i < 0)
1571        return 0;
1572    return (in[i >> 3] >> (i & 7)) & 1;
1573}
1574
1575/*
1576 * Interleaved point multiplication using precomputed point multiples: The
1577 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581 */
1582static void batch_mul(felem x_out, felem y_out, felem z_out,
1583                      const felem_bytearray scalars[],
1584                      const unsigned num_points, const u8 *g_scalar,
1585                      const int mixed, const felem pre_comp[][17][3],
1586                      const felem g_pre_comp[16][3])
1587{
1588    int i, skip;
1589    unsigned num, gen_mul = (g_scalar != NULL);
1590    felem nq[3], tmp[4];
1591    limb bits;
1592    u8 sign, digit;
1593
1594    /* set nq to the point at infinity */
1595    memset(nq, 0, sizeof(nq));
1596
1597    /*
1598     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599     * of the generator (last quarter of rounds) and additions of other
1600     * points multiples (every 5th round).
1601     */
1602    skip = 1;                   /* save two point operations in the first
1603                                 * round */
1604    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605        /* double */
1606        if (!skip)
1607            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609        /* add multiples of the generator */
1610        if (gen_mul && (i <= 130)) {
1611            bits = get_bit(g_scalar, i + 390) << 3;
1612            if (i < 130) {
1613                bits |= get_bit(g_scalar, i + 260) << 2;
1614                bits |= get_bit(g_scalar, i + 130) << 1;
1615                bits |= get_bit(g_scalar, i);
1616            }
1617            /* select the point to add, in constant time */
1618            select_point(bits, 16, g_pre_comp, tmp);
1619            if (!skip) {
1620                /* The 1 argument below is for "mixed" */
1621                point_add(nq[0], nq[1], nq[2],
1622                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623            } else {
1624                memcpy(nq, tmp, 3 * sizeof(felem));
1625                skip = 0;
1626            }
1627        }
1628
1629        /* do other additions every 5 doublings */
1630        if (num_points && (i % 5 == 0)) {
1631            /* loop over all scalars */
1632            for (num = 0; num < num_points; ++num) {
1633                bits = get_bit(scalars[num], i + 4) << 5;
1634                bits |= get_bit(scalars[num], i + 3) << 4;
1635                bits |= get_bit(scalars[num], i + 2) << 3;
1636                bits |= get_bit(scalars[num], i + 1) << 2;
1637                bits |= get_bit(scalars[num], i) << 1;
1638                bits |= get_bit(scalars[num], i - 1);
1639                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641                /*
1642                 * select the point to add or subtract, in constant time
1643                 */
1644                select_point(digit, 17, pre_comp[num], tmp);
1645                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646                                            * point */
1647                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649                if (!skip) {
1650                    point_add(nq[0], nq[1], nq[2],
1651                              nq[0], nq[1], nq[2],
1652                              mixed, tmp[0], tmp[1], tmp[2]);
1653                } else {
1654                    memcpy(nq, tmp, 3 * sizeof(felem));
1655                    skip = 0;
1656                }
1657            }
1658        }
1659    }
1660    felem_assign(x_out, nq[0]);
1661    felem_assign(y_out, nq[1]);
1662    felem_assign(z_out, nq[2]);
1663}
1664
1665/* Precomputation for the group generator. */
1666struct nistp521_pre_comp_st {
1667    felem g_pre_comp[16][3];
1668    CRYPTO_REF_COUNT references;
1669    CRYPTO_RWLOCK *lock;
1670};
1671
1672const EC_METHOD *EC_GFp_nistp521_method(void)
1673{
1674    static const EC_METHOD ret = {
1675        EC_FLAGS_DEFAULT_OCT,
1676        NID_X9_62_prime_field,
1677        ossl_ec_GFp_nistp521_group_init,
1678        ossl_ec_GFp_simple_group_finish,
1679        ossl_ec_GFp_simple_group_clear_finish,
1680        ossl_ec_GFp_nist_group_copy,
1681        ossl_ec_GFp_nistp521_group_set_curve,
1682        ossl_ec_GFp_simple_group_get_curve,
1683        ossl_ec_GFp_simple_group_get_degree,
1684        ossl_ec_group_simple_order_bits,
1685        ossl_ec_GFp_simple_group_check_discriminant,
1686        ossl_ec_GFp_simple_point_init,
1687        ossl_ec_GFp_simple_point_finish,
1688        ossl_ec_GFp_simple_point_clear_finish,
1689        ossl_ec_GFp_simple_point_copy,
1690        ossl_ec_GFp_simple_point_set_to_infinity,
1691        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693        0 /* point_set_compressed_coordinates */ ,
1694        0 /* point2oct */ ,
1695        0 /* oct2point */ ,
1696        ossl_ec_GFp_simple_add,
1697        ossl_ec_GFp_simple_dbl,
1698        ossl_ec_GFp_simple_invert,
1699        ossl_ec_GFp_simple_is_at_infinity,
1700        ossl_ec_GFp_simple_is_on_curve,
1701        ossl_ec_GFp_simple_cmp,
1702        ossl_ec_GFp_simple_make_affine,
1703        ossl_ec_GFp_simple_points_make_affine,
1704        ossl_ec_GFp_nistp521_points_mul,
1705        ossl_ec_GFp_nistp521_precompute_mult,
1706        ossl_ec_GFp_nistp521_have_precompute_mult,
1707        ossl_ec_GFp_nist_field_mul,
1708        ossl_ec_GFp_nist_field_sqr,
1709        0 /* field_div */ ,
1710        ossl_ec_GFp_simple_field_inv,
1711        0 /* field_encode */ ,
1712        0 /* field_decode */ ,
1713        0,                      /* field_set_to_one */
1714        ossl_ec_key_simple_priv2oct,
1715        ossl_ec_key_simple_oct2priv,
1716        0, /* set private */
1717        ossl_ec_key_simple_generate_key,
1718        ossl_ec_key_simple_check_key,
1719        ossl_ec_key_simple_generate_public_key,
1720        0, /* keycopy */
1721        0, /* keyfinish */
1722        ossl_ecdh_simple_compute_key,
1723        ossl_ecdsa_simple_sign_setup,
1724        ossl_ecdsa_simple_sign_sig,
1725        ossl_ecdsa_simple_verify_sig,
1726        0, /* field_inverse_mod_ord */
1727        0, /* blind_coordinates */
1728        0, /* ladder_pre */
1729        0, /* ladder_step */
1730        0  /* ladder_post */
1731    };
1732
1733    return &ret;
1734}
1735
1736/******************************************************************************/
1737/*
1738 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739 */
1740
1741static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742{
1743    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745    if (ret == NULL) {
1746        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747        return ret;
1748    }
1749
1750    ret->references = 1;
1751
1752    ret->lock = CRYPTO_THREAD_lock_new();
1753    if (ret->lock == NULL) {
1754        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755        OPENSSL_free(ret);
1756        return NULL;
1757    }
1758    return ret;
1759}
1760
1761NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762{
1763    int i;
1764    if (p != NULL)
1765        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766    return p;
1767}
1768
1769void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770{
1771    int i;
1772
1773    if (p == NULL)
1774        return;
1775
1776    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777    REF_PRINT_COUNT("EC_nistp521", p);
1778    if (i > 0)
1779        return;
1780    REF_ASSERT_ISNT(i < 0);
1781
1782    CRYPTO_THREAD_lock_free(p->lock);
1783    OPENSSL_free(p);
1784}
1785
1786/******************************************************************************/
1787/*
1788 * OPENSSL EC_METHOD FUNCTIONS
1789 */
1790
1791int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792{
1793    int ret;
1794    ret = ossl_ec_GFp_simple_group_init(group);
1795    group->a_is_minus3 = 1;
1796    return ret;
1797}
1798
1799int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800                                         const BIGNUM *a, const BIGNUM *b,
1801                                         BN_CTX *ctx)
1802{
1803    int ret = 0;
1804    BIGNUM *curve_p, *curve_a, *curve_b;
1805#ifndef FIPS_MODULE
1806    BN_CTX *new_ctx = NULL;
1807
1808    if (ctx == NULL)
1809        ctx = new_ctx = BN_CTX_new();
1810#endif
1811    if (ctx == NULL)
1812        return 0;
1813
1814    BN_CTX_start(ctx);
1815    curve_p = BN_CTX_get(ctx);
1816    curve_a = BN_CTX_get(ctx);
1817    curve_b = BN_CTX_get(ctx);
1818    if (curve_b == NULL)
1819        goto err;
1820    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825        goto err;
1826    }
1827    group->field_mod_func = BN_nist_mod_521;
1828    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829 err:
1830    BN_CTX_end(ctx);
1831#ifndef FIPS_MODULE
1832    BN_CTX_free(new_ctx);
1833#endif
1834    return ret;
1835}
1836
1837/*
1838 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839 * (X/Z^2, Y/Z^3)
1840 */
1841int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842                                                      const EC_POINT *point,
1843                                                      BIGNUM *x, BIGNUM *y,
1844                                                      BN_CTX *ctx)
1845{
1846    felem z1, z2, x_in, y_in, x_out, y_out;
1847    largefelem tmp;
1848
1849    if (EC_POINT_is_at_infinity(group, point)) {
1850        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851        return 0;
1852    }
1853    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854        (!BN_to_felem(z1, point->Z)))
1855        return 0;
1856    felem_inv(z2, z1);
1857    felem_square(tmp, z2);
1858    felem_reduce(z1, tmp);
1859    felem_mul(tmp, x_in, z1);
1860    felem_reduce(x_in, tmp);
1861    felem_contract(x_out, x_in);
1862    if (x != NULL) {
1863        if (!felem_to_BN(x, x_out)) {
1864            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865            return 0;
1866        }
1867    }
1868    felem_mul(tmp, z1, z2);
1869    felem_reduce(z1, tmp);
1870    felem_mul(tmp, y_in, z1);
1871    felem_reduce(y_in, tmp);
1872    felem_contract(y_out, y_in);
1873    if (y != NULL) {
1874        if (!felem_to_BN(y, y_out)) {
1875            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876            return 0;
1877        }
1878    }
1879    return 1;
1880}
1881
1882/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883static void make_points_affine(size_t num, felem points[][3],
1884                               felem tmp_felems[])
1885{
1886    /*
1887     * Runs in constant time, unless an input is the point at infinity (which
1888     * normally shouldn't happen).
1889     */
1890    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891                                                  points,
1892                                                  sizeof(felem),
1893                                                  tmp_felems,
1894                                                  (void (*)(void *))felem_one,
1895                                                  felem_is_zero_int,
1896                                                  (void (*)(void *, const void *))
1897                                                  felem_assign,
1898                                                  (void (*)(void *, const void *))
1899                                                  felem_square_reduce, (void (*)
1900                                                                        (void *,
1901                                                                         const void
1902                                                                         *,
1903                                                                         const void
1904                                                                         *))
1905                                                  felem_mul_reduce,
1906                                                  (void (*)(void *, const void *))
1907                                                  felem_inv,
1908                                                  (void (*)(void *, const void *))
1909                                                  felem_contract);
1910}
1911
1912/*
1913 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914 * values Result is stored in r (r can equal one of the inputs).
1915 */
1916int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917                                    const BIGNUM *scalar, size_t num,
1918                                    const EC_POINT *points[],
1919                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920{
1921    int ret = 0;
1922    int j;
1923    int mixed = 0;
1924    BIGNUM *x, *y, *z, *tmp_scalar;
1925    felem_bytearray g_secret;
1926    felem_bytearray *secrets = NULL;
1927    felem (*pre_comp)[17][3] = NULL;
1928    felem *tmp_felems = NULL;
1929    unsigned i;
1930    int num_bytes;
1931    int have_pre_comp = 0;
1932    size_t num_points = num;
1933    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934    NISTP521_PRE_COMP *pre = NULL;
1935    felem(*g_pre_comp)[3] = NULL;
1936    EC_POINT *generator = NULL;
1937    const EC_POINT *p = NULL;
1938    const BIGNUM *p_scalar = NULL;
1939
1940    BN_CTX_start(ctx);
1941    x = BN_CTX_get(ctx);
1942    y = BN_CTX_get(ctx);
1943    z = BN_CTX_get(ctx);
1944    tmp_scalar = BN_CTX_get(ctx);
1945    if (tmp_scalar == NULL)
1946        goto err;
1947
1948    if (scalar != NULL) {
1949        pre = group->pre_comp.nistp521;
1950        if (pre)
1951            /* we have precomputation, try to use it */
1952            g_pre_comp = &pre->g_pre_comp[0];
1953        else
1954            /* try to use the standard precomputation */
1955            g_pre_comp = (felem(*)[3]) gmul;
1956        generator = EC_POINT_new(group);
1957        if (generator == NULL)
1958            goto err;
1959        /* get the generator from precomputation */
1960        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962            !felem_to_BN(z, g_pre_comp[1][2])) {
1963            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964            goto err;
1965        }
1966        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967                                                                generator,
1968                                                                x, y, z, ctx))
1969            goto err;
1970        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971            /* precomputation matches generator */
1972            have_pre_comp = 1;
1973        else
1974            /*
1975             * we don't have valid precomputation: treat the generator as a
1976             * random point
1977             */
1978            num_points++;
1979    }
1980
1981    if (num_points > 0) {
1982        if (num_points >= 2) {
1983            /*
1984             * unless we precompute multiples for just one point, converting
1985             * those into affine form is time well spent
1986             */
1987            mixed = 1;
1988        }
1989        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991        if (mixed)
1992            tmp_felems =
1993                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994        if ((secrets == NULL) || (pre_comp == NULL)
1995            || (mixed && (tmp_felems == NULL))) {
1996            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997            goto err;
1998        }
1999
2000        /*
2001         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002         * i.e., they contribute nothing to the linear combination
2003         */
2004        for (i = 0; i < num_points; ++i) {
2005            if (i == num) {
2006                /*
2007                 * we didn't have a valid precomputation, so we pick the
2008                 * generator
2009                 */
2010                p = EC_GROUP_get0_generator(group);
2011                p_scalar = scalar;
2012            } else {
2013                /* the i^th point */
2014                p = points[i];
2015                p_scalar = scalars[i];
2016            }
2017            if ((p_scalar != NULL) && (p != NULL)) {
2018                /* reduce scalar to 0 <= scalar < 2^521 */
2019                if ((BN_num_bits(p_scalar) > 521)
2020                    || (BN_is_negative(p_scalar))) {
2021                    /*
2022                     * this is an unusual input, and we don't guarantee
2023                     * constant-timeness
2024                     */
2025                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027                        goto err;
2028                    }
2029                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030                                               secrets[i], sizeof(secrets[i]));
2031                } else {
2032                    num_bytes = BN_bn2lebinpad(p_scalar,
2033                                               secrets[i], sizeof(secrets[i]));
2034                }
2035                if (num_bytes < 0) {
2036                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037                    goto err;
2038                }
2039                /* precompute multiples */
2040                if ((!BN_to_felem(x_out, p->X)) ||
2041                    (!BN_to_felem(y_out, p->Y)) ||
2042                    (!BN_to_felem(z_out, p->Z)))
2043                    goto err;
2044                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047                for (j = 2; j <= 16; ++j) {
2048                    if (j & 1) {
2049                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052                                  pre_comp[i][j - 1][0],
2053                                  pre_comp[i][j - 1][1],
2054                                  pre_comp[i][j - 1][2]);
2055                    } else {
2056                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058                                     pre_comp[i][j / 2][1],
2059                                     pre_comp[i][j / 2][2]);
2060                    }
2061                }
2062            }
2063        }
2064        if (mixed)
2065            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066    }
2067
2068    /* the scalar for the generator */
2069    if ((scalar != NULL) && (have_pre_comp)) {
2070        memset(g_secret, 0, sizeof(g_secret));
2071        /* reduce scalar to 0 <= scalar < 2^521 */
2072        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073            /*
2074             * this is an unusual input, and we don't guarantee
2075             * constant-timeness
2076             */
2077            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079                goto err;
2080            }
2081            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082        } else {
2083            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084        }
2085        /* do the multiplication with generator precomputation */
2086        batch_mul(x_out, y_out, z_out,
2087                  (const felem_bytearray(*))secrets, num_points,
2088                  g_secret,
2089                  mixed, (const felem(*)[17][3])pre_comp,
2090                  (const felem(*)[3])g_pre_comp);
2091    } else {
2092        /* do the multiplication without generator precomputation */
2093        batch_mul(x_out, y_out, z_out,
2094                  (const felem_bytearray(*))secrets, num_points,
2095                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096    }
2097    /* reduce the output to its unique minimal representation */
2098    felem_contract(x_in, x_out);
2099    felem_contract(y_in, y_out);
2100    felem_contract(z_in, z_out);
2101    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102        (!felem_to_BN(z, z_in))) {
2103        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104        goto err;
2105    }
2106    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107                                                             ctx);
2108
2109 err:
2110    BN_CTX_end(ctx);
2111    EC_POINT_free(generator);
2112    OPENSSL_free(secrets);
2113    OPENSSL_free(pre_comp);
2114    OPENSSL_free(tmp_felems);
2115    return ret;
2116}
2117
2118int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119{
2120    int ret = 0;
2121    NISTP521_PRE_COMP *pre = NULL;
2122    int i, j;
2123    BIGNUM *x, *y;
2124    EC_POINT *generator = NULL;
2125    felem tmp_felems[16];
2126#ifndef FIPS_MODULE
2127    BN_CTX *new_ctx = NULL;
2128#endif
2129
2130    /* throw away old precomputation */
2131    EC_pre_comp_free(group);
2132
2133#ifndef FIPS_MODULE
2134    if (ctx == NULL)
2135        ctx = new_ctx = BN_CTX_new();
2136#endif
2137    if (ctx == NULL)
2138        return 0;
2139
2140    BN_CTX_start(ctx);
2141    x = BN_CTX_get(ctx);
2142    y = BN_CTX_get(ctx);
2143    if (y == NULL)
2144        goto err;
2145    /* get the generator */
2146    if (group->generator == NULL)
2147        goto err;
2148    generator = EC_POINT_new(group);
2149    if (generator == NULL)
2150        goto err;
2151    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154        goto err;
2155    if ((pre = nistp521_pre_comp_new()) == NULL)
2156        goto err;
2157    /*
2158     * if the generator is the standard one, use built-in precomputation
2159     */
2160    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162        goto done;
2163    }
2164    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167        goto err;
2168    /* compute 2^130*G, 2^260*G, 2^390*G */
2169    for (i = 1; i <= 4; i <<= 1) {
2170        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173        for (j = 0; j < 129; ++j) {
2174            point_double(pre->g_pre_comp[2 * i][0],
2175                         pre->g_pre_comp[2 * i][1],
2176                         pre->g_pre_comp[2 * i][2],
2177                         pre->g_pre_comp[2 * i][0],
2178                         pre->g_pre_comp[2 * i][1],
2179                         pre->g_pre_comp[2 * i][2]);
2180        }
2181    }
2182    /* g_pre_comp[0] is the point at infinity */
2183    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184    /* the remaining multiples */
2185    /* 2^130*G + 2^260*G */
2186    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190              pre->g_pre_comp[2][2]);
2191    /* 2^130*G + 2^390*G */
2192    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196              pre->g_pre_comp[2][2]);
2197    /* 2^260*G + 2^390*G */
2198    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202              pre->g_pre_comp[4][2]);
2203    /* 2^130*G + 2^260*G + 2^390*G */
2204    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208              pre->g_pre_comp[2][2]);
2209    for (i = 1; i < 8; ++i) {
2210        /* odd multiples: add G */
2211        point_add(pre->g_pre_comp[2 * i + 1][0],
2212                  pre->g_pre_comp[2 * i + 1][1],
2213                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216                  pre->g_pre_comp[1][2]);
2217    }
2218    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220 done:
2221    SETPRECOMP(group, nistp521, pre);
2222    ret = 1;
2223    pre = NULL;
2224 err:
2225    BN_CTX_end(ctx);
2226    EC_POINT_free(generator);
2227#ifndef FIPS_MODULE
2228    BN_CTX_free(new_ctx);
2229#endif
2230    EC_nistp521_pre_comp_free(pre);
2231    return ret;
2232}
2233
2234int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235{
2236    return HAVEPRECOMP(group, nistp521);
2237}
2238