1/*
2 * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License").  You may not use
6 * this file except in compliance with the License.  You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11/*
12 * ECDSA low level APIs are deprecated for public use, but still ok for
13 * internal use.
14 */
15#include "internal/deprecated.h"
16
17#include <string.h>
18#include <openssl/err.h>
19
20#include "internal/cryptlib.h"
21#include "crypto/bn.h"
22#include "ec_local.h"
23#include "internal/refcount.h"
24
25/*
26 * This file implements the wNAF-based interleaving multi-exponentiation method
27 * Formerly at:
28 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
29 * You might now find it here:
30 *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
31 *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
32 * For multiplication with precomputation, we use wNAF splitting, formerly at:
33 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
34 */
35
36/* structure for precomputed multiples of the generator */
37struct ec_pre_comp_st {
38    const EC_GROUP *group;      /* parent EC_GROUP object */
39    size_t blocksize;           /* block size for wNAF splitting */
40    size_t numblocks;           /* max. number of blocks for which we have
41                                 * precomputation */
42    size_t w;                   /* window size */
43    EC_POINT **points;          /* array with pre-calculated multiples of
44                                 * generator: 'num' pointers to EC_POINT
45                                 * objects followed by a NULL */
46    size_t num;                 /* numblocks * 2^(w-1) */
47    CRYPTO_REF_COUNT references;
48    CRYPTO_RWLOCK *lock;
49};
50
51static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
52{
53    EC_PRE_COMP *ret = NULL;
54
55    if (!group)
56        return NULL;
57
58    ret = OPENSSL_zalloc(sizeof(*ret));
59    if (ret == NULL) {
60        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
61        return ret;
62    }
63
64    ret->group = group;
65    ret->blocksize = 8;         /* default */
66    ret->w = 4;                 /* default */
67    ret->references = 1;
68
69    ret->lock = CRYPTO_THREAD_lock_new();
70    if (ret->lock == NULL) {
71        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
72        OPENSSL_free(ret);
73        return NULL;
74    }
75    return ret;
76}
77
78EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
79{
80    int i;
81    if (pre != NULL)
82        CRYPTO_UP_REF(&pre->references, &i, pre->lock);
83    return pre;
84}
85
86void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
87{
88    int i;
89
90    if (pre == NULL)
91        return;
92
93    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
94    REF_PRINT_COUNT("EC_ec", pre);
95    if (i > 0)
96        return;
97    REF_ASSERT_ISNT(i < 0);
98
99    if (pre->points != NULL) {
100        EC_POINT **pts;
101
102        for (pts = pre->points; *pts != NULL; pts++)
103            EC_POINT_free(*pts);
104        OPENSSL_free(pre->points);
105    }
106    CRYPTO_THREAD_lock_free(pre->lock);
107    OPENSSL_free(pre);
108}
109
110#define EC_POINT_BN_set_flags(P, flags) do { \
111    BN_set_flags((P)->X, (flags)); \
112    BN_set_flags((P)->Y, (flags)); \
113    BN_set_flags((P)->Z, (flags)); \
114} while(0)
115
116/*-
117 * This functions computes a single point multiplication over the EC group,
118 * using, at a high level, a Montgomery ladder with conditional swaps, with
119 * various timing attack defenses.
120 *
121 * It performs either a fixed point multiplication
122 *          (scalar * generator)
123 * when point is NULL, or a variable point multiplication
124 *          (scalar * point)
125 * when point is not NULL.
126 *
127 * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
128 * constant time bets are off (where n is the cardinality of the EC group).
129 *
130 * This function expects `group->order` and `group->cardinality` to be well
131 * defined and non-zero: it fails with an error code otherwise.
132 *
133 * NB: This says nothing about the constant-timeness of the ladder step
134 * implementation (i.e., the default implementation is based on EC_POINT_add and
135 * EC_POINT_dbl, which of course are not constant time themselves) or the
136 * underlying multiprecision arithmetic.
137 *
138 * The product is stored in `r`.
139 *
140 * This is an internal function: callers are in charge of ensuring that the
141 * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
142 *
143 * Returns 1 on success, 0 otherwise.
144 */
145int ossl_ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
146                              const BIGNUM *scalar, const EC_POINT *point,
147                              BN_CTX *ctx)
148{
149    int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
150    EC_POINT *p = NULL;
151    EC_POINT *s = NULL;
152    BIGNUM *k = NULL;
153    BIGNUM *lambda = NULL;
154    BIGNUM *cardinality = NULL;
155    int ret = 0;
156
157    /* early exit if the input point is the point at infinity */
158    if (point != NULL && EC_POINT_is_at_infinity(group, point))
159        return EC_POINT_set_to_infinity(group, r);
160
161    if (BN_is_zero(group->order)) {
162        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
163        return 0;
164    }
165    if (BN_is_zero(group->cofactor)) {
166        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_COFACTOR);
167        return 0;
168    }
169
170    BN_CTX_start(ctx);
171
172    if (((p = EC_POINT_new(group)) == NULL)
173        || ((s = EC_POINT_new(group)) == NULL)) {
174        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
175        goto err;
176    }
177
178    if (point == NULL) {
179        if (!EC_POINT_copy(p, group->generator)) {
180            ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
181            goto err;
182        }
183    } else {
184        if (!EC_POINT_copy(p, point)) {
185            ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
186            goto err;
187        }
188    }
189
190    EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
191    EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
192    EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
193
194    cardinality = BN_CTX_get(ctx);
195    lambda = BN_CTX_get(ctx);
196    k = BN_CTX_get(ctx);
197    if (k == NULL) {
198        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
199        goto err;
200    }
201
202    if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
203        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
204        goto err;
205    }
206
207    /*
208     * Group cardinalities are often on a word boundary.
209     * So when we pad the scalar, some timing diff might
210     * pop if it needs to be expanded due to carries.
211     * So expand ahead of time.
212     */
213    cardinality_bits = BN_num_bits(cardinality);
214    group_top = bn_get_top(cardinality);
215    if ((bn_wexpand(k, group_top + 2) == NULL)
216        || (bn_wexpand(lambda, group_top + 2) == NULL)) {
217        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
218        goto err;
219    }
220
221    if (!BN_copy(k, scalar)) {
222        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
223        goto err;
224    }
225
226    BN_set_flags(k, BN_FLG_CONSTTIME);
227
228    if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
229        /*-
230         * this is an unusual input, and we don't guarantee
231         * constant-timeness
232         */
233        if (!BN_nnmod(k, k, cardinality, ctx)) {
234            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
235            goto err;
236        }
237    }
238
239    if (!BN_add(lambda, k, cardinality)) {
240        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
241        goto err;
242    }
243    BN_set_flags(lambda, BN_FLG_CONSTTIME);
244    if (!BN_add(k, lambda, cardinality)) {
245        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
246        goto err;
247    }
248    /*
249     * lambda := scalar + cardinality
250     * k := scalar + 2*cardinality
251     */
252    kbit = BN_is_bit_set(lambda, cardinality_bits);
253    BN_consttime_swap(kbit, k, lambda, group_top + 2);
254
255    group_top = bn_get_top(group->field);
256    if ((bn_wexpand(s->X, group_top) == NULL)
257        || (bn_wexpand(s->Y, group_top) == NULL)
258        || (bn_wexpand(s->Z, group_top) == NULL)
259        || (bn_wexpand(r->X, group_top) == NULL)
260        || (bn_wexpand(r->Y, group_top) == NULL)
261        || (bn_wexpand(r->Z, group_top) == NULL)
262        || (bn_wexpand(p->X, group_top) == NULL)
263        || (bn_wexpand(p->Y, group_top) == NULL)
264        || (bn_wexpand(p->Z, group_top) == NULL)) {
265        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
266        goto err;
267    }
268
269    /* ensure input point is in affine coords for ladder step efficiency */
270    if (!p->Z_is_one && (group->meth->make_affine == NULL
271                         || !group->meth->make_affine(group, p, ctx))) {
272            ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
273            goto err;
274    }
275
276    /* Initialize the Montgomery ladder */
277    if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
278        ERR_raise(ERR_LIB_EC, EC_R_LADDER_PRE_FAILURE);
279        goto err;
280    }
281
282    /* top bit is a 1, in a fixed pos */
283    pbit = 1;
284
285#define EC_POINT_CSWAP(c, a, b, w, t) do {         \
286        BN_consttime_swap(c, (a)->X, (b)->X, w);   \
287        BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
288        BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
289        t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
290        (a)->Z_is_one ^= (t);                      \
291        (b)->Z_is_one ^= (t);                      \
292} while(0)
293
294    /*-
295     * The ladder step, with branches, is
296     *
297     * k[i] == 0: S = add(R, S), R = dbl(R)
298     * k[i] == 1: R = add(S, R), S = dbl(S)
299     *
300     * Swapping R, S conditionally on k[i] leaves you with state
301     *
302     * k[i] == 0: T, U = R, S
303     * k[i] == 1: T, U = S, R
304     *
305     * Then perform the ECC ops.
306     *
307     * U = add(T, U)
308     * T = dbl(T)
309     *
310     * Which leaves you with state
311     *
312     * k[i] == 0: U = add(R, S), T = dbl(R)
313     * k[i] == 1: U = add(S, R), T = dbl(S)
314     *
315     * Swapping T, U conditionally on k[i] leaves you with state
316     *
317     * k[i] == 0: R, S = T, U
318     * k[i] == 1: R, S = U, T
319     *
320     * Which leaves you with state
321     *
322     * k[i] == 0: S = add(R, S), R = dbl(R)
323     * k[i] == 1: R = add(S, R), S = dbl(S)
324     *
325     * So we get the same logic, but instead of a branch it's a
326     * conditional swap, followed by ECC ops, then another conditional swap.
327     *
328     * Optimization: The end of iteration i and start of i-1 looks like
329     *
330     * ...
331     * CSWAP(k[i], R, S)
332     * ECC
333     * CSWAP(k[i], R, S)
334     * (next iteration)
335     * CSWAP(k[i-1], R, S)
336     * ECC
337     * CSWAP(k[i-1], R, S)
338     * ...
339     *
340     * So instead of two contiguous swaps, you can merge the condition
341     * bits and do a single swap.
342     *
343     * k[i]   k[i-1]    Outcome
344     * 0      0         No Swap
345     * 0      1         Swap
346     * 1      0         Swap
347     * 1      1         No Swap
348     *
349     * This is XOR. pbit tracks the previous bit of k.
350     */
351
352    for (i = cardinality_bits - 1; i >= 0; i--) {
353        kbit = BN_is_bit_set(k, i) ^ pbit;
354        EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
355
356        /* Perform a single step of the Montgomery ladder */
357        if (!ec_point_ladder_step(group, r, s, p, ctx)) {
358            ERR_raise(ERR_LIB_EC, EC_R_LADDER_STEP_FAILURE);
359            goto err;
360        }
361        /*
362         * pbit logic merges this cswap with that of the
363         * next iteration
364         */
365        pbit ^= kbit;
366    }
367    /* one final cswap to move the right value into r */
368    EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
369#undef EC_POINT_CSWAP
370
371    /* Finalize ladder (and recover full point coordinates) */
372    if (!ec_point_ladder_post(group, r, s, p, ctx)) {
373        ERR_raise(ERR_LIB_EC, EC_R_LADDER_POST_FAILURE);
374        goto err;
375    }
376
377    ret = 1;
378
379 err:
380    EC_POINT_free(p);
381    EC_POINT_clear_free(s);
382    BN_CTX_end(ctx);
383
384    return ret;
385}
386
387#undef EC_POINT_BN_set_flags
388
389/*
390 * Table could be optimised for the wNAF-based implementation,
391 * sometimes smaller windows will give better performance (thus the
392 * boundaries should be increased)
393 */
394#define EC_window_bits_for_scalar_size(b) \
395                ((size_t) \
396                 ((b) >= 2000 ? 6 : \
397                  (b) >=  800 ? 5 : \
398                  (b) >=  300 ? 4 : \
399                  (b) >=   70 ? 3 : \
400                  (b) >=   20 ? 2 : \
401                  1))
402
403/*-
404 * Compute
405 *      \sum scalars[i]*points[i],
406 * also including
407 *      scalar*generator
408 * in the addition if scalar != NULL
409 */
410int ossl_ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
411                     size_t num, const EC_POINT *points[],
412                     const BIGNUM *scalars[], BN_CTX *ctx)
413{
414    const EC_POINT *generator = NULL;
415    EC_POINT *tmp = NULL;
416    size_t totalnum;
417    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
418    size_t pre_points_per_block = 0;
419    size_t i, j;
420    int k;
421    int r_is_inverted = 0;
422    int r_is_at_infinity = 1;
423    size_t *wsize = NULL;       /* individual window sizes */
424    signed char **wNAF = NULL;  /* individual wNAFs */
425    size_t *wNAF_len = NULL;
426    size_t max_len = 0;
427    size_t num_val;
428    EC_POINT **val = NULL;      /* precomputation */
429    EC_POINT **v;
430    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
431                                 * 'pre_comp->points' */
432    const EC_PRE_COMP *pre_comp = NULL;
433    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
434                                 * treated like other scalars, i.e.
435                                 * precomputation is not available */
436    int ret = 0;
437
438    if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
439        /*-
440         * Handle the common cases where the scalar is secret, enforcing a
441         * scalar multiplication implementation based on a Montgomery ladder,
442         * with various timing attack defenses.
443         */
444        if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
445            /*-
446             * In this case we want to compute scalar * GeneratorPoint: this
447             * codepath is reached most prominently by (ephemeral) key
448             * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
449             * ECDH keygen/first half), where the scalar is always secret. This
450             * is why we ignore if BN_FLG_CONSTTIME is actually set and we
451             * always call the ladder version.
452             */
453            return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
454        }
455        if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
456            /*-
457             * In this case we want to compute scalar * VariablePoint: this
458             * codepath is reached most prominently by the second half of ECDH,
459             * where the secret scalar is multiplied by the peer's public point.
460             * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
461             * actually set and we always call the ladder version.
462             */
463            return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0],
464                                             ctx);
465        }
466    }
467
468    if (scalar != NULL) {
469        generator = EC_GROUP_get0_generator(group);
470        if (generator == NULL) {
471            ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
472            goto err;
473        }
474
475        /* look if we can use precomputed multiples of generator */
476
477        pre_comp = group->pre_comp.ec;
478        if (pre_comp && pre_comp->numblocks
479            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
480                0)) {
481            blocksize = pre_comp->blocksize;
482
483            /*
484             * determine maximum number of blocks that wNAF splitting may
485             * yield (NB: maximum wNAF length is bit length plus one)
486             */
487            numblocks = (BN_num_bits(scalar) / blocksize) + 1;
488
489            /*
490             * we cannot use more blocks than we have precomputation for
491             */
492            if (numblocks > pre_comp->numblocks)
493                numblocks = pre_comp->numblocks;
494
495            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
496
497            /* check that pre_comp looks sane */
498            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
499                ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
500                goto err;
501            }
502        } else {
503            /* can't use precomputation */
504            pre_comp = NULL;
505            numblocks = 1;
506            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
507                                 * 'scalars' */
508        }
509    }
510
511    totalnum = num + numblocks;
512
513    wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
514    wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
515    /* include space for pivot */
516    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
517    val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
518
519    /* Ensure wNAF is initialised in case we end up going to err */
520    if (wNAF != NULL)
521        wNAF[0] = NULL;         /* preliminary pivot */
522
523    if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
524        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
525        goto err;
526    }
527
528    /*
529     * num_val will be the total number of temporarily precomputed points
530     */
531    num_val = 0;
532
533    for (i = 0; i < num + num_scalar; i++) {
534        size_t bits;
535
536        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
537        wsize[i] = EC_window_bits_for_scalar_size(bits);
538        num_val += (size_t)1 << (wsize[i] - 1);
539        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
540        wNAF[i] =
541            bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
542                            &wNAF_len[i]);
543        if (wNAF[i] == NULL)
544            goto err;
545        if (wNAF_len[i] > max_len)
546            max_len = wNAF_len[i];
547    }
548
549    if (numblocks) {
550        /* we go here iff scalar != NULL */
551
552        if (pre_comp == NULL) {
553            if (num_scalar != 1) {
554                ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
555                goto err;
556            }
557            /* we have already generated a wNAF for 'scalar' */
558        } else {
559            signed char *tmp_wNAF = NULL;
560            size_t tmp_len = 0;
561
562            if (num_scalar != 0) {
563                ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
564                goto err;
565            }
566
567            /*
568             * use the window size for which we have precomputation
569             */
570            wsize[num] = pre_comp->w;
571            tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
572            if (!tmp_wNAF)
573                goto err;
574
575            if (tmp_len <= max_len) {
576                /*
577                 * One of the other wNAFs is at least as long as the wNAF
578                 * belonging to the generator, so wNAF splitting will not buy
579                 * us anything.
580                 */
581
582                numblocks = 1;
583                totalnum = num + 1; /* don't use wNAF splitting */
584                wNAF[num] = tmp_wNAF;
585                wNAF[num + 1] = NULL;
586                wNAF_len[num] = tmp_len;
587                /*
588                 * pre_comp->points starts with the points that we need here:
589                 */
590                val_sub[num] = pre_comp->points;
591            } else {
592                /*
593                 * don't include tmp_wNAF directly into wNAF array - use wNAF
594                 * splitting and include the blocks
595                 */
596
597                signed char *pp;
598                EC_POINT **tmp_points;
599
600                if (tmp_len < numblocks * blocksize) {
601                    /*
602                     * possibly we can do with fewer blocks than estimated
603                     */
604                    numblocks = (tmp_len + blocksize - 1) / blocksize;
605                    if (numblocks > pre_comp->numblocks) {
606                        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
607                        OPENSSL_free(tmp_wNAF);
608                        goto err;
609                    }
610                    totalnum = num + numblocks;
611                }
612
613                /* split wNAF in 'numblocks' parts */
614                pp = tmp_wNAF;
615                tmp_points = pre_comp->points;
616
617                for (i = num; i < totalnum; i++) {
618                    if (i < totalnum - 1) {
619                        wNAF_len[i] = blocksize;
620                        if (tmp_len < blocksize) {
621                            ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
622                            OPENSSL_free(tmp_wNAF);
623                            goto err;
624                        }
625                        tmp_len -= blocksize;
626                    } else
627                        /*
628                         * last block gets whatever is left (this could be
629                         * more or less than 'blocksize'!)
630                         */
631                        wNAF_len[i] = tmp_len;
632
633                    wNAF[i + 1] = NULL;
634                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
635                    if (wNAF[i] == NULL) {
636                        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
637                        OPENSSL_free(tmp_wNAF);
638                        goto err;
639                    }
640                    memcpy(wNAF[i], pp, wNAF_len[i]);
641                    if (wNAF_len[i] > max_len)
642                        max_len = wNAF_len[i];
643
644                    if (*tmp_points == NULL) {
645                        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
646                        OPENSSL_free(tmp_wNAF);
647                        goto err;
648                    }
649                    val_sub[i] = tmp_points;
650                    tmp_points += pre_points_per_block;
651                    pp += blocksize;
652                }
653                OPENSSL_free(tmp_wNAF);
654            }
655        }
656    }
657
658    /*
659     * All points we precompute now go into a single array 'val'.
660     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
661     * subarray of 'pre_comp->points' if we already have precomputation.
662     */
663    val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
664    if (val == NULL) {
665        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
666        goto err;
667    }
668    val[num_val] = NULL;        /* pivot element */
669
670    /* allocate points for precomputation */
671    v = val;
672    for (i = 0; i < num + num_scalar; i++) {
673        val_sub[i] = v;
674        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
675            *v = EC_POINT_new(group);
676            if (*v == NULL)
677                goto err;
678            v++;
679        }
680    }
681    if (!(v == val + num_val)) {
682        ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
683        goto err;
684    }
685
686    if ((tmp = EC_POINT_new(group)) == NULL)
687        goto err;
688
689    /*-
690     * prepare precomputed values:
691     *    val_sub[i][0] :=     points[i]
692     *    val_sub[i][1] := 3 * points[i]
693     *    val_sub[i][2] := 5 * points[i]
694     *    ...
695     */
696    for (i = 0; i < num + num_scalar; i++) {
697        if (i < num) {
698            if (!EC_POINT_copy(val_sub[i][0], points[i]))
699                goto err;
700        } else {
701            if (!EC_POINT_copy(val_sub[i][0], generator))
702                goto err;
703        }
704
705        if (wsize[i] > 1) {
706            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
707                goto err;
708            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
709                if (!EC_POINT_add
710                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
711                    goto err;
712            }
713        }
714    }
715
716    if (group->meth->points_make_affine == NULL
717        || !group->meth->points_make_affine(group, num_val, val, ctx))
718        goto err;
719
720    r_is_at_infinity = 1;
721
722    for (k = max_len - 1; k >= 0; k--) {
723        if (!r_is_at_infinity) {
724            if (!EC_POINT_dbl(group, r, r, ctx))
725                goto err;
726        }
727
728        for (i = 0; i < totalnum; i++) {
729            if (wNAF_len[i] > (size_t)k) {
730                int digit = wNAF[i][k];
731                int is_neg;
732
733                if (digit) {
734                    is_neg = digit < 0;
735
736                    if (is_neg)
737                        digit = -digit;
738
739                    if (is_neg != r_is_inverted) {
740                        if (!r_is_at_infinity) {
741                            if (!EC_POINT_invert(group, r, ctx))
742                                goto err;
743                        }
744                        r_is_inverted = !r_is_inverted;
745                    }
746
747                    /* digit > 0 */
748
749                    if (r_is_at_infinity) {
750                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
751                            goto err;
752
753                        /*-
754                         * Apply coordinate blinding for EC_POINT.
755                         *
756                         * The underlying EC_METHOD can optionally implement this function:
757                         * ossl_ec_point_blind_coordinates() returns 0 in case of errors or 1 on
758                         * success or if coordinate blinding is not implemented for this
759                         * group.
760                         */
761                        if (!ossl_ec_point_blind_coordinates(group, r, ctx)) {
762                            ERR_raise(ERR_LIB_EC, EC_R_POINT_COORDINATES_BLIND_FAILURE);
763                            goto err;
764                        }
765
766                        r_is_at_infinity = 0;
767                    } else {
768                        if (!EC_POINT_add
769                            (group, r, r, val_sub[i][digit >> 1], ctx))
770                            goto err;
771                    }
772                }
773            }
774        }
775    }
776
777    if (r_is_at_infinity) {
778        if (!EC_POINT_set_to_infinity(group, r))
779            goto err;
780    } else {
781        if (r_is_inverted)
782            if (!EC_POINT_invert(group, r, ctx))
783                goto err;
784    }
785
786    ret = 1;
787
788 err:
789    EC_POINT_free(tmp);
790    OPENSSL_free(wsize);
791    OPENSSL_free(wNAF_len);
792    if (wNAF != NULL) {
793        signed char **w;
794
795        for (w = wNAF; *w != NULL; w++)
796            OPENSSL_free(*w);
797
798        OPENSSL_free(wNAF);
799    }
800    if (val != NULL) {
801        for (v = val; *v != NULL; v++)
802            EC_POINT_clear_free(*v);
803
804        OPENSSL_free(val);
805    }
806    OPENSSL_free(val_sub);
807    return ret;
808}
809
810/*-
811 * ossl_ec_wNAF_precompute_mult()
812 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
813 * for use with wNAF splitting as implemented in ossl_ec_wNAF_mul().
814 *
815 * 'pre_comp->points' is an array of multiples of the generator
816 * of the following form:
817 * points[0] =     generator;
818 * points[1] = 3 * generator;
819 * ...
820 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
821 * points[2^(w-1)]   =     2^blocksize * generator;
822 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
823 * ...
824 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
825 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
826 * ...
827 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
828 * points[2^(w-1)*numblocks]       = NULL
829 */
830int ossl_ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
831{
832    const EC_POINT *generator;
833    EC_POINT *tmp_point = NULL, *base = NULL, **var;
834    const BIGNUM *order;
835    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
836    EC_POINT **points = NULL;
837    EC_PRE_COMP *pre_comp;
838    int ret = 0;
839    int used_ctx = 0;
840#ifndef FIPS_MODULE
841    BN_CTX *new_ctx = NULL;
842#endif
843
844    /* if there is an old EC_PRE_COMP object, throw it away */
845    EC_pre_comp_free(group);
846    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
847        return 0;
848
849    generator = EC_GROUP_get0_generator(group);
850    if (generator == NULL) {
851        ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
852        goto err;
853    }
854
855#ifndef FIPS_MODULE
856    if (ctx == NULL)
857        ctx = new_ctx = BN_CTX_new();
858#endif
859    if (ctx == NULL)
860        goto err;
861
862    BN_CTX_start(ctx);
863    used_ctx = 1;
864
865    order = EC_GROUP_get0_order(group);
866    if (order == NULL)
867        goto err;
868    if (BN_is_zero(order)) {
869        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
870        goto err;
871    }
872
873    bits = BN_num_bits(order);
874    /*
875     * The following parameters mean we precompute (approximately) one point
876     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
877     * bit lengths, other parameter combinations might provide better
878     * efficiency.
879     */
880    blocksize = 8;
881    w = 4;
882    if (EC_window_bits_for_scalar_size(bits) > w) {
883        /* let's not make the window too small ... */
884        w = EC_window_bits_for_scalar_size(bits);
885    }
886
887    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
888                                                     * to use for wNAF
889                                                     * splitting */
890
891    pre_points_per_block = (size_t)1 << (w - 1);
892    num = pre_points_per_block * numblocks; /* number of points to compute
893                                             * and store */
894
895    points = OPENSSL_malloc(sizeof(*points) * (num + 1));
896    if (points == NULL) {
897        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
898        goto err;
899    }
900
901    var = points;
902    var[num] = NULL;            /* pivot */
903    for (i = 0; i < num; i++) {
904        if ((var[i] = EC_POINT_new(group)) == NULL) {
905            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
906            goto err;
907        }
908    }
909
910    if ((tmp_point = EC_POINT_new(group)) == NULL
911        || (base = EC_POINT_new(group)) == NULL) {
912        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
913        goto err;
914    }
915
916    if (!EC_POINT_copy(base, generator))
917        goto err;
918
919    /* do the precomputation */
920    for (i = 0; i < numblocks; i++) {
921        size_t j;
922
923        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
924            goto err;
925
926        if (!EC_POINT_copy(*var++, base))
927            goto err;
928
929        for (j = 1; j < pre_points_per_block; j++, var++) {
930            /*
931             * calculate odd multiples of the current base point
932             */
933            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
934                goto err;
935        }
936
937        if (i < numblocks - 1) {
938            /*
939             * get the next base (multiply current one by 2^blocksize)
940             */
941            size_t k;
942
943            if (blocksize <= 2) {
944                ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
945                goto err;
946            }
947
948            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
949                goto err;
950            for (k = 2; k < blocksize; k++) {
951                if (!EC_POINT_dbl(group, base, base, ctx))
952                    goto err;
953            }
954        }
955    }
956
957    if (group->meth->points_make_affine == NULL
958        || !group->meth->points_make_affine(group, num, points, ctx))
959        goto err;
960
961    pre_comp->group = group;
962    pre_comp->blocksize = blocksize;
963    pre_comp->numblocks = numblocks;
964    pre_comp->w = w;
965    pre_comp->points = points;
966    points = NULL;
967    pre_comp->num = num;
968    SETPRECOMP(group, ec, pre_comp);
969    pre_comp = NULL;
970    ret = 1;
971
972 err:
973    if (used_ctx)
974        BN_CTX_end(ctx);
975#ifndef FIPS_MODULE
976    BN_CTX_free(new_ctx);
977#endif
978    EC_ec_pre_comp_free(pre_comp);
979    if (points) {
980        EC_POINT **p;
981
982        for (p = points; *p != NULL; p++)
983            EC_POINT_free(*p);
984        OPENSSL_free(points);
985    }
986    EC_POINT_free(tmp_point);
987    EC_POINT_free(base);
988    return ret;
989}
990
991int ossl_ec_wNAF_have_precompute_mult(const EC_GROUP *group)
992{
993    return HAVEPRECOMP(group, ec);
994}
995