1/*
2 * Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2020, Intel Corporation. All Rights Reserved.
4 *
5 * Licensed under the Apache License 2.0 (the "License").  You may not use
6 * this file except in compliance with the License.  You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 *
10 *
11 * Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov
12 * Intel Corporation
13 *
14 */
15
16#include <openssl/opensslconf.h>
17#include <openssl/crypto.h>
18#include "rsaz_exp.h"
19
20#ifndef RSAZ_ENABLED
21NON_EMPTY_TRANSLATION_UNIT
22#else
23# include <assert.h>
24# include <string.h>
25
26# if defined(__GNUC__)
27#  define ALIGN64 __attribute__((aligned(64)))
28# elif defined(_MSC_VER)
29#  define ALIGN64 __declspec(align(64))
30# else
31#  define ALIGN64
32# endif
33
34# define ALIGN_OF(ptr, boundary) \
35    ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
36
37/* Internal radix */
38# define DIGIT_SIZE (52)
39/* 52-bit mask */
40# define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
41
42# define BITS2WORD8_SIZE(x)  (((x) + 7) >> 3)
43# define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
44
45static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len);
46static ossl_inline void put_digit52(uint8_t *out, int out_len, uint64_t digit);
47static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
48                       int in_bitsize);
49static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
50static ossl_inline void set_bit(BN_ULONG *a, int idx);
51
52/* Number of |digit_size|-bit digits in |bitsize|-bit value */
53static ossl_inline int number_of_digits(int bitsize, int digit_size)
54{
55    return (bitsize + digit_size - 1) / digit_size;
56}
57
58typedef void (*AMM52)(BN_ULONG *res, const BN_ULONG *base,
59                      const BN_ULONG *exp, const BN_ULONG *m, BN_ULONG k0);
60typedef void (*EXP52_x2)(BN_ULONG *res, const BN_ULONG *base,
61                         const BN_ULONG *exp[2], const BN_ULONG *m,
62                         const BN_ULONG *rr, const BN_ULONG k0[2]);
63
64/*
65 * For details of the methods declared below please refer to
66 *    crypto/bn/asm/rsaz-avx512.pl
67 *
68 * Naming notes:
69 *  amm = Almost Montgomery Multiplication
70 *  ams = Almost Montgomery Squaring
71 *  52x20 - data represented as array of 20 digits in 52-bit radix
72 *  _x1_/_x2_ - 1 or 2 independent inputs/outputs
73 *  _256 suffix - uses 256-bit (AVX512VL) registers
74 */
75
76/*AMM = Almost Montgomery Multiplication. */
77void ossl_rsaz_amm52x20_x1_256(BN_ULONG *res, const BN_ULONG *base,
78                               const BN_ULONG *exp, const BN_ULONG *m,
79                               BN_ULONG k0);
80static void RSAZ_exp52x20_x2_256(BN_ULONG *res, const BN_ULONG *base,
81                                 const BN_ULONG *exp[2], const BN_ULONG *m,
82                                 const BN_ULONG *rr, const BN_ULONG k0[2]);
83void ossl_rsaz_amm52x20_x2_256(BN_ULONG *out, const BN_ULONG *a,
84                               const BN_ULONG *b, const BN_ULONG *m,
85                               const BN_ULONG k0[2]);
86void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
87                                       const BN_ULONG *red_table,
88                                       int red_table_idx, int tbl_idx);
89
90/*
91 * Dual Montgomery modular exponentiation using prime moduli of the
92 * same bit size, optimized with AVX512 ISA.
93 *
94 * Input and output parameters for each exponentiation are independent and
95 * denoted here by index |i|, i = 1..2.
96 *
97 * Input and output are all in regular 2^64 radix.
98 *
99 * Each moduli shall be |factor_size| bit size.
100 *
101 * NOTE: currently only 2x1024 case is supported.
102 *
103 *  [out] res|i|      - result of modular exponentiation: array of qword values
104 *                      in regular (2^64) radix. Size of array shall be enough
105 *                      to hold |factor_size| bits.
106 *  [in]  base|i|     - base
107 *  [in]  exp|i|      - exponent
108 *  [in]  m|i|        - moduli
109 *  [in]  rr|i|       - Montgomery parameter RR = R^2 mod m|i|
110 *  [in]  k0_|i|      - Montgomery parameter k0 = -1/m|i| mod 2^64
111 *  [in]  factor_size - moduli bit size
112 *
113 * \return 0 in case of failure,
114 *         1 in case of success.
115 */
116int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
117                                const BN_ULONG *base1,
118                                const BN_ULONG *exp1,
119                                const BN_ULONG *m1,
120                                const BN_ULONG *rr1,
121                                BN_ULONG k0_1,
122                                BN_ULONG *res2,
123                                const BN_ULONG *base2,
124                                const BN_ULONG *exp2,
125                                const BN_ULONG *m2,
126                                const BN_ULONG *rr2,
127                                BN_ULONG k0_2,
128                                int factor_size)
129{
130    int ret = 0;
131
132    /*
133     * Number of word-size (BN_ULONG) digits to store exponent in redundant
134     * representation.
135     */
136    int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
137    int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
138    BN_ULONG *base1_red, *m1_red, *rr1_red;
139    BN_ULONG *base2_red, *m2_red, *rr2_red;
140    BN_ULONG *coeff_red;
141    BN_ULONG *storage = NULL;
142    BN_ULONG *storage_aligned = NULL;
143    BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG);
144
145    /* AMM = Almost Montgomery Multiplication */
146    AMM52 amm = NULL;
147    /* Dual (2-exps in parallel) exponentiation */
148    EXP52_x2 exp_x2 = NULL;
149
150    const BN_ULONG *exp[2] = {0};
151    BN_ULONG k0[2] = {0};
152
153    /* Only 1024-bit factor size is supported now */
154    switch (factor_size) {
155    case 1024:
156        amm = ossl_rsaz_amm52x20_x1_256;
157        exp_x2 = RSAZ_exp52x20_x2_256;
158        break;
159    default:
160        goto err;
161    }
162
163    storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64);
164    if (storage == NULL)
165        goto err;
166    storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
167
168    /* Memory layout for red(undant) representations */
169    base1_red = storage_aligned;
170    base2_red = storage_aligned + 1 * exp_digits;
171    m1_red    = storage_aligned + 2 * exp_digits;
172    m2_red    = storage_aligned + 3 * exp_digits;
173    rr1_red   = storage_aligned + 4 * exp_digits;
174    rr2_red   = storage_aligned + 5 * exp_digits;
175    coeff_red = storage_aligned + 6 * exp_digits;
176
177    /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
178    to_words52(base1_red, exp_digits, base1, factor_size);
179    to_words52(base2_red, exp_digits, base2, factor_size);
180    to_words52(m1_red, exp_digits, m1, factor_size);
181    to_words52(m2_red, exp_digits, m2, factor_size);
182    to_words52(rr1_red, exp_digits, rr1, factor_size);
183    to_words52(rr2_red, exp_digits, rr2, factor_size);
184
185    /*
186     * Compute target domain Montgomery converters RR' for each modulus
187     * based on precomputed original domain's RR.
188     *
189     * RR -> RR' transformation steps:
190     *  (1) coeff = 2^k
191     *  (2) t = AMM(RR,RR) = RR^2 / R' mod m
192     *  (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
193     * where
194     *  k = 4 * (52 * digits52 - modlen)
195     *  R  = 2^(64 * ceil(modlen/64)) mod m
196     *  RR = R^2 mod M
197     *  R' = 2^(52 * ceil(modlen/52)) mod m
198     *
199     *  modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
200     */
201    memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
202    /* (1) in reduced domain representation */
203    set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
204
205    amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1);     /* (2) for m1 */
206    amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1);   /* (3) for m1 */
207
208    amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2);     /* (2) for m2 */
209    amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2);   /* (3) for m2 */
210
211    exp[0] = exp1;
212    exp[1] = exp2;
213
214    k0[0] = k0_1;
215    k0[1] = k0_2;
216
217    exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0);
218
219    /* Convert rr_i back to regular radix */
220    from_words52(res1, factor_size, rr1_red);
221    from_words52(res2, factor_size, rr2_red);
222
223    /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
224    factor_size /= sizeof(BN_ULONG) * 8;
225
226    bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
227    bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
228
229    ret = 1;
230err:
231    if (storage != NULL) {
232        OPENSSL_cleanse(storage, storage_len_bytes);
233        OPENSSL_free(storage);
234    }
235    return ret;
236}
237
238/*
239 * Dual 1024-bit w-ary modular exponentiation using prime moduli of the same
240 * bit size using Almost Montgomery Multiplication, optimized with AVX512_IFMA
241 * ISA.
242 *
243 * The parameter w (window size) = 5.
244 *
245 *  [out] res      - result of modular exponentiation: 2x20 qword
246 *                   values in 2^52 radix.
247 *  [in]  base     - base (2x20 qword values in 2^52 radix)
248 *  [in]  exp      - array of 2 pointers to 16 qword values in 2^64 radix.
249 *                   Exponent is not converted to redundant representation.
250 *  [in]  m        - moduli (2x20 qword values in 2^52 radix)
251 *  [in]  rr       - Montgomery parameter for 2 moduli: RR = 2^2080 mod m.
252 *                   (2x20 qword values in 2^52 radix)
253 *  [in]  k0       - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
254 *
255 * \return (void).
256 */
257static void RSAZ_exp52x20_x2_256(BN_ULONG *out,          /* [2][20] */
258                                 const BN_ULONG *base,   /* [2][20] */
259                                 const BN_ULONG *exp[2], /* 2x16    */
260                                 const BN_ULONG *m,      /* [2][20] */
261                                 const BN_ULONG *rr,     /* [2][20] */
262                                 const BN_ULONG k0[2])
263{
264# define BITSIZE_MODULUS (1024)
265# define EXP_WIN_SIZE (5)
266# define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1)
267/*
268 * Number of digits (64-bit words) in redundant representation to handle
269 * modulus bits
270 */
271# define RED_DIGITS (20)
272# define EXP_DIGITS (16)
273# define DAMM ossl_rsaz_amm52x20_x2_256
274/*
275 * Squaring is done using multiplication now. That can be a subject of
276 * optimization in future.
277 */
278# define DAMS(r,a,m,k0) \
279              ossl_rsaz_amm52x20_x2_256((r),(a),(a),(m),(k0))
280
281    /* Allocate stack for red(undant) result Y and multiplier X */
282    ALIGN64 BN_ULONG red_Y[2][RED_DIGITS];
283    ALIGN64 BN_ULONG red_X[2][RED_DIGITS];
284
285    /* Allocate expanded exponent */
286    ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1];
287
288    /* Pre-computed table of base powers */
289    ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS];
290
291    int idx;
292
293    memset(red_Y, 0, sizeof(red_Y));
294    memset(red_table, 0, sizeof(red_table));
295    memset(red_X, 0, sizeof(red_X));
296
297    /*
298     * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
299     *   table[0] = mont(x^0) = mont(1)
300     *   table[1] = mont(x^1) = mont(x)
301     */
302    red_X[0][0] = 1;
303    red_X[1][0] = 1;
304    DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0);
305    DAMM(red_table[1][0], base,  rr, m, k0);
306
307    for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) {
308        DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0);
309        DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0);
310    }
311
312    /* Copy and expand exponents */
313    memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG));
314    expz[0][EXP_DIGITS] = 0;
315    memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG));
316    expz[1][EXP_DIGITS] = 0;
317
318    /* Exponentiation */
319    {
320        const int rem = BITSIZE_MODULUS % EXP_WIN_SIZE;
321        BN_ULONG table_idx_mask = EXP_WIN_MASK;
322
323        int exp_bit_no = BITSIZE_MODULUS - rem;
324        int exp_chunk_no = exp_bit_no / 64;
325        int exp_chunk_shift = exp_bit_no % 64;
326
327        BN_ULONG red_table_idx_0, red_table_idx_1;
328
329        /*
330         * If rem == 0, then
331         *      exp_bit_no = modulus_bitsize - exp_win_size
332         * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
333         * which is { 4, 1, 3 } respectively.
334         *
335         * If this assertion ever fails the fix above is easy.
336         */
337        OPENSSL_assert(rem != 0);
338
339        /* Process 1-st exp window - just init result */
340        red_table_idx_0 = expz[0][exp_chunk_no];
341        red_table_idx_1 = expz[1][exp_chunk_no];
342        /*
343         * The function operates with fixed moduli sizes divisible by 64,
344         * thus table index here is always in supported range [0, EXP_WIN_SIZE).
345         */
346        red_table_idx_0 >>= exp_chunk_shift;
347        red_table_idx_1 >>= exp_chunk_shift;
348
349        ossl_extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table,
350                                          (int)red_table_idx_0, 0);
351        ossl_extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table,
352                                          (int)red_table_idx_1, 1);
353
354        /* Process other exp windows */
355        for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) {
356            /* Extract pre-computed multiplier from the table */
357            {
358                BN_ULONG T;
359
360                exp_chunk_no = exp_bit_no / 64;
361                exp_chunk_shift = exp_bit_no % 64;
362                {
363                    red_table_idx_0 = expz[0][exp_chunk_no];
364                    T = expz[0][exp_chunk_no + 1];
365
366                    red_table_idx_0 >>= exp_chunk_shift;
367                    /*
368                     * Get additional bits from then next quadword
369                     * when 64-bit boundaries are crossed.
370                     */
371                    if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
372                        T <<= (64 - exp_chunk_shift);
373                        red_table_idx_0 ^= T;
374                    }
375                    red_table_idx_0 &= table_idx_mask;
376
377                    ossl_extract_multiplier_2x20_win5(red_X[0],
378                                                      (const BN_ULONG*)red_table,
379                                                      (int)red_table_idx_0, 0);
380                }
381                {
382                    red_table_idx_1 = expz[1][exp_chunk_no];
383                    T = expz[1][exp_chunk_no + 1];
384
385                    red_table_idx_1 >>= exp_chunk_shift;
386                    /*
387                     * Get additional bits from then next quadword
388                     * when 64-bit boundaries are crossed.
389                     */
390                    if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
391                        T <<= (64 - exp_chunk_shift);
392                        red_table_idx_1 ^= T;
393                    }
394                    red_table_idx_1 &= table_idx_mask;
395
396                    ossl_extract_multiplier_2x20_win5(red_X[1],
397                                                      (const BN_ULONG*)red_table,
398                                                      (int)red_table_idx_1, 1);
399                }
400            }
401
402            /* Series of squaring */
403            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
404            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
405            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
406            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
407            DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
408
409            DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
410        }
411    }
412
413    /*
414     *
415     * NB: After the last AMM of exponentiation in Montgomery domain, the result
416     * may be 1025-bit, but the conversion out of Montgomery domain performs an
417     * AMM(x,1) which guarantees that the final result is less than |m|, so no
418     * conditional subtraction is needed here. See "Efficient Software
419     * Implementations of Modular Exponentiation" (by Shay Gueron) paper for details.
420     */
421
422    /* Convert result back in regular 2^52 domain */
423    memset(red_X, 0, sizeof(red_X));
424    red_X[0][0] = 1;
425    red_X[1][0] = 1;
426    DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
427
428    /* Clear exponents */
429    OPENSSL_cleanse(expz, sizeof(expz));
430    OPENSSL_cleanse(red_Y, sizeof(red_Y));
431
432# undef DAMS
433# undef DAMM
434# undef EXP_DIGITS
435# undef RED_DIGITS
436# undef EXP_WIN_MASK
437# undef EXP_WIN_SIZE
438# undef BITSIZE_MODULUS
439}
440
441static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len)
442{
443    uint64_t digit = 0;
444
445    assert(in != NULL);
446
447    for (; in_len > 0; in_len--) {
448        digit <<= 8;
449        digit += (uint64_t)(in[in_len - 1]);
450    }
451    return digit;
452}
453
454/*
455 * Convert array of words in regular (base=2^64) representation to array of
456 * words in redundant (base=2^52) one.
457 */
458static void to_words52(BN_ULONG *out, int out_len,
459                       const BN_ULONG *in, int in_bitsize)
460{
461    uint8_t *in_str = NULL;
462
463    assert(out != NULL);
464    assert(in != NULL);
465    /* Check destination buffer capacity */
466    assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
467
468    in_str = (uint8_t *)in;
469
470    for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
471        uint64_t digit;
472
473        memcpy(&digit, in_str, sizeof(digit));
474        out[0] = digit & DIGIT_MASK;
475        in_str += 6;
476        memcpy(&digit, in_str, sizeof(digit));
477        out[1] = (digit >> 4) & DIGIT_MASK;
478        in_str += 7;
479        out_len -= 2;
480    }
481
482    if (in_bitsize > DIGIT_SIZE) {
483        uint64_t digit = get_digit52(in_str, 7);
484
485        out[0] = digit & DIGIT_MASK;
486        in_str += 6;
487        in_bitsize -= DIGIT_SIZE;
488        digit = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
489        out[1] = digit >> 4;
490        out += 2;
491        out_len -= 2;
492    } else if (in_bitsize > 0) {
493        out[0] = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
494        out++;
495        out_len--;
496    }
497
498    while (out_len > 0) {
499        *out = 0;
500        out_len--;
501        out++;
502    }
503}
504
505static ossl_inline void put_digit52(uint8_t *pStr, int strLen, uint64_t digit)
506{
507    assert(pStr != NULL);
508
509    for (; strLen > 0; strLen--) {
510        *pStr++ = (uint8_t)(digit & 0xFF);
511        digit >>= 8;
512    }
513}
514
515/*
516 * Convert array of words in redundant (base=2^52) representation to array of
517 * words in regular (base=2^64) one.
518 */
519static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
520{
521    int i;
522    int out_len = BITS2WORD64_SIZE(out_bitsize);
523
524    assert(out != NULL);
525    assert(in != NULL);
526
527    for (i = 0; i < out_len; i++)
528        out[i] = 0;
529
530    {
531        uint8_t *out_str = (uint8_t *)out;
532
533        for (; out_bitsize >= (2 * DIGIT_SIZE);
534               out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
535            uint64_t digit;
536
537            digit = in[0];
538            memcpy(out_str, &digit, sizeof(digit));
539            out_str += 6;
540            digit = digit >> 48 | in[1] << 4;
541            memcpy(out_str, &digit, sizeof(digit));
542            out_str += 7;
543        }
544
545        if (out_bitsize > DIGIT_SIZE) {
546            put_digit52(out_str, 7, in[0]);
547            out_str += 6;
548            out_bitsize -= DIGIT_SIZE;
549            put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize),
550                        (in[1] << 4 | in[0] >> 48));
551        } else if (out_bitsize) {
552            put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
553        }
554    }
555}
556
557/*
558 * Set bit at index |idx| in the words array |a|.
559 * It does not do any boundaries checks, make sure the index is valid before
560 * calling the function.
561 */
562static ossl_inline void set_bit(BN_ULONG *a, int idx)
563{
564    assert(a != NULL);
565
566    {
567        int i, j;
568
569        i = idx / BN_BITS2;
570        j = idx % BN_BITS2;
571        a[i] |= (((BN_ULONG)1) << j);
572    }
573}
574
575#endif
576