1/*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include "internal/cryptlib.h"
12#include "internal/numbers.h"
13#include <limits.h>
14#include <openssl/asn1.h>
15#include <openssl/bn.h>
16#include "asn1_local.h"
17
18ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
19{
20    return ASN1_STRING_dup(x);
21}
22
23int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
24{
25    int neg, ret;
26    /* Compare signs */
27    neg = x->type & V_ASN1_NEG;
28    if (neg != (y->type & V_ASN1_NEG)) {
29        if (neg)
30            return -1;
31        else
32            return 1;
33    }
34
35    ret = ASN1_STRING_cmp(x, y);
36
37    if (neg)
38        return -ret;
39    else
40        return ret;
41}
42
43/*-
44 * This converts a big endian buffer and sign into its content encoding.
45 * This is used for INTEGER and ENUMERATED types.
46 * The internal representation is an ASN1_STRING whose data is a big endian
47 * representation of the value, ignoring the sign. The sign is determined by
48 * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
49 *
50 * Positive integers are no problem: they are almost the same as the DER
51 * encoding, except if the first byte is >= 0x80 we need to add a zero pad.
52 *
53 * Negative integers are a bit trickier...
54 * The DER representation of negative integers is in 2s complement form.
55 * The internal form is converted by complementing each octet and finally
56 * adding one to the result. This can be done less messily with a little trick.
57 * If the internal form has trailing zeroes then they will become FF by the
58 * complement and 0 by the add one (due to carry) so just copy as many trailing
59 * zeros to the destination as there are in the source. The carry will add one
60 * to the last none zero octet: so complement this octet and add one and finally
61 * complement any left over until you get to the start of the string.
62 *
63 * Padding is a little trickier too. If the first bytes is > 0x80 then we pad
64 * with 0xff. However if the first byte is 0x80 and one of the following bytes
65 * is non-zero we pad with 0xff. The reason for this distinction is that 0x80
66 * followed by optional zeros isn't padded.
67 */
68
69/*
70 * If |pad| is zero, the operation is effectively reduced to memcpy,
71 * and if |pad| is 0xff, then it performs two's complement, ~dst + 1.
72 * Note that in latter case sequence of zeros yields itself, and so
73 * does 0x80 followed by any number of zeros. These properties are
74 * used elsewhere below...
75 */
76static void twos_complement(unsigned char *dst, const unsigned char *src,
77                            size_t len, unsigned char pad)
78{
79    unsigned int carry = pad & 1;
80
81    /* Begin at the end of the encoding */
82    if (len != 0) {
83        /*
84         * if len == 0 then src/dst could be NULL, and this would be undefined
85         * behaviour.
86         */
87        dst += len;
88        src += len;
89    }
90    /* two's complement value: ~value + 1 */
91    while (len-- != 0) {
92        *(--dst) = (unsigned char)(carry += *(--src) ^ pad);
93        carry >>= 8;
94    }
95}
96
97static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
98                       unsigned char **pp)
99{
100    unsigned int pad = 0;
101    size_t ret, i;
102    unsigned char *p, pb = 0;
103
104    if (b != NULL && blen) {
105        ret = blen;
106        i = b[0];
107        if (!neg && (i > 127)) {
108            pad = 1;
109            pb = 0;
110        } else if (neg) {
111            pb = 0xFF;
112            if (i > 128) {
113                pad = 1;
114            } else if (i == 128) {
115                /*
116                 * Special case [of minimal negative for given length]:
117                 * if any other bytes non zero we pad, otherwise we don't.
118                 */
119                for (pad = 0, i = 1; i < blen; i++)
120                    pad |= b[i];
121                pb = pad != 0 ? 0xffU : 0;
122                pad = pb & 1;
123            }
124        }
125        ret += pad;
126    } else {
127        ret = 1;
128        blen = 0;   /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */
129    }
130
131    if (pp == NULL || (p = *pp) == NULL)
132        return ret;
133
134    /*
135     * This magically handles all corner cases, such as '(b == NULL ||
136     * blen == 0)', non-negative value, "negative" zero, 0x80 followed
137     * by any number of zeros...
138     */
139    *p = pb;
140    p += pad;       /* yes, p[0] can be written twice, but it's little
141                     * price to pay for eliminated branches */
142    twos_complement(p, b, blen, pb);
143
144    *pp += ret;
145    return ret;
146}
147
148/*
149 * convert content octets into a big endian buffer. Returns the length
150 * of buffer or 0 on error: for malformed INTEGER. If output buffer is
151 * NULL just return length.
152 */
153
154static size_t c2i_ibuf(unsigned char *b, int *pneg,
155                       const unsigned char *p, size_t plen)
156{
157    int neg, pad;
158    /* Zero content length is illegal */
159    if (plen == 0) {
160        ERR_raise(ERR_LIB_ASN1, ASN1_R_ILLEGAL_ZERO_CONTENT);
161        return 0;
162    }
163    neg = p[0] & 0x80;
164    if (pneg)
165        *pneg = neg;
166    /* Handle common case where length is 1 octet separately */
167    if (plen == 1) {
168        if (b != NULL) {
169            if (neg)
170                b[0] = (p[0] ^ 0xFF) + 1;
171            else
172                b[0] = p[0];
173        }
174        return 1;
175    }
176
177    pad = 0;
178    if (p[0] == 0) {
179        pad = 1;
180    } else if (p[0] == 0xFF) {
181        size_t i;
182
183        /*
184         * Special case [of "one less minimal negative" for given length]:
185         * if any other bytes non zero it was padded, otherwise not.
186         */
187        for (pad = 0, i = 1; i < plen; i++)
188            pad |= p[i];
189        pad = pad != 0 ? 1 : 0;
190    }
191    /* reject illegal padding: first two octets MSB can't match */
192    if (pad && (neg == (p[1] & 0x80))) {
193        ERR_raise(ERR_LIB_ASN1, ASN1_R_ILLEGAL_PADDING);
194        return 0;
195    }
196
197    /* skip over pad */
198    p += pad;
199    plen -= pad;
200
201    if (b != NULL)
202        twos_complement(b, p, plen, neg ? 0xffU : 0);
203
204    return plen;
205}
206
207int ossl_i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
208{
209    return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
210}
211
212/* Convert big endian buffer into uint64_t, return 0 on error */
213static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
214{
215    size_t i;
216    uint64_t r;
217
218    if (blen > sizeof(*pr)) {
219        ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_LARGE);
220        return 0;
221    }
222    if (b == NULL)
223        return 0;
224    for (r = 0, i = 0; i < blen; i++) {
225        r <<= 8;
226        r |= b[i];
227    }
228    *pr = r;
229    return 1;
230}
231
232/*
233 * Write uint64_t to big endian buffer and return offset to first
234 * written octet. In other words it returns offset in range from 0
235 * to 7, with 0 denoting 8 written octets and 7 - one.
236 */
237static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r)
238{
239    size_t off = sizeof(uint64_t);
240
241    do {
242        b[--off] = (unsigned char)r;
243    } while (r >>= 8);
244
245    return off;
246}
247
248/*
249 * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces
250 * overflow warnings.
251 */
252#define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX)))
253
254/* signed version of asn1_get_uint64 */
255static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
256                          int neg)
257{
258    uint64_t r;
259    if (asn1_get_uint64(&r, b, blen) == 0)
260        return 0;
261    if (neg) {
262        if (r <= INT64_MAX) {
263            /* Most significant bit is guaranteed to be clear, negation
264             * is guaranteed to be meaningful in platform-neutral sense. */
265            *pr = -(int64_t)r;
266        } else if (r == ABS_INT64_MIN) {
267            /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g.
268             * on ones'-complement system. */
269            *pr = (int64_t)(0 - r);
270        } else {
271            ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_SMALL);
272            return 0;
273        }
274    } else {
275        if (r <= INT64_MAX) {
276            *pr = (int64_t)r;
277        } else {
278            ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_LARGE);
279            return 0;
280        }
281    }
282    return 1;
283}
284
285/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
286ASN1_INTEGER *ossl_c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
287                                    long len)
288{
289    ASN1_INTEGER *ret = NULL;
290    size_t r;
291    int neg;
292
293    r = c2i_ibuf(NULL, NULL, *pp, len);
294
295    if (r == 0)
296        return NULL;
297
298    if ((a == NULL) || ((*a) == NULL)) {
299        ret = ASN1_INTEGER_new();
300        if (ret == NULL)
301            return NULL;
302        ret->type = V_ASN1_INTEGER;
303    } else
304        ret = *a;
305
306    if (ASN1_STRING_set(ret, NULL, r) == 0)
307        goto err;
308
309    c2i_ibuf(ret->data, &neg, *pp, len);
310
311    if (neg != 0)
312        ret->type |= V_ASN1_NEG;
313    else
314        ret->type &= ~V_ASN1_NEG;
315
316    *pp += len;
317    if (a != NULL)
318        (*a) = ret;
319    return ret;
320 err:
321    ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
322    if (a == NULL || *a != ret)
323        ASN1_INTEGER_free(ret);
324    return NULL;
325}
326
327static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
328{
329    if (a == NULL) {
330        ERR_raise(ERR_LIB_ASN1, ERR_R_PASSED_NULL_PARAMETER);
331        return 0;
332    }
333    if ((a->type & ~V_ASN1_NEG) != itype) {
334        ERR_raise(ERR_LIB_ASN1, ASN1_R_WRONG_INTEGER_TYPE);
335        return 0;
336    }
337    return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
338}
339
340static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
341{
342    unsigned char tbuf[sizeof(r)];
343    size_t off;
344
345    a->type = itype;
346    if (r < 0) {
347        /* Most obvious '-r' triggers undefined behaviour for most
348         * common INT64_MIN. Even though below '0 - (uint64_t)r' can
349         * appear two's-complement centric, it does produce correct/
350         * expected result even on one's-complement. This is because
351         * cast to unsigned has to change bit pattern... */
352        off = asn1_put_uint64(tbuf, 0 - (uint64_t)r);
353        a->type |= V_ASN1_NEG;
354    } else {
355        off = asn1_put_uint64(tbuf, r);
356        a->type &= ~V_ASN1_NEG;
357    }
358    return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
359}
360
361static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
362                                  int itype)
363{
364    if (a == NULL) {
365        ERR_raise(ERR_LIB_ASN1, ERR_R_PASSED_NULL_PARAMETER);
366        return 0;
367    }
368    if ((a->type & ~V_ASN1_NEG) != itype) {
369        ERR_raise(ERR_LIB_ASN1, ASN1_R_WRONG_INTEGER_TYPE);
370        return 0;
371    }
372    if (a->type & V_ASN1_NEG) {
373        ERR_raise(ERR_LIB_ASN1, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
374        return 0;
375    }
376    return asn1_get_uint64(pr, a->data, a->length);
377}
378
379static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
380{
381    unsigned char tbuf[sizeof(r)];
382    size_t off;
383
384    a->type = itype;
385    off = asn1_put_uint64(tbuf, r);
386    return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
387}
388
389/*
390 * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1
391 * integers: some broken software can encode a positive INTEGER with its MSB
392 * set as negative (it doesn't add a padding zero).
393 */
394
395ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
396                                long length)
397{
398    ASN1_INTEGER *ret = NULL;
399    const unsigned char *p;
400    unsigned char *s;
401    long len = 0;
402    int inf, tag, xclass;
403    int i;
404
405    if ((a == NULL) || ((*a) == NULL)) {
406        if ((ret = ASN1_INTEGER_new()) == NULL)
407            return NULL;
408        ret->type = V_ASN1_INTEGER;
409    } else
410        ret = (*a);
411
412    p = *pp;
413    inf = ASN1_get_object(&p, &len, &tag, &xclass, length);
414    if (inf & 0x80) {
415        i = ASN1_R_BAD_OBJECT_HEADER;
416        goto err;
417    }
418
419    if (tag != V_ASN1_INTEGER) {
420        i = ASN1_R_EXPECTING_AN_INTEGER;
421        goto err;
422    }
423
424    if (len < 0) {
425        i = ASN1_R_ILLEGAL_NEGATIVE_VALUE;
426        goto err;
427    }
428    /*
429     * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
430     * a missing NULL parameter.
431     */
432    s = OPENSSL_malloc((int)len + 1);
433    if (s == NULL) {
434        i = ERR_R_MALLOC_FAILURE;
435        goto err;
436    }
437    ret->type = V_ASN1_INTEGER;
438    if (len) {
439        if ((*p == 0) && (len != 1)) {
440            p++;
441            len--;
442        }
443        memcpy(s, p, (int)len);
444        p += len;
445    }
446
447    OPENSSL_free(ret->data);
448    ret->data = s;
449    ret->length = (int)len;
450    if (a != NULL)
451        (*a) = ret;
452    *pp = p;
453    return ret;
454 err:
455    ERR_raise(ERR_LIB_ASN1, i);
456    if ((a == NULL) || (*a != ret))
457        ASN1_INTEGER_free(ret);
458    return NULL;
459}
460
461static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
462                                      int atype)
463{
464    ASN1_INTEGER *ret;
465    int len;
466
467    if (ai == NULL) {
468        ret = ASN1_STRING_type_new(atype);
469    } else {
470        ret = ai;
471        ret->type = atype;
472    }
473
474    if (ret == NULL) {
475        ERR_raise(ERR_LIB_ASN1, ERR_R_NESTED_ASN1_ERROR);
476        goto err;
477    }
478
479    if (BN_is_negative(bn) && !BN_is_zero(bn))
480        ret->type |= V_ASN1_NEG_INTEGER;
481
482    len = BN_num_bytes(bn);
483
484    if (len == 0)
485        len = 1;
486
487    if (ASN1_STRING_set(ret, NULL, len) == 0) {
488        ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE);
489        goto err;
490    }
491
492    /* Correct zero case */
493    if (BN_is_zero(bn))
494        ret->data[0] = 0;
495    else
496        len = BN_bn2bin(bn, ret->data);
497    ret->length = len;
498    return ret;
499 err:
500    if (ret != ai)
501        ASN1_INTEGER_free(ret);
502    return NULL;
503}
504
505static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
506                                 int itype)
507{
508    BIGNUM *ret;
509
510    if ((ai->type & ~V_ASN1_NEG) != itype) {
511        ERR_raise(ERR_LIB_ASN1, ASN1_R_WRONG_INTEGER_TYPE);
512        return NULL;
513    }
514
515    ret = BN_bin2bn(ai->data, ai->length, bn);
516    if (ret == NULL) {
517        ERR_raise(ERR_LIB_ASN1, ASN1_R_BN_LIB);
518        return NULL;
519    }
520    if (ai->type & V_ASN1_NEG)
521        BN_set_negative(ret, 1);
522    return ret;
523}
524
525int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
526{
527    return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
528}
529
530int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
531{
532    return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
533}
534
535int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
536{
537    return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
538}
539
540int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
541{
542    return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
543}
544
545int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
546{
547    return ASN1_INTEGER_set_int64(a, v);
548}
549
550long ASN1_INTEGER_get(const ASN1_INTEGER *a)
551{
552    int i;
553    int64_t r;
554    if (a == NULL)
555        return 0;
556    i = ASN1_INTEGER_get_int64(&r, a);
557    if (i == 0)
558        return -1;
559    if (r > LONG_MAX || r < LONG_MIN)
560        return -1;
561    return (long)r;
562}
563
564ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
565{
566    return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
567}
568
569BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
570{
571    return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
572}
573
574int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
575{
576    return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
577}
578
579int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
580{
581    return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
582}
583
584int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
585{
586    return ASN1_ENUMERATED_set_int64(a, v);
587}
588
589long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a)
590{
591    int i;
592    int64_t r;
593    if (a == NULL)
594        return 0;
595    if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
596        return -1;
597    if (a->length > (int)sizeof(long))
598        return 0xffffffffL;
599    i = ASN1_ENUMERATED_get_int64(&r, a);
600    if (i == 0)
601        return -1;
602    if (r > LONG_MAX || r < LONG_MIN)
603        return -1;
604    return (long)r;
605}
606
607ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
608{
609    return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
610}
611
612BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
613{
614    return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
615}
616
617/* Internal functions used by x_int64.c */
618int ossl_c2i_uint64_int(uint64_t *ret, int *neg,
619                        const unsigned char **pp, long len)
620{
621    unsigned char buf[sizeof(uint64_t)];
622    size_t buflen;
623
624    buflen = c2i_ibuf(NULL, NULL, *pp, len);
625    if (buflen == 0)
626        return 0;
627    if (buflen > sizeof(uint64_t)) {
628        ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_LARGE);
629        return 0;
630    }
631    (void)c2i_ibuf(buf, neg, *pp, len);
632    return asn1_get_uint64(ret, buf, buflen);
633}
634
635int ossl_i2c_uint64_int(unsigned char *p, uint64_t r, int neg)
636{
637    unsigned char buf[sizeof(uint64_t)];
638    size_t off;
639
640    off = asn1_put_uint64(buf, r);
641    return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p);
642}
643
644