1/*
2 * refclock_nmea.c - clock driver for an NMEA GPS CLOCK
3 *		Michael Petry Jun 20, 1994
4 *		 based on refclock_heathn.c
5 *
6 * Updated to add support for Accord GPS Clock
7 *		Venu Gopal Dec 05, 2007
8 *		neo.venu@gmail.com, venugopal_d@pgad.gov.in
9 *
10 * Updated to process 'time1' fudge factor
11 *		Venu Gopal May 05, 2008
12 *
13 * Converted to common PPSAPI code, separate PPS fudge time1
14 * from serial timecode fudge time2.
15 *		Dave Hart July 1, 2009
16 *		hart@ntp.org, davehart@davehart.com
17 */
18
19#ifdef HAVE_CONFIG_H
20#include <config.h>
21#endif
22
23#include "ntp_types.h"
24
25#if defined(REFCLOCK) && defined(CLOCK_NMEA)
26
27#define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */
28
29#include <sys/stat.h>
30#include <stdio.h>
31#include <ctype.h>
32#ifdef HAVE_SYS_SOCKET_H
33#include <sys/socket.h>
34#endif
35
36#include "ntpd.h"
37#include "ntp_io.h"
38#include "ntp_unixtime.h"
39#include "ntp_refclock.h"
40#include "ntp_stdlib.h"
41#include "ntp_calgps.h"
42#include "timespecops.h"
43
44#ifdef HAVE_PPSAPI
45# include "ppsapi_timepps.h"
46# include "refclock_atom.h"
47#endif /* HAVE_PPSAPI */
48
49
50/*
51 * This driver supports NMEA-compatible GPS receivers
52 *
53 * Prototype was refclock_trak.c, Thanks a lot.
54 *
55 * The receiver used spits out the NMEA sentences for boat navigation.
56 * And you thought it was an information superhighway.	Try a raging river
57 * filled with rapids and whirlpools that rip away your data and warp time.
58 *
59 * If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in.
60 * On startup if initialization of the PPSAPI fails, it will fall back
61 * to the "normal" timestamps.
62 *
63 * The PPSAPI part of the driver understands fudge flag2 and flag3. If
64 * flag2 is set, it will use the clear edge of the pulse. If flag3 is
65 * set, kernel hardpps is enabled.
66 *
67 * GPS sentences other than RMC (the default) may be enabled by setting
68 * the relevent bits of 'mode' in the server configuration line
69 * server 127.127.20.x mode X
70 *
71 * bit 0 - enables RMC (1)
72 * bit 1 - enables GGA (2)
73 * bit 2 - enables GLL (4)
74 * bit 3 - enables ZDA (8) - Standard Time & Date
75 * bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time
76 *			     very close to standard ZDA
77 *
78 * Multiple sentences may be selected except when ZDG/ZDA is selected.
79 *
80 * bit 4/5/6 - selects the baudrate for serial port :
81 *		0 for 4800 (default)
82 *		1 for 9600
83 *		2 for 19200
84 *		3 for 38400
85 *		4 for 57600
86 *		5 for 115200
87 */
88#define NMEA_MESSAGE_MASK	0x0000FF0FU
89#define NMEA_BAUDRATE_MASK	0x00000070U
90#define NMEA_BAUDRATE_SHIFT	4
91
92#define NMEA_DELAYMEAS_MASK	0x00000080U
93#define NMEA_EXTLOG_MASK	0x00010000U
94#define NMEA_QUIETPPS_MASK	0x00020000U
95#define NMEA_DATETRUST_MASK	0x00040000U
96#define NMEA_IGNSTATUS_MASK	0x00080000U
97
98#define NMEA_PROTO_IDLEN	4	/* tag name must be at least 4 chars */
99#define NMEA_PROTO_MINLEN	6	/* min chars in sentence, excluding CS */
100#define NMEA_PROTO_MAXLEN	80	/* max chars in sentence, excluding CS */
101#define NMEA_PROTO_FIELDS	32	/* not official; limit on fields per record */
102
103/*
104 * We check the timecode format and decode its contents.  We only care
105 * about a few of them, the most important being the $GPRMC format:
106 *
107 * $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC
108 *
109 * mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA
110 * $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21
111 * $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F
112 * $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77
113 *
114 * Defining GPZDA to support Standard Time & Date
115 * sentence. The sentence has the following format
116 *
117 *  $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS<CR><LF>
118 *
119 *  Apart from the familiar fields,
120 *  'TH'    Time zone Hours
121 *  'TM'    Time zone Minutes
122 *
123 * Defining GPZDG to support Accord GPS Clock's custom NMEA
124 * sentence. The sentence has the following format
125 *
126 *  $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS<CR><LF>
127 *
128 *  It contains the GPS timestamp valid for next PPS pulse.
129 *  Apart from the familiar fields,
130 *  'AA.BB' denotes the signal strength( should be < 05.00 )
131 *  'V'	    denotes the GPS sync status :
132 *	   '0' indicates INVALID time,
133 *	   '1' indicates accuracy of +/-20 ms
134 *	   '2' indicates accuracy of +/-100 ns
135 *
136 * Defining PGRMF for Garmin GPS Fix Data
137 * $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP
138 * WN  -- GPS week number (weeks since 1980-01-06, mod 1024)
139 * WS  -- GPS seconds in week
140 * LS  -- GPS leap seconds, accumulated ( UTC + LS == GPS )
141 * FIX -- Fix type: 0=nofix, 1=2D, 2=3D
142 * DATE/TIME are standard date/time strings in UTC time scale
143 *
144 * The GPS time can be used to get the full century for the truncated
145 * date spec.
146 */
147
148/*
149 * Definitions
150 */
151#define	DEVICE		"/dev/gps%d"	/* GPS serial device */
152#define	PPSDEV		"/dev/gpspps%d"	/* PPSAPI device override */
153#define	SPEED232	B4800	/* uart speed (4800 bps) */
154#define	PRECISION	(-9)	/* precision assumed (about 2 ms) */
155#define	PPS_PRECISION	(-20)	/* precision assumed (about 1 us) */
156#define	DATE_HOLD	16	/* seconds to hold on provided GPS date */
157#define	DATE_HLIM	4	/* when do we take ANY date format */
158#define	REFID		"GPS\0"	/* reference id */
159#define	DESCRIPTION	"NMEA GPS Clock" /* who we are */
160#ifndef O_NOCTTY
161#define M_NOCTTY	0
162#else
163#define M_NOCTTY	O_NOCTTY
164#endif
165#ifndef O_NONBLOCK
166#define M_NONBLOCK	0
167#else
168#define M_NONBLOCK	O_NONBLOCK
169#endif
170#define PPSOPENMODE	(O_RDWR | M_NOCTTY | M_NONBLOCK)
171
172/* NMEA sentence array indexes for those we use */
173#define NMEA_GPRMC	0	/* recommended min. nav. */
174#define NMEA_GPGGA	1	/* fix and quality */
175#define NMEA_GPGLL	2	/* geo. lat/long */
176#define NMEA_GPZDA	3	/* date/time */
177/*
178 * $GPZDG is a proprietary sentence that violates the spec, by not
179 * using $P and an assigned company identifier to prefix the sentence
180 * identifier.	When used with this driver, the system needs to be
181 * isolated from other NTP networks, as it operates in GPS time, not
182 * UTC as is much more common.	GPS time is >15 seconds different from
183 * UTC due to not respecting leap seconds since 1970 or so.  Other
184 * than the different timebase, $GPZDG is similar to $GPZDA.
185 */
186#define NMEA_GPZDG	4
187#define NMEA_PGRMF	5
188#define NMEA_PUBX04	6
189#define NMEA_ARRAY_SIZE (NMEA_PUBX04 + 1)
190
191/*
192 * Sentence selection mode bits
193 */
194#define USE_GPRMC		0x00000001u
195#define USE_GPGGA		0x00000002u
196#define USE_GPGLL		0x00000004u
197#define USE_GPZDA		0x00000008u
198#define USE_PGRMF		0x00000100u
199#define USE_PUBX04		0x00000200u
200
201/* mapping from sentence index to controlling mode bit */
202static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] =
203{
204	USE_GPRMC,
205	USE_GPGGA,
206	USE_GPGLL,
207	USE_GPZDA,
208	USE_GPZDA,
209	USE_PGRMF,
210	USE_PUBX04
211};
212
213/* date formats we support */
214enum date_fmt {
215	DATE_1_DDMMYY,	/* use 1 field	with 2-digit year */
216	DATE_3_DDMMYYYY	/* use 3 fields with 4-digit year */
217};
218
219/* date type */
220enum date_type {
221	DTYP_NONE,
222	DTYP_Y2D,	/* 2-digit year */
223	DTYP_W10B,	/* 10-bit week in GPS epoch */
224	DTYP_Y4D,	/* 4-digit (full) year */
225	DTYP_WEXT	/* extended week in GPS epoch */
226};
227
228/* results for 'field_init()'
229 *
230 * Note: If a checksum is present, the checksum test must pass OK or the
231 * sentence is tagged invalid.
232 */
233#define CHECK_EMPTY  -1	/* no data			*/
234#define CHECK_INVALID 0	/* not a valid NMEA sentence	*/
235#define CHECK_VALID   1	/* valid but without checksum	*/
236#define CHECK_CSVALID 2	/* valid with checksum OK	*/
237
238/*
239 * Unit control structure
240 */
241struct refclock_atom;
242typedef struct refclock_atom TAtomUnit;
243typedef struct {
244#   ifdef HAVE_PPSAPI
245	TAtomUnit	atom;		/* PPSAPI structure */
246	int		ppsapi_fd;	/* fd used with PPSAPI */
247	u_char		ppsapi_tried;	/* attempt PPSAPI once */
248	u_char		ppsapi_lit;	/* time_pps_create() worked */
249#   endif /* HAVE_PPSAPI */
250	uint16_t	rcvtout;	/* one-shot for sample expiration */
251	u_char		ppsapi_gate;	/* system is on PPS */
252	u_char  	gps_time;	/* use GPS time, not UTC */
253	l_fp		last_reftime;	/* last processed reference stamp */
254	TNtpDatum	last_gpsdate;	/* last processed split date/time */
255	u_short		hold_gpsdate;	/* validity ticker for above */
256	u_short		type_gpsdate;	/* date info type for above */
257	/* tally stats, reset each poll cycle */
258	struct
259	{
260		u_int total;
261		u_int accepted;
262		u_int rejected;   /* GPS said not enough signal */
263		u_int malformed;  /* Bad checksum, invalid date or time */
264		u_int filtered;   /* mode bits, not GPZDG, same second */
265		u_int pps_used;
266	}
267		tally;
268	/* per sentence checksum seen flag */
269	u_char		cksum_type[NMEA_ARRAY_SIZE];
270
271	/* line assembly buffer (NMEAD support) */
272	u_short	lb_len;
273	char	lb_buf[BMAX];	/* assembly buffer */
274} nmea_unit;
275
276/*
277 * helper for faster field access
278 */
279typedef struct {
280	char  *base;	/* buffer base		*/
281	char  *cptr;	/* current field ptr	*/
282	int    blen;	/* buffer length	*/
283	int    cidx;	/* current field index	*/
284} nmea_data;
285
286/*
287 * Function prototypes
288 */
289static	int	nmea_start	(int, struct peer *);
290static	void	nmea_shutdown	(int, struct peer *);
291static	void	nmea_receive	(struct recvbuf *);
292static	void	nmea_poll	(int, struct peer *);
293static	void	nmea_procrec	(struct peer * const, l_fp);
294#ifdef HAVE_PPSAPI
295static	double	tabsdiffd	(l_fp, l_fp);
296static	void	nmea_control	(int, const struct refclockstat *,
297				 struct refclockstat *, struct peer *);
298#define		NMEA_CONTROL	nmea_control
299#else
300#define		NMEA_CONTROL	noentry
301#endif /* HAVE_PPSAPI */
302static	void	nmea_timer	(int, struct peer *);
303
304/* parsing helpers */
305static int	field_init	(nmea_data * data, char * cp, int len);
306static char *	field_parse	(nmea_data * data, int fn);
307static void	field_wipe	(nmea_data * data, ...);
308static u_char	parse_qual	(nmea_data * data, int idx,
309				 char tag, int inv);
310static int	parse_time	(TCivilDate * jd, l_fp * fofs,
311				 nmea_data *, int idx);
312static int	parse_date	(TCivilDate * jd, nmea_data *,
313				 int idx, enum date_fmt fmt);
314static int	parse_gpsw	(TGpsDatum *, nmea_data *,
315				 int weekidx, int timeidx, int leapidx);
316
317static int	nmead_open	(const char * device);
318
319/*
320 * If we want the driver to output sentences, too: re-enable the send
321 * support functions by defining NMEA_WRITE_SUPPORT to non-zero...
322 */
323#if NMEA_WRITE_SUPPORT
324static	void gps_send(int, const char *, struct peer *);
325#endif /* NMEA_WRITE_SUPPORT */
326
327/*
328 * -------------------------------------------------------------------
329 * Transfer vector
330 * -------------------------------------------------------------------
331 */
332struct refclock refclock_nmea = {
333	nmea_start,		/* start up driver */
334	nmea_shutdown,		/* shut down driver */
335	nmea_poll,		/* transmit poll message */
336	NMEA_CONTROL,		/* fudge control */
337	noentry,		/* initialize driver */
338	noentry,		/* buginfo */
339	nmea_timer		/* called once per second */
340};
341
342
343/*
344 * -------------------------------------------------------------------
345 * nmea_start - open the GPS devices and initialize data for processing
346 *
347 * return 0 on error, 1 on success. Even on error the peer structures
348 * must be in a state that permits 'nmea_shutdown()' to clean up all
349 * resources, because it will be called immediately to do so.
350 * -------------------------------------------------------------------
351 */
352static int
353nmea_start(
354	int		unit,
355	struct peer *	peer
356	)
357{
358	struct refclockproc * const	pp = peer->procptr;
359	nmea_unit * const		up = emalloc_zero(sizeof(*up));
360	char				device[20];
361	size_t				devlen;
362	u_int32				rate;
363	int				baudrate;
364
365	/* Get baudrate choice from mode byte bits 4/5/6 */
366	rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT;
367
368	switch (rate) {
369	default:
370	case 0:
371		baudrate = SPEED232;
372		break;
373	case 1:
374		baudrate = B9600;
375		break;
376	case 2:
377		baudrate = B19200;
378		break;
379	case 3:
380		baudrate = B38400;
381		break;
382#   ifdef B57600
383	case 4:
384		baudrate = B57600;
385		break;
386#   endif
387#   ifdef B115200
388	case 5:
389		baudrate = B115200;
390		break;
391#   endif
392	}
393
394	/* Allocate and initialize unit structure */
395	pp->unitptr = (caddr_t)up;
396	pp->io.fd = -1;
397	pp->io.clock_recv = nmea_receive;
398	pp->io.srcclock = peer;
399	pp->io.datalen = 0;
400	/* force change detection on first valid message */
401	memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime));
402	memset(&up->last_gpsdate, 0x00, sizeof(up->last_gpsdate));
403	/* force checksum on GPRMC, see below */
404	up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID;
405#   ifdef HAVE_PPSAPI
406	up->ppsapi_fd = -1;
407#   endif /* HAVE_PPSAPI */
408	ZERO(up->tally);
409
410	/* Initialize miscellaneous variables */
411	peer->precision = PRECISION;
412	pp->clockdesc = DESCRIPTION;
413	memcpy(&pp->refid, REFID, 4);
414
415	/* Open serial port. Use CLK line discipline, if available. */
416	devlen = snprintf(device, sizeof(device), DEVICE, unit);
417	if (devlen >= sizeof(device)) {
418		msyslog(LOG_ERR, "%s clock device name too long",
419			refnumtoa(&peer->srcadr));
420		return FALSE; /* buffer overflow */
421	}
422	pp->io.fd = refclock_open(&peer->srcadr, device, baudrate, LDISC_CLK);
423	if (0 >= pp->io.fd) {
424		pp->io.fd = nmead_open(device);
425		if (-1 == pp->io.fd)
426			return FALSE;
427	}
428
429	/* succeed if this clock can be added */
430	return io_addclock(&pp->io) != 0;
431}
432
433/*
434 * -------------------------------------------------------------------
435 * nmea_shutdown - shut down a GPS clock
436 *
437 * NOTE this routine is called after nmea_start() returns failure,
438 * as well as during a normal shutdown due to ntpq :config unpeer.
439 * -------------------------------------------------------------------
440 */
441static void
442nmea_shutdown(
443	int           unit,
444	struct peer * peer
445	)
446{
447	struct refclockproc * const pp = peer->procptr;
448	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
449
450	UNUSED_ARG(unit);
451
452	if (up != NULL) {
453#	    ifdef HAVE_PPSAPI
454		if (up->ppsapi_lit)
455			time_pps_destroy(up->atom.handle);
456		ppsdev_close(pp->io.fd, up->ppsapi_fd);
457#	    endif
458		free(up);
459	}
460	pp->unitptr = (caddr_t)NULL;
461	if (-1 != pp->io.fd)
462		io_closeclock(&pp->io);
463	pp->io.fd = -1;
464}
465
466/*
467 * -------------------------------------------------------------------
468 * nmea_control - configure fudge params
469 * -------------------------------------------------------------------
470 */
471#ifdef HAVE_PPSAPI
472static void
473nmea_control(
474	int                         unit,
475	const struct refclockstat * in_st,
476	struct refclockstat       * out_st,
477	struct peer               * peer
478	)
479{
480	struct refclockproc * const pp = peer->procptr;
481	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
482
483	char   device[32];
484	size_t devlen;
485
486	UNUSED_ARG(in_st);
487	UNUSED_ARG(out_st);
488
489	/*
490	 * PPS control
491	 *
492	 * If /dev/gpspps$UNIT can be opened that will be used for
493	 * PPSAPI.  On Linux, a PPS device mathing the TTY will be
494	 * searched for and possibly created on the fly.  Otherwise, the
495	 * GPS serial device /dev/gps$UNIT already opened is used for
496	 * PPSAPI as well. (This might not work, in which case the PPS
497	 * API remains unavailable...)
498	 */
499
500	/* Light up the PPSAPI interface if not yet attempted. */
501	if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) {
502		const char *ppsname = device;
503		up->ppsapi_tried = TRUE;
504		/* get FD for the pps device; might be the tty itself! */
505		devlen = snprintf(device, sizeof(device), PPSDEV, unit);
506		if (devlen >= sizeof(device)) {
507			msyslog(LOG_ERR, "%s PPS device name too long",
508				refnumtoa(&peer->srcadr));
509			ppsname = NULL;
510		}
511		up->ppsapi_fd = ppsdev_reopen(
512			&peer->srcadr,
513			pp->io.fd, up->ppsapi_fd,
514			ppsname, PPSOPENMODE, (S_IRUSR|S_IWUSR));
515		/* note 1: the pps fd might be the same as the tty fd
516		 * note 2: the current PPS fd remains valid until
517		 *  - the clock is shut down
518		 *  - flag1 is set again after being cleared
519		 */
520		if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) {
521			/* use the PPS API for our own purposes now. */
522			up->ppsapi_lit = refclock_params(
523				pp->sloppyclockflag, &up->atom);
524			if (!up->ppsapi_lit) {
525				/* failed to configure, drop PPS unit */
526				time_pps_destroy(up->atom.handle);
527				msyslog(LOG_WARNING,
528					"%s set PPSAPI params fails",
529					refnumtoa(&peer->srcadr));
530			}
531		} else {
532			msyslog(LOG_WARNING,
533				"%s flag1 1 but PPSAPI fails",
534				refnumtoa(&peer->srcadr));
535		}
536	}
537
538	/* shut down PPS API if activated */
539	if ( !(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) {
540		/* shutdown PPS API */
541		if (up->ppsapi_lit)
542			time_pps_destroy(up->atom.handle);
543		up->atom.handle = 0;
544		/* do !!NOT!! close/drop PPS fd here! */
545
546		/* clear markers and peer items */
547		up->ppsapi_gate  = FALSE;
548		up->ppsapi_lit   = FALSE;
549		up->ppsapi_tried = FALSE;
550
551		peer->flags &= ~FLAG_PPS;
552		peer->precision = PRECISION;
553	}
554}
555#endif /* HAVE_PPSAPI */
556
557/*
558 * -------------------------------------------------------------------
559 * nmea_timer - called once per second
560 *
561 * Usually 'nmea_receive()' can get a timestamp every second, but at
562 * least one Motorola unit needs prompting each time. Doing so in
563 * 'nmea_poll()' gives only one sample per poll cycle, which actually
564 * defeats the purpose of the median filter. Polling once per second
565 * seems a much better idea.
566 *
567 * Also takes care of sample expiration if the receiver fails to
568 * provide new input data.
569 * -------------------------------------------------------------------
570 */
571static void
572nmea_timer(
573	int	      unit,
574	struct peer * peer
575	)
576{
577	struct refclockproc * const pp = peer->procptr;
578	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
579
580	UNUSED_ARG(unit);
581
582#   if NMEA_WRITE_SUPPORT
583
584	if (-1 != pp->io.fd) /* any mode bits to evaluate here? */
585		gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer);
586
587#   endif /* NMEA_WRITE_SUPPORT */
588
589	/* receive timeout occurred? */
590	if (up->rcvtout) {
591		--up->rcvtout;
592	} else if (pp->codeproc != pp->coderecv) {
593		/* expire one (the oldest) sample, if any */
594		refclock_samples_expire(pp, 1);
595		/* reset message assembly buffer */
596		up->lb_buf[0] = '\0';
597		up->lb_len    = 0;
598	}
599
600	if (up->hold_gpsdate && (--up->hold_gpsdate < DATE_HLIM))
601		up->type_gpsdate = DTYP_NONE;
602}
603
604/*
605 * -------------------------------------------------------------------
606 * nmea_procrec - receive data from the serial interface
607 *
608 * This is the workhorse for NMEA data evaluation:
609 *
610 * + it checks all NMEA data, and rejects sentences that are not valid
611 *   NMEA sentences
612 * + it checks whether a sentence is known and to be used
613 * + it parses the time and date data from the NMEA data string and
614 *   augments the missing bits. (century in date, whole date, ...)
615 * + it rejects data that is not from the first accepted sentence in a
616 *   burst
617 * + it eventually replaces the receive time with the PPS edge time.
618 * + it feeds the data to the internal processing stages.
619 *
620 * This function assumes a non-empty line in the unit line buffer.
621 * -------------------------------------------------------------------
622 */
623static void
624nmea_procrec(
625	struct peer * const	peer,
626	l_fp 	  		rd_timestamp
627	)
628{
629	/* declare & init control structure pointers */
630	struct refclockproc * const pp = peer->procptr;
631	nmea_unit	    * const up = (nmea_unit*)pp->unitptr;
632
633	/* Use these variables to hold data until we decide its worth keeping */
634	nmea_data rdata;
635	l_fp 	  rd_reftime;
636
637	/* working stuff */
638	TCivilDate	date;	/* to keep & convert the time stamp */
639	TGpsDatum	wgps;	/* week time storage */
640	TNtpDatum	dntp;
641	l_fp		tofs;	/* offset to full-second reftime */
642	/* results of sentence/date/time parsing */
643	u_char		sentence;	/* sentence tag */
644	int		checkres;
645	int		warp;		/* warp to GPS base date */
646	char *		cp;
647	int		rc_date, rc_time;
648	u_short		rc_dtyp;
649#   ifdef HAVE_PPSAPI
650	int		withpps = 0;
651#   endif /* HAVE_PPSAPI */
652
653	/* make sure data has defined pristine state */
654	ZERO(tofs);
655	ZERO(date);
656	ZERO(wgps);
657	ZERO(dntp);
658
659	/*
660	 * Read the timecode and timestamp, then initialize field
661	 * processing. The <CR><LF> at the NMEA line end is translated
662	 * to <LF><LF> by the terminal input routines on most systems,
663	 * and this gives us one spurious empty read per record which we
664	 * better ignore silently.
665	 */
666	checkres = field_init(&rdata, up->lb_buf, up->lb_len);
667	switch (checkres) {
668
669	case CHECK_INVALID:
670		DPRINTF(1, ("%s invalid data: '%s'\n",
671			refnumtoa(&peer->srcadr), up->lb_buf));
672		refclock_report(peer, CEVNT_BADREPLY);
673		return;
674
675	case CHECK_EMPTY:
676		return;
677
678	default:
679		DPRINTF(1, ("%s gpsread: %d '%s'\n",
680			refnumtoa(&peer->srcadr), up->lb_len,
681			up->lb_buf));
682		break;
683	}
684	up->tally.total++;
685
686	/*
687	 * --> below this point we have a valid NMEA sentence <--
688	 *
689	 * Check sentence name. Skip first 2 chars (talker ID) in most
690	 * cases, to allow for $GLGGA and $GPGGA etc. Since the name
691	 * field has at least 5 chars we can simply shift the field
692	 * start.
693	 */
694	cp = field_parse(&rdata, 0);
695	if      (strncmp(cp + 2, "RMC,", 4) == 0)
696		sentence = NMEA_GPRMC;
697	else if (strncmp(cp + 2, "GGA,", 4) == 0)
698		sentence = NMEA_GPGGA;
699	else if (strncmp(cp + 2, "GLL,", 4) == 0)
700		sentence = NMEA_GPGLL;
701	else if (strncmp(cp + 2, "ZDA,", 4) == 0)
702		sentence = NMEA_GPZDA;
703	else if (strncmp(cp + 2, "ZDG,", 4) == 0)
704		sentence = NMEA_GPZDG;
705	else if (strncmp(cp,   "PGRMF,", 6) == 0)
706		sentence = NMEA_PGRMF;
707	else if (strncmp(cp,   "PUBX,04,", 8) == 0)
708		sentence = NMEA_PUBX04;
709	else
710		return;	/* not something we know about */
711
712	/* Eventually output delay measurement now. */
713	if (peer->ttl & NMEA_DELAYMEAS_MASK) {
714		mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s",
715			 ldexp(rd_timestamp.l_uf, -32),
716			 (int)(strchr(up->lb_buf, ',') - up->lb_buf),
717			 up->lb_buf);
718	}
719
720	/* See if I want to process this message type */
721	if ((peer->ttl & NMEA_MESSAGE_MASK) &&
722	    !(peer->ttl & sentence_mode[sentence])) {
723		up->tally.filtered++;
724		return;
725	}
726
727	/*
728	 * make sure it came in clean
729	 *
730	 * Apparently, older NMEA specifications (which are expensive)
731	 * did not require the checksum for all sentences.  $GPMRC is
732	 * the only one so far identified which has always been required
733	 * to include a checksum.
734	 *
735	 * Today, most NMEA GPS receivers checksum every sentence.  To
736	 * preserve its error-detection capabilities with modern GPSes
737	 * while allowing operation without checksums on all but $GPMRC,
738	 * we keep track of whether we've ever seen a valid checksum on
739	 * a given sentence, and if so, reject future instances without
740	 * checksum.  ('up->cksum_type[NMEA_GPRMC]' is set in
741	 * 'nmea_start()' to enforce checksums for $GPRMC right from the
742	 * start.)
743	 */
744	if (up->cksum_type[sentence] <= (u_char)checkres) {
745		up->cksum_type[sentence] = (u_char)checkres;
746	} else {
747		DPRINTF(1, ("%s checksum missing: '%s'\n",
748			refnumtoa(&peer->srcadr), up->lb_buf));
749		refclock_report(peer, CEVNT_BADREPLY);
750		up->tally.malformed++;
751		return;
752	}
753
754	/*
755	 * $GPZDG provides GPS time not UTC, and the two mix poorly.
756	 * Once have processed a $GPZDG, do not process any further UTC
757	 * sentences (all but $GPZDG currently).
758	 */
759	if (sentence == NMEA_GPZDG) {
760		if (!up->gps_time) {
761			msyslog(LOG_INFO,
762				"%s using GPS time as if it were UTC",
763				refnumtoa(&peer->srcadr));
764			up->gps_time = 1;
765		}
766	} else {
767		if (up->gps_time) {
768			up->tally.filtered++;
769			return;
770		}
771	}
772
773	DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n",
774		refnumtoa(&peer->srcadr), up->lb_len, up->lb_buf));
775
776	/*
777	 * Grab fields depending on clock string type and possibly wipe
778	 * sensitive data from the last timecode.
779	 */
780	rc_date = -1;	/* assume we have to do day-time mapping */
781	rc_dtyp = DTYP_NONE;
782       	switch (sentence) {
783
784	case NMEA_GPRMC:
785		/* Check quality byte, fetch data & time */
786		rc_time	 = parse_time(&date, &tofs, &rdata, 1);
787		pp->leap = parse_qual(&rdata, 2, 'A', 0);
788		if (up->type_gpsdate <= DTYP_Y2D) {
789			rc_date	= parse_date(&date, &rdata, 9, DATE_1_DDMMYY);
790			rc_dtyp = DTYP_Y2D;
791		}
792 		if (CLK_FLAG4 & pp->sloppyclockflag)
793			field_wipe(&rdata, 3, 4, 5, 6, -1);
794		break;
795
796	case NMEA_GPGGA:
797		/* Check quality byte, fetch time only */
798		rc_time	 = parse_time(&date, &tofs, &rdata, 1);
799		pp->leap = parse_qual(&rdata, 6, '0', 1);
800		if (CLK_FLAG4 & pp->sloppyclockflag)
801			field_wipe(&rdata, 2, 4, -1);
802		break;
803
804	case NMEA_GPGLL:
805		/* Check quality byte, fetch time only */
806		rc_time	 = parse_time(&date, &tofs, &rdata, 5);
807		pp->leap = parse_qual(&rdata, 6, 'A', 0);
808		if (CLK_FLAG4 & pp->sloppyclockflag)
809			field_wipe(&rdata, 1, 3, -1);
810		break;
811
812	case NMEA_GPZDA:
813		/* No quality.	Assume best, fetch time & full date */
814		rc_time	= parse_time(&date, &tofs, &rdata, 1);
815		if (up->type_gpsdate <= DTYP_Y4D) {
816			rc_date	= parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
817			rc_dtyp = DTYP_Y4D;
818		}
819		break;
820
821	case NMEA_GPZDG:
822		/* Check quality byte, fetch time & full date */
823		rc_time	 = parse_time(&date, &tofs, &rdata, 1);
824		pp->leap = parse_qual(&rdata, 4, '0', 1);
825		--tofs.l_ui; /* GPZDG gives *following* second */
826		if (up->type_gpsdate <= DTYP_Y4D) {
827			rc_date	= parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
828			rc_dtyp = DTYP_Y4D;
829		}
830		break;
831
832	case NMEA_PGRMF:
833		/* get time, qualifier and GPS weektime. */
834		rc_time = parse_time(&date, &tofs, &rdata, 4);
835		if (up->type_gpsdate <= DTYP_W10B) {
836			rc_date = parse_gpsw(&wgps, &rdata, 1, 2, 5);
837			rc_dtyp = DTYP_W10B;
838		}
839		pp->leap = parse_qual(&rdata, 11, '0', 1);
840		if (CLK_FLAG4 & pp->sloppyclockflag)
841			field_wipe(&rdata, 6, 8, -1);
842		break;
843
844	case NMEA_PUBX04:
845		/* PUBX,04 is peculiar. The UTC time-of-week is the *internal*
846		 * time base, which is not exactly on par with the fix time.
847		 */
848		rc_time = parse_time(&date, &tofs, &rdata, 2);
849		if (up->type_gpsdate <= DTYP_WEXT) {
850			rc_date = parse_gpsw(&wgps, &rdata, 5, 4, -1);
851			rc_dtyp = DTYP_WEXT;
852		}
853		break;
854
855	default:
856		INVARIANT(0);	/* Coverity 97123 */
857		return;
858	}
859
860	/* ignore receiver status? [bug 3694] */
861	if (peer->ttl & NMEA_IGNSTATUS_MASK) { /* assume always good? */
862		pp->leap = LEAP_NOWARNING;
863	}
864
865	/* check clock sanity; [bug 2143] */
866	if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */
867		checkres = CEVNT_PROP;
868		up->tally.rejected++;
869	}
870	/* Check sanity of time-of-day. */
871	else if (rc_time == 0) {	/* no time or conversion error? */
872		checkres = CEVNT_BADTIME;
873		up->tally.malformed++;
874	}
875	/* Check sanity of date. */
876	else if (rc_date == 0) {	/* no date or conversion error? */
877		checkres = CEVNT_BADDATE;
878		up->tally.malformed++;
879	}
880	else {
881		checkres = -1;
882	}
883
884	if (checkres != -1) {
885		refclock_save_lcode(pp, up->lb_buf, up->lb_len);
886		refclock_report(peer, checkres);
887		return;
888	}
889
890	/* See if we can augment the receive time stamp. If not, apply
891	 * fudge time 2 to the receive time stamp directly.
892	 */
893#   ifdef HAVE_PPSAPI
894	if (up->ppsapi_lit && pp->leap != LEAP_NOTINSYNC)
895		withpps = refclock_ppsaugment(
896			&up->atom, &rd_timestamp,
897			pp->fudgetime2, pp->fudgetime1);
898	else
899#   endif /* HAVE_PPSAPI */
900		rd_timestamp = ntpfp_with_fudge(
901			rd_timestamp, pp->fudgetime2);
902
903	/* set the GPS base date, if possible */
904	warp = !(peer->ttl & NMEA_DATETRUST_MASK);
905	if (rc_dtyp != DTYP_NONE) {
906		DPRINTF(1, ("%s saving date, type=%hu\n",
907			    refnumtoa(&peer->srcadr), rc_dtyp));
908		switch (rc_dtyp) {
909		case DTYP_W10B:
910			up->last_gpsdate = gpsntp_from_gpscal_ex(
911				&wgps, (warp = TRUE));
912			break;
913		case DTYP_WEXT:
914			up->last_gpsdate = gpsntp_from_gpscal_ex(
915				&wgps, warp);
916			break;
917		default:
918			up->last_gpsdate = gpsntp_from_calendar_ex(
919				&date, tofs, warp);
920			break;
921		}
922		up->type_gpsdate = rc_dtyp;
923		up->hold_gpsdate = DATE_HOLD;
924	}
925	/* now convert and possibly extend/expand the time stamp. */
926	if (up->hold_gpsdate) {	/* time of day, based */
927		dntp = gpsntp_from_daytime2_ex(
928			&date, tofs, &up->last_gpsdate, warp);
929	} else {		/* time of day, floating */
930		dntp = gpsntp_from_daytime1_ex(
931			&date, tofs, rd_timestamp, warp);
932	}
933
934	if (debug) {
935		/* debug print time stamp */
936		gpsntp_to_calendar(&date, &dntp);
937#	    ifdef HAVE_PPSAPI
938		DPRINTF(1, ("%s effective timecode: %s (%s PPS)\n",
939			    refnumtoa(&peer->srcadr),
940			    ntpcal_iso8601std(NULL, 0, &date),
941			    (withpps ? "with" : "without")));
942#	    else /* ?HAVE_PPSAPI */
943		DPRINTF(1, ("%s effective timecode: %s\n",
944			    refnumtoa(&peer->srcadr),
945			    ntpcal_iso8601std(NULL, 0, &date)));
946#	    endif /* !HAVE_PPSAPI */
947	}
948
949	/* Get the reference time stamp from the calendar buffer.
950	 * Process the new sample in the median filter and determine the
951	 * timecode timestamp, but only if the PPS is not in control.
952	 * Discard sentence if reference time did not change.
953	 */
954	rd_reftime = ntpfp_from_ntpdatum(&dntp);
955	if (L_ISEQU(&up->last_reftime, &rd_reftime)) {
956		/* Do not touch pp->a_lastcode on purpose! */
957		up->tally.filtered++;
958		return;
959	}
960	up->last_reftime = rd_reftime;
961
962	DPRINTF(1, ("%s using '%s'\n",
963		    refnumtoa(&peer->srcadr), up->lb_buf));
964
965	/* Data will be accepted. Update stats & log data. */
966	up->tally.accepted++;
967	refclock_save_lcode(pp, up->lb_buf, up->lb_len);
968	pp->lastrec = rd_timestamp;
969
970	/* If we have PPS augmented receive time, we *must* have a
971	 * working PPS source and we must set the flags accordingly.
972	 */
973#   ifdef HAVE_PPSAPI
974	if (withpps) {
975		up->ppsapi_gate = TRUE;
976		peer->precision = PPS_PRECISION;
977		if (tabsdiffd(rd_reftime, rd_timestamp) < 0.5) {
978			if ( ! (peer->ttl & NMEA_QUIETPPS_MASK))
979				peer->flags |= FLAG_PPS;
980			DPRINTF(2, ("%s PPS_RELATE_PHASE\n",
981				    refnumtoa(&peer->srcadr)));
982			up->tally.pps_used++;
983		} else {
984			DPRINTF(2, ("%s PPS_RELATE_EDGE\n",
985				    refnumtoa(&peer->srcadr)));
986		}
987		/* !Note! 'FLAG_PPS' is reset in 'nmea_poll()' */
988	}
989#   endif /* HAVE_PPSAPI */
990	/* Whether the receive time stamp is PPS-augmented or not,
991	 * the proper fudge offset is already applied. There's no
992	 * residual fudge to process.
993	 */
994	refclock_process_offset(pp, rd_reftime, rd_timestamp, 0.0);
995	up->rcvtout = 2;
996}
997
998/*
999 * -------------------------------------------------------------------
1000 * nmea_receive - receive data from the serial interface
1001 *
1002 * With serial IO only, a single call to 'refclock_gtlin()' to get the
1003 * string would suffice to get the NMEA data. When using NMEAD, this
1004 * does unfortunately no longer hold, since TCP is stream oriented and
1005 * not line oriented, and there's no one to do the line-splitting work
1006 * of the TTY driver in line/cooked mode.
1007 *
1008 * So we have to do this manually here, and we have to live with the
1009 * fact that there could be more than one sentence in a receive buffer.
1010 * Likewise, there can be partial messages on either end. (Strictly
1011 * speaking, a receive buffer could also contain just a single fragment,
1012 * though that's unlikely.)
1013 *
1014 * We deal with that by scanning the input buffer, copying bytes from
1015 * the receive buffer to the assembly buffer as we go and calling the
1016 * record processor every time we hit a CR/LF, provided the resulting
1017 * line is not empty. Any leftovers are kept for the next round.
1018 *
1019 * Note: When used with a serial data stream, there's no change to the
1020 * previous line-oriented input: One line is copied to the buffer and
1021 * processed per call. Only with NMEAD the behavior changes, and the
1022 * timing is badly affected unless a PPS channel is also associated with
1023 * the clock instance. TCP leaves us nothing to improve on here.
1024 * -------------------------------------------------------------------
1025 */
1026static void
1027nmea_receive(
1028	struct recvbuf * rbufp
1029	)
1030{
1031	/* declare & init control structure pointers */
1032	struct peer	    * const peer = rbufp->recv_peer;
1033	struct refclockproc * const pp = peer->procptr;
1034	nmea_unit	    * const up = (nmea_unit*)pp->unitptr;
1035
1036	const char *sp, *se;
1037	char	   *dp, *de;
1038
1039	/* paranoia check: */
1040	if (up->lb_len >= sizeof(up->lb_buf))
1041		up->lb_len = 0;
1042
1043	/* pick up last assembly position; leave room for NUL */
1044	dp = up->lb_buf + up->lb_len;
1045	de = up->lb_buf + sizeof(up->lb_buf) - 1;
1046	/* set up input range */
1047	sp = (const char *)rbufp->recv_buffer;
1048	se = sp + rbufp->recv_length;
1049
1050	/* walk over the input data, dropping parity bits and control
1051	 * chars as we go, and calling the record processor for each
1052	 * complete non-empty line.
1053	 */
1054	while (sp != se) {
1055		char ch = (*sp++ & 0x7f);
1056		if (dp == up->lb_buf) {
1057			if (ch == '$')
1058				*dp++ = ch;
1059		} else if (dp > de) {
1060			dp = up->lb_buf;
1061		} else if (ch == '\n' || ch == '\r') {
1062			*dp = '\0';
1063			up->lb_len = (int)(dp - up->lb_buf);
1064			dp = up->lb_buf;
1065			nmea_procrec(peer, rbufp->recv_time);
1066		} else if (ch >= 0x20 && ch < 0x7f) {
1067			*dp++ = ch;
1068		}
1069	}
1070	/* update state to keep for next round */
1071	*dp = '\0';
1072	up->lb_len = (int)(dp - up->lb_buf);
1073}
1074
1075/*
1076 * -------------------------------------------------------------------
1077 * nmea_poll - called by the transmit procedure
1078 *
1079 * Does the necessary bookkeeping stuff to keep the reported state of
1080 * the clock in sync with reality.
1081 *
1082 * We go to great pains to avoid changing state here, since there may
1083 * be more than one eavesdropper receiving the same timecode.
1084 * -------------------------------------------------------------------
1085 */
1086static void
1087nmea_poll(
1088	int           unit,
1089	struct peer * peer
1090	)
1091{
1092	struct refclockproc * const pp = peer->procptr;
1093	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
1094
1095	/*
1096	 * Process median filter samples. If none received, declare a
1097	 * timeout and keep going.
1098	 */
1099#   ifdef HAVE_PPSAPI
1100	/*
1101	 * If we don't have PPS pulses and time stamps, turn PPS down
1102	 * for now.
1103	 */
1104	if (!up->ppsapi_gate) {
1105		peer->flags &= ~FLAG_PPS;
1106		peer->precision = PRECISION;
1107	} else {
1108		up->ppsapi_gate = FALSE;
1109	}
1110#   endif /* HAVE_PPSAPI */
1111
1112	/*
1113	 * If the median filter is empty, claim a timeout. Else process
1114	 * the input data and keep the stats going.
1115	 */
1116	if (pp->coderecv == pp->codeproc) {
1117		peer->flags &= ~FLAG_PPS;
1118		if (pp->currentstatus < CEVNT_TIMEOUT)
1119		    refclock_report(peer, CEVNT_TIMEOUT);
1120		memset(&up->last_gpsdate, 0, sizeof(up->last_gpsdate));
1121	} else {
1122		pp->polls++;
1123		pp->lastref = pp->lastrec;
1124		refclock_receive(peer);
1125		if (pp->currentstatus > CEVNT_NOMINAL)
1126		    refclock_report(peer, CEVNT_NOMINAL);
1127	}
1128
1129	/*
1130	 * If extended logging is required, write the tally stats to the
1131	 * clockstats file; otherwise just do a normal clock stats
1132	 * record. Clear the tally stats anyway.
1133	*/
1134	if (peer->ttl & NMEA_EXTLOG_MASK) {
1135		/* Log & reset counters with extended logging */
1136		const char *nmea = pp->a_lastcode;
1137		if (*nmea == '\0') nmea = "(none)";
1138		mprintf_clock_stats(
1139		  &peer->srcadr, "%s  %u %u %u %u %u %u",
1140		  nmea,
1141		  up->tally.total, up->tally.accepted,
1142		  up->tally.rejected, up->tally.malformed,
1143		  up->tally.filtered, up->tally.pps_used);
1144	} else {
1145		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1146	}
1147	ZERO(up->tally);
1148}
1149
1150#if NMEA_WRITE_SUPPORT
1151/*
1152 * -------------------------------------------------------------------
1153 *  gps_send(fd, cmd, peer)	Sends a command to the GPS receiver.
1154 *   as in gps_send(fd, "rqts,u", peer);
1155 *
1156 * If 'cmd' starts with a '$' it is assumed that this command is in raw
1157 * format, that is, starts with '$', ends with '<cr><lf>' and that any
1158 * checksum is correctly provided; the command will be send 'as is' in
1159 * that case. Otherwise the function will create the necessary frame
1160 * (start char, chksum, final CRLF) on the fly.
1161 *
1162 * We don't currently send any data, but would like to send RTCM SC104
1163 * messages for differential positioning. It should also give us better
1164 * time. Without a PPS output, we're Just fooling ourselves because of
1165 * the serial code paths
1166 * -------------------------------------------------------------------
1167 */
1168static void
1169gps_send(
1170	int           fd,
1171	const char  * cmd,
1172	struct peer * peer
1173	)
1174{
1175	/* $...*xy<CR><LF><NUL> add 7 */
1176	char	      buf[NMEA_PROTO_MAXLEN + 7];
1177	int	      len;
1178	u_char	      dcs;
1179	const u_char *beg, *end;
1180
1181	if (*cmd != '$') {
1182		/* get checksum and length */
1183		beg = end = (const u_char*)cmd;
1184		dcs = 0;
1185		while (*end >= ' ' && *end != '*')
1186			dcs ^= *end++;
1187		len = end - beg;
1188		/* format into output buffer with overflow check */
1189		len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n",
1190			       len, beg, dcs);
1191		if ((size_t)len >= sizeof(buf)) {
1192			DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n",
1193				    refnumtoa(&peer->srcadr), cmd));
1194			return;	/* game over player 1 */
1195		}
1196		cmd = buf;
1197	} else {
1198		len = strlen(cmd);
1199	}
1200
1201	DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr),
1202		len - 2, cmd));
1203
1204	/* send out the whole stuff */
1205	if (refclock_fdwrite(peer, fd, cmd, len) != len)
1206		refclock_report(peer, CEVNT_FAULT);
1207}
1208#endif /* NMEA_WRITE_SUPPORT */
1209
1210/*
1211 * -------------------------------------------------------------------
1212 * helpers for faster field splitting
1213 * -------------------------------------------------------------------
1214 *
1215 * set up a field record, check syntax and verify checksum
1216 *
1217 * format is $XXXXX,1,2,3,4*ML
1218 *
1219 * 8-bit XOR of characters between $ and * noninclusive is transmitted
1220 * in last two chars M and L holding most and least significant nibbles
1221 * in hex representation such as:
1222 *
1223 *   $GPGLL,5057.970,N,00146.110,E,142451,A*27
1224 *   $GPVTG,089.0,T,,,15.2,N,,*7F
1225 *
1226 * Some other constraints:
1227 * + The field name must be at least 5 upcase characters or digits and
1228 *   must start with a character.
1229 * + The checksum (if present) must be uppercase hex digits.
1230 * + The length of a sentence is limited to 80 characters (not including
1231 *   the final CR/LF nor the checksum, but including the leading '$')
1232 *
1233 * Return values:
1234 *  + CHECK_INVALID
1235 *	The data does not form a valid NMEA sentence or a checksum error
1236 *	occurred.
1237 *  + CHECK_VALID
1238 *	The data is a valid NMEA sentence but contains no checksum.
1239 *  + CHECK_CSVALID
1240 *	The data is a valid NMEA sentence and passed the checksum test.
1241 * -------------------------------------------------------------------
1242 */
1243static int
1244field_init(
1245	nmea_data * data,	/* context structure		       */
1246	char 	  * cptr,	/* start of raw data		       */
1247	int	    dlen	/* data len, not counting trailing NUL */
1248	)
1249{
1250	u_char cs_l;	/* checksum local computed	*/
1251	u_char cs_r;	/* checksum remote given	*/
1252	char * eptr;	/* buffer end end pointer	*/
1253	char   tmp;	/* char buffer 			*/
1254
1255	cs_l = 0;
1256	cs_r = 0;
1257	/* some basic input constraints */
1258	if (dlen < 0)
1259		dlen = 0;
1260	eptr = cptr + dlen;
1261	*eptr = '\0';
1262
1263	/* load data context */
1264	data->base = cptr;
1265	data->cptr = cptr;
1266	data->cidx = 0;
1267	data->blen = dlen;
1268
1269	/* syntax check follows here. check allowed character
1270	 * sequences, updating the local computed checksum as we go.
1271	 *
1272	 * regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$'
1273	 */
1274
1275	/* -*- start character: '^\$' */
1276	if (*cptr == '\0')
1277		return CHECK_EMPTY;
1278	if (*cptr++ != '$')
1279		return CHECK_INVALID;
1280
1281	/* -*- advance context beyond start character */
1282	data->base++;
1283	data->cptr++;
1284	data->blen--;
1285
1286	/* -*- field name: '[A-Z][A-Z0-9]{4,},' */
1287	if (*cptr < 'A' || *cptr > 'Z')
1288		return CHECK_INVALID;
1289	cs_l ^= *cptr++;
1290	while ((*cptr >= 'A' && *cptr <= 'Z') ||
1291	       (*cptr >= '0' && *cptr <= '9')  )
1292		cs_l ^= *cptr++;
1293	if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN)
1294		return CHECK_INVALID;
1295	cs_l ^= *cptr++;
1296
1297	/* -*- data: '[^*]*' */
1298	while (*cptr && *cptr != '*')
1299		cs_l ^= *cptr++;
1300
1301	/* -*- checksum field: (\*[0-9A-F]{2})?$ */
1302	if (*cptr == '\0')
1303		return CHECK_VALID;
1304	if (*cptr != '*' || cptr != eptr - 3 ||
1305	    (cptr - data->base) >= NMEA_PROTO_MAXLEN)
1306		return CHECK_INVALID;
1307
1308	for (cptr++; (tmp = *cptr) != '\0'; cptr++) {
1309		if (tmp >= '0' && tmp <= '9')
1310			cs_r = (cs_r << 4) + (tmp - '0');
1311		else if (tmp >= 'A' && tmp <= 'F')
1312			cs_r = (cs_r << 4) + (tmp - 'A' + 10);
1313		else
1314			break;
1315	}
1316
1317	/* -*- make sure we are at end of string and csum matches */
1318	if (cptr != eptr || cs_l != cs_r)
1319		return CHECK_INVALID;
1320
1321	return CHECK_CSVALID;
1322}
1323
1324/*
1325 * -------------------------------------------------------------------
1326 * fetch a data field by index, zero being the name field. If this
1327 * function is called repeatedly with increasing indices, the total load
1328 * is O(n), n being the length of the string; if it is called with
1329 * decreasing indices, the total load is O(n^2). Try not to go backwards
1330 * too often.
1331 * -------------------------------------------------------------------
1332 */
1333static char *
1334field_parse(
1335	nmea_data * data,
1336	int 	    fn
1337	)
1338{
1339	char tmp;
1340
1341	if (fn < data->cidx) {
1342		data->cidx = 0;
1343		data->cptr = data->base;
1344	}
1345	while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') {
1346		data->cidx += (tmp == ',');
1347		data->cptr++;
1348	}
1349	return data->cptr;
1350}
1351
1352/*
1353 * -------------------------------------------------------------------
1354 * Wipe (that is, overwrite with '_') data fields and the checksum in
1355 * the last timecode.  The list of field indices is given as integers
1356 * in a varargs list, preferably in ascending order, in any case
1357 * terminated by a negative field index.
1358 *
1359 * A maximum number of 8 fields can be overwritten at once to guard
1360 * against runaway (that is, unterminated) argument lists.
1361 *
1362 * This function affects what a remote user can see with
1363 *
1364 * ntpq -c clockvar <server>
1365 *
1366 * Note that this also removes the wiped fields from any clockstats
1367 * log.	 Some NTP operators monitor their NMEA GPS using the change in
1368 * location in clockstats over time as as a proxy for the quality of
1369 * GPS reception and thereby time reported.
1370 * -------------------------------------------------------------------
1371 */
1372static void
1373field_wipe(
1374	nmea_data * data,
1375	...
1376	)
1377{
1378	va_list	va;		/* vararg index list */
1379	int	fcnt;		/* safeguard against runaway arglist */
1380	int	fidx;		/* field to nuke, or -1 for checksum */
1381	char  * cp;		/* overwrite destination */
1382
1383	fcnt = 8;
1384	cp = NULL;
1385	va_start(va, data);
1386	do {
1387		fidx = va_arg(va, int);
1388		if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) {
1389			cp = field_parse(data, fidx);
1390		} else {
1391			cp = data->base + data->blen;
1392			if (data->blen >= 3 && cp[-3] == '*')
1393				cp -= 2;
1394		}
1395		for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++)
1396			if ('.' != *cp)
1397				*cp = '_';
1398	} while (fcnt-- && fidx >= 0);
1399	va_end(va);
1400}
1401
1402/*
1403 * -------------------------------------------------------------------
1404 * PARSING HELPERS
1405 * -------------------------------------------------------------------
1406 */
1407typedef unsigned char const UCC;
1408
1409static char const * const s_eof_chars = ",*\r\n";
1410
1411#ifdef DEBUG
1412static int field_length(UCC *cp, unsigned int nfields)
1413{
1414	char const * ep = (char const*)cp;
1415	ep = strpbrk(ep, s_eof_chars);
1416	if (ep && nfields)
1417		while (--nfields && ep && *ep == ',')
1418			ep = strpbrk(ep + 1, s_eof_chars);
1419	return (ep)
1420	    ? (int)((UCC*)ep - cp)
1421	    : (int)strlen((char const*)cp);
1422}
1423#endif	/* DEBUG */
1424
1425/* /[,*\r\n]/ --> skip */
1426static int _parse_eof(UCC *cp, UCC ** ep)
1427{
1428	int rc = (strchr(s_eof_chars, *(char const*)cp) != NULL);
1429	*ep = cp + rc;
1430	return rc;
1431}
1432
1433/* /,/ --> skip */
1434static int _parse_sep(UCC *cp, UCC ** ep)
1435{
1436	int rc = (*cp == ',');
1437	*ep = cp + rc;
1438	return rc;
1439}
1440
1441/* /[[:digit:]]{2}/ --> uint16_t */
1442static int _parse_num2d(UCC *cp, UCC ** ep, uint16_t *into)
1443{
1444	int	rc = FALSE;
1445
1446	if (isdigit(cp[0]) && isdigit(cp[1])) {
1447		*into = (cp[0] - '0') * 10 + (cp[1] - '0');
1448		cp += 2;
1449		rc = TRUE;
1450	}
1451	*ep = cp;
1452	return rc;
1453}
1454
1455/* /[[:digit:]]+/ --> uint16_t */
1456static int _parse_u16(UCC *cp, UCC **ep, uint16_t *into, unsigned int ndig)
1457{
1458	uint16_t	num = 0;
1459	int		rc  = FALSE;
1460	if (isdigit(*cp) && ndig) {
1461		rc = TRUE;
1462		do
1463			num = (num * 10) + (*cp - '0');
1464		while (isdigit(*++cp) && --ndig);
1465		*into = num;
1466	}
1467	*ep = cp;
1468	return rc;
1469}
1470
1471/* /[[:digit:]]+/ --> uint32_t */
1472static int _parse_u32(UCC *cp, UCC **ep, uint32_t *into, unsigned int ndig)
1473{
1474	uint32_t	num = 0;
1475	int		rc  = FALSE;
1476	if (isdigit(*cp) && ndig) {
1477		rc = TRUE;
1478		do
1479			num = (num * 10) + (*cp - '0');
1480		while (isdigit(*++cp) && --ndig);
1481		*into = num;
1482	}
1483	*ep = cp;
1484	return rc;
1485}
1486
1487/* /(\.[[:digit:]]*)?/ --> l_fp{0, f}
1488 * read fractional seconds, convert to l_fp
1489 *
1490 * Only the first 9 decimal digits are evaluated; any excess is parsed
1491 * away but silently ignored. (--> truncation to 1 nanosecond)
1492 */
1493static int _parse_frac(UCC *cp, UCC **ep, l_fp *into)
1494{
1495	static const uint32_t powtab[10] = {
1496		        0,
1497		100000000, 10000000, 1000000,
1498		   100000,    10000,    1000,
1499		      100,       10,       1
1500	};
1501
1502	struct timespec	ts;
1503	ZERO(ts);
1504	if (*cp == '.') {
1505		uint32_t fval = 0;
1506		UCC *    sp   = cp + 1;
1507		if (_parse_u32(sp, &cp, &fval, 9))
1508			ts.tv_nsec = fval * powtab[(size_t)(cp - sp)];
1509		while (isdigit(*cp))
1510			++cp;
1511	}
1512
1513	*ep   = cp;
1514	*into = tspec_intv_to_lfp(ts);
1515	return TRUE;
1516}
1517
1518/* /[[:digit:]]{6}/ --> time-of-day
1519 * parses a number string representing 'HHMMSS'
1520 */
1521static int _parse_time(UCC *cp, UCC ** ep, TCivilDate *into)
1522{
1523	uint16_t	s, m, h;
1524	int		rc;
1525	UCC *		xp = cp;
1526
1527	rc =   _parse_num2d(cp, &cp, &h) && (h < 24)
1528	    && _parse_num2d(cp, &cp, &m) && (m < 60)
1529	    && _parse_num2d(cp, &cp, &s) && (s < 61); /* leap seconds! */
1530
1531	if (rc) {
1532		into->hour   = (uint8_t)h;
1533		into->minute = (uint8_t)m;
1534		into->second = (uint8_t)s;
1535		*ep = cp;
1536	} else {
1537		*ep = xp;
1538		DPRINTF(1, ("nmea: invalid time code: '%.*s'\n",
1539			    field_length(xp, 1), xp));
1540	}
1541	return rc;
1542}
1543
1544/* /[[:digit:]]{6}/ --> civil date
1545 * parses a number string representing 'ddmmyy'
1546 */
1547static int _parse_date1(UCC *cp, UCC **ep, TCivilDate *into)
1548{
1549	unsigned short	d, m, y;
1550	int		rc;
1551	UCC *		xp = cp;
1552
1553	rc =   _parse_num2d(cp, &cp, &d) && (d - 1 < 31)
1554	    && _parse_num2d(cp, &cp, &m) && (m - 1 < 12)
1555	    && _parse_num2d(cp, &cp, &y)
1556	    && _parse_eof(cp, ep);
1557	if (rc) {
1558		into->monthday = (uint8_t )d;
1559		into->month    = (uint8_t )m;
1560		into->year     = (uint16_t)y;
1561		*ep = cp;
1562	} else {
1563		*ep = xp;
1564		DPRINTF(1, ("nmea: invalid date code: '%.*s'\n",
1565			    field_length(xp, 1), xp));
1566	}
1567	return rc;
1568}
1569
1570/* /[[:digit:]]+,[[:digit:]]+,[[:digit:]]+/ --> civil date
1571 * parses three successive numeric fields as date: day,month,year
1572 */
1573static int _parse_date3(UCC *cp, UCC **ep, TCivilDate *into)
1574{
1575	uint16_t	d, m, y;
1576	int		rc;
1577	UCC *		xp = cp;
1578
1579	rc =   _parse_u16(cp, &cp, &d, 2) && (d - 1 < 31)
1580	    && _parse_sep(cp, &cp)
1581	    && _parse_u16(cp, &cp, &m, 2) && (m - 1 < 12)
1582	    && _parse_sep(cp, &cp)
1583	    && _parse_u16(cp, &cp, &y, 4) && (y > 1980)
1584	    && _parse_eof(cp, ep);
1585	if (rc) {
1586		into->monthday = (uint8_t )d;
1587		into->month    = (uint8_t )m;
1588		into->year     = (uint16_t)y;
1589		*ep = cp;
1590	} else {
1591		*ep = xp;
1592		DPRINTF(1, ("nmea: invalid date code: '%.*s'\n",
1593			    field_length(xp, 3), xp));
1594	}
1595	return rc;
1596}
1597
1598/*
1599 * -------------------------------------------------------------------
1600 * Check sync status
1601 *
1602 * If the character at the data field start matches the tag value,
1603 * return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted'
1604 * flag is given, just the opposite value is returned. If there is no
1605 * data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC.
1606 * -------------------------------------------------------------------
1607 */
1608static u_char
1609parse_qual(
1610	nmea_data * rd,
1611	int         idx,
1612	char        tag,
1613	int         inv
1614	)
1615{
1616	static const u_char table[2] = {
1617		LEAP_NOTINSYNC, LEAP_NOWARNING };
1618
1619	char * dp = field_parse(rd, idx);
1620
1621	return table[ *dp && ((*dp == tag) == !inv) ];
1622}
1623
1624/*
1625 * -------------------------------------------------------------------
1626 * Parse a time stamp in HHMMSS[.sss] format with error checking.
1627 *
1628 * returns 1 on success, 0 on failure
1629 * -------------------------------------------------------------------
1630 */
1631static int
1632parse_time(
1633	struct calendar * jd,	/* result calendar pointer */
1634	l_fp		* fofs,	/* storage for nsec fraction */
1635	nmea_data       * rd,
1636	int		  idx
1637	)
1638{
1639	UCC * 	dp = (UCC*)field_parse(rd, idx);
1640
1641	return _parse_time(dp, &dp, jd)
1642	    && _parse_frac(dp, &dp, fofs)
1643	    && _parse_eof (dp, &dp);
1644}
1645
1646/*
1647 * -------------------------------------------------------------------
1648 * Parse a date string from an NMEA sentence. This could either be a
1649 * partial date in DDMMYY format in one field, or DD,MM,YYYY full date
1650 * spec spanning three fields. This function does some extensive error
1651 * checking to make sure the date string was consistent.
1652 *
1653 * returns 1 on success, 0 on failure
1654 * -------------------------------------------------------------------
1655 */
1656static int
1657parse_date(
1658	struct calendar * jd,	/* result pointer */
1659	nmea_data       * rd,
1660	int		  idx,
1661	enum date_fmt	  fmt
1662	)
1663{
1664	UCC  * dp = (UCC*)field_parse(rd, idx);
1665
1666	switch (fmt) {
1667	case DATE_1_DDMMYY:
1668		return _parse_date1(dp, &dp, jd);
1669	case DATE_3_DDMMYYYY:
1670		return _parse_date3(dp, &dp, jd);
1671	default:
1672		DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt));
1673		break;
1674	}
1675	return FALSE;
1676}
1677
1678/*
1679 * -------------------------------------------------------------------
1680 * Parse GPS week time info from an NMEA sentence. This info contains
1681 * the GPS week number, the GPS time-of-week and the leap seconds GPS
1682 * to UTC.
1683 *
1684 * returns 1 on success, 0 on failure
1685 * -------------------------------------------------------------------
1686 */
1687static int
1688parse_gpsw(
1689	TGpsDatum *  wd,
1690	nmea_data *  rd,
1691	int          weekidx,
1692	int          timeidx,
1693	int          leapidx
1694	)
1695{
1696	uint32_t	secs;
1697	uint16_t	week, leap = 0;
1698	l_fp		fofs;
1699	int		rc;
1700
1701	UCC *	dpw = (UCC*)field_parse(rd, weekidx);
1702	UCC *	dps = (UCC*)field_parse(rd, timeidx);
1703
1704	rc =   _parse_u16 (dpw, &dpw, &week, 5)
1705	    && _parse_eof (dpw, &dpw)
1706	    && _parse_u32 (dps, &dps, &secs, 9)
1707	    && _parse_frac(dps, &dps, &fofs)
1708	    && _parse_eof (dps, &dps)
1709	    && (secs < 7*SECSPERDAY);
1710	if (rc && leapidx > 0) {
1711		UCC *	dpl = (UCC*)field_parse(rd, leapidx);
1712		rc =   _parse_u16 (dpl, &dpl, &leap, 5)
1713		    && _parse_eof (dpl, &dpl);
1714	}
1715	if (rc) {
1716		fofs.l_ui -= leap;
1717		*wd = gpscal_from_gpsweek(week, secs, fofs);
1718	} else {
1719		DPRINTF(1, ("nmea: parse_gpsw: invalid weektime spec\n"));
1720	}
1721	return rc;
1722}
1723
1724
1725#ifdef HAVE_PPSAPI
1726static double
1727tabsdiffd(
1728	l_fp	t1,
1729	l_fp	t2
1730	)
1731{
1732	double	dd;
1733	L_SUB(&t1, &t2);
1734	LFPTOD(&t1, dd);
1735	return fabs(dd);
1736}
1737#endif /* HAVE_PPSAPI */
1738
1739/*
1740 * ===================================================================
1741 *
1742 * NMEAD support
1743 *
1744 * original nmead support added by Jon Miner (cp_n18@yahoo.com)
1745 *
1746 * See http://home.hiwaay.net/~taylorc/gps/nmea-server/
1747 * for information about nmead
1748 *
1749 * To use this, you need to create a link from /dev/gpsX to
1750 * the server:port where nmead is running.  Something like this:
1751 *
1752 * ln -s server:port /dev/gps1
1753 *
1754 * Split into separate function by Juergen Perlinger
1755 * (perlinger-at-ntp-dot-org)
1756 *
1757 * ===================================================================
1758 */
1759static int
1760nmead_open(
1761	const char * device
1762	)
1763{
1764	int	fd = -1;		/* result file descriptor */
1765
1766#   ifdef HAVE_READLINK
1767	char	host[80];		/* link target buffer	*/
1768	char  * port;			/* port name or number	*/
1769	int	rc;			/* result code (several)*/
1770	int     sh;			/* socket handle	*/
1771	struct addrinfo	 ai_hint;	/* resolution hint	*/
1772	struct addrinfo	*ai_list;	/* resolution result	*/
1773	struct addrinfo *ai;		/* result scan ptr	*/
1774
1775	fd = -1;
1776
1777	/* try to read as link, make sure no overflow occurs */
1778	rc = readlink(device, host, sizeof(host));
1779	if ((size_t)rc >= sizeof(host))
1780		return fd;	/* error / overflow / truncation */
1781	host[rc] = '\0';	/* readlink does not place NUL	*/
1782
1783	/* get port */
1784	port = strchr(host, ':');
1785	if (!port)
1786		return fd; /* not 'host:port' syntax ? */
1787	*port++ = '\0';	/* put in separator */
1788
1789	/* get address infos and try to open socket
1790	 *
1791	 * This getaddrinfo() is naughty in ntpd's nonblocking main
1792	 * thread, but you have to go out of your wary to use this code
1793	 * and typically the blocking is at startup where its impact is
1794	 * reduced. The same holds for the 'connect()', as it is
1795	 * blocking, too...
1796	 */
1797	ZERO(ai_hint);
1798	ai_hint.ai_protocol = IPPROTO_TCP;
1799	ai_hint.ai_socktype = SOCK_STREAM;
1800	if (getaddrinfo(host, port, &ai_hint, &ai_list))
1801		return fd;
1802
1803	for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) {
1804		sh = socket(ai->ai_family, ai->ai_socktype,
1805			    ai->ai_protocol);
1806		if (INVALID_SOCKET == sh)
1807			continue;
1808		rc = connect(sh, ai->ai_addr, ai->ai_addrlen);
1809		if (-1 != rc)
1810			fd = sh;
1811		else
1812			close(sh);
1813	}
1814	freeaddrinfo(ai_list);
1815	if (fd != -1)
1816		make_socket_nonblocking(fd);
1817#   else
1818	fd = -1;
1819#   endif
1820
1821	return fd;
1822}
1823#else
1824NONEMPTY_TRANSLATION_UNIT
1825#endif /* REFCLOCK && CLOCK_NMEA */
1826