1/*
2 * ntp_crypto.c - NTP version 4 public key routines
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#ifdef AUTOKEY
9#include <stdio.h>
10#include <stdlib.h>	/* strtoul */
11#include <sys/types.h>
12#include <sys/param.h>
13#include <unistd.h>
14#include <fcntl.h>
15
16#include "ntpd.h"
17#include "ntp_stdlib.h"
18#include "ntp_unixtime.h"
19#include "ntp_string.h"
20#include "ntp_random.h"
21#include "ntp_assert.h"
22#include "ntp_calendar.h"
23#include "ntp_leapsec.h"
24
25#include "openssl/asn1.h"
26#include "openssl/bn.h"
27#include "openssl/crypto.h"
28#include "openssl/err.h"
29#include "openssl/evp.h"
30#include "openssl/opensslv.h"
31#include "openssl/pem.h"
32#include "openssl/rand.h"
33#include "openssl/x509.h"
34#include "openssl/x509v3.h"
35#include "libssl_compat.h"
36
37#ifdef KERNEL_PLL
38#include "ntp_syscall.h"
39#endif /* KERNEL_PLL */
40
41/*
42 * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp
43 * No, it's not a plotter.  If you don't understand that, you're too young.
44 */
45static int calcomp(struct calendar *pjd1, struct calendar *pjd2)
46{
47	int32_t diff;	/* large enough to hold the signed difference between two uint16_t values */
48
49	diff = pjd1->year - pjd2->year;
50	if (diff < 0) return -1; else if (diff > 0) return 1;
51	/* same year; compare months */
52	diff = pjd1->month - pjd2->month;
53	if (diff < 0) return -1; else if (diff > 0) return 1;
54	/* same year and month; compare monthday */
55	diff = pjd1->monthday - pjd2->monthday;
56	if (diff < 0) return -1; else if (diff > 0) return 1;
57	/* same year and month and monthday; compare time */
58	diff = pjd1->hour - pjd2->hour;
59	if (diff < 0) return -1; else if (diff > 0) return 1;
60	diff = pjd1->minute - pjd2->minute;
61	if (diff < 0) return -1; else if (diff > 0) return 1;
62	diff = pjd1->second - pjd2->second;
63	if (diff < 0) return -1; else if (diff > 0) return 1;
64	/* identical */
65	return 0;
66}
67
68/*
69 * Extension field message format
70 *
71 * These are always signed and saved before sending in network byte
72 * order. They must be converted to and from host byte order for
73 * processing.
74 *
75 * +-------+-------+
76 * |   op  |  len  | <- extension pointer
77 * +-------+-------+
78 * |    associd    |
79 * +---------------+
80 * |   timestamp   | <- value pointer
81 * +---------------+
82 * |   filestamp   |
83 * +---------------+
84 * |   value len   |
85 * +---------------+
86 * |               |
87 * =     value     =
88 * |               |
89 * +---------------+
90 * | signature len |
91 * +---------------+
92 * |               |
93 * =   signature   =
94 * |               |
95 * +---------------+
96 *
97 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
98 * Requests carry the association ID of the receiver; responses carry
99 * the association ID of the sender. Some messages include only the
100 * operation/length and association ID words and so have length 8
101 * octets. Ohers include the value structure and associated value and
102 * signature fields. These messages include the timestamp, filestamp,
103 * value and signature words and so have length at least 24 octets. The
104 * signature and/or value fields can be empty, in which case the
105 * respective length words are zero. An empty value with nonempty
106 * signature is syntactically valid, but semantically questionable.
107 *
108 * The filestamp represents the time when a cryptographic data file such
109 * as a public/private key pair is created. It follows every reference
110 * depending on that file and serves as a means to obsolete earlier data
111 * of the same type. The timestamp represents the time when the
112 * cryptographic data of the message were last signed. Creation of a
113 * cryptographic data file or signing a message can occur only when the
114 * creator or signor is synchronized to an authoritative source and
115 * proventicated to a trusted authority.
116 *
117 * Note there are several conditions required for server trust. First,
118 * the public key on the server certificate must be verified, which can
119 * involve a hike along the certificate trail to a trusted host. Next,
120 * the server trust must be confirmed by one of several identity
121 * schemes. Valid cryptographic values are signed with attached
122 * timestamp and filestamp. Individual packet trust is confirmed
123 * relative to these values by a message digest with keys generated by a
124 * reverse-order pseudorandom hash.
125 *
126 * State decomposition. These flags are lit in the order given. They are
127 * dim only when the association is demobilized.
128 *
129 * CRYPTO_FLAG_ENAB	Lit upon acceptance of a CRYPTO_ASSOC message
130 * CRYPTO_FLAG_CERT	Lit when a self-digned trusted certificate is
131 *			accepted.
132 * CRYPTO_FLAG_VRFY	Lit when identity is confirmed.
133 * CRYPTO_FLAG_PROV	Lit when the first signature is verified.
134 * CRYPTO_FLAG_COOK	Lit when a valid cookie is accepted.
135 * CRYPTO_FLAG_AUTO	Lit when valid autokey values are accepted.
136 * CRYPTO_FLAG_SIGN	Lit when the server signed certificate is
137 *			accepted.
138 * CRYPTO_FLAG_LEAP	Lit when the leapsecond values are accepted.
139 */
140/*
141 * Cryptodefines
142 */
143#define TAI_1972	10	/* initial TAI offset (s) */
144#define MAX_LEAP	100	/* max UTC leapseconds (s) */
145#define VALUE_LEN	(6 * 4) /* min response field length */
146#define MAX_VALLEN	(65535 - VALUE_LEN)
147#define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
148
149/*
150 * Global cryptodata in host byte order
151 */
152u_int32	crypto_flags = 0x0;	/* status word */
153int	crypto_nid = KEY_TYPE_MD5; /* digest nid */
154char	*sys_hostname = NULL;
155char	*sys_groupname = NULL;
156static char *host_filename = NULL;	/* host file name */
157static char *ident_filename = NULL;	/* group file name */
158
159/*
160 * Global cryptodata in network byte order
161 */
162struct cert_info *cinfo = NULL;	/* certificate info/value cache */
163struct cert_info *cert_host = NULL; /* host certificate */
164struct pkey_info *pkinfo = NULL; /* key info/value cache */
165struct value hostval;		/* host value */
166struct value pubkey;		/* public key */
167struct value tai_leap;		/* leapseconds values */
168struct pkey_info *iffkey_info = NULL; /* IFF keys */
169struct pkey_info *gqkey_info = NULL; /* GQ keys */
170struct pkey_info *mvkey_info = NULL; /* MV keys */
171
172/*
173 * Private cryptodata in host byte order
174 */
175static char *passwd = NULL;	/* private key password */
176static EVP_PKEY *host_pkey = NULL; /* host key */
177static EVP_PKEY *sign_pkey = NULL; /* sign key */
178static const EVP_MD *sign_digest = NULL; /* sign digest */
179static u_int sign_siglen;	/* sign key length */
180static char *rand_file = NULL;	/* random seed file */
181
182/*
183 * Cryptotypes
184 */
185static	int	crypto_verify	(struct exten *, struct value *,
186				    struct peer *);
187static	int	crypto_encrypt	(const u_char *, u_int, keyid_t *,
188				    struct value *);
189static	int	crypto_alice	(struct peer *, struct value *);
190static	int	crypto_alice2	(struct peer *, struct value *);
191static	int	crypto_alice3	(struct peer *, struct value *);
192static	int	crypto_bob	(struct exten *, struct value *);
193static	int	crypto_bob2	(struct exten *, struct value *);
194static	int	crypto_bob3	(struct exten *, struct value *);
195static	int	crypto_iff	(struct exten *, struct peer *);
196static	int	crypto_gq	(struct exten *, struct peer *);
197static	int	crypto_mv	(struct exten *, struct peer *);
198static	int	crypto_send	(struct exten *, struct value *, int);
199static	tstamp_t crypto_time	(void);
200static	void	asn_to_calendar		(const ASN1_TIME *, struct calendar*);
201static	struct cert_info *cert_parse (const u_char *, long, tstamp_t);
202static	int	cert_sign	(struct exten *, struct value *);
203static	struct cert_info *cert_install (struct exten *, struct peer *);
204static	int	cert_hike	(struct peer *, struct cert_info *);
205static	void	cert_free	(struct cert_info *);
206static	struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
207static	void	bighash		(BIGNUM *, BIGNUM *);
208static	struct cert_info *crypto_cert (char *);
209static	u_int	exten_payload_size(const struct exten *);
210
211#ifdef SYS_WINNT
212int
213readlink(char * link, char * file, int len) {
214	return (-1);
215}
216#endif
217
218/*
219 * session_key - generate session key
220 *
221 * This routine generates a session key from the source address,
222 * destination address, key ID and private value. The value of the
223 * session key is the MD5 hash of these values, while the next key ID is
224 * the first four octets of the hash.
225 *
226 * Returns the next key ID or 0 if there is no destination address.
227 */
228keyid_t
229session_key(
230	sockaddr_u *srcadr, 	/* source address */
231	sockaddr_u *dstadr, 	/* destination address */
232	keyid_t	keyno,		/* key ID */
233	keyid_t	private,	/* private value */
234	u_long	lifetime 	/* key lifetime */
235	)
236{
237	EVP_MD_CTX *ctx;	/* message digest context */
238	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
239	keyid_t	keyid;		/* key identifer */
240	u_int32	header[10];	/* data in network byte order */
241	u_int	hdlen, len;
242
243	if (!dstadr)
244		return 0;
245
246	/*
247	 * Generate the session key and key ID. If the lifetime is
248	 * greater than zero, install the key and call it trusted.
249	 */
250	hdlen = 0;
251	switch(AF(srcadr)) {
252	case AF_INET:
253		header[0] = NSRCADR(srcadr);
254		header[1] = NSRCADR(dstadr);
255		header[2] = htonl(keyno);
256		header[3] = htonl(private);
257		hdlen = 4 * sizeof(u_int32);
258		break;
259
260	case AF_INET6:
261		memcpy(&header[0], PSOCK_ADDR6(srcadr),
262		    sizeof(struct in6_addr));
263		memcpy(&header[4], PSOCK_ADDR6(dstadr),
264		    sizeof(struct in6_addr));
265		header[8] = htonl(keyno);
266		header[9] = htonl(private);
267		hdlen = 10 * sizeof(u_int32);
268		break;
269	}
270	ctx = digest_ctx;
271	EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid));
272	EVP_DigestUpdate(ctx, (u_char *)header, hdlen);
273	EVP_DigestFinal(ctx, dgst, &len);
274	memcpy(&keyid, dgst, 4);
275	keyid = ntohl(keyid);
276	if (lifetime != 0) {
277		MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL);
278		authtrust(keyno, lifetime);
279	}
280	DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
281		    stoa(srcadr), stoa(dstadr), keyno,
282		    private, keyid, lifetime));
283
284	return (keyid);
285}
286
287
288/*
289 * make_keylist - generate key list
290 *
291 * Returns
292 * XEVNT_OK	success
293 * XEVNT_ERR	protocol error
294 *
295 * This routine constructs a pseudo-random sequence by repeatedly
296 * hashing the session key starting from a given source address,
297 * destination address, private value and the next key ID of the
298 * preceeding session key. The last entry on the list is saved along
299 * with its sequence number and public signature.
300 */
301int
302make_keylist(
303	struct peer *peer,	/* peer structure pointer */
304	endpt *dstadr		/* interface */
305	)
306{
307	EVP_MD_CTX *ctx;	/* signature context */
308	tstamp_t tstamp;	/* NTP timestamp */
309	struct autokey *ap;	/* autokey pointer */
310	struct value *vp;	/* value pointer */
311	keyid_t	keyid = 0;	/* next key ID */
312	keyid_t	cookie;		/* private value */
313	long	lifetime;
314	u_int	len, mpoll;
315	int	i;
316
317	if (!dstadr)
318		return XEVNT_ERR;
319
320	/*
321	 * Allocate the key list if necessary.
322	 */
323	tstamp = crypto_time();
324	if (peer->keylist == NULL)
325		peer->keylist = eallocarray(NTP_MAXSESSION,
326					    sizeof(keyid_t));
327
328	/*
329	 * Generate an initial key ID which is unique and greater than
330	 * NTP_MAXKEY.
331	 */
332	while (1) {
333		keyid = ntp_random() & 0xffffffff;
334		if (keyid <= NTP_MAXKEY)
335			continue;
336
337		if (authhavekey(keyid))
338			continue;
339		break;
340	}
341
342	/*
343	 * Generate up to NTP_MAXSESSION session keys. Stop if the
344	 * next one would not be unique or not a session key ID or if
345	 * it would expire before the next poll. The private value
346	 * included in the hash is zero if broadcast mode, the peer
347	 * cookie if client mode or the host cookie if symmetric modes.
348	 */
349	mpoll = 1U << min(peer->ppoll, peer->hpoll);
350	lifetime = min((1UL << sys_automax), NTP_MAXSESSION * mpoll);
351	if (peer->hmode == MODE_BROADCAST)
352		cookie = 0;
353	else
354		cookie = peer->pcookie;
355	for (i = 0; i < NTP_MAXSESSION; i++) {
356		peer->keylist[i] = keyid;
357		peer->keynumber = i;
358		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
359		    cookie, lifetime + mpoll);
360		lifetime -= mpoll;
361		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
362		    lifetime < 0 || tstamp == 0)
363			break;
364	}
365
366	/*
367	 * Save the last session key ID, sequence number and timestamp,
368	 * then sign these values for later retrieval by the clients. Be
369	 * careful not to use invalid key media. Use the public values
370	 * timestamp as filestamp.
371	 */
372	vp = &peer->sndval;
373	if (vp->ptr == NULL)
374		vp->ptr = emalloc(sizeof(struct autokey));
375	ap = (struct autokey *)vp->ptr;
376	ap->seq = htonl(peer->keynumber);
377	ap->key = htonl(keyid);
378	vp->tstamp = htonl(tstamp);
379	vp->fstamp = hostval.tstamp;
380	vp->vallen = htonl(sizeof(struct autokey));
381	vp->siglen = 0;
382	if (tstamp != 0) {
383		if (vp->sig == NULL)
384			vp->sig = emalloc(sign_siglen);
385		ctx = digest_ctx;
386		EVP_SignInit(ctx, sign_digest);
387		EVP_SignUpdate(ctx, (u_char *)vp, 12);
388		EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey));
389		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
390			INSIST(len <= sign_siglen);
391			vp->siglen = htonl(len);
392			peer->flags |= FLAG_ASSOC;
393		}
394	}
395	DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
396		    peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
397		    ntohl(vp->fstamp), peer->hpoll));
398	return (XEVNT_OK);
399}
400
401
402/*
403 * crypto_recv - parse extension fields
404 *
405 * This routine is called when the packet has been matched to an
406 * association and passed sanity, format and MAC checks. We believe the
407 * extension field values only if the field has proper format and
408 * length, the timestamp and filestamp are valid and the signature has
409 * valid length and is verified. There are a few cases where some values
410 * are believed even if the signature fails, but only if the proventic
411 * bit is not set.
412 *
413 * Returns
414 * XEVNT_OK	success
415 * XEVNT_ERR	protocol error
416 * XEVNT_LEN	bad field format or length
417 */
418int
419crypto_recv(
420	struct peer *peer,	/* peer structure pointer */
421	struct recvbuf *rbufp	/* packet buffer pointer */
422	)
423{
424	const EVP_MD *dp;	/* message digest algorithm */
425	u_int32	*pkt;		/* receive packet pointer */
426	struct autokey *ap, *bp; /* autokey pointer */
427	struct exten *ep, *fp;	/* extension pointers */
428	struct cert_info *xinfo; /* certificate info pointer */
429	int	macbytes;	/* length of MAC field, signed by intention */
430	int	authlen;	/* offset of MAC field */
431	associd_t associd;	/* association ID */
432	tstamp_t fstamp = 0;	/* filestamp */
433	u_int	len;		/* extension field length */
434	u_int	code;		/* extension field opcode */
435	u_int	vallen = 0;	/* value length */
436	X509	*cert;		/* X509 certificate */
437	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
438	keyid_t	cookie;		/* crumbles */
439	int	hismode;	/* packet mode */
440	int	rval = XEVNT_OK;
441	const u_char *puch;
442	u_int32 temp32;
443
444	/*
445	 * Initialize. Note that the packet has already been checked for
446	 * valid format and extension field lengths. First extract the
447	 * field length, command code and association ID in host byte
448	 * order. These are used with all commands and modes. Then check
449	 * the version number, which must be 2, and length, which must
450	 * be at least 8 for requests and VALUE_LEN (24) for responses.
451	 * Packets that fail either test sink without a trace. The
452	 * association ID is saved only if nonzero.
453	 */
454	authlen = LEN_PKT_NOMAC;
455	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
456	while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) {
457		/* We can be reasonably sure that we can read at least
458		 * the opcode and the size field here. More stringent
459		 * checks follow up shortly.
460		 */
461		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
462		ep = (struct exten *)pkt;
463		code = ntohl(ep->opcode) & 0xffff0000;
464		len = ntohl(ep->opcode) & 0x0000ffff;
465		// HMS: Why pkt[1] instead of ep->associd ?
466		associd = (associd_t)ntohl(pkt[1]);
467		rval = XEVNT_OK;
468		DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
469			    peer->crypto, authlen, len, code >> 16,
470			    associd));
471
472		/*
473		 * Check version number and field length. If bad,
474		 * quietly ignore the packet.
475		 */
476		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
477			sys_badlength++;
478			code |= CRYPTO_ERROR;
479		}
480
481		/* Check if the declared size fits into the remaining
482		 * buffer. We *know* 'macbytes' > 0 here!
483		 */
484		if (len > (u_int)macbytes) {
485			DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n",
486				    associd));
487			return XEVNT_LEN;
488		}
489
490		/* Check if the paylod of the extension fits into the
491		 * declared frame.
492		 */
493		if (len >= VALUE_LEN) {
494			fstamp = ntohl(ep->fstamp);
495			vallen = ntohl(ep->vallen);
496			/*
497			 * Bug 2761: I hope this isn't too early...
498			 */
499			if (   vallen == 0
500			    || len - VALUE_LEN < vallen)
501				return XEVNT_LEN;
502		}
503		switch (code) {
504
505		/*
506		 * Install status word, host name, signature scheme and
507		 * association ID. In OpenSSL the signature algorithm is
508		 * bound to the digest algorithm, so the NID completely
509		 * defines the signature scheme. Note the request and
510		 * response are identical, but neither is validated by
511		 * signature. The request is processed here only in
512		 * symmetric modes. The server name field might be
513		 * useful to implement access controls in future.
514		 */
515		case CRYPTO_ASSOC:
516
517			/*
518			 * If our state machine is running when this
519			 * message arrives, the other fellow might have
520			 * restarted. However, this could be an
521			 * intruder, so just clamp the poll interval and
522			 * find out for ourselves. Otherwise, pass the
523			 * extension field to the transmit side.
524			 */
525			if (peer->crypto & CRYPTO_FLAG_CERT) {
526				rval = XEVNT_ERR;
527				break;
528			}
529			if (peer->cmmd) {
530				if (peer->assoc != associd) {
531					rval = XEVNT_ERR;
532					break;
533				}
534				free(peer->cmmd); /* will be set again! */
535			}
536			fp = emalloc(len);
537			memcpy(fp, ep, len);
538			fp->associd = htonl(peer->associd);
539			peer->cmmd = fp;
540			/* fall through */
541
542		case CRYPTO_ASSOC | CRYPTO_RESP:
543
544			/*
545			 * Discard the message if it has already been
546			 * stored or the message has been amputated.
547			 */
548			if (peer->crypto) {
549				if (peer->assoc != associd)
550					rval = XEVNT_ERR;
551				break;
552			}
553			INSIST(len >= VALUE_LEN);
554			if (vallen == 0 || vallen > MAXHOSTNAME ||
555			    len - VALUE_LEN < vallen) {
556				rval = XEVNT_LEN;
557				break;
558			}
559			DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n",
560				    crypto_flags, peer->associd, fstamp,
561				    peer->assoc));
562			temp32 = crypto_flags & CRYPTO_FLAG_MASK;
563
564			/*
565			 * If the client scheme is PC, the server scheme
566			 * must be PC. The public key and identity are
567			 * presumed valid, so we skip the certificate
568			 * and identity exchanges and move immediately
569			 * to the cookie exchange which confirms the
570			 * server signature.
571			 */
572			if (crypto_flags & CRYPTO_FLAG_PRIV) {
573				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
574					rval = XEVNT_KEY;
575					break;
576				}
577				fstamp |= CRYPTO_FLAG_CERT |
578				    CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
579
580			/*
581			 * It is an error if either peer supports
582			 * identity, but the other does not.
583			 */
584			} else if (hismode == MODE_ACTIVE || hismode ==
585			    MODE_PASSIVE) {
586				if ((temp32 && !(fstamp &
587				    CRYPTO_FLAG_MASK)) ||
588				    (!temp32 && (fstamp &
589				    CRYPTO_FLAG_MASK))) {
590					rval = XEVNT_KEY;
591					break;
592				}
593			}
594
595			/*
596			 * Discard the message if the signature digest
597			 * NID is not supported.
598			 */
599			temp32 = (fstamp >> 16) & 0xffff;
600			dp =
601			    (const EVP_MD *)EVP_get_digestbynid(temp32);
602			if (dp == NULL) {
603				rval = XEVNT_MD;
604				break;
605			}
606
607			/*
608			 * Save status word, host name and message
609			 * digest/signature type. If this is from a
610			 * broadcast and the association ID has changed,
611			 * request the autokey values.
612			 */
613			peer->assoc = associd;
614			if (hismode == MODE_SERVER)
615				fstamp |= CRYPTO_FLAG_AUTO;
616			if (!(fstamp & CRYPTO_FLAG_TAI))
617				fstamp |= CRYPTO_FLAG_LEAP;
618			RAND_bytes((u_char *)&peer->hcookie, 4);
619			peer->crypto = fstamp;
620			peer->digest = dp;
621			if (peer->subject != NULL)
622				free(peer->subject);
623			peer->subject = emalloc(vallen + 1);
624			memcpy(peer->subject, ep->pkt, vallen);
625			peer->subject[vallen] = '\0';
626			if (peer->issuer != NULL)
627				free(peer->issuer);
628			peer->issuer = estrdup(peer->subject);
629			snprintf(statstr, sizeof(statstr),
630			    "assoc %d %d host %s %s", peer->associd,
631			    peer->assoc, peer->subject,
632			    OBJ_nid2ln(temp32));
633			record_crypto_stats(&peer->srcadr, statstr);
634			DPRINTF(1, ("crypto_recv: %s\n", statstr));
635			break;
636
637		/*
638		 * Decode X509 certificate in ASN.1 format and extract
639		 * the data containing, among other things, subject
640		 * name and public key. In the default identification
641		 * scheme, the certificate trail is followed to a self
642		 * signed trusted certificate.
643		 */
644		case CRYPTO_CERT | CRYPTO_RESP:
645
646			/*
647			 * Discard the message if empty or invalid.
648			 */
649			if (len < VALUE_LEN)
650				break;
651
652			if ((rval = crypto_verify(ep, NULL, peer)) !=
653			    XEVNT_OK)
654				break;
655
656			/*
657			 * Scan the certificate list to delete old
658			 * versions and link the newest version first on
659			 * the list. Then, verify the signature. If the
660			 * certificate is bad or missing, just ignore
661			 * it.
662			 */
663			if ((xinfo = cert_install(ep, peer)) == NULL) {
664				rval = XEVNT_CRT;
665				break;
666			}
667			if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
668				break;
669
670			/*
671			 * We plug in the public key and lifetime from
672			 * the first certificate received. However, note
673			 * that this certificate might not be signed by
674			 * the server, so we can't check the
675			 * signature/digest NID.
676			 */
677			if (peer->pkey == NULL) {
678				puch = xinfo->cert.ptr;
679				cert = d2i_X509(NULL, &puch,
680				    ntohl(xinfo->cert.vallen));
681				peer->pkey = X509_get_pubkey(cert);
682				X509_free(cert);
683			}
684			peer->flash &= ~TEST8;
685			temp32 = xinfo->nid;
686			snprintf(statstr, sizeof(statstr),
687			    "cert %s %s 0x%x %s (%u) fs %u",
688			    xinfo->subject, xinfo->issuer, xinfo->flags,
689			    OBJ_nid2ln(temp32), temp32,
690			    ntohl(ep->fstamp));
691			record_crypto_stats(&peer->srcadr, statstr);
692			DPRINTF(1, ("crypto_recv: %s\n", statstr));
693			break;
694
695		/*
696		 * Schnorr (IFF) identity scheme. This scheme is
697		 * designed for use with shared secret server group keys
698		 * and where the certificate may be generated by a third
699		 * party. The client sends a challenge to the server,
700		 * which performs a calculation and returns the result.
701		 * A positive result is possible only if both client and
702		 * server contain the same secret group key.
703		 */
704		case CRYPTO_IFF | CRYPTO_RESP:
705
706			/*
707			 * Discard the message if invalid.
708			 */
709			if ((rval = crypto_verify(ep, NULL, peer)) !=
710			    XEVNT_OK)
711				break;
712
713			/*
714			 * If the challenge matches the response, the
715			 * server public key, signature and identity are
716			 * all verified at the same time. The server is
717			 * declared trusted, so we skip further
718			 * certificate exchanges and move immediately to
719			 * the cookie exchange.
720			 */
721			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
722				break;
723
724			peer->crypto |= CRYPTO_FLAG_VRFY;
725			peer->flash &= ~TEST8;
726			snprintf(statstr, sizeof(statstr), "iff %s fs %u",
727			    peer->issuer, ntohl(ep->fstamp));
728			record_crypto_stats(&peer->srcadr, statstr);
729			DPRINTF(1, ("crypto_recv: %s\n", statstr));
730			break;
731
732		/*
733		 * Guillou-Quisquater (GQ) identity scheme. This scheme
734		 * is designed for use with public certificates carrying
735		 * the GQ public key in an extension field. The client
736		 * sends a challenge to the server, which performs a
737		 * calculation and returns the result. A positive result
738		 * is possible only if both client and server contain
739		 * the same group key and the server has the matching GQ
740		 * private key.
741		 */
742		case CRYPTO_GQ | CRYPTO_RESP:
743
744			/*
745			 * Discard the message if invalid
746			 */
747			if ((rval = crypto_verify(ep, NULL, peer)) !=
748			    XEVNT_OK)
749				break;
750
751			/*
752			 * If the challenge matches the response, the
753			 * server public key, signature and identity are
754			 * all verified at the same time. The server is
755			 * declared trusted, so we skip further
756			 * certificate exchanges and move immediately to
757			 * the cookie exchange.
758			 */
759			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
760				break;
761
762			peer->crypto |= CRYPTO_FLAG_VRFY;
763			peer->flash &= ~TEST8;
764			snprintf(statstr, sizeof(statstr), "gq %s fs %u",
765			    peer->issuer, ntohl(ep->fstamp));
766			record_crypto_stats(&peer->srcadr, statstr);
767			DPRINTF(1, ("crypto_recv: %s\n", statstr));
768			break;
769
770		/*
771		 * Mu-Varadharajan (MV) identity scheme. This scheme is
772		 * designed for use with three levels of trust, trusted
773		 * host, server and client. The trusted host key is
774		 * opaque to servers and clients; the server keys are
775		 * opaque to clients and each client key is different.
776		 * Client keys can be revoked without requiring new key
777		 * generations.
778		 */
779		case CRYPTO_MV | CRYPTO_RESP:
780
781			/*
782			 * Discard the message if invalid.
783			 */
784			if ((rval = crypto_verify(ep, NULL, peer)) !=
785			    XEVNT_OK)
786				break;
787
788			/*
789			 * If the challenge matches the response, the
790			 * server public key, signature and identity are
791			 * all verified at the same time. The server is
792			 * declared trusted, so we skip further
793			 * certificate exchanges and move immediately to
794			 * the cookie exchange.
795			 */
796			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
797				break;
798
799			peer->crypto |= CRYPTO_FLAG_VRFY;
800			peer->flash &= ~TEST8;
801			snprintf(statstr, sizeof(statstr), "mv %s fs %u",
802			    peer->issuer, ntohl(ep->fstamp));
803			record_crypto_stats(&peer->srcadr, statstr);
804			DPRINTF(1, ("crypto_recv: %s\n", statstr));
805			break;
806
807
808		/*
809		 * Cookie response in client and symmetric modes. If the
810		 * cookie bit is set, the working cookie is the EXOR of
811		 * the current and new values.
812		 */
813		case CRYPTO_COOK | CRYPTO_RESP:
814
815			/*
816			 * Discard the message if invalid or signature
817			 * not verified with respect to the cookie
818			 * values.
819			 */
820			if ((rval = crypto_verify(ep, &peer->cookval,
821			    peer)) != XEVNT_OK)
822				break;
823
824			/*
825			 * Decrypt the cookie, hunting all the time for
826			 * errors.
827			 */
828			if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
829				RSA *rsa = EVP_PKEY_get1_RSA(host_pkey);
830				u_int32 *cookiebuf = malloc(RSA_size(rsa));
831				if (!cookiebuf) {
832					rval = XEVNT_CKY;
833					break;
834				}
835
836				if (RSA_private_decrypt(vallen,
837				    (u_char *)ep->pkt,
838				    (u_char *)cookiebuf,
839				    rsa,
840				    RSA_PKCS1_OAEP_PADDING) != 4) {
841					rval = XEVNT_CKY;
842					free(cookiebuf);
843					break;
844				} else {
845					cookie = ntohl(*cookiebuf);
846					free(cookiebuf);
847				}
848				RSA_free(rsa);
849			} else {
850				rval = XEVNT_CKY;
851				break;
852			}
853
854			/*
855			 * Install cookie values and light the cookie
856			 * bit. If this is not broadcast client mode, we
857			 * are done here.
858			 */
859			key_expire(peer);
860			if (hismode == MODE_ACTIVE || hismode ==
861			    MODE_PASSIVE)
862				peer->pcookie = peer->hcookie ^ cookie;
863			else
864				peer->pcookie = cookie;
865			peer->crypto |= CRYPTO_FLAG_COOK;
866			peer->flash &= ~TEST8;
867			snprintf(statstr, sizeof(statstr),
868			    "cook %x ts %u fs %u", peer->pcookie,
869			    ntohl(ep->tstamp), ntohl(ep->fstamp));
870			record_crypto_stats(&peer->srcadr, statstr);
871			DPRINTF(1, ("crypto_recv: %s\n", statstr));
872			break;
873
874		/*
875		 * Install autokey values in broadcast client and
876		 * symmetric modes. We have to do this every time the
877		 * sever/peer cookie changes or a new keylist is
878		 * rolled. Ordinarily, this is automatic as this message
879		 * is piggybacked on the first NTP packet sent upon
880		 * either of these events. Note that a broadcast client
881		 * or symmetric peer can receive this response without a
882		 * matching request.
883		 */
884		case CRYPTO_AUTO | CRYPTO_RESP:
885
886			/*
887			 * Discard the message if invalid or signature
888			 * not verified with respect to the receive
889			 * autokey values.
890			 */
891			if ((rval = crypto_verify(ep, &peer->recval,
892			    peer)) != XEVNT_OK)
893				break;
894
895			/*
896			 * Discard the message if a broadcast client and
897			 * the association ID does not match. This might
898			 * happen if a broacast server restarts the
899			 * protocol. A protocol restart will occur at
900			 * the next ASSOC message.
901			 */
902			if ((peer->cast_flags & MDF_BCLNT) &&
903			    peer->assoc != associd)
904				break;
905
906			/*
907			 * Install autokey values and light the
908			 * autokey bit. This is not hard.
909			 */
910			if (ep->tstamp == 0)
911				break;
912
913			if (peer->recval.ptr == NULL)
914				peer->recval.ptr =
915				    emalloc(sizeof(struct autokey));
916			bp = (struct autokey *)peer->recval.ptr;
917			peer->recval.tstamp = ep->tstamp;
918			peer->recval.fstamp = ep->fstamp;
919			ap = (struct autokey *)ep->pkt;
920			bp->seq = ntohl(ap->seq);
921			bp->key = ntohl(ap->key);
922			peer->pkeyid = bp->key;
923			peer->crypto |= CRYPTO_FLAG_AUTO;
924			peer->flash &= ~TEST8;
925			snprintf(statstr, sizeof(statstr),
926			    "auto seq %d key %x ts %u fs %u", bp->seq,
927			    bp->key, ntohl(ep->tstamp),
928			    ntohl(ep->fstamp));
929			record_crypto_stats(&peer->srcadr, statstr);
930			DPRINTF(1, ("crypto_recv: %s\n", statstr));
931			break;
932
933		/*
934		 * X509 certificate sign response. Validate the
935		 * certificate signed by the server and install. Later
936		 * this can be provided to clients of this server in
937		 * lieu of the self signed certificate in order to
938		 * validate the public key.
939		 */
940		case CRYPTO_SIGN | CRYPTO_RESP:
941
942			/*
943			 * Discard the message if invalid.
944			 */
945			if ((rval = crypto_verify(ep, NULL, peer)) !=
946			    XEVNT_OK)
947				break;
948
949			/*
950			 * Scan the certificate list to delete old
951			 * versions and link the newest version first on
952			 * the list.
953			 */
954			if ((xinfo = cert_install(ep, peer)) == NULL) {
955				rval = XEVNT_CRT;
956				break;
957			}
958			peer->crypto |= CRYPTO_FLAG_SIGN;
959			peer->flash &= ~TEST8;
960			temp32 = xinfo->nid;
961			snprintf(statstr, sizeof(statstr),
962			    "sign %s %s 0x%x %s (%u) fs %u",
963			    xinfo->subject, xinfo->issuer, xinfo->flags,
964			    OBJ_nid2ln(temp32), temp32,
965			    ntohl(ep->fstamp));
966			record_crypto_stats(&peer->srcadr, statstr);
967			DPRINTF(1, ("crypto_recv: %s\n", statstr));
968			break;
969
970		/*
971		 * Install leapseconds values. While the leapsecond
972		 * values epoch, TAI offset and values expiration epoch
973		 * are retained, only the current TAI offset is provided
974		 * via the kernel to other applications.
975		 */
976		case CRYPTO_LEAP | CRYPTO_RESP:
977			/*
978			 * Discard the message if invalid. We can't
979			 * compare the value timestamps here, as they
980			 * can be updated by different servers.
981			 */
982			rval = crypto_verify(ep, NULL, peer);
983			if ((rval   != XEVNT_OK          ) ||
984			    (vallen != 3*sizeof(uint32_t))  )
985				break;
986
987			/* Check if we can update the basic TAI offset
988			 * for our current leap frame. This is a hack
989			 * and ignores the time stamps in the autokey
990			 * message.
991			 */
992			if (sys_leap != LEAP_NOTINSYNC)
993				leapsec_autokey_tai(ntohl(ep->pkt[0]),
994						    rbufp->recv_time.l_ui, NULL);
995			tai_leap.tstamp = ep->tstamp;
996			tai_leap.fstamp = ep->fstamp;
997			crypto_update();
998			mprintf_event(EVNT_TAI, peer,
999				      "%d seconds", ntohl(ep->pkt[0]));
1000			peer->crypto |= CRYPTO_FLAG_LEAP;
1001			peer->flash &= ~TEST8;
1002			snprintf(statstr, sizeof(statstr),
1003				 "leap TAI offset %d at %u expire %u fs %u",
1004				 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
1005				 ntohl(ep->pkt[2]), ntohl(ep->fstamp));
1006			record_crypto_stats(&peer->srcadr, statstr);
1007			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1008			break;
1009
1010		/*
1011		 * We come here in symmetric modes for miscellaneous
1012		 * commands that have value fields but are processed on
1013		 * the transmit side. All we need do here is check for
1014		 * valid field length. Note that ASSOC is handled
1015		 * separately.
1016		 */
1017		case CRYPTO_CERT:
1018		case CRYPTO_IFF:
1019		case CRYPTO_GQ:
1020		case CRYPTO_MV:
1021		case CRYPTO_COOK:
1022		case CRYPTO_SIGN:
1023			if (len < VALUE_LEN) {
1024				rval = XEVNT_LEN;
1025				break;
1026			}
1027			/* fall through */
1028
1029		/*
1030		 * We come here in symmetric modes for requests
1031		 * requiring a response (above plus AUTO and LEAP) and
1032		 * for responses. If a request, save the extension field
1033		 * for later; invalid requests will be caught on the
1034		 * transmit side. If an error or invalid response,
1035		 * declare a protocol error.
1036		 */
1037		default:
1038			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1039				rval = XEVNT_ERR;
1040			} else if (peer->cmmd == NULL) {
1041				fp = emalloc(len);
1042				memcpy(fp, ep, len);
1043				peer->cmmd = fp;
1044			}
1045		}
1046
1047		/*
1048		 * The first error found terminates the extension field
1049		 * scan and we return the laundry to the caller.
1050		 */
1051		if (rval != XEVNT_OK) {
1052			snprintf(statstr, sizeof(statstr),
1053			    "%04x %d %02x %s", htonl(ep->opcode),
1054			    associd, rval, eventstr(rval));
1055			record_crypto_stats(&peer->srcadr, statstr);
1056			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1057			return (rval);
1058		}
1059		authlen += (len + 3) / 4 * 4;
1060	}
1061	return (rval);
1062}
1063
1064
1065/*
1066 * crypto_xmit - construct extension fields
1067 *
1068 * This routine is called both when an association is configured and
1069 * when one is not. The only case where this matters is to retrieve the
1070 * autokey information, in which case the caller has to provide the
1071 * association ID to match the association.
1072 *
1073 * Side effect: update the packet offset.
1074 *
1075 * Errors
1076 * XEVNT_OK	success
1077 * XEVNT_CRT	bad or missing certificate
1078 * XEVNT_ERR	protocol error
1079 * XEVNT_LEN	bad field format or length
1080 * XEVNT_PER	host certificate expired
1081 */
1082int
1083crypto_xmit(
1084	struct peer *peer,	/* peer structure pointer */
1085	struct pkt *xpkt,	/* transmit packet pointer */
1086	struct recvbuf *rbufp,	/* receive buffer pointer */
1087	int	start,		/* offset to extension field */
1088	struct exten *ep,	/* extension pointer */
1089	keyid_t cookie		/* session cookie */
1090	)
1091{
1092	struct exten *fp;	/* extension pointers */
1093	struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
1094	sockaddr_u *srcadr_sin; /* source address */
1095	u_int32	*pkt;		/* packet pointer */
1096	u_int	opcode;		/* extension field opcode */
1097	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1098	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1099	tstamp_t tstamp;
1100	struct calendar tscal;
1101	u_int	vallen;
1102	struct value vtemp;
1103	associd_t associd;
1104	int	rval;
1105	int	len;
1106	keyid_t tcookie;
1107
1108	/*
1109	 * Generate the requested extension field request code, length
1110	 * and association ID. If this is a response and the host is not
1111	 * synchronized, light the error bit and go home.
1112	 */
1113	pkt = (u_int32 *)xpkt + start / 4;
1114	fp = (struct exten *)pkt;
1115	opcode = ntohl(ep->opcode);
1116	if (peer != NULL) {
1117		srcadr_sin = &peer->srcadr;
1118		if (!(opcode & CRYPTO_RESP))
1119			peer->opcode = ep->opcode;
1120	} else {
1121		srcadr_sin = &rbufp->recv_srcadr;
1122	}
1123	associd = (associd_t) ntohl(ep->associd);
1124	len = 8;
1125	fp->opcode = htonl((opcode & 0xffff0000) | len);
1126	fp->associd = ep->associd;
1127	rval = XEVNT_OK;
1128	tstamp = crypto_time();
1129	switch (opcode & 0xffff0000) {
1130
1131	/*
1132	 * Send association request and response with status word and
1133	 * host name. Note, this message is not signed and the filestamp
1134	 * contains only the status word.
1135	 */
1136	case CRYPTO_ASSOC:
1137	case CRYPTO_ASSOC | CRYPTO_RESP:
1138		len = crypto_send(fp, &hostval, start);
1139		fp->fstamp = htonl(crypto_flags);
1140		break;
1141
1142	/*
1143	 * Send certificate request. Use the values from the extension
1144	 * field.
1145	 */
1146	case CRYPTO_CERT:
1147		memset(&vtemp, 0, sizeof(vtemp));
1148		vtemp.tstamp = ep->tstamp;
1149		vtemp.fstamp = ep->fstamp;
1150		vtemp.vallen = ep->vallen;
1151		vtemp.ptr = (u_char *)ep->pkt;
1152		len = crypto_send(fp, &vtemp, start);
1153		break;
1154
1155	/*
1156	 * Send sign request. Use the host certificate, which is self-
1157	 * signed and may or may not be trusted.
1158	 */
1159	case CRYPTO_SIGN:
1160		(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
1161		if ((calcomp(&tscal, &(cert_host->first)) < 0)
1162		|| (calcomp(&tscal, &(cert_host->last)) > 0))
1163			rval = XEVNT_PER;
1164		else
1165			len = crypto_send(fp, &cert_host->cert, start);
1166		break;
1167
1168	/*
1169	 * Send certificate response. Use the name in the extension
1170	 * field to find the certificate in the cache. If the request
1171	 * contains no subject name, assume the name of this host. This
1172	 * is for backwards compatibility. Private certificates are
1173	 * never sent.
1174	 *
1175	 * There may be several certificates matching the request. First
1176	 * choice is a self-signed trusted certificate; second choice is
1177	 * any certificate signed by another host. There is no third
1178	 * choice.
1179	 */
1180	case CRYPTO_CERT | CRYPTO_RESP:
1181		vallen = exten_payload_size(ep); /* Must be <64k */
1182		if (vallen == 0 || vallen >= sizeof(certname) ) {
1183			rval = XEVNT_LEN;
1184			break;
1185		}
1186
1187		/*
1188		 * Find all public valid certificates with matching
1189		 * subject. If a self-signed, trusted certificate is
1190		 * found, use that certificate. If not, use the last non
1191		 * self-signed certificate.
1192		 */
1193		memcpy(certname, ep->pkt, vallen);
1194		certname[vallen] = '\0';
1195		xp = yp = NULL;
1196		for (cp = cinfo; cp != NULL; cp = cp->link) {
1197			if (cp->flags & (CERT_PRIV | CERT_ERROR))
1198				continue;
1199
1200			if (strcmp(certname, cp->subject) != 0)
1201				continue;
1202
1203			if (strcmp(certname, cp->issuer) != 0)
1204				yp = cp;
1205			else if (cp ->flags & CERT_TRUST)
1206				xp = cp;
1207			continue;
1208		}
1209
1210		/*
1211		 * Be careful who you trust. If the certificate is not
1212		 * found, return an empty response. Note that we dont
1213		 * enforce lifetimes here.
1214		 *
1215		 * The timestamp and filestamp are taken from the
1216		 * certificate value structure. For all certificates the
1217		 * timestamp is the latest signature update time. For
1218		 * host and imported certificates the filestamp is the
1219		 * creation epoch. For signed certificates the filestamp
1220		 * is the creation epoch of the trusted certificate at
1221		 * the root of the certificate trail. In principle, this
1222		 * allows strong checking for signature masquerade.
1223		 */
1224		if (xp == NULL)
1225			xp = yp;
1226		if (xp == NULL)
1227			break;
1228
1229		if (tstamp == 0)
1230			break;
1231
1232		len = crypto_send(fp, &xp->cert, start);
1233		break;
1234
1235	/*
1236	 * Send challenge in Schnorr (IFF) identity scheme.
1237	 */
1238	case CRYPTO_IFF:
1239		if (peer == NULL)
1240			break;		/* hack attack */
1241
1242		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1243			len = crypto_send(fp, &vtemp, start);
1244			value_free(&vtemp);
1245		}
1246		break;
1247
1248	/*
1249	 * Send response in Schnorr (IFF) identity scheme.
1250	 */
1251	case CRYPTO_IFF | CRYPTO_RESP:
1252		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1253			len = crypto_send(fp, &vtemp, start);
1254			value_free(&vtemp);
1255		}
1256		break;
1257
1258	/*
1259	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1260	 */
1261	case CRYPTO_GQ:
1262		if (peer == NULL)
1263			break;		/* hack attack */
1264
1265		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1266			len = crypto_send(fp, &vtemp, start);
1267			value_free(&vtemp);
1268		}
1269		break;
1270
1271	/*
1272	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1273	 */
1274	case CRYPTO_GQ | CRYPTO_RESP:
1275		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1276			len = crypto_send(fp, &vtemp, start);
1277			value_free(&vtemp);
1278		}
1279		break;
1280
1281	/*
1282	 * Send challenge in MV identity scheme.
1283	 */
1284	case CRYPTO_MV:
1285		if (peer == NULL)
1286			break;		/* hack attack */
1287
1288		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1289			len = crypto_send(fp, &vtemp, start);
1290			value_free(&vtemp);
1291		}
1292		break;
1293
1294	/*
1295	 * Send response in MV identity scheme.
1296	 */
1297	case CRYPTO_MV | CRYPTO_RESP:
1298		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1299			len = crypto_send(fp, &vtemp, start);
1300			value_free(&vtemp);
1301		}
1302		break;
1303
1304	/*
1305	 * Send certificate sign response. The integrity of the request
1306	 * certificate has already been verified on the receive side.
1307	 * Sign the response using the local server key. Use the
1308	 * filestamp from the request and use the timestamp as the
1309	 * current time. Light the error bit if the certificate is
1310	 * invalid or contains an unverified signature.
1311	 */
1312	case CRYPTO_SIGN | CRYPTO_RESP:
1313		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
1314			len = crypto_send(fp, &vtemp, start);
1315			value_free(&vtemp);
1316		}
1317		break;
1318
1319	/*
1320	 * Send public key and signature. Use the values from the public
1321	 * key.
1322	 */
1323	case CRYPTO_COOK:
1324		len = crypto_send(fp, &pubkey, start);
1325		break;
1326
1327	/*
1328	 * Encrypt and send cookie and signature. Light the error bit if
1329	 * anything goes wrong.
1330	 */
1331	case CRYPTO_COOK | CRYPTO_RESP:
1332		vallen = ntohl(ep->vallen);	/* Must be <64k */
1333		if (   vallen == 0
1334		    || (vallen >= MAX_VALLEN)
1335		    || (opcode & 0x0000ffff)  < VALUE_LEN + vallen) {
1336			rval = XEVNT_LEN;
1337			break;
1338		}
1339		if (peer == NULL)
1340			tcookie = cookie;
1341		else
1342			tcookie = peer->hcookie;
1343		if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp))
1344		    == XEVNT_OK) {
1345			len = crypto_send(fp, &vtemp, start);
1346			value_free(&vtemp);
1347		}
1348		break;
1349
1350	/*
1351	 * Find peer and send autokey data and signature in broadcast
1352	 * server and symmetric modes. Use the values in the autokey
1353	 * structure. If no association is found, either the server has
1354	 * restarted with new associations or some perp has replayed an
1355	 * old message, in which case light the error bit.
1356	 */
1357	case CRYPTO_AUTO | CRYPTO_RESP:
1358		if (peer == NULL) {
1359			if ((peer = findpeerbyassoc(associd)) == NULL) {
1360				rval = XEVNT_ERR;
1361				break;
1362			}
1363		}
1364		peer->flags &= ~FLAG_ASSOC;
1365		len = crypto_send(fp, &peer->sndval, start);
1366		break;
1367
1368	/*
1369	 * Send leapseconds values and signature. Use the values from
1370	 * the tai structure. If no table has been loaded, just send an
1371	 * empty request.
1372	 */
1373	case CRYPTO_LEAP | CRYPTO_RESP:
1374		len = crypto_send(fp, &tai_leap, start);
1375		break;
1376
1377	/*
1378	 * Default - Send a valid command for unknown requests; send
1379	 * an error response for unknown resonses.
1380	 */
1381	default:
1382		if (opcode & CRYPTO_RESP)
1383			rval = XEVNT_ERR;
1384	}
1385
1386	/*
1387	 * In case of error, flame the log. If a request, toss the
1388	 * puppy; if a response, return so the sender can flame, too.
1389	 */
1390	if (rval != XEVNT_OK) {
1391		u_int32	opcode_bits;
1392
1393		opcode_bits = CRYPTO_ERROR;
1394		opcode |= opcode_bits;
1395		fp->opcode |= htonl(opcode_bits);
1396		snprintf(statstr, sizeof(statstr),
1397		    "%04x %d %02x %s", opcode, associd, rval,
1398		    eventstr(rval));
1399		record_crypto_stats(srcadr_sin, statstr);
1400		DPRINTF(1, ("crypto_xmit: %s\n", statstr));
1401		if (!(opcode & CRYPTO_RESP))
1402			return (0);
1403	}
1404	DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
1405		    crypto_flags, start, len, opcode >> 16, associd));
1406	return (len);
1407}
1408
1409
1410/*
1411 * crypto_verify - verify the extension field value and signature
1412 *
1413 * Returns
1414 * XEVNT_OK	success
1415 * XEVNT_ERR	protocol error
1416 * XEVNT_FSP	bad filestamp
1417 * XEVNT_LEN	bad field format or length
1418 * XEVNT_PUB	bad or missing public key
1419 * XEVNT_SGL	bad signature length
1420 * XEVNT_SIG	signature not verified
1421 * XEVNT_TSP	bad timestamp
1422 */
1423static int
1424crypto_verify(
1425	struct exten *ep,	/* extension pointer */
1426	struct value *vp,	/* value pointer */
1427	struct peer *peer	/* peer structure pointer */
1428	)
1429{
1430	EVP_PKEY *pkey;		/* server public key */
1431	EVP_MD_CTX *ctx;	/* signature context */
1432	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1433	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1434	u_int	vallen;		/* value length */
1435	u_int	siglen;		/* signature length */
1436	u_int	opcode, len;
1437	int	i;
1438
1439	/*
1440	 * We are extremely parannoyed. We require valid opcode, length,
1441	 * association ID, timestamp, filestamp, public key, digest,
1442	 * signature length and signature, where relevant. Note that
1443	 * preliminary length checks are done in the main loop.
1444	 */
1445	len = ntohl(ep->opcode) & 0x0000ffff;
1446	opcode = ntohl(ep->opcode) & 0xffff0000;
1447
1448	/*
1449	 * Check for valid value header, association ID and extension
1450	 * field length. Remember, it is not an error to receive an
1451	 * unsolicited response; however, the response ID must match
1452	 * the association ID.
1453	 */
1454	if (opcode & CRYPTO_ERROR)
1455		return (XEVNT_ERR);
1456
1457 	if (len < VALUE_LEN)
1458		return (XEVNT_LEN);
1459
1460	if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
1461	    MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
1462		if (ntohl(ep->associd) != peer->assoc)
1463			return (XEVNT_ERR);
1464	} else {
1465		if (ntohl(ep->associd) != peer->associd)
1466			return (XEVNT_ERR);
1467	}
1468
1469	/*
1470	 * We have a valid value header. Check for valid value and
1471	 * signature field lengths. The extension field length must be
1472	 * long enough to contain the value header, value and signature.
1473	 * Note both the value and signature field lengths are rounded
1474	 * up to the next word (4 octets).
1475	 */
1476	vallen = ntohl(ep->vallen);
1477	if (   vallen == 0
1478	    || vallen > MAX_VALLEN)
1479		return (XEVNT_LEN);
1480
1481	i = (vallen + 3) / 4;
1482	siglen = ntohl(ep->pkt[i]);
1483	++i;
1484	if (   siglen > MAX_VALLEN
1485	    || len - VALUE_LEN < ((vallen + 3) / 4) * 4
1486	    || len - VALUE_LEN - ((vallen + 3) / 4) * 4
1487	      < ((siglen + 3) / 4) * 4)
1488		return (XEVNT_LEN);
1489
1490	/*
1491	 * Check for valid timestamp and filestamp. If the timestamp is
1492	 * zero, the sender is not synchronized and signatures are
1493	 * not possible. If nonzero the timestamp must not precede the
1494	 * filestamp. The timestamp and filestamp must not precede the
1495	 * corresponding values in the value structure, if present.
1496 	 */
1497	tstamp = ntohl(ep->tstamp);
1498	fstamp = ntohl(ep->fstamp);
1499	if (tstamp == 0)
1500		return (XEVNT_TSP);
1501
1502	if (tstamp < fstamp)
1503		return (XEVNT_TSP);
1504
1505	if (vp != NULL) {
1506		tstamp1 = ntohl(vp->tstamp);
1507		fstamp1 = ntohl(vp->fstamp);
1508		if (tstamp1 != 0 && fstamp1 != 0) {
1509			if (tstamp < tstamp1)
1510				return (XEVNT_TSP);
1511
1512			if ((tstamp < fstamp1 || fstamp < fstamp1))
1513				return (XEVNT_FSP);
1514		}
1515	}
1516
1517	/*
1518	 * At the time the certificate message is validated, the public
1519	 * key in the message is not available. Thus, don't try to
1520	 * verify the signature.
1521	 */
1522	if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
1523		return (XEVNT_OK);
1524
1525	/*
1526	 * Check for valid signature length, public key and digest
1527	 * algorithm.
1528	 */
1529	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1530		pkey = sign_pkey;
1531	else
1532		pkey = peer->pkey;
1533	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1534		return (XEVNT_ERR);
1535
1536	if (siglen != (u_int)EVP_PKEY_size(pkey))
1537		return (XEVNT_SGL);
1538
1539	/*
1540	 * Darn, I thought we would never get here. Verify the
1541	 * signature. If the identity exchange is verified, light the
1542	 * proventic bit. What a relief.
1543	 */
1544	ctx = digest_ctx;
1545	EVP_VerifyInit(ctx, peer->digest);
1546	EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen +
1547			 sizeof(ep->tstamp) + sizeof(ep->fstamp) +
1548			 sizeof(ep->vallen));
1549	if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen,
1550	    pkey) <= 0) {
1551		return (XEVNT_SIG);
1552	}
1553
1554	if (peer->crypto & CRYPTO_FLAG_VRFY)
1555		peer->crypto |= CRYPTO_FLAG_PROV;
1556	return (XEVNT_OK);
1557}
1558
1559
1560/*
1561 * crypto_encrypt - construct vp (encrypted cookie and signature) from
1562 * the public key and cookie.
1563 *
1564 * Returns:
1565 * XEVNT_OK	success
1566 * XEVNT_CKY	bad or missing cookie
1567 * XEVNT_PUB	bad or missing public key
1568 */
1569static int
1570crypto_encrypt(
1571	const u_char *ptr,	/* Public Key */
1572	u_int	vallen,		/* Length of Public Key */
1573	keyid_t	*cookie,	/* server cookie */
1574	struct value *vp	/* value pointer */
1575	)
1576{
1577	EVP_PKEY *pkey;		/* public key */
1578	RSA* rsa;		/* public key */
1579	EVP_MD_CTX *ctx;	/* signature context */
1580	tstamp_t tstamp;	/* NTP timestamp */
1581	u_int32	temp32;
1582	u_char *puch;
1583
1584	/*
1585	 * Extract the public key from the request.
1586	 */
1587	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen);
1588	if (pkey == NULL) {
1589		msyslog(LOG_ERR, "crypto_encrypt: %s",
1590		    ERR_error_string(ERR_get_error(), NULL));
1591		return (XEVNT_PUB);
1592	}
1593
1594	/*
1595	 * Encrypt the cookie, encode in ASN.1 and sign.
1596	 */
1597	memset(vp, 0, sizeof(struct value));
1598	tstamp = crypto_time();
1599	vp->tstamp = htonl(tstamp);
1600	vp->fstamp = hostval.tstamp;
1601	vallen = EVP_PKEY_size(pkey);
1602	vp->vallen = htonl(vallen);
1603	vp->ptr = emalloc(vallen);
1604	puch = vp->ptr;
1605	temp32 = htonl(*cookie);
1606	rsa = EVP_PKEY_get1_RSA(pkey);
1607	if (RSA_public_encrypt(4, (u_char *)&temp32, puch, rsa,
1608	    RSA_PKCS1_OAEP_PADDING) <= 0) {
1609		msyslog(LOG_ERR, "crypto_encrypt: %s",
1610		    ERR_error_string(ERR_get_error(), NULL));
1611		free(vp->ptr);
1612		EVP_PKEY_free(pkey);
1613		return (XEVNT_CKY);
1614	}
1615	EVP_PKEY_free(pkey);
1616	pkey = NULL;
1617	RSA_free(rsa);
1618	rsa = NULL;
1619	if (tstamp == 0)
1620		return (XEVNT_OK);
1621
1622	vp->sig = emalloc(sign_siglen);
1623	ctx = digest_ctx;
1624	EVP_SignInit(ctx, sign_digest);
1625	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
1626	EVP_SignUpdate(ctx, vp->ptr, vallen);
1627	if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) {
1628		INSIST(vallen <= sign_siglen);
1629		vp->siglen = htonl(vallen);
1630	}
1631	return (XEVNT_OK);
1632}
1633
1634
1635/*
1636 * crypto_ident - construct extension field for identity scheme
1637 *
1638 * This routine determines which identity scheme is in use and
1639 * constructs an extension field for that scheme.
1640 *
1641 * Returns
1642 * CRYTPO_IFF	IFF scheme
1643 * CRYPTO_GQ	GQ scheme
1644 * CRYPTO_MV	MV scheme
1645 * CRYPTO_NULL	no available scheme
1646 */
1647u_int
1648crypto_ident(
1649	struct peer *peer	/* peer structure pointer */
1650	)
1651{
1652	char		filename[MAXFILENAME];
1653	const char *	scheme_name;
1654	u_int		scheme_id;
1655
1656	/*
1657	 * We come here after the group trusted host has been found; its
1658	 * name defines the group name. Search the key cache for all
1659	 * keys matching the same group name in order IFF, GQ and MV.
1660	 * Use the first one available.
1661	 */
1662	scheme_name = NULL;
1663	if (peer->crypto & CRYPTO_FLAG_IFF) {
1664		scheme_name = "iff";
1665		scheme_id = CRYPTO_IFF;
1666	} else if (peer->crypto & CRYPTO_FLAG_GQ) {
1667		scheme_name = "gq";
1668		scheme_id = CRYPTO_GQ;
1669	} else if (peer->crypto & CRYPTO_FLAG_MV) {
1670		scheme_name = "mv";
1671		scheme_id = CRYPTO_MV;
1672	}
1673
1674	if (scheme_name != NULL) {
1675		snprintf(filename, sizeof(filename), "ntpkey_%spar_%s",
1676		    scheme_name, peer->ident);
1677		peer->ident_pkey = crypto_key(filename, NULL,
1678		    &peer->srcadr);
1679		if (peer->ident_pkey != NULL)
1680			return scheme_id;
1681	}
1682
1683	msyslog(LOG_NOTICE,
1684	    "crypto_ident: no identity parameters found for group %s",
1685	    peer->ident);
1686
1687	return CRYPTO_NULL;
1688}
1689
1690
1691/*
1692 * crypto_args - construct extension field from arguments
1693 *
1694 * This routine creates an extension field with current timestamps and
1695 * specified opcode, association ID and optional string. Note that the
1696 * extension field is created here, but freed after the crypto_xmit()
1697 * call in the protocol module.
1698 *
1699 * Returns extension field pointer (no errors)
1700 *
1701 * XXX: opcode and len should really be 32-bit quantities and
1702 * we should make sure that str is not too big.
1703 */
1704struct exten *
1705crypto_args(
1706	struct peer *peer,	/* peer structure pointer */
1707	u_int	opcode,		/* operation code */
1708	associd_t associd,	/* association ID */
1709	char	*str		/* argument string */
1710	)
1711{
1712	tstamp_t tstamp;	/* NTP timestamp */
1713	struct exten *ep;	/* extension field pointer */
1714	u_int	len;		/* extension field length */
1715	size_t	slen = 0;
1716
1717	tstamp = crypto_time();
1718	len = sizeof(struct exten);
1719	if (str != NULL) {
1720		slen = strlen(str);
1721		INSIST(slen < MAX_VALLEN);
1722		len += slen;
1723	}
1724	ep = emalloc_zero(len);
1725	if (opcode == 0)
1726		return (ep);
1727
1728	REQUIRE(0 == (len    & ~0x0000ffff));
1729	REQUIRE(0 == (opcode & ~0xffff0000));
1730
1731	ep->opcode = htonl(opcode + len);
1732	ep->associd = htonl(associd);
1733	ep->tstamp = htonl(tstamp);
1734	ep->fstamp = hostval.tstamp;
1735	ep->vallen = 0;
1736	if (str != NULL) {
1737		ep->vallen = htonl(slen);
1738		memcpy((char *)ep->pkt, str, slen);
1739	}
1740	return (ep);
1741}
1742
1743
1744/*
1745 * crypto_send - construct extension field from value components
1746 *
1747 * The value and signature fields are zero-padded to a word boundary.
1748 * Note: it is not polite to send a nonempty signature with zero
1749 * timestamp or a nonzero timestamp with an empty signature, but those
1750 * rules are not enforced here.
1751 *
1752 * XXX This code won't work on a box with 16-bit ints.
1753 */
1754int
1755crypto_send(
1756	struct exten *ep,	/* extension field pointer */
1757	struct value *vp,	/* value pointer */
1758	int	start		/* buffer offset */
1759	)
1760{
1761	u_int	len, vallen, siglen, opcode;
1762	u_int	i, j;
1763
1764	/*
1765	 * Calculate extension field length and check for buffer
1766	 * overflow. Leave room for the MAC.
1767	 */
1768	len = 16;				/* XXX Document! */
1769	vallen = ntohl(vp->vallen);
1770	INSIST(vallen <= MAX_VALLEN);
1771	len += ((vallen + 3) / 4 + 1) * 4;
1772	siglen = ntohl(vp->siglen);
1773	len += ((siglen + 3) / 4 + 1) * 4;
1774	if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
1775		return (0);
1776
1777	/*
1778	 * Copy timestamps.
1779	 */
1780	ep->tstamp = vp->tstamp;
1781	ep->fstamp = vp->fstamp;
1782	ep->vallen = vp->vallen;
1783
1784	/*
1785	 * Copy value. If the data field is empty or zero length,
1786	 * encode an empty value with length zero.
1787	 */
1788	i = 0;
1789	if (vallen > 0 && vp->ptr != NULL) {
1790		j = vallen / 4;
1791		if (j * 4 < vallen)
1792			ep->pkt[i + j++] = 0;
1793		memcpy(&ep->pkt[i], vp->ptr, vallen);
1794		i += j;
1795	}
1796
1797	/*
1798	 * Copy signature. If the signature field is empty or zero
1799	 * length, encode an empty signature with length zero.
1800	 */
1801	ep->pkt[i++] = vp->siglen;
1802	if (siglen > 0 && vp->sig != NULL) {
1803		j = siglen / 4;
1804		if (j * 4 < siglen)
1805			ep->pkt[i + j++] = 0;
1806		memcpy(&ep->pkt[i], vp->sig, siglen);
1807		/* i += j; */	/* We don't use i after this */
1808	}
1809	opcode = ntohl(ep->opcode);
1810	ep->opcode = htonl((opcode & 0xffff0000) | len);
1811	ENSURE(len <= MAX_VALLEN);
1812	return (len);
1813}
1814
1815
1816/*
1817 * crypto_update - compute new public value and sign extension fields
1818 *
1819 * This routine runs periodically, like once a day, and when something
1820 * changes. It updates the timestamps on three value structures and one
1821 * value structure list, then signs all the structures:
1822 *
1823 * hostval	host name (not signed)
1824 * pubkey	public key
1825 * cinfo	certificate info/value list
1826 * tai_leap	leap values
1827 *
1828 * Filestamps are proventic data, so this routine runs only when the
1829 * host is synchronized to a proventicated source. Thus, the timestamp
1830 * is proventic and can be used to deflect clogging attacks.
1831 *
1832 * Returns void (no errors)
1833 */
1834void
1835crypto_update(void)
1836{
1837	EVP_MD_CTX *ctx;	/* message digest context */
1838	struct cert_info *cp;	/* certificate info/value */
1839	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1840	u_int32	*ptr;
1841	u_int	len;
1842	leap_result_t leap_data;
1843
1844	hostval.tstamp = htonl(crypto_time());
1845	if (hostval.tstamp == 0)
1846		return;
1847
1848	ctx = digest_ctx;
1849
1850	/*
1851	 * Sign public key and timestamps. The filestamp is derived from
1852	 * the host key file extension from wherever the file was
1853	 * generated.
1854	 */
1855	if (pubkey.vallen != 0) {
1856		pubkey.tstamp = hostval.tstamp;
1857		pubkey.siglen = 0;
1858		if (pubkey.sig == NULL)
1859			pubkey.sig = emalloc(sign_siglen);
1860		EVP_SignInit(ctx, sign_digest);
1861		EVP_SignUpdate(ctx, (u_char *)&pubkey, 12);
1862		EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen));
1863		if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) {
1864			INSIST(len <= sign_siglen);
1865			pubkey.siglen = htonl(len);
1866		}
1867	}
1868
1869	/*
1870	 * Sign certificates and timestamps. The filestamp is derived
1871	 * from the certificate file extension from wherever the file
1872	 * was generated. Note we do not throw expired certificates
1873	 * away; they may have signed younger ones.
1874	 */
1875	for (cp = cinfo; cp != NULL; cp = cp->link) {
1876		cp->cert.tstamp = hostval.tstamp;
1877		cp->cert.siglen = 0;
1878		if (cp->cert.sig == NULL)
1879			cp->cert.sig = emalloc(sign_siglen);
1880		EVP_SignInit(ctx, sign_digest);
1881		EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12);
1882		EVP_SignUpdate(ctx, cp->cert.ptr,
1883		    ntohl(cp->cert.vallen));
1884		if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) {
1885			INSIST(len <= sign_siglen);
1886			cp->cert.siglen = htonl(len);
1887		}
1888	}
1889
1890	/*
1891	 * Sign leapseconds values and timestamps. Note it is not an
1892	 * error to return null values.
1893	 */
1894	tai_leap.tstamp = hostval.tstamp;
1895	tai_leap.fstamp = hostval.fstamp;
1896
1897	/* Get the leap second era. We might need a full lookup early
1898	 * after start, when the cache is not yet loaded.
1899	 */
1900	leapsec_frame(&leap_data);
1901	if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) {
1902		time_t   now    = time(NULL);
1903		uint32_t nowntp = (uint32_t)now + JAN_1970;
1904		leapsec_query(&leap_data, nowntp, &now);
1905	}
1906
1907	/* Create the data block. The protocol does not work without. */
1908	len = 3 * sizeof(u_int32);
1909	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) {
1910		free(tai_leap.ptr);
1911		tai_leap.ptr = emalloc(len);
1912		tai_leap.vallen = htonl(len);
1913	}
1914	ptr = (u_int32 *)tai_leap.ptr;
1915	if (leap_data.tai_offs > 10) {
1916		/* create a TAI / leap era block. The end time is a
1917		 * fake -- maybe we can do better.
1918		 */
1919		ptr[0] = htonl(leap_data.tai_offs);
1920		ptr[1] = htonl(leap_data.ebase.d_s.lo);
1921		if (leap_data.ttime.d_s.hi >= 0)
1922			ptr[2] = htonl(leap_data.ttime.D_s.lo +  7*86400);
1923		else
1924			ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400);
1925	} else {
1926		/* no leap era available */
1927		memset(ptr, 0, len);
1928	}
1929	if (tai_leap.sig == NULL)
1930		tai_leap.sig = emalloc(sign_siglen);
1931	EVP_SignInit(ctx, sign_digest);
1932	EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12);
1933	EVP_SignUpdate(ctx, tai_leap.ptr, len);
1934	if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) {
1935		INSIST(len <= sign_siglen);
1936		tai_leap.siglen = htonl(len);
1937	}
1938	crypto_flags |= CRYPTO_FLAG_TAI;
1939
1940	snprintf(statstr, sizeof(statstr), "signature update ts %u",
1941	    ntohl(hostval.tstamp));
1942	record_crypto_stats(NULL, statstr);
1943	DPRINTF(1, ("crypto_update: %s\n", statstr));
1944}
1945
1946/*
1947 * crypto_update_taichange - eventually trigger crypto_update
1948 *
1949 * This is called when a change in 'sys_tai' is detected. This will
1950 * happen shortly after a leap second is detected, but unhappily also
1951 * early after system start; also, the crypto stuff might be unused and
1952 * an unguarded call to crypto_update() causes a crash.
1953 *
1954 * This function makes sure that there already *is* a valid crypto block
1955 * for the use with autokey, and only calls 'crypto_update()' if it can
1956 * succeed.
1957 *
1958 * Returns void (no errors)
1959 */
1960void
1961crypto_update_taichange(void)
1962{
1963	static const u_int len = 3 * sizeof(u_int32);
1964
1965	/* check if the signing digest algo is available */
1966	if (sign_digest == NULL || sign_pkey == NULL)
1967		return;
1968
1969	/* check size of TAI extension block */
1970	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len)
1971		return;
1972
1973	/* crypto_update should at least not crash here! */
1974	crypto_update();
1975}
1976
1977/*
1978 * value_free - free value structure components.
1979 *
1980 * Returns void (no errors)
1981 */
1982void
1983value_free(
1984	struct value *vp	/* value structure */
1985	)
1986{
1987	if (vp->ptr != NULL)
1988		free(vp->ptr);
1989	if (vp->sig != NULL)
1990		free(vp->sig);
1991	memset(vp, 0, sizeof(struct value));
1992}
1993
1994
1995/*
1996 * crypto_time - returns current NTP time.
1997 *
1998 * Returns NTP seconds if in synch, 0 otherwise
1999 */
2000tstamp_t
2001crypto_time(void)
2002{
2003	l_fp	tstamp;		/* NTP time */
2004
2005	L_CLR(&tstamp);
2006	if (sys_leap != LEAP_NOTINSYNC)
2007		get_systime(&tstamp);
2008	return (tstamp.l_ui);
2009}
2010
2011
2012/*
2013 * asn_to_calendar - convert ASN1_TIME time structure to struct calendar.
2014 *
2015 */
2016static
2017void
2018asn_to_calendar	(
2019	const ASN1_TIME *asn1time,	/* pointer to ASN1_TIME structure */
2020	struct calendar *pjd	/* pointer to result */
2021	)
2022{
2023	size_t	len;		/* length of ASN1_TIME string */
2024	char	v[24];		/* writable copy of ASN1_TIME string */
2025	unsigned long	temp;	/* result from strtoul */
2026
2027	/*
2028	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2029	 * Or YYYYMMDDHHMMSSZ.
2030	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2031	 * SS fields start with zero and the Z character is ignored.
2032	 * Also note that two-digit years less than 50 map to years greater than
2033	 * 100. Dontcha love ASN.1? Better than MIL-188.
2034	 */
2035	len = asn1time->length;
2036	REQUIRE(len < sizeof(v));
2037	(void)strncpy(v, (char *)(asn1time->data), len);
2038	REQUIRE(len >= 13);
2039	temp = strtoul(v+len-3, NULL, 10);
2040	pjd->second = temp;
2041	v[len-3] = '\0';
2042
2043	temp = strtoul(v+len-5, NULL, 10);
2044	pjd->minute = temp;
2045	v[len-5] = '\0';
2046
2047	temp = strtoul(v+len-7, NULL, 10);
2048	pjd->hour = temp;
2049	v[len-7] = '\0';
2050
2051	temp = strtoul(v+len-9, NULL, 10);
2052	pjd->monthday = temp;
2053	v[len-9] = '\0';
2054
2055	temp = strtoul(v+len-11, NULL, 10);
2056	pjd->month = temp;
2057	v[len-11] = '\0';
2058
2059	temp = strtoul(v, NULL, 10);
2060	/* handle two-digit years */
2061	if (temp < 50UL)
2062	    temp += 100UL;
2063	if (temp < 150UL)
2064	    temp += 1900UL;
2065	pjd->year = temp;
2066
2067	pjd->yearday = pjd->weekday = 0;
2068	return;
2069}
2070
2071
2072/*
2073 * bighash() - compute a BIGNUM MD5 hash of a BIGNUM number.
2074 *
2075 * Returns void (no errors)
2076 */
2077static void
2078bighash(
2079	BIGNUM	*bn,		/* BIGNUM * from */
2080	BIGNUM	*bk		/* BIGNUM * to */
2081	)
2082{
2083	EVP_MD_CTX *ctx;	/* message digest context */
2084	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2085	u_char	*ptr;		/* a BIGNUM as binary string */
2086	u_int	len;
2087
2088	len = BN_num_bytes(bn);
2089	ptr = emalloc(len);
2090	BN_bn2bin(bn, ptr);
2091	ctx = digest_ctx;
2092	EVP_DigestInit(ctx, EVP_md5());
2093	EVP_DigestUpdate(ctx, ptr, len);
2094	EVP_DigestFinal(ctx, dgst, &len);
2095	BN_bin2bn(dgst, len, bk);
2096	free(ptr);
2097}
2098
2099
2100/*
2101 ***********************************************************************
2102 *								       *
2103 * The following routines implement the Schnorr (IFF) identity scheme  *
2104 *								       *
2105 ***********************************************************************
2106 *
2107 * The Schnorr (IFF) identity scheme is intended for use when
2108 * certificates are generated by some other trusted certificate
2109 * authority and the certificate cannot be used to convey public
2110 * parameters. There are two kinds of files: encrypted server files that
2111 * contain private and public values and nonencrypted client files that
2112 * contain only public values. New generations of server files must be
2113 * securely transmitted to all servers of the group; client files can be
2114 * distributed by any means. The scheme is self contained and
2115 * independent of new generations of host keys, sign keys and
2116 * certificates.
2117 *
2118 * The IFF values hide in a DSA cuckoo structure which uses the same
2119 * parameters. The values are used by an identity scheme based on DSA
2120 * cryptography and described in Stimson p. 285. The p is a 512-bit
2121 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
2122 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
2123 * private random group key b (0 < b < q) and public key v = g^b, then
2124 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
2125 * Alice challenges Bob to confirm identity using the protocol described
2126 * below.
2127 *
2128 * How it works
2129 *
2130 * The scheme goes like this. Both Alice and Bob have the public primes
2131 * p, q and generator g. The TA gives private key b to Bob and public
2132 * key v to Alice.
2133 *
2134 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
2135 * the IFF request message. Bob rolls new random k (0 < k < q), then
2136 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
2137 * to Alice in the response message. Besides making the response
2138 * shorter, the hash makes it effectivey impossible for an intruder to
2139 * solve for b by observing a number of these messages.
2140 *
2141 * Alice receives the response and computes g^y v^r mod p. After a bit
2142 * of algebra, this simplifies to g^k. If the hash of this result
2143 * matches hash(x), Alice knows that Bob has the group key b. The signed
2144 * response binds this knowledge to Bob's private key and the public key
2145 * previously received in his certificate.
2146 *
2147 * crypto_alice - construct Alice's challenge in IFF scheme
2148 *
2149 * Returns
2150 * XEVNT_OK	success
2151 * XEVNT_ID	bad or missing group key
2152 * XEVNT_PUB	bad or missing public key
2153 */
2154static int
2155crypto_alice(
2156	struct peer *peer,	/* peer pointer */
2157	struct value *vp	/* value pointer */
2158	)
2159{
2160	const DSA	*dsa;		/* IFF parameters */
2161	BN_CTX		*bctx;		/* BIGNUM context */
2162	EVP_MD_CTX	*ctx;	/* signature context */
2163	tstamp_t	tstamp;
2164	u_int		len;
2165	const BIGNUM	*q;
2166
2167	/*
2168	 * The identity parameters must have correct format and content.
2169	 */
2170	if (peer->ident_pkey == NULL) {
2171		msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable");
2172		return (XEVNT_ID);
2173	}
2174
2175	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2176		msyslog(LOG_NOTICE, "crypto_alice: defective key");
2177		return (XEVNT_PUB);
2178	}
2179
2180	/*
2181	 * Roll new random r (0 < r < q).
2182	 */
2183	if (peer->iffval != NULL)
2184		BN_free(peer->iffval);
2185	peer->iffval = BN_new();
2186	DSA_get0_pqg(dsa, NULL, &q, NULL);
2187	len = BN_num_bytes(q);
2188	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod q*/
2189	bctx = BN_CTX_new();
2190	BN_mod(peer->iffval, peer->iffval, q, bctx);
2191	BN_CTX_free(bctx);
2192
2193	/*
2194	 * Sign and send to Bob. The filestamp is from the local file.
2195	 */
2196	memset(vp, 0, sizeof(struct value));
2197	tstamp = crypto_time();
2198	vp->tstamp = htonl(tstamp);
2199	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2200	vp->vallen = htonl(len);
2201	vp->ptr = emalloc(len);
2202	BN_bn2bin(peer->iffval, vp->ptr);
2203	if (tstamp == 0)
2204		return (XEVNT_OK);
2205
2206	vp->sig = emalloc(sign_siglen);
2207	ctx = digest_ctx;
2208	EVP_SignInit(ctx, sign_digest);
2209	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2210	EVP_SignUpdate(ctx, vp->ptr, len);
2211	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2212		INSIST(len <= sign_siglen);
2213		vp->siglen = htonl(len);
2214	}
2215	return (XEVNT_OK);
2216}
2217
2218
2219/*
2220 * crypto_bob - construct Bob's response to Alice's challenge
2221 *
2222 * Returns
2223 * XEVNT_OK	success
2224 * XEVNT_ERR	protocol error
2225 * XEVNT_ID	bad or missing group key
2226 */
2227static int
2228crypto_bob(
2229	struct exten *ep,	/* extension pointer */
2230	struct value *vp	/* value pointer */
2231	)
2232{
2233	int	retv;		/* return value */
2234	const DSA *dsa;		/* IFF parameters */
2235	DSA_SIG	*sdsa;		/* DSA signature context fake */
2236	BN_CTX	*bctx;		/* BIGNUM context */
2237	EVP_MD_CTX *ctx;	/* signature context */
2238	tstamp_t tstamp;	/* NTP timestamp */
2239	BIGNUM	*bn, *bk, *r;
2240	u_char	*ptr;
2241	u_int	len;		/* extension field value length */
2242	const BIGNUM *p, *q, *g;
2243	const BIGNUM *priv_key;
2244
2245	/*
2246	 * If the IFF parameters are not valid, something awful
2247	 * happened or we are being tormented.
2248	 */
2249	if (iffkey_info == NULL) {
2250		msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
2251		return (XEVNT_ID);
2252	}
2253
2254	/* Initialize pointers that may need freeing in cleanup. */
2255	sdsa = NULL;
2256
2257	dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey);
2258	DSA_get0_pqg(dsa, &p, &q, &g);
2259	DSA_get0_key(dsa, NULL, &priv_key);
2260
2261	/*
2262	 * Extract r from the challenge.
2263	 */
2264	len = exten_payload_size(ep);
2265	if (len == 0 || len > MAX_VALLEN)
2266		return (XEVNT_LEN);
2267	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2268		msyslog(LOG_ERR, "crypto_bob: %s",
2269		    ERR_error_string(ERR_get_error(), NULL));
2270		return (XEVNT_ERR);
2271	}
2272
2273	/*
2274	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2275	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2276	 */
2277	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2278	sdsa = DSA_SIG_new();
2279	BN_rand(bk, len * 8, -1, 1);		/* k */
2280	BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */
2281	BN_add(bn, bn, bk);
2282	BN_mod(bn, bn, q, bctx);		/* k + b r mod q */
2283	BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */
2284	bighash(bk, bk);
2285	DSA_SIG_set0(sdsa, bn, bk);
2286	BN_CTX_free(bctx);
2287	BN_free(r);
2288#ifdef DEBUG
2289	if (debug > 1)
2290		DSA_print_fp(stdout, dsa, 0);
2291#endif
2292
2293	/*
2294	 * Encode the values in ASN.1 and sign. The filestamp is from
2295	 * the local file.
2296	 */
2297	len = i2d_DSA_SIG(sdsa, NULL);
2298	if (len == 0) {
2299		msyslog(LOG_ERR, "crypto_bob: %s",
2300		    ERR_error_string(ERR_get_error(), NULL));
2301		retv = XEVNT_ERR;
2302		goto cleanup;
2303	}
2304	if (len > MAX_VALLEN) {
2305		msyslog(LOG_ERR, "crypto_bob: signature is too big: %u",
2306		    len);
2307		retv = XEVNT_ERR;
2308		goto cleanup;
2309	}
2310	ZERO(*vp);
2311	tstamp = crypto_time();
2312	vp->tstamp = htonl(tstamp);
2313	vp->fstamp = htonl(iffkey_info->fstamp);
2314	vp->vallen = htonl(len);
2315	ptr = emalloc(len);
2316	vp->ptr = ptr;
2317	i2d_DSA_SIG(sdsa, &ptr);
2318	if (0 == tstamp) {
2319		retv = XEVNT_OK;
2320		goto cleanup;
2321	}
2322
2323	/* XXX: more validation to make sure the sign fits... */
2324	vp->sig = emalloc(sign_siglen);
2325	ctx = digest_ctx;
2326	EVP_SignInit(ctx, sign_digest);
2327	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2328	EVP_SignUpdate(ctx, vp->ptr, len);
2329	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2330		INSIST(len <= sign_siglen);
2331		vp->siglen = htonl(len);
2332	}
2333	retv = XEVNT_OK;
2334
2335    cleanup:
2336	DSA_SIG_free(sdsa);
2337	return retv;
2338}
2339
2340
2341/*
2342 * crypto_iff - verify Bob's response to Alice's challenge
2343 *
2344 * Returns
2345 * XEVNT_OK	success
2346 * XEVNT_FSP	bad filestamp
2347 * XEVNT_ID	bad or missing group key
2348 * XEVNT_PUB	bad or missing public key
2349 */
2350int
2351crypto_iff(
2352	struct exten *ep,	/* extension pointer */
2353	struct peer *peer	/* peer structure pointer */
2354	)
2355{
2356	const DSA *dsa;		/* IFF parameters */
2357	BN_CTX	*bctx;		/* BIGNUM context */
2358	DSA_SIG	*sdsa;		/* DSA parameters */
2359	BIGNUM	*bn, *bk;
2360	u_int	len;
2361	const u_char *ptr;
2362	int	temp;
2363	const BIGNUM *p, *g;
2364	const BIGNUM *r, *s;
2365	const BIGNUM *pub_key;
2366
2367	/*
2368	 * If the IFF parameters are not valid or no challenge was sent,
2369	 * something awful happened or we are being tormented.
2370	 */
2371	if (peer->ident_pkey == NULL) {
2372		msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
2373		return (XEVNT_ID);
2374	}
2375	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2376		msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
2377		    ntohl(ep->fstamp));
2378		return (XEVNT_FSP);
2379	}
2380	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2381		msyslog(LOG_NOTICE, "crypto_iff: defective key");
2382		return (XEVNT_PUB);
2383	}
2384	if (peer->iffval == NULL) {
2385		msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
2386		return (XEVNT_ID);
2387	}
2388
2389	/*
2390	 * Extract the k + b r and g^k values from the response.
2391	 */
2392	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2393	len = ntohl(ep->vallen);
2394	ptr = (u_char *)ep->pkt;
2395	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2396		BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2397		msyslog(LOG_ERR, "crypto_iff: %s",
2398		    ERR_error_string(ERR_get_error(), NULL));
2399		return (XEVNT_ERR);
2400	}
2401
2402	/*
2403	 * Compute g^(k + b r) g^(q - b)r mod p.
2404	 */
2405	DSA_get0_key(dsa, &pub_key, NULL);
2406	DSA_get0_pqg(dsa, &p, NULL, &g);
2407	DSA_SIG_get0(sdsa, &r, &s);
2408	BN_mod_exp(bn, pub_key, peer->iffval, p, bctx);
2409	BN_mod_exp(bk, g, r, p, bctx);
2410	BN_mod_mul(bn, bn, bk, p, bctx);
2411
2412	/*
2413	 * Verify the hash of the result matches hash(x).
2414	 */
2415	bighash(bn, bn);
2416	temp = BN_cmp(bn, s);
2417	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2418	BN_free(peer->iffval);
2419	peer->iffval = NULL;
2420	DSA_SIG_free(sdsa);
2421	if (temp == 0)
2422		return (XEVNT_OK);
2423
2424	msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
2425	return (XEVNT_ID);
2426}
2427
2428
2429/*
2430 ***********************************************************************
2431 *								       *
2432 * The following routines implement the Guillou-Quisquater (GQ)        *
2433 * identity scheme                                                     *
2434 *								       *
2435 ***********************************************************************
2436 *
2437 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2438 * the certificate can be used to convey public parameters. The scheme
2439 * uses a X509v3 certificate extension field do convey the public key of
2440 * a private key known only to servers. There are two kinds of files:
2441 * encrypted server files that contain private and public values and
2442 * nonencrypted client files that contain only public values. New
2443 * generations of server files must be securely transmitted to all
2444 * servers of the group; client files can be distributed by any means.
2445 * The scheme is self contained and independent of new generations of
2446 * host keys and sign keys. The scheme is self contained and independent
2447 * of new generations of host keys and sign keys.
2448 *
2449 * The GQ parameters hide in a RSA cuckoo structure which uses the same
2450 * parameters. The values are used by an identity scheme based on RSA
2451 * cryptography and described in Stimson p. 300 (with errors). The 512-
2452 * bit public modulus is n = p q, where p and q are secret large primes.
2453 * The TA rolls private random group key b as RSA exponent. These values
2454 * are known to all group members.
2455 *
2456 * When rolling new certificates, a server recomputes the private and
2457 * public keys. The private key u is a random roll, while the public key
2458 * is the inverse obscured by the group key v = (u^-1)^b. These values
2459 * replace the private and public keys normally generated by the RSA
2460 * scheme. Alice challenges Bob to confirm identity using the protocol
2461 * described below.
2462 *
2463 * How it works
2464 *
2465 * The scheme goes like this. Both Alice and Bob have the same modulus n
2466 * and some random b as the group key. These values are computed and
2467 * distributed in advance via secret means, although only the group key
2468 * b is truly secret. Each has a private random private key u and public
2469 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2470 * can regenerate the key pair from time to time without affecting
2471 * operations. The public key is conveyed on the certificate in an
2472 * extension field; the private key is never revealed.
2473 *
2474 * Alice rolls new random challenge r and sends to Bob in the GQ
2475 * request message. Bob rolls new random k, then computes y = k u^r mod
2476 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2477 * message. Besides making the response shorter, the hash makes it
2478 * effectivey impossible for an intruder to solve for b by observing
2479 * a number of these messages.
2480 *
2481 * Alice receives the response and computes y^b v^r mod n. After a bit
2482 * of algebra, this simplifies to k^b. If the hash of this result
2483 * matches hash(x), Alice knows that Bob has the group key b. The signed
2484 * response binds this knowledge to Bob's private key and the public key
2485 * previously received in his certificate.
2486 *
2487 * crypto_alice2 - construct Alice's challenge in GQ scheme
2488 *
2489 * Returns
2490 * XEVNT_OK	success
2491 * XEVNT_ID	bad or missing group key
2492 * XEVNT_PUB	bad or missing public key
2493 */
2494static int
2495crypto_alice2(
2496	struct peer *peer,	/* peer pointer */
2497	struct value *vp	/* value pointer */
2498	)
2499{
2500	const RSA *rsa;	/* GQ parameters */
2501	BN_CTX	*bctx;		/* BIGNUM context */
2502	EVP_MD_CTX *ctx;	/* signature context */
2503	tstamp_t tstamp;
2504	u_int	len;
2505	const BIGNUM *n;
2506
2507	/*
2508	 * The identity parameters must have correct format and content.
2509	 */
2510	if (peer->ident_pkey == NULL)
2511		return (XEVNT_ID);
2512
2513	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2514		msyslog(LOG_NOTICE, "crypto_alice2: defective key");
2515		return (XEVNT_PUB);
2516	}
2517
2518	/*
2519	 * Roll new random r (0 < r < n).
2520	 */
2521	if (peer->iffval != NULL)
2522		BN_free(peer->iffval);
2523	peer->iffval = BN_new();
2524	RSA_get0_key(rsa, &n, NULL, NULL);
2525	len = BN_num_bytes(n);
2526	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2527	bctx = BN_CTX_new();
2528	BN_mod(peer->iffval, peer->iffval, n, bctx);
2529	BN_CTX_free(bctx);
2530
2531	/*
2532	 * Sign and send to Bob. The filestamp is from the local file.
2533	 */
2534	memset(vp, 0, sizeof(struct value));
2535	tstamp = crypto_time();
2536	vp->tstamp = htonl(tstamp);
2537	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2538	vp->vallen = htonl(len);
2539	vp->ptr = emalloc(len);
2540	BN_bn2bin(peer->iffval, vp->ptr);
2541	if (tstamp == 0)
2542		return (XEVNT_OK);
2543
2544	vp->sig = emalloc(sign_siglen);
2545	ctx = digest_ctx;
2546	EVP_SignInit(ctx, sign_digest);
2547	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2548	EVP_SignUpdate(ctx, vp->ptr, len);
2549	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2550		INSIST(len <= sign_siglen);
2551		vp->siglen = htonl(len);
2552	}
2553	return (XEVNT_OK);
2554}
2555
2556
2557/*
2558 * crypto_bob2 - construct Bob's response to Alice's challenge
2559 *
2560 * Returns
2561 * XEVNT_OK	success
2562 * XEVNT_ERR	protocol error
2563 * XEVNT_ID	bad or missing group key
2564 */
2565static int
2566crypto_bob2(
2567	struct exten *ep,	/* extension pointer */
2568	struct value *vp	/* value pointer */
2569	)
2570{
2571	const RSA *rsa;		/* GQ parameters */
2572	DSA_SIG	*sdsa;		/* DSA parameters */
2573	BN_CTX	*bctx;		/* BIGNUM context */
2574	EVP_MD_CTX *ctx;	/* signature context */
2575	tstamp_t tstamp;	/* NTP timestamp */
2576	BIGNUM	*r, *k, *g, *y;
2577	u_char	*ptr;
2578	u_int	len;
2579	int	s_len;
2580	const BIGNUM *n, *p, *e;
2581
2582	/*
2583	 * If the GQ parameters are not valid, something awful
2584	 * happened or we are being tormented.
2585	 */
2586	if (gqkey_info == NULL) {
2587		msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
2588		return (XEVNT_ID);
2589	}
2590	rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey);
2591	RSA_get0_key(rsa, &n, &p, &e);
2592
2593	/*
2594	 * Extract r from the challenge.
2595	 */
2596	len = exten_payload_size(ep);
2597	if (len == 0 || len > MAX_VALLEN)
2598		return (XEVNT_LEN);
2599	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2600		msyslog(LOG_ERR, "crypto_bob2: %s",
2601		    ERR_error_string(ERR_get_error(), NULL));
2602		return (XEVNT_ERR);
2603	}
2604
2605	/*
2606	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2607	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2608	 */
2609	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2610	sdsa = DSA_SIG_new();
2611	BN_rand(k, len * 8, -1, 1);		/* k */
2612	BN_mod(k, k, n, bctx);
2613	BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */
2614	BN_mod_mul(y, k, y, n, bctx);	/* k u^r mod n */
2615	BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */
2616	bighash(g, g);
2617	DSA_SIG_set0(sdsa, y, g);
2618	BN_CTX_free(bctx);
2619	BN_free(r); BN_free(k);
2620#ifdef DEBUG
2621	if (debug > 1)
2622		RSA_print_fp(stdout, rsa, 0);
2623#endif
2624
2625	/*
2626	 * Encode the values in ASN.1 and sign. The filestamp is from
2627	 * the local file.
2628	 */
2629	len = s_len = i2d_DSA_SIG(sdsa, NULL);
2630	if (s_len <= 0) {
2631		msyslog(LOG_ERR, "crypto_bob2: %s",
2632		    ERR_error_string(ERR_get_error(), NULL));
2633		DSA_SIG_free(sdsa);
2634		return (XEVNT_ERR);
2635	}
2636	memset(vp, 0, sizeof(struct value));
2637	tstamp = crypto_time();
2638	vp->tstamp = htonl(tstamp);
2639	vp->fstamp = htonl(gqkey_info->fstamp);
2640	vp->vallen = htonl(len);
2641	ptr = emalloc(len);
2642	vp->ptr = ptr;
2643	i2d_DSA_SIG(sdsa, &ptr);
2644	DSA_SIG_free(sdsa);
2645	if (tstamp == 0)
2646		return (XEVNT_OK);
2647
2648	vp->sig = emalloc(sign_siglen);
2649	ctx = digest_ctx;
2650	EVP_SignInit(ctx, sign_digest);
2651	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2652	EVP_SignUpdate(ctx, vp->ptr, len);
2653	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2654		INSIST(len <= sign_siglen);
2655		vp->siglen = htonl(len);
2656	}
2657	return (XEVNT_OK);
2658}
2659
2660
2661/*
2662 * crypto_gq - verify Bob's response to Alice's challenge
2663 *
2664 * Returns
2665 * XEVNT_OK	success
2666 * XEVNT_ERR	protocol error
2667 * XEVNT_FSP	bad filestamp
2668 * XEVNT_ID	bad or missing group keys
2669 * XEVNT_PUB	bad or missing public key
2670 */
2671int
2672crypto_gq(
2673	struct exten *ep,	/* extension pointer */
2674	struct peer *peer	/* peer structure pointer */
2675	)
2676{
2677	const RSA *rsa;		/* GQ parameters */
2678	BN_CTX	*bctx;		/* BIGNUM context */
2679	DSA_SIG	*sdsa;		/* RSA signature context fake */
2680	BIGNUM	*y, *v;
2681	const u_char *ptr;
2682	long	len;
2683	u_int	temp;
2684	const BIGNUM *n, *e;
2685	const BIGNUM *r, *s;
2686
2687	/*
2688	 * If the GQ parameters are not valid or no challenge was sent,
2689	 * something awful happened or we are being tormented. Note that
2690	 * the filestamp on the local key file can be greater than on
2691	 * the remote parameter file if the keys have been refreshed.
2692	 */
2693	if (peer->ident_pkey == NULL) {
2694		msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
2695		return (XEVNT_ID);
2696	}
2697	if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
2698		msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
2699		    ntohl(ep->fstamp));
2700		return (XEVNT_FSP);
2701	}
2702	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2703		msyslog(LOG_NOTICE, "crypto_gq: defective key");
2704		return (XEVNT_PUB);
2705	}
2706	RSA_get0_key(rsa, &n, NULL, &e);
2707	if (peer->iffval == NULL) {
2708		msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
2709		return (XEVNT_ID);
2710	}
2711
2712	/*
2713	 * Extract the y = k u^r and hash(x = k^b) values from the
2714	 * response.
2715	 */
2716	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2717	len = ntohl(ep->vallen);
2718	ptr = (u_char *)ep->pkt;
2719	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2720		BN_CTX_free(bctx); BN_free(y); BN_free(v);
2721		msyslog(LOG_ERR, "crypto_gq: %s",
2722		    ERR_error_string(ERR_get_error(), NULL));
2723		return (XEVNT_ERR);
2724	}
2725	DSA_SIG_get0(sdsa, &r, &s);
2726
2727	/*
2728	 * Compute v^r y^b mod n.
2729	 */
2730	if (peer->grpkey == NULL) {
2731		msyslog(LOG_NOTICE, "crypto_gq: missing group key");
2732		return (XEVNT_ID);
2733	}
2734	BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx);
2735						/* v^r mod n */
2736	BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */
2737	BN_mod_mul(y, v, y, n, bctx);	/* v^r y^b mod n */
2738
2739	/*
2740	 * Verify the hash of the result matches hash(x).
2741	 */
2742	bighash(y, y);
2743	temp = BN_cmp(y, s);
2744	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2745	BN_free(peer->iffval);
2746	peer->iffval = NULL;
2747	DSA_SIG_free(sdsa);
2748	if (temp == 0)
2749		return (XEVNT_OK);
2750
2751	msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
2752	return (XEVNT_ID);
2753}
2754
2755
2756/*
2757 ***********************************************************************
2758 *								       *
2759 * The following routines implement the Mu-Varadharajan (MV) identity  *
2760 * scheme                                                              *
2761 *								       *
2762 ***********************************************************************
2763 *
2764 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2765 * servers broadcast messages to clients, but clients never send
2766 * messages to servers. There is one encryption key for the server and a
2767 * separate decryption key for each client. It operated something like a
2768 * pay-per-view satellite broadcasting system where the session key is
2769 * encrypted by the broadcaster and the decryption keys are held in a
2770 * tamperproof set-top box.
2771 *
2772 * The MV parameters and private encryption key hide in a DSA cuckoo
2773 * structure which uses the same parameters, but generated in a
2774 * different way. The values are used in an encryption scheme similar to
2775 * El Gamal cryptography and a polynomial formed from the expansion of
2776 * product terms (x - x[j]), as described in Mu, Y., and V.
2777 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2778 * 223-231. The paper has significant errors and serious omissions.
2779 *
2780 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
2781 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2782 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
2783 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
2784 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
2785 * project into Zp* as exponents of g. Sometimes we have to compute an
2786 * inverse b^-1 of random b in Zq, but for that purpose we require
2787 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
2788 * relatively small, like 30. These are the parameters of the scheme and
2789 * they are expensive to compute.
2790 *
2791 * We set up an instance of the scheme as follows. A set of random
2792 * values x[j] mod q (j = 1...n), are generated as the zeros of a
2793 * polynomial of order n. The product terms (x - x[j]) are expanded to
2794 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2795 * used as exponents of the generator g mod p to generate the private
2796 * encryption key A. The pair (gbar, ghat) of public server keys and the
2797 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2798 * to construct the decryption keys. The devil is in the details.
2799 *
2800 * This routine generates a private server encryption file including the
2801 * private encryption key E and partial decryption keys gbar and ghat.
2802 * It then generates public client decryption files including the public
2803 * keys xbar[j] and xhat[j] for each client j. The partial decryption
2804 * files are used to compute the inverse of E. These values are suitably
2805 * blinded so secrets are not revealed.
2806 *
2807 * The distinguishing characteristic of this scheme is the capability to
2808 * revoke keys. Included in the calculation of E, gbar and ghat is the
2809 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
2810 * subsequently removed from the product and E, gbar and ghat
2811 * recomputed, the jth client will no longer be able to compute E^-1 and
2812 * thus unable to decrypt the messageblock.
2813 *
2814 * How it works
2815 *
2816 * The scheme goes like this. Bob has the server values (p, E, q, gbar,
2817 * ghat) and Alice has the client values (p, xbar, xhat).
2818 *
2819 * Alice rolls new random nonce r mod p and sends to Bob in the MV
2820 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
2821 * mod p and sends (y, gbar^k, ghat^k) to Alice.
2822 *
2823 * Alice receives the response and computes the inverse (E^k)^-1 from
2824 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
2825 * decrypts y and verifies it matches the original r. The signed
2826 * response binds this knowledge to Bob's private key and the public key
2827 * previously received in his certificate.
2828 *
2829 * crypto_alice3 - construct Alice's challenge in MV scheme
2830 *
2831 * Returns
2832 * XEVNT_OK	success
2833 * XEVNT_ID	bad or missing group key
2834 * XEVNT_PUB	bad or missing public key
2835 */
2836static int
2837crypto_alice3(
2838	struct peer *peer,	/* peer pointer */
2839	struct value *vp	/* value pointer */
2840	)
2841{
2842	const DSA *dsa;		/* MV parameters */
2843	BN_CTX	*bctx;		/* BIGNUM context */
2844	EVP_MD_CTX *ctx;	/* signature context */
2845	tstamp_t tstamp;
2846	u_int	len;
2847	const BIGNUM *p;
2848
2849	/*
2850	 * The identity parameters must have correct format and content.
2851	 */
2852	if (peer->ident_pkey == NULL)
2853		return (XEVNT_ID);
2854
2855	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2856		msyslog(LOG_NOTICE, "crypto_alice3: defective key");
2857		return (XEVNT_PUB);
2858	}
2859	DSA_get0_pqg(dsa, &p, NULL, NULL);
2860
2861	/*
2862	 * Roll new random r (0 < r < q).
2863	 */
2864	if (peer->iffval != NULL)
2865		BN_free(peer->iffval);
2866	peer->iffval = BN_new();
2867	len = BN_num_bytes(p);
2868	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod p */
2869	bctx = BN_CTX_new();
2870	BN_mod(peer->iffval, peer->iffval, p, bctx);
2871	BN_CTX_free(bctx);
2872
2873	/*
2874	 * Sign and send to Bob. The filestamp is from the local file.
2875	 */
2876	memset(vp, 0, sizeof(struct value));
2877	tstamp = crypto_time();
2878	vp->tstamp = htonl(tstamp);
2879	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2880	vp->vallen = htonl(len);
2881	vp->ptr = emalloc(len);
2882	BN_bn2bin(peer->iffval, vp->ptr);
2883	if (tstamp == 0)
2884		return (XEVNT_OK);
2885
2886	vp->sig = emalloc(sign_siglen);
2887	ctx = digest_ctx;
2888	EVP_SignInit(ctx, sign_digest);
2889	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2890	EVP_SignUpdate(ctx, vp->ptr, len);
2891	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2892		INSIST(len <= sign_siglen);
2893		vp->siglen = htonl(len);
2894	}
2895	return (XEVNT_OK);
2896}
2897
2898
2899/*
2900 * crypto_bob3 - construct Bob's response to Alice's challenge
2901 *
2902 * Returns
2903 * XEVNT_OK	success
2904 * XEVNT_ERR	protocol error
2905 */
2906static int
2907crypto_bob3(
2908	struct exten *ep,	/* extension pointer */
2909	struct value *vp	/* value pointer */
2910	)
2911{
2912	const DSA *dsa;		/* MV parameters */
2913	DSA	*sdsa;		/* DSA signature context fake */
2914	BN_CTX	*bctx;		/* BIGNUM context */
2915	EVP_MD_CTX *ctx;	/* signature context */
2916	tstamp_t tstamp;	/* NTP timestamp */
2917	BIGNUM	*r, *k, *u;
2918	u_char	*ptr;
2919	u_int	len;
2920	const BIGNUM *p, *q, *g;
2921	const BIGNUM *pub_key, *priv_key;
2922	BIGNUM *sp, *sq, *sg;
2923
2924	/*
2925	 * If the MV parameters are not valid, something awful
2926	 * happened or we are being tormented.
2927	 */
2928	if (mvkey_info == NULL) {
2929		msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
2930		return (XEVNT_ID);
2931	}
2932	dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey);
2933	DSA_get0_pqg(dsa, &p, &q, &g);
2934	DSA_get0_key(dsa, &pub_key, &priv_key);
2935
2936	/*
2937	 * Extract r from the challenge.
2938	 */
2939	len = exten_payload_size(ep);
2940	if (len == 0 || len > MAX_VALLEN)
2941		return (XEVNT_LEN);
2942	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2943		msyslog(LOG_ERR, "crypto_bob3: %s",
2944		    ERR_error_string(ERR_get_error(), NULL));
2945		return (XEVNT_ERR);
2946	}
2947
2948	/*
2949	 * Bob rolls random k (0 < k < q), making sure it is not a
2950	 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
2951	 * and ghat^k) to Alice.
2952	 */
2953	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2954	sdsa = DSA_new();
2955	sp = BN_new(); sq = BN_new(); sg = BN_new();
2956	while (1) {
2957		BN_rand(k, BN_num_bits(q), 0, 0);
2958		BN_mod(k, k, q, bctx);
2959		BN_gcd(u, k, q, bctx);
2960		if (BN_is_one(u))
2961			break;
2962	}
2963	BN_mod_exp(u, g, k, p, bctx); /* A^k r */
2964	BN_mod_mul(sp, u, r, p, bctx);
2965	BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */
2966	BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */
2967	DSA_set0_key(sdsa, BN_dup(pub_key), NULL);
2968	DSA_set0_pqg(sdsa, sp, sq, sg);
2969	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2970#ifdef DEBUG
2971	if (debug > 1)
2972		DSA_print_fp(stdout, sdsa, 0);
2973#endif
2974
2975	/*
2976	 * Encode the values in ASN.1 and sign. The filestamp is from
2977	 * the local file.
2978	 */
2979	memset(vp, 0, sizeof(struct value));
2980	tstamp = crypto_time();
2981	vp->tstamp = htonl(tstamp);
2982	vp->fstamp = htonl(mvkey_info->fstamp);
2983	len = i2d_DSAparams(sdsa, NULL);
2984	if (len == 0) {
2985		msyslog(LOG_ERR, "crypto_bob3: %s",
2986		    ERR_error_string(ERR_get_error(), NULL));
2987		DSA_free(sdsa);
2988		return (XEVNT_ERR);
2989	}
2990	vp->vallen = htonl(len);
2991	ptr = emalloc(len);
2992	vp->ptr = ptr;
2993	i2d_DSAparams(sdsa, &ptr);
2994	DSA_free(sdsa);
2995	if (tstamp == 0)
2996		return (XEVNT_OK);
2997
2998	vp->sig = emalloc(sign_siglen);
2999	ctx = digest_ctx;
3000	EVP_SignInit(ctx, sign_digest);
3001	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
3002	EVP_SignUpdate(ctx, vp->ptr, len);
3003	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3004		INSIST(len <= sign_siglen);
3005		vp->siglen = htonl(len);
3006	}
3007	return (XEVNT_OK);
3008}
3009
3010
3011/*
3012 * crypto_mv - verify Bob's response to Alice's challenge
3013 *
3014 * Returns
3015 * XEVNT_OK	success
3016 * XEVNT_ERR	protocol error
3017 * XEVNT_FSP	bad filestamp
3018 * XEVNT_ID	bad or missing group key
3019 * XEVNT_PUB	bad or missing public key
3020 */
3021int
3022crypto_mv(
3023	struct exten *ep,	/* extension pointer */
3024	struct peer *peer	/* peer structure pointer */
3025	)
3026{
3027	const DSA *dsa;		/* MV parameters */
3028	DSA	*sdsa;		/* DSA parameters */
3029	BN_CTX	*bctx;		/* BIGNUM context */
3030	BIGNUM	*k, *u, *v;
3031	u_int	len;
3032	const u_char *ptr;
3033	int	temp;
3034	const BIGNUM *p;
3035	const BIGNUM *pub_key, *priv_key;
3036	const BIGNUM *sp, *sq, *sg;
3037
3038	/*
3039	 * If the MV parameters are not valid or no challenge was sent,
3040	 * something awful happened or we are being tormented.
3041	 */
3042	if (peer->ident_pkey == NULL) {
3043		msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
3044		return (XEVNT_ID);
3045	}
3046	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
3047		msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
3048		    ntohl(ep->fstamp));
3049		return (XEVNT_FSP);
3050	}
3051	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
3052		msyslog(LOG_NOTICE, "crypto_mv: defective key");
3053		return (XEVNT_PUB);
3054	}
3055	DSA_get0_pqg(dsa, &p, NULL, NULL);
3056	DSA_get0_key(dsa, &pub_key, &priv_key);
3057	if (peer->iffval == NULL) {
3058		msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
3059		return (XEVNT_ID);
3060	}
3061
3062	/*
3063	 * Extract the y, gbar and ghat values from the response.
3064	 */
3065	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
3066	len = ntohl(ep->vallen);
3067	ptr = (u_char *)ep->pkt;
3068	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
3069		msyslog(LOG_ERR, "crypto_mv: %s",
3070		    ERR_error_string(ERR_get_error(), NULL));
3071		return (XEVNT_ERR);
3072	}
3073	DSA_get0_pqg(sdsa, &sp, &sq, &sg);
3074
3075	/*
3076	 * Compute (gbar^xhat ghat^xbar) mod p.
3077	 */
3078	BN_mod_exp(u, sq, pub_key, p, bctx);
3079	BN_mod_exp(v, sg, priv_key, p, bctx);
3080	BN_mod_mul(u, u, v, p, bctx);
3081	BN_mod_mul(u, u, sp, p, bctx);
3082
3083	/*
3084	 * The result should match r.
3085	 */
3086	temp = BN_cmp(u, peer->iffval);
3087	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
3088	BN_free(peer->iffval);
3089	peer->iffval = NULL;
3090	DSA_free(sdsa);
3091	if (temp == 0)
3092		return (XEVNT_OK);
3093
3094	msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
3095	return (XEVNT_ID);
3096}
3097
3098
3099/*
3100 ***********************************************************************
3101 *								       *
3102 * The following routines are used to manipulate certificates          *
3103 *								       *
3104 ***********************************************************************
3105 */
3106/*
3107 * cert_sign - sign x509 certificate equest and update value structure.
3108 *
3109 * The certificate request includes a copy of the host certificate,
3110 * which includes the version number, subject name and public key of the
3111 * host. The resulting certificate includes these values plus the
3112 * serial number, issuer name and valid interval of the server. The
3113 * valid interval extends from the current time to the same time one
3114 * year hence. This may extend the life of the signed certificate beyond
3115 * that of the signer certificate.
3116 *
3117 * It is convenient to use the NTP seconds of the current time as the
3118 * serial number. In the value structure the timestamp is the current
3119 * time and the filestamp is taken from the extension field. Note this
3120 * routine is called only when the client clock is synchronized to a
3121 * proventic source, so timestamp comparisons are valid.
3122 *
3123 * The host certificate is valid from the time it was generated for a
3124 * period of one year. A signed certificate is valid from the time of
3125 * signature for a period of one year, but only the host certificate (or
3126 * sign certificate if used) is actually used to encrypt and decrypt
3127 * signatures. The signature trail is built from the client via the
3128 * intermediate servers to the trusted server. Each signature on the
3129 * trail must be valid at the time of signature, but it could happen
3130 * that a signer certificate expire before the signed certificate, which
3131 * remains valid until its expiration.
3132 *
3133 * Returns
3134 * XEVNT_OK	success
3135 * XEVNT_CRT	bad or missing certificate
3136 * XEVNT_PER	host certificate expired
3137 * XEVNT_PUB	bad or missing public key
3138 * XEVNT_VFY	certificate not verified
3139 */
3140static int
3141cert_sign(
3142	struct exten *ep,	/* extension field pointer */
3143	struct value *vp	/* value pointer */
3144	)
3145{
3146	X509	*req;		/* X509 certificate request */
3147	X509	*cert;		/* X509 certificate */
3148	X509_EXTENSION *ext;	/* certificate extension */
3149	ASN1_INTEGER *serial;	/* serial number */
3150	X509_NAME *subj;	/* distinguished (common) name */
3151	EVP_PKEY *pkey;		/* public key */
3152	EVP_MD_CTX *ctx;	/* message digest context */
3153	tstamp_t tstamp;	/* NTP timestamp */
3154	struct calendar tscal;
3155	u_int	len;
3156	const u_char *cptr;
3157	u_char *ptr;
3158	int	i, temp;
3159
3160	/*
3161	 * Decode ASN.1 objects and construct certificate structure.
3162	 * Make sure the system clock is synchronized to a proventic
3163	 * source.
3164	 */
3165	tstamp = crypto_time();
3166	if (tstamp == 0)
3167		return (XEVNT_TSP);
3168
3169	len = exten_payload_size(ep);
3170	if (len == 0 || len > MAX_VALLEN)
3171		return (XEVNT_LEN);
3172	cptr = (void *)ep->pkt;
3173	if ((req = d2i_X509(NULL, &cptr, len)) == NULL) {
3174		msyslog(LOG_ERR, "cert_sign: %s",
3175		    ERR_error_string(ERR_get_error(), NULL));
3176		return (XEVNT_CRT);
3177	}
3178	/*
3179	 * Extract public key and check for errors.
3180	 */
3181	if ((pkey = X509_get_pubkey(req)) == NULL) {
3182		msyslog(LOG_ERR, "cert_sign: %s",
3183		    ERR_error_string(ERR_get_error(), NULL));
3184		X509_free(req);
3185		return (XEVNT_PUB);
3186	}
3187
3188	/*
3189	 * Generate X509 certificate signed by this server. If this is a
3190	 * trusted host, the issuer name is the group name; otherwise,
3191	 * it is the host name. Also copy any extensions that might be
3192	 * present.
3193	 */
3194	cert = X509_new();
3195	X509_set_version(cert, X509_get_version(req));
3196	serial = ASN1_INTEGER_new();
3197	ASN1_INTEGER_set(serial, tstamp);
3198	X509_set_serialNumber(cert, serial);
3199	X509_gmtime_adj(X509_getm_notBefore(cert), 0L);
3200	X509_gmtime_adj(X509_getm_notAfter(cert), YEAR);
3201	subj = X509_get_issuer_name(cert);
3202	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3203	    hostval.ptr, strlen((const char *)hostval.ptr), -1, 0);
3204	subj = X509_get_subject_name(req);
3205	X509_set_subject_name(cert, subj);
3206	X509_set_pubkey(cert, pkey);
3207	temp = X509_get_ext_count(req);
3208	for (i = 0; i < temp; i++) {
3209		ext = X509_get_ext(req, i);
3210		INSIST(X509_add_ext(cert, ext, -1));
3211	}
3212	X509_free(req);
3213
3214	/*
3215	 * Sign and verify the client certificate, but only if the host
3216	 * certificate has not expired.
3217	 */
3218	(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
3219	if ((calcomp(&tscal, &(cert_host->first)) < 0)
3220	|| (calcomp(&tscal, &(cert_host->last)) > 0)) {
3221		X509_free(cert);
3222		return (XEVNT_PER);
3223	}
3224	X509_sign(cert, sign_pkey, sign_digest);
3225	if (X509_verify(cert, sign_pkey) <= 0) {
3226		msyslog(LOG_ERR, "cert_sign: %s",
3227		    ERR_error_string(ERR_get_error(), NULL));
3228		X509_free(cert);
3229		return (XEVNT_VFY);
3230	}
3231	len = i2d_X509(cert, NULL);
3232
3233	/*
3234	 * Build and sign the value structure. We have to sign it here,
3235	 * since the response has to be returned right away. This is a
3236	 * clogging hazard.
3237	 */
3238	memset(vp, 0, sizeof(struct value));
3239	vp->tstamp = htonl(tstamp);
3240	vp->fstamp = ep->fstamp;
3241	vp->vallen = htonl(len);
3242	vp->ptr = emalloc(len);
3243	ptr = vp->ptr;
3244	i2d_X509(cert, (unsigned char **)(intptr_t)&ptr);
3245	vp->siglen = 0;
3246	if (tstamp != 0) {
3247		vp->sig = emalloc(sign_siglen);
3248		ctx = digest_ctx;
3249		EVP_SignInit(ctx, sign_digest);
3250		EVP_SignUpdate(ctx, (u_char *)vp, 12);
3251		EVP_SignUpdate(ctx, vp->ptr, len);
3252		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3253			INSIST(len <= sign_siglen);
3254			vp->siglen = htonl(len);
3255		}
3256	}
3257#ifdef DEBUG
3258	if (debug > 1)
3259		X509_print_fp(stdout, cert);
3260#endif
3261	X509_free(cert);
3262	return (XEVNT_OK);
3263}
3264
3265
3266/*
3267 * cert_install - install certificate in certificate cache
3268 *
3269 * This routine encodes an extension field into a certificate info/value
3270 * structure. It searches the certificate list for duplicates and
3271 * expunges whichever is older. Finally, it inserts this certificate
3272 * first on the list.
3273 *
3274 * Returns certificate info pointer if valid, NULL if not.
3275 */
3276struct cert_info *
3277cert_install(
3278	struct exten *ep,	/* cert info/value */
3279	struct peer *peer	/* peer structure */
3280	)
3281{
3282	struct cert_info *cp, *xp, **zp;
3283
3284	/*
3285	 * Parse and validate the signed certificate. If valid,
3286	 * construct the info/value structure; otherwise, scamper home
3287	 * empty handed.
3288	 */
3289	if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
3290	    (tstamp_t)ntohl(ep->fstamp))) == NULL)
3291		return (NULL);
3292
3293	/*
3294	 * Scan certificate list looking for another certificate with
3295	 * the same subject and issuer. If another is found with the
3296	 * same or older filestamp, unlink it and return the goodies to
3297	 * the heap. If another is found with a later filestamp, discard
3298	 * the new one and leave the building with the old one.
3299	 *
3300	 * Make a note to study this issue again. An earlier certificate
3301	 * with a long lifetime might be overtaken by a later
3302	 * certificate with a short lifetime, thus invalidating the
3303	 * earlier signature. However, we gotta find a way to leak old
3304	 * stuff from the cache, so we do it anyway.
3305	 */
3306	zp = &cinfo;
3307	for (xp = cinfo; xp != NULL; xp = xp->link) {
3308		if (strcmp(cp->subject, xp->subject) == 0 &&
3309		    strcmp(cp->issuer, xp->issuer) == 0) {
3310			if (ntohl(cp->cert.fstamp) <=
3311			    ntohl(xp->cert.fstamp)) {
3312				cert_free(cp);
3313				cp = xp;
3314			} else {
3315				*zp = xp->link;
3316				cert_free(xp);
3317				xp = NULL;
3318			}
3319			break;
3320		}
3321		zp = &xp->link;
3322	}
3323	if (xp == NULL) {
3324		cp->link = cinfo;
3325		cinfo = cp;
3326	}
3327	cp->flags |= CERT_VALID;
3328	crypto_update();
3329	return (cp);
3330}
3331
3332
3333/*
3334 * cert_hike - verify the signature using the issuer public key
3335 *
3336 * Returns
3337 * XEVNT_OK	success
3338 * XEVNT_CRT	bad or missing certificate
3339 * XEVNT_PER	host certificate expired
3340 * XEVNT_VFY	certificate not verified
3341 */
3342int
3343cert_hike(
3344	struct peer *peer,	/* peer structure pointer */
3345	struct cert_info *yp	/* issuer certificate */
3346	)
3347{
3348	struct cert_info *xp;	/* subject certificate */
3349	X509	*cert;		/* X509 certificate */
3350	const u_char *ptr;
3351
3352	/*
3353	 * Save the issuer on the new certificate, but remember the old
3354	 * one.
3355	 */
3356	if (peer->issuer != NULL)
3357		free(peer->issuer);
3358	peer->issuer = estrdup(yp->issuer);
3359	xp = peer->xinfo;
3360	peer->xinfo = yp;
3361
3362	/*
3363	 * If subject Y matches issuer Y, then the certificate trail is
3364	 * complete. If Y is not trusted, the server certificate has yet
3365	 * been signed, so keep trying. Otherwise, save the group key
3366	 * and light the valid bit. If the host certificate is trusted,
3367	 * do not execute a sign exchange. If no identity scheme is in
3368	 * use, light the identity and proventic bits.
3369	 */
3370	if (strcmp(yp->subject, yp->issuer) == 0) {
3371		if (!(yp->flags & CERT_TRUST))
3372			return (XEVNT_OK);
3373
3374		/*
3375		 * If the server has an an identity scheme, fetch the
3376		 * identity credentials. If not, the identity is
3377		 * verified only by the trusted certificate. The next
3378		 * signature will set the server proventic.
3379		 */
3380		peer->crypto |= CRYPTO_FLAG_CERT;
3381		peer->grpkey = yp->grpkey;
3382		if (peer->ident == NULL || !(peer->crypto &
3383		    CRYPTO_FLAG_MASK))
3384			peer->crypto |= CRYPTO_FLAG_VRFY;
3385	}
3386
3387	/*
3388	 * If X exists, verify signature X using public key Y.
3389	 */
3390	if (xp == NULL)
3391		return (XEVNT_OK);
3392
3393	ptr = (u_char *)xp->cert.ptr;
3394	cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
3395	if (cert == NULL) {
3396		xp->flags |= CERT_ERROR;
3397		return (XEVNT_CRT);
3398	}
3399	if (X509_verify(cert, yp->pkey) <= 0) {
3400		X509_free(cert);
3401		xp->flags |= CERT_ERROR;
3402		return (XEVNT_VFY);
3403	}
3404	X509_free(cert);
3405
3406	/*
3407	 * Signature X is valid only if it begins during the
3408	 * lifetime of Y.
3409	 */
3410	if ((calcomp(&(xp->first), &(yp->first)) < 0)
3411	|| (calcomp(&(xp->first), &(yp->last)) > 0)) {
3412		xp->flags |= CERT_ERROR;
3413		return (XEVNT_PER);
3414	}
3415	xp->flags |= CERT_SIGN;
3416	return (XEVNT_OK);
3417}
3418
3419
3420/*
3421 * cert_parse - parse x509 certificate and create info/value structures.
3422 *
3423 * The server certificate includes the version number, issuer name,
3424 * subject name, public key and valid date interval. If the issuer name
3425 * is the same as the subject name, the certificate is self signed and
3426 * valid only if the server is configured as trustable. If the names are
3427 * different, another issuer has signed the server certificate and
3428 * vouched for it. In this case the server certificate is valid if
3429 * verified by the issuer public key.
3430 *
3431 * Returns certificate info/value pointer if valid, NULL if not.
3432 */
3433struct cert_info *		/* certificate information structure */
3434cert_parse(
3435	const u_char *asn1cert,	/* X509 certificate */
3436	long	len,		/* certificate length */
3437	tstamp_t fstamp		/* filestamp */
3438	)
3439{
3440	X509	*cert;		/* X509 certificate */
3441	struct cert_info *ret;	/* certificate info/value */
3442	BIO	*bp;
3443	char	pathbuf[MAXFILENAME];
3444	const u_char *ptr;
3445	char	*pch;
3446	int	cnt, i;
3447	struct calendar fscal;
3448
3449	/*
3450	 * Decode ASN.1 objects and construct certificate structure.
3451	 */
3452	ptr = asn1cert;
3453	if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
3454		msyslog(LOG_ERR, "cert_parse: %s",
3455		    ERR_error_string(ERR_get_error(), NULL));
3456		return (NULL);
3457	}
3458#ifdef DEBUG
3459	if (debug > 1)
3460		X509_print_fp(stdout, cert);
3461#endif
3462
3463	/*
3464	 * Extract version, subject name and public key.
3465	 */
3466	ret = emalloc_zero(sizeof(*ret));
3467	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3468		msyslog(LOG_ERR, "cert_parse: %s",
3469		    ERR_error_string(ERR_get_error(), NULL));
3470		cert_free(ret);
3471		X509_free(cert);
3472		return (NULL);
3473	}
3474	ret->version = X509_get_version(cert);
3475	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3476	    sizeof(pathbuf));
3477	pch = strstr(pathbuf, "CN=");
3478	if (NULL == pch) {
3479		msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
3480		    pathbuf);
3481		cert_free(ret);
3482		X509_free(cert);
3483		return (NULL);
3484	}
3485	ret->subject = estrdup(pch + 3);
3486
3487	/*
3488	 * Extract remaining objects. Note that the NTP serial number is
3489	 * the NTP seconds at the time of signing, but this might not be
3490	 * the case for other authority. We don't bother to check the
3491	 * objects at this time, since the real crunch can happen only
3492	 * when the time is valid but not yet certificated.
3493	 */
3494	ret->nid = X509_get_signature_nid(cert);
3495	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3496	ret->serial =
3497	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3498	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3499	    sizeof(pathbuf));
3500	if ((pch = strstr(pathbuf, "CN=")) == NULL) {
3501		msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
3502		    pathbuf);
3503		cert_free(ret);
3504		X509_free(cert);
3505		return (NULL);
3506	}
3507	ret->issuer = estrdup(pch + 3);
3508	asn_to_calendar(X509_get0_notBefore(cert), &(ret->first));
3509	asn_to_calendar(X509_get0_notAfter(cert), &(ret->last));
3510
3511	/*
3512	 * Extract extension fields. These are ad hoc ripoffs of
3513	 * currently assigned functions and will certainly be changed
3514	 * before prime time.
3515	 */
3516	cnt = X509_get_ext_count(cert);
3517	for (i = 0; i < cnt; i++) {
3518		X509_EXTENSION *ext;
3519		ASN1_OBJECT *obj;
3520		int nid;
3521		ASN1_OCTET_STRING *data;
3522
3523		ext = X509_get_ext(cert, i);
3524		obj = X509_EXTENSION_get_object(ext);
3525		nid = OBJ_obj2nid(obj);
3526
3527		switch (nid) {
3528
3529		/*
3530		 * If a key_usage field is present, we decode whether
3531		 * this is a trusted or private certificate. This is
3532		 * dorky; all we want is to compare NIDs, but OpenSSL
3533		 * insists on BIO text strings.
3534		 */
3535		case NID_ext_key_usage:
3536			bp = BIO_new(BIO_s_mem());
3537			X509V3_EXT_print(bp, ext, 0, 0);
3538			BIO_gets(bp, pathbuf, sizeof(pathbuf));
3539			BIO_free(bp);
3540			if (strcmp(pathbuf, "Trust Root") == 0)
3541				ret->flags |= CERT_TRUST;
3542			else if (strcmp(pathbuf, "Private") == 0)
3543				ret->flags |= CERT_PRIV;
3544			DPRINTF(1, ("cert_parse: %s: %s\n",
3545				    OBJ_nid2ln(nid), pathbuf));
3546			break;
3547
3548		/*
3549		 * If a NID_subject_key_identifier field is present, it
3550		 * contains the GQ public key.
3551		 */
3552		case NID_subject_key_identifier:
3553			data = X509_EXTENSION_get_data(ext);
3554			ret->grpkey = BN_bin2bn(&data->data[2],
3555			    data->length - 2, NULL);
3556			/* fall through */
3557		default:
3558			DPRINTF(1, ("cert_parse: %s\n",
3559				    OBJ_nid2ln(nid)));
3560			break;
3561		}
3562	}
3563	if (strcmp(ret->subject, ret->issuer) == 0) {
3564
3565		/*
3566		 * If certificate is self signed, verify signature.
3567		 */
3568		if (X509_verify(cert, ret->pkey) <= 0) {
3569			msyslog(LOG_NOTICE,
3570			    "cert_parse: signature not verified %s",
3571			    ret->subject);
3572			cert_free(ret);
3573			X509_free(cert);
3574			return (NULL);
3575		}
3576	} else {
3577
3578		/*
3579		 * Check for a certificate loop.
3580		 */
3581		if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) {
3582			msyslog(LOG_NOTICE,
3583			    "cert_parse: certificate trail loop %s",
3584			    ret->subject);
3585			cert_free(ret);
3586			X509_free(cert);
3587			return (NULL);
3588		}
3589	}
3590
3591	/*
3592	 * Verify certificate valid times. Note that certificates cannot
3593	 * be retroactive.
3594	 */
3595	(void)ntpcal_ntp_to_date(&fscal, fstamp, NULL);
3596	if ((calcomp(&(ret->first), &(ret->last)) > 0)
3597	|| (calcomp(&(ret->first), &fscal) < 0)) {
3598		msyslog(LOG_NOTICE,
3599		    "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u",
3600		    ret->subject,
3601		    ret->first.year, ret->first.month, ret->first.monthday,
3602		    ret->first.hour, ret->first.minute, ret->first.second,
3603		    ret->last.year, ret->last.month, ret->last.monthday,
3604		    ret->last.hour, ret->last.minute, ret->last.second,
3605		    fscal.year, fscal.month, fscal.monthday,
3606		    fscal.hour, fscal.minute, fscal.second);
3607		cert_free(ret);
3608		X509_free(cert);
3609		return (NULL);
3610	}
3611
3612	/*
3613	 * Build the value structure to sign and send later.
3614	 */
3615	ret->cert.fstamp = htonl(fstamp);
3616	ret->cert.vallen = htonl(len);
3617	ret->cert.ptr = emalloc(len);
3618	memcpy(ret->cert.ptr, asn1cert, len);
3619	X509_free(cert);
3620	return (ret);
3621}
3622
3623
3624/*
3625 * cert_free - free certificate information structure
3626 */
3627void
3628cert_free(
3629	struct cert_info *cinf	/* certificate info/value structure */
3630	)
3631{
3632	if (cinf->pkey != NULL)
3633		EVP_PKEY_free(cinf->pkey);
3634	if (cinf->subject != NULL)
3635		free(cinf->subject);
3636	if (cinf->issuer != NULL)
3637		free(cinf->issuer);
3638	if (cinf->grpkey != NULL)
3639		BN_free(cinf->grpkey);
3640	value_free(&cinf->cert);
3641	free(cinf);
3642}
3643
3644
3645/*
3646 * crypto_key - load cryptographic parameters and keys
3647 *
3648 * This routine searches the key cache for matching name in the form
3649 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
3650 * and <name> is the host/group name. If not found, it tries to load a
3651 * PEM-encoded file of the same name and extracts the filestamp from
3652 * the first line of the file name. It returns the key pointer if valid,
3653 * NULL if not.
3654 */
3655static struct pkey_info *
3656crypto_key(
3657	char	*cp,		/* file name */
3658	char	*passwd1,	/* password */
3659	sockaddr_u *addr 	/* IP address */
3660	)
3661{
3662	FILE	*str;		/* file handle */
3663	struct pkey_info *pkp;	/* generic key */
3664	EVP_PKEY *pkey = NULL;	/* public/private key */
3665	tstamp_t fstamp;
3666	char	filename[MAXFILENAME]; /* name of key file */
3667	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3668	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3669	char	*ptr;
3670
3671	/*
3672	 * Search the key cache for matching key and name.
3673	 */
3674	for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
3675		if (strcmp(cp, pkp->name) == 0)
3676			return (pkp);
3677	}
3678
3679	/*
3680	 * Open the key file. If the first character of the file name is
3681	 * not '/', prepend the keys directory string. If something goes
3682	 * wrong, abandon ship.
3683	 */
3684	if (*cp == '/')
3685		strlcpy(filename, cp, sizeof(filename));
3686	else
3687		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3688		    cp);
3689	str = fopen(filename, "r");
3690	if (str == NULL)
3691		return (NULL);
3692
3693	/*
3694	 * Read the filestamp, which is contained in the first line.
3695	 */
3696	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3697		msyslog(LOG_ERR, "crypto_key: empty file %s",
3698		    filename);
3699		fclose(str);
3700		return (NULL);
3701	}
3702	if ((ptr = strrchr(ptr, '.')) == NULL) {
3703		msyslog(LOG_ERR, "crypto_key: no filestamp %s",
3704		    filename);
3705		fclose(str);
3706		return (NULL);
3707	}
3708	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3709		msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
3710		    filename);
3711		fclose(str);
3712		return (NULL);
3713	}
3714
3715	/*
3716	 * Read and decrypt PEM-encoded private key. If it fails to
3717	 * decrypt, game over.
3718	 */
3719	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
3720	fclose(str);
3721	if (pkey == NULL) {
3722		msyslog(LOG_ERR, "crypto_key: %s",
3723		    ERR_error_string(ERR_get_error(), NULL));
3724		exit (-1);
3725	}
3726
3727	/*
3728	 * Make a new entry in the key cache.
3729	 */
3730	pkp = emalloc(sizeof(struct pkey_info));
3731	pkp->link = pkinfo;
3732	pkinfo = pkp;
3733	pkp->pkey = pkey;
3734	pkp->name = estrdup(cp);
3735	pkp->fstamp = fstamp;
3736
3737	/*
3738	 * Leave tracks in the cryptostats.
3739	 */
3740	if ((ptr = strrchr(linkname, '\n')) != NULL)
3741		*ptr = '\0';
3742	snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2],
3743	    EVP_PKEY_size(pkey) * 8);
3744	record_crypto_stats(addr, statstr);
3745
3746	DPRINTF(1, ("crypto_key: %s\n", statstr));
3747#ifdef DEBUG
3748	if (debug > 1) {
3749		if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA)
3750			DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0);
3751		else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA)
3752			RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0);
3753	}
3754#endif
3755	return (pkp);
3756}
3757
3758
3759/*
3760 ***********************************************************************
3761 *								       *
3762 * The following routines are used only at initialization time         *
3763 *								       *
3764 ***********************************************************************
3765 */
3766/*
3767 * crypto_cert - load certificate from file
3768 *
3769 * This routine loads an X.509 RSA or DSA certificate from a file and
3770 * constructs a info/cert value structure for this machine. The
3771 * structure includes a filestamp extracted from the file name. Later
3772 * the certificate can be sent to another machine on request.
3773 *
3774 * Returns certificate info/value pointer if valid, NULL if not.
3775 */
3776static struct cert_info *	/* certificate information */
3777crypto_cert(
3778	char	*cp		/* file name */
3779	)
3780{
3781	struct cert_info *ret; /* certificate information */
3782	FILE	*str;		/* file handle */
3783	char	filename[MAXFILENAME]; /* name of certificate file */
3784	char	linkname[MAXFILENAME]; /* filestamp buffer */
3785	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3786	tstamp_t fstamp;	/* filestamp */
3787	long	len;
3788	char	*ptr;
3789	char	*name, *header;
3790	u_char	*data;
3791
3792	/*
3793	 * Open the certificate file. If the first character of the file
3794	 * name is not '/', prepend the keys directory string. If
3795	 * something goes wrong, abandon ship.
3796	 */
3797	if (*cp == '/')
3798		strlcpy(filename, cp, sizeof(filename));
3799	else
3800		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3801		    cp);
3802	str = fopen(filename, "r");
3803	if (str == NULL)
3804		return (NULL);
3805
3806	/*
3807	 * Read the filestamp, which is contained in the first line.
3808	 */
3809	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3810		msyslog(LOG_ERR, "crypto_cert: empty file %s",
3811		    filename);
3812		fclose(str);
3813		return (NULL);
3814	}
3815	if ((ptr = strrchr(ptr, '.')) == NULL) {
3816		msyslog(LOG_ERR, "crypto_cert: no filestamp %s",
3817		    filename);
3818		fclose(str);
3819		return (NULL);
3820	}
3821	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3822		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s",
3823		    filename);
3824		fclose(str);
3825		return (NULL);
3826	}
3827
3828	/*
3829	 * Read PEM-encoded certificate and install.
3830	 */
3831	if (!PEM_read(str, &name, &header, &data, &len)) {
3832		msyslog(LOG_ERR, "crypto_cert: %s",
3833		    ERR_error_string(ERR_get_error(), NULL));
3834		fclose(str);
3835		return (NULL);
3836	}
3837	fclose(str);
3838	free(header);
3839	if (strcmp(name, "CERTIFICATE") != 0) {
3840		msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
3841		    name);
3842		free(name);
3843		free(data);
3844		return (NULL);
3845	}
3846	free(name);
3847
3848	/*
3849	 * Parse certificate and generate info/value structure. The
3850	 * pointer and copy nonsense is due something broken in Solaris.
3851	 */
3852	ret = cert_parse(data, len, fstamp);
3853	free(data);
3854	if (ret == NULL)
3855		return (NULL);
3856
3857	if ((ptr = strrchr(linkname, '\n')) != NULL)
3858		*ptr = '\0';
3859	snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu",
3860	    &linkname[2], ret->flags, len);
3861	record_crypto_stats(NULL, statstr);
3862	DPRINTF(1, ("crypto_cert: %s\n", statstr));
3863	return (ret);
3864}
3865
3866
3867/*
3868 * crypto_setup - load keys, certificate and identity parameters
3869 *
3870 * This routine loads the public/private host key and certificate. If
3871 * available, it loads the public/private sign key, which defaults to
3872 * the host key. The host key must be RSA, but the sign key can be
3873 * either RSA or DSA. If a trusted certificate, it loads the identity
3874 * parameters. In either case, the public key on the certificate must
3875 * agree with the sign key.
3876 *
3877 * Required but missing files and inconsistent data and errors are
3878 * fatal. Allowing configuration to continue would be hazardous and
3879 * require really messy error checks.
3880 */
3881void
3882crypto_setup(void)
3883{
3884	struct pkey_info *pinfo; /* private/public key */
3885	char	filename[MAXFILENAME]; /* file name buffer */
3886	char	hostname[MAXFILENAME]; /* host name buffer */
3887	char	*randfile;
3888	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3889	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3890	u_int	len;
3891	int	bytes;
3892	u_char	*ptr;
3893
3894	/*
3895	 * Check for correct OpenSSL version and avoid initialization in
3896	 * the case of multiple crypto commands.
3897	 */
3898	if (crypto_flags & CRYPTO_FLAG_ENAB) {
3899		msyslog(LOG_NOTICE,
3900		    "crypto_setup: spurious crypto command");
3901		return;
3902	}
3903
3904	/*
3905	 * Load required random seed file and seed the random number
3906	 * generator. Be default, it is found as .rnd in the user home
3907	 * directory. The root home directory may be / or /root,
3908	 * depending on the system. Wiggle the contents a bit and write
3909	 * it back so the sequence does not repeat when we next restart.
3910	 */
3911	if (!RAND_status()) {
3912		if (rand_file == NULL) {
3913			RAND_file_name(filename, sizeof(filename));
3914			randfile = filename;
3915		} else if (*rand_file != '/') {
3916			snprintf(filename, sizeof(filename), "%s/%s",
3917			    keysdir, rand_file);
3918			randfile = filename;
3919		} else
3920			randfile = rand_file;
3921
3922		if ((bytes = RAND_load_file(randfile, -1)) == 0) {
3923			msyslog(LOG_ERR,
3924			    "crypto_setup: random seed file %s missing",
3925			    randfile);
3926			exit (-1);
3927		}
3928		arc4random_buf(&seed, sizeof(l_fp));
3929		RAND_seed(&seed, sizeof(l_fp));
3930		RAND_write_file(randfile);
3931		DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3932			    OpenSSL_version_num(), randfile, bytes));
3933
3934	}
3935
3936	/*
3937	 * Initialize structures.
3938	 */
3939	gethostname(hostname, sizeof(hostname));
3940	if (host_filename != NULL)
3941		strlcpy(hostname, host_filename, sizeof(hostname));
3942	if (passwd == NULL)
3943		passwd = estrdup(hostname);
3944	memset(&hostval, 0, sizeof(hostval));
3945	memset(&pubkey, 0, sizeof(pubkey));
3946	memset(&tai_leap, 0, sizeof(tai_leap));
3947
3948	/*
3949	 * Load required host key from file "ntpkey_host_<hostname>". If
3950	 * no host key file is not found or has invalid password, life
3951	 * as we know it ends. The host key also becomes the default
3952	 * sign key.
3953	 */
3954	snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
3955	pinfo = crypto_key(filename, passwd, NULL);
3956	if (pinfo == NULL) {
3957		msyslog(LOG_ERR,
3958		    "crypto_setup: host key file %s not found or corrupt",
3959		    filename);
3960		exit (-1);
3961	}
3962	if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) {
3963		msyslog(LOG_ERR,
3964		    "crypto_setup: host key is not RSA key type");
3965		exit (-1);
3966	}
3967	host_pkey = pinfo->pkey;
3968	sign_pkey = host_pkey;
3969	hostval.fstamp = htonl(pinfo->fstamp);
3970
3971	/*
3972	 * Construct public key extension field for agreement scheme.
3973	 */
3974	len = i2d_PublicKey(host_pkey, NULL);
3975	ptr = emalloc(len);
3976	pubkey.ptr = ptr;
3977	i2d_PublicKey(host_pkey, &ptr);
3978	pubkey.fstamp = hostval.fstamp;
3979	pubkey.vallen = htonl(len);
3980
3981	/*
3982	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3983	 * available, it becomes the sign key.
3984	 */
3985	snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname);
3986	pinfo = crypto_key(filename, passwd, NULL);
3987	if (pinfo != NULL)
3988		sign_pkey = pinfo->pkey;
3989
3990	/*
3991	 * Load required certificate from file "ntpkey_cert_<hostname>".
3992	 */
3993	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
3994	cinfo = crypto_cert(filename);
3995	if (cinfo == NULL) {
3996		msyslog(LOG_ERR,
3997		    "crypto_setup: certificate file %s not found or corrupt",
3998		    filename);
3999		exit (-1);
4000	}
4001	cert_host = cinfo;
4002	sign_digest = cinfo->digest;
4003	sign_siglen = EVP_PKEY_size(sign_pkey);
4004	if (cinfo->flags & CERT_PRIV)
4005		crypto_flags |= CRYPTO_FLAG_PRIV;
4006
4007	/*
4008	 * The certificate must be self-signed.
4009	 */
4010	if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
4011		msyslog(LOG_ERR,
4012		    "crypto_setup: certificate %s is not self-signed",
4013		    filename);
4014		exit (-1);
4015	}
4016	hostval.ptr = estrdup(cinfo->subject);
4017	hostval.vallen = htonl(strlen(cinfo->subject));
4018	sys_hostname = hostval.ptr;
4019	ptr = (u_char *)strchr(sys_hostname, '@');
4020	if (ptr != NULL)
4021		sys_groupname = estrdup((char *)++ptr);
4022	if (ident_filename != NULL)
4023		strlcpy(hostname, ident_filename, sizeof(hostname));
4024
4025	/*
4026	 * Load optional IFF parameters from file
4027	 * "ntpkey_iffkey_<hostname>".
4028	 */
4029	snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
4030	    hostname);
4031	iffkey_info = crypto_key(filename, passwd, NULL);
4032	if (iffkey_info != NULL)
4033		crypto_flags |= CRYPTO_FLAG_IFF;
4034
4035	/*
4036	 * Load optional GQ parameters from file
4037	 * "ntpkey_gqkey_<hostname>".
4038	 */
4039	snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
4040	    hostname);
4041	gqkey_info = crypto_key(filename, passwd, NULL);
4042	if (gqkey_info != NULL)
4043		crypto_flags |= CRYPTO_FLAG_GQ;
4044
4045	/*
4046	 * Load optional MV parameters from file
4047	 * "ntpkey_mvkey_<hostname>".
4048	 */
4049	snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s",
4050	    hostname);
4051	mvkey_info = crypto_key(filename, passwd, NULL);
4052	if (mvkey_info != NULL)
4053		crypto_flags |= CRYPTO_FLAG_MV;
4054
4055	/*
4056	 * We met the enemy and he is us. Now strike up the dance.
4057	 */
4058	crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
4059	snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s",
4060	    crypto_flags, hostname, OBJ_nid2ln(cinfo->nid));
4061	record_crypto_stats(NULL, statstr);
4062	DPRINTF(1, ("crypto_setup: %s\n", statstr));
4063}
4064
4065
4066/*
4067 * crypto_config - configure data from the crypto command.
4068 */
4069void
4070crypto_config(
4071	int	item,		/* configuration item */
4072	char	*cp		/* item name */
4073	)
4074{
4075	int	nid;
4076
4077	DPRINTF(1, ("crypto_config: item %d %s\n", item, cp));
4078
4079	switch (item) {
4080
4081	/*
4082	 * Set host name (host).
4083	 */
4084	case CRYPTO_CONF_PRIV:
4085		if (NULL != host_filename)
4086			free(host_filename);
4087		host_filename = estrdup(cp);
4088		break;
4089
4090	/*
4091	 * Set group name (ident).
4092	 */
4093	case CRYPTO_CONF_IDENT:
4094		if (NULL != ident_filename)
4095			free(ident_filename);
4096		ident_filename = estrdup(cp);
4097		break;
4098
4099	/*
4100	 * Set private key password (pw).
4101	 */
4102	case CRYPTO_CONF_PW:
4103		if (NULL != passwd)
4104			free(passwd);
4105		passwd = estrdup(cp);
4106		break;
4107
4108	/*
4109	 * Set random seed file name (randfile).
4110	 */
4111	case CRYPTO_CONF_RAND:
4112		if (NULL != rand_file)
4113			free(rand_file);
4114		rand_file = estrdup(cp);
4115		break;
4116
4117	/*
4118	 * Set message digest NID.
4119	 */
4120	case CRYPTO_CONF_NID:
4121		nid = OBJ_sn2nid(cp);
4122		if (nid == 0)
4123			msyslog(LOG_ERR,
4124			    "crypto_config: invalid digest name %s", cp);
4125		else
4126			crypto_nid = nid;
4127		break;
4128	}
4129}
4130
4131/*
4132 * Get the  payload size (internal value length) of an extension packet.
4133 * If the inner value size does not match the outer packet size (that
4134 * is, the value would end behind the frame given by the opcode/size
4135 * field) the function will effectively return UINT_MAX. If the frame is
4136 * too short to hold a variable-sized value, the return value is zero.
4137 */
4138static u_int
4139exten_payload_size(
4140	const struct exten * ep)
4141{
4142	typedef const u_char *BPTR;
4143
4144	size_t extn_size;
4145	size_t data_size;
4146	size_t head_size;
4147
4148	data_size = 0;
4149	if (NULL != ep) {
4150		head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep;
4151		extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff);
4152		if (extn_size >= head_size) {
4153			data_size = (uint32_t)ntohl(ep->vallen);
4154			if (data_size > extn_size - head_size)
4155				data_size = ~(size_t)0u;
4156		}
4157	}
4158	return (u_int)data_size;
4159}
4160# else	/* !AUTOKEY follows */
4161NONEMPTY_TRANSLATION_UNIT
4162# endif	/* !AUTOKEY */
4163