1/*
2** $Id: lgc.c $
3** Garbage Collector
4** See Copyright Notice in lua.h
5*/
6
7#define lgc_c
8#define LUA_CORE
9
10#include "lprefix.h"
11
12#include <stdio.h>
13#include <string.h>
14
15
16#include "lua.h"
17
18#include "ldebug.h"
19#include "ldo.h"
20#include "lfunc.h"
21#include "lgc.h"
22#include "lmem.h"
23#include "lobject.h"
24#include "lstate.h"
25#include "lstring.h"
26#include "ltable.h"
27#include "ltm.h"
28
29
30/*
31** Maximum number of elements to sweep in each single step.
32** (Large enough to dissipate fixed overheads but small enough
33** to allow small steps for the collector.)
34*/
35#define GCSWEEPMAX	100
36
37/*
38** Maximum number of finalizers to call in each single step.
39*/
40#define GCFINMAX	10
41
42
43/*
44** Cost of calling one finalizer.
45*/
46#define GCFINALIZECOST	50
47
48
49/*
50** The equivalent, in bytes, of one unit of "work" (visiting a slot,
51** sweeping an object, etc.)
52*/
53#define WORK2MEM	sizeof(TValue)
54
55
56/*
57** macro to adjust 'pause': 'pause' is actually used like
58** 'pause / PAUSEADJ' (value chosen by tests)
59*/
60#define PAUSEADJ		100
61
62
63/* mask with all color bits */
64#define maskcolors	(bitmask(BLACKBIT) | WHITEBITS)
65
66/* mask with all GC bits */
67#define maskgcbits      (maskcolors | AGEBITS)
68
69
70/* macro to erase all color bits then set only the current white bit */
71#define makewhite(g,x)	\
72  (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
73
74/* make an object gray (neither white nor black) */
75#define set2gray(x)	resetbits(x->marked, maskcolors)
76
77
78/* make an object black (coming from any color) */
79#define set2black(x)  \
80  (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
81
82
83#define valiswhite(x)   (iscollectable(x) && iswhite(gcvalue(x)))
84
85#define keyiswhite(n)   (keyiscollectable(n) && iswhite(gckey(n)))
86
87
88/*
89** Protected access to objects in values
90*/
91#define gcvalueN(o)     (iscollectable(o) ? gcvalue(o) : NULL)
92
93
94#define markvalue(g,o) { checkliveness(g->mainthread,o); \
95  if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
96
97#define markkey(g, n)	{ if keyiswhite(n) reallymarkobject(g,gckey(n)); }
98
99#define markobject(g,t)	{ if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
100
101/*
102** mark an object that can be NULL (either because it is really optional,
103** or it was stripped as debug info, or inside an uncompleted structure)
104*/
105#define markobjectN(g,t)	{ if (t) markobject(g,t); }
106
107static void reallymarkobject (global_State *g, GCObject *o);
108static lu_mem atomic (lua_State *L);
109static void entersweep (lua_State *L);
110
111
112/*
113** {======================================================
114** Generic functions
115** =======================================================
116*/
117
118
119/*
120** one after last element in a hash array
121*/
122#define gnodelast(h)	gnode(h, cast_sizet(sizenode(h)))
123
124
125static GCObject **getgclist (GCObject *o) {
126  switch (o->tt) {
127    case LUA_VTABLE: return &gco2t(o)->gclist;
128    case LUA_VLCL: return &gco2lcl(o)->gclist;
129    case LUA_VCCL: return &gco2ccl(o)->gclist;
130    case LUA_VTHREAD: return &gco2th(o)->gclist;
131    case LUA_VPROTO: return &gco2p(o)->gclist;
132    case LUA_VUSERDATA: {
133      Udata *u = gco2u(o);
134      lua_assert(u->nuvalue > 0);
135      return &u->gclist;
136    }
137    default: lua_assert(0); return 0;
138  }
139}
140
141
142/*
143** Link a collectable object 'o' with a known type into the list 'p'.
144** (Must be a macro to access the 'gclist' field in different types.)
145*/
146#define linkgclist(o,p)	linkgclist_(obj2gco(o), &(o)->gclist, &(p))
147
148static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
149  lua_assert(!isgray(o));  /* cannot be in a gray list */
150  *pnext = *list;
151  *list = o;
152  set2gray(o);  /* now it is */
153}
154
155
156/*
157** Link a generic collectable object 'o' into the list 'p'.
158*/
159#define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
160
161
162
163/*
164** Clear keys for empty entries in tables. If entry is empty, mark its
165** entry as dead. This allows the collection of the key, but keeps its
166** entry in the table: its removal could break a chain and could break
167** a table traversal.  Other places never manipulate dead keys, because
168** its associated empty value is enough to signal that the entry is
169** logically empty.
170*/
171static void clearkey (Node *n) {
172  lua_assert(isempty(gval(n)));
173  if (keyiscollectable(n))
174    setdeadkey(n);  /* unused key; remove it */
175}
176
177
178/*
179** tells whether a key or value can be cleared from a weak
180** table. Non-collectable objects are never removed from weak
181** tables. Strings behave as 'values', so are never removed too. for
182** other objects: if really collected, cannot keep them; for objects
183** being finalized, keep them in keys, but not in values
184*/
185static int iscleared (global_State *g, const GCObject *o) {
186  if (o == NULL) return 0;  /* non-collectable value */
187  else if (novariant(o->tt) == LUA_TSTRING) {
188    markobject(g, o);  /* strings are 'values', so are never weak */
189    return 0;
190  }
191  else return iswhite(o);
192}
193
194
195/*
196** Barrier that moves collector forward, that is, marks the white object
197** 'v' being pointed by the black object 'o'.  In the generational
198** mode, 'v' must also become old, if 'o' is old; however, it cannot
199** be changed directly to OLD, because it may still point to non-old
200** objects. So, it is marked as OLD0. In the next cycle it will become
201** OLD1, and in the next it will finally become OLD (regular old). By
202** then, any object it points to will also be old.  If called in the
203** incremental sweep phase, it clears the black object to white (sweep
204** it) to avoid other barrier calls for this same object. (That cannot
205** be done is generational mode, as its sweep does not distinguish
206** whites from deads.)
207*/
208void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
209  global_State *g = G(L);
210  lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
211  if (keepinvariant(g)) {  /* must keep invariant? */
212    reallymarkobject(g, v);  /* restore invariant */
213    if (isold(o)) {
214      lua_assert(!isold(v));  /* white object could not be old */
215      setage(v, G_OLD0);  /* restore generational invariant */
216    }
217  }
218  else {  /* sweep phase */
219    lua_assert(issweepphase(g));
220    if (g->gckind == KGC_INC)  /* incremental mode? */
221      makewhite(g, o);  /* mark 'o' as white to avoid other barriers */
222  }
223}
224
225
226/*
227** barrier that moves collector backward, that is, mark the black object
228** pointing to a white object as gray again.
229*/
230void luaC_barrierback_ (lua_State *L, GCObject *o) {
231  global_State *g = G(L);
232  lua_assert(isblack(o) && !isdead(g, o));
233  lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
234  if (getage(o) == G_TOUCHED2)  /* already in gray list? */
235    set2gray(o);  /* make it gray to become touched1 */
236  else  /* link it in 'grayagain' and paint it gray */
237    linkobjgclist(o, g->grayagain);
238  if (isold(o))  /* generational mode? */
239    setage(o, G_TOUCHED1);  /* touched in current cycle */
240}
241
242
243void luaC_fix (lua_State *L, GCObject *o) {
244  global_State *g = G(L);
245  lua_assert(g->allgc == o);  /* object must be 1st in 'allgc' list! */
246  set2gray(o);  /* they will be gray forever */
247  setage(o, G_OLD);  /* and old forever */
248  g->allgc = o->next;  /* remove object from 'allgc' list */
249  o->next = g->fixedgc;  /* link it to 'fixedgc' list */
250  g->fixedgc = o;
251}
252
253
254/*
255** create a new collectable object (with given type, size, and offset)
256** and link it to 'allgc' list.
257*/
258GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) {
259  global_State *g = G(L);
260  char *p = cast_charp(luaM_newobject(L, novariant(tt), sz));
261  GCObject *o = cast(GCObject *, p + offset);
262  o->marked = luaC_white(g);
263  o->tt = tt;
264  o->next = g->allgc;
265  g->allgc = o;
266  return o;
267}
268
269
270GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
271  return luaC_newobjdt(L, tt, sz, 0);
272}
273
274/* }====================================================== */
275
276
277
278/*
279** {======================================================
280** Mark functions
281** =======================================================
282*/
283
284
285/*
286** Mark an object.  Userdata with no user values, strings, and closed
287** upvalues are visited and turned black here.  Open upvalues are
288** already indirectly linked through their respective threads in the
289** 'twups' list, so they don't go to the gray list; nevertheless, they
290** are kept gray to avoid barriers, as their values will be revisited
291** by the thread or by 'remarkupvals'.  Other objects are added to the
292** gray list to be visited (and turned black) later.  Both userdata and
293** upvalues can call this function recursively, but this recursion goes
294** for at most two levels: An upvalue cannot refer to another upvalue
295** (only closures can), and a userdata's metatable must be a table.
296*/
297static void reallymarkobject (global_State *g, GCObject *o) {
298  switch (o->tt) {
299    case LUA_VSHRSTR:
300    case LUA_VLNGSTR: {
301      set2black(o);  /* nothing to visit */
302      break;
303    }
304    case LUA_VUPVAL: {
305      UpVal *uv = gco2upv(o);
306      if (upisopen(uv))
307        set2gray(uv);  /* open upvalues are kept gray */
308      else
309        set2black(uv);  /* closed upvalues are visited here */
310      markvalue(g, uv->v.p);  /* mark its content */
311      break;
312    }
313    case LUA_VUSERDATA: {
314      Udata *u = gco2u(o);
315      if (u->nuvalue == 0) {  /* no user values? */
316        markobjectN(g, u->metatable);  /* mark its metatable */
317        set2black(u);  /* nothing else to mark */
318        break;
319      }
320      /* else... */
321    }  /* FALLTHROUGH */
322    case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
323    case LUA_VTHREAD: case LUA_VPROTO: {
324      linkobjgclist(o, g->gray);  /* to be visited later */
325      break;
326    }
327    default: lua_assert(0); break;
328  }
329}
330
331
332/*
333** mark metamethods for basic types
334*/
335static void markmt (global_State *g) {
336  int i;
337  for (i=0; i < LUA_NUMTAGS; i++)
338    markobjectN(g, g->mt[i]);
339}
340
341
342/*
343** mark all objects in list of being-finalized
344*/
345static lu_mem markbeingfnz (global_State *g) {
346  GCObject *o;
347  lu_mem count = 0;
348  for (o = g->tobefnz; o != NULL; o = o->next) {
349    count++;
350    markobject(g, o);
351  }
352  return count;
353}
354
355
356/*
357** For each non-marked thread, simulates a barrier between each open
358** upvalue and its value. (If the thread is collected, the value will be
359** assigned to the upvalue, but then it can be too late for the barrier
360** to act. The "barrier" does not need to check colors: A non-marked
361** thread must be young; upvalues cannot be older than their threads; so
362** any visited upvalue must be young too.) Also removes the thread from
363** the list, as it was already visited. Removes also threads with no
364** upvalues, as they have nothing to be checked. (If the thread gets an
365** upvalue later, it will be linked in the list again.)
366*/
367static int remarkupvals (global_State *g) {
368  lua_State *thread;
369  lua_State **p = &g->twups;
370  int work = 0;  /* estimate of how much work was done here */
371  while ((thread = *p) != NULL) {
372    work++;
373    if (!iswhite(thread) && thread->openupval != NULL)
374      p = &thread->twups;  /* keep marked thread with upvalues in the list */
375    else {  /* thread is not marked or without upvalues */
376      UpVal *uv;
377      lua_assert(!isold(thread) || thread->openupval == NULL);
378      *p = thread->twups;  /* remove thread from the list */
379      thread->twups = thread;  /* mark that it is out of list */
380      for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
381        lua_assert(getage(uv) <= getage(thread));
382        work++;
383        if (!iswhite(uv)) {  /* upvalue already visited? */
384          lua_assert(upisopen(uv) && isgray(uv));
385          markvalue(g, uv->v.p);  /* mark its value */
386        }
387      }
388    }
389  }
390  return work;
391}
392
393
394static void cleargraylists (global_State *g) {
395  g->gray = g->grayagain = NULL;
396  g->weak = g->allweak = g->ephemeron = NULL;
397}
398
399
400/*
401** mark root set and reset all gray lists, to start a new collection
402*/
403static void restartcollection (global_State *g) {
404  cleargraylists(g);
405  markobject(g, g->mainthread);
406  markvalue(g, &g->l_registry);
407  markmt(g);
408  markbeingfnz(g);  /* mark any finalizing object left from previous cycle */
409}
410
411/* }====================================================== */
412
413
414/*
415** {======================================================
416** Traverse functions
417** =======================================================
418*/
419
420
421/*
422** Check whether object 'o' should be kept in the 'grayagain' list for
423** post-processing by 'correctgraylist'. (It could put all old objects
424** in the list and leave all the work to 'correctgraylist', but it is
425** more efficient to avoid adding elements that will be removed.) Only
426** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
427** back to a gray list, but then it must become OLD. (That is what
428** 'correctgraylist' does when it finds a TOUCHED2 object.)
429*/
430static void genlink (global_State *g, GCObject *o) {
431  lua_assert(isblack(o));
432  if (getage(o) == G_TOUCHED1) {  /* touched in this cycle? */
433    linkobjgclist(o, g->grayagain);  /* link it back in 'grayagain' */
434  }  /* everything else do not need to be linked back */
435  else if (getage(o) == G_TOUCHED2)
436    changeage(o, G_TOUCHED2, G_OLD);  /* advance age */
437}
438
439
440/*
441** Traverse a table with weak values and link it to proper list. During
442** propagate phase, keep it in 'grayagain' list, to be revisited in the
443** atomic phase. In the atomic phase, if table has any white value,
444** put it in 'weak' list, to be cleared.
445*/
446static void traverseweakvalue (global_State *g, Table *h) {
447  Node *n, *limit = gnodelast(h);
448  /* if there is array part, assume it may have white values (it is not
449     worth traversing it now just to check) */
450  int hasclears = (h->alimit > 0);
451  for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
452    if (isempty(gval(n)))  /* entry is empty? */
453      clearkey(n);  /* clear its key */
454    else {
455      lua_assert(!keyisnil(n));
456      markkey(g, n);
457      if (!hasclears && iscleared(g, gcvalueN(gval(n))))  /* a white value? */
458        hasclears = 1;  /* table will have to be cleared */
459    }
460  }
461  if (g->gcstate == GCSatomic && hasclears)
462    linkgclist(h, g->weak);  /* has to be cleared later */
463  else
464    linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
465}
466
467
468/*
469** Traverse an ephemeron table and link it to proper list. Returns true
470** iff any object was marked during this traversal (which implies that
471** convergence has to continue). During propagation phase, keep table
472** in 'grayagain' list, to be visited again in the atomic phase. In
473** the atomic phase, if table has any white->white entry, it has to
474** be revisited during ephemeron convergence (as that key may turn
475** black). Otherwise, if it has any white key, table has to be cleared
476** (in the atomic phase). In generational mode, some tables
477** must be kept in some gray list for post-processing; this is done
478** by 'genlink'.
479*/
480static int traverseephemeron (global_State *g, Table *h, int inv) {
481  int marked = 0;  /* true if an object is marked in this traversal */
482  int hasclears = 0;  /* true if table has white keys */
483  int hasww = 0;  /* true if table has entry "white-key -> white-value" */
484  unsigned int i;
485  unsigned int asize = luaH_realasize(h);
486  unsigned int nsize = sizenode(h);
487  /* traverse array part */
488  for (i = 0; i < asize; i++) {
489    if (valiswhite(&h->array[i])) {
490      marked = 1;
491      reallymarkobject(g, gcvalue(&h->array[i]));
492    }
493  }
494  /* traverse hash part; if 'inv', traverse descending
495     (see 'convergeephemerons') */
496  for (i = 0; i < nsize; i++) {
497    Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
498    if (isempty(gval(n)))  /* entry is empty? */
499      clearkey(n);  /* clear its key */
500    else if (iscleared(g, gckeyN(n))) {  /* key is not marked (yet)? */
501      hasclears = 1;  /* table must be cleared */
502      if (valiswhite(gval(n)))  /* value not marked yet? */
503        hasww = 1;  /* white-white entry */
504    }
505    else if (valiswhite(gval(n))) {  /* value not marked yet? */
506      marked = 1;
507      reallymarkobject(g, gcvalue(gval(n)));  /* mark it now */
508    }
509  }
510  /* link table into proper list */
511  if (g->gcstate == GCSpropagate)
512    linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
513  else if (hasww)  /* table has white->white entries? */
514    linkgclist(h, g->ephemeron);  /* have to propagate again */
515  else if (hasclears)  /* table has white keys? */
516    linkgclist(h, g->allweak);  /* may have to clean white keys */
517  else
518    genlink(g, obj2gco(h));  /* check whether collector still needs to see it */
519  return marked;
520}
521
522
523static void traversestrongtable (global_State *g, Table *h) {
524  Node *n, *limit = gnodelast(h);
525  unsigned int i;
526  unsigned int asize = luaH_realasize(h);
527  for (i = 0; i < asize; i++)  /* traverse array part */
528    markvalue(g, &h->array[i]);
529  for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
530    if (isempty(gval(n)))  /* entry is empty? */
531      clearkey(n);  /* clear its key */
532    else {
533      lua_assert(!keyisnil(n));
534      markkey(g, n);
535      markvalue(g, gval(n));
536    }
537  }
538  genlink(g, obj2gco(h));
539}
540
541
542static lu_mem traversetable (global_State *g, Table *h) {
543  const char *weakkey, *weakvalue;
544  const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
545  markobjectN(g, h->metatable);
546  if (mode && ttisstring(mode) &&  /* is there a weak mode? */
547      (cast_void(weakkey = strchr(svalue(mode), 'k')),
548       cast_void(weakvalue = strchr(svalue(mode), 'v')),
549       (weakkey || weakvalue))) {  /* is really weak? */
550    if (!weakkey)  /* strong keys? */
551      traverseweakvalue(g, h);
552    else if (!weakvalue)  /* strong values? */
553      traverseephemeron(g, h, 0);
554    else  /* all weak */
555      linkgclist(h, g->allweak);  /* nothing to traverse now */
556  }
557  else  /* not weak */
558    traversestrongtable(g, h);
559  return 1 + h->alimit + 2 * allocsizenode(h);
560}
561
562
563static int traverseudata (global_State *g, Udata *u) {
564  int i;
565  markobjectN(g, u->metatable);  /* mark its metatable */
566  for (i = 0; i < u->nuvalue; i++)
567    markvalue(g, &u->uv[i].uv);
568  genlink(g, obj2gco(u));
569  return 1 + u->nuvalue;
570}
571
572
573/*
574** Traverse a prototype. (While a prototype is being build, its
575** arrays can be larger than needed; the extra slots are filled with
576** NULL, so the use of 'markobjectN')
577*/
578static int traverseproto (global_State *g, Proto *f) {
579  int i;
580  markobjectN(g, f->source);
581  for (i = 0; i < f->sizek; i++)  /* mark literals */
582    markvalue(g, &f->k[i]);
583  for (i = 0; i < f->sizeupvalues; i++)  /* mark upvalue names */
584    markobjectN(g, f->upvalues[i].name);
585  for (i = 0; i < f->sizep; i++)  /* mark nested protos */
586    markobjectN(g, f->p[i]);
587  for (i = 0; i < f->sizelocvars; i++)  /* mark local-variable names */
588    markobjectN(g, f->locvars[i].varname);
589  return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
590}
591
592
593static int traverseCclosure (global_State *g, CClosure *cl) {
594  int i;
595  for (i = 0; i < cl->nupvalues; i++)  /* mark its upvalues */
596    markvalue(g, &cl->upvalue[i]);
597  return 1 + cl->nupvalues;
598}
599
600/*
601** Traverse a Lua closure, marking its prototype and its upvalues.
602** (Both can be NULL while closure is being created.)
603*/
604static int traverseLclosure (global_State *g, LClosure *cl) {
605  int i;
606  markobjectN(g, cl->p);  /* mark its prototype */
607  for (i = 0; i < cl->nupvalues; i++) {  /* visit its upvalues */
608    UpVal *uv = cl->upvals[i];
609    markobjectN(g, uv);  /* mark upvalue */
610  }
611  return 1 + cl->nupvalues;
612}
613
614
615/*
616** Traverse a thread, marking the elements in the stack up to its top
617** and cleaning the rest of the stack in the final traversal. That
618** ensures that the entire stack have valid (non-dead) objects.
619** Threads have no barriers. In gen. mode, old threads must be visited
620** at every cycle, because they might point to young objects.  In inc.
621** mode, the thread can still be modified before the end of the cycle,
622** and therefore it must be visited again in the atomic phase. To ensure
623** these visits, threads must return to a gray list if they are not new
624** (which can only happen in generational mode) or if the traverse is in
625** the propagate phase (which can only happen in incremental mode).
626*/
627static int traversethread (global_State *g, lua_State *th) {
628  UpVal *uv;
629  StkId o = th->stack.p;
630  if (isold(th) || g->gcstate == GCSpropagate)
631    linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
632  if (o == NULL)
633    return 1;  /* stack not completely built yet */
634  lua_assert(g->gcstate == GCSatomic ||
635             th->openupval == NULL || isintwups(th));
636  for (; o < th->top.p; o++)  /* mark live elements in the stack */
637    markvalue(g, s2v(o));
638  for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
639    markobject(g, uv);  /* open upvalues cannot be collected */
640  if (g->gcstate == GCSatomic) {  /* final traversal? */
641    for (; o < th->stack_last.p + EXTRA_STACK; o++)
642      setnilvalue(s2v(o));  /* clear dead stack slice */
643    /* 'remarkupvals' may have removed thread from 'twups' list */
644    if (!isintwups(th) && th->openupval != NULL) {
645      th->twups = g->twups;  /* link it back to the list */
646      g->twups = th;
647    }
648  }
649  else if (!g->gcemergency)
650    luaD_shrinkstack(th); /* do not change stack in emergency cycle */
651  return 1 + stacksize(th);
652}
653
654
655/*
656** traverse one gray object, turning it to black.
657*/
658static lu_mem propagatemark (global_State *g) {
659  GCObject *o = g->gray;
660  nw2black(o);
661  g->gray = *getgclist(o);  /* remove from 'gray' list */
662  switch (o->tt) {
663    case LUA_VTABLE: return traversetable(g, gco2t(o));
664    case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
665    case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
666    case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
667    case LUA_VPROTO: return traverseproto(g, gco2p(o));
668    case LUA_VTHREAD: return traversethread(g, gco2th(o));
669    default: lua_assert(0); return 0;
670  }
671}
672
673
674static lu_mem propagateall (global_State *g) {
675  lu_mem tot = 0;
676  while (g->gray)
677    tot += propagatemark(g);
678  return tot;
679}
680
681
682/*
683** Traverse all ephemeron tables propagating marks from keys to values.
684** Repeat until it converges, that is, nothing new is marked. 'dir'
685** inverts the direction of the traversals, trying to speed up
686** convergence on chains in the same table.
687**
688*/
689static void convergeephemerons (global_State *g) {
690  int changed;
691  int dir = 0;
692  do {
693    GCObject *w;
694    GCObject *next = g->ephemeron;  /* get ephemeron list */
695    g->ephemeron = NULL;  /* tables may return to this list when traversed */
696    changed = 0;
697    while ((w = next) != NULL) {  /* for each ephemeron table */
698      Table *h = gco2t(w);
699      next = h->gclist;  /* list is rebuilt during loop */
700      nw2black(h);  /* out of the list (for now) */
701      if (traverseephemeron(g, h, dir)) {  /* marked some value? */
702        propagateall(g);  /* propagate changes */
703        changed = 1;  /* will have to revisit all ephemeron tables */
704      }
705    }
706    dir = !dir;  /* invert direction next time */
707  } while (changed);  /* repeat until no more changes */
708}
709
710/* }====================================================== */
711
712
713/*
714** {======================================================
715** Sweep Functions
716** =======================================================
717*/
718
719
720/*
721** clear entries with unmarked keys from all weaktables in list 'l'
722*/
723static void clearbykeys (global_State *g, GCObject *l) {
724  for (; l; l = gco2t(l)->gclist) {
725    Table *h = gco2t(l);
726    Node *limit = gnodelast(h);
727    Node *n;
728    for (n = gnode(h, 0); n < limit; n++) {
729      if (iscleared(g, gckeyN(n)))  /* unmarked key? */
730        setempty(gval(n));  /* remove entry */
731      if (isempty(gval(n)))  /* is entry empty? */
732        clearkey(n);  /* clear its key */
733    }
734  }
735}
736
737
738/*
739** clear entries with unmarked values from all weaktables in list 'l' up
740** to element 'f'
741*/
742static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
743  for (; l != f; l = gco2t(l)->gclist) {
744    Table *h = gco2t(l);
745    Node *n, *limit = gnodelast(h);
746    unsigned int i;
747    unsigned int asize = luaH_realasize(h);
748    for (i = 0; i < asize; i++) {
749      TValue *o = &h->array[i];
750      if (iscleared(g, gcvalueN(o)))  /* value was collected? */
751        setempty(o);  /* remove entry */
752    }
753    for (n = gnode(h, 0); n < limit; n++) {
754      if (iscleared(g, gcvalueN(gval(n))))  /* unmarked value? */
755        setempty(gval(n));  /* remove entry */
756      if (isempty(gval(n)))  /* is entry empty? */
757        clearkey(n);  /* clear its key */
758    }
759  }
760}
761
762
763static void freeupval (lua_State *L, UpVal *uv) {
764  if (upisopen(uv))
765    luaF_unlinkupval(uv);
766  luaM_free(L, uv);
767}
768
769
770static void freeobj (lua_State *L, GCObject *o) {
771  switch (o->tt) {
772    case LUA_VPROTO:
773      luaF_freeproto(L, gco2p(o));
774      break;
775    case LUA_VUPVAL:
776      freeupval(L, gco2upv(o));
777      break;
778    case LUA_VLCL: {
779      LClosure *cl = gco2lcl(o);
780      luaM_freemem(L, cl, sizeLclosure(cl->nupvalues));
781      break;
782    }
783    case LUA_VCCL: {
784      CClosure *cl = gco2ccl(o);
785      luaM_freemem(L, cl, sizeCclosure(cl->nupvalues));
786      break;
787    }
788    case LUA_VTABLE:
789      luaH_free(L, gco2t(o));
790      break;
791    case LUA_VTHREAD:
792      luaE_freethread(L, gco2th(o));
793      break;
794    case LUA_VUSERDATA: {
795      Udata *u = gco2u(o);
796      luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
797      break;
798    }
799    case LUA_VSHRSTR: {
800      TString *ts = gco2ts(o);
801      luaS_remove(L, ts);  /* remove it from hash table */
802      luaM_freemem(L, ts, sizelstring(ts->shrlen));
803      break;
804    }
805    case LUA_VLNGSTR: {
806      TString *ts = gco2ts(o);
807      luaM_freemem(L, ts, sizelstring(ts->u.lnglen));
808      break;
809    }
810    default: lua_assert(0);
811  }
812}
813
814
815/*
816** sweep at most 'countin' elements from a list of GCObjects erasing dead
817** objects, where a dead object is one marked with the old (non current)
818** white; change all non-dead objects back to white, preparing for next
819** collection cycle. Return where to continue the traversal or NULL if
820** list is finished. ('*countout' gets the number of elements traversed.)
821*/
822static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
823                             int *countout) {
824  global_State *g = G(L);
825  int ow = otherwhite(g);
826  int i;
827  int white = luaC_white(g);  /* current white */
828  for (i = 0; *p != NULL && i < countin; i++) {
829    GCObject *curr = *p;
830    int marked = curr->marked;
831    if (isdeadm(ow, marked)) {  /* is 'curr' dead? */
832      *p = curr->next;  /* remove 'curr' from list */
833      freeobj(L, curr);  /* erase 'curr' */
834    }
835    else {  /* change mark to 'white' */
836      curr->marked = cast_byte((marked & ~maskgcbits) | white);
837      p = &curr->next;  /* go to next element */
838    }
839  }
840  if (countout)
841    *countout = i;  /* number of elements traversed */
842  return (*p == NULL) ? NULL : p;
843}
844
845
846/*
847** sweep a list until a live object (or end of list)
848*/
849static GCObject **sweeptolive (lua_State *L, GCObject **p) {
850  GCObject **old = p;
851  do {
852    p = sweeplist(L, p, 1, NULL);
853  } while (p == old);
854  return p;
855}
856
857/* }====================================================== */
858
859
860/*
861** {======================================================
862** Finalization
863** =======================================================
864*/
865
866/*
867** If possible, shrink string table.
868*/
869static void checkSizes (lua_State *L, global_State *g) {
870  if (!g->gcemergency) {
871    if (g->strt.nuse < g->strt.size / 4) {  /* string table too big? */
872      l_mem olddebt = g->GCdebt;
873      luaS_resize(L, g->strt.size / 2);
874      g->GCestimate += g->GCdebt - olddebt;  /* correct estimate */
875    }
876  }
877}
878
879
880/*
881** Get the next udata to be finalized from the 'tobefnz' list, and
882** link it back into the 'allgc' list.
883*/
884static GCObject *udata2finalize (global_State *g) {
885  GCObject *o = g->tobefnz;  /* get first element */
886  lua_assert(tofinalize(o));
887  g->tobefnz = o->next;  /* remove it from 'tobefnz' list */
888  o->next = g->allgc;  /* return it to 'allgc' list */
889  g->allgc = o;
890  resetbit(o->marked, FINALIZEDBIT);  /* object is "normal" again */
891  if (issweepphase(g))
892    makewhite(g, o);  /* "sweep" object */
893  else if (getage(o) == G_OLD1)
894    g->firstold1 = o;  /* it is the first OLD1 object in the list */
895  return o;
896}
897
898
899static void dothecall (lua_State *L, void *ud) {
900  UNUSED(ud);
901  luaD_callnoyield(L, L->top.p - 2, 0);
902}
903
904
905static void GCTM (lua_State *L) {
906  global_State *g = G(L);
907  const TValue *tm;
908  TValue v;
909  lua_assert(!g->gcemergency);
910  setgcovalue(L, &v, udata2finalize(g));
911  tm = luaT_gettmbyobj(L, &v, TM_GC);
912  if (!notm(tm)) {  /* is there a finalizer? */
913    int status;
914    lu_byte oldah = L->allowhook;
915    int oldgcstp  = g->gcstp;
916    g->gcstp |= GCSTPGC;  /* avoid GC steps */
917    L->allowhook = 0;  /* stop debug hooks during GC metamethod */
918    setobj2s(L, L->top.p++, tm);  /* push finalizer... */
919    setobj2s(L, L->top.p++, &v);  /* ... and its argument */
920    L->ci->callstatus |= CIST_FIN;  /* will run a finalizer */
921    status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top.p - 2), 0);
922    L->ci->callstatus &= ~CIST_FIN;  /* not running a finalizer anymore */
923    L->allowhook = oldah;  /* restore hooks */
924    g->gcstp = oldgcstp;  /* restore state */
925    if (l_unlikely(status != LUA_OK)) {  /* error while running __gc? */
926      luaE_warnerror(L, "__gc");
927      L->top.p--;  /* pops error object */
928    }
929  }
930}
931
932
933/*
934** Call a few finalizers
935*/
936static int runafewfinalizers (lua_State *L, int n) {
937  global_State *g = G(L);
938  int i;
939  for (i = 0; i < n && g->tobefnz; i++)
940    GCTM(L);  /* call one finalizer */
941  return i;
942}
943
944
945/*
946** call all pending finalizers
947*/
948static void callallpendingfinalizers (lua_State *L) {
949  global_State *g = G(L);
950  while (g->tobefnz)
951    GCTM(L);
952}
953
954
955/*
956** find last 'next' field in list 'p' list (to add elements in its end)
957*/
958static GCObject **findlast (GCObject **p) {
959  while (*p != NULL)
960    p = &(*p)->next;
961  return p;
962}
963
964
965/*
966** Move all unreachable objects (or 'all' objects) that need
967** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
968** (Note that objects after 'finobjold1' cannot be white, so they
969** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
970** so the whole list is traversed.)
971*/
972static void separatetobefnz (global_State *g, int all) {
973  GCObject *curr;
974  GCObject **p = &g->finobj;
975  GCObject **lastnext = findlast(&g->tobefnz);
976  while ((curr = *p) != g->finobjold1) {  /* traverse all finalizable objects */
977    lua_assert(tofinalize(curr));
978    if (!(iswhite(curr) || all))  /* not being collected? */
979      p = &curr->next;  /* don't bother with it */
980    else {
981      if (curr == g->finobjsur)  /* removing 'finobjsur'? */
982        g->finobjsur = curr->next;  /* correct it */
983      *p = curr->next;  /* remove 'curr' from 'finobj' list */
984      curr->next = *lastnext;  /* link at the end of 'tobefnz' list */
985      *lastnext = curr;
986      lastnext = &curr->next;
987    }
988  }
989}
990
991
992/*
993** If pointer 'p' points to 'o', move it to the next element.
994*/
995static void checkpointer (GCObject **p, GCObject *o) {
996  if (o == *p)
997    *p = o->next;
998}
999
1000
1001/*
1002** Correct pointers to objects inside 'allgc' list when
1003** object 'o' is being removed from the list.
1004*/
1005static void correctpointers (global_State *g, GCObject *o) {
1006  checkpointer(&g->survival, o);
1007  checkpointer(&g->old1, o);
1008  checkpointer(&g->reallyold, o);
1009  checkpointer(&g->firstold1, o);
1010}
1011
1012
1013/*
1014** if object 'o' has a finalizer, remove it from 'allgc' list (must
1015** search the list to find it) and link it in 'finobj' list.
1016*/
1017void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
1018  global_State *g = G(L);
1019  if (tofinalize(o) ||                 /* obj. is already marked... */
1020      gfasttm(g, mt, TM_GC) == NULL ||    /* or has no finalizer... */
1021      (g->gcstp & GCSTPCLS))                   /* or closing state? */
1022    return;  /* nothing to be done */
1023  else {  /* move 'o' to 'finobj' list */
1024    GCObject **p;
1025    if (issweepphase(g)) {
1026      makewhite(g, o);  /* "sweep" object 'o' */
1027      if (g->sweepgc == &o->next)  /* should not remove 'sweepgc' object */
1028        g->sweepgc = sweeptolive(L, g->sweepgc);  /* change 'sweepgc' */
1029    }
1030    else
1031      correctpointers(g, o);
1032    /* search for pointer pointing to 'o' */
1033    for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
1034    *p = o->next;  /* remove 'o' from 'allgc' list */
1035    o->next = g->finobj;  /* link it in 'finobj' list */
1036    g->finobj = o;
1037    l_setbit(o->marked, FINALIZEDBIT);  /* mark it as such */
1038  }
1039}
1040
1041/* }====================================================== */
1042
1043
1044/*
1045** {======================================================
1046** Generational Collector
1047** =======================================================
1048*/
1049
1050
1051/*
1052** Set the "time" to wait before starting a new GC cycle; cycle will
1053** start when memory use hits the threshold of ('estimate' * pause /
1054** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1055** because Lua cannot even start with less than PAUSEADJ bytes).
1056*/
1057static void setpause (global_State *g) {
1058  l_mem threshold, debt;
1059  int pause = getgcparam(g->gcpause);
1060  l_mem estimate = g->GCestimate / PAUSEADJ;  /* adjust 'estimate' */
1061  lua_assert(estimate > 0);
1062  threshold = (pause < MAX_LMEM / estimate)  /* overflow? */
1063            ? estimate * pause  /* no overflow */
1064            : MAX_LMEM;  /* overflow; truncate to maximum */
1065  debt = gettotalbytes(g) - threshold;
1066  if (debt > 0) debt = 0;
1067  luaE_setdebt(g, debt);
1068}
1069
1070
1071/*
1072** Sweep a list of objects to enter generational mode.  Deletes dead
1073** objects and turns the non dead to old. All non-dead threads---which
1074** are now old---must be in a gray list. Everything else is not in a
1075** gray list. Open upvalues are also kept gray.
1076*/
1077static void sweep2old (lua_State *L, GCObject **p) {
1078  GCObject *curr;
1079  global_State *g = G(L);
1080  while ((curr = *p) != NULL) {
1081    if (iswhite(curr)) {  /* is 'curr' dead? */
1082      lua_assert(isdead(g, curr));
1083      *p = curr->next;  /* remove 'curr' from list */
1084      freeobj(L, curr);  /* erase 'curr' */
1085    }
1086    else {  /* all surviving objects become old */
1087      setage(curr, G_OLD);
1088      if (curr->tt == LUA_VTHREAD) {  /* threads must be watched */
1089        lua_State *th = gco2th(curr);
1090        linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
1091      }
1092      else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
1093        set2gray(curr);  /* open upvalues are always gray */
1094      else  /* everything else is black */
1095        nw2black(curr);
1096      p = &curr->next;  /* go to next element */
1097    }
1098  }
1099}
1100
1101
1102/*
1103** Sweep for generational mode. Delete dead objects. (Because the
1104** collection is not incremental, there are no "new white" objects
1105** during the sweep. So, any white object must be dead.) For
1106** non-dead objects, advance their ages and clear the color of
1107** new objects. (Old objects keep their colors.)
1108** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1109** here, because these old-generation objects are usually not swept
1110** here.  They will all be advanced in 'correctgraylist'. That function
1111** will also remove objects turned white here from any gray list.
1112*/
1113static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
1114                            GCObject *limit, GCObject **pfirstold1) {
1115  static const lu_byte nextage[] = {
1116    G_SURVIVAL,  /* from G_NEW */
1117    G_OLD1,      /* from G_SURVIVAL */
1118    G_OLD1,      /* from G_OLD0 */
1119    G_OLD,       /* from G_OLD1 */
1120    G_OLD,       /* from G_OLD (do not change) */
1121    G_TOUCHED1,  /* from G_TOUCHED1 (do not change) */
1122    G_TOUCHED2   /* from G_TOUCHED2 (do not change) */
1123  };
1124  int white = luaC_white(g);
1125  GCObject *curr;
1126  while ((curr = *p) != limit) {
1127    if (iswhite(curr)) {  /* is 'curr' dead? */
1128      lua_assert(!isold(curr) && isdead(g, curr));
1129      *p = curr->next;  /* remove 'curr' from list */
1130      freeobj(L, curr);  /* erase 'curr' */
1131    }
1132    else {  /* correct mark and age */
1133      if (getage(curr) == G_NEW) {  /* new objects go back to white */
1134        int marked = curr->marked & ~maskgcbits;  /* erase GC bits */
1135        curr->marked = cast_byte(marked | G_SURVIVAL | white);
1136      }
1137      else {  /* all other objects will be old, and so keep their color */
1138        setage(curr, nextage[getage(curr)]);
1139        if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
1140          *pfirstold1 = curr;  /* first OLD1 object in the list */
1141      }
1142      p = &curr->next;  /* go to next element */
1143    }
1144  }
1145  return p;
1146}
1147
1148
1149/*
1150** Traverse a list making all its elements white and clearing their
1151** age. In incremental mode, all objects are 'new' all the time,
1152** except for fixed strings (which are always old).
1153*/
1154static void whitelist (global_State *g, GCObject *p) {
1155  int white = luaC_white(g);
1156  for (; p != NULL; p = p->next)
1157    p->marked = cast_byte((p->marked & ~maskgcbits) | white);
1158}
1159
1160
1161/*
1162** Correct a list of gray objects. Return pointer to where rest of the
1163** list should be linked.
1164** Because this correction is done after sweeping, young objects might
1165** be turned white and still be in the list. They are only removed.
1166** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1167** Non-white threads also remain on the list; 'TOUCHED2' objects become
1168** regular old; they and anything else are removed from the list.
1169*/
1170static GCObject **correctgraylist (GCObject **p) {
1171  GCObject *curr;
1172  while ((curr = *p) != NULL) {
1173    GCObject **next = getgclist(curr);
1174    if (iswhite(curr))
1175      goto remove;  /* remove all white objects */
1176    else if (getage(curr) == G_TOUCHED1) {  /* touched in this cycle? */
1177      lua_assert(isgray(curr));
1178      nw2black(curr);  /* make it black, for next barrier */
1179      changeage(curr, G_TOUCHED1, G_TOUCHED2);
1180      goto remain;  /* keep it in the list and go to next element */
1181    }
1182    else if (curr->tt == LUA_VTHREAD) {
1183      lua_assert(isgray(curr));
1184      goto remain;  /* keep non-white threads on the list */
1185    }
1186    else {  /* everything else is removed */
1187      lua_assert(isold(curr));  /* young objects should be white here */
1188      if (getage(curr) == G_TOUCHED2)  /* advance from TOUCHED2... */
1189        changeage(curr, G_TOUCHED2, G_OLD);  /* ... to OLD */
1190      nw2black(curr);  /* make object black (to be removed) */
1191      goto remove;
1192    }
1193    remove: *p = *next; continue;
1194    remain: p = next; continue;
1195  }
1196  return p;
1197}
1198
1199
1200/*
1201** Correct all gray lists, coalescing them into 'grayagain'.
1202*/
1203static void correctgraylists (global_State *g) {
1204  GCObject **list = correctgraylist(&g->grayagain);
1205  *list = g->weak; g->weak = NULL;
1206  list = correctgraylist(list);
1207  *list = g->allweak; g->allweak = NULL;
1208  list = correctgraylist(list);
1209  *list = g->ephemeron; g->ephemeron = NULL;
1210  correctgraylist(list);
1211}
1212
1213
1214/*
1215** Mark black 'OLD1' objects when starting a new young collection.
1216** Gray objects are already in some gray list, and so will be visited
1217** in the atomic step.
1218*/
1219static void markold (global_State *g, GCObject *from, GCObject *to) {
1220  GCObject *p;
1221  for (p = from; p != to; p = p->next) {
1222    if (getage(p) == G_OLD1) {
1223      lua_assert(!iswhite(p));
1224      changeage(p, G_OLD1, G_OLD);  /* now they are old */
1225      if (isblack(p))
1226        reallymarkobject(g, p);
1227    }
1228  }
1229}
1230
1231
1232/*
1233** Finish a young-generation collection.
1234*/
1235static void finishgencycle (lua_State *L, global_State *g) {
1236  correctgraylists(g);
1237  checkSizes(L, g);
1238  g->gcstate = GCSpropagate;  /* skip restart */
1239  if (!g->gcemergency)
1240    callallpendingfinalizers(L);
1241}
1242
1243
1244/*
1245** Does a young collection. First, mark 'OLD1' objects. Then does the
1246** atomic step. Then, sweep all lists and advance pointers. Finally,
1247** finish the collection.
1248*/
1249static void youngcollection (lua_State *L, global_State *g) {
1250  GCObject **psurvival;  /* to point to first non-dead survival object */
1251  GCObject *dummy;  /* dummy out parameter to 'sweepgen' */
1252  lua_assert(g->gcstate == GCSpropagate);
1253  if (g->firstold1) {  /* are there regular OLD1 objects? */
1254    markold(g, g->firstold1, g->reallyold);  /* mark them */
1255    g->firstold1 = NULL;  /* no more OLD1 objects (for now) */
1256  }
1257  markold(g, g->finobj, g->finobjrold);
1258  markold(g, g->tobefnz, NULL);
1259  atomic(L);
1260
1261  /* sweep nursery and get a pointer to its last live element */
1262  g->gcstate = GCSswpallgc;
1263  psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
1264  /* sweep 'survival' */
1265  sweepgen(L, g, psurvival, g->old1, &g->firstold1);
1266  g->reallyold = g->old1;
1267  g->old1 = *psurvival;  /* 'survival' survivals are old now */
1268  g->survival = g->allgc;  /* all news are survivals */
1269
1270  /* repeat for 'finobj' lists */
1271  dummy = NULL;  /* no 'firstold1' optimization for 'finobj' lists */
1272  psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
1273  /* sweep 'survival' */
1274  sweepgen(L, g, psurvival, g->finobjold1, &dummy);
1275  g->finobjrold = g->finobjold1;
1276  g->finobjold1 = *psurvival;  /* 'survival' survivals are old now */
1277  g->finobjsur = g->finobj;  /* all news are survivals */
1278
1279  sweepgen(L, g, &g->tobefnz, NULL, &dummy);
1280  finishgencycle(L, g);
1281}
1282
1283
1284/*
1285** Clears all gray lists, sweeps objects, and prepare sublists to enter
1286** generational mode. The sweeps remove dead objects and turn all
1287** surviving objects to old. Threads go back to 'grayagain'; everything
1288** else is turned black (not in any gray list).
1289*/
1290static void atomic2gen (lua_State *L, global_State *g) {
1291  cleargraylists(g);
1292  /* sweep all elements making them old */
1293  g->gcstate = GCSswpallgc;
1294  sweep2old(L, &g->allgc);
1295  /* everything alive now is old */
1296  g->reallyold = g->old1 = g->survival = g->allgc;
1297  g->firstold1 = NULL;  /* there are no OLD1 objects anywhere */
1298
1299  /* repeat for 'finobj' lists */
1300  sweep2old(L, &g->finobj);
1301  g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
1302
1303  sweep2old(L, &g->tobefnz);
1304
1305  g->gckind = KGC_GEN;
1306  g->lastatomic = 0;
1307  g->GCestimate = gettotalbytes(g);  /* base for memory control */
1308  finishgencycle(L, g);
1309}
1310
1311
1312/*
1313** Set debt for the next minor collection, which will happen when
1314** memory grows 'genminormul'%.
1315*/
1316static void setminordebt (global_State *g) {
1317  luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
1318}
1319
1320
1321/*
1322** Enter generational mode. Must go until the end of an atomic cycle
1323** to ensure that all objects are correctly marked and weak tables
1324** are cleared. Then, turn all objects into old and finishes the
1325** collection.
1326*/
1327static lu_mem entergen (lua_State *L, global_State *g) {
1328  lu_mem numobjs;
1329  luaC_runtilstate(L, bitmask(GCSpause));  /* prepare to start a new cycle */
1330  luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1331  numobjs = atomic(L);  /* propagates all and then do the atomic stuff */
1332  atomic2gen(L, g);
1333  setminordebt(g);  /* set debt assuming next cycle will be minor */
1334  return numobjs;
1335}
1336
1337
1338/*
1339** Enter incremental mode. Turn all objects white, make all
1340** intermediate lists point to NULL (to avoid invalid pointers),
1341** and go to the pause state.
1342*/
1343static void enterinc (global_State *g) {
1344  whitelist(g, g->allgc);
1345  g->reallyold = g->old1 = g->survival = NULL;
1346  whitelist(g, g->finobj);
1347  whitelist(g, g->tobefnz);
1348  g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
1349  g->gcstate = GCSpause;
1350  g->gckind = KGC_INC;
1351  g->lastatomic = 0;
1352}
1353
1354
1355/*
1356** Change collector mode to 'newmode'.
1357*/
1358void luaC_changemode (lua_State *L, int newmode) {
1359  global_State *g = G(L);
1360  if (newmode != g->gckind) {
1361    if (newmode == KGC_GEN)  /* entering generational mode? */
1362      entergen(L, g);
1363    else
1364      enterinc(g);  /* entering incremental mode */
1365  }
1366  g->lastatomic = 0;
1367}
1368
1369
1370/*
1371** Does a full collection in generational mode.
1372*/
1373static lu_mem fullgen (lua_State *L, global_State *g) {
1374  enterinc(g);
1375  return entergen(L, g);
1376}
1377
1378
1379/*
1380** Does a major collection after last collection was a "bad collection".
1381**
1382** When the program is building a big structure, it allocates lots of
1383** memory but generates very little garbage. In those scenarios,
1384** the generational mode just wastes time doing small collections, and
1385** major collections are frequently what we call a "bad collection", a
1386** collection that frees too few objects. To avoid the cost of switching
1387** between generational mode and the incremental mode needed for full
1388** (major) collections, the collector tries to stay in incremental mode
1389** after a bad collection, and to switch back to generational mode only
1390** after a "good" collection (one that traverses less than 9/8 objects
1391** of the previous one).
1392** The collector must choose whether to stay in incremental mode or to
1393** switch back to generational mode before sweeping. At this point, it
1394** does not know the real memory in use, so it cannot use memory to
1395** decide whether to return to generational mode. Instead, it uses the
1396** number of objects traversed (returned by 'atomic') as a proxy. The
1397** field 'g->lastatomic' keeps this count from the last collection.
1398** ('g->lastatomic != 0' also means that the last collection was bad.)
1399*/
1400static void stepgenfull (lua_State *L, global_State *g) {
1401  lu_mem newatomic;  /* count of traversed objects */
1402  lu_mem lastatomic = g->lastatomic;  /* count from last collection */
1403  if (g->gckind == KGC_GEN)  /* still in generational mode? */
1404    enterinc(g);  /* enter incremental mode */
1405  luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1406  newatomic = atomic(L);  /* mark everybody */
1407  if (newatomic < lastatomic + (lastatomic >> 3)) {  /* good collection? */
1408    atomic2gen(L, g);  /* return to generational mode */
1409    setminordebt(g);
1410  }
1411  else {  /* another bad collection; stay in incremental mode */
1412    g->GCestimate = gettotalbytes(g);  /* first estimate */;
1413    entersweep(L);
1414    luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1415    setpause(g);
1416    g->lastatomic = newatomic;
1417  }
1418}
1419
1420
1421/*
1422** Does a generational "step".
1423** Usually, this means doing a minor collection and setting the debt to
1424** make another collection when memory grows 'genminormul'% larger.
1425**
1426** However, there are exceptions.  If memory grows 'genmajormul'%
1427** larger than it was at the end of the last major collection (kept
1428** in 'g->GCestimate'), the function does a major collection. At the
1429** end, it checks whether the major collection was able to free a
1430** decent amount of memory (at least half the growth in memory since
1431** previous major collection). If so, the collector keeps its state,
1432** and the next collection will probably be minor again. Otherwise,
1433** we have what we call a "bad collection". In that case, set the field
1434** 'g->lastatomic' to signal that fact, so that the next collection will
1435** go to 'stepgenfull'.
1436**
1437** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1438** in that case, do a minor collection.
1439*/
1440static void genstep (lua_State *L, global_State *g) {
1441  if (g->lastatomic != 0)  /* last collection was a bad one? */
1442    stepgenfull(L, g);  /* do a full step */
1443  else {
1444    lu_mem majorbase = g->GCestimate;  /* memory after last major collection */
1445    lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
1446    if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
1447      lu_mem numobjs = fullgen(L, g);  /* do a major collection */
1448      if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
1449        /* collected at least half of memory growth since last major
1450           collection; keep doing minor collections. */
1451        lua_assert(g->lastatomic == 0);
1452      }
1453      else {  /* bad collection */
1454        g->lastatomic = numobjs;  /* signal that last collection was bad */
1455        setpause(g);  /* do a long wait for next (major) collection */
1456      }
1457    }
1458    else {  /* regular case; do a minor collection */
1459      youngcollection(L, g);
1460      setminordebt(g);
1461      g->GCestimate = majorbase;  /* preserve base value */
1462    }
1463  }
1464  lua_assert(isdecGCmodegen(g));
1465}
1466
1467/* }====================================================== */
1468
1469
1470/*
1471** {======================================================
1472** GC control
1473** =======================================================
1474*/
1475
1476
1477/*
1478** Enter first sweep phase.
1479** The call to 'sweeptolive' makes the pointer point to an object
1480** inside the list (instead of to the header), so that the real sweep do
1481** not need to skip objects created between "now" and the start of the
1482** real sweep.
1483*/
1484static void entersweep (lua_State *L) {
1485  global_State *g = G(L);
1486  g->gcstate = GCSswpallgc;
1487  lua_assert(g->sweepgc == NULL);
1488  g->sweepgc = sweeptolive(L, &g->allgc);
1489}
1490
1491
1492/*
1493** Delete all objects in list 'p' until (but not including) object
1494** 'limit'.
1495*/
1496static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
1497  while (p != limit) {
1498    GCObject *next = p->next;
1499    freeobj(L, p);
1500    p = next;
1501  }
1502}
1503
1504
1505/*
1506** Call all finalizers of the objects in the given Lua state, and
1507** then free all objects, except for the main thread.
1508*/
1509void luaC_freeallobjects (lua_State *L) {
1510  global_State *g = G(L);
1511  g->gcstp = GCSTPCLS;  /* no extra finalizers after here */
1512  luaC_changemode(L, KGC_INC);
1513  separatetobefnz(g, 1);  /* separate all objects with finalizers */
1514  lua_assert(g->finobj == NULL);
1515  callallpendingfinalizers(L);
1516  deletelist(L, g->allgc, obj2gco(g->mainthread));
1517  lua_assert(g->finobj == NULL);  /* no new finalizers */
1518  deletelist(L, g->fixedgc, NULL);  /* collect fixed objects */
1519  lua_assert(g->strt.nuse == 0);
1520}
1521
1522
1523static lu_mem atomic (lua_State *L) {
1524  global_State *g = G(L);
1525  lu_mem work = 0;
1526  GCObject *origweak, *origall;
1527  GCObject *grayagain = g->grayagain;  /* save original list */
1528  g->grayagain = NULL;
1529  lua_assert(g->ephemeron == NULL && g->weak == NULL);
1530  lua_assert(!iswhite(g->mainthread));
1531  g->gcstate = GCSatomic;
1532  markobject(g, L);  /* mark running thread */
1533  /* registry and global metatables may be changed by API */
1534  markvalue(g, &g->l_registry);
1535  markmt(g);  /* mark global metatables */
1536  work += propagateall(g);  /* empties 'gray' list */
1537  /* remark occasional upvalues of (maybe) dead threads */
1538  work += remarkupvals(g);
1539  work += propagateall(g);  /* propagate changes */
1540  g->gray = grayagain;
1541  work += propagateall(g);  /* traverse 'grayagain' list */
1542  convergeephemerons(g);
1543  /* at this point, all strongly accessible objects are marked. */
1544  /* Clear values from weak tables, before checking finalizers */
1545  clearbyvalues(g, g->weak, NULL);
1546  clearbyvalues(g, g->allweak, NULL);
1547  origweak = g->weak; origall = g->allweak;
1548  separatetobefnz(g, 0);  /* separate objects to be finalized */
1549  work += markbeingfnz(g);  /* mark objects that will be finalized */
1550  work += propagateall(g);  /* remark, to propagate 'resurrection' */
1551  convergeephemerons(g);
1552  /* at this point, all resurrected objects are marked. */
1553  /* remove dead objects from weak tables */
1554  clearbykeys(g, g->ephemeron);  /* clear keys from all ephemeron tables */
1555  clearbykeys(g, g->allweak);  /* clear keys from all 'allweak' tables */
1556  /* clear values from resurrected weak tables */
1557  clearbyvalues(g, g->weak, origweak);
1558  clearbyvalues(g, g->allweak, origall);
1559  luaS_clearcache(g);
1560  g->currentwhite = cast_byte(otherwhite(g));  /* flip current white */
1561  lua_assert(g->gray == NULL);
1562  return work;  /* estimate of slots marked by 'atomic' */
1563}
1564
1565
1566static int sweepstep (lua_State *L, global_State *g,
1567                      int nextstate, GCObject **nextlist) {
1568  if (g->sweepgc) {
1569    l_mem olddebt = g->GCdebt;
1570    int count;
1571    g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
1572    g->GCestimate += g->GCdebt - olddebt;  /* update estimate */
1573    return count;
1574  }
1575  else {  /* enter next state */
1576    g->gcstate = nextstate;
1577    g->sweepgc = nextlist;
1578    return 0;  /* no work done */
1579  }
1580}
1581
1582
1583static lu_mem singlestep (lua_State *L) {
1584  global_State *g = G(L);
1585  lu_mem work;
1586  lua_assert(!g->gcstopem);  /* collector is not reentrant */
1587  g->gcstopem = 1;  /* no emergency collections while collecting */
1588  switch (g->gcstate) {
1589    case GCSpause: {
1590      restartcollection(g);
1591      g->gcstate = GCSpropagate;
1592      work = 1;
1593      break;
1594    }
1595    case GCSpropagate: {
1596      if (g->gray == NULL) {  /* no more gray objects? */
1597        g->gcstate = GCSenteratomic;  /* finish propagate phase */
1598        work = 0;
1599      }
1600      else
1601        work = propagatemark(g);  /* traverse one gray object */
1602      break;
1603    }
1604    case GCSenteratomic: {
1605      work = atomic(L);  /* work is what was traversed by 'atomic' */
1606      entersweep(L);
1607      g->GCestimate = gettotalbytes(g);  /* first estimate */;
1608      break;
1609    }
1610    case GCSswpallgc: {  /* sweep "regular" objects */
1611      work = sweepstep(L, g, GCSswpfinobj, &g->finobj);
1612      break;
1613    }
1614    case GCSswpfinobj: {  /* sweep objects with finalizers */
1615      work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
1616      break;
1617    }
1618    case GCSswptobefnz: {  /* sweep objects to be finalized */
1619      work = sweepstep(L, g, GCSswpend, NULL);
1620      break;
1621    }
1622    case GCSswpend: {  /* finish sweeps */
1623      checkSizes(L, g);
1624      g->gcstate = GCScallfin;
1625      work = 0;
1626      break;
1627    }
1628    case GCScallfin: {  /* call remaining finalizers */
1629      if (g->tobefnz && !g->gcemergency) {
1630        g->gcstopem = 0;  /* ok collections during finalizers */
1631        work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST;
1632      }
1633      else {  /* emergency mode or no more finalizers */
1634        g->gcstate = GCSpause;  /* finish collection */
1635        work = 0;
1636      }
1637      break;
1638    }
1639    default: lua_assert(0); return 0;
1640  }
1641  g->gcstopem = 0;
1642  return work;
1643}
1644
1645
1646/*
1647** advances the garbage collector until it reaches a state allowed
1648** by 'statemask'
1649*/
1650void luaC_runtilstate (lua_State *L, int statesmask) {
1651  global_State *g = G(L);
1652  while (!testbit(statesmask, g->gcstate))
1653    singlestep(L);
1654}
1655
1656
1657
1658/*
1659** Performs a basic incremental step. The debt and step size are
1660** converted from bytes to "units of work"; then the function loops
1661** running single steps until adding that many units of work or
1662** finishing a cycle (pause state). Finally, it sets the debt that
1663** controls when next step will be performed.
1664*/
1665static void incstep (lua_State *L, global_State *g) {
1666  int stepmul = (getgcparam(g->gcstepmul) | 1);  /* avoid division by 0 */
1667  l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
1668  l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
1669                 ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
1670                 : MAX_LMEM;  /* overflow; keep maximum value */
1671  do {  /* repeat until pause or enough "credit" (negative debt) */
1672    lu_mem work = singlestep(L);  /* perform one single step */
1673    debt -= work;
1674  } while (debt > -stepsize && g->gcstate != GCSpause);
1675  if (g->gcstate == GCSpause)
1676    setpause(g);  /* pause until next cycle */
1677  else {
1678    debt = (debt / stepmul) * WORK2MEM;  /* convert 'work units' to bytes */
1679    luaE_setdebt(g, debt);
1680  }
1681}
1682
1683/*
1684** Performs a basic GC step if collector is running. (If collector is
1685** not running, set a reasonable debt to avoid it being called at
1686** every single check.)
1687*/
1688void luaC_step (lua_State *L) {
1689  global_State *g = G(L);
1690  if (!gcrunning(g))  /* not running? */
1691    luaE_setdebt(g, -2000);
1692  else {
1693    if(isdecGCmodegen(g))
1694      genstep(L, g);
1695    else
1696      incstep(L, g);
1697  }
1698}
1699
1700
1701/*
1702** Perform a full collection in incremental mode.
1703** Before running the collection, check 'keepinvariant'; if it is true,
1704** there may be some objects marked as black, so the collector has
1705** to sweep all objects to turn them back to white (as white has not
1706** changed, nothing will be collected).
1707*/
1708static void fullinc (lua_State *L, global_State *g) {
1709  if (keepinvariant(g))  /* black objects? */
1710    entersweep(L); /* sweep everything to turn them back to white */
1711  /* finish any pending sweep phase to start a new cycle */
1712  luaC_runtilstate(L, bitmask(GCSpause));
1713  luaC_runtilstate(L, bitmask(GCScallfin));  /* run up to finalizers */
1714  /* estimate must be correct after a full GC cycle */
1715  lua_assert(g->GCestimate == gettotalbytes(g));
1716  luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1717  setpause(g);
1718}
1719
1720
1721/*
1722** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1723** some operations which could change the interpreter state in some
1724** unexpected ways (running finalizers and shrinking some structures).
1725*/
1726void luaC_fullgc (lua_State *L, int isemergency) {
1727  global_State *g = G(L);
1728  lua_assert(!g->gcemergency);
1729  g->gcemergency = isemergency;  /* set flag */
1730  if (g->gckind == KGC_INC)
1731    fullinc(L, g);
1732  else
1733    fullgen(L, g);
1734  g->gcemergency = 0;
1735}
1736
1737/* }====================================================== */
1738
1739
1740