1#include "llvm/Transforms/Utils/VNCoercion.h"
2#include "llvm/Analysis/ConstantFolding.h"
3#include "llvm/Analysis/ValueTracking.h"
4#include "llvm/IR/IRBuilder.h"
5#include "llvm/IR/IntrinsicInst.h"
6#include "llvm/Support/Debug.h"
7
8#define DEBUG_TYPE "vncoerce"
9
10namespace llvm {
11namespace VNCoercion {
12
13static bool isFirstClassAggregateOrScalableType(Type *Ty) {
14  return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
15}
16
17/// Return true if coerceAvailableValueToLoadType will succeed.
18bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
19                                     const DataLayout &DL) {
20  Type *StoredTy = StoredVal->getType();
21
22  if (StoredTy == LoadTy)
23    return true;
24
25  // If the loaded/stored value is a first class array/struct, or scalable type,
26  // don't try to transform them. We need to be able to bitcast to integer.
27  if (isFirstClassAggregateOrScalableType(LoadTy) ||
28      isFirstClassAggregateOrScalableType(StoredTy))
29    return false;
30
31  uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedValue();
32
33  // The store size must be byte-aligned to support future type casts.
34  if (llvm::alignTo(StoreSize, 8) != StoreSize)
35    return false;
36
37  // The store has to be at least as big as the load.
38  if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedValue())
39    return false;
40
41  bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
42  bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
43  // Don't coerce non-integral pointers to integers or vice versa.
44  if (StoredNI != LoadNI) {
45    // As a special case, allow coercion of memset used to initialize
46    // an array w/null.  Despite non-integral pointers not generally having a
47    // specific bit pattern, we do assume null is zero.
48    if (auto *CI = dyn_cast<Constant>(StoredVal))
49      return CI->isNullValue();
50    return false;
51  } else if (StoredNI && LoadNI &&
52             StoredTy->getPointerAddressSpace() !=
53                 LoadTy->getPointerAddressSpace()) {
54    return false;
55  }
56
57
58  // The implementation below uses inttoptr for vectors of unequal size; we
59  // can't allow this for non integral pointers. We could teach it to extract
60  // exact subvectors if desired.
61  if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedValue())
62    return false;
63
64  if (StoredTy->isTargetExtTy() || LoadTy->isTargetExtTy())
65    return false;
66
67  return true;
68}
69
70/// If we saw a store of a value to memory, and
71/// then a load from a must-aliased pointer of a different type, try to coerce
72/// the stored value.  LoadedTy is the type of the load we want to replace.
73/// IRB is IRBuilder used to insert new instructions.
74///
75/// If we can't do it, return null.
76Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
77                                      IRBuilderBase &Helper,
78                                      const DataLayout &DL) {
79  assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
80         "precondition violation - materialization can't fail");
81  if (auto *C = dyn_cast<Constant>(StoredVal))
82    StoredVal = ConstantFoldConstant(C, DL);
83
84  // If this is already the right type, just return it.
85  Type *StoredValTy = StoredVal->getType();
86
87  uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedValue();
88  uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedValue();
89
90  // If the store and reload are the same size, we can always reuse it.
91  if (StoredValSize == LoadedValSize) {
92    // Pointer to Pointer -> use bitcast.
93    if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
94      StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
95    } else {
96      // Convert source pointers to integers, which can be bitcast.
97      if (StoredValTy->isPtrOrPtrVectorTy()) {
98        StoredValTy = DL.getIntPtrType(StoredValTy);
99        StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
100      }
101
102      Type *TypeToCastTo = LoadedTy;
103      if (TypeToCastTo->isPtrOrPtrVectorTy())
104        TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
105
106      if (StoredValTy != TypeToCastTo)
107        StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
108
109      // Cast to pointer if the load needs a pointer type.
110      if (LoadedTy->isPtrOrPtrVectorTy())
111        StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
112    }
113
114    if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
115      StoredVal = ConstantFoldConstant(C, DL);
116
117    return StoredVal;
118  }
119  // If the loaded value is smaller than the available value, then we can
120  // extract out a piece from it.  If the available value is too small, then we
121  // can't do anything.
122  assert(StoredValSize >= LoadedValSize &&
123         "canCoerceMustAliasedValueToLoad fail");
124
125  // Convert source pointers to integers, which can be manipulated.
126  if (StoredValTy->isPtrOrPtrVectorTy()) {
127    StoredValTy = DL.getIntPtrType(StoredValTy);
128    StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
129  }
130
131  // Convert vectors and fp to integer, which can be manipulated.
132  if (!StoredValTy->isIntegerTy()) {
133    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
134    StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
135  }
136
137  // If this is a big-endian system, we need to shift the value down to the low
138  // bits so that a truncate will work.
139  if (DL.isBigEndian()) {
140    uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedValue() -
141                        DL.getTypeStoreSizeInBits(LoadedTy).getFixedValue();
142    StoredVal = Helper.CreateLShr(
143        StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
144  }
145
146  // Truncate the integer to the right size now.
147  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
148  StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
149
150  if (LoadedTy != NewIntTy) {
151    // If the result is a pointer, inttoptr.
152    if (LoadedTy->isPtrOrPtrVectorTy())
153      StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
154    else
155      // Otherwise, bitcast.
156      StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
157  }
158
159  if (auto *C = dyn_cast<Constant>(StoredVal))
160    StoredVal = ConstantFoldConstant(C, DL);
161
162  return StoredVal;
163}
164
165/// This function is called when we have a memdep query of a load that ends up
166/// being a clobbering memory write (store, memset, memcpy, memmove).  This
167/// means that the write *may* provide bits used by the load but we can't be
168/// sure because the pointers don't must-alias.
169///
170/// Check this case to see if there is anything more we can do before we give
171/// up.  This returns -1 if we have to give up, or a byte number in the stored
172/// value of the piece that feeds the load.
173static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
174                                          Value *WritePtr,
175                                          uint64_t WriteSizeInBits,
176                                          const DataLayout &DL) {
177  // If the loaded/stored value is a first class array/struct, or scalable type,
178  // don't try to transform them. We need to be able to bitcast to integer.
179  if (isFirstClassAggregateOrScalableType(LoadTy))
180    return -1;
181
182  int64_t StoreOffset = 0, LoadOffset = 0;
183  Value *StoreBase =
184      GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
185  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
186  if (StoreBase != LoadBase)
187    return -1;
188
189  uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue();
190
191  if ((WriteSizeInBits & 7) | (LoadSize & 7))
192    return -1;
193  uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
194  LoadSize /= 8;
195
196  // If the Load isn't completely contained within the stored bits, we don't
197  // have all the bits to feed it.  We could do something crazy in the future
198  // (issue a smaller load then merge the bits in) but this seems unlikely to be
199  // valuable.
200  if (StoreOffset > LoadOffset ||
201      StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
202    return -1;
203
204  // Okay, we can do this transformation.  Return the number of bytes into the
205  // store that the load is.
206  return LoadOffset - StoreOffset;
207}
208
209/// This function is called when we have a
210/// memdep query of a load that ends up being a clobbering store.
211int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
212                                   StoreInst *DepSI, const DataLayout &DL) {
213  auto *StoredVal = DepSI->getValueOperand();
214
215  // Cannot handle reading from store of first-class aggregate or scalable type.
216  if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
217    return -1;
218
219  if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
220    return -1;
221
222  Value *StorePtr = DepSI->getPointerOperand();
223  uint64_t StoreSize =
224      DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedValue();
225  return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
226                                        DL);
227}
228
229/// This function is called when we have a
230/// memdep query of a load that ends up being clobbered by another load.  See if
231/// the other load can feed into the second load.
232int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
233                                  const DataLayout &DL) {
234  // Cannot handle reading from store of first-class aggregate yet.
235  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
236    return -1;
237
238  if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
239    return -1;
240
241  Value *DepPtr = DepLI->getPointerOperand();
242  uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedValue();
243  return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
244}
245
246int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
247                                     MemIntrinsic *MI, const DataLayout &DL) {
248  // If the mem operation is a non-constant size, we can't handle it.
249  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
250  if (!SizeCst)
251    return -1;
252  uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
253
254  // If this is memset, we just need to see if the offset is valid in the size
255  // of the memset..
256  if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) {
257    if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
258      auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue());
259      if (!CI || !CI->isZero())
260        return -1;
261    }
262    return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
263                                          MemSizeInBits, DL);
264  }
265
266  // If we have a memcpy/memmove, the only case we can handle is if this is a
267  // copy from constant memory.  In that case, we can read directly from the
268  // constant memory.
269  MemTransferInst *MTI = cast<MemTransferInst>(MI);
270
271  Constant *Src = dyn_cast<Constant>(MTI->getSource());
272  if (!Src)
273    return -1;
274
275  GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
276  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
277    return -1;
278
279  // See if the access is within the bounds of the transfer.
280  int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
281                                              MemSizeInBits, DL);
282  if (Offset == -1)
283    return Offset;
284
285  // Otherwise, see if we can constant fold a load from the constant with the
286  // offset applied as appropriate.
287  unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
288  if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
289    return Offset;
290  return -1;
291}
292
293static Value *getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset,
294                                         Type *LoadTy, IRBuilderBase &Builder,
295                                         const DataLayout &DL) {
296  LLVMContext &Ctx = SrcVal->getType()->getContext();
297
298  // If two pointers are in the same address space, they have the same size,
299  // so we don't need to do any truncation, etc. This avoids introducing
300  // ptrtoint instructions for pointers that may be non-integral.
301  if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
302      cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
303          cast<PointerType>(LoadTy)->getAddressSpace()) {
304    return SrcVal;
305  }
306
307  uint64_t StoreSize =
308      (DL.getTypeSizeInBits(SrcVal->getType()).getFixedValue() + 7) / 8;
309  uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedValue() + 7) / 8;
310  // Compute which bits of the stored value are being used by the load.  Convert
311  // to an integer type to start with.
312  if (SrcVal->getType()->isPtrOrPtrVectorTy())
313    SrcVal =
314        Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
315  if (!SrcVal->getType()->isIntegerTy())
316    SrcVal =
317        Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
318
319  // Shift the bits to the least significant depending on endianness.
320  unsigned ShiftAmt;
321  if (DL.isLittleEndian())
322    ShiftAmt = Offset * 8;
323  else
324    ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
325  if (ShiftAmt)
326    SrcVal = Builder.CreateLShr(SrcVal,
327                                ConstantInt::get(SrcVal->getType(), ShiftAmt));
328
329  if (LoadSize != StoreSize)
330    SrcVal = Builder.CreateTruncOrBitCast(SrcVal,
331                                          IntegerType::get(Ctx, LoadSize * 8));
332  return SrcVal;
333}
334
335Value *getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
336                       Instruction *InsertPt, const DataLayout &DL) {
337
338#ifndef NDEBUG
339  unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
340  unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
341  assert(Offset + LoadSize <= SrcValSize);
342#endif
343  IRBuilder<> Builder(InsertPt);
344  SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
345  return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
346}
347
348Constant *getConstantValueForLoad(Constant *SrcVal, unsigned Offset,
349                                  Type *LoadTy, const DataLayout &DL) {
350#ifndef NDEBUG
351  unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
352  unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
353  assert(Offset + LoadSize <= SrcValSize);
354#endif
355  return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL);
356}
357
358/// This function is called when we have a
359/// memdep query of a load that ends up being a clobbering mem intrinsic.
360Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
361                              Type *LoadTy, Instruction *InsertPt,
362                              const DataLayout &DL) {
363  LLVMContext &Ctx = LoadTy->getContext();
364  uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
365  IRBuilder<> Builder(InsertPt);
366
367  // We know that this method is only called when the mem transfer fully
368  // provides the bits for the load.
369  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
370    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
371    // independently of what the offset is.
372    Value *Val = MSI->getValue();
373    if (LoadSize != 1)
374      Val =
375          Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
376    Value *OneElt = Val;
377
378    // Splat the value out to the right number of bits.
379    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
380      // If we can double the number of bytes set, do it.
381      if (NumBytesSet * 2 <= LoadSize) {
382        Value *ShVal = Builder.CreateShl(
383            Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
384        Val = Builder.CreateOr(Val, ShVal);
385        NumBytesSet <<= 1;
386        continue;
387      }
388
389      // Otherwise insert one byte at a time.
390      Value *ShVal =
391          Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
392      Val = Builder.CreateOr(OneElt, ShVal);
393      ++NumBytesSet;
394    }
395
396    return coerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
397  }
398
399  // Otherwise, this is a memcpy/memmove from a constant global.
400  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
401  Constant *Src = cast<Constant>(MTI->getSource());
402  unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
403  return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
404                                      DL);
405}
406
407Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
408                                         Type *LoadTy, const DataLayout &DL) {
409  LLVMContext &Ctx = LoadTy->getContext();
410  uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
411
412  // We know that this method is only called when the mem transfer fully
413  // provides the bits for the load.
414  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
415    auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
416    if (!Val)
417      return nullptr;
418
419    Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue()));
420    return ConstantFoldLoadFromConst(Val, LoadTy, DL);
421  }
422
423  // Otherwise, this is a memcpy/memmove from a constant global.
424  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
425  Constant *Src = cast<Constant>(MTI->getSource());
426  unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
427  return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
428                                      DL);
429}
430} // namespace VNCoercion
431} // namespace llvm
432