1//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements whole program optimization of virtual calls in cases
10// where we know (via !type metadata) that the list of callees is fixed. This
11// includes the following:
12// - Single implementation devirtualization: if a virtual call has a single
13//   possible callee, replace all calls with a direct call to that callee.
14// - Virtual constant propagation: if the virtual function's return type is an
15//   integer <=64 bits and all possible callees are readnone, for each class and
16//   each list of constant arguments: evaluate the function, store the return
17//   value alongside the virtual table, and rewrite each virtual call as a load
18//   from the virtual table.
19// - Uniform return value optimization: if the conditions for virtual constant
20//   propagation hold and each function returns the same constant value, replace
21//   each virtual call with that constant.
22// - Unique return value optimization for i1 return values: if the conditions
23//   for virtual constant propagation hold and a single vtable's function
24//   returns 0, or a single vtable's function returns 1, replace each virtual
25//   call with a comparison of the vptr against that vtable's address.
26//
27// This pass is intended to be used during the regular and thin LTO pipelines:
28//
29// During regular LTO, the pass determines the best optimization for each
30// virtual call and applies the resolutions directly to virtual calls that are
31// eligible for virtual call optimization (i.e. calls that use either of the
32// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33//
34// During hybrid Regular/ThinLTO, the pass operates in two phases:
35// - Export phase: this is run during the thin link over a single merged module
36//   that contains all vtables with !type metadata that participate in the link.
37//   The pass computes a resolution for each virtual call and stores it in the
38//   type identifier summary.
39// - Import phase: this is run during the thin backends over the individual
40//   modules. The pass applies the resolutions previously computed during the
41//   import phase to each eligible virtual call.
42//
43// During ThinLTO, the pass operates in two phases:
44// - Export phase: this is run during the thin link over the index which
45//   contains a summary of all vtables with !type metadata that participate in
46//   the link. It computes a resolution for each virtual call and stores it in
47//   the type identifier summary. Only single implementation devirtualization
48//   is supported.
49// - Import phase: (same as with hybrid case above).
50//
51//===----------------------------------------------------------------------===//
52
53#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54#include "llvm/ADT/ArrayRef.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/DenseMapInfo.h"
57#include "llvm/ADT/DenseSet.h"
58#include "llvm/ADT/MapVector.h"
59#include "llvm/ADT/SmallVector.h"
60#include "llvm/ADT/Statistic.h"
61#include "llvm/Analysis/AssumptionCache.h"
62#include "llvm/Analysis/BasicAliasAnalysis.h"
63#include "llvm/Analysis/OptimizationRemarkEmitter.h"
64#include "llvm/Analysis/TypeMetadataUtils.h"
65#include "llvm/Bitcode/BitcodeReader.h"
66#include "llvm/Bitcode/BitcodeWriter.h"
67#include "llvm/IR/Constants.h"
68#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/DebugLoc.h"
70#include "llvm/IR/DerivedTypes.h"
71#include "llvm/IR/Dominators.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/GlobalAlias.h"
74#include "llvm/IR/GlobalVariable.h"
75#include "llvm/IR/IRBuilder.h"
76#include "llvm/IR/InstrTypes.h"
77#include "llvm/IR/Instruction.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/Intrinsics.h"
80#include "llvm/IR/LLVMContext.h"
81#include "llvm/IR/MDBuilder.h"
82#include "llvm/IR/Metadata.h"
83#include "llvm/IR/Module.h"
84#include "llvm/IR/ModuleSummaryIndexYAML.h"
85#include "llvm/Support/Casting.h"
86#include "llvm/Support/CommandLine.h"
87#include "llvm/Support/Errc.h"
88#include "llvm/Support/Error.h"
89#include "llvm/Support/FileSystem.h"
90#include "llvm/Support/GlobPattern.h"
91#include "llvm/Support/MathExtras.h"
92#include "llvm/TargetParser/Triple.h"
93#include "llvm/Transforms/IPO.h"
94#include "llvm/Transforms/IPO/FunctionAttrs.h"
95#include "llvm/Transforms/Utils/BasicBlockUtils.h"
96#include "llvm/Transforms/Utils/CallPromotionUtils.h"
97#include "llvm/Transforms/Utils/Evaluator.h"
98#include <algorithm>
99#include <cstddef>
100#include <map>
101#include <set>
102#include <string>
103
104using namespace llvm;
105using namespace wholeprogramdevirt;
106
107#define DEBUG_TYPE "wholeprogramdevirt"
108
109STATISTIC(NumDevirtTargets, "Number of whole program devirtualization targets");
110STATISTIC(NumSingleImpl, "Number of single implementation devirtualizations");
111STATISTIC(NumBranchFunnel, "Number of branch funnels");
112STATISTIC(NumUniformRetVal, "Number of uniform return value optimizations");
113STATISTIC(NumUniqueRetVal, "Number of unique return value optimizations");
114STATISTIC(NumVirtConstProp1Bit,
115          "Number of 1 bit virtual constant propagations");
116STATISTIC(NumVirtConstProp, "Number of virtual constant propagations");
117
118static cl::opt<PassSummaryAction> ClSummaryAction(
119    "wholeprogramdevirt-summary-action",
120    cl::desc("What to do with the summary when running this pass"),
121    cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
122               clEnumValN(PassSummaryAction::Import, "import",
123                          "Import typeid resolutions from summary and globals"),
124               clEnumValN(PassSummaryAction::Export, "export",
125                          "Export typeid resolutions to summary and globals")),
126    cl::Hidden);
127
128static cl::opt<std::string> ClReadSummary(
129    "wholeprogramdevirt-read-summary",
130    cl::desc(
131        "Read summary from given bitcode or YAML file before running pass"),
132    cl::Hidden);
133
134static cl::opt<std::string> ClWriteSummary(
135    "wholeprogramdevirt-write-summary",
136    cl::desc("Write summary to given bitcode or YAML file after running pass. "
137             "Output file format is deduced from extension: *.bc means writing "
138             "bitcode, otherwise YAML"),
139    cl::Hidden);
140
141static cl::opt<unsigned>
142    ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
143                cl::init(10),
144                cl::desc("Maximum number of call targets per "
145                         "call site to enable branch funnels"));
146
147static cl::opt<bool>
148    PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
149                       cl::desc("Print index-based devirtualization messages"));
150
151/// Provide a way to force enable whole program visibility in tests.
152/// This is needed to support legacy tests that don't contain
153/// !vcall_visibility metadata (the mere presense of type tests
154/// previously implied hidden visibility).
155static cl::opt<bool>
156    WholeProgramVisibility("whole-program-visibility", cl::Hidden,
157                           cl::desc("Enable whole program visibility"));
158
159/// Provide a way to force disable whole program for debugging or workarounds,
160/// when enabled via the linker.
161static cl::opt<bool> DisableWholeProgramVisibility(
162    "disable-whole-program-visibility", cl::Hidden,
163    cl::desc("Disable whole program visibility (overrides enabling options)"));
164
165/// Provide way to prevent certain function from being devirtualized
166static cl::list<std::string>
167    SkipFunctionNames("wholeprogramdevirt-skip",
168                      cl::desc("Prevent function(s) from being devirtualized"),
169                      cl::Hidden, cl::CommaSeparated);
170
171/// Mechanism to add runtime checking of devirtualization decisions, optionally
172/// trapping or falling back to indirect call on any that are not correct.
173/// Trapping mode is useful for debugging undefined behavior leading to failures
174/// with WPD. Fallback mode is useful for ensuring safety when whole program
175/// visibility may be compromised.
176enum WPDCheckMode { None, Trap, Fallback };
177static cl::opt<WPDCheckMode> DevirtCheckMode(
178    "wholeprogramdevirt-check", cl::Hidden,
179    cl::desc("Type of checking for incorrect devirtualizations"),
180    cl::values(clEnumValN(WPDCheckMode::None, "none", "No checking"),
181               clEnumValN(WPDCheckMode::Trap, "trap", "Trap when incorrect"),
182               clEnumValN(WPDCheckMode::Fallback, "fallback",
183                          "Fallback to indirect when incorrect")));
184
185namespace {
186struct PatternList {
187  std::vector<GlobPattern> Patterns;
188  template <class T> void init(const T &StringList) {
189    for (const auto &S : StringList)
190      if (Expected<GlobPattern> Pat = GlobPattern::create(S))
191        Patterns.push_back(std::move(*Pat));
192  }
193  bool match(StringRef S) {
194    for (const GlobPattern &P : Patterns)
195      if (P.match(S))
196        return true;
197    return false;
198  }
199};
200} // namespace
201
202// Find the minimum offset that we may store a value of size Size bits at. If
203// IsAfter is set, look for an offset before the object, otherwise look for an
204// offset after the object.
205uint64_t
206wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
207                                     bool IsAfter, uint64_t Size) {
208  // Find a minimum offset taking into account only vtable sizes.
209  uint64_t MinByte = 0;
210  for (const VirtualCallTarget &Target : Targets) {
211    if (IsAfter)
212      MinByte = std::max(MinByte, Target.minAfterBytes());
213    else
214      MinByte = std::max(MinByte, Target.minBeforeBytes());
215  }
216
217  // Build a vector of arrays of bytes covering, for each target, a slice of the
218  // used region (see AccumBitVector::BytesUsed in
219  // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
220  // this aligns the used regions to start at MinByte.
221  //
222  // In this example, A, B and C are vtables, # is a byte already allocated for
223  // a virtual function pointer, AAAA... (etc.) are the used regions for the
224  // vtables and Offset(X) is the value computed for the Offset variable below
225  // for X.
226  //
227  //                    Offset(A)
228  //                    |       |
229  //                            |MinByte
230  // A: ################AAAAAAAA|AAAAAAAA
231  // B: ########BBBBBBBBBBBBBBBB|BBBB
232  // C: ########################|CCCCCCCCCCCCCCCC
233  //            |   Offset(B)   |
234  //
235  // This code produces the slices of A, B and C that appear after the divider
236  // at MinByte.
237  std::vector<ArrayRef<uint8_t>> Used;
238  for (const VirtualCallTarget &Target : Targets) {
239    ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
240                                       : Target.TM->Bits->Before.BytesUsed;
241    uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
242                              : MinByte - Target.minBeforeBytes();
243
244    // Disregard used regions that are smaller than Offset. These are
245    // effectively all-free regions that do not need to be checked.
246    if (VTUsed.size() > Offset)
247      Used.push_back(VTUsed.slice(Offset));
248  }
249
250  if (Size == 1) {
251    // Find a free bit in each member of Used.
252    for (unsigned I = 0;; ++I) {
253      uint8_t BitsUsed = 0;
254      for (auto &&B : Used)
255        if (I < B.size())
256          BitsUsed |= B[I];
257      if (BitsUsed != 0xff)
258        return (MinByte + I) * 8 + llvm::countr_zero(uint8_t(~BitsUsed));
259    }
260  } else {
261    // Find a free (Size/8) byte region in each member of Used.
262    // FIXME: see if alignment helps.
263    for (unsigned I = 0;; ++I) {
264      for (auto &&B : Used) {
265        unsigned Byte = 0;
266        while ((I + Byte) < B.size() && Byte < (Size / 8)) {
267          if (B[I + Byte])
268            goto NextI;
269          ++Byte;
270        }
271      }
272      return (MinByte + I) * 8;
273    NextI:;
274    }
275  }
276}
277
278void wholeprogramdevirt::setBeforeReturnValues(
279    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
280    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
281  if (BitWidth == 1)
282    OffsetByte = -(AllocBefore / 8 + 1);
283  else
284    OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
285  OffsetBit = AllocBefore % 8;
286
287  for (VirtualCallTarget &Target : Targets) {
288    if (BitWidth == 1)
289      Target.setBeforeBit(AllocBefore);
290    else
291      Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
292  }
293}
294
295void wholeprogramdevirt::setAfterReturnValues(
296    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
297    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
298  if (BitWidth == 1)
299    OffsetByte = AllocAfter / 8;
300  else
301    OffsetByte = (AllocAfter + 7) / 8;
302  OffsetBit = AllocAfter % 8;
303
304  for (VirtualCallTarget &Target : Targets) {
305    if (BitWidth == 1)
306      Target.setAfterBit(AllocAfter);
307    else
308      Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
309  }
310}
311
312VirtualCallTarget::VirtualCallTarget(GlobalValue *Fn, const TypeMemberInfo *TM)
313    : Fn(Fn), TM(TM),
314      IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()),
315      WasDevirt(false) {}
316
317namespace {
318
319// A slot in a set of virtual tables. The TypeID identifies the set of virtual
320// tables, and the ByteOffset is the offset in bytes from the address point to
321// the virtual function pointer.
322struct VTableSlot {
323  Metadata *TypeID;
324  uint64_t ByteOffset;
325};
326
327} // end anonymous namespace
328
329namespace llvm {
330
331template <> struct DenseMapInfo<VTableSlot> {
332  static VTableSlot getEmptyKey() {
333    return {DenseMapInfo<Metadata *>::getEmptyKey(),
334            DenseMapInfo<uint64_t>::getEmptyKey()};
335  }
336  static VTableSlot getTombstoneKey() {
337    return {DenseMapInfo<Metadata *>::getTombstoneKey(),
338            DenseMapInfo<uint64_t>::getTombstoneKey()};
339  }
340  static unsigned getHashValue(const VTableSlot &I) {
341    return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
342           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
343  }
344  static bool isEqual(const VTableSlot &LHS,
345                      const VTableSlot &RHS) {
346    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
347  }
348};
349
350template <> struct DenseMapInfo<VTableSlotSummary> {
351  static VTableSlotSummary getEmptyKey() {
352    return {DenseMapInfo<StringRef>::getEmptyKey(),
353            DenseMapInfo<uint64_t>::getEmptyKey()};
354  }
355  static VTableSlotSummary getTombstoneKey() {
356    return {DenseMapInfo<StringRef>::getTombstoneKey(),
357            DenseMapInfo<uint64_t>::getTombstoneKey()};
358  }
359  static unsigned getHashValue(const VTableSlotSummary &I) {
360    return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
361           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
362  }
363  static bool isEqual(const VTableSlotSummary &LHS,
364                      const VTableSlotSummary &RHS) {
365    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
366  }
367};
368
369} // end namespace llvm
370
371// Returns true if the function must be unreachable based on ValueInfo.
372//
373// In particular, identifies a function as unreachable in the following
374// conditions
375//   1) All summaries are live.
376//   2) All function summaries indicate it's unreachable
377//   3) There is no non-function with the same GUID (which is rare)
378static bool mustBeUnreachableFunction(ValueInfo TheFnVI) {
379  if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) {
380    // Returns false if ValueInfo is absent, or the summary list is empty
381    // (e.g., function declarations).
382    return false;
383  }
384
385  for (const auto &Summary : TheFnVI.getSummaryList()) {
386    // Conservatively returns false if any non-live functions are seen.
387    // In general either all summaries should be live or all should be dead.
388    if (!Summary->isLive())
389      return false;
390    if (auto *FS = dyn_cast<FunctionSummary>(Summary->getBaseObject())) {
391      if (!FS->fflags().MustBeUnreachable)
392        return false;
393    }
394    // Be conservative if a non-function has the same GUID (which is rare).
395    else
396      return false;
397  }
398  // All function summaries are live and all of them agree that the function is
399  // unreachble.
400  return true;
401}
402
403namespace {
404// A virtual call site. VTable is the loaded virtual table pointer, and CS is
405// the indirect virtual call.
406struct VirtualCallSite {
407  Value *VTable = nullptr;
408  CallBase &CB;
409
410  // If non-null, this field points to the associated unsafe use count stored in
411  // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
412  // of that field for details.
413  unsigned *NumUnsafeUses = nullptr;
414
415  void
416  emitRemark(const StringRef OptName, const StringRef TargetName,
417             function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
418    Function *F = CB.getCaller();
419    DebugLoc DLoc = CB.getDebugLoc();
420    BasicBlock *Block = CB.getParent();
421
422    using namespace ore;
423    OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
424                      << NV("Optimization", OptName)
425                      << ": devirtualized a call to "
426                      << NV("FunctionName", TargetName));
427  }
428
429  void replaceAndErase(
430      const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
431      function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
432      Value *New) {
433    if (RemarksEnabled)
434      emitRemark(OptName, TargetName, OREGetter);
435    CB.replaceAllUsesWith(New);
436    if (auto *II = dyn_cast<InvokeInst>(&CB)) {
437      BranchInst::Create(II->getNormalDest(), &CB);
438      II->getUnwindDest()->removePredecessor(II->getParent());
439    }
440    CB.eraseFromParent();
441    // This use is no longer unsafe.
442    if (NumUnsafeUses)
443      --*NumUnsafeUses;
444  }
445};
446
447// Call site information collected for a specific VTableSlot and possibly a list
448// of constant integer arguments. The grouping by arguments is handled by the
449// VTableSlotInfo class.
450struct CallSiteInfo {
451  /// The set of call sites for this slot. Used during regular LTO and the
452  /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
453  /// call sites that appear in the merged module itself); in each of these
454  /// cases we are directly operating on the call sites at the IR level.
455  std::vector<VirtualCallSite> CallSites;
456
457  /// Whether all call sites represented by this CallSiteInfo, including those
458  /// in summaries, have been devirtualized. This starts off as true because a
459  /// default constructed CallSiteInfo represents no call sites.
460  bool AllCallSitesDevirted = true;
461
462  // These fields are used during the export phase of ThinLTO and reflect
463  // information collected from function summaries.
464
465  /// Whether any function summary contains an llvm.assume(llvm.type.test) for
466  /// this slot.
467  bool SummaryHasTypeTestAssumeUsers = false;
468
469  /// CFI-specific: a vector containing the list of function summaries that use
470  /// the llvm.type.checked.load intrinsic and therefore will require
471  /// resolutions for llvm.type.test in order to implement CFI checks if
472  /// devirtualization was unsuccessful. If devirtualization was successful, the
473  /// pass will clear this vector by calling markDevirt(). If at the end of the
474  /// pass the vector is non-empty, we will need to add a use of llvm.type.test
475  /// to each of the function summaries in the vector.
476  std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
477  std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
478
479  bool isExported() const {
480    return SummaryHasTypeTestAssumeUsers ||
481           !SummaryTypeCheckedLoadUsers.empty();
482  }
483
484  void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
485    SummaryTypeCheckedLoadUsers.push_back(FS);
486    AllCallSitesDevirted = false;
487  }
488
489  void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
490    SummaryTypeTestAssumeUsers.push_back(FS);
491    SummaryHasTypeTestAssumeUsers = true;
492    AllCallSitesDevirted = false;
493  }
494
495  void markDevirt() {
496    AllCallSitesDevirted = true;
497
498    // As explained in the comment for SummaryTypeCheckedLoadUsers.
499    SummaryTypeCheckedLoadUsers.clear();
500  }
501};
502
503// Call site information collected for a specific VTableSlot.
504struct VTableSlotInfo {
505  // The set of call sites which do not have all constant integer arguments
506  // (excluding "this").
507  CallSiteInfo CSInfo;
508
509  // The set of call sites with all constant integer arguments (excluding
510  // "this"), grouped by argument list.
511  std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
512
513  void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
514
515private:
516  CallSiteInfo &findCallSiteInfo(CallBase &CB);
517};
518
519CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
520  std::vector<uint64_t> Args;
521  auto *CBType = dyn_cast<IntegerType>(CB.getType());
522  if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
523    return CSInfo;
524  for (auto &&Arg : drop_begin(CB.args())) {
525    auto *CI = dyn_cast<ConstantInt>(Arg);
526    if (!CI || CI->getBitWidth() > 64)
527      return CSInfo;
528    Args.push_back(CI->getZExtValue());
529  }
530  return ConstCSInfo[Args];
531}
532
533void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
534                                 unsigned *NumUnsafeUses) {
535  auto &CSI = findCallSiteInfo(CB);
536  CSI.AllCallSitesDevirted = false;
537  CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
538}
539
540struct DevirtModule {
541  Module &M;
542  function_ref<AAResults &(Function &)> AARGetter;
543  function_ref<DominatorTree &(Function &)> LookupDomTree;
544
545  ModuleSummaryIndex *ExportSummary;
546  const ModuleSummaryIndex *ImportSummary;
547
548  IntegerType *Int8Ty;
549  PointerType *Int8PtrTy;
550  IntegerType *Int32Ty;
551  IntegerType *Int64Ty;
552  IntegerType *IntPtrTy;
553  /// Sizeless array type, used for imported vtables. This provides a signal
554  /// to analyzers that these imports may alias, as they do for example
555  /// when multiple unique return values occur in the same vtable.
556  ArrayType *Int8Arr0Ty;
557
558  bool RemarksEnabled;
559  function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
560
561  MapVector<VTableSlot, VTableSlotInfo> CallSlots;
562
563  // Calls that have already been optimized. We may add a call to multiple
564  // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
565  // optimize a call more than once.
566  SmallPtrSet<CallBase *, 8> OptimizedCalls;
567
568  // Store calls that had their ptrauth bundle removed. They are to be deleted
569  // at the end of the optimization.
570  SmallVector<CallBase *, 8> CallsWithPtrAuthBundleRemoved;
571
572  // This map keeps track of the number of "unsafe" uses of a loaded function
573  // pointer. The key is the associated llvm.type.test intrinsic call generated
574  // by this pass. An unsafe use is one that calls the loaded function pointer
575  // directly. Every time we eliminate an unsafe use (for example, by
576  // devirtualizing it or by applying virtual constant propagation), we
577  // decrement the value stored in this map. If a value reaches zero, we can
578  // eliminate the type check by RAUWing the associated llvm.type.test call with
579  // true.
580  std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
581  PatternList FunctionsToSkip;
582
583  DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
584               function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
585               function_ref<DominatorTree &(Function &)> LookupDomTree,
586               ModuleSummaryIndex *ExportSummary,
587               const ModuleSummaryIndex *ImportSummary)
588      : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
589        ExportSummary(ExportSummary), ImportSummary(ImportSummary),
590        Int8Ty(Type::getInt8Ty(M.getContext())),
591        Int8PtrTy(PointerType::getUnqual(M.getContext())),
592        Int32Ty(Type::getInt32Ty(M.getContext())),
593        Int64Ty(Type::getInt64Ty(M.getContext())),
594        IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
595        Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
596        RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
597    assert(!(ExportSummary && ImportSummary));
598    FunctionsToSkip.init(SkipFunctionNames);
599  }
600
601  bool areRemarksEnabled();
602
603  void
604  scanTypeTestUsers(Function *TypeTestFunc,
605                    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
606  void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
607
608  void buildTypeIdentifierMap(
609      std::vector<VTableBits> &Bits,
610      DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
611
612  bool
613  tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
614                            const std::set<TypeMemberInfo> &TypeMemberInfos,
615                            uint64_t ByteOffset,
616                            ModuleSummaryIndex *ExportSummary);
617
618  void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
619                             bool &IsExported);
620  bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
621                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
622                           VTableSlotInfo &SlotInfo,
623                           WholeProgramDevirtResolution *Res);
624
625  void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
626                              bool &IsExported);
627  void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
628                            VTableSlotInfo &SlotInfo,
629                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
630
631  bool tryEvaluateFunctionsWithArgs(
632      MutableArrayRef<VirtualCallTarget> TargetsForSlot,
633      ArrayRef<uint64_t> Args);
634
635  void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
636                             uint64_t TheRetVal);
637  bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
638                           CallSiteInfo &CSInfo,
639                           WholeProgramDevirtResolution::ByArg *Res);
640
641  // Returns the global symbol name that is used to export information about the
642  // given vtable slot and list of arguments.
643  std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
644                            StringRef Name);
645
646  bool shouldExportConstantsAsAbsoluteSymbols();
647
648  // This function is called during the export phase to create a symbol
649  // definition containing information about the given vtable slot and list of
650  // arguments.
651  void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
652                    Constant *C);
653  void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
654                      uint32_t Const, uint32_t &Storage);
655
656  // This function is called during the import phase to create a reference to
657  // the symbol definition created during the export phase.
658  Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
659                         StringRef Name);
660  Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
661                           StringRef Name, IntegerType *IntTy,
662                           uint32_t Storage);
663
664  Constant *getMemberAddr(const TypeMemberInfo *M);
665
666  void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
667                            Constant *UniqueMemberAddr);
668  bool tryUniqueRetValOpt(unsigned BitWidth,
669                          MutableArrayRef<VirtualCallTarget> TargetsForSlot,
670                          CallSiteInfo &CSInfo,
671                          WholeProgramDevirtResolution::ByArg *Res,
672                          VTableSlot Slot, ArrayRef<uint64_t> Args);
673
674  void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
675                             Constant *Byte, Constant *Bit);
676  bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
677                           VTableSlotInfo &SlotInfo,
678                           WholeProgramDevirtResolution *Res, VTableSlot Slot);
679
680  void rebuildGlobal(VTableBits &B);
681
682  // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
683  void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
684
685  // If we were able to eliminate all unsafe uses for a type checked load,
686  // eliminate the associated type tests by replacing them with true.
687  void removeRedundantTypeTests();
688
689  bool run();
690
691  // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
692  //
693  // Caller guarantees that `ExportSummary` is not nullptr.
694  static ValueInfo lookUpFunctionValueInfo(Function *TheFn,
695                                           ModuleSummaryIndex *ExportSummary);
696
697  // Returns true if the function definition must be unreachable.
698  //
699  // Note if this helper function returns true, `F` is guaranteed
700  // to be unreachable; if it returns false, `F` might still
701  // be unreachable but not covered by this helper function.
702  //
703  // Implementation-wise, if function definition is present, IR is analyzed; if
704  // not, look up function flags from ExportSummary as a fallback.
705  static bool mustBeUnreachableFunction(Function *const F,
706                                        ModuleSummaryIndex *ExportSummary);
707
708  // Lower the module using the action and summary passed as command line
709  // arguments. For testing purposes only.
710  static bool
711  runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
712                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
713                function_ref<DominatorTree &(Function &)> LookupDomTree);
714};
715
716struct DevirtIndex {
717  ModuleSummaryIndex &ExportSummary;
718  // The set in which to record GUIDs exported from their module by
719  // devirtualization, used by client to ensure they are not internalized.
720  std::set<GlobalValue::GUID> &ExportedGUIDs;
721  // A map in which to record the information necessary to locate the WPD
722  // resolution for local targets in case they are exported by cross module
723  // importing.
724  std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
725
726  MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
727
728  PatternList FunctionsToSkip;
729
730  DevirtIndex(
731      ModuleSummaryIndex &ExportSummary,
732      std::set<GlobalValue::GUID> &ExportedGUIDs,
733      std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
734      : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
735        LocalWPDTargetsMap(LocalWPDTargetsMap) {
736    FunctionsToSkip.init(SkipFunctionNames);
737  }
738
739  bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
740                                 const TypeIdCompatibleVtableInfo TIdInfo,
741                                 uint64_t ByteOffset);
742
743  bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
744                           VTableSlotSummary &SlotSummary,
745                           VTableSlotInfo &SlotInfo,
746                           WholeProgramDevirtResolution *Res,
747                           std::set<ValueInfo> &DevirtTargets);
748
749  void run();
750};
751} // end anonymous namespace
752
753PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
754                                              ModuleAnalysisManager &AM) {
755  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
756  auto AARGetter = [&](Function &F) -> AAResults & {
757    return FAM.getResult<AAManager>(F);
758  };
759  auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
760    return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
761  };
762  auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
763    return FAM.getResult<DominatorTreeAnalysis>(F);
764  };
765  if (UseCommandLine) {
766    if (!DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
767      return PreservedAnalyses::all();
768    return PreservedAnalyses::none();
769  }
770  if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
771                    ImportSummary)
772           .run())
773    return PreservedAnalyses::all();
774  return PreservedAnalyses::none();
775}
776
777// Enable whole program visibility if enabled by client (e.g. linker) or
778// internal option, and not force disabled.
779bool llvm::hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
780  return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
781         !DisableWholeProgramVisibility;
782}
783
784static bool
785typeIDVisibleToRegularObj(StringRef TypeID,
786                          function_ref<bool(StringRef)> IsVisibleToRegularObj) {
787  // TypeID for member function pointer type is an internal construct
788  // and won't exist in IsVisibleToRegularObj. The full TypeID
789  // will be present and participate in invalidation.
790  if (TypeID.ends_with(".virtual"))
791    return false;
792
793  // TypeID that doesn't start with Itanium mangling (_ZTS) will be
794  // non-externally visible types which cannot interact with
795  // external native files. See CodeGenModule::CreateMetadataIdentifierImpl.
796  if (!TypeID.consume_front("_ZTS"))
797    return false;
798
799  // TypeID is keyed off the type name symbol (_ZTS). However, the native
800  // object may not contain this symbol if it does not contain a key
801  // function for the base type and thus only contains a reference to the
802  // type info (_ZTI). To catch this case we query using the type info
803  // symbol corresponding to the TypeID.
804  std::string typeInfo = ("_ZTI" + TypeID).str();
805  return IsVisibleToRegularObj(typeInfo);
806}
807
808static bool
809skipUpdateDueToValidation(GlobalVariable &GV,
810                          function_ref<bool(StringRef)> IsVisibleToRegularObj) {
811  SmallVector<MDNode *, 2> Types;
812  GV.getMetadata(LLVMContext::MD_type, Types);
813
814  for (auto Type : Types)
815    if (auto *TypeID = dyn_cast<MDString>(Type->getOperand(1).get()))
816      return typeIDVisibleToRegularObj(TypeID->getString(),
817                                       IsVisibleToRegularObj);
818
819  return false;
820}
821
822/// If whole program visibility asserted, then upgrade all public vcall
823/// visibility metadata on vtable definitions to linkage unit visibility in
824/// Module IR (for regular or hybrid LTO).
825void llvm::updateVCallVisibilityInModule(
826    Module &M, bool WholeProgramVisibilityEnabledInLTO,
827    const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
828    bool ValidateAllVtablesHaveTypeInfos,
829    function_ref<bool(StringRef)> IsVisibleToRegularObj) {
830  if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
831    return;
832  for (GlobalVariable &GV : M.globals()) {
833    // Add linkage unit visibility to any variable with type metadata, which are
834    // the vtable definitions. We won't have an existing vcall_visibility
835    // metadata on vtable definitions with public visibility.
836    if (GV.hasMetadata(LLVMContext::MD_type) &&
837        GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
838        // Don't upgrade the visibility for symbols exported to the dynamic
839        // linker, as we have no information on their eventual use.
840        !DynamicExportSymbols.count(GV.getGUID()) &&
841        // With validation enabled, we want to exclude symbols visible to
842        // regular objects. Local symbols will be in this group due to the
843        // current implementation but those with VCallVisibilityTranslationUnit
844        // will have already been marked in clang so are unaffected.
845        !(ValidateAllVtablesHaveTypeInfos &&
846          skipUpdateDueToValidation(GV, IsVisibleToRegularObj)))
847      GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
848  }
849}
850
851void llvm::updatePublicTypeTestCalls(Module &M,
852                                     bool WholeProgramVisibilityEnabledInLTO) {
853  Function *PublicTypeTestFunc =
854      M.getFunction(Intrinsic::getName(Intrinsic::public_type_test));
855  if (!PublicTypeTestFunc)
856    return;
857  if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) {
858    Function *TypeTestFunc =
859        Intrinsic::getDeclaration(&M, Intrinsic::type_test);
860    for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
861      auto *CI = cast<CallInst>(U.getUser());
862      auto *NewCI = CallInst::Create(
863          TypeTestFunc, {CI->getArgOperand(0), CI->getArgOperand(1)},
864          std::nullopt, "", CI);
865      CI->replaceAllUsesWith(NewCI);
866      CI->eraseFromParent();
867    }
868  } else {
869    auto *True = ConstantInt::getTrue(M.getContext());
870    for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
871      auto *CI = cast<CallInst>(U.getUser());
872      CI->replaceAllUsesWith(True);
873      CI->eraseFromParent();
874    }
875  }
876}
877
878/// Based on typeID string, get all associated vtable GUIDS that are
879/// visible to regular objects.
880void llvm::getVisibleToRegularObjVtableGUIDs(
881    ModuleSummaryIndex &Index,
882    DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols,
883    function_ref<bool(StringRef)> IsVisibleToRegularObj) {
884  for (const auto &typeID : Index.typeIdCompatibleVtableMap()) {
885    if (typeIDVisibleToRegularObj(typeID.first, IsVisibleToRegularObj))
886      for (const TypeIdOffsetVtableInfo &P : typeID.second)
887        VisibleToRegularObjSymbols.insert(P.VTableVI.getGUID());
888  }
889}
890
891/// If whole program visibility asserted, then upgrade all public vcall
892/// visibility metadata on vtable definition summaries to linkage unit
893/// visibility in Module summary index (for ThinLTO).
894void llvm::updateVCallVisibilityInIndex(
895    ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
896    const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
897    const DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols) {
898  if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
899    return;
900  for (auto &P : Index) {
901    // Don't upgrade the visibility for symbols exported to the dynamic
902    // linker, as we have no information on their eventual use.
903    if (DynamicExportSymbols.count(P.first))
904      continue;
905    for (auto &S : P.second.SummaryList) {
906      auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
907      if (!GVar ||
908          GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
909        continue;
910      // With validation enabled, we want to exclude symbols visible to regular
911      // objects. Local symbols will be in this group due to the current
912      // implementation but those with VCallVisibilityTranslationUnit will have
913      // already been marked in clang so are unaffected.
914      if (VisibleToRegularObjSymbols.count(P.first))
915        continue;
916      GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
917    }
918  }
919}
920
921void llvm::runWholeProgramDevirtOnIndex(
922    ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
923    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
924  DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
925}
926
927void llvm::updateIndexWPDForExports(
928    ModuleSummaryIndex &Summary,
929    function_ref<bool(StringRef, ValueInfo)> isExported,
930    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
931  for (auto &T : LocalWPDTargetsMap) {
932    auto &VI = T.first;
933    // This was enforced earlier during trySingleImplDevirt.
934    assert(VI.getSummaryList().size() == 1 &&
935           "Devirt of local target has more than one copy");
936    auto &S = VI.getSummaryList()[0];
937    if (!isExported(S->modulePath(), VI))
938      continue;
939
940    // It's been exported by a cross module import.
941    for (auto &SlotSummary : T.second) {
942      auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
943      assert(TIdSum);
944      auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
945      assert(WPDRes != TIdSum->WPDRes.end());
946      WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
947          WPDRes->second.SingleImplName,
948          Summary.getModuleHash(S->modulePath()));
949    }
950  }
951}
952
953static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
954  // Check that summary index contains regular LTO module when performing
955  // export to prevent occasional use of index from pure ThinLTO compilation
956  // (-fno-split-lto-module). This kind of summary index is passed to
957  // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
958  const auto &ModPaths = Summary->modulePaths();
959  if (ClSummaryAction != PassSummaryAction::Import &&
960      !ModPaths.contains(ModuleSummaryIndex::getRegularLTOModuleName()))
961    return createStringError(
962        errc::invalid_argument,
963        "combined summary should contain Regular LTO module");
964  return ErrorSuccess();
965}
966
967bool DevirtModule::runForTesting(
968    Module &M, function_ref<AAResults &(Function &)> AARGetter,
969    function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
970    function_ref<DominatorTree &(Function &)> LookupDomTree) {
971  std::unique_ptr<ModuleSummaryIndex> Summary =
972      std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
973
974  // Handle the command-line summary arguments. This code is for testing
975  // purposes only, so we handle errors directly.
976  if (!ClReadSummary.empty()) {
977    ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
978                          ": ");
979    auto ReadSummaryFile =
980        ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
981    if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
982            getModuleSummaryIndex(*ReadSummaryFile)) {
983      Summary = std::move(*SummaryOrErr);
984      ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
985    } else {
986      // Try YAML if we've failed with bitcode.
987      consumeError(SummaryOrErr.takeError());
988      yaml::Input In(ReadSummaryFile->getBuffer());
989      In >> *Summary;
990      ExitOnErr(errorCodeToError(In.error()));
991    }
992  }
993
994  bool Changed =
995      DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
996                   ClSummaryAction == PassSummaryAction::Export ? Summary.get()
997                                                                : nullptr,
998                   ClSummaryAction == PassSummaryAction::Import ? Summary.get()
999                                                                : nullptr)
1000          .run();
1001
1002  if (!ClWriteSummary.empty()) {
1003    ExitOnError ExitOnErr(
1004        "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
1005    std::error_code EC;
1006    if (StringRef(ClWriteSummary).ends_with(".bc")) {
1007      raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
1008      ExitOnErr(errorCodeToError(EC));
1009      writeIndexToFile(*Summary, OS);
1010    } else {
1011      raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
1012      ExitOnErr(errorCodeToError(EC));
1013      yaml::Output Out(OS);
1014      Out << *Summary;
1015    }
1016  }
1017
1018  return Changed;
1019}
1020
1021void DevirtModule::buildTypeIdentifierMap(
1022    std::vector<VTableBits> &Bits,
1023    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1024  DenseMap<GlobalVariable *, VTableBits *> GVToBits;
1025  Bits.reserve(M.global_size());
1026  SmallVector<MDNode *, 2> Types;
1027  for (GlobalVariable &GV : M.globals()) {
1028    Types.clear();
1029    GV.getMetadata(LLVMContext::MD_type, Types);
1030    if (GV.isDeclaration() || Types.empty())
1031      continue;
1032
1033    VTableBits *&BitsPtr = GVToBits[&GV];
1034    if (!BitsPtr) {
1035      Bits.emplace_back();
1036      Bits.back().GV = &GV;
1037      Bits.back().ObjectSize =
1038          M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
1039      BitsPtr = &Bits.back();
1040    }
1041
1042    for (MDNode *Type : Types) {
1043      auto TypeID = Type->getOperand(1).get();
1044
1045      uint64_t Offset =
1046          cast<ConstantInt>(
1047              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
1048              ->getZExtValue();
1049
1050      TypeIdMap[TypeID].insert({BitsPtr, Offset});
1051    }
1052  }
1053}
1054
1055bool DevirtModule::tryFindVirtualCallTargets(
1056    std::vector<VirtualCallTarget> &TargetsForSlot,
1057    const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset,
1058    ModuleSummaryIndex *ExportSummary) {
1059  for (const TypeMemberInfo &TM : TypeMemberInfos) {
1060    if (!TM.Bits->GV->isConstant())
1061      return false;
1062
1063    // We cannot perform whole program devirtualization analysis on a vtable
1064    // with public LTO visibility.
1065    if (TM.Bits->GV->getVCallVisibility() ==
1066        GlobalObject::VCallVisibilityPublic)
1067      return false;
1068
1069    Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
1070                                       TM.Offset + ByteOffset, M, TM.Bits->GV);
1071    if (!Ptr)
1072      return false;
1073
1074    auto C = Ptr->stripPointerCasts();
1075    // Make sure this is a function or alias to a function.
1076    auto Fn = dyn_cast<Function>(C);
1077    auto A = dyn_cast<GlobalAlias>(C);
1078    if (!Fn && A)
1079      Fn = dyn_cast<Function>(A->getAliasee());
1080
1081    if (!Fn)
1082      return false;
1083
1084    if (FunctionsToSkip.match(Fn->getName()))
1085      return false;
1086
1087    // We can disregard __cxa_pure_virtual as a possible call target, as
1088    // calls to pure virtuals are UB.
1089    if (Fn->getName() == "__cxa_pure_virtual")
1090      continue;
1091
1092    // We can disregard unreachable functions as possible call targets, as
1093    // unreachable functions shouldn't be called.
1094    if (mustBeUnreachableFunction(Fn, ExportSummary))
1095      continue;
1096
1097    // Save the symbol used in the vtable to use as the devirtualization
1098    // target.
1099    auto GV = dyn_cast<GlobalValue>(C);
1100    assert(GV);
1101    TargetsForSlot.push_back({GV, &TM});
1102  }
1103
1104  // Give up if we couldn't find any targets.
1105  return !TargetsForSlot.empty();
1106}
1107
1108bool DevirtIndex::tryFindVirtualCallTargets(
1109    std::vector<ValueInfo> &TargetsForSlot,
1110    const TypeIdCompatibleVtableInfo TIdInfo, uint64_t ByteOffset) {
1111  for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1112    // Find a representative copy of the vtable initializer.
1113    // We can have multiple available_externally, linkonce_odr and weak_odr
1114    // vtable initializers. We can also have multiple external vtable
1115    // initializers in the case of comdats, which we cannot check here.
1116    // The linker should give an error in this case.
1117    //
1118    // Also, handle the case of same-named local Vtables with the same path
1119    // and therefore the same GUID. This can happen if there isn't enough
1120    // distinguishing path when compiling the source file. In that case we
1121    // conservatively return false early.
1122    const GlobalVarSummary *VS = nullptr;
1123    bool LocalFound = false;
1124    for (const auto &S : P.VTableVI.getSummaryList()) {
1125      if (GlobalValue::isLocalLinkage(S->linkage())) {
1126        if (LocalFound)
1127          return false;
1128        LocalFound = true;
1129      }
1130      auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1131      if (!CurVS->vTableFuncs().empty() ||
1132          // Previously clang did not attach the necessary type metadata to
1133          // available_externally vtables, in which case there would not
1134          // be any vtable functions listed in the summary and we need
1135          // to treat this case conservatively (in case the bitcode is old).
1136          // However, we will also not have any vtable functions in the
1137          // case of a pure virtual base class. In that case we do want
1138          // to set VS to avoid treating it conservatively.
1139          !GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1140        VS = CurVS;
1141        // We cannot perform whole program devirtualization analysis on a vtable
1142        // with public LTO visibility.
1143        if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1144          return false;
1145      }
1146    }
1147    // There will be no VS if all copies are available_externally having no
1148    // type metadata. In that case we can't safely perform WPD.
1149    if (!VS)
1150      return false;
1151    if (!VS->isLive())
1152      continue;
1153    for (auto VTP : VS->vTableFuncs()) {
1154      if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1155        continue;
1156
1157      if (mustBeUnreachableFunction(VTP.FuncVI))
1158        continue;
1159
1160      TargetsForSlot.push_back(VTP.FuncVI);
1161    }
1162  }
1163
1164  // Give up if we couldn't find any targets.
1165  return !TargetsForSlot.empty();
1166}
1167
1168void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1169                                         Constant *TheFn, bool &IsExported) {
1170  // Don't devirtualize function if we're told to skip it
1171  // in -wholeprogramdevirt-skip.
1172  if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1173    return;
1174  auto Apply = [&](CallSiteInfo &CSInfo) {
1175    for (auto &&VCallSite : CSInfo.CallSites) {
1176      if (!OptimizedCalls.insert(&VCallSite.CB).second)
1177        continue;
1178
1179      if (RemarksEnabled)
1180        VCallSite.emitRemark("single-impl",
1181                             TheFn->stripPointerCasts()->getName(), OREGetter);
1182      NumSingleImpl++;
1183      auto &CB = VCallSite.CB;
1184      assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1185      IRBuilder<> Builder(&CB);
1186      Value *Callee =
1187          Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1188
1189      // If trap checking is enabled, add support to compare the virtual
1190      // function pointer to the devirtualized target. In case of a mismatch,
1191      // perform a debug trap.
1192      if (DevirtCheckMode == WPDCheckMode::Trap) {
1193        auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1194        Instruction *ThenTerm =
1195            SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1196        Builder.SetInsertPoint(ThenTerm);
1197        Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1198        auto *CallTrap = Builder.CreateCall(TrapFn);
1199        CallTrap->setDebugLoc(CB.getDebugLoc());
1200      }
1201
1202      // If fallback checking is enabled, add support to compare the virtual
1203      // function pointer to the devirtualized target. In case of a mismatch,
1204      // fall back to indirect call.
1205      if (DevirtCheckMode == WPDCheckMode::Fallback) {
1206        MDNode *Weights =
1207            MDBuilder(M.getContext()).createBranchWeights((1U << 20) - 1, 1);
1208        // Version the indirect call site. If the called value is equal to the
1209        // given callee, 'NewInst' will be executed, otherwise the original call
1210        // site will be executed.
1211        CallBase &NewInst = versionCallSite(CB, Callee, Weights);
1212        NewInst.setCalledOperand(Callee);
1213        // Since the new call site is direct, we must clear metadata that
1214        // is only appropriate for indirect calls. This includes !prof and
1215        // !callees metadata.
1216        NewInst.setMetadata(LLVMContext::MD_prof, nullptr);
1217        NewInst.setMetadata(LLVMContext::MD_callees, nullptr);
1218        // Additionally, we should remove them from the fallback indirect call,
1219        // so that we don't attempt to perform indirect call promotion later.
1220        CB.setMetadata(LLVMContext::MD_prof, nullptr);
1221        CB.setMetadata(LLVMContext::MD_callees, nullptr);
1222      }
1223
1224      // In either trapping or non-checking mode, devirtualize original call.
1225      else {
1226        // Devirtualize unconditionally.
1227        CB.setCalledOperand(Callee);
1228        // Since the call site is now direct, we must clear metadata that
1229        // is only appropriate for indirect calls. This includes !prof and
1230        // !callees metadata.
1231        CB.setMetadata(LLVMContext::MD_prof, nullptr);
1232        CB.setMetadata(LLVMContext::MD_callees, nullptr);
1233        if (CB.getCalledOperand() &&
1234            CB.getOperandBundle(LLVMContext::OB_ptrauth)) {
1235          auto *NewCS =
1236              CallBase::removeOperandBundle(&CB, LLVMContext::OB_ptrauth, &CB);
1237          CB.replaceAllUsesWith(NewCS);
1238          // Schedule for deletion at the end of pass run.
1239          CallsWithPtrAuthBundleRemoved.push_back(&CB);
1240        }
1241      }
1242
1243      // This use is no longer unsafe.
1244      if (VCallSite.NumUnsafeUses)
1245        --*VCallSite.NumUnsafeUses;
1246    }
1247    if (CSInfo.isExported())
1248      IsExported = true;
1249    CSInfo.markDevirt();
1250  };
1251  Apply(SlotInfo.CSInfo);
1252  for (auto &P : SlotInfo.ConstCSInfo)
1253    Apply(P.second);
1254}
1255
1256static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1257  // We can't add calls if we haven't seen a definition
1258  if (Callee.getSummaryList().empty())
1259    return false;
1260
1261  // Insert calls into the summary index so that the devirtualized targets
1262  // are eligible for import.
1263  // FIXME: Annotate type tests with hotness. For now, mark these as hot
1264  // to better ensure we have the opportunity to inline them.
1265  bool IsExported = false;
1266  auto &S = Callee.getSummaryList()[0];
1267  CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* HasTailCall = */ false,
1268                /* RelBF = */ 0);
1269  auto AddCalls = [&](CallSiteInfo &CSInfo) {
1270    for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1271      FS->addCall({Callee, CI});
1272      IsExported |= S->modulePath() != FS->modulePath();
1273    }
1274    for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1275      FS->addCall({Callee, CI});
1276      IsExported |= S->modulePath() != FS->modulePath();
1277    }
1278  };
1279  AddCalls(SlotInfo.CSInfo);
1280  for (auto &P : SlotInfo.ConstCSInfo)
1281    AddCalls(P.second);
1282  return IsExported;
1283}
1284
1285bool DevirtModule::trySingleImplDevirt(
1286    ModuleSummaryIndex *ExportSummary,
1287    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1288    WholeProgramDevirtResolution *Res) {
1289  // See if the program contains a single implementation of this virtual
1290  // function.
1291  auto *TheFn = TargetsForSlot[0].Fn;
1292  for (auto &&Target : TargetsForSlot)
1293    if (TheFn != Target.Fn)
1294      return false;
1295
1296  // If so, update each call site to call that implementation directly.
1297  if (RemarksEnabled || AreStatisticsEnabled())
1298    TargetsForSlot[0].WasDevirt = true;
1299
1300  bool IsExported = false;
1301  applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1302  if (!IsExported)
1303    return false;
1304
1305  // If the only implementation has local linkage, we must promote to external
1306  // to make it visible to thin LTO objects. We can only get here during the
1307  // ThinLTO export phase.
1308  if (TheFn->hasLocalLinkage()) {
1309    std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1310
1311    // Since we are renaming the function, any comdats with the same name must
1312    // also be renamed. This is required when targeting COFF, as the comdat name
1313    // must match one of the names of the symbols in the comdat.
1314    if (Comdat *C = TheFn->getComdat()) {
1315      if (C->getName() == TheFn->getName()) {
1316        Comdat *NewC = M.getOrInsertComdat(NewName);
1317        NewC->setSelectionKind(C->getSelectionKind());
1318        for (GlobalObject &GO : M.global_objects())
1319          if (GO.getComdat() == C)
1320            GO.setComdat(NewC);
1321      }
1322    }
1323
1324    TheFn->setLinkage(GlobalValue::ExternalLinkage);
1325    TheFn->setVisibility(GlobalValue::HiddenVisibility);
1326    TheFn->setName(NewName);
1327  }
1328  if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1329    // Any needed promotion of 'TheFn' has already been done during
1330    // LTO unit split, so we can ignore return value of AddCalls.
1331    AddCalls(SlotInfo, TheFnVI);
1332
1333  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1334  Res->SingleImplName = std::string(TheFn->getName());
1335
1336  return true;
1337}
1338
1339bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1340                                      VTableSlotSummary &SlotSummary,
1341                                      VTableSlotInfo &SlotInfo,
1342                                      WholeProgramDevirtResolution *Res,
1343                                      std::set<ValueInfo> &DevirtTargets) {
1344  // See if the program contains a single implementation of this virtual
1345  // function.
1346  auto TheFn = TargetsForSlot[0];
1347  for (auto &&Target : TargetsForSlot)
1348    if (TheFn != Target)
1349      return false;
1350
1351  // Don't devirtualize if we don't have target definition.
1352  auto Size = TheFn.getSummaryList().size();
1353  if (!Size)
1354    return false;
1355
1356  // Don't devirtualize function if we're told to skip it
1357  // in -wholeprogramdevirt-skip.
1358  if (FunctionsToSkip.match(TheFn.name()))
1359    return false;
1360
1361  // If the summary list contains multiple summaries where at least one is
1362  // a local, give up, as we won't know which (possibly promoted) name to use.
1363  for (const auto &S : TheFn.getSummaryList())
1364    if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1365      return false;
1366
1367  // Collect functions devirtualized at least for one call site for stats.
1368  if (PrintSummaryDevirt || AreStatisticsEnabled())
1369    DevirtTargets.insert(TheFn);
1370
1371  auto &S = TheFn.getSummaryList()[0];
1372  bool IsExported = AddCalls(SlotInfo, TheFn);
1373  if (IsExported)
1374    ExportedGUIDs.insert(TheFn.getGUID());
1375
1376  // Record in summary for use in devirtualization during the ThinLTO import
1377  // step.
1378  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1379  if (GlobalValue::isLocalLinkage(S->linkage())) {
1380    if (IsExported)
1381      // If target is a local function and we are exporting it by
1382      // devirtualizing a call in another module, we need to record the
1383      // promoted name.
1384      Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1385          TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1386    else {
1387      LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1388      Res->SingleImplName = std::string(TheFn.name());
1389    }
1390  } else
1391    Res->SingleImplName = std::string(TheFn.name());
1392
1393  // Name will be empty if this thin link driven off of serialized combined
1394  // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1395  // legacy LTO API anyway.
1396  assert(!Res->SingleImplName.empty());
1397
1398  return true;
1399}
1400
1401void DevirtModule::tryICallBranchFunnel(
1402    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1403    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1404  Triple T(M.getTargetTriple());
1405  if (T.getArch() != Triple::x86_64)
1406    return;
1407
1408  if (TargetsForSlot.size() > ClThreshold)
1409    return;
1410
1411  bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1412  if (!HasNonDevirt)
1413    for (auto &P : SlotInfo.ConstCSInfo)
1414      if (!P.second.AllCallSitesDevirted) {
1415        HasNonDevirt = true;
1416        break;
1417      }
1418
1419  if (!HasNonDevirt)
1420    return;
1421
1422  FunctionType *FT =
1423      FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1424  Function *JT;
1425  if (isa<MDString>(Slot.TypeID)) {
1426    JT = Function::Create(FT, Function::ExternalLinkage,
1427                          M.getDataLayout().getProgramAddressSpace(),
1428                          getGlobalName(Slot, {}, "branch_funnel"), &M);
1429    JT->setVisibility(GlobalValue::HiddenVisibility);
1430  } else {
1431    JT = Function::Create(FT, Function::InternalLinkage,
1432                          M.getDataLayout().getProgramAddressSpace(),
1433                          "branch_funnel", &M);
1434  }
1435  JT->addParamAttr(0, Attribute::Nest);
1436
1437  std::vector<Value *> JTArgs;
1438  JTArgs.push_back(JT->arg_begin());
1439  for (auto &T : TargetsForSlot) {
1440    JTArgs.push_back(getMemberAddr(T.TM));
1441    JTArgs.push_back(T.Fn);
1442  }
1443
1444  BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1445  Function *Intr =
1446      Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1447
1448  auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1449  CI->setTailCallKind(CallInst::TCK_MustTail);
1450  ReturnInst::Create(M.getContext(), nullptr, BB);
1451
1452  bool IsExported = false;
1453  applyICallBranchFunnel(SlotInfo, JT, IsExported);
1454  if (IsExported)
1455    Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1456}
1457
1458void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1459                                          Constant *JT, bool &IsExported) {
1460  auto Apply = [&](CallSiteInfo &CSInfo) {
1461    if (CSInfo.isExported())
1462      IsExported = true;
1463    if (CSInfo.AllCallSitesDevirted)
1464      return;
1465
1466    std::map<CallBase *, CallBase *> CallBases;
1467    for (auto &&VCallSite : CSInfo.CallSites) {
1468      CallBase &CB = VCallSite.CB;
1469
1470      if (CallBases.find(&CB) != CallBases.end()) {
1471        // When finding devirtualizable calls, it's possible to find the same
1472        // vtable passed to multiple llvm.type.test or llvm.type.checked.load
1473        // calls, which can cause duplicate call sites to be recorded in
1474        // [Const]CallSites. If we've already found one of these
1475        // call instances, just ignore it. It will be replaced later.
1476        continue;
1477      }
1478
1479      // Jump tables are only profitable if the retpoline mitigation is enabled.
1480      Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1481      if (!FSAttr.isValid() ||
1482          !FSAttr.getValueAsString().contains("+retpoline"))
1483        continue;
1484
1485      NumBranchFunnel++;
1486      if (RemarksEnabled)
1487        VCallSite.emitRemark("branch-funnel",
1488                             JT->stripPointerCasts()->getName(), OREGetter);
1489
1490      // Pass the address of the vtable in the nest register, which is r10 on
1491      // x86_64.
1492      std::vector<Type *> NewArgs;
1493      NewArgs.push_back(Int8PtrTy);
1494      append_range(NewArgs, CB.getFunctionType()->params());
1495      FunctionType *NewFT =
1496          FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1497                            CB.getFunctionType()->isVarArg());
1498      PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1499
1500      IRBuilder<> IRB(&CB);
1501      std::vector<Value *> Args;
1502      Args.push_back(VCallSite.VTable);
1503      llvm::append_range(Args, CB.args());
1504
1505      CallBase *NewCS = nullptr;
1506      if (isa<CallInst>(CB))
1507        NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1508      else
1509        NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1510                                 cast<InvokeInst>(CB).getNormalDest(),
1511                                 cast<InvokeInst>(CB).getUnwindDest(), Args);
1512      NewCS->setCallingConv(CB.getCallingConv());
1513
1514      AttributeList Attrs = CB.getAttributes();
1515      std::vector<AttributeSet> NewArgAttrs;
1516      NewArgAttrs.push_back(AttributeSet::get(
1517          M.getContext(), ArrayRef<Attribute>{Attribute::get(
1518                              M.getContext(), Attribute::Nest)}));
1519      for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1520        NewArgAttrs.push_back(Attrs.getParamAttrs(I));
1521      NewCS->setAttributes(
1522          AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
1523                             Attrs.getRetAttrs(), NewArgAttrs));
1524
1525      CallBases[&CB] = NewCS;
1526
1527      // This use is no longer unsafe.
1528      if (VCallSite.NumUnsafeUses)
1529        --*VCallSite.NumUnsafeUses;
1530    }
1531    // Don't mark as devirtualized because there may be callers compiled without
1532    // retpoline mitigation, which would mean that they are lowered to
1533    // llvm.type.test and therefore require an llvm.type.test resolution for the
1534    // type identifier.
1535
1536    for (auto &[Old, New] : CallBases) {
1537      Old->replaceAllUsesWith(New);
1538      Old->eraseFromParent();
1539    }
1540  };
1541  Apply(SlotInfo.CSInfo);
1542  for (auto &P : SlotInfo.ConstCSInfo)
1543    Apply(P.second);
1544}
1545
1546bool DevirtModule::tryEvaluateFunctionsWithArgs(
1547    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1548    ArrayRef<uint64_t> Args) {
1549  // Evaluate each function and store the result in each target's RetVal
1550  // field.
1551  for (VirtualCallTarget &Target : TargetsForSlot) {
1552    // TODO: Skip for now if the vtable symbol was an alias to a function,
1553    // need to evaluate whether it would be correct to analyze the aliasee
1554    // function for this optimization.
1555    auto Fn = dyn_cast<Function>(Target.Fn);
1556    if (!Fn)
1557      return false;
1558
1559    if (Fn->arg_size() != Args.size() + 1)
1560      return false;
1561
1562    Evaluator Eval(M.getDataLayout(), nullptr);
1563    SmallVector<Constant *, 2> EvalArgs;
1564    EvalArgs.push_back(
1565        Constant::getNullValue(Fn->getFunctionType()->getParamType(0)));
1566    for (unsigned I = 0; I != Args.size(); ++I) {
1567      auto *ArgTy =
1568          dyn_cast<IntegerType>(Fn->getFunctionType()->getParamType(I + 1));
1569      if (!ArgTy)
1570        return false;
1571      EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1572    }
1573
1574    Constant *RetVal;
1575    if (!Eval.EvaluateFunction(Fn, RetVal, EvalArgs) ||
1576        !isa<ConstantInt>(RetVal))
1577      return false;
1578    Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1579  }
1580  return true;
1581}
1582
1583void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1584                                         uint64_t TheRetVal) {
1585  for (auto Call : CSInfo.CallSites) {
1586    if (!OptimizedCalls.insert(&Call.CB).second)
1587      continue;
1588    NumUniformRetVal++;
1589    Call.replaceAndErase(
1590        "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1591        ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1592  }
1593  CSInfo.markDevirt();
1594}
1595
1596bool DevirtModule::tryUniformRetValOpt(
1597    MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1598    WholeProgramDevirtResolution::ByArg *Res) {
1599  // Uniform return value optimization. If all functions return the same
1600  // constant, replace all calls with that constant.
1601  uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1602  for (const VirtualCallTarget &Target : TargetsForSlot)
1603    if (Target.RetVal != TheRetVal)
1604      return false;
1605
1606  if (CSInfo.isExported()) {
1607    Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1608    Res->Info = TheRetVal;
1609  }
1610
1611  applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1612  if (RemarksEnabled || AreStatisticsEnabled())
1613    for (auto &&Target : TargetsForSlot)
1614      Target.WasDevirt = true;
1615  return true;
1616}
1617
1618std::string DevirtModule::getGlobalName(VTableSlot Slot,
1619                                        ArrayRef<uint64_t> Args,
1620                                        StringRef Name) {
1621  std::string FullName = "__typeid_";
1622  raw_string_ostream OS(FullName);
1623  OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1624  for (uint64_t Arg : Args)
1625    OS << '_' << Arg;
1626  OS << '_' << Name;
1627  return OS.str();
1628}
1629
1630bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1631  Triple T(M.getTargetTriple());
1632  return T.isX86() && T.getObjectFormat() == Triple::ELF;
1633}
1634
1635void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1636                                StringRef Name, Constant *C) {
1637  GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1638                                        getGlobalName(Slot, Args, Name), C, &M);
1639  GA->setVisibility(GlobalValue::HiddenVisibility);
1640}
1641
1642void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1643                                  StringRef Name, uint32_t Const,
1644                                  uint32_t &Storage) {
1645  if (shouldExportConstantsAsAbsoluteSymbols()) {
1646    exportGlobal(
1647        Slot, Args, Name,
1648        ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1649    return;
1650  }
1651
1652  Storage = Const;
1653}
1654
1655Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1656                                     StringRef Name) {
1657  Constant *C =
1658      M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1659  auto *GV = dyn_cast<GlobalVariable>(C);
1660  if (GV)
1661    GV->setVisibility(GlobalValue::HiddenVisibility);
1662  return C;
1663}
1664
1665Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1666                                       StringRef Name, IntegerType *IntTy,
1667                                       uint32_t Storage) {
1668  if (!shouldExportConstantsAsAbsoluteSymbols())
1669    return ConstantInt::get(IntTy, Storage);
1670
1671  Constant *C = importGlobal(Slot, Args, Name);
1672  auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1673  C = ConstantExpr::getPtrToInt(C, IntTy);
1674
1675  // We only need to set metadata if the global is newly created, in which
1676  // case it would not have hidden visibility.
1677  if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1678    return C;
1679
1680  auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1681    auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1682    auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1683    GV->setMetadata(LLVMContext::MD_absolute_symbol,
1684                    MDNode::get(M.getContext(), {MinC, MaxC}));
1685  };
1686  unsigned AbsWidth = IntTy->getBitWidth();
1687  if (AbsWidth == IntPtrTy->getBitWidth())
1688    SetAbsRange(~0ull, ~0ull); // Full set.
1689  else
1690    SetAbsRange(0, 1ull << AbsWidth);
1691  return C;
1692}
1693
1694void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1695                                        bool IsOne,
1696                                        Constant *UniqueMemberAddr) {
1697  for (auto &&Call : CSInfo.CallSites) {
1698    if (!OptimizedCalls.insert(&Call.CB).second)
1699      continue;
1700    IRBuilder<> B(&Call.CB);
1701    Value *Cmp =
1702        B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1703                     B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1704    Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1705    NumUniqueRetVal++;
1706    Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1707                         Cmp);
1708  }
1709  CSInfo.markDevirt();
1710}
1711
1712Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1713  return ConstantExpr::getGetElementPtr(Int8Ty, M->Bits->GV,
1714                                        ConstantInt::get(Int64Ty, M->Offset));
1715}
1716
1717bool DevirtModule::tryUniqueRetValOpt(
1718    unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1719    CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1720    VTableSlot Slot, ArrayRef<uint64_t> Args) {
1721  // IsOne controls whether we look for a 0 or a 1.
1722  auto tryUniqueRetValOptFor = [&](bool IsOne) {
1723    const TypeMemberInfo *UniqueMember = nullptr;
1724    for (const VirtualCallTarget &Target : TargetsForSlot) {
1725      if (Target.RetVal == (IsOne ? 1 : 0)) {
1726        if (UniqueMember)
1727          return false;
1728        UniqueMember = Target.TM;
1729      }
1730    }
1731
1732    // We should have found a unique member or bailed out by now. We already
1733    // checked for a uniform return value in tryUniformRetValOpt.
1734    assert(UniqueMember);
1735
1736    Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1737    if (CSInfo.isExported()) {
1738      Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1739      Res->Info = IsOne;
1740
1741      exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1742    }
1743
1744    // Replace each call with the comparison.
1745    applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1746                         UniqueMemberAddr);
1747
1748    // Update devirtualization statistics for targets.
1749    if (RemarksEnabled || AreStatisticsEnabled())
1750      for (auto &&Target : TargetsForSlot)
1751        Target.WasDevirt = true;
1752
1753    return true;
1754  };
1755
1756  if (BitWidth == 1) {
1757    if (tryUniqueRetValOptFor(true))
1758      return true;
1759    if (tryUniqueRetValOptFor(false))
1760      return true;
1761  }
1762  return false;
1763}
1764
1765void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1766                                         Constant *Byte, Constant *Bit) {
1767  for (auto Call : CSInfo.CallSites) {
1768    if (!OptimizedCalls.insert(&Call.CB).second)
1769      continue;
1770    auto *RetType = cast<IntegerType>(Call.CB.getType());
1771    IRBuilder<> B(&Call.CB);
1772    Value *Addr = B.CreatePtrAdd(Call.VTable, Byte);
1773    if (RetType->getBitWidth() == 1) {
1774      Value *Bits = B.CreateLoad(Int8Ty, Addr);
1775      Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1776      auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1777      NumVirtConstProp1Bit++;
1778      Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1779                           OREGetter, IsBitSet);
1780    } else {
1781      Value *Val = B.CreateLoad(RetType, Addr);
1782      NumVirtConstProp++;
1783      Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1784                           OREGetter, Val);
1785    }
1786  }
1787  CSInfo.markDevirt();
1788}
1789
1790bool DevirtModule::tryVirtualConstProp(
1791    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1792    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1793  // TODO: Skip for now if the vtable symbol was an alias to a function,
1794  // need to evaluate whether it would be correct to analyze the aliasee
1795  // function for this optimization.
1796  auto Fn = dyn_cast<Function>(TargetsForSlot[0].Fn);
1797  if (!Fn)
1798    return false;
1799  // This only works if the function returns an integer.
1800  auto RetType = dyn_cast<IntegerType>(Fn->getReturnType());
1801  if (!RetType)
1802    return false;
1803  unsigned BitWidth = RetType->getBitWidth();
1804  if (BitWidth > 64)
1805    return false;
1806
1807  // Make sure that each function is defined, does not access memory, takes at
1808  // least one argument, does not use its first argument (which we assume is
1809  // 'this'), and has the same return type.
1810  //
1811  // Note that we test whether this copy of the function is readnone, rather
1812  // than testing function attributes, which must hold for any copy of the
1813  // function, even a less optimized version substituted at link time. This is
1814  // sound because the virtual constant propagation optimizations effectively
1815  // inline all implementations of the virtual function into each call site,
1816  // rather than using function attributes to perform local optimization.
1817  for (VirtualCallTarget &Target : TargetsForSlot) {
1818    // TODO: Skip for now if the vtable symbol was an alias to a function,
1819    // need to evaluate whether it would be correct to analyze the aliasee
1820    // function for this optimization.
1821    auto Fn = dyn_cast<Function>(Target.Fn);
1822    if (!Fn)
1823      return false;
1824
1825    if (Fn->isDeclaration() ||
1826        !computeFunctionBodyMemoryAccess(*Fn, AARGetter(*Fn))
1827             .doesNotAccessMemory() ||
1828        Fn->arg_empty() || !Fn->arg_begin()->use_empty() ||
1829        Fn->getReturnType() != RetType)
1830      return false;
1831  }
1832
1833  for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1834    if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1835      continue;
1836
1837    WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1838    if (Res)
1839      ResByArg = &Res->ResByArg[CSByConstantArg.first];
1840
1841    if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1842      continue;
1843
1844    if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1845                           ResByArg, Slot, CSByConstantArg.first))
1846      continue;
1847
1848    // Find an allocation offset in bits in all vtables associated with the
1849    // type.
1850    uint64_t AllocBefore =
1851        findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1852    uint64_t AllocAfter =
1853        findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1854
1855    // Calculate the total amount of padding needed to store a value at both
1856    // ends of the object.
1857    uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1858    for (auto &&Target : TargetsForSlot) {
1859      TotalPaddingBefore += std::max<int64_t>(
1860          (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1861      TotalPaddingAfter += std::max<int64_t>(
1862          (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1863    }
1864
1865    // If the amount of padding is too large, give up.
1866    // FIXME: do something smarter here.
1867    if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1868      continue;
1869
1870    // Calculate the offset to the value as a (possibly negative) byte offset
1871    // and (if applicable) a bit offset, and store the values in the targets.
1872    int64_t OffsetByte;
1873    uint64_t OffsetBit;
1874    if (TotalPaddingBefore <= TotalPaddingAfter)
1875      setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1876                            OffsetBit);
1877    else
1878      setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1879                           OffsetBit);
1880
1881    if (RemarksEnabled || AreStatisticsEnabled())
1882      for (auto &&Target : TargetsForSlot)
1883        Target.WasDevirt = true;
1884
1885
1886    if (CSByConstantArg.second.isExported()) {
1887      ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1888      exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1889                     ResByArg->Byte);
1890      exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1891                     ResByArg->Bit);
1892    }
1893
1894    // Rewrite each call to a load from OffsetByte/OffsetBit.
1895    Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1896    Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1897    applyVirtualConstProp(CSByConstantArg.second,
1898                          TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1899  }
1900  return true;
1901}
1902
1903void DevirtModule::rebuildGlobal(VTableBits &B) {
1904  if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1905    return;
1906
1907  // Align the before byte array to the global's minimum alignment so that we
1908  // don't break any alignment requirements on the global.
1909  Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1910      B.GV->getAlign(), B.GV->getValueType());
1911  B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1912
1913  // Before was stored in reverse order; flip it now.
1914  for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1915    std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1916
1917  // Build an anonymous global containing the before bytes, followed by the
1918  // original initializer, followed by the after bytes.
1919  auto NewInit = ConstantStruct::getAnon(
1920      {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1921       B.GV->getInitializer(),
1922       ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1923  auto NewGV =
1924      new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1925                         GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1926  NewGV->setSection(B.GV->getSection());
1927  NewGV->setComdat(B.GV->getComdat());
1928  NewGV->setAlignment(B.GV->getAlign());
1929
1930  // Copy the original vtable's metadata to the anonymous global, adjusting
1931  // offsets as required.
1932  NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1933
1934  // Build an alias named after the original global, pointing at the second
1935  // element (the original initializer).
1936  auto Alias = GlobalAlias::create(
1937      B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1938      ConstantExpr::getGetElementPtr(
1939          NewInit->getType(), NewGV,
1940          ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1941                               ConstantInt::get(Int32Ty, 1)}),
1942      &M);
1943  Alias->setVisibility(B.GV->getVisibility());
1944  Alias->takeName(B.GV);
1945
1946  B.GV->replaceAllUsesWith(Alias);
1947  B.GV->eraseFromParent();
1948}
1949
1950bool DevirtModule::areRemarksEnabled() {
1951  const auto &FL = M.getFunctionList();
1952  for (const Function &Fn : FL) {
1953    if (Fn.empty())
1954      continue;
1955    auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &Fn.front());
1956    return DI.isEnabled();
1957  }
1958  return false;
1959}
1960
1961void DevirtModule::scanTypeTestUsers(
1962    Function *TypeTestFunc,
1963    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1964  // Find all virtual calls via a virtual table pointer %p under an assumption
1965  // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1966  // points to a member of the type identifier %md. Group calls by (type ID,
1967  // offset) pair (effectively the identity of the virtual function) and store
1968  // to CallSlots.
1969  for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
1970    auto *CI = dyn_cast<CallInst>(U.getUser());
1971    if (!CI)
1972      continue;
1973
1974    // Search for virtual calls based on %p and add them to DevirtCalls.
1975    SmallVector<DevirtCallSite, 1> DevirtCalls;
1976    SmallVector<CallInst *, 1> Assumes;
1977    auto &DT = LookupDomTree(*CI->getFunction());
1978    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1979
1980    Metadata *TypeId =
1981        cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1982    // If we found any, add them to CallSlots.
1983    if (!Assumes.empty()) {
1984      Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1985      for (DevirtCallSite Call : DevirtCalls)
1986        CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1987    }
1988
1989    auto RemoveTypeTestAssumes = [&]() {
1990      // We no longer need the assumes or the type test.
1991      for (auto *Assume : Assumes)
1992        Assume->eraseFromParent();
1993      // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1994      // may use the vtable argument later.
1995      if (CI->use_empty())
1996        CI->eraseFromParent();
1997    };
1998
1999    // At this point we could remove all type test assume sequences, as they
2000    // were originally inserted for WPD. However, we can keep these in the
2001    // code stream for later analysis (e.g. to help drive more efficient ICP
2002    // sequences). They will eventually be removed by a second LowerTypeTests
2003    // invocation that cleans them up. In order to do this correctly, the first
2004    // LowerTypeTests invocation needs to know that they have "Unknown" type
2005    // test resolution, so that they aren't treated as Unsat and lowered to
2006    // False, which will break any uses on assumes. Below we remove any type
2007    // test assumes that will not be treated as Unknown by LTT.
2008
2009    // The type test assumes will be treated by LTT as Unsat if the type id is
2010    // not used on a global (in which case it has no entry in the TypeIdMap).
2011    if (!TypeIdMap.count(TypeId))
2012      RemoveTypeTestAssumes();
2013
2014    // For ThinLTO importing, we need to remove the type test assumes if this is
2015    // an MDString type id without a corresponding TypeIdSummary. Any
2016    // non-MDString type ids are ignored and treated as Unknown by LTT, so their
2017    // type test assumes can be kept. If the MDString type id is missing a
2018    // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
2019    // exporting phase of WPD from analyzing it), then it would be treated as
2020    // Unsat by LTT and we need to remove its type test assumes here. If not
2021    // used on a vcall we don't need them for later optimization use in any
2022    // case.
2023    else if (ImportSummary && isa<MDString>(TypeId)) {
2024      const TypeIdSummary *TidSummary =
2025          ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
2026      if (!TidSummary)
2027        RemoveTypeTestAssumes();
2028      else
2029        // If one was created it should not be Unsat, because if we reached here
2030        // the type id was used on a global.
2031        assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
2032    }
2033  }
2034}
2035
2036void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
2037  Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
2038
2039  for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) {
2040    auto *CI = dyn_cast<CallInst>(U.getUser());
2041    if (!CI)
2042      continue;
2043
2044    Value *Ptr = CI->getArgOperand(0);
2045    Value *Offset = CI->getArgOperand(1);
2046    Value *TypeIdValue = CI->getArgOperand(2);
2047    Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
2048
2049    SmallVector<DevirtCallSite, 1> DevirtCalls;
2050    SmallVector<Instruction *, 1> LoadedPtrs;
2051    SmallVector<Instruction *, 1> Preds;
2052    bool HasNonCallUses = false;
2053    auto &DT = LookupDomTree(*CI->getFunction());
2054    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
2055                                               HasNonCallUses, CI, DT);
2056
2057    // Start by generating "pessimistic" code that explicitly loads the function
2058    // pointer from the vtable and performs the type check. If possible, we will
2059    // eliminate the load and the type check later.
2060
2061    // If possible, only generate the load at the point where it is used.
2062    // This helps avoid unnecessary spills.
2063    IRBuilder<> LoadB(
2064        (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
2065
2066    Value *LoadedValue = nullptr;
2067    if (TypeCheckedLoadFunc->getIntrinsicID() ==
2068        Intrinsic::type_checked_load_relative) {
2069      Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2070      LoadedValue = LoadB.CreateLoad(Int32Ty, GEP);
2071      LoadedValue = LoadB.CreateSExt(LoadedValue, IntPtrTy);
2072      GEP = LoadB.CreatePtrToInt(GEP, IntPtrTy);
2073      LoadedValue = LoadB.CreateAdd(GEP, LoadedValue);
2074      LoadedValue = LoadB.CreateIntToPtr(LoadedValue, Int8PtrTy);
2075    } else {
2076      Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2077      LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEP);
2078    }
2079
2080    for (Instruction *LoadedPtr : LoadedPtrs) {
2081      LoadedPtr->replaceAllUsesWith(LoadedValue);
2082      LoadedPtr->eraseFromParent();
2083    }
2084
2085    // Likewise for the type test.
2086    IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
2087    CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
2088
2089    for (Instruction *Pred : Preds) {
2090      Pred->replaceAllUsesWith(TypeTestCall);
2091      Pred->eraseFromParent();
2092    }
2093
2094    // We have already erased any extractvalue instructions that refer to the
2095    // intrinsic call, but the intrinsic may have other non-extractvalue uses
2096    // (although this is unlikely). In that case, explicitly build a pair and
2097    // RAUW it.
2098    if (!CI->use_empty()) {
2099      Value *Pair = PoisonValue::get(CI->getType());
2100      IRBuilder<> B(CI);
2101      Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
2102      Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
2103      CI->replaceAllUsesWith(Pair);
2104    }
2105
2106    // The number of unsafe uses is initially the number of uses.
2107    auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
2108    NumUnsafeUses = DevirtCalls.size();
2109
2110    // If the function pointer has a non-call user, we cannot eliminate the type
2111    // check, as one of those users may eventually call the pointer. Increment
2112    // the unsafe use count to make sure it cannot reach zero.
2113    if (HasNonCallUses)
2114      ++NumUnsafeUses;
2115    for (DevirtCallSite Call : DevirtCalls) {
2116      CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
2117                                                   &NumUnsafeUses);
2118    }
2119
2120    CI->eraseFromParent();
2121  }
2122}
2123
2124void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
2125  auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
2126  if (!TypeId)
2127    return;
2128  const TypeIdSummary *TidSummary =
2129      ImportSummary->getTypeIdSummary(TypeId->getString());
2130  if (!TidSummary)
2131    return;
2132  auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
2133  if (ResI == TidSummary->WPDRes.end())
2134    return;
2135  const WholeProgramDevirtResolution &Res = ResI->second;
2136
2137  if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
2138    assert(!Res.SingleImplName.empty());
2139    // The type of the function in the declaration is irrelevant because every
2140    // call site will cast it to the correct type.
2141    Constant *SingleImpl =
2142        cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
2143                                             Type::getVoidTy(M.getContext()))
2144                           .getCallee());
2145
2146    // This is the import phase so we should not be exporting anything.
2147    bool IsExported = false;
2148    applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
2149    assert(!IsExported);
2150  }
2151
2152  for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
2153    auto I = Res.ResByArg.find(CSByConstantArg.first);
2154    if (I == Res.ResByArg.end())
2155      continue;
2156    auto &ResByArg = I->second;
2157    // FIXME: We should figure out what to do about the "function name" argument
2158    // to the apply* functions, as the function names are unavailable during the
2159    // importing phase. For now we just pass the empty string. This does not
2160    // impact correctness because the function names are just used for remarks.
2161    switch (ResByArg.TheKind) {
2162    case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2163      applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
2164      break;
2165    case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
2166      Constant *UniqueMemberAddr =
2167          importGlobal(Slot, CSByConstantArg.first, "unique_member");
2168      applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
2169                           UniqueMemberAddr);
2170      break;
2171    }
2172    case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
2173      Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
2174                                      Int32Ty, ResByArg.Byte);
2175      Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
2176                                     ResByArg.Bit);
2177      applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
2178      break;
2179    }
2180    default:
2181      break;
2182    }
2183  }
2184
2185  if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2186    // The type of the function is irrelevant, because it's bitcast at calls
2187    // anyhow.
2188    Constant *JT = cast<Constant>(
2189        M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2190                              Type::getVoidTy(M.getContext()))
2191            .getCallee());
2192    bool IsExported = false;
2193    applyICallBranchFunnel(SlotInfo, JT, IsExported);
2194    assert(!IsExported);
2195  }
2196}
2197
2198void DevirtModule::removeRedundantTypeTests() {
2199  auto True = ConstantInt::getTrue(M.getContext());
2200  for (auto &&U : NumUnsafeUsesForTypeTest) {
2201    if (U.second == 0) {
2202      U.first->replaceAllUsesWith(True);
2203      U.first->eraseFromParent();
2204    }
2205  }
2206}
2207
2208ValueInfo
2209DevirtModule::lookUpFunctionValueInfo(Function *TheFn,
2210                                      ModuleSummaryIndex *ExportSummary) {
2211  assert((ExportSummary != nullptr) &&
2212         "Caller guarantees ExportSummary is not nullptr");
2213
2214  const auto TheFnGUID = TheFn->getGUID();
2215  const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName());
2216  // Look up ValueInfo with the GUID in the current linkage.
2217  ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID);
2218  // If no entry is found and GUID is different from GUID computed using
2219  // exported name, look up ValueInfo with the exported name unconditionally.
2220  // This is a fallback.
2221  //
2222  // The reason to have a fallback:
2223  // 1. LTO could enable global value internalization via
2224  // `enable-lto-internalization`.
2225  // 2. The GUID in ExportedSummary is computed using exported name.
2226  if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) {
2227    TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName);
2228  }
2229  return TheFnVI;
2230}
2231
2232bool DevirtModule::mustBeUnreachableFunction(
2233    Function *const F, ModuleSummaryIndex *ExportSummary) {
2234  // First, learn unreachability by analyzing function IR.
2235  if (!F->isDeclaration()) {
2236    // A function must be unreachable if its entry block ends with an
2237    // 'unreachable'.
2238    return isa<UnreachableInst>(F->getEntryBlock().getTerminator());
2239  }
2240  // Learn unreachability from ExportSummary if ExportSummary is present.
2241  return ExportSummary &&
2242         ::mustBeUnreachableFunction(
2243             DevirtModule::lookUpFunctionValueInfo(F, ExportSummary));
2244}
2245
2246bool DevirtModule::run() {
2247  // If only some of the modules were split, we cannot correctly perform
2248  // this transformation. We already checked for the presense of type tests
2249  // with partially split modules during the thin link, and would have emitted
2250  // an error if any were found, so here we can simply return.
2251  if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2252      (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2253    return false;
2254
2255  Function *TypeTestFunc =
2256      M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2257  Function *TypeCheckedLoadFunc =
2258      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2259  Function *TypeCheckedLoadRelativeFunc =
2260      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative));
2261  Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2262
2263  // Normally if there are no users of the devirtualization intrinsics in the
2264  // module, this pass has nothing to do. But if we are exporting, we also need
2265  // to handle any users that appear only in the function summaries.
2266  if (!ExportSummary &&
2267      (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2268       AssumeFunc->use_empty()) &&
2269      (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()) &&
2270      (!TypeCheckedLoadRelativeFunc ||
2271       TypeCheckedLoadRelativeFunc->use_empty()))
2272    return false;
2273
2274  // Rebuild type metadata into a map for easy lookup.
2275  std::vector<VTableBits> Bits;
2276  DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2277  buildTypeIdentifierMap(Bits, TypeIdMap);
2278
2279  if (TypeTestFunc && AssumeFunc)
2280    scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2281
2282  if (TypeCheckedLoadFunc)
2283    scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2284
2285  if (TypeCheckedLoadRelativeFunc)
2286    scanTypeCheckedLoadUsers(TypeCheckedLoadRelativeFunc);
2287
2288  if (ImportSummary) {
2289    for (auto &S : CallSlots)
2290      importResolution(S.first, S.second);
2291
2292    removeRedundantTypeTests();
2293
2294    // We have lowered or deleted the type intrinsics, so we will no longer have
2295    // enough information to reason about the liveness of virtual function
2296    // pointers in GlobalDCE.
2297    for (GlobalVariable &GV : M.globals())
2298      GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2299
2300    // The rest of the code is only necessary when exporting or during regular
2301    // LTO, so we are done.
2302    return true;
2303  }
2304
2305  if (TypeIdMap.empty())
2306    return true;
2307
2308  // Collect information from summary about which calls to try to devirtualize.
2309  if (ExportSummary) {
2310    DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2311    for (auto &P : TypeIdMap) {
2312      if (auto *TypeId = dyn_cast<MDString>(P.first))
2313        MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2314            TypeId);
2315    }
2316
2317    for (auto &P : *ExportSummary) {
2318      for (auto &S : P.second.SummaryList) {
2319        auto *FS = dyn_cast<FunctionSummary>(S.get());
2320        if (!FS)
2321          continue;
2322        // FIXME: Only add live functions.
2323        for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2324          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2325            CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2326          }
2327        }
2328        for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2329          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2330            CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2331          }
2332        }
2333        for (const FunctionSummary::ConstVCall &VC :
2334             FS->type_test_assume_const_vcalls()) {
2335          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2336            CallSlots[{MD, VC.VFunc.Offset}]
2337                .ConstCSInfo[VC.Args]
2338                .addSummaryTypeTestAssumeUser(FS);
2339          }
2340        }
2341        for (const FunctionSummary::ConstVCall &VC :
2342             FS->type_checked_load_const_vcalls()) {
2343          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2344            CallSlots[{MD, VC.VFunc.Offset}]
2345                .ConstCSInfo[VC.Args]
2346                .addSummaryTypeCheckedLoadUser(FS);
2347          }
2348        }
2349      }
2350    }
2351  }
2352
2353  // For each (type, offset) pair:
2354  bool DidVirtualConstProp = false;
2355  std::map<std::string, GlobalValue *> DevirtTargets;
2356  for (auto &S : CallSlots) {
2357    // Search each of the members of the type identifier for the virtual
2358    // function implementation at offset S.first.ByteOffset, and add to
2359    // TargetsForSlot.
2360    std::vector<VirtualCallTarget> TargetsForSlot;
2361    WholeProgramDevirtResolution *Res = nullptr;
2362    const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2363    if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2364        TypeMemberInfos.size())
2365      // For any type id used on a global's type metadata, create the type id
2366      // summary resolution regardless of whether we can devirtualize, so that
2367      // lower type tests knows the type id is not Unsat. If it was not used on
2368      // a global's type metadata, the TypeIdMap entry set will be empty, and
2369      // we don't want to create an entry (with the default Unknown type
2370      // resolution), which can prevent detection of the Unsat.
2371      Res = &ExportSummary
2372                 ->getOrInsertTypeIdSummary(
2373                     cast<MDString>(S.first.TypeID)->getString())
2374                 .WPDRes[S.first.ByteOffset];
2375    if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2376                                  S.first.ByteOffset, ExportSummary)) {
2377
2378      if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2379        DidVirtualConstProp |=
2380            tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2381
2382        tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2383      }
2384
2385      // Collect functions devirtualized at least for one call site for stats.
2386      if (RemarksEnabled || AreStatisticsEnabled())
2387        for (const auto &T : TargetsForSlot)
2388          if (T.WasDevirt)
2389            DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2390    }
2391
2392    // CFI-specific: if we are exporting and any llvm.type.checked.load
2393    // intrinsics were *not* devirtualized, we need to add the resulting
2394    // llvm.type.test intrinsics to the function summaries so that the
2395    // LowerTypeTests pass will export them.
2396    if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2397      auto GUID =
2398          GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2399      for (auto *FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2400        FS->addTypeTest(GUID);
2401      for (auto &CCS : S.second.ConstCSInfo)
2402        for (auto *FS : CCS.second.SummaryTypeCheckedLoadUsers)
2403          FS->addTypeTest(GUID);
2404    }
2405  }
2406
2407  if (RemarksEnabled) {
2408    // Generate remarks for each devirtualized function.
2409    for (const auto &DT : DevirtTargets) {
2410      GlobalValue *GV = DT.second;
2411      auto F = dyn_cast<Function>(GV);
2412      if (!F) {
2413        auto A = dyn_cast<GlobalAlias>(GV);
2414        assert(A && isa<Function>(A->getAliasee()));
2415        F = dyn_cast<Function>(A->getAliasee());
2416        assert(F);
2417      }
2418
2419      using namespace ore;
2420      OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2421                        << "devirtualized "
2422                        << NV("FunctionName", DT.first));
2423    }
2424  }
2425
2426  NumDevirtTargets += DevirtTargets.size();
2427
2428  removeRedundantTypeTests();
2429
2430  // Rebuild each global we touched as part of virtual constant propagation to
2431  // include the before and after bytes.
2432  if (DidVirtualConstProp)
2433    for (VTableBits &B : Bits)
2434      rebuildGlobal(B);
2435
2436  // We have lowered or deleted the type intrinsics, so we will no longer have
2437  // enough information to reason about the liveness of virtual function
2438  // pointers in GlobalDCE.
2439  for (GlobalVariable &GV : M.globals())
2440    GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2441
2442  for (auto *CI : CallsWithPtrAuthBundleRemoved)
2443    CI->eraseFromParent();
2444
2445  return true;
2446}
2447
2448void DevirtIndex::run() {
2449  if (ExportSummary.typeIdCompatibleVtableMap().empty())
2450    return;
2451
2452  DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2453  for (const auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2454    NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2455    // Create the type id summary resolution regardlness of whether we can
2456    // devirtualize, so that lower type tests knows the type id is used on
2457    // a global and not Unsat. We do this here rather than in the loop over the
2458    // CallSlots, since that handling will only see type tests that directly
2459    // feed assumes, and we would miss any that aren't currently handled by WPD
2460    // (such as type tests that feed assumes via phis).
2461    ExportSummary.getOrInsertTypeIdSummary(P.first);
2462  }
2463
2464  // Collect information from summary about which calls to try to devirtualize.
2465  for (auto &P : ExportSummary) {
2466    for (auto &S : P.second.SummaryList) {
2467      auto *FS = dyn_cast<FunctionSummary>(S.get());
2468      if (!FS)
2469        continue;
2470      // FIXME: Only add live functions.
2471      for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2472        for (StringRef Name : NameByGUID[VF.GUID]) {
2473          CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2474        }
2475      }
2476      for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2477        for (StringRef Name : NameByGUID[VF.GUID]) {
2478          CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2479        }
2480      }
2481      for (const FunctionSummary::ConstVCall &VC :
2482           FS->type_test_assume_const_vcalls()) {
2483        for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2484          CallSlots[{Name, VC.VFunc.Offset}]
2485              .ConstCSInfo[VC.Args]
2486              .addSummaryTypeTestAssumeUser(FS);
2487        }
2488      }
2489      for (const FunctionSummary::ConstVCall &VC :
2490           FS->type_checked_load_const_vcalls()) {
2491        for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2492          CallSlots[{Name, VC.VFunc.Offset}]
2493              .ConstCSInfo[VC.Args]
2494              .addSummaryTypeCheckedLoadUser(FS);
2495        }
2496      }
2497    }
2498  }
2499
2500  std::set<ValueInfo> DevirtTargets;
2501  // For each (type, offset) pair:
2502  for (auto &S : CallSlots) {
2503    // Search each of the members of the type identifier for the virtual
2504    // function implementation at offset S.first.ByteOffset, and add to
2505    // TargetsForSlot.
2506    std::vector<ValueInfo> TargetsForSlot;
2507    auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2508    assert(TidSummary);
2509    // The type id summary would have been created while building the NameByGUID
2510    // map earlier.
2511    WholeProgramDevirtResolution *Res =
2512        &ExportSummary.getTypeIdSummary(S.first.TypeID)
2513             ->WPDRes[S.first.ByteOffset];
2514    if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2515                                  S.first.ByteOffset)) {
2516
2517      if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2518                               DevirtTargets))
2519        continue;
2520    }
2521  }
2522
2523  // Optionally have the thin link print message for each devirtualized
2524  // function.
2525  if (PrintSummaryDevirt)
2526    for (const auto &DT : DevirtTargets)
2527      errs() << "Devirtualized call to " << DT << "\n";
2528
2529  NumDevirtTargets += DevirtTargets.size();
2530}
2531