1//===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass deletes dead arguments from internal functions.  Dead argument
10// elimination removes arguments which are directly dead, as well as arguments
11// only passed into function calls as dead arguments of other functions.  This
12// pass also deletes dead return values in a similar way.
13//
14// This pass is often useful as a cleanup pass to run after aggressive
15// interprocedural passes, which add possibly-dead arguments or return values.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/IR/Argument.h"
23#include "llvm/IR/AttributeMask.h"
24#include "llvm/IR/Attributes.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DIBuilder.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/IRBuilder.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/NoFolder.h"
37#include "llvm/IR/PassManager.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/User.h"
41#include "llvm/IR/Value.h"
42#include "llvm/InitializePasses.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include <cassert>
50#include <utility>
51#include <vector>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "deadargelim"
56
57STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
58STATISTIC(NumRetValsEliminated, "Number of unused return values removed");
59STATISTIC(NumArgumentsReplacedWithPoison,
60          "Number of unread args replaced with poison");
61
62namespace {
63
64/// The dead argument elimination pass.
65class DAE : public ModulePass {
66protected:
67  // DAH uses this to specify a different ID.
68  explicit DAE(char &ID) : ModulePass(ID) {}
69
70public:
71  static char ID; // Pass identification, replacement for typeid
72
73  DAE() : ModulePass(ID) {
74    initializeDAEPass(*PassRegistry::getPassRegistry());
75  }
76
77  bool runOnModule(Module &M) override {
78    if (skipModule(M))
79      return false;
80    DeadArgumentEliminationPass DAEP(shouldHackArguments());
81    ModuleAnalysisManager DummyMAM;
82    PreservedAnalyses PA = DAEP.run(M, DummyMAM);
83    return !PA.areAllPreserved();
84  }
85
86  virtual bool shouldHackArguments() const { return false; }
87};
88
89bool isMustTailCalleeAnalyzable(const CallBase &CB) {
90  assert(CB.isMustTailCall());
91  return CB.getCalledFunction() && !CB.getCalledFunction()->isDeclaration();
92}
93
94} // end anonymous namespace
95
96char DAE::ID = 0;
97
98INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
99
100namespace {
101
102/// The DeadArgumentHacking pass, same as dead argument elimination, but deletes
103/// arguments to functions which are external. This is only for use by bugpoint.
104struct DAH : public DAE {
105  static char ID;
106
107  DAH() : DAE(ID) {}
108
109  bool shouldHackArguments() const override { return true; }
110};
111
112} // end anonymous namespace
113
114char DAH::ID = 0;
115
116INITIALIZE_PASS(DAH, "deadarghaX0r",
117                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false,
118                false)
119
120/// This pass removes arguments from functions which are not used by the body of
121/// the function.
122ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
123
124ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
125
126/// If this is an function that takes a ... list, and if llvm.vastart is never
127/// called, the varargs list is dead for the function.
128bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) {
129  assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!");
130  if (F.isDeclaration() || !F.hasLocalLinkage())
131    return false;
132
133  // Ensure that the function is only directly called.
134  if (F.hasAddressTaken())
135    return false;
136
137  // Don't touch naked functions. The assembly might be using an argument, or
138  // otherwise rely on the frame layout in a way that this analysis will not
139  // see.
140  if (F.hasFnAttribute(Attribute::Naked)) {
141    return false;
142  }
143
144  // Okay, we know we can transform this function if safe.  Scan its body
145  // looking for calls marked musttail or calls to llvm.vastart.
146  for (BasicBlock &BB : F) {
147    for (Instruction &I : BB) {
148      CallInst *CI = dyn_cast<CallInst>(&I);
149      if (!CI)
150        continue;
151      if (CI->isMustTailCall())
152        return false;
153      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
154        if (II->getIntrinsicID() == Intrinsic::vastart)
155          return false;
156      }
157    }
158  }
159
160  // If we get here, there are no calls to llvm.vastart in the function body,
161  // remove the "..." and adjust all the calls.
162
163  // Start by computing a new prototype for the function, which is the same as
164  // the old function, but doesn't have isVarArg set.
165  FunctionType *FTy = F.getFunctionType();
166
167  std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
168  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
169  unsigned NumArgs = Params.size();
170
171  // Create the new function body and insert it into the module...
172  Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
173  NF->copyAttributesFrom(&F);
174  NF->setComdat(F.getComdat());
175  F.getParent()->getFunctionList().insert(F.getIterator(), NF);
176  NF->takeName(&F);
177  NF->IsNewDbgInfoFormat = F.IsNewDbgInfoFormat;
178
179  // Loop over all the callers of the function, transforming the call sites
180  // to pass in a smaller number of arguments into the new function.
181  //
182  std::vector<Value *> Args;
183  for (User *U : llvm::make_early_inc_range(F.users())) {
184    CallBase *CB = dyn_cast<CallBase>(U);
185    if (!CB)
186      continue;
187
188    // Pass all the same arguments.
189    Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
190
191    // Drop any attributes that were on the vararg arguments.
192    AttributeList PAL = CB->getAttributes();
193    if (!PAL.isEmpty()) {
194      SmallVector<AttributeSet, 8> ArgAttrs;
195      for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
196        ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
197      PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(),
198                               PAL.getRetAttrs(), ArgAttrs);
199    }
200
201    SmallVector<OperandBundleDef, 1> OpBundles;
202    CB->getOperandBundlesAsDefs(OpBundles);
203
204    CallBase *NewCB = nullptr;
205    if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
206      NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
207                                 Args, OpBundles, "", CB);
208    } else {
209      NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
210      cast<CallInst>(NewCB)->setTailCallKind(
211          cast<CallInst>(CB)->getTailCallKind());
212    }
213    NewCB->setCallingConv(CB->getCallingConv());
214    NewCB->setAttributes(PAL);
215    NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
216
217    Args.clear();
218
219    if (!CB->use_empty())
220      CB->replaceAllUsesWith(NewCB);
221
222    NewCB->takeName(CB);
223
224    // Finally, remove the old call from the program, reducing the use-count of
225    // F.
226    CB->eraseFromParent();
227  }
228
229  // Since we have now created the new function, splice the body of the old
230  // function right into the new function, leaving the old rotting hulk of the
231  // function empty.
232  NF->splice(NF->begin(), &F);
233
234  // Loop over the argument list, transferring uses of the old arguments over to
235  // the new arguments, also transferring over the names as well.  While we're
236  // at it, remove the dead arguments from the DeadArguments list.
237  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(),
238                              I2 = NF->arg_begin();
239       I != E; ++I, ++I2) {
240    // Move the name and users over to the new version.
241    I->replaceAllUsesWith(&*I2);
242    I2->takeName(&*I);
243  }
244
245  // Clone metadata from the old function, including debug info descriptor.
246  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
247  F.getAllMetadata(MDs);
248  for (auto [KindID, Node] : MDs)
249    NF->addMetadata(KindID, *Node);
250
251  // Fix up any BlockAddresses that refer to the function.
252  F.replaceAllUsesWith(NF);
253  // Delete the bitcast that we just created, so that NF does not
254  // appear to be address-taken.
255  NF->removeDeadConstantUsers();
256  // Finally, nuke the old function.
257  F.eraseFromParent();
258  return true;
259}
260
261/// Checks if the given function has any arguments that are unused, and changes
262/// the caller parameters to be poison instead.
263bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) {
264  // We cannot change the arguments if this TU does not define the function or
265  // if the linker may choose a function body from another TU, even if the
266  // nominal linkage indicates that other copies of the function have the same
267  // semantics. In the below example, the dead load from %p may not have been
268  // eliminated from the linker-chosen copy of f, so replacing %p with poison
269  // in callers may introduce undefined behavior.
270  //
271  // define linkonce_odr void @f(i32* %p) {
272  //   %v = load i32 %p
273  //   ret void
274  // }
275  if (!F.hasExactDefinition())
276    return false;
277
278  // Functions with local linkage should already have been handled, except if
279  // they are fully alive (e.g., called indirectly) and except for the fragile
280  // (variadic) ones. In these cases, we may still be able to improve their
281  // statically known call sites.
282  if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) &&
283      !F.getFunctionType()->isVarArg())
284    return false;
285
286  // Don't touch naked functions. The assembly might be using an argument, or
287  // otherwise rely on the frame layout in a way that this analysis will not
288  // see.
289  if (F.hasFnAttribute(Attribute::Naked))
290    return false;
291
292  if (F.use_empty())
293    return false;
294
295  SmallVector<unsigned, 8> UnusedArgs;
296  bool Changed = false;
297
298  AttributeMask UBImplyingAttributes =
299      AttributeFuncs::getUBImplyingAttributes();
300  for (Argument &Arg : F.args()) {
301    if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
302        !Arg.hasPassPointeeByValueCopyAttr()) {
303      if (Arg.isUsedByMetadata()) {
304        Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType()));
305        Changed = true;
306      }
307      UnusedArgs.push_back(Arg.getArgNo());
308      F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
309    }
310  }
311
312  if (UnusedArgs.empty())
313    return false;
314
315  for (Use &U : F.uses()) {
316    CallBase *CB = dyn_cast<CallBase>(U.getUser());
317    if (!CB || !CB->isCallee(&U) ||
318        CB->getFunctionType() != F.getFunctionType())
319      continue;
320
321    // Now go through all unused args and replace them with poison.
322    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
323      unsigned ArgNo = UnusedArgs[I];
324
325      Value *Arg = CB->getArgOperand(ArgNo);
326      CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType()));
327      CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
328
329      ++NumArgumentsReplacedWithPoison;
330      Changed = true;
331    }
332  }
333
334  return Changed;
335}
336
337/// Convenience function that returns the number of return values. It returns 0
338/// for void functions and 1 for functions not returning a struct. It returns
339/// the number of struct elements for functions returning a struct.
340static unsigned numRetVals(const Function *F) {
341  Type *RetTy = F->getReturnType();
342  if (RetTy->isVoidTy())
343    return 0;
344  if (StructType *STy = dyn_cast<StructType>(RetTy))
345    return STy->getNumElements();
346  if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
347    return ATy->getNumElements();
348  return 1;
349}
350
351/// Returns the sub-type a function will return at a given Idx. Should
352/// correspond to the result type of an ExtractValue instruction executed with
353/// just that one Idx (i.e. only top-level structure is considered).
354static Type *getRetComponentType(const Function *F, unsigned Idx) {
355  Type *RetTy = F->getReturnType();
356  assert(!RetTy->isVoidTy() && "void type has no subtype");
357
358  if (StructType *STy = dyn_cast<StructType>(RetTy))
359    return STy->getElementType(Idx);
360  if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
361    return ATy->getElementType();
362  return RetTy;
363}
364
365/// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to
366/// the MaybeLiveUses argument. Returns the determined liveness of Use.
367DeadArgumentEliminationPass::Liveness
368DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use,
369                                           UseVector &MaybeLiveUses) {
370  // We're live if our use or its Function is already marked as live.
371  if (isLive(Use))
372    return Live;
373
374  // We're maybe live otherwise, but remember that we must become live if
375  // Use becomes live.
376  MaybeLiveUses.push_back(Use);
377  return MaybeLive;
378}
379
380/// Looks at a single use of an argument or return value and determines if it
381/// should be alive or not. Adds this use to MaybeLiveUses if it causes the
382/// used value to become MaybeLive.
383///
384/// RetValNum is the return value number to use when this use is used in a
385/// return instruction. This is used in the recursion, you should always leave
386/// it at 0.
387DeadArgumentEliminationPass::Liveness
388DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses,
389                                       unsigned RetValNum) {
390  const User *V = U->getUser();
391  if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
392    // The value is returned from a function. It's only live when the
393    // function's return value is live. We use RetValNum here, for the case
394    // that U is really a use of an insertvalue instruction that uses the
395    // original Use.
396    const Function *F = RI->getParent()->getParent();
397    if (RetValNum != -1U) {
398      RetOrArg Use = createRet(F, RetValNum);
399      // We might be live, depending on the liveness of Use.
400      return markIfNotLive(Use, MaybeLiveUses);
401    }
402
403    DeadArgumentEliminationPass::Liveness Result = MaybeLive;
404    for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) {
405      RetOrArg Use = createRet(F, Ri);
406      // We might be live, depending on the liveness of Use. If any
407      // sub-value is live, then the entire value is considered live. This
408      // is a conservative choice, and better tracking is possible.
409      DeadArgumentEliminationPass::Liveness SubResult =
410          markIfNotLive(Use, MaybeLiveUses);
411      if (Result != Live)
412        Result = SubResult;
413    }
414    return Result;
415  }
416
417  if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
418    if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() &&
419        IV->hasIndices())
420      // The use we are examining is inserted into an aggregate. Our liveness
421      // depends on all uses of that aggregate, but if it is used as a return
422      // value, only index at which we were inserted counts.
423      RetValNum = *IV->idx_begin();
424
425    // Note that if we are used as the aggregate operand to the insertvalue,
426    // we don't change RetValNum, but do survey all our uses.
427
428    Liveness Result = MaybeLive;
429    for (const Use &UU : IV->uses()) {
430      Result = surveyUse(&UU, MaybeLiveUses, RetValNum);
431      if (Result == Live)
432        break;
433    }
434    return Result;
435  }
436
437  if (const auto *CB = dyn_cast<CallBase>(V)) {
438    const Function *F = CB->getCalledFunction();
439    if (F) {
440      // Used in a direct call.
441
442      // The function argument is live if it is used as a bundle operand.
443      if (CB->isBundleOperand(U))
444        return Live;
445
446      // Find the argument number. We know for sure that this use is an
447      // argument, since if it was the function argument this would be an
448      // indirect call and that we know can't be looking at a value of the
449      // label type (for the invoke instruction).
450      unsigned ArgNo = CB->getArgOperandNo(U);
451
452      if (ArgNo >= F->getFunctionType()->getNumParams())
453        // The value is passed in through a vararg! Must be live.
454        return Live;
455
456      assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
457             "Argument is not where we expected it");
458
459      // Value passed to a normal call. It's only live when the corresponding
460      // argument to the called function turns out live.
461      RetOrArg Use = createArg(F, ArgNo);
462      return markIfNotLive(Use, MaybeLiveUses);
463    }
464  }
465  // Used in any other way? Value must be live.
466  return Live;
467}
468
469/// Looks at all the uses of the given value
470/// Returns the Liveness deduced from the uses of this value.
471///
472/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
473/// the result is Live, MaybeLiveUses might be modified but its content should
474/// be ignored (since it might not be complete).
475DeadArgumentEliminationPass::Liveness
476DeadArgumentEliminationPass::surveyUses(const Value *V,
477                                        UseVector &MaybeLiveUses) {
478  // Assume it's dead (which will only hold if there are no uses at all..).
479  Liveness Result = MaybeLive;
480  // Check each use.
481  for (const Use &U : V->uses()) {
482    Result = surveyUse(&U, MaybeLiveUses);
483    if (Result == Live)
484      break;
485  }
486  return Result;
487}
488
489/// Performs the initial survey of the specified function, checking out whether
490/// it uses any of its incoming arguments or whether any callers use the return
491/// value. This fills in the LiveValues set and Uses map.
492///
493/// We consider arguments of non-internal functions to be intrinsically alive as
494/// well as arguments to functions which have their "address taken".
495void DeadArgumentEliminationPass::surveyFunction(const Function &F) {
496  // Functions with inalloca/preallocated parameters are expecting args in a
497  // particular register and memory layout.
498  if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
499      F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
500    markLive(F);
501    return;
502  }
503
504  // Don't touch naked functions. The assembly might be using an argument, or
505  // otherwise rely on the frame layout in a way that this analysis will not
506  // see.
507  if (F.hasFnAttribute(Attribute::Naked)) {
508    markLive(F);
509    return;
510  }
511
512  unsigned RetCount = numRetVals(&F);
513
514  // Assume all return values are dead
515  using RetVals = SmallVector<Liveness, 5>;
516
517  RetVals RetValLiveness(RetCount, MaybeLive);
518
519  using RetUses = SmallVector<UseVector, 5>;
520
521  // These vectors map each return value to the uses that make it MaybeLive, so
522  // we can add those to the Uses map if the return value really turns out to be
523  // MaybeLive. Initialized to a list of RetCount empty lists.
524  RetUses MaybeLiveRetUses(RetCount);
525
526  bool HasMustTailCalls = false;
527  for (const BasicBlock &BB : F) {
528    // If we have any returns of `musttail` results - the signature can't
529    // change
530    if (const auto *TC = BB.getTerminatingMustTailCall()) {
531      HasMustTailCalls = true;
532      // In addition, if the called function is not locally defined (or unknown,
533      // if this is an indirect call), we can't change the callsite and thus
534      // can't change this function's signature either.
535      if (!isMustTailCalleeAnalyzable(*TC)) {
536        markLive(F);
537        return;
538      }
539    }
540  }
541
542  if (HasMustTailCalls) {
543    LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
544                      << " has musttail calls\n");
545  }
546
547  if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
548    markLive(F);
549    return;
550  }
551
552  LLVM_DEBUG(
553      dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
554             << F.getName() << "\n");
555  // Keep track of the number of live retvals, so we can skip checks once all
556  // of them turn out to be live.
557  unsigned NumLiveRetVals = 0;
558
559  bool HasMustTailCallers = false;
560
561  // Loop all uses of the function.
562  for (const Use &U : F.uses()) {
563    // If the function is PASSED IN as an argument, its address has been
564    // taken.
565    const auto *CB = dyn_cast<CallBase>(U.getUser());
566    if (!CB || !CB->isCallee(&U) ||
567        CB->getFunctionType() != F.getFunctionType()) {
568      markLive(F);
569      return;
570    }
571
572    // The number of arguments for `musttail` call must match the number of
573    // arguments of the caller
574    if (CB->isMustTailCall())
575      HasMustTailCallers = true;
576
577    // If we end up here, we are looking at a direct call to our function.
578
579    // Now, check how our return value(s) is/are used in this caller. Don't
580    // bother checking return values if all of them are live already.
581    if (NumLiveRetVals == RetCount)
582      continue;
583
584    // Check all uses of the return value.
585    for (const Use &UU : CB->uses()) {
586      if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) {
587        // This use uses a part of our return value, survey the uses of
588        // that part and store the results for this index only.
589        unsigned Idx = *Ext->idx_begin();
590        if (RetValLiveness[Idx] != Live) {
591          RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]);
592          if (RetValLiveness[Idx] == Live)
593            NumLiveRetVals++;
594        }
595      } else {
596        // Used by something else than extractvalue. Survey, but assume that the
597        // result applies to all sub-values.
598        UseVector MaybeLiveAggregateUses;
599        if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) {
600          NumLiveRetVals = RetCount;
601          RetValLiveness.assign(RetCount, Live);
602          break;
603        }
604
605        for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
606          if (RetValLiveness[Ri] != Live)
607            MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
608                                        MaybeLiveAggregateUses.end());
609        }
610      }
611    }
612  }
613
614  if (HasMustTailCallers) {
615    LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
616                      << " has musttail callers\n");
617  }
618
619  // Now we've inspected all callers, record the liveness of our return values.
620  for (unsigned Ri = 0; Ri != RetCount; ++Ri)
621    markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
622
623  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
624                    << F.getName() << "\n");
625
626  // Now, check all of our arguments.
627  unsigned ArgI = 0;
628  UseVector MaybeLiveArgUses;
629  for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
630       AI != E; ++AI, ++ArgI) {
631    Liveness Result;
632    if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
633        HasMustTailCalls) {
634      // Variadic functions will already have a va_arg function expanded inside
635      // them, making them potentially very sensitive to ABI changes resulting
636      // from removing arguments entirely, so don't. For example AArch64 handles
637      // register and stack HFAs very differently, and this is reflected in the
638      // IR which has already been generated.
639      //
640      // `musttail` calls to this function restrict argument removal attempts.
641      // The signature of the caller must match the signature of the function.
642      //
643      // `musttail` calls in this function prevents us from changing its
644      // signature
645      Result = Live;
646    } else {
647      // See what the effect of this use is (recording any uses that cause
648      // MaybeLive in MaybeLiveArgUses).
649      Result = surveyUses(&*AI, MaybeLiveArgUses);
650    }
651
652    // Mark the result.
653    markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses);
654    // Clear the vector again for the next iteration.
655    MaybeLiveArgUses.clear();
656  }
657}
658
659/// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes
660/// all uses in MaybeLiveUses and records them in Uses, such that RA will be
661/// marked live if any use in MaybeLiveUses gets marked live later on.
662void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L,
663                                            const UseVector &MaybeLiveUses) {
664  switch (L) {
665  case Live:
666    markLive(RA);
667    break;
668  case MaybeLive:
669    assert(!isLive(RA) && "Use is already live!");
670    for (const auto &MaybeLiveUse : MaybeLiveUses) {
671      if (isLive(MaybeLiveUse)) {
672        // A use is live, so this value is live.
673        markLive(RA);
674        break;
675      }
676      // Note any uses of this value, so this value can be
677      // marked live whenever one of the uses becomes live.
678      Uses.emplace(MaybeLiveUse, RA);
679    }
680    break;
681  }
682}
683
684/// Mark the given Function as alive, meaning that it cannot be changed in any
685/// way. Additionally, mark any values that are used as this function's
686/// parameters or by its return values (according to Uses) live as well.
687void DeadArgumentEliminationPass::markLive(const Function &F) {
688  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
689                    << F.getName() << "\n");
690  // Mark the function as live.
691  LiveFunctions.insert(&F);
692  // Mark all arguments as live.
693  for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
694    propagateLiveness(createArg(&F, ArgI));
695  // Mark all return values as live.
696  for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri)
697    propagateLiveness(createRet(&F, Ri));
698}
699
700/// Mark the given return value or argument as live. Additionally, mark any
701/// values that are used by this value (according to Uses) live as well.
702void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) {
703  if (isLive(RA))
704    return; // Already marked Live.
705
706  LiveValues.insert(RA);
707
708  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
709                    << RA.getDescription() << " live\n");
710  propagateLiveness(RA);
711}
712
713bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) {
714  return LiveFunctions.count(RA.F) || LiveValues.count(RA);
715}
716
717/// Given that RA is a live value, propagate it's liveness to any other values
718/// it uses (according to Uses).
719void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) {
720  // We don't use upper_bound (or equal_range) here, because our recursive call
721  // to ourselves is likely to cause the upper_bound (which is the first value
722  // not belonging to RA) to become erased and the iterator invalidated.
723  UseMap::iterator Begin = Uses.lower_bound(RA);
724  UseMap::iterator E = Uses.end();
725  UseMap::iterator I;
726  for (I = Begin; I != E && I->first == RA; ++I)
727    markLive(I->second);
728
729  // Erase RA from the Uses map (from the lower bound to wherever we ended up
730  // after the loop).
731  Uses.erase(Begin, I);
732}
733
734/// Remove any arguments and return values from F that are not in LiveValues.
735/// Transform the function and all the callees of the function to not have these
736/// arguments and return values.
737bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) {
738  // Don't modify fully live functions
739  if (LiveFunctions.count(F))
740    return false;
741
742  // Start by computing a new prototype for the function, which is the same as
743  // the old function, but has fewer arguments and a different return type.
744  FunctionType *FTy = F->getFunctionType();
745  std::vector<Type *> Params;
746
747  // Keep track of if we have a live 'returned' argument
748  bool HasLiveReturnedArg = false;
749
750  // Set up to build a new list of parameter attributes.
751  SmallVector<AttributeSet, 8> ArgAttrVec;
752  const AttributeList &PAL = F->getAttributes();
753
754  // Remember which arguments are still alive.
755  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
756  // Construct the new parameter list from non-dead arguments. Also construct
757  // a new set of parameter attributes to correspond. Skip the first parameter
758  // attribute, since that belongs to the return value.
759  unsigned ArgI = 0;
760  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
761       ++I, ++ArgI) {
762    RetOrArg Arg = createArg(F, ArgI);
763    if (LiveValues.erase(Arg)) {
764      Params.push_back(I->getType());
765      ArgAlive[ArgI] = true;
766      ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
767      HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
768    } else {
769      ++NumArgumentsEliminated;
770      LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
771                        << ArgI << " (" << I->getName() << ") from "
772                        << F->getName() << "\n");
773    }
774  }
775
776  // Find out the new return value.
777  Type *RetTy = FTy->getReturnType();
778  Type *NRetTy = nullptr;
779  unsigned RetCount = numRetVals(F);
780
781  // -1 means unused, other numbers are the new index
782  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
783  std::vector<Type *> RetTypes;
784
785  // If there is a function with a live 'returned' argument but a dead return
786  // value, then there are two possible actions:
787  // 1) Eliminate the return value and take off the 'returned' attribute on the
788  //    argument.
789  // 2) Retain the 'returned' attribute and treat the return value (but not the
790  //    entire function) as live so that it is not eliminated.
791  //
792  // It's not clear in the general case which option is more profitable because,
793  // even in the absence of explicit uses of the return value, code generation
794  // is free to use the 'returned' attribute to do things like eliding
795  // save/restores of registers across calls. Whether this happens is target and
796  // ABI-specific as well as depending on the amount of register pressure, so
797  // there's no good way for an IR-level pass to figure this out.
798  //
799  // Fortunately, the only places where 'returned' is currently generated by
800  // the FE are places where 'returned' is basically free and almost always a
801  // performance win, so the second option can just be used always for now.
802  //
803  // This should be revisited if 'returned' is ever applied more liberally.
804  if (RetTy->isVoidTy() || HasLiveReturnedArg) {
805    NRetTy = RetTy;
806  } else {
807    // Look at each of the original return values individually.
808    for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
809      RetOrArg Ret = createRet(F, Ri);
810      if (LiveValues.erase(Ret)) {
811        RetTypes.push_back(getRetComponentType(F, Ri));
812        NewRetIdxs[Ri] = RetTypes.size() - 1;
813      } else {
814        ++NumRetValsEliminated;
815        LLVM_DEBUG(
816            dbgs() << "DeadArgumentEliminationPass - Removing return value "
817                   << Ri << " from " << F->getName() << "\n");
818      }
819    }
820    if (RetTypes.size() > 1) {
821      // More than one return type? Reduce it down to size.
822      if (StructType *STy = dyn_cast<StructType>(RetTy)) {
823        // Make the new struct packed if we used to return a packed struct
824        // already.
825        NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
826      } else {
827        assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
828        NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
829      }
830    } else if (RetTypes.size() == 1)
831      // One return type? Just a simple value then, but only if we didn't use to
832      // return a struct with that simple value before.
833      NRetTy = RetTypes.front();
834    else if (RetTypes.empty())
835      // No return types? Make it void, but only if we didn't use to return {}.
836      NRetTy = Type::getVoidTy(F->getContext());
837  }
838
839  assert(NRetTy && "No new return type found?");
840
841  // The existing function return attributes.
842  AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs());
843
844  // Remove any incompatible attributes, but only if we removed all return
845  // values. Otherwise, ensure that we don't have any conflicting attributes
846  // here. Currently, this should not be possible, but special handling might be
847  // required when new return value attributes are added.
848  if (NRetTy->isVoidTy())
849    RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
850  else
851    assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
852           "Return attributes no longer compatible?");
853
854  AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
855
856  // Strip allocsize attributes. They might refer to the deleted arguments.
857  AttributeSet FnAttrs =
858      PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
859
860  // Reconstruct the AttributesList based on the vector we constructed.
861  assert(ArgAttrVec.size() == Params.size());
862  AttributeList NewPAL =
863      AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
864
865  // Create the new function type based on the recomputed parameters.
866  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
867
868  // No change?
869  if (NFTy == FTy)
870    return false;
871
872  // Create the new function body and insert it into the module...
873  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
874  NF->copyAttributesFrom(F);
875  NF->setComdat(F->getComdat());
876  NF->setAttributes(NewPAL);
877  // Insert the new function before the old function, so we won't be processing
878  // it again.
879  F->getParent()->getFunctionList().insert(F->getIterator(), NF);
880  NF->takeName(F);
881  NF->IsNewDbgInfoFormat = F->IsNewDbgInfoFormat;
882
883  // Loop over all the callers of the function, transforming the call sites to
884  // pass in a smaller number of arguments into the new function.
885  std::vector<Value *> Args;
886  while (!F->use_empty()) {
887    CallBase &CB = cast<CallBase>(*F->user_back());
888
889    ArgAttrVec.clear();
890    const AttributeList &CallPAL = CB.getAttributes();
891
892    // Adjust the call return attributes in case the function was changed to
893    // return void.
894    AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs());
895    RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
896    AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
897
898    // Declare these outside of the loops, so we can reuse them for the second
899    // loop, which loops the varargs.
900    auto *I = CB.arg_begin();
901    unsigned Pi = 0;
902    // Loop over those operands, corresponding to the normal arguments to the
903    // original function, and add those that are still alive.
904    for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
905      if (ArgAlive[Pi]) {
906        Args.push_back(*I);
907        // Get original parameter attributes, but skip return attributes.
908        AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
909        if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
910          // If the return type has changed, then get rid of 'returned' on the
911          // call site. The alternative is to make all 'returned' attributes on
912          // call sites keep the return value alive just like 'returned'
913          // attributes on function declaration, but it's less clearly a win and
914          // this is not an expected case anyway
915          ArgAttrVec.push_back(AttributeSet::get(
916              F->getContext(), AttrBuilder(F->getContext(), Attrs)
917                                   .removeAttribute(Attribute::Returned)));
918        } else {
919          // Otherwise, use the original attributes.
920          ArgAttrVec.push_back(Attrs);
921        }
922      }
923
924    // Push any varargs arguments on the list. Don't forget their attributes.
925    for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) {
926      Args.push_back(*I);
927      ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
928    }
929
930    // Reconstruct the AttributesList based on the vector we constructed.
931    assert(ArgAttrVec.size() == Args.size());
932
933    // Again, be sure to remove any allocsize attributes, since their indices
934    // may now be incorrect.
935    AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
936        F->getContext(), Attribute::AllocSize);
937
938    AttributeList NewCallPAL =
939        AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
940
941    SmallVector<OperandBundleDef, 1> OpBundles;
942    CB.getOperandBundlesAsDefs(OpBundles);
943
944    CallBase *NewCB = nullptr;
945    if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
946      NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
947                                 Args, OpBundles, "", CB.getParent());
948    } else {
949      NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
950      cast<CallInst>(NewCB)->setTailCallKind(
951          cast<CallInst>(&CB)->getTailCallKind());
952    }
953    NewCB->setCallingConv(CB.getCallingConv());
954    NewCB->setAttributes(NewCallPAL);
955    NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
956    Args.clear();
957    ArgAttrVec.clear();
958
959    if (!CB.use_empty() || CB.isUsedByMetadata()) {
960      if (NewCB->getType() == CB.getType()) {
961        // Return type not changed? Just replace users then.
962        CB.replaceAllUsesWith(NewCB);
963        NewCB->takeName(&CB);
964      } else if (NewCB->getType()->isVoidTy()) {
965        // If the return value is dead, replace any uses of it with poison
966        // (any non-debug value uses will get removed later on).
967        if (!CB.getType()->isX86_MMXTy())
968          CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
969      } else {
970        assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
971               "Return type changed, but not into a void. The old return type"
972               " must have been a struct or an array!");
973        Instruction *InsertPt = &CB;
974        if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
975          BasicBlock *NewEdge =
976              SplitEdge(NewCB->getParent(), II->getNormalDest());
977          InsertPt = &*NewEdge->getFirstInsertionPt();
978        }
979
980        // We used to return a struct or array. Instead of doing smart stuff
981        // with all the uses, we will just rebuild it using extract/insertvalue
982        // chaining and let instcombine clean that up.
983        //
984        // Start out building up our return value from poison
985        Value *RetVal = PoisonValue::get(RetTy);
986        for (unsigned Ri = 0; Ri != RetCount; ++Ri)
987          if (NewRetIdxs[Ri] != -1) {
988            Value *V;
989            IRBuilder<NoFolder> IRB(InsertPt);
990            if (RetTypes.size() > 1)
991              // We are still returning a struct, so extract the value from our
992              // return value
993              V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
994            else
995              // We are now returning a single element, so just insert that
996              V = NewCB;
997            // Insert the value at the old position
998            RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
999          }
1000        // Now, replace all uses of the old call instruction with the return
1001        // struct we built
1002        CB.replaceAllUsesWith(RetVal);
1003        NewCB->takeName(&CB);
1004      }
1005    }
1006
1007    // Finally, remove the old call from the program, reducing the use-count of
1008    // F.
1009    CB.eraseFromParent();
1010  }
1011
1012  // Since we have now created the new function, splice the body of the old
1013  // function right into the new function, leaving the old rotting hulk of the
1014  // function empty.
1015  NF->splice(NF->begin(), F);
1016
1017  // Loop over the argument list, transferring uses of the old arguments over to
1018  // the new arguments, also transferring over the names as well.
1019  ArgI = 0;
1020  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1021                              I2 = NF->arg_begin();
1022       I != E; ++I, ++ArgI)
1023    if (ArgAlive[ArgI]) {
1024      // If this is a live argument, move the name and users over to the new
1025      // version.
1026      I->replaceAllUsesWith(&*I2);
1027      I2->takeName(&*I);
1028      ++I2;
1029    } else {
1030      // If this argument is dead, replace any uses of it with poison
1031      // (any non-debug value uses will get removed later on).
1032      if (!I->getType()->isX86_MMXTy())
1033        I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1034    }
1035
1036  // If we change the return value of the function we must rewrite any return
1037  // instructions.  Check this now.
1038  if (F->getReturnType() != NF->getReturnType())
1039    for (BasicBlock &BB : *NF)
1040      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1041        IRBuilder<NoFolder> IRB(RI);
1042        Value *RetVal = nullptr;
1043
1044        if (!NFTy->getReturnType()->isVoidTy()) {
1045          assert(RetTy->isStructTy() || RetTy->isArrayTy());
1046          // The original return value was a struct or array, insert
1047          // extractvalue/insertvalue chains to extract only the values we need
1048          // to return and insert them into our new result.
1049          // This does generate messy code, but we'll let it to instcombine to
1050          // clean that up.
1051          Value *OldRet = RI->getOperand(0);
1052          // Start out building up our return value from poison
1053          RetVal = PoisonValue::get(NRetTy);
1054          for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1055            if (NewRetIdxs[RetI] != -1) {
1056              Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1057
1058              if (RetTypes.size() > 1) {
1059                // We're still returning a struct, so reinsert the value into
1060                // our new return value at the new index
1061
1062                RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1063                                               "newret");
1064              } else {
1065                // We are now only returning a simple value, so just return the
1066                // extracted value.
1067                RetVal = EV;
1068              }
1069            }
1070        }
1071        // Replace the return instruction with one returning the new return
1072        // value (possibly 0 if we became void).
1073        auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1074        NewRet->setDebugLoc(RI->getDebugLoc());
1075        RI->eraseFromParent();
1076      }
1077
1078  // Clone metadata from the old function, including debug info descriptor.
1079  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1080  F->getAllMetadata(MDs);
1081  for (auto [KindID, Node] : MDs)
1082    NF->addMetadata(KindID, *Node);
1083
1084  // If either the return value(s) or argument(s) are removed, then probably the
1085  // function does not follow standard calling conventions anymore. Hence, add
1086  // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe
1087  // to call this function or try to interpret the return value.
1088  if (NFTy != FTy && NF->getSubprogram()) {
1089    DISubprogram *SP = NF->getSubprogram();
1090    auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall);
1091    SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp)));
1092  }
1093
1094  // Now that the old function is dead, delete it.
1095  F->eraseFromParent();
1096
1097  return true;
1098}
1099
1100void DeadArgumentEliminationPass::propagateVirtMustcallLiveness(
1101    const Module &M) {
1102  // If a function was marked "live", and it has musttail callers, they in turn
1103  // can't change either.
1104  LiveFuncSet NewLiveFuncs(LiveFunctions);
1105  while (!NewLiveFuncs.empty()) {
1106    LiveFuncSet Temp;
1107    for (const auto *F : NewLiveFuncs)
1108      for (const auto *U : F->users())
1109        if (const auto *CB = dyn_cast<CallBase>(U))
1110          if (CB->isMustTailCall())
1111            if (!LiveFunctions.count(CB->getParent()->getParent()))
1112              Temp.insert(CB->getParent()->getParent());
1113    NewLiveFuncs.clear();
1114    NewLiveFuncs.insert(Temp.begin(), Temp.end());
1115    for (const auto *F : Temp)
1116      markLive(*F);
1117  }
1118}
1119
1120PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1121                                                   ModuleAnalysisManager &) {
1122  bool Changed = false;
1123
1124  // First pass: Do a simple check to see if any functions can have their "..."
1125  // removed.  We can do this if they never call va_start.  This loop cannot be
1126  // fused with the next loop, because deleting a function invalidates
1127  // information computed while surveying other functions.
1128  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1129  for (Function &F : llvm::make_early_inc_range(M))
1130    if (F.getFunctionType()->isVarArg())
1131      Changed |= deleteDeadVarargs(F);
1132
1133  // Second phase: Loop through the module, determining which arguments are
1134  // live. We assume all arguments are dead unless proven otherwise (allowing us
1135  // to determine that dead arguments passed into recursive functions are dead).
1136  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1137  for (auto &F : M)
1138    surveyFunction(F);
1139
1140  propagateVirtMustcallLiveness(M);
1141
1142  // Now, remove all dead arguments and return values from each function in
1143  // turn.  We use make_early_inc_range here because functions will probably get
1144  // removed (i.e. replaced by new ones).
1145  for (Function &F : llvm::make_early_inc_range(M))
1146    Changed |= removeDeadStuffFromFunction(&F);
1147
1148  // Finally, look for any unused parameters in functions with non-local
1149  // linkage and replace the passed in parameters with poison.
1150  for (auto &F : M)
1151    Changed |= removeDeadArgumentsFromCallers(F);
1152
1153  if (!Changed)
1154    return PreservedAnalyses::all();
1155  return PreservedAnalyses::none();
1156}
1157