1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the X86-specific support for the FastISel class. Much
10// of the target-specific code is generated by tablegen in the file
11// X86GenFastISel.inc, which is #included here.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86CallingConv.h"
17#include "X86InstrBuilder.h"
18#include "X86InstrInfo.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/Analysis/BranchProbabilityInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/DebugInfo.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GetElementPtrTypeIterator.h"
33#include "llvm/IR/GlobalAlias.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/IntrinsicsX86.h"
38#include "llvm/IR/Operator.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Target/TargetOptions.h"
43using namespace llvm;
44
45namespace {
46
47class X86FastISel final : public FastISel {
48  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49  /// make the right decision when generating code for different targets.
50  const X86Subtarget *Subtarget;
51
52public:
53  explicit X86FastISel(FunctionLoweringInfo &funcInfo,
54                       const TargetLibraryInfo *libInfo)
55      : FastISel(funcInfo, libInfo) {
56    Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
57  }
58
59  bool fastSelectInstruction(const Instruction *I) override;
60
61  /// The specified machine instr operand is a vreg, and that
62  /// vreg is being provided by the specified load instruction.  If possible,
63  /// try to fold the load as an operand to the instruction, returning true if
64  /// possible.
65  bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
66                           const LoadInst *LI) override;
67
68  bool fastLowerArguments() override;
69  bool fastLowerCall(CallLoweringInfo &CLI) override;
70  bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
71
72#include "X86GenFastISel.inc"
73
74private:
75  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
76                          const DebugLoc &DL);
77
78  bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
79                       unsigned &ResultReg, unsigned Alignment = 1);
80
81  bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
82                        MachineMemOperand *MMO = nullptr, bool Aligned = false);
83  bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
84                        MachineMemOperand *MMO = nullptr, bool Aligned = false);
85
86  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
87                         unsigned &ResultReg);
88
89  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
90  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
91
92  bool X86SelectLoad(const Instruction *I);
93
94  bool X86SelectStore(const Instruction *I);
95
96  bool X86SelectRet(const Instruction *I);
97
98  bool X86SelectCmp(const Instruction *I);
99
100  bool X86SelectZExt(const Instruction *I);
101
102  bool X86SelectSExt(const Instruction *I);
103
104  bool X86SelectBranch(const Instruction *I);
105
106  bool X86SelectShift(const Instruction *I);
107
108  bool X86SelectDivRem(const Instruction *I);
109
110  bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
111
112  bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
113
114  bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
115
116  bool X86SelectSelect(const Instruction *I);
117
118  bool X86SelectTrunc(const Instruction *I);
119
120  bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
121                               const TargetRegisterClass *RC);
122
123  bool X86SelectFPExt(const Instruction *I);
124  bool X86SelectFPTrunc(const Instruction *I);
125  bool X86SelectSIToFP(const Instruction *I);
126  bool X86SelectUIToFP(const Instruction *I);
127  bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
128
129  const X86InstrInfo *getInstrInfo() const {
130    return Subtarget->getInstrInfo();
131  }
132  const X86TargetMachine *getTargetMachine() const {
133    return static_cast<const X86TargetMachine *>(&TM);
134  }
135
136  bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
137
138  unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
139  unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
140  unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
141  unsigned fastMaterializeConstant(const Constant *C) override;
142
143  unsigned fastMaterializeAlloca(const AllocaInst *C) override;
144
145  unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
146
147  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
148  /// computed in an SSE register, not on the X87 floating point stack.
149  bool isScalarFPTypeInSSEReg(EVT VT) const {
150    return (VT == MVT::f64 && Subtarget->hasSSE2()) ||
151           (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16;
152  }
153
154  bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
155
156  bool IsMemcpySmall(uint64_t Len);
157
158  bool TryEmitSmallMemcpy(X86AddressMode DestAM,
159                          X86AddressMode SrcAM, uint64_t Len);
160
161  bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
162                            const Value *Cond);
163
164  const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
165                                            X86AddressMode &AM);
166
167  unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
168                             const TargetRegisterClass *RC, unsigned Op0,
169                             unsigned Op1, unsigned Op2, unsigned Op3);
170};
171
172} // end anonymous namespace.
173
174static std::pair<unsigned, bool>
175getX86SSEConditionCode(CmpInst::Predicate Predicate) {
176  unsigned CC;
177  bool NeedSwap = false;
178
179  // SSE Condition code mapping:
180  //  0 - EQ
181  //  1 - LT
182  //  2 - LE
183  //  3 - UNORD
184  //  4 - NEQ
185  //  5 - NLT
186  //  6 - NLE
187  //  7 - ORD
188  switch (Predicate) {
189  default: llvm_unreachable("Unexpected predicate");
190  case CmpInst::FCMP_OEQ: CC = 0;          break;
191  case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]];
192  case CmpInst::FCMP_OLT: CC = 1;          break;
193  case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]];
194  case CmpInst::FCMP_OLE: CC = 2;          break;
195  case CmpInst::FCMP_UNO: CC = 3;          break;
196  case CmpInst::FCMP_UNE: CC = 4;          break;
197  case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]];
198  case CmpInst::FCMP_UGE: CC = 5;          break;
199  case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]];
200  case CmpInst::FCMP_UGT: CC = 6;          break;
201  case CmpInst::FCMP_ORD: CC = 7;          break;
202  case CmpInst::FCMP_UEQ: CC = 8;          break;
203  case CmpInst::FCMP_ONE: CC = 12;         break;
204  }
205
206  return std::make_pair(CC, NeedSwap);
207}
208
209/// Adds a complex addressing mode to the given machine instr builder.
210/// Note, this will constrain the index register.  If its not possible to
211/// constrain the given index register, then a new one will be created.  The
212/// IndexReg field of the addressing mode will be updated to match in this case.
213const MachineInstrBuilder &
214X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
215                            X86AddressMode &AM) {
216  // First constrain the index register.  It needs to be a GR64_NOSP.
217  AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
218                                         MIB->getNumOperands() +
219                                         X86::AddrIndexReg);
220  return ::addFullAddress(MIB, AM);
221}
222
223/// Check if it is possible to fold the condition from the XALU intrinsic
224/// into the user. The condition code will only be updated on success.
225bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
226                                       const Value *Cond) {
227  if (!isa<ExtractValueInst>(Cond))
228    return false;
229
230  const auto *EV = cast<ExtractValueInst>(Cond);
231  if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
232    return false;
233
234  const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
235  MVT RetVT;
236  const Function *Callee = II->getCalledFunction();
237  Type *RetTy =
238    cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
239  if (!isTypeLegal(RetTy, RetVT))
240    return false;
241
242  if (RetVT != MVT::i32 && RetVT != MVT::i64)
243    return false;
244
245  X86::CondCode TmpCC;
246  switch (II->getIntrinsicID()) {
247  default: return false;
248  case Intrinsic::sadd_with_overflow:
249  case Intrinsic::ssub_with_overflow:
250  case Intrinsic::smul_with_overflow:
251  case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
252  case Intrinsic::uadd_with_overflow:
253  case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
254  }
255
256  // Check if both instructions are in the same basic block.
257  if (II->getParent() != I->getParent())
258    return false;
259
260  // Make sure nothing is in the way
261  BasicBlock::const_iterator Start(I);
262  BasicBlock::const_iterator End(II);
263  for (auto Itr = std::prev(Start); Itr != End; --Itr) {
264    // We only expect extractvalue instructions between the intrinsic and the
265    // instruction to be selected.
266    if (!isa<ExtractValueInst>(Itr))
267      return false;
268
269    // Check that the extractvalue operand comes from the intrinsic.
270    const auto *EVI = cast<ExtractValueInst>(Itr);
271    if (EVI->getAggregateOperand() != II)
272      return false;
273  }
274
275  // Make sure no potentially eflags clobbering phi moves can be inserted in
276  // between.
277  auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); };
278  if (I->isTerminator() && llvm::any_of(successors(I), HasPhis))
279    return false;
280
281  // Make sure there are no potentially eflags clobbering constant
282  // materializations in between.
283  if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); }))
284    return false;
285
286  CC = TmpCC;
287  return true;
288}
289
290bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
291  EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
292  if (evt == MVT::Other || !evt.isSimple())
293    // Unhandled type. Halt "fast" selection and bail.
294    return false;
295
296  VT = evt.getSimpleVT();
297  // For now, require SSE/SSE2 for performing floating-point operations,
298  // since x87 requires additional work.
299  if (VT == MVT::f64 && !Subtarget->hasSSE2())
300    return false;
301  if (VT == MVT::f32 && !Subtarget->hasSSE1())
302    return false;
303  // Similarly, no f80 support yet.
304  if (VT == MVT::f80)
305    return false;
306  // We only handle legal types. For example, on x86-32 the instruction
307  // selector contains all of the 64-bit instructions from x86-64,
308  // under the assumption that i64 won't be used if the target doesn't
309  // support it.
310  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
311}
312
313/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
314/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
315/// Return true and the result register by reference if it is possible.
316bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
317                                  MachineMemOperand *MMO, unsigned &ResultReg,
318                                  unsigned Alignment) {
319  bool HasSSE1 = Subtarget->hasSSE1();
320  bool HasSSE2 = Subtarget->hasSSE2();
321  bool HasSSE41 = Subtarget->hasSSE41();
322  bool HasAVX = Subtarget->hasAVX();
323  bool HasAVX2 = Subtarget->hasAVX2();
324  bool HasAVX512 = Subtarget->hasAVX512();
325  bool HasVLX = Subtarget->hasVLX();
326  bool IsNonTemporal = MMO && MMO->isNonTemporal();
327
328  // Treat i1 loads the same as i8 loads. Masking will be done when storing.
329  if (VT == MVT::i1)
330    VT = MVT::i8;
331
332  // Get opcode and regclass of the output for the given load instruction.
333  unsigned Opc = 0;
334  switch (VT.SimpleTy) {
335  default: return false;
336  case MVT::i8:
337    Opc = X86::MOV8rm;
338    break;
339  case MVT::i16:
340    Opc = X86::MOV16rm;
341    break;
342  case MVT::i32:
343    Opc = X86::MOV32rm;
344    break;
345  case MVT::i64:
346    // Must be in x86-64 mode.
347    Opc = X86::MOV64rm;
348    break;
349  case MVT::f32:
350    Opc = HasAVX512 ? X86::VMOVSSZrm_alt
351          : HasAVX  ? X86::VMOVSSrm_alt
352          : HasSSE1 ? X86::MOVSSrm_alt
353                    : X86::LD_Fp32m;
354    break;
355  case MVT::f64:
356    Opc = HasAVX512 ? X86::VMOVSDZrm_alt
357          : HasAVX  ? X86::VMOVSDrm_alt
358          : HasSSE2 ? X86::MOVSDrm_alt
359                    : X86::LD_Fp64m;
360    break;
361  case MVT::f80:
362    // No f80 support yet.
363    return false;
364  case MVT::v4f32:
365    if (IsNonTemporal && Alignment >= 16 && HasSSE41)
366      Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
367            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
368    else if (Alignment >= 16)
369      Opc = HasVLX ? X86::VMOVAPSZ128rm :
370            HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
371    else
372      Opc = HasVLX ? X86::VMOVUPSZ128rm :
373            HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
374    break;
375  case MVT::v2f64:
376    if (IsNonTemporal && Alignment >= 16 && HasSSE41)
377      Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
378            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
379    else if (Alignment >= 16)
380      Opc = HasVLX ? X86::VMOVAPDZ128rm :
381            HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
382    else
383      Opc = HasVLX ? X86::VMOVUPDZ128rm :
384            HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
385    break;
386  case MVT::v4i32:
387  case MVT::v2i64:
388  case MVT::v8i16:
389  case MVT::v16i8:
390    if (IsNonTemporal && Alignment >= 16 && HasSSE41)
391      Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
392            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
393    else if (Alignment >= 16)
394      Opc = HasVLX ? X86::VMOVDQA64Z128rm :
395            HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
396    else
397      Opc = HasVLX ? X86::VMOVDQU64Z128rm :
398            HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
399    break;
400  case MVT::v8f32:
401    assert(HasAVX);
402    if (IsNonTemporal && Alignment >= 32 && HasAVX2)
403      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
404    else if (IsNonTemporal && Alignment >= 16)
405      return false; // Force split for X86::VMOVNTDQArm
406    else if (Alignment >= 32)
407      Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
408    else
409      Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
410    break;
411  case MVT::v4f64:
412    assert(HasAVX);
413    if (IsNonTemporal && Alignment >= 32 && HasAVX2)
414      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
415    else if (IsNonTemporal && Alignment >= 16)
416      return false; // Force split for X86::VMOVNTDQArm
417    else if (Alignment >= 32)
418      Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
419    else
420      Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
421    break;
422  case MVT::v8i32:
423  case MVT::v4i64:
424  case MVT::v16i16:
425  case MVT::v32i8:
426    assert(HasAVX);
427    if (IsNonTemporal && Alignment >= 32 && HasAVX2)
428      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
429    else if (IsNonTemporal && Alignment >= 16)
430      return false; // Force split for X86::VMOVNTDQArm
431    else if (Alignment >= 32)
432      Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
433    else
434      Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
435    break;
436  case MVT::v16f32:
437    assert(HasAVX512);
438    if (IsNonTemporal && Alignment >= 64)
439      Opc = X86::VMOVNTDQAZrm;
440    else
441      Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
442    break;
443  case MVT::v8f64:
444    assert(HasAVX512);
445    if (IsNonTemporal && Alignment >= 64)
446      Opc = X86::VMOVNTDQAZrm;
447    else
448      Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
449    break;
450  case MVT::v8i64:
451  case MVT::v16i32:
452  case MVT::v32i16:
453  case MVT::v64i8:
454    assert(HasAVX512);
455    // Note: There are a lot more choices based on type with AVX-512, but
456    // there's really no advantage when the load isn't masked.
457    if (IsNonTemporal && Alignment >= 64)
458      Opc = X86::VMOVNTDQAZrm;
459    else
460      Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
461    break;
462  }
463
464  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
465
466  ResultReg = createResultReg(RC);
467  MachineInstrBuilder MIB =
468    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
469  addFullAddress(MIB, AM);
470  if (MMO)
471    MIB->addMemOperand(*FuncInfo.MF, MMO);
472  return true;
473}
474
475/// X86FastEmitStore - Emit a machine instruction to store a value Val of
476/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
477/// and a displacement offset, or a GlobalAddress,
478/// i.e. V. Return true if it is possible.
479bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
480                                   MachineMemOperand *MMO, bool Aligned) {
481  bool HasSSE1 = Subtarget->hasSSE1();
482  bool HasSSE2 = Subtarget->hasSSE2();
483  bool HasSSE4A = Subtarget->hasSSE4A();
484  bool HasAVX = Subtarget->hasAVX();
485  bool HasAVX512 = Subtarget->hasAVX512();
486  bool HasVLX = Subtarget->hasVLX();
487  bool IsNonTemporal = MMO && MMO->isNonTemporal();
488
489  // Get opcode and regclass of the output for the given store instruction.
490  unsigned Opc = 0;
491  switch (VT.getSimpleVT().SimpleTy) {
492  case MVT::f80: // No f80 support yet.
493  default: return false;
494  case MVT::i1: {
495    // Mask out all but lowest bit.
496    Register AndResult = createResultReg(&X86::GR8RegClass);
497    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
498            TII.get(X86::AND8ri), AndResult)
499      .addReg(ValReg).addImm(1);
500    ValReg = AndResult;
501    [[fallthrough]]; // handle i1 as i8.
502  }
503  case MVT::i8:  Opc = X86::MOV8mr;  break;
504  case MVT::i16: Opc = X86::MOV16mr; break;
505  case MVT::i32:
506    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
507    break;
508  case MVT::i64:
509    // Must be in x86-64 mode.
510    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
511    break;
512  case MVT::f32:
513    if (HasSSE1) {
514      if (IsNonTemporal && HasSSE4A)
515        Opc = X86::MOVNTSS;
516      else
517        Opc = HasAVX512 ? X86::VMOVSSZmr :
518              HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
519    } else
520      Opc = X86::ST_Fp32m;
521    break;
522  case MVT::f64:
523    if (HasSSE2) {
524      if (IsNonTemporal && HasSSE4A)
525        Opc = X86::MOVNTSD;
526      else
527        Opc = HasAVX512 ? X86::VMOVSDZmr :
528              HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
529    } else
530      Opc = X86::ST_Fp64m;
531    break;
532  case MVT::x86mmx:
533    Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
534    break;
535  case MVT::v4f32:
536    if (Aligned) {
537      if (IsNonTemporal)
538        Opc = HasVLX ? X86::VMOVNTPSZ128mr :
539              HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
540      else
541        Opc = HasVLX ? X86::VMOVAPSZ128mr :
542              HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
543    } else
544      Opc = HasVLX ? X86::VMOVUPSZ128mr :
545            HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
546    break;
547  case MVT::v2f64:
548    if (Aligned) {
549      if (IsNonTemporal)
550        Opc = HasVLX ? X86::VMOVNTPDZ128mr :
551              HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
552      else
553        Opc = HasVLX ? X86::VMOVAPDZ128mr :
554              HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
555    } else
556      Opc = HasVLX ? X86::VMOVUPDZ128mr :
557            HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
558    break;
559  case MVT::v4i32:
560  case MVT::v2i64:
561  case MVT::v8i16:
562  case MVT::v16i8:
563    if (Aligned) {
564      if (IsNonTemporal)
565        Opc = HasVLX ? X86::VMOVNTDQZ128mr :
566              HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
567      else
568        Opc = HasVLX ? X86::VMOVDQA64Z128mr :
569              HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
570    } else
571      Opc = HasVLX ? X86::VMOVDQU64Z128mr :
572            HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
573    break;
574  case MVT::v8f32:
575    assert(HasAVX);
576    if (Aligned) {
577      if (IsNonTemporal)
578        Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
579      else
580        Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
581    } else
582      Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
583    break;
584  case MVT::v4f64:
585    assert(HasAVX);
586    if (Aligned) {
587      if (IsNonTemporal)
588        Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
589      else
590        Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
591    } else
592      Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
593    break;
594  case MVT::v8i32:
595  case MVT::v4i64:
596  case MVT::v16i16:
597  case MVT::v32i8:
598    assert(HasAVX);
599    if (Aligned) {
600      if (IsNonTemporal)
601        Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
602      else
603        Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
604    } else
605      Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
606    break;
607  case MVT::v16f32:
608    assert(HasAVX512);
609    if (Aligned)
610      Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
611    else
612      Opc = X86::VMOVUPSZmr;
613    break;
614  case MVT::v8f64:
615    assert(HasAVX512);
616    if (Aligned) {
617      Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
618    } else
619      Opc = X86::VMOVUPDZmr;
620    break;
621  case MVT::v8i64:
622  case MVT::v16i32:
623  case MVT::v32i16:
624  case MVT::v64i8:
625    assert(HasAVX512);
626    // Note: There are a lot more choices based on type with AVX-512, but
627    // there's really no advantage when the store isn't masked.
628    if (Aligned)
629      Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
630    else
631      Opc = X86::VMOVDQU64Zmr;
632    break;
633  }
634
635  const MCInstrDesc &Desc = TII.get(Opc);
636  // Some of the instructions in the previous switch use FR128 instead
637  // of FR32 for ValReg. Make sure the register we feed the instruction
638  // matches its register class constraints.
639  // Note: This is fine to do a copy from FR32 to FR128, this is the
640  // same registers behind the scene and actually why it did not trigger
641  // any bugs before.
642  ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
643  MachineInstrBuilder MIB =
644      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc);
645  addFullAddress(MIB, AM).addReg(ValReg);
646  if (MMO)
647    MIB->addMemOperand(*FuncInfo.MF, MMO);
648
649  return true;
650}
651
652bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
653                                   X86AddressMode &AM,
654                                   MachineMemOperand *MMO, bool Aligned) {
655  // Handle 'null' like i32/i64 0.
656  if (isa<ConstantPointerNull>(Val))
657    Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
658
659  // If this is a store of a simple constant, fold the constant into the store.
660  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
661    unsigned Opc = 0;
662    bool Signed = true;
663    switch (VT.getSimpleVT().SimpleTy) {
664    default: break;
665    case MVT::i1:
666      Signed = false;
667      [[fallthrough]]; // Handle as i8.
668    case MVT::i8:  Opc = X86::MOV8mi;  break;
669    case MVT::i16: Opc = X86::MOV16mi; break;
670    case MVT::i32: Opc = X86::MOV32mi; break;
671    case MVT::i64:
672      // Must be a 32-bit sign extended value.
673      if (isInt<32>(CI->getSExtValue()))
674        Opc = X86::MOV64mi32;
675      break;
676    }
677
678    if (Opc) {
679      MachineInstrBuilder MIB =
680        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
681      addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
682                                            : CI->getZExtValue());
683      if (MMO)
684        MIB->addMemOperand(*FuncInfo.MF, MMO);
685      return true;
686    }
687  }
688
689  Register ValReg = getRegForValue(Val);
690  if (ValReg == 0)
691    return false;
692
693  return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned);
694}
695
696/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
697/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
698/// ISD::SIGN_EXTEND).
699bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
700                                    unsigned Src, EVT SrcVT,
701                                    unsigned &ResultReg) {
702  unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
703  if (RR == 0)
704    return false;
705
706  ResultReg = RR;
707  return true;
708}
709
710bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
711  // Handle constant address.
712  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
713    // Can't handle alternate code models yet.
714    if (TM.getCodeModel() != CodeModel::Small &&
715        TM.getCodeModel() != CodeModel::Medium)
716      return false;
717
718    // Can't handle large objects yet.
719    if (TM.isLargeGlobalValue(GV))
720      return false;
721
722    // Can't handle TLS yet.
723    if (GV->isThreadLocal())
724      return false;
725
726    // Can't handle !absolute_symbol references yet.
727    if (GV->isAbsoluteSymbolRef())
728      return false;
729
730    // RIP-relative addresses can't have additional register operands, so if
731    // we've already folded stuff into the addressing mode, just force the
732    // global value into its own register, which we can use as the basereg.
733    if (!Subtarget->isPICStyleRIPRel() ||
734        (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
735      // Okay, we've committed to selecting this global. Set up the address.
736      AM.GV = GV;
737
738      // Allow the subtarget to classify the global.
739      unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
740
741      // If this reference is relative to the pic base, set it now.
742      if (isGlobalRelativeToPICBase(GVFlags)) {
743        // FIXME: How do we know Base.Reg is free??
744        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
745      }
746
747      // Unless the ABI requires an extra load, return a direct reference to
748      // the global.
749      if (!isGlobalStubReference(GVFlags)) {
750        if (Subtarget->isPICStyleRIPRel()) {
751          // Use rip-relative addressing if we can.  Above we verified that the
752          // base and index registers are unused.
753          assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
754          AM.Base.Reg = X86::RIP;
755        }
756        AM.GVOpFlags = GVFlags;
757        return true;
758      }
759
760      // Ok, we need to do a load from a stub.  If we've already loaded from
761      // this stub, reuse the loaded pointer, otherwise emit the load now.
762      DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
763      Register LoadReg;
764      if (I != LocalValueMap.end() && I->second) {
765        LoadReg = I->second;
766      } else {
767        // Issue load from stub.
768        unsigned Opc = 0;
769        const TargetRegisterClass *RC = nullptr;
770        X86AddressMode StubAM;
771        StubAM.Base.Reg = AM.Base.Reg;
772        StubAM.GV = GV;
773        StubAM.GVOpFlags = GVFlags;
774
775        // Prepare for inserting code in the local-value area.
776        SavePoint SaveInsertPt = enterLocalValueArea();
777
778        if (TLI.getPointerTy(DL) == MVT::i64) {
779          Opc = X86::MOV64rm;
780          RC  = &X86::GR64RegClass;
781        } else {
782          Opc = X86::MOV32rm;
783          RC  = &X86::GR32RegClass;
784        }
785
786        if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL ||
787            GVFlags == X86II::MO_GOTPCREL_NORELAX)
788          StubAM.Base.Reg = X86::RIP;
789
790        LoadReg = createResultReg(RC);
791        MachineInstrBuilder LoadMI =
792          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg);
793        addFullAddress(LoadMI, StubAM);
794
795        // Ok, back to normal mode.
796        leaveLocalValueArea(SaveInsertPt);
797
798        // Prevent loading GV stub multiple times in same MBB.
799        LocalValueMap[V] = LoadReg;
800      }
801
802      // Now construct the final address. Note that the Disp, Scale,
803      // and Index values may already be set here.
804      AM.Base.Reg = LoadReg;
805      AM.GV = nullptr;
806      return true;
807    }
808  }
809
810  // If all else fails, try to materialize the value in a register.
811  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
812    if (AM.Base.Reg == 0) {
813      AM.Base.Reg = getRegForValue(V);
814      return AM.Base.Reg != 0;
815    }
816    if (AM.IndexReg == 0) {
817      assert(AM.Scale == 1 && "Scale with no index!");
818      AM.IndexReg = getRegForValue(V);
819      return AM.IndexReg != 0;
820    }
821  }
822
823  return false;
824}
825
826/// X86SelectAddress - Attempt to fill in an address from the given value.
827///
828bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
829  SmallVector<const Value *, 32> GEPs;
830redo_gep:
831  const User *U = nullptr;
832  unsigned Opcode = Instruction::UserOp1;
833  if (const Instruction *I = dyn_cast<Instruction>(V)) {
834    // Don't walk into other basic blocks; it's possible we haven't
835    // visited them yet, so the instructions may not yet be assigned
836    // virtual registers.
837    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
838        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
839      Opcode = I->getOpcode();
840      U = I;
841    }
842  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
843    Opcode = C->getOpcode();
844    U = C;
845  }
846
847  if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
848    if (Ty->getAddressSpace() > 255)
849      // Fast instruction selection doesn't support the special
850      // address spaces.
851      return false;
852
853  switch (Opcode) {
854  default: break;
855  case Instruction::BitCast:
856    // Look past bitcasts.
857    return X86SelectAddress(U->getOperand(0), AM);
858
859  case Instruction::IntToPtr:
860    // Look past no-op inttoptrs.
861    if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
862        TLI.getPointerTy(DL))
863      return X86SelectAddress(U->getOperand(0), AM);
864    break;
865
866  case Instruction::PtrToInt:
867    // Look past no-op ptrtoints.
868    if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
869      return X86SelectAddress(U->getOperand(0), AM);
870    break;
871
872  case Instruction::Alloca: {
873    // Do static allocas.
874    const AllocaInst *A = cast<AllocaInst>(V);
875    DenseMap<const AllocaInst *, int>::iterator SI =
876      FuncInfo.StaticAllocaMap.find(A);
877    if (SI != FuncInfo.StaticAllocaMap.end()) {
878      AM.BaseType = X86AddressMode::FrameIndexBase;
879      AM.Base.FrameIndex = SI->second;
880      return true;
881    }
882    break;
883  }
884
885  case Instruction::Add: {
886    // Adds of constants are common and easy enough.
887    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
888      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
889      // They have to fit in the 32-bit signed displacement field though.
890      if (isInt<32>(Disp)) {
891        AM.Disp = (uint32_t)Disp;
892        return X86SelectAddress(U->getOperand(0), AM);
893      }
894    }
895    break;
896  }
897
898  case Instruction::GetElementPtr: {
899    X86AddressMode SavedAM = AM;
900
901    // Pattern-match simple GEPs.
902    uint64_t Disp = (int32_t)AM.Disp;
903    unsigned IndexReg = AM.IndexReg;
904    unsigned Scale = AM.Scale;
905    gep_type_iterator GTI = gep_type_begin(U);
906    // Iterate through the indices, folding what we can. Constants can be
907    // folded, and one dynamic index can be handled, if the scale is supported.
908    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
909         i != e; ++i, ++GTI) {
910      const Value *Op = *i;
911      if (StructType *STy = GTI.getStructTypeOrNull()) {
912        const StructLayout *SL = DL.getStructLayout(STy);
913        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
914        continue;
915      }
916
917      // A array/variable index is always of the form i*S where S is the
918      // constant scale size.  See if we can push the scale into immediates.
919      uint64_t S = GTI.getSequentialElementStride(DL);
920      for (;;) {
921        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
922          // Constant-offset addressing.
923          Disp += CI->getSExtValue() * S;
924          break;
925        }
926        if (canFoldAddIntoGEP(U, Op)) {
927          // A compatible add with a constant operand. Fold the constant.
928          ConstantInt *CI =
929            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
930          Disp += CI->getSExtValue() * S;
931          // Iterate on the other operand.
932          Op = cast<AddOperator>(Op)->getOperand(0);
933          continue;
934        }
935        if (IndexReg == 0 &&
936            (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
937            (S == 1 || S == 2 || S == 4 || S == 8)) {
938          // Scaled-index addressing.
939          Scale = S;
940          IndexReg = getRegForGEPIndex(Op);
941          if (IndexReg == 0)
942            return false;
943          break;
944        }
945        // Unsupported.
946        goto unsupported_gep;
947      }
948    }
949
950    // Check for displacement overflow.
951    if (!isInt<32>(Disp))
952      break;
953
954    AM.IndexReg = IndexReg;
955    AM.Scale = Scale;
956    AM.Disp = (uint32_t)Disp;
957    GEPs.push_back(V);
958
959    if (const GetElementPtrInst *GEP =
960          dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
961      // Ok, the GEP indices were covered by constant-offset and scaled-index
962      // addressing. Update the address state and move on to examining the base.
963      V = GEP;
964      goto redo_gep;
965    } else if (X86SelectAddress(U->getOperand(0), AM)) {
966      return true;
967    }
968
969    // If we couldn't merge the gep value into this addr mode, revert back to
970    // our address and just match the value instead of completely failing.
971    AM = SavedAM;
972
973    for (const Value *I : reverse(GEPs))
974      if (handleConstantAddresses(I, AM))
975        return true;
976
977    return false;
978  unsupported_gep:
979    // Ok, the GEP indices weren't all covered.
980    break;
981  }
982  }
983
984  return handleConstantAddresses(V, AM);
985}
986
987/// X86SelectCallAddress - Attempt to fill in an address from the given value.
988///
989bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
990  const User *U = nullptr;
991  unsigned Opcode = Instruction::UserOp1;
992  const Instruction *I = dyn_cast<Instruction>(V);
993  // Record if the value is defined in the same basic block.
994  //
995  // This information is crucial to know whether or not folding an
996  // operand is valid.
997  // Indeed, FastISel generates or reuses a virtual register for all
998  // operands of all instructions it selects. Obviously, the definition and
999  // its uses must use the same virtual register otherwise the produced
1000  // code is incorrect.
1001  // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1002  // registers for values that are alive across basic blocks. This ensures
1003  // that the values are consistently set between across basic block, even
1004  // if different instruction selection mechanisms are used (e.g., a mix of
1005  // SDISel and FastISel).
1006  // For values local to a basic block, the instruction selection process
1007  // generates these virtual registers with whatever method is appropriate
1008  // for its needs. In particular, FastISel and SDISel do not share the way
1009  // local virtual registers are set.
1010  // Therefore, this is impossible (or at least unsafe) to share values
1011  // between basic blocks unless they use the same instruction selection
1012  // method, which is not guarantee for X86.
1013  // Moreover, things like hasOneUse could not be used accurately, if we
1014  // allow to reference values across basic blocks whereas they are not
1015  // alive across basic blocks initially.
1016  bool InMBB = true;
1017  if (I) {
1018    Opcode = I->getOpcode();
1019    U = I;
1020    InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1021  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1022    Opcode = C->getOpcode();
1023    U = C;
1024  }
1025
1026  switch (Opcode) {
1027  default: break;
1028  case Instruction::BitCast:
1029    // Look past bitcasts if its operand is in the same BB.
1030    if (InMBB)
1031      return X86SelectCallAddress(U->getOperand(0), AM);
1032    break;
1033
1034  case Instruction::IntToPtr:
1035    // Look past no-op inttoptrs if its operand is in the same BB.
1036    if (InMBB &&
1037        TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1038            TLI.getPointerTy(DL))
1039      return X86SelectCallAddress(U->getOperand(0), AM);
1040    break;
1041
1042  case Instruction::PtrToInt:
1043    // Look past no-op ptrtoints if its operand is in the same BB.
1044    if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1045      return X86SelectCallAddress(U->getOperand(0), AM);
1046    break;
1047  }
1048
1049  // Handle constant address.
1050  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1051    // Can't handle alternate code models yet.
1052    if (TM.getCodeModel() != CodeModel::Small &&
1053        TM.getCodeModel() != CodeModel::Medium)
1054      return false;
1055
1056    // RIP-relative addresses can't have additional register operands.
1057    if (Subtarget->isPICStyleRIPRel() &&
1058        (AM.Base.Reg != 0 || AM.IndexReg != 0))
1059      return false;
1060
1061    // Can't handle TLS.
1062    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1063      if (GVar->isThreadLocal())
1064        return false;
1065
1066    // Okay, we've committed to selecting this global. Set up the basic address.
1067    AM.GV = GV;
1068
1069    // Return a direct reference to the global. Fastisel can handle calls to
1070    // functions that require loads, such as dllimport and nonlazybind
1071    // functions.
1072    if (Subtarget->isPICStyleRIPRel()) {
1073      // Use rip-relative addressing if we can.  Above we verified that the
1074      // base and index registers are unused.
1075      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1076      AM.Base.Reg = X86::RIP;
1077    } else {
1078      AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1079    }
1080
1081    return true;
1082  }
1083
1084  // If all else fails, try to materialize the value in a register.
1085  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1086    auto GetCallRegForValue = [this](const Value *V) {
1087      Register Reg = getRegForValue(V);
1088
1089      // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
1090      if (Reg && Subtarget->isTarget64BitILP32()) {
1091        Register CopyReg = createResultReg(&X86::GR32RegClass);
1092        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr),
1093                CopyReg)
1094            .addReg(Reg);
1095
1096        Register ExtReg = createResultReg(&X86::GR64RegClass);
1097        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1098                TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
1099            .addImm(0)
1100            .addReg(CopyReg)
1101            .addImm(X86::sub_32bit);
1102        Reg = ExtReg;
1103      }
1104
1105      return Reg;
1106    };
1107
1108    if (AM.Base.Reg == 0) {
1109      AM.Base.Reg = GetCallRegForValue(V);
1110      return AM.Base.Reg != 0;
1111    }
1112    if (AM.IndexReg == 0) {
1113      assert(AM.Scale == 1 && "Scale with no index!");
1114      AM.IndexReg = GetCallRegForValue(V);
1115      return AM.IndexReg != 0;
1116    }
1117  }
1118
1119  return false;
1120}
1121
1122
1123/// X86SelectStore - Select and emit code to implement store instructions.
1124bool X86FastISel::X86SelectStore(const Instruction *I) {
1125  // Atomic stores need special handling.
1126  const StoreInst *S = cast<StoreInst>(I);
1127
1128  if (S->isAtomic())
1129    return false;
1130
1131  const Value *PtrV = I->getOperand(1);
1132  if (TLI.supportSwiftError()) {
1133    // Swifterror values can come from either a function parameter with
1134    // swifterror attribute or an alloca with swifterror attribute.
1135    if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1136      if (Arg->hasSwiftErrorAttr())
1137        return false;
1138    }
1139
1140    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1141      if (Alloca->isSwiftError())
1142        return false;
1143    }
1144  }
1145
1146  const Value *Val = S->getValueOperand();
1147  const Value *Ptr = S->getPointerOperand();
1148
1149  MVT VT;
1150  if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1151    return false;
1152
1153  Align Alignment = S->getAlign();
1154  Align ABIAlignment = DL.getABITypeAlign(Val->getType());
1155  bool Aligned = Alignment >= ABIAlignment;
1156
1157  X86AddressMode AM;
1158  if (!X86SelectAddress(Ptr, AM))
1159    return false;
1160
1161  return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1162}
1163
1164/// X86SelectRet - Select and emit code to implement ret instructions.
1165bool X86FastISel::X86SelectRet(const Instruction *I) {
1166  const ReturnInst *Ret = cast<ReturnInst>(I);
1167  const Function &F = *I->getParent()->getParent();
1168  const X86MachineFunctionInfo *X86MFInfo =
1169      FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1170
1171  if (!FuncInfo.CanLowerReturn)
1172    return false;
1173
1174  if (TLI.supportSwiftError() &&
1175      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1176    return false;
1177
1178  if (TLI.supportSplitCSR(FuncInfo.MF))
1179    return false;
1180
1181  CallingConv::ID CC = F.getCallingConv();
1182  if (CC != CallingConv::C &&
1183      CC != CallingConv::Fast &&
1184      CC != CallingConv::Tail &&
1185      CC != CallingConv::SwiftTail &&
1186      CC != CallingConv::X86_FastCall &&
1187      CC != CallingConv::X86_StdCall &&
1188      CC != CallingConv::X86_ThisCall &&
1189      CC != CallingConv::X86_64_SysV &&
1190      CC != CallingConv::Win64)
1191    return false;
1192
1193  // Don't handle popping bytes if they don't fit the ret's immediate.
1194  if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1195    return false;
1196
1197  // fastcc with -tailcallopt is intended to provide a guaranteed
1198  // tail call optimization. Fastisel doesn't know how to do that.
1199  if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1200      CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
1201    return false;
1202
1203  // Let SDISel handle vararg functions.
1204  if (F.isVarArg())
1205    return false;
1206
1207  // Build a list of return value registers.
1208  SmallVector<unsigned, 4> RetRegs;
1209
1210  if (Ret->getNumOperands() > 0) {
1211    SmallVector<ISD::OutputArg, 4> Outs;
1212    GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1213
1214    // Analyze operands of the call, assigning locations to each operand.
1215    SmallVector<CCValAssign, 16> ValLocs;
1216    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1217    CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1218
1219    const Value *RV = Ret->getOperand(0);
1220    Register Reg = getRegForValue(RV);
1221    if (Reg == 0)
1222      return false;
1223
1224    // Only handle a single return value for now.
1225    if (ValLocs.size() != 1)
1226      return false;
1227
1228    CCValAssign &VA = ValLocs[0];
1229
1230    // Don't bother handling odd stuff for now.
1231    if (VA.getLocInfo() != CCValAssign::Full)
1232      return false;
1233    // Only handle register returns for now.
1234    if (!VA.isRegLoc())
1235      return false;
1236
1237    // The calling-convention tables for x87 returns don't tell
1238    // the whole story.
1239    if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1240      return false;
1241
1242    unsigned SrcReg = Reg + VA.getValNo();
1243    EVT SrcVT = TLI.getValueType(DL, RV->getType());
1244    EVT DstVT = VA.getValVT();
1245    // Special handling for extended integers.
1246    if (SrcVT != DstVT) {
1247      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1248        return false;
1249
1250      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1251        return false;
1252
1253      assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1254
1255      if (SrcVT == MVT::i1) {
1256        if (Outs[0].Flags.isSExt())
1257          return false;
1258        // TODO
1259        SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg);
1260        SrcVT = MVT::i8;
1261      }
1262      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1263                                             ISD::SIGN_EXTEND;
1264      // TODO
1265      SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg);
1266    }
1267
1268    // Make the copy.
1269    Register DstReg = VA.getLocReg();
1270    const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1271    // Avoid a cross-class copy. This is very unlikely.
1272    if (!SrcRC->contains(DstReg))
1273      return false;
1274    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1275            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1276
1277    // Add register to return instruction.
1278    RetRegs.push_back(VA.getLocReg());
1279  }
1280
1281  // Swift calling convention does not require we copy the sret argument
1282  // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1283
1284  // All x86 ABIs require that for returning structs by value we copy
1285  // the sret argument into %rax/%eax (depending on ABI) for the return.
1286  // We saved the argument into a virtual register in the entry block,
1287  // so now we copy the value out and into %rax/%eax.
1288  if (F.hasStructRetAttr() && CC != CallingConv::Swift &&
1289      CC != CallingConv::SwiftTail) {
1290    Register Reg = X86MFInfo->getSRetReturnReg();
1291    assert(Reg &&
1292           "SRetReturnReg should have been set in LowerFormalArguments()!");
1293    unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1294    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1295            TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1296    RetRegs.push_back(RetReg);
1297  }
1298
1299  // Now emit the RET.
1300  MachineInstrBuilder MIB;
1301  if (X86MFInfo->getBytesToPopOnReturn()) {
1302    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1303                  TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32))
1304              .addImm(X86MFInfo->getBytesToPopOnReturn());
1305  } else {
1306    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1307                  TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32));
1308  }
1309  for (unsigned Reg : RetRegs)
1310    MIB.addReg(Reg, RegState::Implicit);
1311  return true;
1312}
1313
1314/// X86SelectLoad - Select and emit code to implement load instructions.
1315///
1316bool X86FastISel::X86SelectLoad(const Instruction *I) {
1317  const LoadInst *LI = cast<LoadInst>(I);
1318
1319  // Atomic loads need special handling.
1320  if (LI->isAtomic())
1321    return false;
1322
1323  const Value *SV = I->getOperand(0);
1324  if (TLI.supportSwiftError()) {
1325    // Swifterror values can come from either a function parameter with
1326    // swifterror attribute or an alloca with swifterror attribute.
1327    if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1328      if (Arg->hasSwiftErrorAttr())
1329        return false;
1330    }
1331
1332    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1333      if (Alloca->isSwiftError())
1334        return false;
1335    }
1336  }
1337
1338  MVT VT;
1339  if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1340    return false;
1341
1342  const Value *Ptr = LI->getPointerOperand();
1343
1344  X86AddressMode AM;
1345  if (!X86SelectAddress(Ptr, AM))
1346    return false;
1347
1348  unsigned ResultReg = 0;
1349  if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1350                       LI->getAlign().value()))
1351    return false;
1352
1353  updateValueMap(I, ResultReg);
1354  return true;
1355}
1356
1357static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1358  bool HasAVX512 = Subtarget->hasAVX512();
1359  bool HasAVX = Subtarget->hasAVX();
1360  bool HasSSE1 = Subtarget->hasSSE1();
1361  bool HasSSE2 = Subtarget->hasSSE2();
1362
1363  switch (VT.getSimpleVT().SimpleTy) {
1364  default:       return 0;
1365  case MVT::i8:  return X86::CMP8rr;
1366  case MVT::i16: return X86::CMP16rr;
1367  case MVT::i32: return X86::CMP32rr;
1368  case MVT::i64: return X86::CMP64rr;
1369  case MVT::f32:
1370    return HasAVX512 ? X86::VUCOMISSZrr
1371           : HasAVX  ? X86::VUCOMISSrr
1372           : HasSSE1 ? X86::UCOMISSrr
1373                     : 0;
1374  case MVT::f64:
1375    return HasAVX512 ? X86::VUCOMISDZrr
1376           : HasAVX  ? X86::VUCOMISDrr
1377           : HasSSE2 ? X86::UCOMISDrr
1378                     : 0;
1379  }
1380}
1381
1382/// If we have a comparison with RHS as the RHS  of the comparison, return an
1383/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1384static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1385  switch (VT.getSimpleVT().SimpleTy) {
1386  // Otherwise, we can't fold the immediate into this comparison.
1387  default:
1388    return 0;
1389  case MVT::i8:
1390    return X86::CMP8ri;
1391  case MVT::i16:
1392    return X86::CMP16ri;
1393  case MVT::i32:
1394    return X86::CMP32ri;
1395  case MVT::i64:
1396    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1397    // field.
1398    return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0;
1399  }
1400}
1401
1402bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1403                                     const DebugLoc &CurMIMD) {
1404  Register Op0Reg = getRegForValue(Op0);
1405  if (Op0Reg == 0) return false;
1406
1407  // Handle 'null' like i32/i64 0.
1408  if (isa<ConstantPointerNull>(Op1))
1409    Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1410
1411  // We have two options: compare with register or immediate.  If the RHS of
1412  // the compare is an immediate that we can fold into this compare, use
1413  // CMPri, otherwise use CMPrr.
1414  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1415    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1416      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc))
1417        .addReg(Op0Reg)
1418        .addImm(Op1C->getSExtValue());
1419      return true;
1420    }
1421  }
1422
1423  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1424  if (CompareOpc == 0) return false;
1425
1426  Register Op1Reg = getRegForValue(Op1);
1427  if (Op1Reg == 0) return false;
1428  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc))
1429    .addReg(Op0Reg)
1430    .addReg(Op1Reg);
1431
1432  return true;
1433}
1434
1435bool X86FastISel::X86SelectCmp(const Instruction *I) {
1436  const CmpInst *CI = cast<CmpInst>(I);
1437
1438  MVT VT;
1439  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1440    return false;
1441
1442  // Below code only works for scalars.
1443  if (VT.isVector())
1444    return false;
1445
1446  // Try to optimize or fold the cmp.
1447  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1448  unsigned ResultReg = 0;
1449  switch (Predicate) {
1450  default: break;
1451  case CmpInst::FCMP_FALSE: {
1452    ResultReg = createResultReg(&X86::GR32RegClass);
1453    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0),
1454            ResultReg);
1455    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit);
1456    if (!ResultReg)
1457      return false;
1458    break;
1459  }
1460  case CmpInst::FCMP_TRUE: {
1461    ResultReg = createResultReg(&X86::GR8RegClass);
1462    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
1463            ResultReg).addImm(1);
1464    break;
1465  }
1466  }
1467
1468  if (ResultReg) {
1469    updateValueMap(I, ResultReg);
1470    return true;
1471  }
1472
1473  const Value *LHS = CI->getOperand(0);
1474  const Value *RHS = CI->getOperand(1);
1475
1476  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1477  // We don't have to materialize a zero constant for this case and can just use
1478  // %x again on the RHS.
1479  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1480    const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1481    if (RHSC && RHSC->isNullValue())
1482      RHS = LHS;
1483  }
1484
1485  // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1486  static const uint16_t SETFOpcTable[2][3] = {
1487    { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1488    { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1489  };
1490  const uint16_t *SETFOpc = nullptr;
1491  switch (Predicate) {
1492  default: break;
1493  case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1494  case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1495  }
1496
1497  ResultReg = createResultReg(&X86::GR8RegClass);
1498  if (SETFOpc) {
1499    if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1500      return false;
1501
1502    Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1503    Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1504    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1505            FlagReg1).addImm(SETFOpc[0]);
1506    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1507            FlagReg2).addImm(SETFOpc[1]);
1508    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]),
1509            ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1510    updateValueMap(I, ResultReg);
1511    return true;
1512  }
1513
1514  X86::CondCode CC;
1515  bool SwapArgs;
1516  std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1517  assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1518
1519  if (SwapArgs)
1520    std::swap(LHS, RHS);
1521
1522  // Emit a compare of LHS/RHS.
1523  if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1524    return false;
1525
1526  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1527          ResultReg).addImm(CC);
1528  updateValueMap(I, ResultReg);
1529  return true;
1530}
1531
1532bool X86FastISel::X86SelectZExt(const Instruction *I) {
1533  EVT DstVT = TLI.getValueType(DL, I->getType());
1534  if (!TLI.isTypeLegal(DstVT))
1535    return false;
1536
1537  Register ResultReg = getRegForValue(I->getOperand(0));
1538  if (ResultReg == 0)
1539    return false;
1540
1541  // Handle zero-extension from i1 to i8, which is common.
1542  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1543  if (SrcVT == MVT::i1) {
1544    // Set the high bits to zero.
1545    ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1546    SrcVT = MVT::i8;
1547
1548    if (ResultReg == 0)
1549      return false;
1550  }
1551
1552  if (DstVT == MVT::i64) {
1553    // Handle extension to 64-bits via sub-register shenanigans.
1554    unsigned MovInst;
1555
1556    switch (SrcVT.SimpleTy) {
1557    case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1558    case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1559    case MVT::i32: MovInst = X86::MOV32rr;     break;
1560    default: llvm_unreachable("Unexpected zext to i64 source type");
1561    }
1562
1563    Register Result32 = createResultReg(&X86::GR32RegClass);
1564    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32)
1565      .addReg(ResultReg);
1566
1567    ResultReg = createResultReg(&X86::GR64RegClass);
1568    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG),
1569            ResultReg)
1570      .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1571  } else if (DstVT == MVT::i16) {
1572    // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1573    // extend to 32-bits and then extract down to 16-bits.
1574    Register Result32 = createResultReg(&X86::GR32RegClass);
1575    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8),
1576            Result32).addReg(ResultReg);
1577
1578    ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1579  } else if (DstVT != MVT::i8) {
1580    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1581                           ResultReg);
1582    if (ResultReg == 0)
1583      return false;
1584  }
1585
1586  updateValueMap(I, ResultReg);
1587  return true;
1588}
1589
1590bool X86FastISel::X86SelectSExt(const Instruction *I) {
1591  EVT DstVT = TLI.getValueType(DL, I->getType());
1592  if (!TLI.isTypeLegal(DstVT))
1593    return false;
1594
1595  Register ResultReg = getRegForValue(I->getOperand(0));
1596  if (ResultReg == 0)
1597    return false;
1598
1599  // Handle sign-extension from i1 to i8.
1600  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1601  if (SrcVT == MVT::i1) {
1602    // Set the high bits to zero.
1603    Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1604    if (ZExtReg == 0)
1605      return false;
1606
1607    // Negate the result to make an 8-bit sign extended value.
1608    ResultReg = createResultReg(&X86::GR8RegClass);
1609    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r),
1610            ResultReg).addReg(ZExtReg);
1611
1612    SrcVT = MVT::i8;
1613  }
1614
1615  if (DstVT == MVT::i16) {
1616    // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1617    // extend to 32-bits and then extract down to 16-bits.
1618    Register Result32 = createResultReg(&X86::GR32RegClass);
1619    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8),
1620            Result32).addReg(ResultReg);
1621
1622    ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1623  } else if (DstVT != MVT::i8) {
1624    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1625                           ResultReg);
1626    if (ResultReg == 0)
1627      return false;
1628  }
1629
1630  updateValueMap(I, ResultReg);
1631  return true;
1632}
1633
1634bool X86FastISel::X86SelectBranch(const Instruction *I) {
1635  // Unconditional branches are selected by tablegen-generated code.
1636  // Handle a conditional branch.
1637  const BranchInst *BI = cast<BranchInst>(I);
1638  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1639  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1640
1641  // Fold the common case of a conditional branch with a comparison
1642  // in the same block (values defined on other blocks may not have
1643  // initialized registers).
1644  X86::CondCode CC;
1645  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1646    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1647      EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1648
1649      // Try to optimize or fold the cmp.
1650      CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1651      switch (Predicate) {
1652      default: break;
1653      case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true;
1654      case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, MIMD.getDL()); return true;
1655      }
1656
1657      const Value *CmpLHS = CI->getOperand(0);
1658      const Value *CmpRHS = CI->getOperand(1);
1659
1660      // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1661      // 0.0.
1662      // We don't have to materialize a zero constant for this case and can just
1663      // use %x again on the RHS.
1664      if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1665        const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1666        if (CmpRHSC && CmpRHSC->isNullValue())
1667          CmpRHS = CmpLHS;
1668      }
1669
1670      // Try to take advantage of fallthrough opportunities.
1671      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1672        std::swap(TrueMBB, FalseMBB);
1673        Predicate = CmpInst::getInversePredicate(Predicate);
1674      }
1675
1676      // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1677      // code check. Instead two branch instructions are required to check all
1678      // the flags. First we change the predicate to a supported condition code,
1679      // which will be the first branch. Later one we will emit the second
1680      // branch.
1681      bool NeedExtraBranch = false;
1682      switch (Predicate) {
1683      default: break;
1684      case CmpInst::FCMP_OEQ:
1685        std::swap(TrueMBB, FalseMBB);
1686        [[fallthrough]];
1687      case CmpInst::FCMP_UNE:
1688        NeedExtraBranch = true;
1689        Predicate = CmpInst::FCMP_ONE;
1690        break;
1691      }
1692
1693      bool SwapArgs;
1694      std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1695      assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1696
1697      if (SwapArgs)
1698        std::swap(CmpLHS, CmpRHS);
1699
1700      // Emit a compare of the LHS and RHS, setting the flags.
1701      if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1702        return false;
1703
1704      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1705        .addMBB(TrueMBB).addImm(CC);
1706
1707      // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1708      // to UNE above).
1709      if (NeedExtraBranch) {
1710        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1711          .addMBB(TrueMBB).addImm(X86::COND_P);
1712      }
1713
1714      finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1715      return true;
1716    }
1717  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1718    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1719    // typically happen for _Bool and C++ bools.
1720    MVT SourceVT;
1721    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1722        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1723      unsigned TestOpc = 0;
1724      switch (SourceVT.SimpleTy) {
1725      default: break;
1726      case MVT::i8:  TestOpc = X86::TEST8ri; break;
1727      case MVT::i16: TestOpc = X86::TEST16ri; break;
1728      case MVT::i32: TestOpc = X86::TEST32ri; break;
1729      case MVT::i64: TestOpc = X86::TEST64ri32; break;
1730      }
1731      if (TestOpc) {
1732        Register OpReg = getRegForValue(TI->getOperand(0));
1733        if (OpReg == 0) return false;
1734
1735        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc))
1736          .addReg(OpReg).addImm(1);
1737
1738        unsigned JmpCond = X86::COND_NE;
1739        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1740          std::swap(TrueMBB, FalseMBB);
1741          JmpCond = X86::COND_E;
1742        }
1743
1744        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1745          .addMBB(TrueMBB).addImm(JmpCond);
1746
1747        finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1748        return true;
1749      }
1750    }
1751  } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1752    // Fake request the condition, otherwise the intrinsic might be completely
1753    // optimized away.
1754    Register TmpReg = getRegForValue(BI->getCondition());
1755    if (TmpReg == 0)
1756      return false;
1757
1758    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1759      .addMBB(TrueMBB).addImm(CC);
1760    finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1761    return true;
1762  }
1763
1764  // Otherwise do a clumsy setcc and re-test it.
1765  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1766  // in an explicit cast, so make sure to handle that correctly.
1767  Register OpReg = getRegForValue(BI->getCondition());
1768  if (OpReg == 0) return false;
1769
1770  // In case OpReg is a K register, COPY to a GPR
1771  if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1772    unsigned KOpReg = OpReg;
1773    OpReg = createResultReg(&X86::GR32RegClass);
1774    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1775            TII.get(TargetOpcode::COPY), OpReg)
1776        .addReg(KOpReg);
1777    OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit);
1778  }
1779  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
1780      .addReg(OpReg)
1781      .addImm(1);
1782  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1783    .addMBB(TrueMBB).addImm(X86::COND_NE);
1784  finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1785  return true;
1786}
1787
1788bool X86FastISel::X86SelectShift(const Instruction *I) {
1789  unsigned CReg = 0, OpReg = 0;
1790  const TargetRegisterClass *RC = nullptr;
1791  if (I->getType()->isIntegerTy(8)) {
1792    CReg = X86::CL;
1793    RC = &X86::GR8RegClass;
1794    switch (I->getOpcode()) {
1795    case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1796    case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1797    case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1798    default: return false;
1799    }
1800  } else if (I->getType()->isIntegerTy(16)) {
1801    CReg = X86::CX;
1802    RC = &X86::GR16RegClass;
1803    switch (I->getOpcode()) {
1804    default: llvm_unreachable("Unexpected shift opcode");
1805    case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1806    case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1807    case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1808    }
1809  } else if (I->getType()->isIntegerTy(32)) {
1810    CReg = X86::ECX;
1811    RC = &X86::GR32RegClass;
1812    switch (I->getOpcode()) {
1813    default: llvm_unreachable("Unexpected shift opcode");
1814    case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1815    case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1816    case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1817    }
1818  } else if (I->getType()->isIntegerTy(64)) {
1819    CReg = X86::RCX;
1820    RC = &X86::GR64RegClass;
1821    switch (I->getOpcode()) {
1822    default: llvm_unreachable("Unexpected shift opcode");
1823    case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1824    case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1825    case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1826    }
1827  } else {
1828    return false;
1829  }
1830
1831  MVT VT;
1832  if (!isTypeLegal(I->getType(), VT))
1833    return false;
1834
1835  Register Op0Reg = getRegForValue(I->getOperand(0));
1836  if (Op0Reg == 0) return false;
1837
1838  Register Op1Reg = getRegForValue(I->getOperand(1));
1839  if (Op1Reg == 0) return false;
1840  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1841          CReg).addReg(Op1Reg);
1842
1843  // The shift instruction uses X86::CL. If we defined a super-register
1844  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1845  if (CReg != X86::CL)
1846    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1847            TII.get(TargetOpcode::KILL), X86::CL)
1848      .addReg(CReg, RegState::Kill);
1849
1850  Register ResultReg = createResultReg(RC);
1851  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg)
1852    .addReg(Op0Reg);
1853  updateValueMap(I, ResultReg);
1854  return true;
1855}
1856
1857bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1858  const static unsigned NumTypes = 4; // i8, i16, i32, i64
1859  const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1860  const static bool S = true;  // IsSigned
1861  const static bool U = false; // !IsSigned
1862  const static unsigned Copy = TargetOpcode::COPY;
1863  // For the X86 DIV/IDIV instruction, in most cases the dividend
1864  // (numerator) must be in a specific register pair highreg:lowreg,
1865  // producing the quotient in lowreg and the remainder in highreg.
1866  // For most data types, to set up the instruction, the dividend is
1867  // copied into lowreg, and lowreg is sign-extended or zero-extended
1868  // into highreg.  The exception is i8, where the dividend is defined
1869  // as a single register rather than a register pair, and we
1870  // therefore directly sign-extend or zero-extend the dividend into
1871  // lowreg, instead of copying, and ignore the highreg.
1872  const static struct DivRemEntry {
1873    // The following portion depends only on the data type.
1874    const TargetRegisterClass *RC;
1875    unsigned LowInReg;  // low part of the register pair
1876    unsigned HighInReg; // high part of the register pair
1877    // The following portion depends on both the data type and the operation.
1878    struct DivRemResult {
1879    unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1880    unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1881                              // highreg, or copying a zero into highreg.
1882    unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1883                              // zero/sign-extending into lowreg for i8.
1884    unsigned DivRemResultReg; // Register containing the desired result.
1885    bool IsOpSigned;          // Whether to use signed or unsigned form.
1886    } ResultTable[NumOps];
1887  } OpTable[NumTypes] = {
1888    { &X86::GR8RegClass,  X86::AX,  0, {
1889        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1890        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1891        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1892        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1893      }
1894    }, // i8
1895    { &X86::GR16RegClass, X86::AX,  X86::DX, {
1896        { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1897        { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1898        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1899        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1900      }
1901    }, // i16
1902    { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1903        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1904        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1905        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1906        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1907      }
1908    }, // i32
1909    { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1910        { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1911        { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1912        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1913        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1914      }
1915    }, // i64
1916  };
1917
1918  MVT VT;
1919  if (!isTypeLegal(I->getType(), VT))
1920    return false;
1921
1922  unsigned TypeIndex, OpIndex;
1923  switch (VT.SimpleTy) {
1924  default: return false;
1925  case MVT::i8:  TypeIndex = 0; break;
1926  case MVT::i16: TypeIndex = 1; break;
1927  case MVT::i32: TypeIndex = 2; break;
1928  case MVT::i64: TypeIndex = 3;
1929    if (!Subtarget->is64Bit())
1930      return false;
1931    break;
1932  }
1933
1934  switch (I->getOpcode()) {
1935  default: llvm_unreachable("Unexpected div/rem opcode");
1936  case Instruction::SDiv: OpIndex = 0; break;
1937  case Instruction::SRem: OpIndex = 1; break;
1938  case Instruction::UDiv: OpIndex = 2; break;
1939  case Instruction::URem: OpIndex = 3; break;
1940  }
1941
1942  const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1943  const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1944  Register Op0Reg = getRegForValue(I->getOperand(0));
1945  if (Op0Reg == 0)
1946    return false;
1947  Register Op1Reg = getRegForValue(I->getOperand(1));
1948  if (Op1Reg == 0)
1949    return false;
1950
1951  // Move op0 into low-order input register.
1952  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1953          TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1954  // Zero-extend or sign-extend into high-order input register.
1955  if (OpEntry.OpSignExtend) {
1956    if (OpEntry.IsOpSigned)
1957      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1958              TII.get(OpEntry.OpSignExtend));
1959    else {
1960      Register Zero32 = createResultReg(&X86::GR32RegClass);
1961      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1962              TII.get(X86::MOV32r0), Zero32);
1963
1964      // Copy the zero into the appropriate sub/super/identical physical
1965      // register. Unfortunately the operations needed are not uniform enough
1966      // to fit neatly into the table above.
1967      if (VT == MVT::i16) {
1968        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1969                TII.get(Copy), TypeEntry.HighInReg)
1970          .addReg(Zero32, 0, X86::sub_16bit);
1971      } else if (VT == MVT::i32) {
1972        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1973                TII.get(Copy), TypeEntry.HighInReg)
1974            .addReg(Zero32);
1975      } else if (VT == MVT::i64) {
1976        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1977                TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1978            .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1979      }
1980    }
1981  }
1982  // Generate the DIV/IDIV instruction.
1983  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1984          TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1985  // For i8 remainder, we can't reference ah directly, as we'll end
1986  // up with bogus copies like %r9b = COPY %ah. Reference ax
1987  // instead to prevent ah references in a rex instruction.
1988  //
1989  // The current assumption of the fast register allocator is that isel
1990  // won't generate explicit references to the GR8_NOREX registers. If
1991  // the allocator and/or the backend get enhanced to be more robust in
1992  // that regard, this can be, and should be, removed.
1993  unsigned ResultReg = 0;
1994  if ((I->getOpcode() == Instruction::SRem ||
1995       I->getOpcode() == Instruction::URem) &&
1996      OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1997    Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
1998    Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
1999    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2000            TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2001
2002    // Shift AX right by 8 bits instead of using AH.
2003    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri),
2004            ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2005
2006    // Now reference the 8-bit subreg of the result.
2007    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2008                                           X86::sub_8bit);
2009  }
2010  // Copy the result out of the physreg if we haven't already.
2011  if (!ResultReg) {
2012    ResultReg = createResultReg(TypeEntry.RC);
2013    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg)
2014        .addReg(OpEntry.DivRemResultReg);
2015  }
2016  updateValueMap(I, ResultReg);
2017
2018  return true;
2019}
2020
2021/// Emit a conditional move instruction (if the are supported) to lower
2022/// the select.
2023bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2024  // Check if the subtarget supports these instructions.
2025  if (!Subtarget->canUseCMOV())
2026    return false;
2027
2028  // FIXME: Add support for i8.
2029  if (RetVT < MVT::i16 || RetVT > MVT::i64)
2030    return false;
2031
2032  const Value *Cond = I->getOperand(0);
2033  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2034  bool NeedTest = true;
2035  X86::CondCode CC = X86::COND_NE;
2036
2037  // Optimize conditions coming from a compare if both instructions are in the
2038  // same basic block (values defined in other basic blocks may not have
2039  // initialized registers).
2040  const auto *CI = dyn_cast<CmpInst>(Cond);
2041  if (CI && (CI->getParent() == I->getParent())) {
2042    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2043
2044    // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2045    static const uint16_t SETFOpcTable[2][3] = {
2046      { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2047      { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2048    };
2049    const uint16_t *SETFOpc = nullptr;
2050    switch (Predicate) {
2051    default: break;
2052    case CmpInst::FCMP_OEQ:
2053      SETFOpc = &SETFOpcTable[0][0];
2054      Predicate = CmpInst::ICMP_NE;
2055      break;
2056    case CmpInst::FCMP_UNE:
2057      SETFOpc = &SETFOpcTable[1][0];
2058      Predicate = CmpInst::ICMP_NE;
2059      break;
2060    }
2061
2062    bool NeedSwap;
2063    std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2064    assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2065
2066    const Value *CmpLHS = CI->getOperand(0);
2067    const Value *CmpRHS = CI->getOperand(1);
2068    if (NeedSwap)
2069      std::swap(CmpLHS, CmpRHS);
2070
2071    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2072    // Emit a compare of the LHS and RHS, setting the flags.
2073    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2074      return false;
2075
2076    if (SETFOpc) {
2077      Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2078      Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2079      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2080              FlagReg1).addImm(SETFOpc[0]);
2081      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2082              FlagReg2).addImm(SETFOpc[1]);
2083      auto const &II = TII.get(SETFOpc[2]);
2084      if (II.getNumDefs()) {
2085        Register TmpReg = createResultReg(&X86::GR8RegClass);
2086        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg)
2087          .addReg(FlagReg2).addReg(FlagReg1);
2088      } else {
2089        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2090          .addReg(FlagReg2).addReg(FlagReg1);
2091      }
2092    }
2093    NeedTest = false;
2094  } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2095    // Fake request the condition, otherwise the intrinsic might be completely
2096    // optimized away.
2097    Register TmpReg = getRegForValue(Cond);
2098    if (TmpReg == 0)
2099      return false;
2100
2101    NeedTest = false;
2102  }
2103
2104  if (NeedTest) {
2105    // Selects operate on i1, however, CondReg is 8 bits width and may contain
2106    // garbage. Indeed, only the less significant bit is supposed to be
2107    // accurate. If we read more than the lsb, we may see non-zero values
2108    // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2109    // the select. This is achieved by performing TEST against 1.
2110    Register CondReg = getRegForValue(Cond);
2111    if (CondReg == 0)
2112      return false;
2113
2114    // In case OpReg is a K register, COPY to a GPR
2115    if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2116      unsigned KCondReg = CondReg;
2117      CondReg = createResultReg(&X86::GR32RegClass);
2118      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2119              TII.get(TargetOpcode::COPY), CondReg)
2120          .addReg(KCondReg);
2121      CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2122    }
2123    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2124        .addReg(CondReg)
2125        .addImm(1);
2126  }
2127
2128  const Value *LHS = I->getOperand(1);
2129  const Value *RHS = I->getOperand(2);
2130
2131  Register RHSReg = getRegForValue(RHS);
2132  Register LHSReg = getRegForValue(LHS);
2133  if (!LHSReg || !RHSReg)
2134    return false;
2135
2136  const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2137  unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2138  Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2139  updateValueMap(I, ResultReg);
2140  return true;
2141}
2142
2143/// Emit SSE or AVX instructions to lower the select.
2144///
2145/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2146/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2147/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2148bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2149  // Optimize conditions coming from a compare if both instructions are in the
2150  // same basic block (values defined in other basic blocks may not have
2151  // initialized registers).
2152  const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2153  if (!CI || (CI->getParent() != I->getParent()))
2154    return false;
2155
2156  if (I->getType() != CI->getOperand(0)->getType() ||
2157      !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2158        (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2159    return false;
2160
2161  const Value *CmpLHS = CI->getOperand(0);
2162  const Value *CmpRHS = CI->getOperand(1);
2163  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2164
2165  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2166  // We don't have to materialize a zero constant for this case and can just use
2167  // %x again on the RHS.
2168  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2169    const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2170    if (CmpRHSC && CmpRHSC->isNullValue())
2171      CmpRHS = CmpLHS;
2172  }
2173
2174  unsigned CC;
2175  bool NeedSwap;
2176  std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2177  if (CC > 7 && !Subtarget->hasAVX())
2178    return false;
2179
2180  if (NeedSwap)
2181    std::swap(CmpLHS, CmpRHS);
2182
2183  const Value *LHS = I->getOperand(1);
2184  const Value *RHS = I->getOperand(2);
2185
2186  Register LHSReg = getRegForValue(LHS);
2187  Register RHSReg = getRegForValue(RHS);
2188  Register CmpLHSReg = getRegForValue(CmpLHS);
2189  Register CmpRHSReg = getRegForValue(CmpRHS);
2190  if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
2191    return false;
2192
2193  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2194  unsigned ResultReg;
2195
2196  if (Subtarget->hasAVX512()) {
2197    // If we have AVX512 we can use a mask compare and masked movss/sd.
2198    const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2199    const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2200
2201    unsigned CmpOpcode =
2202      (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2203    Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg,
2204                                       CC);
2205
2206    // Need an IMPLICIT_DEF for the input that is used to generate the upper
2207    // bits of the result register since its not based on any of the inputs.
2208    Register ImplicitDefReg = createResultReg(VR128X);
2209    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2210            TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2211
2212    // Place RHSReg is the passthru of the masked movss/sd operation and put
2213    // LHS in the input. The mask input comes from the compare.
2214    unsigned MovOpcode =
2215      (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2216    unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg,
2217                                        ImplicitDefReg, LHSReg);
2218
2219    ResultReg = createResultReg(RC);
2220    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2221            TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2222
2223  } else if (Subtarget->hasAVX()) {
2224    const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2225
2226    // If we have AVX, create 1 blendv instead of 3 logic instructions.
2227    // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2228    // uses XMM0 as the selection register. That may need just as many
2229    // instructions as the AND/ANDN/OR sequence due to register moves, so
2230    // don't bother.
2231    unsigned CmpOpcode =
2232      (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2233    unsigned BlendOpcode =
2234      (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2235
2236    Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg,
2237                                       CC);
2238    Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg,
2239                                          CmpReg);
2240    ResultReg = createResultReg(RC);
2241    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2242            TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2243  } else {
2244    // Choose the SSE instruction sequence based on data type (float or double).
2245    static const uint16_t OpcTable[2][4] = {
2246      { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2247      { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2248    };
2249
2250    const uint16_t *Opc = nullptr;
2251    switch (RetVT.SimpleTy) {
2252    default: return false;
2253    case MVT::f32: Opc = &OpcTable[0][0]; break;
2254    case MVT::f64: Opc = &OpcTable[1][0]; break;
2255    }
2256
2257    const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2258    Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC);
2259    Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg);
2260    Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg);
2261    Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg);
2262    ResultReg = createResultReg(RC);
2263    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2264            TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2265  }
2266  updateValueMap(I, ResultReg);
2267  return true;
2268}
2269
2270bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2271  // These are pseudo CMOV instructions and will be later expanded into control-
2272  // flow.
2273  unsigned Opc;
2274  switch (RetVT.SimpleTy) {
2275  default: return false;
2276  case MVT::i8:  Opc = X86::CMOV_GR8;   break;
2277  case MVT::i16: Opc = X86::CMOV_GR16;  break;
2278  case MVT::i32: Opc = X86::CMOV_GR32;  break;
2279  case MVT::f16:
2280    Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break;
2281  case MVT::f32:
2282    Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break;
2283  case MVT::f64:
2284    Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break;
2285  }
2286
2287  const Value *Cond = I->getOperand(0);
2288  X86::CondCode CC = X86::COND_NE;
2289
2290  // Optimize conditions coming from a compare if both instructions are in the
2291  // same basic block (values defined in other basic blocks may not have
2292  // initialized registers).
2293  const auto *CI = dyn_cast<CmpInst>(Cond);
2294  if (CI && (CI->getParent() == I->getParent())) {
2295    bool NeedSwap;
2296    std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2297    if (CC > X86::LAST_VALID_COND)
2298      return false;
2299
2300    const Value *CmpLHS = CI->getOperand(0);
2301    const Value *CmpRHS = CI->getOperand(1);
2302
2303    if (NeedSwap)
2304      std::swap(CmpLHS, CmpRHS);
2305
2306    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2307    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2308      return false;
2309  } else {
2310    Register CondReg = getRegForValue(Cond);
2311    if (CondReg == 0)
2312      return false;
2313
2314    // In case OpReg is a K register, COPY to a GPR
2315    if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2316      unsigned KCondReg = CondReg;
2317      CondReg = createResultReg(&X86::GR32RegClass);
2318      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2319              TII.get(TargetOpcode::COPY), CondReg)
2320          .addReg(KCondReg);
2321      CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2322    }
2323    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2324        .addReg(CondReg)
2325        .addImm(1);
2326  }
2327
2328  const Value *LHS = I->getOperand(1);
2329  const Value *RHS = I->getOperand(2);
2330
2331  Register LHSReg = getRegForValue(LHS);
2332  Register RHSReg = getRegForValue(RHS);
2333  if (!LHSReg || !RHSReg)
2334    return false;
2335
2336  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2337
2338  Register ResultReg =
2339    fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2340  updateValueMap(I, ResultReg);
2341  return true;
2342}
2343
2344bool X86FastISel::X86SelectSelect(const Instruction *I) {
2345  MVT RetVT;
2346  if (!isTypeLegal(I->getType(), RetVT))
2347    return false;
2348
2349  // Check if we can fold the select.
2350  if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2351    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2352    const Value *Opnd = nullptr;
2353    switch (Predicate) {
2354    default:                              break;
2355    case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2356    case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2357    }
2358    // No need for a select anymore - this is an unconditional move.
2359    if (Opnd) {
2360      Register OpReg = getRegForValue(Opnd);
2361      if (OpReg == 0)
2362        return false;
2363      const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2364      Register ResultReg = createResultReg(RC);
2365      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2366              TII.get(TargetOpcode::COPY), ResultReg)
2367        .addReg(OpReg);
2368      updateValueMap(I, ResultReg);
2369      return true;
2370    }
2371  }
2372
2373  // First try to use real conditional move instructions.
2374  if (X86FastEmitCMoveSelect(RetVT, I))
2375    return true;
2376
2377  // Try to use a sequence of SSE instructions to simulate a conditional move.
2378  if (X86FastEmitSSESelect(RetVT, I))
2379    return true;
2380
2381  // Fall-back to pseudo conditional move instructions, which will be later
2382  // converted to control-flow.
2383  if (X86FastEmitPseudoSelect(RetVT, I))
2384    return true;
2385
2386  return false;
2387}
2388
2389// Common code for X86SelectSIToFP and X86SelectUIToFP.
2390bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2391  // The target-independent selection algorithm in FastISel already knows how
2392  // to select a SINT_TO_FP if the target is SSE but not AVX.
2393  // Early exit if the subtarget doesn't have AVX.
2394  // Unsigned conversion requires avx512.
2395  bool HasAVX512 = Subtarget->hasAVX512();
2396  if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2397    return false;
2398
2399  // TODO: We could sign extend narrower types.
2400  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2401  if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2402    return false;
2403
2404  // Select integer to float/double conversion.
2405  Register OpReg = getRegForValue(I->getOperand(0));
2406  if (OpReg == 0)
2407    return false;
2408
2409  unsigned Opcode;
2410
2411  static const uint16_t SCvtOpc[2][2][2] = {
2412    { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2413      { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2414    { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2415      { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2416  };
2417  static const uint16_t UCvtOpc[2][2] = {
2418    { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2419    { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2420  };
2421  bool Is64Bit = SrcVT == MVT::i64;
2422
2423  if (I->getType()->isDoubleTy()) {
2424    // s/uitofp int -> double
2425    Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2426  } else if (I->getType()->isFloatTy()) {
2427    // s/uitofp int -> float
2428    Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2429  } else
2430    return false;
2431
2432  MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2433  const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2434  Register ImplicitDefReg = createResultReg(RC);
2435  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2436          TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2437  Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg);
2438  updateValueMap(I, ResultReg);
2439  return true;
2440}
2441
2442bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2443  return X86SelectIntToFP(I, /*IsSigned*/true);
2444}
2445
2446bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2447  return X86SelectIntToFP(I, /*IsSigned*/false);
2448}
2449
2450// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2451bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2452                                          unsigned TargetOpc,
2453                                          const TargetRegisterClass *RC) {
2454  assert((I->getOpcode() == Instruction::FPExt ||
2455          I->getOpcode() == Instruction::FPTrunc) &&
2456         "Instruction must be an FPExt or FPTrunc!");
2457  bool HasAVX = Subtarget->hasAVX();
2458
2459  Register OpReg = getRegForValue(I->getOperand(0));
2460  if (OpReg == 0)
2461    return false;
2462
2463  unsigned ImplicitDefReg;
2464  if (HasAVX) {
2465    ImplicitDefReg = createResultReg(RC);
2466    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2467            TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2468
2469  }
2470
2471  Register ResultReg = createResultReg(RC);
2472  MachineInstrBuilder MIB;
2473  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc),
2474                ResultReg);
2475
2476  if (HasAVX)
2477    MIB.addReg(ImplicitDefReg);
2478
2479  MIB.addReg(OpReg);
2480  updateValueMap(I, ResultReg);
2481  return true;
2482}
2483
2484bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2485  if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() &&
2486      I->getOperand(0)->getType()->isFloatTy()) {
2487    bool HasAVX512 = Subtarget->hasAVX512();
2488    // fpext from float to double.
2489    unsigned Opc =
2490        HasAVX512 ? X86::VCVTSS2SDZrr
2491                  : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2492    return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2493  }
2494
2495  return false;
2496}
2497
2498bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2499  if (Subtarget->hasSSE2() && I->getType()->isFloatTy() &&
2500      I->getOperand(0)->getType()->isDoubleTy()) {
2501    bool HasAVX512 = Subtarget->hasAVX512();
2502    // fptrunc from double to float.
2503    unsigned Opc =
2504        HasAVX512 ? X86::VCVTSD2SSZrr
2505                  : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2506    return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2507  }
2508
2509  return false;
2510}
2511
2512bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2513  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2514  EVT DstVT = TLI.getValueType(DL, I->getType());
2515
2516  // This code only handles truncation to byte.
2517  if (DstVT != MVT::i8 && DstVT != MVT::i1)
2518    return false;
2519  if (!TLI.isTypeLegal(SrcVT))
2520    return false;
2521
2522  Register InputReg = getRegForValue(I->getOperand(0));
2523  if (!InputReg)
2524    // Unhandled operand.  Halt "fast" selection and bail.
2525    return false;
2526
2527  if (SrcVT == MVT::i8) {
2528    // Truncate from i8 to i1; no code needed.
2529    updateValueMap(I, InputReg);
2530    return true;
2531  }
2532
2533  // Issue an extract_subreg.
2534  Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg,
2535                                                  X86::sub_8bit);
2536  if (!ResultReg)
2537    return false;
2538
2539  updateValueMap(I, ResultReg);
2540  return true;
2541}
2542
2543bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2544  return Len <= (Subtarget->is64Bit() ? 32 : 16);
2545}
2546
2547bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2548                                     X86AddressMode SrcAM, uint64_t Len) {
2549
2550  // Make sure we don't bloat code by inlining very large memcpy's.
2551  if (!IsMemcpySmall(Len))
2552    return false;
2553
2554  bool i64Legal = Subtarget->is64Bit();
2555
2556  // We don't care about alignment here since we just emit integer accesses.
2557  while (Len) {
2558    MVT VT;
2559    if (Len >= 8 && i64Legal)
2560      VT = MVT::i64;
2561    else if (Len >= 4)
2562      VT = MVT::i32;
2563    else if (Len >= 2)
2564      VT = MVT::i16;
2565    else
2566      VT = MVT::i8;
2567
2568    unsigned Reg;
2569    bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2570    RV &= X86FastEmitStore(VT, Reg, DestAM);
2571    assert(RV && "Failed to emit load or store??");
2572    (void)RV;
2573
2574    unsigned Size = VT.getSizeInBits()/8;
2575    Len -= Size;
2576    DestAM.Disp += Size;
2577    SrcAM.Disp += Size;
2578  }
2579
2580  return true;
2581}
2582
2583bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2584  // FIXME: Handle more intrinsics.
2585  switch (II->getIntrinsicID()) {
2586  default: return false;
2587  case Intrinsic::convert_from_fp16:
2588  case Intrinsic::convert_to_fp16: {
2589    if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2590      return false;
2591
2592    const Value *Op = II->getArgOperand(0);
2593    Register InputReg = getRegForValue(Op);
2594    if (InputReg == 0)
2595      return false;
2596
2597    // F16C only allows converting from float to half and from half to float.
2598    bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2599    if (IsFloatToHalf) {
2600      if (!Op->getType()->isFloatTy())
2601        return false;
2602    } else {
2603      if (!II->getType()->isFloatTy())
2604        return false;
2605    }
2606
2607    unsigned ResultReg = 0;
2608    const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2609    if (IsFloatToHalf) {
2610      // 'InputReg' is implicitly promoted from register class FR32 to
2611      // register class VR128 by method 'constrainOperandRegClass' which is
2612      // directly called by 'fastEmitInst_ri'.
2613      // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2614      // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2615      // It's consistent with the other FP instructions, which are usually
2616      // controlled by MXCSR.
2617      unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2618                                         : X86::VCVTPS2PHrr;
2619      InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4);
2620
2621      // Move the lower 32-bits of ResultReg to another register of class GR32.
2622      Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2623                                   : X86::VMOVPDI2DIrr;
2624      ResultReg = createResultReg(&X86::GR32RegClass);
2625      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
2626          .addReg(InputReg, RegState::Kill);
2627
2628      // The result value is in the lower 16-bits of ResultReg.
2629      unsigned RegIdx = X86::sub_16bit;
2630      ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx);
2631    } else {
2632      assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2633      // Explicitly zero-extend the input to 32-bit.
2634      InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg);
2635
2636      // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2637      InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2638                            InputReg);
2639
2640      unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2641                                         : X86::VCVTPH2PSrr;
2642      InputReg = fastEmitInst_r(Opc, RC, InputReg);
2643
2644      // The result value is in the lower 32-bits of ResultReg.
2645      // Emit an explicit copy from register class VR128 to register class FR32.
2646      ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2647      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2648              TII.get(TargetOpcode::COPY), ResultReg)
2649          .addReg(InputReg, RegState::Kill);
2650    }
2651
2652    updateValueMap(II, ResultReg);
2653    return true;
2654  }
2655  case Intrinsic::frameaddress: {
2656    MachineFunction *MF = FuncInfo.MF;
2657    if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2658      return false;
2659
2660    Type *RetTy = II->getCalledFunction()->getReturnType();
2661
2662    MVT VT;
2663    if (!isTypeLegal(RetTy, VT))
2664      return false;
2665
2666    unsigned Opc;
2667    const TargetRegisterClass *RC = nullptr;
2668
2669    switch (VT.SimpleTy) {
2670    default: llvm_unreachable("Invalid result type for frameaddress.");
2671    case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2672    case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2673    }
2674
2675    // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2676    // we get the wrong frame register.
2677    MachineFrameInfo &MFI = MF->getFrameInfo();
2678    MFI.setFrameAddressIsTaken(true);
2679
2680    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2681    unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2682    assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2683            (FrameReg == X86::EBP && VT == MVT::i32)) &&
2684           "Invalid Frame Register!");
2685
2686    // Always make a copy of the frame register to a vreg first, so that we
2687    // never directly reference the frame register (the TwoAddressInstruction-
2688    // Pass doesn't like that).
2689    Register SrcReg = createResultReg(RC);
2690    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2691            TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2692
2693    // Now recursively load from the frame address.
2694    // movq (%rbp), %rax
2695    // movq (%rax), %rax
2696    // movq (%rax), %rax
2697    // ...
2698    unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2699    while (Depth--) {
2700      Register DestReg = createResultReg(RC);
2701      addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2702                           TII.get(Opc), DestReg), SrcReg);
2703      SrcReg = DestReg;
2704    }
2705
2706    updateValueMap(II, SrcReg);
2707    return true;
2708  }
2709  case Intrinsic::memcpy: {
2710    const MemCpyInst *MCI = cast<MemCpyInst>(II);
2711    // Don't handle volatile or variable length memcpys.
2712    if (MCI->isVolatile())
2713      return false;
2714
2715    if (isa<ConstantInt>(MCI->getLength())) {
2716      // Small memcpy's are common enough that we want to do them
2717      // without a call if possible.
2718      uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2719      if (IsMemcpySmall(Len)) {
2720        X86AddressMode DestAM, SrcAM;
2721        if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2722            !X86SelectAddress(MCI->getRawSource(), SrcAM))
2723          return false;
2724        TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2725        return true;
2726      }
2727    }
2728
2729    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2730    if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2731      return false;
2732
2733    if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2734      return false;
2735
2736    return lowerCallTo(II, "memcpy", II->arg_size() - 1);
2737  }
2738  case Intrinsic::memset: {
2739    const MemSetInst *MSI = cast<MemSetInst>(II);
2740
2741    if (MSI->isVolatile())
2742      return false;
2743
2744    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2745    if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2746      return false;
2747
2748    if (MSI->getDestAddressSpace() > 255)
2749      return false;
2750
2751    return lowerCallTo(II, "memset", II->arg_size() - 1);
2752  }
2753  case Intrinsic::stackprotector: {
2754    // Emit code to store the stack guard onto the stack.
2755    EVT PtrTy = TLI.getPointerTy(DL);
2756
2757    const Value *Op1 = II->getArgOperand(0); // The guard's value.
2758    const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2759
2760    MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2761
2762    // Grab the frame index.
2763    X86AddressMode AM;
2764    if (!X86SelectAddress(Slot, AM)) return false;
2765    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2766    return true;
2767  }
2768  case Intrinsic::dbg_declare: {
2769    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2770    X86AddressMode AM;
2771    assert(DI->getAddress() && "Null address should be checked earlier!");
2772    if (!X86SelectAddress(DI->getAddress(), AM))
2773      return false;
2774    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2775    assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) &&
2776           "Expected inlined-at fields to agree");
2777    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM)
2778        .addImm(0)
2779        .addMetadata(DI->getVariable())
2780        .addMetadata(DI->getExpression());
2781    return true;
2782  }
2783  case Intrinsic::trap: {
2784    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP));
2785    return true;
2786  }
2787  case Intrinsic::sqrt: {
2788    if (!Subtarget->hasSSE1())
2789      return false;
2790
2791    Type *RetTy = II->getCalledFunction()->getReturnType();
2792
2793    MVT VT;
2794    if (!isTypeLegal(RetTy, VT))
2795      return false;
2796
2797    // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2798    // is not generated by FastISel yet.
2799    // FIXME: Update this code once tablegen can handle it.
2800    static const uint16_t SqrtOpc[3][2] = {
2801      { X86::SQRTSSr,   X86::SQRTSDr },
2802      { X86::VSQRTSSr,  X86::VSQRTSDr },
2803      { X86::VSQRTSSZr, X86::VSQRTSDZr },
2804    };
2805    unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2806                        Subtarget->hasAVX()    ? 1 :
2807                                                 0;
2808    unsigned Opc;
2809    switch (VT.SimpleTy) {
2810    default: return false;
2811    case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2812    case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2813    }
2814
2815    const Value *SrcVal = II->getArgOperand(0);
2816    Register SrcReg = getRegForValue(SrcVal);
2817
2818    if (SrcReg == 0)
2819      return false;
2820
2821    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2822    unsigned ImplicitDefReg = 0;
2823    if (AVXLevel > 0) {
2824      ImplicitDefReg = createResultReg(RC);
2825      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2826              TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2827    }
2828
2829    Register ResultReg = createResultReg(RC);
2830    MachineInstrBuilder MIB;
2831    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
2832                  ResultReg);
2833
2834    if (ImplicitDefReg)
2835      MIB.addReg(ImplicitDefReg);
2836
2837    MIB.addReg(SrcReg);
2838
2839    updateValueMap(II, ResultReg);
2840    return true;
2841  }
2842  case Intrinsic::sadd_with_overflow:
2843  case Intrinsic::uadd_with_overflow:
2844  case Intrinsic::ssub_with_overflow:
2845  case Intrinsic::usub_with_overflow:
2846  case Intrinsic::smul_with_overflow:
2847  case Intrinsic::umul_with_overflow: {
2848    // This implements the basic lowering of the xalu with overflow intrinsics
2849    // into add/sub/mul followed by either seto or setb.
2850    const Function *Callee = II->getCalledFunction();
2851    auto *Ty = cast<StructType>(Callee->getReturnType());
2852    Type *RetTy = Ty->getTypeAtIndex(0U);
2853    assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2854           Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2855           "Overflow value expected to be an i1");
2856
2857    MVT VT;
2858    if (!isTypeLegal(RetTy, VT))
2859      return false;
2860
2861    if (VT < MVT::i8 || VT > MVT::i64)
2862      return false;
2863
2864    const Value *LHS = II->getArgOperand(0);
2865    const Value *RHS = II->getArgOperand(1);
2866
2867    // Canonicalize immediate to the RHS.
2868    if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
2869      std::swap(LHS, RHS);
2870
2871    unsigned BaseOpc, CondCode;
2872    switch (II->getIntrinsicID()) {
2873    default: llvm_unreachable("Unexpected intrinsic!");
2874    case Intrinsic::sadd_with_overflow:
2875      BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2876    case Intrinsic::uadd_with_overflow:
2877      BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2878    case Intrinsic::ssub_with_overflow:
2879      BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2880    case Intrinsic::usub_with_overflow:
2881      BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2882    case Intrinsic::smul_with_overflow:
2883      BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2884    case Intrinsic::umul_with_overflow:
2885      BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2886    }
2887
2888    Register LHSReg = getRegForValue(LHS);
2889    if (LHSReg == 0)
2890      return false;
2891
2892    unsigned ResultReg = 0;
2893    // Check if we have an immediate version.
2894    if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2895      static const uint16_t Opc[2][4] = {
2896        { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2897        { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2898      };
2899
2900      if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2901          CondCode == X86::COND_O) {
2902        // We can use INC/DEC.
2903        ResultReg = createResultReg(TLI.getRegClassFor(VT));
2904        bool IsDec = BaseOpc == ISD::SUB;
2905        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2906                TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2907          .addReg(LHSReg);
2908      } else
2909        ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue());
2910    }
2911
2912    unsigned RHSReg;
2913    if (!ResultReg) {
2914      RHSReg = getRegForValue(RHS);
2915      if (RHSReg == 0)
2916        return false;
2917      ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg);
2918    }
2919
2920    // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2921    // it manually.
2922    if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2923      static const uint16_t MULOpc[] =
2924        { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2925      static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2926      // First copy the first operand into RAX, which is an implicit input to
2927      // the X86::MUL*r instruction.
2928      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2929              TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2930        .addReg(LHSReg);
2931      ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2932                                 TLI.getRegClassFor(VT), RHSReg);
2933    } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2934      static const uint16_t MULOpc[] =
2935        { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2936      if (VT == MVT::i8) {
2937        // Copy the first operand into AL, which is an implicit input to the
2938        // X86::IMUL8r instruction.
2939        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2940               TII.get(TargetOpcode::COPY), X86::AL)
2941          .addReg(LHSReg);
2942        ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg);
2943      } else
2944        ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2945                                    TLI.getRegClassFor(VT), LHSReg, RHSReg);
2946    }
2947
2948    if (!ResultReg)
2949      return false;
2950
2951    // Assign to a GPR since the overflow return value is lowered to a SETcc.
2952    Register ResultReg2 = createResultReg(&X86::GR8RegClass);
2953    assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2954    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2955            ResultReg2).addImm(CondCode);
2956
2957    updateValueMap(II, ResultReg, 2);
2958    return true;
2959  }
2960  case Intrinsic::x86_sse_cvttss2si:
2961  case Intrinsic::x86_sse_cvttss2si64:
2962  case Intrinsic::x86_sse2_cvttsd2si:
2963  case Intrinsic::x86_sse2_cvttsd2si64: {
2964    bool IsInputDouble;
2965    switch (II->getIntrinsicID()) {
2966    default: llvm_unreachable("Unexpected intrinsic.");
2967    case Intrinsic::x86_sse_cvttss2si:
2968    case Intrinsic::x86_sse_cvttss2si64:
2969      if (!Subtarget->hasSSE1())
2970        return false;
2971      IsInputDouble = false;
2972      break;
2973    case Intrinsic::x86_sse2_cvttsd2si:
2974    case Intrinsic::x86_sse2_cvttsd2si64:
2975      if (!Subtarget->hasSSE2())
2976        return false;
2977      IsInputDouble = true;
2978      break;
2979    }
2980
2981    Type *RetTy = II->getCalledFunction()->getReturnType();
2982    MVT VT;
2983    if (!isTypeLegal(RetTy, VT))
2984      return false;
2985
2986    static const uint16_t CvtOpc[3][2][2] = {
2987      { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
2988        { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
2989      { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
2990        { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
2991      { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
2992        { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
2993    };
2994    unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2995                        Subtarget->hasAVX()    ? 1 :
2996                                                 0;
2997    unsigned Opc;
2998    switch (VT.SimpleTy) {
2999    default: llvm_unreachable("Unexpected result type.");
3000    case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3001    case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3002    }
3003
3004    // Check if we can fold insertelement instructions into the convert.
3005    const Value *Op = II->getArgOperand(0);
3006    while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3007      const Value *Index = IE->getOperand(2);
3008      if (!isa<ConstantInt>(Index))
3009        break;
3010      unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3011
3012      if (Idx == 0) {
3013        Op = IE->getOperand(1);
3014        break;
3015      }
3016      Op = IE->getOperand(0);
3017    }
3018
3019    Register Reg = getRegForValue(Op);
3020    if (Reg == 0)
3021      return false;
3022
3023    Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3024    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
3025      .addReg(Reg);
3026
3027    updateValueMap(II, ResultReg);
3028    return true;
3029  }
3030  case Intrinsic::x86_sse42_crc32_32_8:
3031  case Intrinsic::x86_sse42_crc32_32_16:
3032  case Intrinsic::x86_sse42_crc32_32_32:
3033  case Intrinsic::x86_sse42_crc32_64_64: {
3034    if (!Subtarget->hasCRC32())
3035      return false;
3036
3037    Type *RetTy = II->getCalledFunction()->getReturnType();
3038
3039    MVT VT;
3040    if (!isTypeLegal(RetTy, VT))
3041      return false;
3042
3043    unsigned Opc;
3044    const TargetRegisterClass *RC = nullptr;
3045
3046    switch (II->getIntrinsicID()) {
3047    default:
3048      llvm_unreachable("Unexpected intrinsic.");
3049#define GET_EGPR_IF_ENABLED(OPC) Subtarget->hasEGPR() ? OPC##_EVEX : OPC
3050    case Intrinsic::x86_sse42_crc32_32_8:
3051      Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r8);
3052      RC = &X86::GR32RegClass;
3053      break;
3054    case Intrinsic::x86_sse42_crc32_32_16:
3055      Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r16);
3056      RC = &X86::GR32RegClass;
3057      break;
3058    case Intrinsic::x86_sse42_crc32_32_32:
3059      Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r32);
3060      RC = &X86::GR32RegClass;
3061      break;
3062    case Intrinsic::x86_sse42_crc32_64_64:
3063      Opc = GET_EGPR_IF_ENABLED(X86::CRC32r64r64);
3064      RC = &X86::GR64RegClass;
3065      break;
3066#undef GET_EGPR_IF_ENABLED
3067    }
3068
3069    const Value *LHS = II->getArgOperand(0);
3070    const Value *RHS = II->getArgOperand(1);
3071
3072    Register LHSReg = getRegForValue(LHS);
3073    Register RHSReg = getRegForValue(RHS);
3074    if (!LHSReg || !RHSReg)
3075      return false;
3076
3077    Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg);
3078    if (!ResultReg)
3079      return false;
3080
3081    updateValueMap(II, ResultReg);
3082    return true;
3083  }
3084  }
3085}
3086
3087bool X86FastISel::fastLowerArguments() {
3088  if (!FuncInfo.CanLowerReturn)
3089    return false;
3090
3091  const Function *F = FuncInfo.Fn;
3092  if (F->isVarArg())
3093    return false;
3094
3095  CallingConv::ID CC = F->getCallingConv();
3096  if (CC != CallingConv::C)
3097    return false;
3098
3099  if (Subtarget->isCallingConvWin64(CC))
3100    return false;
3101
3102  if (!Subtarget->is64Bit())
3103    return false;
3104
3105  if (Subtarget->useSoftFloat())
3106    return false;
3107
3108  // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3109  unsigned GPRCnt = 0;
3110  unsigned FPRCnt = 0;
3111  for (auto const &Arg : F->args()) {
3112    if (Arg.hasAttribute(Attribute::ByVal) ||
3113        Arg.hasAttribute(Attribute::InReg) ||
3114        Arg.hasAttribute(Attribute::StructRet) ||
3115        Arg.hasAttribute(Attribute::SwiftSelf) ||
3116        Arg.hasAttribute(Attribute::SwiftAsync) ||
3117        Arg.hasAttribute(Attribute::SwiftError) ||
3118        Arg.hasAttribute(Attribute::Nest))
3119      return false;
3120
3121    Type *ArgTy = Arg.getType();
3122    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3123      return false;
3124
3125    EVT ArgVT = TLI.getValueType(DL, ArgTy);
3126    if (!ArgVT.isSimple()) return false;
3127    switch (ArgVT.getSimpleVT().SimpleTy) {
3128    default: return false;
3129    case MVT::i32:
3130    case MVT::i64:
3131      ++GPRCnt;
3132      break;
3133    case MVT::f32:
3134    case MVT::f64:
3135      if (!Subtarget->hasSSE1())
3136        return false;
3137      ++FPRCnt;
3138      break;
3139    }
3140
3141    if (GPRCnt > 6)
3142      return false;
3143
3144    if (FPRCnt > 8)
3145      return false;
3146  }
3147
3148  static const MCPhysReg GPR32ArgRegs[] = {
3149    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3150  };
3151  static const MCPhysReg GPR64ArgRegs[] = {
3152    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3153  };
3154  static const MCPhysReg XMMArgRegs[] = {
3155    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3156    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3157  };
3158
3159  unsigned GPRIdx = 0;
3160  unsigned FPRIdx = 0;
3161  for (auto const &Arg : F->args()) {
3162    MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3163    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3164    unsigned SrcReg;
3165    switch (VT.SimpleTy) {
3166    default: llvm_unreachable("Unexpected value type.");
3167    case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3168    case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3169    case MVT::f32: [[fallthrough]];
3170    case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3171    }
3172    Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3173    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3174    // Without this, EmitLiveInCopies may eliminate the livein if its only
3175    // use is a bitcast (which isn't turned into an instruction).
3176    Register ResultReg = createResultReg(RC);
3177    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3178            TII.get(TargetOpcode::COPY), ResultReg)
3179      .addReg(DstReg, getKillRegState(true));
3180    updateValueMap(&Arg, ResultReg);
3181  }
3182  return true;
3183}
3184
3185static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3186                                                  CallingConv::ID CC,
3187                                                  const CallBase *CB) {
3188  if (Subtarget->is64Bit())
3189    return 0;
3190  if (Subtarget->getTargetTriple().isOSMSVCRT())
3191    return 0;
3192  if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3193      CC == CallingConv::HiPE || CC == CallingConv::Tail ||
3194      CC == CallingConv::SwiftTail)
3195    return 0;
3196
3197  if (CB)
3198    if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3199        CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3200      return 0;
3201
3202  return 4;
3203}
3204
3205bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3206  auto &OutVals       = CLI.OutVals;
3207  auto &OutFlags      = CLI.OutFlags;
3208  auto &OutRegs       = CLI.OutRegs;
3209  auto &Ins           = CLI.Ins;
3210  auto &InRegs        = CLI.InRegs;
3211  CallingConv::ID CC  = CLI.CallConv;
3212  bool &IsTailCall    = CLI.IsTailCall;
3213  bool IsVarArg       = CLI.IsVarArg;
3214  const Value *Callee = CLI.Callee;
3215  MCSymbol *Symbol    = CLI.Symbol;
3216  const auto *CB      = CLI.CB;
3217
3218  bool Is64Bit        = Subtarget->is64Bit();
3219  bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3220
3221  // Call / invoke instructions with NoCfCheck attribute require special
3222  // handling.
3223  if (CB && CB->doesNoCfCheck())
3224    return false;
3225
3226  // Functions with no_caller_saved_registers that need special handling.
3227  if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers")))
3228    return false;
3229
3230  // Functions with no_callee_saved_registers that need special handling.
3231  if ((CB && CB->hasFnAttr("no_callee_saved_registers")))
3232    return false;
3233
3234  // Indirect calls with CFI checks need special handling.
3235  if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi))
3236    return false;
3237
3238  // Functions using thunks for indirect calls need to use SDISel.
3239  if (Subtarget->useIndirectThunkCalls())
3240    return false;
3241
3242  // Handle only C and fastcc calling conventions for now.
3243  switch (CC) {
3244  default: return false;
3245  case CallingConv::C:
3246  case CallingConv::Fast:
3247  case CallingConv::Tail:
3248  case CallingConv::Swift:
3249  case CallingConv::SwiftTail:
3250  case CallingConv::X86_FastCall:
3251  case CallingConv::X86_StdCall:
3252  case CallingConv::X86_ThisCall:
3253  case CallingConv::Win64:
3254  case CallingConv::X86_64_SysV:
3255  case CallingConv::CFGuard_Check:
3256    break;
3257  }
3258
3259  // Allow SelectionDAG isel to handle tail calls.
3260  if (IsTailCall)
3261    return false;
3262
3263  // fastcc with -tailcallopt is intended to provide a guaranteed
3264  // tail call optimization. Fastisel doesn't know how to do that.
3265  if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3266      CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
3267    return false;
3268
3269  // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3270  // x86-32. Special handling for x86-64 is implemented.
3271  if (IsVarArg && IsWin64)
3272    return false;
3273
3274  // Don't know about inalloca yet.
3275  if (CLI.CB && CLI.CB->hasInAllocaArgument())
3276    return false;
3277
3278  for (auto Flag : CLI.OutFlags)
3279    if (Flag.isSwiftError() || Flag.isPreallocated())
3280      return false;
3281
3282  SmallVector<MVT, 16> OutVTs;
3283  SmallVector<unsigned, 16> ArgRegs;
3284
3285  // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3286  // instruction. This is safe because it is common to all FastISel supported
3287  // calling conventions on x86.
3288  for (int i = 0, e = OutVals.size(); i != e; ++i) {
3289    Value *&Val = OutVals[i];
3290    ISD::ArgFlagsTy Flags = OutFlags[i];
3291    if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3292      if (CI->getBitWidth() < 32) {
3293        if (Flags.isSExt())
3294          Val = ConstantInt::get(CI->getContext(), CI->getValue().sext(32));
3295        else
3296          Val = ConstantInt::get(CI->getContext(), CI->getValue().zext(32));
3297      }
3298    }
3299
3300    // Passing bools around ends up doing a trunc to i1 and passing it.
3301    // Codegen this as an argument + "and 1".
3302    MVT VT;
3303    auto *TI = dyn_cast<TruncInst>(Val);
3304    unsigned ResultReg;
3305    if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3306        (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
3307      Value *PrevVal = TI->getOperand(0);
3308      ResultReg = getRegForValue(PrevVal);
3309
3310      if (!ResultReg)
3311        return false;
3312
3313      if (!isTypeLegal(PrevVal->getType(), VT))
3314        return false;
3315
3316      ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1);
3317    } else {
3318      if (!isTypeLegal(Val->getType(), VT) ||
3319          (VT.isVector() && VT.getVectorElementType() == MVT::i1))
3320        return false;
3321      ResultReg = getRegForValue(Val);
3322    }
3323
3324    if (!ResultReg)
3325      return false;
3326
3327    ArgRegs.push_back(ResultReg);
3328    OutVTs.push_back(VT);
3329  }
3330
3331  // Analyze operands of the call, assigning locations to each operand.
3332  SmallVector<CCValAssign, 16> ArgLocs;
3333  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3334
3335  // Allocate shadow area for Win64
3336  if (IsWin64)
3337    CCInfo.AllocateStack(32, Align(8));
3338
3339  CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3340
3341  // Get a count of how many bytes are to be pushed on the stack.
3342  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3343
3344  // Issue CALLSEQ_START
3345  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3346  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown))
3347    .addImm(NumBytes).addImm(0).addImm(0);
3348
3349  // Walk the register/memloc assignments, inserting copies/loads.
3350  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3351  for (const CCValAssign &VA : ArgLocs) {
3352    const Value *ArgVal = OutVals[VA.getValNo()];
3353    MVT ArgVT = OutVTs[VA.getValNo()];
3354
3355    if (ArgVT == MVT::x86mmx)
3356      return false;
3357
3358    unsigned ArgReg = ArgRegs[VA.getValNo()];
3359
3360    // Promote the value if needed.
3361    switch (VA.getLocInfo()) {
3362    case CCValAssign::Full: break;
3363    case CCValAssign::SExt: {
3364      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3365             "Unexpected extend");
3366
3367      if (ArgVT == MVT::i1)
3368        return false;
3369
3370      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3371                                       ArgVT, ArgReg);
3372      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3373      ArgVT = VA.getLocVT();
3374      break;
3375    }
3376    case CCValAssign::ZExt: {
3377      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3378             "Unexpected extend");
3379
3380      // Handle zero-extension from i1 to i8, which is common.
3381      if (ArgVT == MVT::i1) {
3382        // Set the high bits to zero.
3383        ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg);
3384        ArgVT = MVT::i8;
3385
3386        if (ArgReg == 0)
3387          return false;
3388      }
3389
3390      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3391                                       ArgVT, ArgReg);
3392      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3393      ArgVT = VA.getLocVT();
3394      break;
3395    }
3396    case CCValAssign::AExt: {
3397      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3398             "Unexpected extend");
3399      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3400                                       ArgVT, ArgReg);
3401      if (!Emitted)
3402        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3403                                    ArgVT, ArgReg);
3404      if (!Emitted)
3405        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3406                                    ArgVT, ArgReg);
3407
3408      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3409      ArgVT = VA.getLocVT();
3410      break;
3411    }
3412    case CCValAssign::BCvt: {
3413      ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg);
3414      assert(ArgReg && "Failed to emit a bitcast!");
3415      ArgVT = VA.getLocVT();
3416      break;
3417    }
3418    case CCValAssign::VExt:
3419      // VExt has not been implemented, so this should be impossible to reach
3420      // for now.  However, fallback to Selection DAG isel once implemented.
3421      return false;
3422    case CCValAssign::AExtUpper:
3423    case CCValAssign::SExtUpper:
3424    case CCValAssign::ZExtUpper:
3425    case CCValAssign::FPExt:
3426    case CCValAssign::Trunc:
3427      llvm_unreachable("Unexpected loc info!");
3428    case CCValAssign::Indirect:
3429      // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3430      // support this.
3431      return false;
3432    }
3433
3434    if (VA.isRegLoc()) {
3435      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3436              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3437      OutRegs.push_back(VA.getLocReg());
3438    } else {
3439      assert(VA.isMemLoc() && "Unknown value location!");
3440
3441      // Don't emit stores for undef values.
3442      if (isa<UndefValue>(ArgVal))
3443        continue;
3444
3445      unsigned LocMemOffset = VA.getLocMemOffset();
3446      X86AddressMode AM;
3447      AM.Base.Reg = RegInfo->getStackRegister();
3448      AM.Disp = LocMemOffset;
3449      ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3450      Align Alignment = DL.getABITypeAlign(ArgVal->getType());
3451      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3452          MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3453          MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3454      if (Flags.isByVal()) {
3455        X86AddressMode SrcAM;
3456        SrcAM.Base.Reg = ArgReg;
3457        if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3458          return false;
3459      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3460        // If this is a really simple value, emit this with the Value* version
3461        // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3462        // as it can cause us to reevaluate the argument.
3463        if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3464          return false;
3465      } else {
3466        if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO))
3467          return false;
3468      }
3469    }
3470  }
3471
3472  // ELF / PIC requires GOT in the EBX register before function calls via PLT
3473  // GOT pointer.
3474  if (Subtarget->isPICStyleGOT()) {
3475    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3476    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3477            TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3478  }
3479
3480  if (Is64Bit && IsVarArg && !IsWin64) {
3481    // From AMD64 ABI document:
3482    // For calls that may call functions that use varargs or stdargs
3483    // (prototype-less calls or calls to functions containing ellipsis (...) in
3484    // the declaration) %al is used as hidden argument to specify the number
3485    // of SSE registers used. The contents of %al do not need to match exactly
3486    // the number of registers, but must be an ubound on the number of SSE
3487    // registers used and is in the range 0 - 8 inclusive.
3488
3489    // Count the number of XMM registers allocated.
3490    static const MCPhysReg XMMArgRegs[] = {
3491      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3492      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3493    };
3494    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3495    assert((Subtarget->hasSSE1() || !NumXMMRegs)
3496           && "SSE registers cannot be used when SSE is disabled");
3497    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
3498            X86::AL).addImm(NumXMMRegs);
3499  }
3500
3501  // Materialize callee address in a register. FIXME: GV address can be
3502  // handled with a CALLpcrel32 instead.
3503  X86AddressMode CalleeAM;
3504  if (!X86SelectCallAddress(Callee, CalleeAM))
3505    return false;
3506
3507  unsigned CalleeOp = 0;
3508  const GlobalValue *GV = nullptr;
3509  if (CalleeAM.GV != nullptr) {
3510    GV = CalleeAM.GV;
3511  } else if (CalleeAM.Base.Reg != 0) {
3512    CalleeOp = CalleeAM.Base.Reg;
3513  } else
3514    return false;
3515
3516  // Issue the call.
3517  MachineInstrBuilder MIB;
3518  if (CalleeOp) {
3519    // Register-indirect call.
3520    unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3521    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc))
3522      .addReg(CalleeOp);
3523  } else {
3524    // Direct call.
3525    assert(GV && "Not a direct call");
3526    // See if we need any target-specific flags on the GV operand.
3527    unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3528    if (OpFlags == X86II::MO_PLT && !Is64Bit &&
3529        TM.getRelocationModel() == Reloc::Static && isa<Function>(GV) &&
3530        cast<Function>(GV)->isIntrinsic())
3531      OpFlags = X86II::MO_NO_FLAG;
3532
3533    // This will be a direct call, or an indirect call through memory for
3534    // NonLazyBind calls or dllimport calls.
3535    bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3536                    OpFlags == X86II::MO_GOTPCREL ||
3537                    OpFlags == X86II::MO_GOTPCREL_NORELAX ||
3538                    OpFlags == X86II::MO_COFFSTUB;
3539    unsigned CallOpc = NeedLoad
3540                           ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3541                           : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3542
3543    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc));
3544    if (NeedLoad)
3545      MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3546    if (Symbol)
3547      MIB.addSym(Symbol, OpFlags);
3548    else
3549      MIB.addGlobalAddress(GV, 0, OpFlags);
3550    if (NeedLoad)
3551      MIB.addReg(0);
3552  }
3553
3554  // Add a register mask operand representing the call-preserved registers.
3555  // Proper defs for return values will be added by setPhysRegsDeadExcept().
3556  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3557
3558  // Add an implicit use GOT pointer in EBX.
3559  if (Subtarget->isPICStyleGOT())
3560    MIB.addReg(X86::EBX, RegState::Implicit);
3561
3562  if (Is64Bit && IsVarArg && !IsWin64)
3563    MIB.addReg(X86::AL, RegState::Implicit);
3564
3565  // Add implicit physical register uses to the call.
3566  for (auto Reg : OutRegs)
3567    MIB.addReg(Reg, RegState::Implicit);
3568
3569  // Issue CALLSEQ_END
3570  unsigned NumBytesForCalleeToPop =
3571      X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3572                       TM.Options.GuaranteedTailCallOpt)
3573          ? NumBytes // Callee pops everything.
3574          : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
3575  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3576  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
3577    .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3578
3579  // Now handle call return values.
3580  SmallVector<CCValAssign, 16> RVLocs;
3581  CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3582                    CLI.RetTy->getContext());
3583  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3584
3585  // Copy all of the result registers out of their specified physreg.
3586  Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3587  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3588    CCValAssign &VA = RVLocs[i];
3589    EVT CopyVT = VA.getValVT();
3590    unsigned CopyReg = ResultReg + i;
3591    Register SrcReg = VA.getLocReg();
3592
3593    // If this is x86-64, and we disabled SSE, we can't return FP values
3594    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3595        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3596      report_fatal_error("SSE register return with SSE disabled");
3597    }
3598
3599    // If we prefer to use the value in xmm registers, copy it out as f80 and
3600    // use a truncate to move it from fp stack reg to xmm reg.
3601    if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3602        isScalarFPTypeInSSEReg(VA.getValVT())) {
3603      CopyVT = MVT::f80;
3604      CopyReg = createResultReg(&X86::RFP80RegClass);
3605    }
3606
3607    // Copy out the result.
3608    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3609            TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3610    InRegs.push_back(VA.getLocReg());
3611
3612    // Round the f80 to the right size, which also moves it to the appropriate
3613    // xmm register. This is accomplished by storing the f80 value in memory
3614    // and then loading it back.
3615    if (CopyVT != VA.getValVT()) {
3616      EVT ResVT = VA.getValVT();
3617      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3618      unsigned MemSize = ResVT.getSizeInBits()/8;
3619      int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3620      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3621                                TII.get(Opc)), FI)
3622        .addReg(CopyReg);
3623      Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3624      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3625                                TII.get(Opc), ResultReg + i), FI);
3626    }
3627  }
3628
3629  CLI.ResultReg = ResultReg;
3630  CLI.NumResultRegs = RVLocs.size();
3631  CLI.Call = MIB;
3632
3633  return true;
3634}
3635
3636bool
3637X86FastISel::fastSelectInstruction(const Instruction *I)  {
3638  switch (I->getOpcode()) {
3639  default: break;
3640  case Instruction::Load:
3641    return X86SelectLoad(I);
3642  case Instruction::Store:
3643    return X86SelectStore(I);
3644  case Instruction::Ret:
3645    return X86SelectRet(I);
3646  case Instruction::ICmp:
3647  case Instruction::FCmp:
3648    return X86SelectCmp(I);
3649  case Instruction::ZExt:
3650    return X86SelectZExt(I);
3651  case Instruction::SExt:
3652    return X86SelectSExt(I);
3653  case Instruction::Br:
3654    return X86SelectBranch(I);
3655  case Instruction::LShr:
3656  case Instruction::AShr:
3657  case Instruction::Shl:
3658    return X86SelectShift(I);
3659  case Instruction::SDiv:
3660  case Instruction::UDiv:
3661  case Instruction::SRem:
3662  case Instruction::URem:
3663    return X86SelectDivRem(I);
3664  case Instruction::Select:
3665    return X86SelectSelect(I);
3666  case Instruction::Trunc:
3667    return X86SelectTrunc(I);
3668  case Instruction::FPExt:
3669    return X86SelectFPExt(I);
3670  case Instruction::FPTrunc:
3671    return X86SelectFPTrunc(I);
3672  case Instruction::SIToFP:
3673    return X86SelectSIToFP(I);
3674  case Instruction::UIToFP:
3675    return X86SelectUIToFP(I);
3676  case Instruction::IntToPtr: // Deliberate fall-through.
3677  case Instruction::PtrToInt: {
3678    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3679    EVT DstVT = TLI.getValueType(DL, I->getType());
3680    if (DstVT.bitsGT(SrcVT))
3681      return X86SelectZExt(I);
3682    if (DstVT.bitsLT(SrcVT))
3683      return X86SelectTrunc(I);
3684    Register Reg = getRegForValue(I->getOperand(0));
3685    if (Reg == 0) return false;
3686    updateValueMap(I, Reg);
3687    return true;
3688  }
3689  case Instruction::BitCast: {
3690    // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3691    if (!Subtarget->hasSSE2())
3692      return false;
3693
3694    MVT SrcVT, DstVT;
3695    if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3696        !isTypeLegal(I->getType(), DstVT))
3697      return false;
3698
3699    // Only allow vectors that use xmm/ymm/zmm.
3700    if (!SrcVT.isVector() || !DstVT.isVector() ||
3701        SrcVT.getVectorElementType() == MVT::i1 ||
3702        DstVT.getVectorElementType() == MVT::i1)
3703      return false;
3704
3705    Register Reg = getRegForValue(I->getOperand(0));
3706    if (!Reg)
3707      return false;
3708
3709    // Emit a reg-reg copy so we don't propagate cached known bits information
3710    // with the wrong VT if we fall out of fast isel after selecting this.
3711    const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3712    Register ResultReg = createResultReg(DstClass);
3713    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3714              TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3715
3716    updateValueMap(I, ResultReg);
3717    return true;
3718  }
3719  }
3720
3721  return false;
3722}
3723
3724unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3725  if (VT > MVT::i64)
3726    return 0;
3727
3728  uint64_t Imm = CI->getZExtValue();
3729  if (Imm == 0) {
3730    Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3731    switch (VT.SimpleTy) {
3732    default: llvm_unreachable("Unexpected value type");
3733    case MVT::i1:
3734    case MVT::i8:
3735      return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit);
3736    case MVT::i16:
3737      return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit);
3738    case MVT::i32:
3739      return SrcReg;
3740    case MVT::i64: {
3741      Register ResultReg = createResultReg(&X86::GR64RegClass);
3742      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3743              TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3744        .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3745      return ResultReg;
3746    }
3747    }
3748  }
3749
3750  unsigned Opc = 0;
3751  switch (VT.SimpleTy) {
3752  default: llvm_unreachable("Unexpected value type");
3753  case MVT::i1:
3754    VT = MVT::i8;
3755    [[fallthrough]];
3756  case MVT::i8:  Opc = X86::MOV8ri;  break;
3757  case MVT::i16: Opc = X86::MOV16ri; break;
3758  case MVT::i32: Opc = X86::MOV32ri; break;
3759  case MVT::i64: {
3760    if (isUInt<32>(Imm))
3761      Opc = X86::MOV32ri64;
3762    else if (isInt<32>(Imm))
3763      Opc = X86::MOV64ri32;
3764    else
3765      Opc = X86::MOV64ri;
3766    break;
3767  }
3768  }
3769  return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3770}
3771
3772unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3773  if (CFP->isNullValue())
3774    return fastMaterializeFloatZero(CFP);
3775
3776  // Can't handle alternate code models yet.
3777  CodeModel::Model CM = TM.getCodeModel();
3778  if (CM != CodeModel::Small && CM != CodeModel::Medium &&
3779      CM != CodeModel::Large)
3780    return 0;
3781
3782  // Get opcode and regclass of the output for the given load instruction.
3783  unsigned Opc = 0;
3784  bool HasSSE1 = Subtarget->hasSSE1();
3785  bool HasSSE2 = Subtarget->hasSSE2();
3786  bool HasAVX = Subtarget->hasAVX();
3787  bool HasAVX512 = Subtarget->hasAVX512();
3788  switch (VT.SimpleTy) {
3789  default: return 0;
3790  case MVT::f32:
3791    Opc = HasAVX512 ? X86::VMOVSSZrm_alt
3792          : HasAVX  ? X86::VMOVSSrm_alt
3793          : HasSSE1 ? X86::MOVSSrm_alt
3794                    : X86::LD_Fp32m;
3795    break;
3796  case MVT::f64:
3797    Opc = HasAVX512 ? X86::VMOVSDZrm_alt
3798          : HasAVX  ? X86::VMOVSDrm_alt
3799          : HasSSE2 ? X86::MOVSDrm_alt
3800                    : X86::LD_Fp64m;
3801    break;
3802  case MVT::f80:
3803    // No f80 support yet.
3804    return 0;
3805  }
3806
3807  // MachineConstantPool wants an explicit alignment.
3808  Align Alignment = DL.getPrefTypeAlign(CFP->getType());
3809
3810  // x86-32 PIC requires a PIC base register for constant pools.
3811  unsigned PICBase = 0;
3812  unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3813  if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3814    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3815  else if (OpFlag == X86II::MO_GOTOFF)
3816    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3817  else if (Subtarget->is64Bit() && TM.getCodeModel() != CodeModel::Large)
3818    PICBase = X86::RIP;
3819
3820  // Create the load from the constant pool.
3821  unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3822  Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3823
3824  // Large code model only applies to 64-bit mode.
3825  if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3826    Register AddrReg = createResultReg(&X86::GR64RegClass);
3827    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3828            AddrReg)
3829      .addConstantPoolIndex(CPI, 0, OpFlag);
3830    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3831                                      TII.get(Opc), ResultReg);
3832    addRegReg(MIB, AddrReg, false, PICBase, false);
3833    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3834        MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3835        MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
3836    MIB->addMemOperand(*FuncInfo.MF, MMO);
3837    return ResultReg;
3838  }
3839
3840  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3841                                   TII.get(Opc), ResultReg),
3842                           CPI, PICBase, OpFlag);
3843  return ResultReg;
3844}
3845
3846unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3847  // Can't handle large GlobalValues yet.
3848  if (TM.getCodeModel() != CodeModel::Small &&
3849      TM.getCodeModel() != CodeModel::Medium)
3850    return 0;
3851  if (TM.isLargeGlobalValue(GV))
3852    return 0;
3853
3854  // Materialize addresses with LEA/MOV instructions.
3855  X86AddressMode AM;
3856  if (X86SelectAddress(GV, AM)) {
3857    // If the expression is just a basereg, then we're done, otherwise we need
3858    // to emit an LEA.
3859    if (AM.BaseType == X86AddressMode::RegBase &&
3860        AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3861      return AM.Base.Reg;
3862
3863    Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3864    if (TM.getRelocationModel() == Reloc::Static &&
3865        TLI.getPointerTy(DL) == MVT::i64) {
3866      // The displacement code could be more than 32 bits away so we need to use
3867      // an instruction with a 64 bit immediate
3868      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3869              ResultReg)
3870        .addGlobalAddress(GV);
3871    } else {
3872      unsigned Opc =
3873          TLI.getPointerTy(DL) == MVT::i32
3874              ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3875              : X86::LEA64r;
3876      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3877                             TII.get(Opc), ResultReg), AM);
3878    }
3879    return ResultReg;
3880  }
3881  return 0;
3882}
3883
3884unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3885  EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3886
3887  // Only handle simple types.
3888  if (!CEVT.isSimple())
3889    return 0;
3890  MVT VT = CEVT.getSimpleVT();
3891
3892  if (const auto *CI = dyn_cast<ConstantInt>(C))
3893    return X86MaterializeInt(CI, VT);
3894  if (const auto *CFP = dyn_cast<ConstantFP>(C))
3895    return X86MaterializeFP(CFP, VT);
3896  if (const auto *GV = dyn_cast<GlobalValue>(C))
3897    return X86MaterializeGV(GV, VT);
3898  if (isa<UndefValue>(C)) {
3899    unsigned Opc = 0;
3900    switch (VT.SimpleTy) {
3901    default:
3902      break;
3903    case MVT::f32:
3904      if (!Subtarget->hasSSE1())
3905        Opc = X86::LD_Fp032;
3906      break;
3907    case MVT::f64:
3908      if (!Subtarget->hasSSE2())
3909        Opc = X86::LD_Fp064;
3910      break;
3911    case MVT::f80:
3912      Opc = X86::LD_Fp080;
3913      break;
3914    }
3915
3916    if (Opc) {
3917      Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3918      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
3919              ResultReg);
3920      return ResultReg;
3921    }
3922  }
3923
3924  return 0;
3925}
3926
3927unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3928  // Fail on dynamic allocas. At this point, getRegForValue has already
3929  // checked its CSE maps, so if we're here trying to handle a dynamic
3930  // alloca, we're not going to succeed. X86SelectAddress has a
3931  // check for dynamic allocas, because it's called directly from
3932  // various places, but targetMaterializeAlloca also needs a check
3933  // in order to avoid recursion between getRegForValue,
3934  // X86SelectAddrss, and targetMaterializeAlloca.
3935  if (!FuncInfo.StaticAllocaMap.count(C))
3936    return 0;
3937  assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3938
3939  X86AddressMode AM;
3940  if (!X86SelectAddress(C, AM))
3941    return 0;
3942  unsigned Opc =
3943      TLI.getPointerTy(DL) == MVT::i32
3944          ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3945          : X86::LEA64r;
3946  const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3947  Register ResultReg = createResultReg(RC);
3948  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3949                         TII.get(Opc), ResultReg), AM);
3950  return ResultReg;
3951}
3952
3953unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3954  MVT VT;
3955  if (!isTypeLegal(CF->getType(), VT))
3956    return 0;
3957
3958  // Get opcode and regclass for the given zero.
3959  bool HasSSE1 = Subtarget->hasSSE1();
3960  bool HasSSE2 = Subtarget->hasSSE2();
3961  bool HasAVX512 = Subtarget->hasAVX512();
3962  unsigned Opc = 0;
3963  switch (VT.SimpleTy) {
3964  default: return 0;
3965  case MVT::f16:
3966    Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH;
3967    break;
3968  case MVT::f32:
3969    Opc = HasAVX512 ? X86::AVX512_FsFLD0SS
3970          : HasSSE1 ? X86::FsFLD0SS
3971                    : X86::LD_Fp032;
3972    break;
3973  case MVT::f64:
3974    Opc = HasAVX512 ? X86::AVX512_FsFLD0SD
3975          : HasSSE2 ? X86::FsFLD0SD
3976                    : X86::LD_Fp064;
3977    break;
3978  case MVT::f80:
3979    // No f80 support yet.
3980    return 0;
3981  }
3982
3983  Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3984  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
3985  return ResultReg;
3986}
3987
3988
3989bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3990                                      const LoadInst *LI) {
3991  const Value *Ptr = LI->getPointerOperand();
3992  X86AddressMode AM;
3993  if (!X86SelectAddress(Ptr, AM))
3994    return false;
3995
3996  const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3997
3998  unsigned Size = DL.getTypeAllocSize(LI->getType());
3999
4000  SmallVector<MachineOperand, 8> AddrOps;
4001  AM.getFullAddress(AddrOps);
4002
4003  MachineInstr *Result = XII.foldMemoryOperandImpl(
4004      *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
4005      /*AllowCommute=*/true);
4006  if (!Result)
4007    return false;
4008
4009  // The index register could be in the wrong register class.  Unfortunately,
4010  // foldMemoryOperandImpl could have commuted the instruction so its not enough
4011  // to just look at OpNo + the offset to the index reg.  We actually need to
4012  // scan the instruction to find the index reg and see if its the correct reg
4013  // class.
4014  unsigned OperandNo = 0;
4015  for (MachineInstr::mop_iterator I = Result->operands_begin(),
4016       E = Result->operands_end(); I != E; ++I, ++OperandNo) {
4017    MachineOperand &MO = *I;
4018    if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
4019      continue;
4020    // Found the index reg, now try to rewrite it.
4021    Register IndexReg = constrainOperandRegClass(Result->getDesc(),
4022                                                 MO.getReg(), OperandNo);
4023    if (IndexReg == MO.getReg())
4024      continue;
4025    MO.setReg(IndexReg);
4026  }
4027
4028  Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
4029  Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
4030  MachineBasicBlock::iterator I(MI);
4031  removeDeadCode(I, std::next(I));
4032  return true;
4033}
4034
4035unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
4036                                        const TargetRegisterClass *RC,
4037                                        unsigned Op0, unsigned Op1,
4038                                        unsigned Op2, unsigned Op3) {
4039  const MCInstrDesc &II = TII.get(MachineInstOpcode);
4040
4041  Register ResultReg = createResultReg(RC);
4042  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
4043  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
4044  Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
4045  Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
4046
4047  if (II.getNumDefs() >= 1)
4048    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
4049        .addReg(Op0)
4050        .addReg(Op1)
4051        .addReg(Op2)
4052        .addReg(Op3);
4053  else {
4054    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
4055        .addReg(Op0)
4056        .addReg(Op1)
4057        .addReg(Op2)
4058        .addReg(Op3);
4059    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
4060            ResultReg)
4061        .addReg(II.implicit_defs()[0]);
4062  }
4063  return ResultReg;
4064}
4065
4066
4067namespace llvm {
4068  FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4069                                const TargetLibraryInfo *libInfo) {
4070    return new X86FastISel(funcInfo, libInfo);
4071  }
4072}
4073