1//===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements a simple VLIW packetizer using DFA. The packetizer works on
10// machine basic blocks. For each instruction I in BB, the packetizer consults
11// the DFA to see if machine resources are available to execute I. If so, the
12// packetizer checks if I depends on any instruction J in the current packet.
13// If no dependency is found, I is added to current packet and machine resource
14// is marked as taken. If any dependency is found, a target API call is made to
15// prune the dependence.
16//
17//===----------------------------------------------------------------------===//
18
19#include "HexagonVLIWPacketizer.h"
20#include "Hexagon.h"
21#include "HexagonInstrInfo.h"
22#include "HexagonRegisterInfo.h"
23#include "HexagonSubtarget.h"
24#include "llvm/ADT/BitVector.h"
25#include "llvm/ADT/DenseSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Analysis/AliasAnalysis.h"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31#include "llvm/CodeGen/MachineDominators.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBundle.h"
37#include "llvm/CodeGen/MachineLoopInfo.h"
38#include "llvm/CodeGen/MachineOperand.h"
39#include "llvm/CodeGen/ScheduleDAG.h"
40#include "llvm/CodeGen/TargetRegisterInfo.h"
41#include "llvm/CodeGen/TargetSubtargetInfo.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/InitializePasses.h"
44#include "llvm/MC/MCInstrDesc.h"
45#include "llvm/Pass.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/raw_ostream.h"
50#include <cassert>
51#include <cstdint>
52#include <iterator>
53
54using namespace llvm;
55
56#define DEBUG_TYPE "packets"
57
58static cl::opt<bool>
59    DisablePacketizer("disable-packetizer", cl::Hidden,
60                      cl::desc("Disable Hexagon packetizer pass"));
61
62static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
63                                cl::init(true),
64                                cl::desc("Allow slot1 store and slot0 load"));
65
66static cl::opt<bool> PacketizeVolatiles(
67    "hexagon-packetize-volatiles", cl::Hidden, cl::init(true),
68    cl::desc("Allow non-solo packetization of volatile memory references"));
69
70static cl::opt<bool>
71    EnableGenAllInsnClass("enable-gen-insn", cl::Hidden,
72                          cl::desc("Generate all instruction with TC"));
73
74static cl::opt<bool>
75    DisableVecDblNVStores("disable-vecdbl-nv-stores", cl::Hidden,
76                          cl::desc("Disable vector double new-value-stores"));
77
78extern cl::opt<bool> ScheduleInlineAsm;
79
80namespace llvm {
81
82FunctionPass *createHexagonPacketizer(bool Minimal);
83void initializeHexagonPacketizerPass(PassRegistry&);
84
85} // end namespace llvm
86
87namespace {
88
89  class HexagonPacketizer : public MachineFunctionPass {
90  public:
91    static char ID;
92
93    HexagonPacketizer(bool Min = false)
94      : MachineFunctionPass(ID), Minimal(Min) {}
95
96    void getAnalysisUsage(AnalysisUsage &AU) const override {
97      AU.setPreservesCFG();
98      AU.addRequired<AAResultsWrapperPass>();
99      AU.addRequired<MachineBranchProbabilityInfo>();
100      AU.addRequired<MachineDominatorTree>();
101      AU.addRequired<MachineLoopInfo>();
102      AU.addPreserved<MachineDominatorTree>();
103      AU.addPreserved<MachineLoopInfo>();
104      MachineFunctionPass::getAnalysisUsage(AU);
105    }
106
107    StringRef getPassName() const override { return "Hexagon Packetizer"; }
108    bool runOnMachineFunction(MachineFunction &Fn) override;
109
110    MachineFunctionProperties getRequiredProperties() const override {
111      return MachineFunctionProperties().set(
112          MachineFunctionProperties::Property::NoVRegs);
113    }
114
115  private:
116    const HexagonInstrInfo *HII = nullptr;
117    const HexagonRegisterInfo *HRI = nullptr;
118    const bool Minimal = false;
119  };
120
121} // end anonymous namespace
122
123char HexagonPacketizer::ID = 0;
124
125INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
126                      "Hexagon Packetizer", false, false)
127INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
128INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
129INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
130INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
131INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
132                    "Hexagon Packetizer", false, false)
133
134HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
135      MachineLoopInfo &MLI, AAResults *AA,
136      const MachineBranchProbabilityInfo *MBPI, bool Minimal)
137    : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
138      Minimal(Minimal) {
139  HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
140  HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
141
142  addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
143  addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
144  addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
145}
146
147// Check if FirstI modifies a register that SecondI reads.
148static bool hasWriteToReadDep(const MachineInstr &FirstI,
149                              const MachineInstr &SecondI,
150                              const TargetRegisterInfo *TRI) {
151  for (auto &MO : FirstI.operands()) {
152    if (!MO.isReg() || !MO.isDef())
153      continue;
154    Register R = MO.getReg();
155    if (SecondI.readsRegister(R, TRI))
156      return true;
157  }
158  return false;
159}
160
161
162static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
163      MachineBasicBlock::iterator BundleIt, bool Before) {
164  MachineBasicBlock::instr_iterator InsertPt;
165  if (Before)
166    InsertPt = BundleIt.getInstrIterator();
167  else
168    InsertPt = std::next(BundleIt).getInstrIterator();
169
170  MachineBasicBlock &B = *MI.getParent();
171  // The instruction should at least be bundled with the preceding instruction
172  // (there will always be one, i.e. BUNDLE, if nothing else).
173  assert(MI.isBundledWithPred());
174  if (MI.isBundledWithSucc()) {
175    MI.clearFlag(MachineInstr::BundledSucc);
176    MI.clearFlag(MachineInstr::BundledPred);
177  } else {
178    // If it's not bundled with the successor (i.e. it is the last one
179    // in the bundle), then we can simply unbundle it from the predecessor,
180    // which will take care of updating the predecessor's flag.
181    MI.unbundleFromPred();
182  }
183  B.splice(InsertPt, &B, MI.getIterator());
184
185  // Get the size of the bundle without asserting.
186  MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
187  MachineBasicBlock::const_instr_iterator E = B.instr_end();
188  unsigned Size = 0;
189  for (++I; I != E && I->isBundledWithPred(); ++I)
190    ++Size;
191
192  // If there are still two or more instructions, then there is nothing
193  // else to be done.
194  if (Size > 1)
195    return BundleIt;
196
197  // Otherwise, extract the single instruction out and delete the bundle.
198  MachineBasicBlock::iterator NextIt = std::next(BundleIt);
199  MachineInstr &SingleI = *BundleIt->getNextNode();
200  SingleI.unbundleFromPred();
201  assert(!SingleI.isBundledWithSucc());
202  BundleIt->eraseFromParent();
203  return NextIt;
204}
205
206bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
207  // FIXME: This pass causes verification failures.
208  MF.getProperties().set(
209      MachineFunctionProperties::Property::FailsVerification);
210
211  auto &HST = MF.getSubtarget<HexagonSubtarget>();
212  HII = HST.getInstrInfo();
213  HRI = HST.getRegisterInfo();
214  auto &MLI = getAnalysis<MachineLoopInfo>();
215  auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
216  auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
217
218  if (EnableGenAllInsnClass)
219    HII->genAllInsnTimingClasses(MF);
220
221  // Instantiate the packetizer.
222  bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
223                 skipFunction(MF.getFunction());
224  HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
225
226  // DFA state table should not be empty.
227  assert(Packetizer.getResourceTracker() && "Empty DFA table!");
228
229  // Loop over all basic blocks and remove KILL pseudo-instructions
230  // These instructions confuse the dependence analysis. Consider:
231  // D0 = ...   (Insn 0)
232  // R0 = KILL R0, D0 (Insn 1)
233  // R0 = ... (Insn 2)
234  // Here, Insn 1 will result in the dependence graph not emitting an output
235  // dependence between Insn 0 and Insn 2. This can lead to incorrect
236  // packetization
237  for (MachineBasicBlock &MB : MF) {
238    for (MachineInstr &MI : llvm::make_early_inc_range(MB))
239      if (MI.isKill())
240        MB.erase(&MI);
241  }
242
243  // TinyCore with Duplexes: Translate to big-instructions.
244  if (HST.isTinyCoreWithDuplex())
245    HII->translateInstrsForDup(MF, true);
246
247  // Loop over all of the basic blocks.
248  for (auto &MB : MF) {
249    auto Begin = MB.begin(), End = MB.end();
250    while (Begin != End) {
251      // Find the first non-boundary starting from the end of the last
252      // scheduling region.
253      MachineBasicBlock::iterator RB = Begin;
254      while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
255        ++RB;
256      // Find the first boundary starting from the beginning of the new
257      // region.
258      MachineBasicBlock::iterator RE = RB;
259      while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
260        ++RE;
261      // Add the scheduling boundary if it's not block end.
262      if (RE != End)
263        ++RE;
264      // If RB == End, then RE == End.
265      if (RB != End)
266        Packetizer.PacketizeMIs(&MB, RB, RE);
267
268      Begin = RE;
269    }
270  }
271
272  // TinyCore with Duplexes: Translate to tiny-instructions.
273  if (HST.isTinyCoreWithDuplex())
274    HII->translateInstrsForDup(MF, false);
275
276  Packetizer.unpacketizeSoloInstrs(MF);
277  return true;
278}
279
280// Reserve resources for a constant extender. Trigger an assertion if the
281// reservation fails.
282void HexagonPacketizerList::reserveResourcesForConstExt() {
283  if (!tryAllocateResourcesForConstExt(true))
284    llvm_unreachable("Resources not available");
285}
286
287bool HexagonPacketizerList::canReserveResourcesForConstExt() {
288  return tryAllocateResourcesForConstExt(false);
289}
290
291// Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
292// return true, otherwise, return false.
293bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
294  auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
295  bool Avail = ResourceTracker->canReserveResources(*ExtMI);
296  if (Reserve && Avail)
297    ResourceTracker->reserveResources(*ExtMI);
298  MF.deleteMachineInstr(ExtMI);
299  return Avail;
300}
301
302bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
303      SDep::Kind DepType, unsigned DepReg) {
304  // Check for LR dependence.
305  if (DepReg == HRI->getRARegister())
306    return true;
307
308  if (HII->isDeallocRet(MI))
309    if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
310      return true;
311
312  // Call-like instructions can be packetized with preceding instructions
313  // that define registers implicitly used or modified by the call. Explicit
314  // uses are still prohibited, as in the case of indirect calls:
315  //   r0 = ...
316  //   J2_jumpr r0
317  if (DepType == SDep::Data) {
318    for (const MachineOperand &MO : MI.operands())
319      if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
320        return true;
321  }
322
323  return false;
324}
325
326static bool isRegDependence(const SDep::Kind DepType) {
327  return DepType == SDep::Data || DepType == SDep::Anti ||
328         DepType == SDep::Output;
329}
330
331static bool isDirectJump(const MachineInstr &MI) {
332  return MI.getOpcode() == Hexagon::J2_jump;
333}
334
335static bool isSchedBarrier(const MachineInstr &MI) {
336  switch (MI.getOpcode()) {
337  case Hexagon::Y2_barrier:
338    return true;
339  }
340  return false;
341}
342
343static bool isControlFlow(const MachineInstr &MI) {
344  return MI.getDesc().isTerminator() || MI.getDesc().isCall();
345}
346
347/// Returns true if the instruction modifies a callee-saved register.
348static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
349                                     const TargetRegisterInfo *TRI) {
350  const MachineFunction &MF = *MI.getParent()->getParent();
351  for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
352    if (MI.modifiesRegister(*CSR, TRI))
353      return true;
354  return false;
355}
356
357// Returns true if an instruction can be promoted to .new predicate or
358// new-value store.
359bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
360      const TargetRegisterClass *NewRC) {
361  // Vector stores can be predicated, and can be new-value stores, but
362  // they cannot be predicated on a .new predicate value.
363  if (NewRC == &Hexagon::PredRegsRegClass) {
364    if (HII->isHVXVec(MI) && MI.mayStore())
365      return false;
366    return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
367  }
368  // If the class is not PredRegs, it could only apply to new-value stores.
369  return HII->mayBeNewStore(MI);
370}
371
372// Promote an instructiont to its .cur form.
373// At this time, we have already made a call to canPromoteToDotCur and made
374// sure that it can *indeed* be promoted.
375bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
376      SDep::Kind DepType, MachineBasicBlock::iterator &MII,
377      const TargetRegisterClass* RC) {
378  assert(DepType == SDep::Data);
379  int CurOpcode = HII->getDotCurOp(MI);
380  MI.setDesc(HII->get(CurOpcode));
381  return true;
382}
383
384void HexagonPacketizerList::cleanUpDotCur() {
385  MachineInstr *MI = nullptr;
386  for (auto *BI : CurrentPacketMIs) {
387    LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
388    if (HII->isDotCurInst(*BI)) {
389      MI = BI;
390      continue;
391    }
392    if (MI) {
393      for (auto &MO : BI->operands())
394        if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
395          return;
396    }
397  }
398  if (!MI)
399    return;
400  // We did not find a use of the CUR, so de-cur it.
401  MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
402  LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
403}
404
405// Check to see if an instruction can be dot cur.
406bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
407      const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
408      const TargetRegisterClass *RC) {
409  if (!HII->isHVXVec(MI))
410    return false;
411  if (!HII->isHVXVec(*MII))
412    return false;
413
414  // Already a dot new instruction.
415  if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
416    return false;
417
418  if (!HII->mayBeCurLoad(MI))
419    return false;
420
421  // The "cur value" cannot come from inline asm.
422  if (PacketSU->getInstr()->isInlineAsm())
423    return false;
424
425  // Make sure candidate instruction uses cur.
426  LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
427             dbgs() << "in packet\n";);
428  MachineInstr &MJ = *MII;
429  LLVM_DEBUG({
430    dbgs() << "Checking CUR against ";
431    MJ.dump();
432  });
433  Register DestReg = MI.getOperand(0).getReg();
434  bool FoundMatch = false;
435  for (auto &MO : MJ.operands())
436    if (MO.isReg() && MO.getReg() == DestReg)
437      FoundMatch = true;
438  if (!FoundMatch)
439    return false;
440
441  // Check for existing uses of a vector register within the packet which
442  // would be affected by converting a vector load into .cur formt.
443  for (auto *BI : CurrentPacketMIs) {
444    LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
445    if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
446      return false;
447  }
448
449  LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
450  // We can convert the opcode into a .cur.
451  return true;
452}
453
454// Promote an instruction to its .new form. At this time, we have already
455// made a call to canPromoteToDotNew and made sure that it can *indeed* be
456// promoted.
457bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
458      SDep::Kind DepType, MachineBasicBlock::iterator &MII,
459      const TargetRegisterClass* RC) {
460  assert(DepType == SDep::Data);
461  int NewOpcode;
462  if (RC == &Hexagon::PredRegsRegClass)
463    NewOpcode = HII->getDotNewPredOp(MI, MBPI);
464  else
465    NewOpcode = HII->getDotNewOp(MI);
466  MI.setDesc(HII->get(NewOpcode));
467  return true;
468}
469
470bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
471  int NewOpcode = HII->getDotOldOp(MI);
472  MI.setDesc(HII->get(NewOpcode));
473  return true;
474}
475
476bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
477  unsigned Opc = MI.getOpcode();
478  switch (Opc) {
479    case Hexagon::S2_storerd_io:
480    case Hexagon::S2_storeri_io:
481    case Hexagon::S2_storerh_io:
482    case Hexagon::S2_storerb_io:
483      break;
484    default:
485      llvm_unreachable("Unexpected instruction");
486  }
487  unsigned FrameSize = MF.getFrameInfo().getStackSize();
488  MachineOperand &Off = MI.getOperand(1);
489  int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
490  if (HII->isValidOffset(Opc, NewOff, HRI)) {
491    Off.setImm(NewOff);
492    return true;
493  }
494  return false;
495}
496
497void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
498  unsigned Opc = MI.getOpcode();
499  switch (Opc) {
500    case Hexagon::S2_storerd_io:
501    case Hexagon::S2_storeri_io:
502    case Hexagon::S2_storerh_io:
503    case Hexagon::S2_storerb_io:
504      break;
505    default:
506      llvm_unreachable("Unexpected instruction");
507  }
508  unsigned FrameSize = MF.getFrameInfo().getStackSize();
509  MachineOperand &Off = MI.getOperand(1);
510  Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
511}
512
513/// Return true if we can update the offset in MI so that MI and MJ
514/// can be packetized together.
515bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
516  assert(SUI->getInstr() && SUJ->getInstr());
517  MachineInstr &MI = *SUI->getInstr();
518  MachineInstr &MJ = *SUJ->getInstr();
519
520  unsigned BPI, OPI;
521  if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
522    return false;
523  unsigned BPJ, OPJ;
524  if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
525    return false;
526  Register Reg = MI.getOperand(BPI).getReg();
527  if (Reg != MJ.getOperand(BPJ).getReg())
528    return false;
529  // Make sure that the dependences do not restrict adding MI to the packet.
530  // That is, ignore anti dependences, and make sure the only data dependence
531  // involves the specific register.
532  for (const auto &PI : SUI->Preds)
533    if (PI.getKind() != SDep::Anti &&
534        (PI.getKind() != SDep::Data || PI.getReg() != Reg))
535      return false;
536  int Incr;
537  if (!HII->getIncrementValue(MJ, Incr))
538    return false;
539
540  int64_t Offset = MI.getOperand(OPI).getImm();
541  if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
542    return false;
543
544  MI.getOperand(OPI).setImm(Offset + Incr);
545  ChangedOffset = Offset;
546  return true;
547}
548
549/// Undo the changed offset. This is needed if the instruction cannot be
550/// added to the current packet due to a different instruction.
551void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
552  unsigned BP, OP;
553  if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
554    llvm_unreachable("Unable to find base and offset operands.");
555  MI.getOperand(OP).setImm(ChangedOffset);
556}
557
558enum PredicateKind {
559  PK_False,
560  PK_True,
561  PK_Unknown
562};
563
564/// Returns true if an instruction is predicated on p0 and false if it's
565/// predicated on !p0.
566static PredicateKind getPredicateSense(const MachineInstr &MI,
567                                       const HexagonInstrInfo *HII) {
568  if (!HII->isPredicated(MI))
569    return PK_Unknown;
570  if (HII->isPredicatedTrue(MI))
571    return PK_True;
572  return PK_False;
573}
574
575static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
576      const HexagonInstrInfo *HII) {
577  assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
578#ifndef NDEBUG
579  // Post Increment means duplicates. Use dense map to find duplicates in the
580  // list. Caution: Densemap initializes with the minimum of 64 buckets,
581  // whereas there are at most 5 operands in the post increment.
582  DenseSet<unsigned> DefRegsSet;
583  for (auto &MO : MI.operands())
584    if (MO.isReg() && MO.isDef())
585      DefRegsSet.insert(MO.getReg());
586
587  for (auto &MO : MI.operands())
588    if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
589      return MO;
590#else
591  if (MI.mayLoad()) {
592    const MachineOperand &Op1 = MI.getOperand(1);
593    // The 2nd operand is always the post increment operand in load.
594    assert(Op1.isReg() && "Post increment operand has be to a register.");
595    return Op1;
596  }
597  if (MI.getDesc().mayStore()) {
598    const MachineOperand &Op0 = MI.getOperand(0);
599    // The 1st operand is always the post increment operand in store.
600    assert(Op0.isReg() && "Post increment operand has be to a register.");
601    return Op0;
602  }
603#endif
604  // we should never come here.
605  llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
606}
607
608// Get the value being stored.
609static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
610  // value being stored is always the last operand.
611  return MI.getOperand(MI.getNumOperands()-1);
612}
613
614static bool isLoadAbsSet(const MachineInstr &MI) {
615  unsigned Opc = MI.getOpcode();
616  switch (Opc) {
617    case Hexagon::L4_loadrd_ap:
618    case Hexagon::L4_loadrb_ap:
619    case Hexagon::L4_loadrh_ap:
620    case Hexagon::L4_loadrub_ap:
621    case Hexagon::L4_loadruh_ap:
622    case Hexagon::L4_loadri_ap:
623      return true;
624  }
625  return false;
626}
627
628static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
629  assert(isLoadAbsSet(MI));
630  return MI.getOperand(1);
631}
632
633// Can be new value store?
634// Following restrictions are to be respected in convert a store into
635// a new value store.
636// 1. If an instruction uses auto-increment, its address register cannot
637//    be a new-value register. Arch Spec 5.4.2.1
638// 2. If an instruction uses absolute-set addressing mode, its address
639//    register cannot be a new-value register. Arch Spec 5.4.2.1.
640// 3. If an instruction produces a 64-bit result, its registers cannot be used
641//    as new-value registers. Arch Spec 5.4.2.2.
642// 4. If the instruction that sets the new-value register is conditional, then
643//    the instruction that uses the new-value register must also be conditional,
644//    and both must always have their predicates evaluate identically.
645//    Arch Spec 5.4.2.3.
646// 5. There is an implied restriction that a packet cannot have another store,
647//    if there is a new value store in the packet. Corollary: if there is
648//    already a store in a packet, there can not be a new value store.
649//    Arch Spec: 3.4.4.2
650bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
651      const MachineInstr &PacketMI, unsigned DepReg) {
652  // Make sure we are looking at the store, that can be promoted.
653  if (!HII->mayBeNewStore(MI))
654    return false;
655
656  // Make sure there is dependency and can be new value'd.
657  const MachineOperand &Val = getStoreValueOperand(MI);
658  if (Val.isReg() && Val.getReg() != DepReg)
659    return false;
660
661  const MCInstrDesc& MCID = PacketMI.getDesc();
662
663  // First operand is always the result.
664  const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
665  // Double regs can not feed into new value store: PRM section: 5.4.2.2.
666  if (PacketRC == &Hexagon::DoubleRegsRegClass)
667    return false;
668
669  // New-value stores are of class NV (slot 0), dual stores require class ST
670  // in slot 0 (PRM 5.5).
671  for (auto *I : CurrentPacketMIs) {
672    SUnit *PacketSU = MIToSUnit.find(I)->second;
673    if (PacketSU->getInstr()->mayStore())
674      return false;
675  }
676
677  // Make sure it's NOT the post increment register that we are going to
678  // new value.
679  if (HII->isPostIncrement(MI) &&
680      getPostIncrementOperand(MI, HII).getReg() == DepReg) {
681    return false;
682  }
683
684  if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
685      getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
686    // If source is post_inc, or absolute-set addressing, it can not feed
687    // into new value store
688    //   r3 = memw(r2++#4)
689    //   memw(r30 + #-1404) = r2.new -> can not be new value store
690    // arch spec section: 5.4.2.1.
691    return false;
692  }
693
694  if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
695    return false;
696
697  // If the source that feeds the store is predicated, new value store must
698  // also be predicated.
699  if (HII->isPredicated(PacketMI)) {
700    if (!HII->isPredicated(MI))
701      return false;
702
703    // Check to make sure that they both will have their predicates
704    // evaluate identically.
705    unsigned predRegNumSrc = 0;
706    unsigned predRegNumDst = 0;
707    const TargetRegisterClass* predRegClass = nullptr;
708
709    // Get predicate register used in the source instruction.
710    for (auto &MO : PacketMI.operands()) {
711      if (!MO.isReg())
712        continue;
713      predRegNumSrc = MO.getReg();
714      predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
715      if (predRegClass == &Hexagon::PredRegsRegClass)
716        break;
717    }
718    assert((predRegClass == &Hexagon::PredRegsRegClass) &&
719        "predicate register not found in a predicated PacketMI instruction");
720
721    // Get predicate register used in new-value store instruction.
722    for (auto &MO : MI.operands()) {
723      if (!MO.isReg())
724        continue;
725      predRegNumDst = MO.getReg();
726      predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
727      if (predRegClass == &Hexagon::PredRegsRegClass)
728        break;
729    }
730    assert((predRegClass == &Hexagon::PredRegsRegClass) &&
731           "predicate register not found in a predicated MI instruction");
732
733    // New-value register producer and user (store) need to satisfy these
734    // constraints:
735    // 1) Both instructions should be predicated on the same register.
736    // 2) If producer of the new-value register is .new predicated then store
737    // should also be .new predicated and if producer is not .new predicated
738    // then store should not be .new predicated.
739    // 3) Both new-value register producer and user should have same predicate
740    // sense, i.e, either both should be negated or both should be non-negated.
741    if (predRegNumDst != predRegNumSrc ||
742        HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
743        getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
744      return false;
745  }
746
747  // Make sure that other than the new-value register no other store instruction
748  // register has been modified in the same packet. Predicate registers can be
749  // modified by they should not be modified between the producer and the store
750  // instruction as it will make them both conditional on different values.
751  // We already know this to be true for all the instructions before and
752  // including PacketMI. Howerver, we need to perform the check for the
753  // remaining instructions in the packet.
754
755  unsigned StartCheck = 0;
756
757  for (auto *I : CurrentPacketMIs) {
758    SUnit *TempSU = MIToSUnit.find(I)->second;
759    MachineInstr &TempMI = *TempSU->getInstr();
760
761    // Following condition is true for all the instructions until PacketMI is
762    // reached (StartCheck is set to 0 before the for loop).
763    // StartCheck flag is 1 for all the instructions after PacketMI.
764    if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
765      continue;                              // encountering PacketMI.
766
767    StartCheck = 1;
768    if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
769      continue;
770
771    for (auto &MO : MI.operands())
772      if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
773        return false;
774  }
775
776  // Make sure that for non-POST_INC stores:
777  // 1. The only use of reg is DepReg and no other registers.
778  //    This handles base+index registers.
779  //    The following store can not be dot new.
780  //    Eg.   r0 = add(r0, #3)
781  //          memw(r1+r0<<#2) = r0
782  if (!HII->isPostIncrement(MI)) {
783    for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
784      const MachineOperand &MO = MI.getOperand(opNum);
785      if (MO.isReg() && MO.getReg() == DepReg)
786        return false;
787    }
788  }
789
790  // If data definition is because of implicit definition of the register,
791  // do not newify the store. Eg.
792  // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
793  // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
794  for (auto &MO : PacketMI.operands()) {
795    if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
796      return false;
797    if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
798      continue;
799    Register R = MO.getReg();
800    if (R == DepReg || HRI->isSuperRegister(DepReg, R))
801      return false;
802  }
803
804  // Handle imp-use of super reg case. There is a target independent side
805  // change that should prevent this situation but I am handling it for
806  // just-in-case. For example, we cannot newify R2 in the following case:
807  // %r3 = A2_tfrsi 0;
808  // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
809  for (auto &MO : MI.operands()) {
810    if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
811      return false;
812  }
813
814  // Can be dot new store.
815  return true;
816}
817
818// Can this MI to promoted to either new value store or new value jump.
819bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
820      const SUnit *PacketSU, unsigned DepReg,
821      MachineBasicBlock::iterator &MII) {
822  if (!HII->mayBeNewStore(MI))
823    return false;
824
825  // Check to see the store can be new value'ed.
826  MachineInstr &PacketMI = *PacketSU->getInstr();
827  if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
828    return true;
829
830  // Check to see the compare/jump can be new value'ed.
831  // This is done as a pass on its own. Don't need to check it here.
832  return false;
833}
834
835static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
836      unsigned DepReg) {
837  for (auto &MO : I.operands()) {
838    if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
839      return true;
840    if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
841      continue;
842    if (CheckDef == MO.isDef())
843      return true;
844  }
845  return false;
846}
847
848// Check to see if an instruction can be dot new.
849bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
850      const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
851      const TargetRegisterClass* RC) {
852  // Already a dot new instruction.
853  if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
854    return false;
855
856  if (!isNewifiable(MI, RC))
857    return false;
858
859  const MachineInstr &PI = *PacketSU->getInstr();
860
861  // The "new value" cannot come from inline asm.
862  if (PI.isInlineAsm())
863    return false;
864
865  // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
866  // sense.
867  if (PI.isImplicitDef())
868    return false;
869
870  // If dependency is trough an implicitly defined register, we should not
871  // newify the use.
872  if (isImplicitDependency(PI, true, DepReg) ||
873      isImplicitDependency(MI, false, DepReg))
874    return false;
875
876  const MCInstrDesc& MCID = PI.getDesc();
877  const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
878  if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
879    return false;
880
881  // predicate .new
882  if (RC == &Hexagon::PredRegsRegClass)
883    return HII->predCanBeUsedAsDotNew(PI, DepReg);
884
885  if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
886    return false;
887
888  // Create a dot new machine instruction to see if resources can be
889  // allocated. If not, bail out now.
890  int NewOpcode = (RC != &Hexagon::PredRegsRegClass) ? HII->getDotNewOp(MI) :
891    HII->getDotNewPredOp(MI, MBPI);
892  const MCInstrDesc &D = HII->get(NewOpcode);
893  MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
894  bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
895  MF.deleteMachineInstr(NewMI);
896  if (!ResourcesAvailable)
897    return false;
898
899  // New Value Store only. New Value Jump generated as a separate pass.
900  if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
901    return false;
902
903  return true;
904}
905
906// Go through the packet instructions and search for an anti dependency between
907// them and DepReg from MI. Consider this case:
908// Trying to add
909// a) %r1 = TFRI_cdNotPt %p3, 2
910// to this packet:
911// {
912//   b) %p0 = C2_or killed %p3, killed %p0
913//   c) %p3 = C2_tfrrp %r23
914//   d) %r1 = C2_cmovenewit %p3, 4
915//  }
916// The P3 from a) and d) will be complements after
917// a)'s P3 is converted to .new form
918// Anti-dep between c) and b) is irrelevant for this case
919bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
920                                                        unsigned DepReg) {
921  SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
922
923  for (auto *I : CurrentPacketMIs) {
924    // We only care for dependencies to predicated instructions
925    if (!HII->isPredicated(*I))
926      continue;
927
928    // Scheduling Unit for current insn in the packet
929    SUnit *PacketSU = MIToSUnit.find(I)->second;
930
931    // Look at dependencies between current members of the packet and
932    // predicate defining instruction MI. Make sure that dependency is
933    // on the exact register we care about.
934    if (PacketSU->isSucc(PacketSUDep)) {
935      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
936        auto &Dep = PacketSU->Succs[i];
937        if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
938            Dep.getReg() == DepReg)
939          return true;
940      }
941    }
942  }
943
944  return false;
945}
946
947/// Gets the predicate register of a predicated instruction.
948static unsigned getPredicatedRegister(MachineInstr &MI,
949                                      const HexagonInstrInfo *QII) {
950  /// We use the following rule: The first predicate register that is a use is
951  /// the predicate register of a predicated instruction.
952  assert(QII->isPredicated(MI) && "Must be predicated instruction");
953
954  for (auto &Op : MI.operands()) {
955    if (Op.isReg() && Op.getReg() && Op.isUse() &&
956        Hexagon::PredRegsRegClass.contains(Op.getReg()))
957      return Op.getReg();
958  }
959
960  llvm_unreachable("Unknown instruction operand layout");
961  return 0;
962}
963
964// Given two predicated instructions, this function detects whether
965// the predicates are complements.
966bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
967                                                     MachineInstr &MI2) {
968  // If we don't know the predicate sense of the instructions bail out early, we
969  // need it later.
970  if (getPredicateSense(MI1, HII) == PK_Unknown ||
971      getPredicateSense(MI2, HII) == PK_Unknown)
972    return false;
973
974  // Scheduling unit for candidate.
975  SUnit *SU = MIToSUnit[&MI1];
976
977  // One corner case deals with the following scenario:
978  // Trying to add
979  // a) %r24 = A2_tfrt %p0, %r25
980  // to this packet:
981  // {
982  //   b) %r25 = A2_tfrf %p0, %r24
983  //   c) %p0 = C2_cmpeqi %r26, 1
984  // }
985  //
986  // On general check a) and b) are complements, but presence of c) will
987  // convert a) to .new form, and then it is not a complement.
988  // We attempt to detect it by analyzing existing dependencies in the packet.
989
990  // Analyze relationships between all existing members of the packet.
991  // Look for Anti dependecy on the same predicate reg as used in the
992  // candidate.
993  for (auto *I : CurrentPacketMIs) {
994    // Scheduling Unit for current insn in the packet.
995    SUnit *PacketSU = MIToSUnit.find(I)->second;
996
997    // If this instruction in the packet is succeeded by the candidate...
998    if (PacketSU->isSucc(SU)) {
999      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
1000        auto Dep = PacketSU->Succs[i];
1001        // The corner case exist when there is true data dependency between
1002        // candidate and one of current packet members, this dep is on
1003        // predicate reg, and there already exist anti dep on the same pred in
1004        // the packet.
1005        if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
1006            Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
1007          // Here I know that I is predicate setting instruction with true
1008          // data dep to candidate on the register we care about - c) in the
1009          // above example. Now I need to see if there is an anti dependency
1010          // from c) to any other instruction in the same packet on the pred
1011          // reg of interest.
1012          if (restrictingDepExistInPacket(*I, Dep.getReg()))
1013            return false;
1014        }
1015      }
1016    }
1017  }
1018
1019  // If the above case does not apply, check regular complement condition.
1020  // Check that the predicate register is the same and that the predicate
1021  // sense is different We also need to differentiate .old vs. .new: !p0
1022  // is not complementary to p0.new.
1023  unsigned PReg1 = getPredicatedRegister(MI1, HII);
1024  unsigned PReg2 = getPredicatedRegister(MI2, HII);
1025  return PReg1 == PReg2 &&
1026         Hexagon::PredRegsRegClass.contains(PReg1) &&
1027         Hexagon::PredRegsRegClass.contains(PReg2) &&
1028         getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
1029         HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
1030}
1031
1032// Initialize packetizer flags.
1033void HexagonPacketizerList::initPacketizerState() {
1034  Dependence = false;
1035  PromotedToDotNew = false;
1036  GlueToNewValueJump = false;
1037  GlueAllocframeStore = false;
1038  FoundSequentialDependence = false;
1039  ChangedOffset = INT64_MAX;
1040}
1041
1042// Ignore bundling of pseudo instructions.
1043bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
1044                                                    const MachineBasicBlock *) {
1045  if (MI.isDebugInstr())
1046    return true;
1047
1048  if (MI.isCFIInstruction())
1049    return false;
1050
1051  // We must print out inline assembly.
1052  if (MI.isInlineAsm())
1053    return false;
1054
1055  if (MI.isImplicitDef())
1056    return false;
1057
1058  // We check if MI has any functional units mapped to it. If it doesn't,
1059  // we ignore the instruction.
1060  const MCInstrDesc& TID = MI.getDesc();
1061  auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
1062  return !IS->getUnits();
1063}
1064
1065bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
1066  // Ensure any bundles created by gather packetize remain separate.
1067  if (MI.isBundle())
1068    return true;
1069
1070  if (MI.isEHLabel() || MI.isCFIInstruction())
1071    return true;
1072
1073  // Consider inline asm to not be a solo instruction by default.
1074  // Inline asm will be put in a packet temporarily, but then it will be
1075  // removed, and placed outside of the packet (before or after, depending
1076  // on dependencies).  This is to reduce the impact of inline asm as a
1077  // "packet splitting" instruction.
1078  if (MI.isInlineAsm() && !ScheduleInlineAsm)
1079    return true;
1080
1081  if (isSchedBarrier(MI))
1082    return true;
1083
1084  if (HII->isSolo(MI))
1085    return true;
1086
1087  if (MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_ENTER ||
1088      MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_EXIT ||
1089      MI.getOpcode() == Hexagon::PATCHABLE_TAIL_CALL)
1090    return true;
1091
1092  if (MI.getOpcode() == Hexagon::A2_nop)
1093    return true;
1094
1095  return false;
1096}
1097
1098// Quick check if instructions MI and MJ cannot coexist in the same packet.
1099// Limit the tests to be "one-way", e.g.  "if MI->isBranch and MJ->isInlineAsm",
1100// but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
1101// For full test call this function twice:
1102//   cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
1103// Doing the test only one way saves the amount of code in this function,
1104// since every test would need to be repeated with the MI and MJ reversed.
1105static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
1106      const HexagonInstrInfo &HII) {
1107  const MachineFunction *MF = MI.getParent()->getParent();
1108  if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
1109      HII.isHVXMemWithAIndirect(MI, MJ))
1110    return true;
1111
1112  // Don't allow a store and an instruction that must be in slot0 and
1113  // doesn't allow a slot1 instruction.
1114  if (MI.mayStore() && HII.isRestrictNoSlot1Store(MJ) && HII.isPureSlot0(MJ))
1115    return true;
1116
1117  // An inline asm cannot be together with a branch, because we may not be
1118  // able to remove the asm out after packetizing (i.e. if the asm must be
1119  // moved past the bundle).  Similarly, two asms cannot be together to avoid
1120  // complications when determining their relative order outside of a bundle.
1121  if (MI.isInlineAsm())
1122    return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
1123           MJ.isCall() || MJ.isTerminator();
1124
1125  // New-value stores cannot coexist with any other stores.
1126  if (HII.isNewValueStore(MI) && MJ.mayStore())
1127    return true;
1128
1129  switch (MI.getOpcode()) {
1130  case Hexagon::S2_storew_locked:
1131  case Hexagon::S4_stored_locked:
1132  case Hexagon::L2_loadw_locked:
1133  case Hexagon::L4_loadd_locked:
1134  case Hexagon::Y2_dccleana:
1135  case Hexagon::Y2_dccleaninva:
1136  case Hexagon::Y2_dcinva:
1137  case Hexagon::Y2_dczeroa:
1138  case Hexagon::Y4_l2fetch:
1139  case Hexagon::Y5_l2fetch: {
1140    // These instructions can only be grouped with ALU32 or non-floating-point
1141    // XTYPE instructions.  Since there is no convenient way of identifying fp
1142    // XTYPE instructions, only allow grouping with ALU32 for now.
1143    unsigned TJ = HII.getType(MJ);
1144    if (TJ != HexagonII::TypeALU32_2op &&
1145        TJ != HexagonII::TypeALU32_3op &&
1146        TJ != HexagonII::TypeALU32_ADDI)
1147      return true;
1148    break;
1149  }
1150  default:
1151    break;
1152  }
1153
1154  // "False" really means that the quick check failed to determine if
1155  // I and J cannot coexist.
1156  return false;
1157}
1158
1159// Full, symmetric check.
1160bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
1161      const MachineInstr &MJ) {
1162  return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
1163}
1164
1165void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
1166  for (auto &B : MF) {
1167    MachineBasicBlock::iterator BundleIt;
1168    for (MachineInstr &MI : llvm::make_early_inc_range(B.instrs())) {
1169      if (MI.isBundle())
1170        BundleIt = MI.getIterator();
1171      if (!MI.isInsideBundle())
1172        continue;
1173
1174      // Decide on where to insert the instruction that we are pulling out.
1175      // Debug instructions always go before the bundle, but the placement of
1176      // INLINE_ASM depends on potential dependencies.  By default, try to
1177      // put it before the bundle, but if the asm writes to a register that
1178      // other instructions in the bundle read, then we need to place it
1179      // after the bundle (to preserve the bundle semantics).
1180      bool InsertBeforeBundle;
1181      if (MI.isInlineAsm())
1182        InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
1183      else if (MI.isDebugValue())
1184        InsertBeforeBundle = true;
1185      else
1186        continue;
1187
1188      BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
1189    }
1190  }
1191}
1192
1193// Check if a given instruction is of class "system".
1194static bool isSystemInstr(const MachineInstr &MI) {
1195  unsigned Opc = MI.getOpcode();
1196  switch (Opc) {
1197    case Hexagon::Y2_barrier:
1198    case Hexagon::Y2_dcfetchbo:
1199    case Hexagon::Y4_l2fetch:
1200    case Hexagon::Y5_l2fetch:
1201      return true;
1202  }
1203  return false;
1204}
1205
1206bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
1207                                              const MachineInstr &J) {
1208  // The dependence graph may not include edges between dead definitions,
1209  // so without extra checks, we could end up packetizing two instruction
1210  // defining the same (dead) register.
1211  if (I.isCall() || J.isCall())
1212    return false;
1213  if (HII->isPredicated(I) || HII->isPredicated(J))
1214    return false;
1215
1216  BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
1217  for (auto &MO : I.operands()) {
1218    if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1219      continue;
1220    DeadDefs[MO.getReg()] = true;
1221  }
1222
1223  for (auto &MO : J.operands()) {
1224    if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1225      continue;
1226    Register R = MO.getReg();
1227    if (R != Hexagon::USR_OVF && DeadDefs[R])
1228      return true;
1229  }
1230  return false;
1231}
1232
1233bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
1234                                                 const MachineInstr &J) {
1235  // A save callee-save register function call can only be in a packet
1236  // with instructions that don't write to the callee-save registers.
1237  if ((HII->isSaveCalleeSavedRegsCall(I) &&
1238       doesModifyCalleeSavedReg(J, HRI)) ||
1239      (HII->isSaveCalleeSavedRegsCall(J) &&
1240       doesModifyCalleeSavedReg(I, HRI)))
1241    return true;
1242
1243  // Two control flow instructions cannot go in the same packet.
1244  if (isControlFlow(I) && isControlFlow(J))
1245    return true;
1246
1247  // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
1248  // contain a speculative indirect jump,
1249  // a new-value compare jump or a dealloc_return.
1250  auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
1251    if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
1252      return true;
1253    if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
1254      return true;
1255    return false;
1256  };
1257
1258  if (HII->isLoopN(I) && isBadForLoopN(J))
1259    return true;
1260  if (HII->isLoopN(J) && isBadForLoopN(I))
1261    return true;
1262
1263  // dealloc_return cannot appear in the same packet as a conditional or
1264  // unconditional jump.
1265  return HII->isDeallocRet(I) &&
1266         (J.isBranch() || J.isCall() || J.isBarrier());
1267}
1268
1269bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
1270                                                 const MachineInstr &J) {
1271  // Adding I to a packet that has J.
1272
1273  // Regmasks are not reflected in the scheduling dependency graph, so
1274  // we need to check them manually. This code assumes that regmasks only
1275  // occur on calls, and the problematic case is when we add an instruction
1276  // defining a register R to a packet that has a call that clobbers R via
1277  // a regmask. Those cannot be packetized together, because the call will
1278  // be executed last. That's also a reson why it is ok to add a call
1279  // clobbering R to a packet that defines R.
1280
1281  // Look for regmasks in J.
1282  for (const MachineOperand &OpJ : J.operands()) {
1283    if (!OpJ.isRegMask())
1284      continue;
1285    assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
1286    for (const MachineOperand &OpI : I.operands()) {
1287      if (OpI.isReg()) {
1288        if (OpJ.clobbersPhysReg(OpI.getReg()))
1289          return true;
1290      } else if (OpI.isRegMask()) {
1291        // Both are regmasks. Assume that they intersect.
1292        return true;
1293      }
1294    }
1295  }
1296  return false;
1297}
1298
1299bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
1300                                                   const MachineInstr &J) {
1301  bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
1302  bool StoreI = I.mayStore(), StoreJ = J.mayStore();
1303  if ((SysI && StoreJ) || (SysJ && StoreI))
1304    return true;
1305
1306  if (StoreI && StoreJ) {
1307    if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
1308      return true;
1309  } else {
1310    // A memop cannot be in the same packet with another memop or a store.
1311    // Two stores can be together, but here I and J cannot both be stores.
1312    bool MopStI = HII->isMemOp(I) || StoreI;
1313    bool MopStJ = HII->isMemOp(J) || StoreJ;
1314    if (MopStI && MopStJ)
1315      return true;
1316  }
1317
1318  return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
1319}
1320
1321// SUI is the current instruction that is outside of the current packet.
1322// SUJ is the current instruction inside the current packet against which that
1323// SUI will be packetized.
1324bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1325  assert(SUI->getInstr() && SUJ->getInstr());
1326  MachineInstr &I = *SUI->getInstr();
1327  MachineInstr &J = *SUJ->getInstr();
1328
1329  // Clear IgnoreDepMIs when Packet starts.
1330  if (CurrentPacketMIs.size() == 1)
1331    IgnoreDepMIs.clear();
1332
1333  MachineBasicBlock::iterator II = I.getIterator();
1334
1335  // Solo instructions cannot go in the packet.
1336  assert(!isSoloInstruction(I) && "Unexpected solo instr!");
1337
1338  if (cannotCoexist(I, J))
1339    return false;
1340
1341  Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
1342  if (Dependence)
1343    return false;
1344
1345  // Regmasks are not accounted for in the scheduling graph, so we need
1346  // to explicitly check for dependencies caused by them. They should only
1347  // appear on calls, so it's not too pessimistic to reject all regmask
1348  // dependencies.
1349  Dependence = hasRegMaskDependence(I, J);
1350  if (Dependence)
1351    return false;
1352
1353  // Dual-store does not allow second store, if the first store is not
1354  // in SLOT0. New value store, new value jump, dealloc_return and memop
1355  // always take SLOT0. Arch spec 3.4.4.2.
1356  Dependence = hasDualStoreDependence(I, J);
1357  if (Dependence)
1358    return false;
1359
1360  // If an instruction feeds new value jump, glue it.
1361  MachineBasicBlock::iterator NextMII = I.getIterator();
1362  ++NextMII;
1363  if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
1364    MachineInstr &NextMI = *NextMII;
1365
1366    bool secondRegMatch = false;
1367    const MachineOperand &NOp0 = NextMI.getOperand(0);
1368    const MachineOperand &NOp1 = NextMI.getOperand(1);
1369
1370    if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
1371      secondRegMatch = true;
1372
1373    for (MachineInstr *PI : CurrentPacketMIs) {
1374      // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
1375      if (PI->isCall()) {
1376        Dependence = true;
1377        break;
1378      }
1379      // Validate:
1380      // 1. Packet does not have a store in it.
1381      // 2. If the first operand of the nvj is newified, and the second
1382      //    operand is also a reg, it (second reg) is not defined in
1383      //    the same packet.
1384      // 3. If the second operand of the nvj is newified, (which means
1385      //    first operand is also a reg), first reg is not defined in
1386      //    the same packet.
1387      if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
1388          HII->isLoopN(*PI)) {
1389        Dependence = true;
1390        break;
1391      }
1392      // Check #2/#3.
1393      const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
1394      if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
1395        Dependence = true;
1396        break;
1397      }
1398    }
1399
1400    GlueToNewValueJump = true;
1401    if (Dependence)
1402      return false;
1403  }
1404
1405  // There no dependency between a prolog instruction and its successor.
1406  if (!SUJ->isSucc(SUI))
1407    return true;
1408
1409  for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
1410    if (FoundSequentialDependence)
1411      break;
1412
1413    if (SUJ->Succs[i].getSUnit() != SUI)
1414      continue;
1415
1416    SDep::Kind DepType = SUJ->Succs[i].getKind();
1417    // For direct calls:
1418    // Ignore register dependences for call instructions for packetization
1419    // purposes except for those due to r31 and predicate registers.
1420    //
1421    // For indirect calls:
1422    // Same as direct calls + check for true dependences to the register
1423    // used in the indirect call.
1424    //
1425    // We completely ignore Order dependences for call instructions.
1426    //
1427    // For returns:
1428    // Ignore register dependences for return instructions like jumpr,
1429    // dealloc return unless we have dependencies on the explicit uses
1430    // of the registers used by jumpr (like r31) or dealloc return
1431    // (like r29 or r30).
1432    unsigned DepReg = 0;
1433    const TargetRegisterClass *RC = nullptr;
1434    if (DepType == SDep::Data) {
1435      DepReg = SUJ->Succs[i].getReg();
1436      RC = HRI->getMinimalPhysRegClass(DepReg);
1437    }
1438
1439    if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
1440      if (!isRegDependence(DepType))
1441        continue;
1442      if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
1443        continue;
1444    }
1445
1446    if (DepType == SDep::Data) {
1447      if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
1448        if (promoteToDotCur(J, DepType, II, RC))
1449          continue;
1450    }
1451
1452    // Data dpendence ok if we have load.cur.
1453    if (DepType == SDep::Data && HII->isDotCurInst(J)) {
1454      if (HII->isHVXVec(I))
1455        continue;
1456    }
1457
1458    // For instructions that can be promoted to dot-new, try to promote.
1459    if (DepType == SDep::Data) {
1460      if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
1461        if (promoteToDotNew(I, DepType, II, RC)) {
1462          PromotedToDotNew = true;
1463          if (cannotCoexist(I, J))
1464            FoundSequentialDependence = true;
1465          continue;
1466        }
1467      }
1468      if (HII->isNewValueJump(I))
1469        continue;
1470    }
1471
1472    // For predicated instructions, if the predicates are complements then
1473    // there can be no dependence.
1474    if (HII->isPredicated(I) && HII->isPredicated(J) &&
1475        arePredicatesComplements(I, J)) {
1476      // Not always safe to do this translation.
1477      // DAG Builder attempts to reduce dependence edges using transitive
1478      // nature of dependencies. Here is an example:
1479      //
1480      // r0 = tfr_pt ... (1)
1481      // r0 = tfr_pf ... (2)
1482      // r0 = tfr_pt ... (3)
1483      //
1484      // There will be an output dependence between (1)->(2) and (2)->(3).
1485      // However, there is no dependence edge between (1)->(3). This results
1486      // in all 3 instructions going in the same packet. We ignore dependce
1487      // only once to avoid this situation.
1488      auto Itr = find(IgnoreDepMIs, &J);
1489      if (Itr != IgnoreDepMIs.end()) {
1490        Dependence = true;
1491        return false;
1492      }
1493      IgnoreDepMIs.push_back(&I);
1494      continue;
1495    }
1496
1497    // Ignore Order dependences between unconditional direct branches
1498    // and non-control-flow instructions.
1499    if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
1500        DepType == SDep::Order)
1501      continue;
1502
1503    // Ignore all dependences for jumps except for true and output
1504    // dependences.
1505    if (I.isConditionalBranch() && DepType != SDep::Data &&
1506        DepType != SDep::Output)
1507      continue;
1508
1509    if (DepType == SDep::Output) {
1510      FoundSequentialDependence = true;
1511      break;
1512    }
1513
1514    // For Order dependences:
1515    // 1. Volatile loads/stores can be packetized together, unless other
1516    //    rules prevent is.
1517    // 2. Store followed by a load is not allowed.
1518    // 3. Store followed by a store is valid.
1519    // 4. Load followed by any memory operation is allowed.
1520    if (DepType == SDep::Order) {
1521      if (!PacketizeVolatiles) {
1522        bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
1523        if (OrdRefs) {
1524          FoundSequentialDependence = true;
1525          break;
1526        }
1527      }
1528      // J is first, I is second.
1529      bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
1530      bool LoadI = I.mayLoad(), StoreI = I.mayStore();
1531      bool NVStoreJ = HII->isNewValueStore(J);
1532      bool NVStoreI = HII->isNewValueStore(I);
1533      bool IsVecJ = HII->isHVXVec(J);
1534      bool IsVecI = HII->isHVXVec(I);
1535
1536      // Don't reorder the loads if there is an order dependence. This would
1537      // occur if the first instruction must go in slot0.
1538      if (LoadJ && LoadI && HII->isPureSlot0(J)) {
1539        FoundSequentialDependence = true;
1540        break;
1541      }
1542
1543      if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
1544          ((LoadJ && StoreI && !NVStoreI) ||
1545           (StoreJ && LoadI && !NVStoreJ)) &&
1546          (J.getOpcode() != Hexagon::S2_allocframe &&
1547           I.getOpcode() != Hexagon::S2_allocframe) &&
1548          (J.getOpcode() != Hexagon::L2_deallocframe &&
1549           I.getOpcode() != Hexagon::L2_deallocframe) &&
1550          (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
1551        setmemShufDisabled(true);
1552      else
1553        if (StoreJ && LoadI && alias(J, I)) {
1554          FoundSequentialDependence = true;
1555          break;
1556        }
1557
1558      if (!StoreJ)
1559        if (!LoadJ || (!LoadI && !StoreI)) {
1560          // If J is neither load nor store, assume a dependency.
1561          // If J is a load, but I is neither, also assume a dependency.
1562          FoundSequentialDependence = true;
1563          break;
1564        }
1565      // Store followed by store: not OK on V2.
1566      // Store followed by load: not OK on all.
1567      // Load followed by store: OK on all.
1568      // Load followed by load: OK on all.
1569      continue;
1570    }
1571
1572    // Special case for ALLOCFRAME: even though there is dependency
1573    // between ALLOCFRAME and subsequent store, allow it to be packetized
1574    // in a same packet. This implies that the store is using the caller's
1575    // SP. Hence, offset needs to be updated accordingly.
1576    if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
1577      unsigned Opc = I.getOpcode();
1578      switch (Opc) {
1579        case Hexagon::S2_storerd_io:
1580        case Hexagon::S2_storeri_io:
1581        case Hexagon::S2_storerh_io:
1582        case Hexagon::S2_storerb_io:
1583          if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
1584            // Since this store is to be glued with allocframe in the same
1585            // packet, it will use SP of the previous stack frame, i.e.
1586            // caller's SP. Therefore, we need to recalculate offset
1587            // according to this change.
1588            GlueAllocframeStore = useCallersSP(I);
1589            if (GlueAllocframeStore)
1590              continue;
1591          }
1592          break;
1593        default:
1594          break;
1595      }
1596    }
1597
1598    // There are certain anti-dependencies that cannot be ignored.
1599    // Specifically:
1600    //   J2_call ... implicit-def %r0   ; SUJ
1601    //   R0 = ...                   ; SUI
1602    // Those cannot be packetized together, since the call will observe
1603    // the effect of the assignment to R0.
1604    if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
1605      // Check if I defines any volatile register. We should also check
1606      // registers that the call may read, but these happen to be a
1607      // subset of the volatile register set.
1608      for (const MachineOperand &Op : I.operands()) {
1609        if (Op.isReg() && Op.isDef()) {
1610          Register R = Op.getReg();
1611          if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
1612            continue;
1613        } else if (!Op.isRegMask()) {
1614          // If I has a regmask assume dependency.
1615          continue;
1616        }
1617        FoundSequentialDependence = true;
1618        break;
1619      }
1620    }
1621
1622    // Skip over remaining anti-dependences. Two instructions that are
1623    // anti-dependent can share a packet, since in most such cases all
1624    // operands are read before any modifications take place.
1625    // The exceptions are branch and call instructions, since they are
1626    // executed after all other instructions have completed (at least
1627    // conceptually).
1628    if (DepType != SDep::Anti) {
1629      FoundSequentialDependence = true;
1630      break;
1631    }
1632  }
1633
1634  if (FoundSequentialDependence) {
1635    Dependence = true;
1636    return false;
1637  }
1638
1639  return true;
1640}
1641
1642bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1643  assert(SUI->getInstr() && SUJ->getInstr());
1644  MachineInstr &I = *SUI->getInstr();
1645  MachineInstr &J = *SUJ->getInstr();
1646
1647  bool Coexist = !cannotCoexist(I, J);
1648
1649  if (Coexist && !Dependence)
1650    return true;
1651
1652  // Check if the instruction was promoted to a dot-new. If so, demote it
1653  // back into a dot-old.
1654  if (PromotedToDotNew)
1655    demoteToDotOld(I);
1656
1657  cleanUpDotCur();
1658  // Check if the instruction (must be a store) was glued with an allocframe
1659  // instruction. If so, restore its offset to its original value, i.e. use
1660  // current SP instead of caller's SP.
1661  if (GlueAllocframeStore) {
1662    useCalleesSP(I);
1663    GlueAllocframeStore = false;
1664  }
1665
1666  if (ChangedOffset != INT64_MAX)
1667    undoChangedOffset(I);
1668
1669  if (GlueToNewValueJump) {
1670    // Putting I and J together would prevent the new-value jump from being
1671    // packetized with the producer. In that case I and J must be separated.
1672    GlueToNewValueJump = false;
1673    return false;
1674  }
1675
1676  if (!Coexist)
1677    return false;
1678
1679  if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
1680    FoundSequentialDependence = false;
1681    Dependence = false;
1682    return true;
1683  }
1684
1685  return false;
1686}
1687
1688
1689bool HexagonPacketizerList::foundLSInPacket() {
1690  bool FoundLoad = false;
1691  bool FoundStore = false;
1692
1693  for (auto *MJ : CurrentPacketMIs) {
1694    unsigned Opc = MJ->getOpcode();
1695    if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
1696      continue;
1697    if (HII->isMemOp(*MJ))
1698      continue;
1699    if (MJ->mayLoad())
1700      FoundLoad = true;
1701    if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
1702      FoundStore = true;
1703  }
1704  return FoundLoad && FoundStore;
1705}
1706
1707
1708MachineBasicBlock::iterator
1709HexagonPacketizerList::addToPacket(MachineInstr &MI) {
1710  MachineBasicBlock::iterator MII = MI.getIterator();
1711  MachineBasicBlock *MBB = MI.getParent();
1712
1713  if (CurrentPacketMIs.empty()) {
1714    PacketStalls = false;
1715    PacketStallCycles = 0;
1716  }
1717  PacketStalls |= producesStall(MI);
1718  PacketStallCycles = std::max(PacketStallCycles, calcStall(MI));
1719
1720  if (MI.isImplicitDef()) {
1721    // Add to the packet to allow subsequent instructions to be checked
1722    // properly.
1723    CurrentPacketMIs.push_back(&MI);
1724    return MII;
1725  }
1726  assert(ResourceTracker->canReserveResources(MI));
1727
1728  bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
1729  bool Good = true;
1730
1731  if (GlueToNewValueJump) {
1732    MachineInstr &NvjMI = *++MII;
1733    // We need to put both instructions in the same packet: MI and NvjMI.
1734    // Either of them can require a constant extender. Try to add both to
1735    // the current packet, and if that fails, end the packet and start a
1736    // new one.
1737    ResourceTracker->reserveResources(MI);
1738    if (ExtMI)
1739      Good = tryAllocateResourcesForConstExt(true);
1740
1741    bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
1742    if (Good) {
1743      if (ResourceTracker->canReserveResources(NvjMI))
1744        ResourceTracker->reserveResources(NvjMI);
1745      else
1746        Good = false;
1747    }
1748    if (Good && ExtNvjMI)
1749      Good = tryAllocateResourcesForConstExt(true);
1750
1751    if (!Good) {
1752      endPacket(MBB, MI);
1753      assert(ResourceTracker->canReserveResources(MI));
1754      ResourceTracker->reserveResources(MI);
1755      if (ExtMI) {
1756        assert(canReserveResourcesForConstExt());
1757        tryAllocateResourcesForConstExt(true);
1758      }
1759      assert(ResourceTracker->canReserveResources(NvjMI));
1760      ResourceTracker->reserveResources(NvjMI);
1761      if (ExtNvjMI) {
1762        assert(canReserveResourcesForConstExt());
1763        reserveResourcesForConstExt();
1764      }
1765    }
1766    CurrentPacketMIs.push_back(&MI);
1767    CurrentPacketMIs.push_back(&NvjMI);
1768    return MII;
1769  }
1770
1771  ResourceTracker->reserveResources(MI);
1772  if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
1773    endPacket(MBB, MI);
1774    if (PromotedToDotNew)
1775      demoteToDotOld(MI);
1776    if (GlueAllocframeStore) {
1777      useCalleesSP(MI);
1778      GlueAllocframeStore = false;
1779    }
1780    ResourceTracker->reserveResources(MI);
1781    reserveResourcesForConstExt();
1782  }
1783
1784  CurrentPacketMIs.push_back(&MI);
1785  return MII;
1786}
1787
1788void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
1789                                      MachineBasicBlock::iterator EndMI) {
1790  // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
1791  LLVM_DEBUG({
1792    if (!CurrentPacketMIs.empty()) {
1793      dbgs() << "Finalizing packet:\n";
1794      unsigned Idx = 0;
1795      for (MachineInstr *MI : CurrentPacketMIs) {
1796        unsigned R = ResourceTracker->getUsedResources(Idx++);
1797        dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
1798      }
1799    }
1800  });
1801
1802  bool memShufDisabled = getmemShufDisabled();
1803  if (memShufDisabled && !foundLSInPacket()) {
1804    setmemShufDisabled(false);
1805    LLVM_DEBUG(dbgs() << "  Not added to NoShufPacket\n");
1806  }
1807  memShufDisabled = getmemShufDisabled();
1808
1809  OldPacketMIs.clear();
1810  for (MachineInstr *MI : CurrentPacketMIs) {
1811    MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
1812    for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
1813      OldPacketMIs.push_back(&I);
1814  }
1815  CurrentPacketMIs.clear();
1816
1817  if (OldPacketMIs.size() > 1) {
1818    MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
1819    MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
1820    finalizeBundle(*MBB, FirstMI, LastMI);
1821    auto BundleMII = std::prev(FirstMI);
1822    if (memShufDisabled)
1823      HII->setBundleNoShuf(BundleMII);
1824
1825    setmemShufDisabled(false);
1826  }
1827
1828  PacketHasDuplex = false;
1829  PacketHasSLOT0OnlyInsn = false;
1830  ResourceTracker->clearResources();
1831  LLVM_DEBUG(dbgs() << "End packet\n");
1832}
1833
1834bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
1835  if (Minimal)
1836    return false;
1837
1838  if (producesStall(MI))
1839    return false;
1840
1841  // If TinyCore with Duplexes is enabled, check if this MI can form a Duplex
1842  // with any other instruction in the existing packet.
1843  auto &HST = MI.getParent()->getParent()->getSubtarget<HexagonSubtarget>();
1844  // Constraint 1: Only one duplex allowed per packet.
1845  // Constraint 2: Consider duplex checks only if there is atleast one
1846  // instruction in a packet.
1847  // Constraint 3: If one of the existing instructions in the packet has a
1848  // SLOT0 only instruction that can not be duplexed, do not attempt to form
1849  // duplexes. (TODO: This will invalidate the L4_return* instructions to form a
1850  // duplex)
1851  if (HST.isTinyCoreWithDuplex() && CurrentPacketMIs.size() > 0 &&
1852      !PacketHasDuplex) {
1853    // Check for SLOT0 only non-duplexable instruction in packet.
1854    for (auto &MJ : CurrentPacketMIs)
1855      PacketHasSLOT0OnlyInsn |= HII->isPureSlot0(*MJ);
1856    // Get the Big Core Opcode (dup_*).
1857    int Opcode = HII->getDuplexOpcode(MI, false);
1858    if (Opcode >= 0) {
1859      // We now have an instruction that can be duplexed.
1860      for (auto &MJ : CurrentPacketMIs) {
1861        if (HII->isDuplexPair(MI, *MJ) && !PacketHasSLOT0OnlyInsn) {
1862          PacketHasDuplex = true;
1863          return true;
1864        }
1865      }
1866      // If it can not be duplexed, check if there is a valid transition in DFA
1867      // with the original opcode.
1868      MachineInstr &MIRef = const_cast<MachineInstr &>(MI);
1869      MIRef.setDesc(HII->get(Opcode));
1870      return ResourceTracker->canReserveResources(MIRef);
1871    }
1872  }
1873
1874  return true;
1875}
1876
1877// V60 forward scheduling.
1878unsigned int HexagonPacketizerList::calcStall(const MachineInstr &I) {
1879  // Check whether the previous packet is in a different loop. If this is the
1880  // case, there is little point in trying to avoid a stall because that would
1881  // favor the rare case (loop entry) over the common case (loop iteration).
1882  //
1883  // TODO: We should really be able to check all the incoming edges if this is
1884  // the first packet in a basic block, so we can avoid stalls from the loop
1885  // backedge.
1886  if (!OldPacketMIs.empty()) {
1887    auto *OldBB = OldPacketMIs.front()->getParent();
1888    auto *ThisBB = I.getParent();
1889    if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
1890      return 0;
1891  }
1892
1893  SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
1894  if (!SUI)
1895    return 0;
1896
1897  // If the latency is 0 and there is a data dependence between this
1898  // instruction and any instruction in the current packet, we disregard any
1899  // potential stalls due to the instructions in the previous packet. Most of
1900  // the instruction pairs that can go together in the same packet have 0
1901  // latency between them. The exceptions are
1902  // 1. NewValueJumps as they're generated much later and the latencies can't
1903  // be changed at that point.
1904  // 2. .cur instructions, if its consumer has a 0 latency successor (such as
1905  // .new). In this case, the latency between .cur and the consumer stays
1906  // non-zero even though we can have  both .cur and .new in the same packet.
1907  // Changing the latency to 0 is not an option as it causes software pipeliner
1908  // to not pipeline in some cases.
1909
1910  // For Example:
1911  // {
1912  //   I1:  v6.cur = vmem(r0++#1)
1913  //   I2:  v7 = valign(v6,v4,r2)
1914  //   I3:  vmem(r5++#1) = v7.new
1915  // }
1916  // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
1917
1918  for (auto *J : CurrentPacketMIs) {
1919    SUnit *SUJ = MIToSUnit[J];
1920    for (auto &Pred : SUI->Preds)
1921      if (Pred.getSUnit() == SUJ)
1922        if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
1923            HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
1924          return 0;
1925  }
1926
1927  // Check if the latency is greater than one between this instruction and any
1928  // instruction in the previous packet.
1929  for (auto *J : OldPacketMIs) {
1930    SUnit *SUJ = MIToSUnit[J];
1931    for (auto &Pred : SUI->Preds)
1932      if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
1933        return Pred.getLatency();
1934  }
1935
1936  return 0;
1937}
1938
1939bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
1940  unsigned int Latency = calcStall(I);
1941  if (Latency == 0)
1942    return false;
1943  // Ignore stall unless it stalls more than previous instruction in packet
1944  if (PacketStalls)
1945    return Latency > PacketStallCycles;
1946  return true;
1947}
1948
1949//===----------------------------------------------------------------------===//
1950//                         Public Constructor Functions
1951//===----------------------------------------------------------------------===//
1952
1953FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
1954  return new HexagonPacketizer(Minimal);
1955}
1956