1//===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Bitcode writer implementation.
10//
11//===----------------------------------------------------------------------===//
12
13#include "DXILBitcodeWriter.h"
14#include "DXILValueEnumerator.h"
15#include "DirectXIRPasses/PointerTypeAnalysis.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/Bitcode/BitcodeCommon.h"
18#include "llvm/Bitcode/BitcodeReader.h"
19#include "llvm/Bitcode/LLVMBitCodes.h"
20#include "llvm/Bitstream/BitCodes.h"
21#include "llvm/Bitstream/BitstreamWriter.h"
22#include "llvm/IR/Attributes.h"
23#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/Comdat.h"
25#include "llvm/IR/Constant.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DebugInfoMetadata.h"
28#include "llvm/IR/DebugLoc.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalIFunc.h"
33#include "llvm/IR/GlobalObject.h"
34#include "llvm/IR/GlobalValue.h"
35#include "llvm/IR/GlobalVariable.h"
36#include "llvm/IR/InlineAsm.h"
37#include "llvm/IR/InstrTypes.h"
38#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/Metadata.h"
42#include "llvm/IR/Module.h"
43#include "llvm/IR/ModuleSummaryIndex.h"
44#include "llvm/IR/Operator.h"
45#include "llvm/IR/Type.h"
46#include "llvm/IR/UseListOrder.h"
47#include "llvm/IR/Value.h"
48#include "llvm/IR/ValueSymbolTable.h"
49#include "llvm/Object/IRSymtab.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/ModRef.h"
52#include "llvm/Support/SHA1.h"
53#include "llvm/TargetParser/Triple.h"
54
55namespace llvm {
56namespace dxil {
57
58// Generates an enum to use as an index in the Abbrev array of Metadata record.
59enum MetadataAbbrev : unsigned {
60#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
61#include "llvm/IR/Metadata.def"
62  LastPlusOne
63};
64
65class DXILBitcodeWriter {
66
67  /// These are manifest constants used by the bitcode writer. They do not need
68  /// to be kept in sync with the reader, but need to be consistent within this
69  /// file.
70  enum {
71    // VALUE_SYMTAB_BLOCK abbrev id's.
72    VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
73    VST_ENTRY_7_ABBREV,
74    VST_ENTRY_6_ABBREV,
75    VST_BBENTRY_6_ABBREV,
76
77    // CONSTANTS_BLOCK abbrev id's.
78    CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
79    CONSTANTS_INTEGER_ABBREV,
80    CONSTANTS_CE_CAST_Abbrev,
81    CONSTANTS_NULL_Abbrev,
82
83    // FUNCTION_BLOCK abbrev id's.
84    FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
85    FUNCTION_INST_BINOP_ABBREV,
86    FUNCTION_INST_BINOP_FLAGS_ABBREV,
87    FUNCTION_INST_CAST_ABBREV,
88    FUNCTION_INST_RET_VOID_ABBREV,
89    FUNCTION_INST_RET_VAL_ABBREV,
90    FUNCTION_INST_UNREACHABLE_ABBREV,
91    FUNCTION_INST_GEP_ABBREV,
92  };
93
94  // Cache some types
95  Type *I8Ty;
96  Type *I8PtrTy;
97
98  /// The stream created and owned by the client.
99  BitstreamWriter &Stream;
100
101  StringTableBuilder &StrtabBuilder;
102
103  /// The Module to write to bitcode.
104  const Module &M;
105
106  /// Enumerates ids for all values in the module.
107  ValueEnumerator VE;
108
109  /// Map that holds the correspondence between GUIDs in the summary index,
110  /// that came from indirect call profiles, and a value id generated by this
111  /// class to use in the VST and summary block records.
112  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
113
114  /// Tracks the last value id recorded in the GUIDToValueMap.
115  unsigned GlobalValueId;
116
117  /// Saves the offset of the VSTOffset record that must eventually be
118  /// backpatched with the offset of the actual VST.
119  uint64_t VSTOffsetPlaceholder = 0;
120
121  /// Pointer to the buffer allocated by caller for bitcode writing.
122  const SmallVectorImpl<char> &Buffer;
123
124  /// The start bit of the identification block.
125  uint64_t BitcodeStartBit;
126
127  /// This maps values to their typed pointers
128  PointerTypeMap PointerMap;
129
130public:
131  /// Constructs a ModuleBitcodeWriter object for the given Module,
132  /// writing to the provided \p Buffer.
133  DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
134                    StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
135      : I8Ty(Type::getInt8Ty(M.getContext())),
136        I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
137        StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
138        BitcodeStartBit(Stream.GetCurrentBitNo()),
139        PointerMap(PointerTypeAnalysis::run(M)) {
140    GlobalValueId = VE.getValues().size();
141    // Enumerate the typed pointers
142    for (auto El : PointerMap)
143      VE.EnumerateType(El.second);
144  }
145
146  /// Emit the current module to the bitstream.
147  void write();
148
149  static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
150  static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
151                                StringRef Str, unsigned AbbrevToUse);
152  static void writeIdentificationBlock(BitstreamWriter &Stream);
153  static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
154  static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
155
156  static unsigned getEncodedComdatSelectionKind(const Comdat &C);
157  static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
158  static unsigned getEncodedLinkage(const GlobalValue &GV);
159  static unsigned getEncodedVisibility(const GlobalValue &GV);
160  static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
161  static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
162  static unsigned getEncodedCastOpcode(unsigned Opcode);
163  static unsigned getEncodedUnaryOpcode(unsigned Opcode);
164  static unsigned getEncodedBinaryOpcode(unsigned Opcode);
165  static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
166  static unsigned getEncodedOrdering(AtomicOrdering Ordering);
167  static uint64_t getOptimizationFlags(const Value *V);
168
169private:
170  void writeModuleVersion();
171  void writePerModuleGlobalValueSummary();
172
173  void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
174                                           GlobalValueSummary *Summary,
175                                           unsigned ValueID,
176                                           unsigned FSCallsAbbrev,
177                                           unsigned FSCallsProfileAbbrev,
178                                           const Function &F);
179  void writeModuleLevelReferences(const GlobalVariable &V,
180                                  SmallVector<uint64_t, 64> &NameVals,
181                                  unsigned FSModRefsAbbrev,
182                                  unsigned FSModVTableRefsAbbrev);
183
184  void assignValueId(GlobalValue::GUID ValGUID) {
185    GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
186  }
187
188  unsigned getValueId(GlobalValue::GUID ValGUID) {
189    const auto &VMI = GUIDToValueIdMap.find(ValGUID);
190    // Expect that any GUID value had a value Id assigned by an
191    // earlier call to assignValueId.
192    assert(VMI != GUIDToValueIdMap.end() &&
193           "GUID does not have assigned value Id");
194    return VMI->second;
195  }
196
197  // Helper to get the valueId for the type of value recorded in VI.
198  unsigned getValueId(ValueInfo VI) {
199    if (!VI.haveGVs() || !VI.getValue())
200      return getValueId(VI.getGUID());
201    return VE.getValueID(VI.getValue());
202  }
203
204  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
205
206  uint64_t bitcodeStartBit() { return BitcodeStartBit; }
207
208  size_t addToStrtab(StringRef Str);
209
210  unsigned createDILocationAbbrev();
211  unsigned createGenericDINodeAbbrev();
212
213  void writeAttributeGroupTable();
214  void writeAttributeTable();
215  void writeTypeTable();
216  void writeComdats();
217  void writeValueSymbolTableForwardDecl();
218  void writeModuleInfo();
219  void writeValueAsMetadata(const ValueAsMetadata *MD,
220                            SmallVectorImpl<uint64_t> &Record);
221  void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
222                    unsigned Abbrev);
223  void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
224                       unsigned &Abbrev);
225  void writeGenericDINode(const GenericDINode *N,
226                          SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
227    llvm_unreachable("DXIL cannot contain GenericDI Nodes");
228  }
229  void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
230                       unsigned Abbrev);
231  void writeDIGenericSubrange(const DIGenericSubrange *N,
232                              SmallVectorImpl<uint64_t> &Record,
233                              unsigned Abbrev) {
234    llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
235  }
236  void writeDIEnumerator(const DIEnumerator *N,
237                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
238  void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
239                        unsigned Abbrev);
240  void writeDIStringType(const DIStringType *N,
241                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
242    llvm_unreachable("DXIL cannot contain DIStringType Nodes");
243  }
244  void writeDIDerivedType(const DIDerivedType *N,
245                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
246  void writeDICompositeType(const DICompositeType *N,
247                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
248  void writeDISubroutineType(const DISubroutineType *N,
249                             SmallVectorImpl<uint64_t> &Record,
250                             unsigned Abbrev);
251  void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
252                   unsigned Abbrev);
253  void writeDICompileUnit(const DICompileUnit *N,
254                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
255  void writeDISubprogram(const DISubprogram *N,
256                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
257  void writeDILexicalBlock(const DILexicalBlock *N,
258                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
259  void writeDILexicalBlockFile(const DILexicalBlockFile *N,
260                               SmallVectorImpl<uint64_t> &Record,
261                               unsigned Abbrev);
262  void writeDICommonBlock(const DICommonBlock *N,
263                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
264    llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
265  }
266  void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
267                        unsigned Abbrev);
268  void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
269                    unsigned Abbrev) {
270    llvm_unreachable("DXIL cannot contain DIMacro Nodes");
271  }
272  void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
273                        unsigned Abbrev) {
274    llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
275  }
276  void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
277                      unsigned Abbrev) {
278    llvm_unreachable("DXIL cannot contain DIArgList Nodes");
279  }
280  void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
281                       unsigned Abbrev) {
282    // DIAssignID is experimental feature to track variable location in IR..
283    // FIXME: translate DIAssignID to debug info DXIL supports.
284    //   See https://github.com/llvm/llvm-project/issues/58989
285    llvm_unreachable("DXIL cannot contain DIAssignID Nodes");
286  }
287  void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
288                     unsigned Abbrev);
289  void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
290                                    SmallVectorImpl<uint64_t> &Record,
291                                    unsigned Abbrev);
292  void writeDITemplateValueParameter(const DITemplateValueParameter *N,
293                                     SmallVectorImpl<uint64_t> &Record,
294                                     unsigned Abbrev);
295  void writeDIGlobalVariable(const DIGlobalVariable *N,
296                             SmallVectorImpl<uint64_t> &Record,
297                             unsigned Abbrev);
298  void writeDILocalVariable(const DILocalVariable *N,
299                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
300  void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
301                    unsigned Abbrev) {
302    llvm_unreachable("DXIL cannot contain DILabel Nodes");
303  }
304  void writeDIExpression(const DIExpression *N,
305                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
306  void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
307                                       SmallVectorImpl<uint64_t> &Record,
308                                       unsigned Abbrev) {
309    llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
310  }
311  void writeDIObjCProperty(const DIObjCProperty *N,
312                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313  void writeDIImportedEntity(const DIImportedEntity *N,
314                             SmallVectorImpl<uint64_t> &Record,
315                             unsigned Abbrev);
316  unsigned createNamedMetadataAbbrev();
317  void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
318  unsigned createMetadataStringsAbbrev();
319  void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
320                            SmallVectorImpl<uint64_t> &Record);
321  void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
322                            SmallVectorImpl<uint64_t> &Record,
323                            std::vector<unsigned> *MDAbbrevs = nullptr,
324                            std::vector<uint64_t> *IndexPos = nullptr);
325  void writeModuleMetadata();
326  void writeFunctionMetadata(const Function &F);
327  void writeFunctionMetadataAttachment(const Function &F);
328  void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
329                                    const GlobalObject &GO);
330  void writeModuleMetadataKinds();
331  void writeOperandBundleTags();
332  void writeSyncScopeNames();
333  void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
334  void writeModuleConstants();
335  bool pushValueAndType(const Value *V, unsigned InstID,
336                        SmallVectorImpl<unsigned> &Vals);
337  void writeOperandBundles(const CallBase &CB, unsigned InstID);
338  void pushValue(const Value *V, unsigned InstID,
339                 SmallVectorImpl<unsigned> &Vals);
340  void pushValueSigned(const Value *V, unsigned InstID,
341                       SmallVectorImpl<uint64_t> &Vals);
342  void writeInstruction(const Instruction &I, unsigned InstID,
343                        SmallVectorImpl<unsigned> &Vals);
344  void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
345  void writeGlobalValueSymbolTable(
346      DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
347  void writeFunction(const Function &F);
348  void writeBlockInfo();
349
350  unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
351
352  unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
353
354  unsigned getTypeID(Type *T, const Value *V = nullptr);
355  /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject
356  ///
357  /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the
358  /// GlobalObject, but in the bitcode writer we need the pointer element type.
359  unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G);
360};
361
362} // namespace dxil
363} // namespace llvm
364
365using namespace llvm;
366using namespace llvm::dxil;
367
368////////////////////////////////////////////////////////////////////////////////
369/// Begin dxil::BitcodeWriter Implementation
370////////////////////////////////////////////////////////////////////////////////
371
372dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer,
373                                   raw_fd_stream *FS)
374    : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
375  // Emit the file header.
376  Stream->Emit((unsigned)'B', 8);
377  Stream->Emit((unsigned)'C', 8);
378  Stream->Emit(0x0, 4);
379  Stream->Emit(0xC, 4);
380  Stream->Emit(0xE, 4);
381  Stream->Emit(0xD, 4);
382}
383
384dxil::BitcodeWriter::~BitcodeWriter() { }
385
386/// Write the specified module to the specified output stream.
387void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
388  SmallVector<char, 0> Buffer;
389  Buffer.reserve(256 * 1024);
390
391  // If this is darwin or another generic macho target, reserve space for the
392  // header.
393  Triple TT(M.getTargetTriple());
394  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
395    Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
396
397  BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
398  Writer.writeModule(M);
399
400  // Write the generated bitstream to "Out".
401  if (!Buffer.empty())
402    Out.write((char *)&Buffer.front(), Buffer.size());
403}
404
405void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
406  Stream->EnterSubblock(Block, 3);
407
408  auto Abbv = std::make_shared<BitCodeAbbrev>();
409  Abbv->Add(BitCodeAbbrevOp(Record));
410  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
411  auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
412
413  Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
414
415  Stream->ExitBlock();
416}
417
418void BitcodeWriter::writeModule(const Module &M) {
419
420  // The Mods vector is used by irsymtab::build, which requires non-const
421  // Modules in case it needs to materialize metadata. But the bitcode writer
422  // requires that the module is materialized, so we can cast to non-const here,
423  // after checking that it is in fact materialized.
424  assert(M.isMaterialized());
425  Mods.push_back(const_cast<Module *>(&M));
426
427  DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
428  ModuleWriter.write();
429}
430
431////////////////////////////////////////////////////////////////////////////////
432/// Begin dxil::BitcodeWriterBase Implementation
433////////////////////////////////////////////////////////////////////////////////
434
435unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
436  switch (Opcode) {
437  default:
438    llvm_unreachable("Unknown cast instruction!");
439  case Instruction::Trunc:
440    return bitc::CAST_TRUNC;
441  case Instruction::ZExt:
442    return bitc::CAST_ZEXT;
443  case Instruction::SExt:
444    return bitc::CAST_SEXT;
445  case Instruction::FPToUI:
446    return bitc::CAST_FPTOUI;
447  case Instruction::FPToSI:
448    return bitc::CAST_FPTOSI;
449  case Instruction::UIToFP:
450    return bitc::CAST_UITOFP;
451  case Instruction::SIToFP:
452    return bitc::CAST_SITOFP;
453  case Instruction::FPTrunc:
454    return bitc::CAST_FPTRUNC;
455  case Instruction::FPExt:
456    return bitc::CAST_FPEXT;
457  case Instruction::PtrToInt:
458    return bitc::CAST_PTRTOINT;
459  case Instruction::IntToPtr:
460    return bitc::CAST_INTTOPTR;
461  case Instruction::BitCast:
462    return bitc::CAST_BITCAST;
463  case Instruction::AddrSpaceCast:
464    return bitc::CAST_ADDRSPACECAST;
465  }
466}
467
468unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
469  switch (Opcode) {
470  default:
471    llvm_unreachable("Unknown binary instruction!");
472  case Instruction::FNeg:
473    return bitc::UNOP_FNEG;
474  }
475}
476
477unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
478  switch (Opcode) {
479  default:
480    llvm_unreachable("Unknown binary instruction!");
481  case Instruction::Add:
482  case Instruction::FAdd:
483    return bitc::BINOP_ADD;
484  case Instruction::Sub:
485  case Instruction::FSub:
486    return bitc::BINOP_SUB;
487  case Instruction::Mul:
488  case Instruction::FMul:
489    return bitc::BINOP_MUL;
490  case Instruction::UDiv:
491    return bitc::BINOP_UDIV;
492  case Instruction::FDiv:
493  case Instruction::SDiv:
494    return bitc::BINOP_SDIV;
495  case Instruction::URem:
496    return bitc::BINOP_UREM;
497  case Instruction::FRem:
498  case Instruction::SRem:
499    return bitc::BINOP_SREM;
500  case Instruction::Shl:
501    return bitc::BINOP_SHL;
502  case Instruction::LShr:
503    return bitc::BINOP_LSHR;
504  case Instruction::AShr:
505    return bitc::BINOP_ASHR;
506  case Instruction::And:
507    return bitc::BINOP_AND;
508  case Instruction::Or:
509    return bitc::BINOP_OR;
510  case Instruction::Xor:
511    return bitc::BINOP_XOR;
512  }
513}
514
515unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
516  if (!T->isPointerTy() &&
517      // For Constant, always check PointerMap to make sure OpaquePointer in
518      // things like constant struct/array works.
519      (!V || !isa<Constant>(V)))
520    return VE.getTypeID(T);
521  auto It = PointerMap.find(V);
522  if (It != PointerMap.end())
523    return VE.getTypeID(It->second);
524  // For Constant, return T when cannot find in PointerMap.
525  // FIXME: support ConstantPointerNull which could map to more than one
526  // TypedPointerType.
527  // See https://github.com/llvm/llvm-project/issues/57942.
528  if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V))
529    return VE.getTypeID(T);
530  return VE.getTypeID(I8PtrTy);
531}
532
533unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T,
534                                                       const GlobalObject *G) {
535  auto It = PointerMap.find(G);
536  if (It != PointerMap.end()) {
537    TypedPointerType *PtrTy = cast<TypedPointerType>(It->second);
538    return VE.getTypeID(PtrTy->getElementType());
539  }
540  return VE.getTypeID(T);
541}
542
543unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
544  switch (Op) {
545  default:
546    llvm_unreachable("Unknown RMW operation!");
547  case AtomicRMWInst::Xchg:
548    return bitc::RMW_XCHG;
549  case AtomicRMWInst::Add:
550    return bitc::RMW_ADD;
551  case AtomicRMWInst::Sub:
552    return bitc::RMW_SUB;
553  case AtomicRMWInst::And:
554    return bitc::RMW_AND;
555  case AtomicRMWInst::Nand:
556    return bitc::RMW_NAND;
557  case AtomicRMWInst::Or:
558    return bitc::RMW_OR;
559  case AtomicRMWInst::Xor:
560    return bitc::RMW_XOR;
561  case AtomicRMWInst::Max:
562    return bitc::RMW_MAX;
563  case AtomicRMWInst::Min:
564    return bitc::RMW_MIN;
565  case AtomicRMWInst::UMax:
566    return bitc::RMW_UMAX;
567  case AtomicRMWInst::UMin:
568    return bitc::RMW_UMIN;
569  case AtomicRMWInst::FAdd:
570    return bitc::RMW_FADD;
571  case AtomicRMWInst::FSub:
572    return bitc::RMW_FSUB;
573  case AtomicRMWInst::FMax:
574    return bitc::RMW_FMAX;
575  case AtomicRMWInst::FMin:
576    return bitc::RMW_FMIN;
577  }
578}
579
580unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
581  switch (Ordering) {
582  case AtomicOrdering::NotAtomic:
583    return bitc::ORDERING_NOTATOMIC;
584  case AtomicOrdering::Unordered:
585    return bitc::ORDERING_UNORDERED;
586  case AtomicOrdering::Monotonic:
587    return bitc::ORDERING_MONOTONIC;
588  case AtomicOrdering::Acquire:
589    return bitc::ORDERING_ACQUIRE;
590  case AtomicOrdering::Release:
591    return bitc::ORDERING_RELEASE;
592  case AtomicOrdering::AcquireRelease:
593    return bitc::ORDERING_ACQREL;
594  case AtomicOrdering::SequentiallyConsistent:
595    return bitc::ORDERING_SEQCST;
596  }
597  llvm_unreachable("Invalid ordering");
598}
599
600void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
601                                          unsigned Code, StringRef Str,
602                                          unsigned AbbrevToUse) {
603  SmallVector<unsigned, 64> Vals;
604
605  // Code: [strchar x N]
606  for (char C : Str) {
607    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
608      AbbrevToUse = 0;
609    Vals.push_back(C);
610  }
611
612  // Emit the finished record.
613  Stream.EmitRecord(Code, Vals, AbbrevToUse);
614}
615
616uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
617  switch (Kind) {
618  case Attribute::Alignment:
619    return bitc::ATTR_KIND_ALIGNMENT;
620  case Attribute::AlwaysInline:
621    return bitc::ATTR_KIND_ALWAYS_INLINE;
622  case Attribute::Builtin:
623    return bitc::ATTR_KIND_BUILTIN;
624  case Attribute::ByVal:
625    return bitc::ATTR_KIND_BY_VAL;
626  case Attribute::Convergent:
627    return bitc::ATTR_KIND_CONVERGENT;
628  case Attribute::InAlloca:
629    return bitc::ATTR_KIND_IN_ALLOCA;
630  case Attribute::Cold:
631    return bitc::ATTR_KIND_COLD;
632  case Attribute::InlineHint:
633    return bitc::ATTR_KIND_INLINE_HINT;
634  case Attribute::InReg:
635    return bitc::ATTR_KIND_IN_REG;
636  case Attribute::JumpTable:
637    return bitc::ATTR_KIND_JUMP_TABLE;
638  case Attribute::MinSize:
639    return bitc::ATTR_KIND_MIN_SIZE;
640  case Attribute::Naked:
641    return bitc::ATTR_KIND_NAKED;
642  case Attribute::Nest:
643    return bitc::ATTR_KIND_NEST;
644  case Attribute::NoAlias:
645    return bitc::ATTR_KIND_NO_ALIAS;
646  case Attribute::NoBuiltin:
647    return bitc::ATTR_KIND_NO_BUILTIN;
648  case Attribute::NoCapture:
649    return bitc::ATTR_KIND_NO_CAPTURE;
650  case Attribute::NoDuplicate:
651    return bitc::ATTR_KIND_NO_DUPLICATE;
652  case Attribute::NoImplicitFloat:
653    return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
654  case Attribute::NoInline:
655    return bitc::ATTR_KIND_NO_INLINE;
656  case Attribute::NonLazyBind:
657    return bitc::ATTR_KIND_NON_LAZY_BIND;
658  case Attribute::NonNull:
659    return bitc::ATTR_KIND_NON_NULL;
660  case Attribute::Dereferenceable:
661    return bitc::ATTR_KIND_DEREFERENCEABLE;
662  case Attribute::DereferenceableOrNull:
663    return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
664  case Attribute::NoRedZone:
665    return bitc::ATTR_KIND_NO_RED_ZONE;
666  case Attribute::NoReturn:
667    return bitc::ATTR_KIND_NO_RETURN;
668  case Attribute::NoUnwind:
669    return bitc::ATTR_KIND_NO_UNWIND;
670  case Attribute::OptimizeForSize:
671    return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
672  case Attribute::OptimizeNone:
673    return bitc::ATTR_KIND_OPTIMIZE_NONE;
674  case Attribute::ReadNone:
675    return bitc::ATTR_KIND_READ_NONE;
676  case Attribute::ReadOnly:
677    return bitc::ATTR_KIND_READ_ONLY;
678  case Attribute::Returned:
679    return bitc::ATTR_KIND_RETURNED;
680  case Attribute::ReturnsTwice:
681    return bitc::ATTR_KIND_RETURNS_TWICE;
682  case Attribute::SExt:
683    return bitc::ATTR_KIND_S_EXT;
684  case Attribute::StackAlignment:
685    return bitc::ATTR_KIND_STACK_ALIGNMENT;
686  case Attribute::StackProtect:
687    return bitc::ATTR_KIND_STACK_PROTECT;
688  case Attribute::StackProtectReq:
689    return bitc::ATTR_KIND_STACK_PROTECT_REQ;
690  case Attribute::StackProtectStrong:
691    return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
692  case Attribute::SafeStack:
693    return bitc::ATTR_KIND_SAFESTACK;
694  case Attribute::StructRet:
695    return bitc::ATTR_KIND_STRUCT_RET;
696  case Attribute::SanitizeAddress:
697    return bitc::ATTR_KIND_SANITIZE_ADDRESS;
698  case Attribute::SanitizeThread:
699    return bitc::ATTR_KIND_SANITIZE_THREAD;
700  case Attribute::SanitizeMemory:
701    return bitc::ATTR_KIND_SANITIZE_MEMORY;
702  case Attribute::UWTable:
703    return bitc::ATTR_KIND_UW_TABLE;
704  case Attribute::ZExt:
705    return bitc::ATTR_KIND_Z_EXT;
706  case Attribute::EndAttrKinds:
707    llvm_unreachable("Can not encode end-attribute kinds marker.");
708  case Attribute::None:
709    llvm_unreachable("Can not encode none-attribute.");
710  case Attribute::EmptyKey:
711  case Attribute::TombstoneKey:
712    llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
713  default:
714    llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
715                     "should be stripped in DXILPrepare");
716  }
717
718  llvm_unreachable("Trying to encode unknown attribute");
719}
720
721void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
722                                        uint64_t V) {
723  if ((int64_t)V >= 0)
724    Vals.push_back(V << 1);
725  else
726    Vals.push_back((-V << 1) | 1);
727}
728
729void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
730                                      const APInt &A) {
731  // We have an arbitrary precision integer value to write whose
732  // bit width is > 64. However, in canonical unsigned integer
733  // format it is likely that the high bits are going to be zero.
734  // So, we only write the number of active words.
735  unsigned NumWords = A.getActiveWords();
736  const uint64_t *RawData = A.getRawData();
737  for (unsigned i = 0; i < NumWords; i++)
738    emitSignedInt64(Vals, RawData[i]);
739}
740
741uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
742  uint64_t Flags = 0;
743
744  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
745    if (OBO->hasNoSignedWrap())
746      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
747    if (OBO->hasNoUnsignedWrap())
748      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
749  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
750    if (PEO->isExact())
751      Flags |= 1 << bitc::PEO_EXACT;
752  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
753    if (FPMO->hasAllowReassoc())
754      Flags |= bitc::AllowReassoc;
755    if (FPMO->hasNoNaNs())
756      Flags |= bitc::NoNaNs;
757    if (FPMO->hasNoInfs())
758      Flags |= bitc::NoInfs;
759    if (FPMO->hasNoSignedZeros())
760      Flags |= bitc::NoSignedZeros;
761    if (FPMO->hasAllowReciprocal())
762      Flags |= bitc::AllowReciprocal;
763    if (FPMO->hasAllowContract())
764      Flags |= bitc::AllowContract;
765    if (FPMO->hasApproxFunc())
766      Flags |= bitc::ApproxFunc;
767  }
768
769  return Flags;
770}
771
772unsigned
773DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
774  switch (Linkage) {
775  case GlobalValue::ExternalLinkage:
776    return 0;
777  case GlobalValue::WeakAnyLinkage:
778    return 16;
779  case GlobalValue::AppendingLinkage:
780    return 2;
781  case GlobalValue::InternalLinkage:
782    return 3;
783  case GlobalValue::LinkOnceAnyLinkage:
784    return 18;
785  case GlobalValue::ExternalWeakLinkage:
786    return 7;
787  case GlobalValue::CommonLinkage:
788    return 8;
789  case GlobalValue::PrivateLinkage:
790    return 9;
791  case GlobalValue::WeakODRLinkage:
792    return 17;
793  case GlobalValue::LinkOnceODRLinkage:
794    return 19;
795  case GlobalValue::AvailableExternallyLinkage:
796    return 12;
797  }
798  llvm_unreachable("Invalid linkage");
799}
800
801unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
802  return getEncodedLinkage(GV.getLinkage());
803}
804
805unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
806  switch (GV.getVisibility()) {
807  case GlobalValue::DefaultVisibility:
808    return 0;
809  case GlobalValue::HiddenVisibility:
810    return 1;
811  case GlobalValue::ProtectedVisibility:
812    return 2;
813  }
814  llvm_unreachable("Invalid visibility");
815}
816
817unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
818  switch (GV.getDLLStorageClass()) {
819  case GlobalValue::DefaultStorageClass:
820    return 0;
821  case GlobalValue::DLLImportStorageClass:
822    return 1;
823  case GlobalValue::DLLExportStorageClass:
824    return 2;
825  }
826  llvm_unreachable("Invalid DLL storage class");
827}
828
829unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
830  switch (GV.getThreadLocalMode()) {
831  case GlobalVariable::NotThreadLocal:
832    return 0;
833  case GlobalVariable::GeneralDynamicTLSModel:
834    return 1;
835  case GlobalVariable::LocalDynamicTLSModel:
836    return 2;
837  case GlobalVariable::InitialExecTLSModel:
838    return 3;
839  case GlobalVariable::LocalExecTLSModel:
840    return 4;
841  }
842  llvm_unreachable("Invalid TLS model");
843}
844
845unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
846  switch (C.getSelectionKind()) {
847  case Comdat::Any:
848    return bitc::COMDAT_SELECTION_KIND_ANY;
849  case Comdat::ExactMatch:
850    return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
851  case Comdat::Largest:
852    return bitc::COMDAT_SELECTION_KIND_LARGEST;
853  case Comdat::NoDeduplicate:
854    return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
855  case Comdat::SameSize:
856    return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
857  }
858  llvm_unreachable("Invalid selection kind");
859}
860
861////////////////////////////////////////////////////////////////////////////////
862/// Begin DXILBitcodeWriter Implementation
863////////////////////////////////////////////////////////////////////////////////
864
865void DXILBitcodeWriter::writeAttributeGroupTable() {
866  const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
867      VE.getAttributeGroups();
868  if (AttrGrps.empty())
869    return;
870
871  Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
872
873  SmallVector<uint64_t, 64> Record;
874  for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
875    unsigned AttrListIndex = Pair.first;
876    AttributeSet AS = Pair.second;
877    Record.push_back(VE.getAttributeGroupID(Pair));
878    Record.push_back(AttrListIndex);
879
880    for (Attribute Attr : AS) {
881      if (Attr.isEnumAttribute()) {
882        uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
883        assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
884               "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
885        Record.push_back(0);
886        Record.push_back(Val);
887      } else if (Attr.isIntAttribute()) {
888        if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) {
889          MemoryEffects ME = Attr.getMemoryEffects();
890          if (ME.doesNotAccessMemory()) {
891            Record.push_back(0);
892            Record.push_back(bitc::ATTR_KIND_READ_NONE);
893          } else {
894            if (ME.onlyReadsMemory()) {
895              Record.push_back(0);
896              Record.push_back(bitc::ATTR_KIND_READ_ONLY);
897            }
898            if (ME.onlyAccessesArgPointees()) {
899              Record.push_back(0);
900              Record.push_back(bitc::ATTR_KIND_ARGMEMONLY);
901            }
902          }
903        } else {
904          uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
905          assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
906                 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
907          Record.push_back(1);
908          Record.push_back(Val);
909          Record.push_back(Attr.getValueAsInt());
910        }
911      } else {
912        StringRef Kind = Attr.getKindAsString();
913        StringRef Val = Attr.getValueAsString();
914
915        Record.push_back(Val.empty() ? 3 : 4);
916        Record.append(Kind.begin(), Kind.end());
917        Record.push_back(0);
918        if (!Val.empty()) {
919          Record.append(Val.begin(), Val.end());
920          Record.push_back(0);
921        }
922      }
923    }
924
925    Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
926    Record.clear();
927  }
928
929  Stream.ExitBlock();
930}
931
932void DXILBitcodeWriter::writeAttributeTable() {
933  const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
934  if (Attrs.empty())
935    return;
936
937  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
938
939  SmallVector<uint64_t, 64> Record;
940  for (AttributeList AL : Attrs) {
941    for (unsigned i : AL.indexes()) {
942      AttributeSet AS = AL.getAttributes(i);
943      if (AS.hasAttributes())
944        Record.push_back(VE.getAttributeGroupID({i, AS}));
945    }
946
947    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
948    Record.clear();
949  }
950
951  Stream.ExitBlock();
952}
953
954/// WriteTypeTable - Write out the type table for a module.
955void DXILBitcodeWriter::writeTypeTable() {
956  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
957
958  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
959  SmallVector<uint64_t, 64> TypeVals;
960
961  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
962
963  // Abbrev for TYPE_CODE_POINTER.
964  auto Abbv = std::make_shared<BitCodeAbbrev>();
965  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
966  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
967  Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
968  unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
969
970  // Abbrev for TYPE_CODE_FUNCTION.
971  Abbv = std::make_shared<BitCodeAbbrev>();
972  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
973  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
974  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
975  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
976  unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
977
978  // Abbrev for TYPE_CODE_STRUCT_ANON.
979  Abbv = std::make_shared<BitCodeAbbrev>();
980  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
981  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
982  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
983  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
984  unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
985
986  // Abbrev for TYPE_CODE_STRUCT_NAME.
987  Abbv = std::make_shared<BitCodeAbbrev>();
988  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
989  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
990  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
991  unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
992
993  // Abbrev for TYPE_CODE_STRUCT_NAMED.
994  Abbv = std::make_shared<BitCodeAbbrev>();
995  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
996  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
997  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
998  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
999  unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1000
1001  // Abbrev for TYPE_CODE_ARRAY.
1002  Abbv = std::make_shared<BitCodeAbbrev>();
1003  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1004  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1005  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1006  unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1007
1008  // Emit an entry count so the reader can reserve space.
1009  TypeVals.push_back(TypeList.size());
1010  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1011  TypeVals.clear();
1012
1013  // Loop over all of the types, emitting each in turn.
1014  for (Type *T : TypeList) {
1015    int AbbrevToUse = 0;
1016    unsigned Code = 0;
1017
1018    switch (T->getTypeID()) {
1019    case Type::BFloatTyID:
1020    case Type::X86_AMXTyID:
1021    case Type::TokenTyID:
1022    case Type::TargetExtTyID:
1023      llvm_unreachable("These should never be used!!!");
1024      break;
1025    case Type::VoidTyID:
1026      Code = bitc::TYPE_CODE_VOID;
1027      break;
1028    case Type::HalfTyID:
1029      Code = bitc::TYPE_CODE_HALF;
1030      break;
1031    case Type::FloatTyID:
1032      Code = bitc::TYPE_CODE_FLOAT;
1033      break;
1034    case Type::DoubleTyID:
1035      Code = bitc::TYPE_CODE_DOUBLE;
1036      break;
1037    case Type::X86_FP80TyID:
1038      Code = bitc::TYPE_CODE_X86_FP80;
1039      break;
1040    case Type::FP128TyID:
1041      Code = bitc::TYPE_CODE_FP128;
1042      break;
1043    case Type::PPC_FP128TyID:
1044      Code = bitc::TYPE_CODE_PPC_FP128;
1045      break;
1046    case Type::LabelTyID:
1047      Code = bitc::TYPE_CODE_LABEL;
1048      break;
1049    case Type::MetadataTyID:
1050      Code = bitc::TYPE_CODE_METADATA;
1051      break;
1052    case Type::X86_MMXTyID:
1053      Code = bitc::TYPE_CODE_X86_MMX;
1054      break;
1055    case Type::IntegerTyID:
1056      // INTEGER: [width]
1057      Code = bitc::TYPE_CODE_INTEGER;
1058      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1059      break;
1060    case Type::TypedPointerTyID: {
1061      TypedPointerType *PTy = cast<TypedPointerType>(T);
1062      // POINTER: [pointee type, address space]
1063      Code = bitc::TYPE_CODE_POINTER;
1064      TypeVals.push_back(getTypeID(PTy->getElementType()));
1065      unsigned AddressSpace = PTy->getAddressSpace();
1066      TypeVals.push_back(AddressSpace);
1067      if (AddressSpace == 0)
1068        AbbrevToUse = PtrAbbrev;
1069      break;
1070    }
1071    case Type::PointerTyID: {
1072      // POINTER: [pointee type, address space]
1073      // Emitting an empty struct type for the pointer's type allows this to be
1074      // order-independent. Non-struct types must be emitted in bitcode before
1075      // they can be referenced.
1076      TypeVals.push_back(false);
1077      Code = bitc::TYPE_CODE_OPAQUE;
1078      writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
1079                        "dxilOpaquePtrReservedName", StructNameAbbrev);
1080      break;
1081    }
1082    case Type::FunctionTyID: {
1083      FunctionType *FT = cast<FunctionType>(T);
1084      // FUNCTION: [isvararg, retty, paramty x N]
1085      Code = bitc::TYPE_CODE_FUNCTION;
1086      TypeVals.push_back(FT->isVarArg());
1087      TypeVals.push_back(getTypeID(FT->getReturnType()));
1088      for (Type *PTy : FT->params())
1089        TypeVals.push_back(getTypeID(PTy));
1090      AbbrevToUse = FunctionAbbrev;
1091      break;
1092    }
1093    case Type::StructTyID: {
1094      StructType *ST = cast<StructType>(T);
1095      // STRUCT: [ispacked, eltty x N]
1096      TypeVals.push_back(ST->isPacked());
1097      // Output all of the element types.
1098      for (Type *ElTy : ST->elements())
1099        TypeVals.push_back(getTypeID(ElTy));
1100
1101      if (ST->isLiteral()) {
1102        Code = bitc::TYPE_CODE_STRUCT_ANON;
1103        AbbrevToUse = StructAnonAbbrev;
1104      } else {
1105        if (ST->isOpaque()) {
1106          Code = bitc::TYPE_CODE_OPAQUE;
1107        } else {
1108          Code = bitc::TYPE_CODE_STRUCT_NAMED;
1109          AbbrevToUse = StructNamedAbbrev;
1110        }
1111
1112        // Emit the name if it is present.
1113        if (!ST->getName().empty())
1114          writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1115                            StructNameAbbrev);
1116      }
1117      break;
1118    }
1119    case Type::ArrayTyID: {
1120      ArrayType *AT = cast<ArrayType>(T);
1121      // ARRAY: [numelts, eltty]
1122      Code = bitc::TYPE_CODE_ARRAY;
1123      TypeVals.push_back(AT->getNumElements());
1124      TypeVals.push_back(getTypeID(AT->getElementType()));
1125      AbbrevToUse = ArrayAbbrev;
1126      break;
1127    }
1128    case Type::FixedVectorTyID:
1129    case Type::ScalableVectorTyID: {
1130      VectorType *VT = cast<VectorType>(T);
1131      // VECTOR [numelts, eltty]
1132      Code = bitc::TYPE_CODE_VECTOR;
1133      TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1134      TypeVals.push_back(getTypeID(VT->getElementType()));
1135      break;
1136    }
1137    }
1138
1139    // Emit the finished record.
1140    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1141    TypeVals.clear();
1142  }
1143
1144  Stream.ExitBlock();
1145}
1146
1147void DXILBitcodeWriter::writeComdats() {
1148  SmallVector<uint16_t, 64> Vals;
1149  for (const Comdat *C : VE.getComdats()) {
1150    // COMDAT: [selection_kind, name]
1151    Vals.push_back(getEncodedComdatSelectionKind(*C));
1152    size_t Size = C->getName().size();
1153    assert(isUInt<16>(Size));
1154    Vals.push_back(Size);
1155    for (char Chr : C->getName())
1156      Vals.push_back((unsigned char)Chr);
1157    Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1158    Vals.clear();
1159  }
1160}
1161
1162void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1163
1164/// Emit top-level description of module, including target triple, inline asm,
1165/// descriptors for global variables, and function prototype info.
1166/// Returns the bit offset to backpatch with the location of the real VST.
1167void DXILBitcodeWriter::writeModuleInfo() {
1168  // Emit various pieces of data attached to a module.
1169  if (!M.getTargetTriple().empty())
1170    writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1171                      0 /*TODO*/);
1172  const std::string &DL = M.getDataLayoutStr();
1173  if (!DL.empty())
1174    writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1175  if (!M.getModuleInlineAsm().empty())
1176    writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1177                      0 /*TODO*/);
1178
1179  // Emit information about sections and GC, computing how many there are. Also
1180  // compute the maximum alignment value.
1181  std::map<std::string, unsigned> SectionMap;
1182  std::map<std::string, unsigned> GCMap;
1183  MaybeAlign MaxAlignment;
1184  unsigned MaxGlobalType = 0;
1185  const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1186    if (A)
1187      MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1188  };
1189  for (const GlobalVariable &GV : M.globals()) {
1190    UpdateMaxAlignment(GV.getAlign());
1191    // Use getGlobalObjectValueTypeID to look up the enumerated type ID for
1192    // Global Variable types.
1193    MaxGlobalType = std::max(
1194        MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1195    if (GV.hasSection()) {
1196      // Give section names unique ID's.
1197      unsigned &Entry = SectionMap[std::string(GV.getSection())];
1198      if (!Entry) {
1199        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1200                          GV.getSection(), 0 /*TODO*/);
1201        Entry = SectionMap.size();
1202      }
1203    }
1204  }
1205  for (const Function &F : M) {
1206    UpdateMaxAlignment(F.getAlign());
1207    if (F.hasSection()) {
1208      // Give section names unique ID's.
1209      unsigned &Entry = SectionMap[std::string(F.getSection())];
1210      if (!Entry) {
1211        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1212                          0 /*TODO*/);
1213        Entry = SectionMap.size();
1214      }
1215    }
1216    if (F.hasGC()) {
1217      // Same for GC names.
1218      unsigned &Entry = GCMap[F.getGC()];
1219      if (!Entry) {
1220        writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1221                          0 /*TODO*/);
1222        Entry = GCMap.size();
1223      }
1224    }
1225  }
1226
1227  // Emit abbrev for globals, now that we know # sections and max alignment.
1228  unsigned SimpleGVarAbbrev = 0;
1229  if (!M.global_empty()) {
1230    // Add an abbrev for common globals with no visibility or thread
1231    // localness.
1232    auto Abbv = std::make_shared<BitCodeAbbrev>();
1233    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1234    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1235                              Log2_32_Ceil(MaxGlobalType + 1)));
1236    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1237                                                           //| explicitType << 1
1238                                                           //| constant
1239    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1240    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1241    if (!MaxAlignment)                                     // Alignment.
1242      Abbv->Add(BitCodeAbbrevOp(0));
1243    else {
1244      unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1245      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1246                                Log2_32_Ceil(MaxEncAlignment + 1)));
1247    }
1248    if (SectionMap.empty()) // Section.
1249      Abbv->Add(BitCodeAbbrevOp(0));
1250    else
1251      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1252                                Log2_32_Ceil(SectionMap.size() + 1)));
1253    // Don't bother emitting vis + thread local.
1254    SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1255  }
1256
1257  // Emit the global variable information.
1258  SmallVector<unsigned, 64> Vals;
1259  for (const GlobalVariable &GV : M.globals()) {
1260    unsigned AbbrevToUse = 0;
1261
1262    // GLOBALVAR: [type, isconst, initid,
1263    //             linkage, alignment, section, visibility, threadlocal,
1264    //             unnamed_addr, externally_initialized, dllstorageclass,
1265    //             comdat]
1266    Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1267    Vals.push_back(
1268        GV.getType()->getAddressSpace() << 2 | 2 |
1269        (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1270                                    // unsigned int and bool
1271    Vals.push_back(
1272        GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1273    Vals.push_back(getEncodedLinkage(GV));
1274    Vals.push_back(getEncodedAlign(GV.getAlign()));
1275    Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1276                                   : 0);
1277    if (GV.isThreadLocal() ||
1278        GV.getVisibility() != GlobalValue::DefaultVisibility ||
1279        GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1280        GV.isExternallyInitialized() ||
1281        GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1282        GV.hasComdat()) {
1283      Vals.push_back(getEncodedVisibility(GV));
1284      Vals.push_back(getEncodedThreadLocalMode(GV));
1285      Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1286      Vals.push_back(GV.isExternallyInitialized());
1287      Vals.push_back(getEncodedDLLStorageClass(GV));
1288      Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1289    } else {
1290      AbbrevToUse = SimpleGVarAbbrev;
1291    }
1292
1293    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1294    Vals.clear();
1295  }
1296
1297  // Emit the function proto information.
1298  for (const Function &F : M) {
1299    // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1300    //             section, visibility, gc, unnamed_addr, prologuedata,
1301    //             dllstorageclass, comdat, prefixdata, personalityfn]
1302    Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F));
1303    Vals.push_back(F.getCallingConv());
1304    Vals.push_back(F.isDeclaration());
1305    Vals.push_back(getEncodedLinkage(F));
1306    Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1307    Vals.push_back(getEncodedAlign(F.getAlign()));
1308    Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1309                                  : 0);
1310    Vals.push_back(getEncodedVisibility(F));
1311    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1312    Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1313    Vals.push_back(
1314        F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1315    Vals.push_back(getEncodedDLLStorageClass(F));
1316    Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1317    Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1318                                     : 0);
1319    Vals.push_back(
1320        F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1321
1322    unsigned AbbrevToUse = 0;
1323    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1324    Vals.clear();
1325  }
1326
1327  // Emit the alias information.
1328  for (const GlobalAlias &A : M.aliases()) {
1329    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1330    Vals.push_back(getTypeID(A.getValueType(), &A));
1331    Vals.push_back(VE.getValueID(A.getAliasee()));
1332    Vals.push_back(getEncodedLinkage(A));
1333    Vals.push_back(getEncodedVisibility(A));
1334    Vals.push_back(getEncodedDLLStorageClass(A));
1335    Vals.push_back(getEncodedThreadLocalMode(A));
1336    Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1337    unsigned AbbrevToUse = 0;
1338    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1339    Vals.clear();
1340  }
1341}
1342
1343void DXILBitcodeWriter::writeValueAsMetadata(
1344    const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1345  // Mimic an MDNode with a value as one operand.
1346  Value *V = MD->getValue();
1347  Type *Ty = V->getType();
1348  if (Function *F = dyn_cast<Function>(V))
1349    Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
1350  else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1351    Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
1352  Record.push_back(getTypeID(Ty));
1353  Record.push_back(VE.getValueID(V));
1354  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1355  Record.clear();
1356}
1357
1358void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1359                                     SmallVectorImpl<uint64_t> &Record,
1360                                     unsigned Abbrev) {
1361  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1362    Metadata *MD = N->getOperand(i);
1363    assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1364           "Unexpected function-local metadata");
1365    Record.push_back(VE.getMetadataOrNullID(MD));
1366  }
1367  Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1368                                    : bitc::METADATA_NODE,
1369                    Record, Abbrev);
1370  Record.clear();
1371}
1372
1373void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1374                                        SmallVectorImpl<uint64_t> &Record,
1375                                        unsigned &Abbrev) {
1376  if (!Abbrev)
1377    Abbrev = createDILocationAbbrev();
1378  Record.push_back(N->isDistinct());
1379  Record.push_back(N->getLine());
1380  Record.push_back(N->getColumn());
1381  Record.push_back(VE.getMetadataID(N->getScope()));
1382  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1383
1384  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1385  Record.clear();
1386}
1387
1388static uint64_t rotateSign(APInt Val) {
1389  int64_t I = Val.getSExtValue();
1390  uint64_t U = I;
1391  return I < 0 ? ~(U << 1) : U << 1;
1392}
1393
1394void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1395                                        SmallVectorImpl<uint64_t> &Record,
1396                                        unsigned Abbrev) {
1397  Record.push_back(N->isDistinct());
1398
1399  // TODO: Do we need to handle DIExpression here? What about cases where Count
1400  // isn't specified but UpperBound and such are?
1401  ConstantInt *Count = N->getCount().dyn_cast<ConstantInt *>();
1402  assert(Count && "Count is missing or not ConstantInt");
1403  Record.push_back(Count->getValue().getSExtValue());
1404
1405  // TODO: Similarly, DIExpression is allowed here now
1406  DISubrange::BoundType LowerBound = N->getLowerBound();
1407  assert((LowerBound.isNull() || LowerBound.is<ConstantInt *>()) &&
1408         "Lower bound provided but not ConstantInt");
1409  Record.push_back(
1410      LowerBound ? rotateSign(LowerBound.get<ConstantInt *>()->getValue()) : 0);
1411
1412  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1413  Record.clear();
1414}
1415
1416void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1417                                          SmallVectorImpl<uint64_t> &Record,
1418                                          unsigned Abbrev) {
1419  Record.push_back(N->isDistinct());
1420  Record.push_back(rotateSign(N->getValue()));
1421  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1422
1423  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1424  Record.clear();
1425}
1426
1427void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1428                                         SmallVectorImpl<uint64_t> &Record,
1429                                         unsigned Abbrev) {
1430  Record.push_back(N->isDistinct());
1431  Record.push_back(N->getTag());
1432  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1433  Record.push_back(N->getSizeInBits());
1434  Record.push_back(N->getAlignInBits());
1435  Record.push_back(N->getEncoding());
1436
1437  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1438  Record.clear();
1439}
1440
1441void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1442                                           SmallVectorImpl<uint64_t> &Record,
1443                                           unsigned Abbrev) {
1444  Record.push_back(N->isDistinct());
1445  Record.push_back(N->getTag());
1446  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1447  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1448  Record.push_back(N->getLine());
1449  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1450  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1451  Record.push_back(N->getSizeInBits());
1452  Record.push_back(N->getAlignInBits());
1453  Record.push_back(N->getOffsetInBits());
1454  Record.push_back(N->getFlags());
1455  Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1456
1457  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1458  Record.clear();
1459}
1460
1461void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1462                                             SmallVectorImpl<uint64_t> &Record,
1463                                             unsigned Abbrev) {
1464  Record.push_back(N->isDistinct());
1465  Record.push_back(N->getTag());
1466  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1467  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1468  Record.push_back(N->getLine());
1469  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1470  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1471  Record.push_back(N->getSizeInBits());
1472  Record.push_back(N->getAlignInBits());
1473  Record.push_back(N->getOffsetInBits());
1474  Record.push_back(N->getFlags());
1475  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1476  Record.push_back(N->getRuntimeLang());
1477  Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1478  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1479  Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1480
1481  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1482  Record.clear();
1483}
1484
1485void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1486                                              SmallVectorImpl<uint64_t> &Record,
1487                                              unsigned Abbrev) {
1488  Record.push_back(N->isDistinct());
1489  Record.push_back(N->getFlags());
1490  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1491
1492  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1493  Record.clear();
1494}
1495
1496void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1497                                    SmallVectorImpl<uint64_t> &Record,
1498                                    unsigned Abbrev) {
1499  Record.push_back(N->isDistinct());
1500  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1501  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1502
1503  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1504  Record.clear();
1505}
1506
1507void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1508                                           SmallVectorImpl<uint64_t> &Record,
1509                                           unsigned Abbrev) {
1510  Record.push_back(N->isDistinct());
1511  Record.push_back(N->getSourceLanguage());
1512  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1513  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1514  Record.push_back(N->isOptimized());
1515  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1516  Record.push_back(N->getRuntimeVersion());
1517  Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1518  Record.push_back(N->getEmissionKind());
1519  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1520  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1521  Record.push_back(/* subprograms */ 0);
1522  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1523  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1524  Record.push_back(N->getDWOId());
1525
1526  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1527  Record.clear();
1528}
1529
1530void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1531                                          SmallVectorImpl<uint64_t> &Record,
1532                                          unsigned Abbrev) {
1533  Record.push_back(N->isDistinct());
1534  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1535  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1536  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1537  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1538  Record.push_back(N->getLine());
1539  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1540  Record.push_back(N->isLocalToUnit());
1541  Record.push_back(N->isDefinition());
1542  Record.push_back(N->getScopeLine());
1543  Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1544  Record.push_back(N->getVirtuality());
1545  Record.push_back(N->getVirtualIndex());
1546  Record.push_back(N->getFlags());
1547  Record.push_back(N->isOptimized());
1548  Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1549  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1550  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1551  Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1552
1553  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1554  Record.clear();
1555}
1556
1557void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1558                                            SmallVectorImpl<uint64_t> &Record,
1559                                            unsigned Abbrev) {
1560  Record.push_back(N->isDistinct());
1561  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1562  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1563  Record.push_back(N->getLine());
1564  Record.push_back(N->getColumn());
1565
1566  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1567  Record.clear();
1568}
1569
1570void DXILBitcodeWriter::writeDILexicalBlockFile(
1571    const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1572    unsigned Abbrev) {
1573  Record.push_back(N->isDistinct());
1574  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1575  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1576  Record.push_back(N->getDiscriminator());
1577
1578  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1579  Record.clear();
1580}
1581
1582void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1583                                         SmallVectorImpl<uint64_t> &Record,
1584                                         unsigned Abbrev) {
1585  Record.push_back(N->isDistinct());
1586  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1587  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1588  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1589  Record.push_back(/* line number */ 0);
1590
1591  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1592  Record.clear();
1593}
1594
1595void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1596                                      SmallVectorImpl<uint64_t> &Record,
1597                                      unsigned Abbrev) {
1598  Record.push_back(N->isDistinct());
1599  for (auto &I : N->operands())
1600    Record.push_back(VE.getMetadataOrNullID(I));
1601
1602  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1603  Record.clear();
1604}
1605
1606void DXILBitcodeWriter::writeDITemplateTypeParameter(
1607    const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1608    unsigned Abbrev) {
1609  Record.push_back(N->isDistinct());
1610  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1611  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1612
1613  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1614  Record.clear();
1615}
1616
1617void DXILBitcodeWriter::writeDITemplateValueParameter(
1618    const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1619    unsigned Abbrev) {
1620  Record.push_back(N->isDistinct());
1621  Record.push_back(N->getTag());
1622  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1623  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1624  Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1625
1626  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1627  Record.clear();
1628}
1629
1630void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1631                                              SmallVectorImpl<uint64_t> &Record,
1632                                              unsigned Abbrev) {
1633  Record.push_back(N->isDistinct());
1634  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1635  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1636  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1637  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1638  Record.push_back(N->getLine());
1639  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1640  Record.push_back(N->isLocalToUnit());
1641  Record.push_back(N->isDefinition());
1642  Record.push_back(/* N->getRawVariable() */ 0);
1643  Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1644
1645  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1646  Record.clear();
1647}
1648
1649void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1650                                             SmallVectorImpl<uint64_t> &Record,
1651                                             unsigned Abbrev) {
1652  Record.push_back(N->isDistinct());
1653  Record.push_back(N->getTag());
1654  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1655  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1656  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1657  Record.push_back(N->getLine());
1658  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1659  Record.push_back(N->getArg());
1660  Record.push_back(N->getFlags());
1661
1662  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1663  Record.clear();
1664}
1665
1666void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1667                                          SmallVectorImpl<uint64_t> &Record,
1668                                          unsigned Abbrev) {
1669  Record.reserve(N->getElements().size() + 1);
1670
1671  Record.push_back(N->isDistinct());
1672  Record.append(N->elements_begin(), N->elements_end());
1673
1674  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1675  Record.clear();
1676}
1677
1678void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1679                                            SmallVectorImpl<uint64_t> &Record,
1680                                            unsigned Abbrev) {
1681  llvm_unreachable("DXIL does not support objc!!!");
1682}
1683
1684void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1685                                              SmallVectorImpl<uint64_t> &Record,
1686                                              unsigned Abbrev) {
1687  Record.push_back(N->isDistinct());
1688  Record.push_back(N->getTag());
1689  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1690  Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1691  Record.push_back(N->getLine());
1692  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1693
1694  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1695  Record.clear();
1696}
1697
1698unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1699  // Abbrev for METADATA_LOCATION.
1700  //
1701  // Assume the column is usually under 128, and always output the inlined-at
1702  // location (it's never more expensive than building an array size 1).
1703  std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1704  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1705  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1706  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1707  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1708  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1709  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1710  return Stream.EmitAbbrev(std::move(Abbv));
1711}
1712
1713unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1714  // Abbrev for METADATA_GENERIC_DEBUG.
1715  //
1716  // Assume the column is usually under 128, and always output the inlined-at
1717  // location (it's never more expensive than building an array size 1).
1718  std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1719  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1720  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1721  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1722  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1723  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1724  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1725  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1726  return Stream.EmitAbbrev(std::move(Abbv));
1727}
1728
1729void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1730                                             SmallVectorImpl<uint64_t> &Record,
1731                                             std::vector<unsigned> *MDAbbrevs,
1732                                             std::vector<uint64_t> *IndexPos) {
1733  if (MDs.empty())
1734    return;
1735
1736    // Initialize MDNode abbreviations.
1737#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1738#include "llvm/IR/Metadata.def"
1739
1740  for (const Metadata *MD : MDs) {
1741    if (IndexPos)
1742      IndexPos->push_back(Stream.GetCurrentBitNo());
1743    if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1744      assert(N->isResolved() && "Expected forward references to be resolved");
1745
1746      switch (N->getMetadataID()) {
1747      default:
1748        llvm_unreachable("Invalid MDNode subclass");
1749#define HANDLE_MDNODE_LEAF(CLASS)                                              \
1750  case Metadata::CLASS##Kind:                                                  \
1751    if (MDAbbrevs)                                                             \
1752      write##CLASS(cast<CLASS>(N), Record,                                     \
1753                   (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1754    else                                                                       \
1755      write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1756    continue;
1757#include "llvm/IR/Metadata.def"
1758      }
1759    }
1760    writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1761  }
1762}
1763
1764unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1765  auto Abbv = std::make_shared<BitCodeAbbrev>();
1766  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1767  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1768  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1769  return Stream.EmitAbbrev(std::move(Abbv));
1770}
1771
1772void DXILBitcodeWriter::writeMetadataStrings(
1773    ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1774  if (Strings.empty())
1775    return;
1776
1777  unsigned MDSAbbrev = createMetadataStringsAbbrev();
1778
1779  for (const Metadata *MD : Strings) {
1780    const MDString *MDS = cast<MDString>(MD);
1781    // Code: [strchar x N]
1782    Record.append(MDS->bytes_begin(), MDS->bytes_end());
1783
1784    // Emit the finished record.
1785    Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev);
1786    Record.clear();
1787  }
1788}
1789
1790void DXILBitcodeWriter::writeModuleMetadata() {
1791  if (!VE.hasMDs() && M.named_metadata_empty())
1792    return;
1793
1794  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1795
1796  // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1797  // block and load any metadata.
1798  std::vector<unsigned> MDAbbrevs;
1799
1800  MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1801  MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1802  MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1803      createGenericDINodeAbbrev();
1804
1805  unsigned NameAbbrev = 0;
1806  if (!M.named_metadata_empty()) {
1807    // Abbrev for METADATA_NAME.
1808    std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1809    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1810    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1811    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1812    NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1813  }
1814
1815  SmallVector<uint64_t, 64> Record;
1816  writeMetadataStrings(VE.getMDStrings(), Record);
1817
1818  std::vector<uint64_t> IndexPos;
1819  IndexPos.reserve(VE.getNonMDStrings().size());
1820  writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1821
1822  // Write named metadata.
1823  for (const NamedMDNode &NMD : M.named_metadata()) {
1824    // Write name.
1825    StringRef Str = NMD.getName();
1826    Record.append(Str.bytes_begin(), Str.bytes_end());
1827    Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1828    Record.clear();
1829
1830    // Write named metadata operands.
1831    for (const MDNode *N : NMD.operands())
1832      Record.push_back(VE.getMetadataID(N));
1833    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1834    Record.clear();
1835  }
1836
1837  Stream.ExitBlock();
1838}
1839
1840void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1841  if (!VE.hasMDs())
1842    return;
1843
1844  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1845  SmallVector<uint64_t, 64> Record;
1846  writeMetadataStrings(VE.getMDStrings(), Record);
1847  writeMetadataRecords(VE.getNonMDStrings(), Record);
1848  Stream.ExitBlock();
1849}
1850
1851void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1852  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1853
1854  SmallVector<uint64_t, 64> Record;
1855
1856  // Write metadata attachments
1857  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1858  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1859  F.getAllMetadata(MDs);
1860  if (!MDs.empty()) {
1861    for (const auto &I : MDs) {
1862      Record.push_back(I.first);
1863      Record.push_back(VE.getMetadataID(I.second));
1864    }
1865    Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1866    Record.clear();
1867  }
1868
1869  for (const BasicBlock &BB : F)
1870    for (const Instruction &I : BB) {
1871      MDs.clear();
1872      I.getAllMetadataOtherThanDebugLoc(MDs);
1873
1874      // If no metadata, ignore instruction.
1875      if (MDs.empty())
1876        continue;
1877
1878      Record.push_back(VE.getInstructionID(&I));
1879
1880      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1881        Record.push_back(MDs[i].first);
1882        Record.push_back(VE.getMetadataID(MDs[i].second));
1883      }
1884      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1885      Record.clear();
1886    }
1887
1888  Stream.ExitBlock();
1889}
1890
1891void DXILBitcodeWriter::writeModuleMetadataKinds() {
1892  SmallVector<uint64_t, 64> Record;
1893
1894  // Write metadata kinds
1895  // METADATA_KIND - [n x [id, name]]
1896  SmallVector<StringRef, 8> Names;
1897  M.getMDKindNames(Names);
1898
1899  if (Names.empty())
1900    return;
1901
1902  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1903
1904  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1905    Record.push_back(MDKindID);
1906    StringRef KName = Names[MDKindID];
1907    Record.append(KName.begin(), KName.end());
1908
1909    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1910    Record.clear();
1911  }
1912
1913  Stream.ExitBlock();
1914}
1915
1916void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1917                                       bool isGlobal) {
1918  if (FirstVal == LastVal)
1919    return;
1920
1921  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1922
1923  unsigned AggregateAbbrev = 0;
1924  unsigned String8Abbrev = 0;
1925  unsigned CString7Abbrev = 0;
1926  unsigned CString6Abbrev = 0;
1927  // If this is a constant pool for the module, emit module-specific abbrevs.
1928  if (isGlobal) {
1929    // Abbrev for CST_CODE_AGGREGATE.
1930    auto Abbv = std::make_shared<BitCodeAbbrev>();
1931    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1932    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1933    Abbv->Add(
1934        BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1935    AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1936
1937    // Abbrev for CST_CODE_STRING.
1938    Abbv = std::make_shared<BitCodeAbbrev>();
1939    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1940    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1941    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1942    String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1943    // Abbrev for CST_CODE_CSTRING.
1944    Abbv = std::make_shared<BitCodeAbbrev>();
1945    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1946    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1947    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1948    CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1949    // Abbrev for CST_CODE_CSTRING.
1950    Abbv = std::make_shared<BitCodeAbbrev>();
1951    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1952    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1953    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1954    CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1955  }
1956
1957  SmallVector<uint64_t, 64> Record;
1958
1959  const ValueEnumerator::ValueList &Vals = VE.getValues();
1960  Type *LastTy = nullptr;
1961  for (unsigned i = FirstVal; i != LastVal; ++i) {
1962    const Value *V = Vals[i].first;
1963    // If we need to switch types, do so now.
1964    if (V->getType() != LastTy) {
1965      LastTy = V->getType();
1966      Record.push_back(getTypeID(LastTy, V));
1967      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1968                        CONSTANTS_SETTYPE_ABBREV);
1969      Record.clear();
1970    }
1971
1972    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1973      Record.push_back(unsigned(IA->hasSideEffects()) |
1974                       unsigned(IA->isAlignStack()) << 1 |
1975                       unsigned(IA->getDialect() & 1) << 2);
1976
1977      // Add the asm string.
1978      const std::string &AsmStr = IA->getAsmString();
1979      Record.push_back(AsmStr.size());
1980      Record.append(AsmStr.begin(), AsmStr.end());
1981
1982      // Add the constraint string.
1983      const std::string &ConstraintStr = IA->getConstraintString();
1984      Record.push_back(ConstraintStr.size());
1985      Record.append(ConstraintStr.begin(), ConstraintStr.end());
1986      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1987      Record.clear();
1988      continue;
1989    }
1990    const Constant *C = cast<Constant>(V);
1991    unsigned Code = -1U;
1992    unsigned AbbrevToUse = 0;
1993    if (C->isNullValue()) {
1994      Code = bitc::CST_CODE_NULL;
1995    } else if (isa<UndefValue>(C)) {
1996      Code = bitc::CST_CODE_UNDEF;
1997    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1998      if (IV->getBitWidth() <= 64) {
1999        uint64_t V = IV->getSExtValue();
2000        emitSignedInt64(Record, V);
2001        Code = bitc::CST_CODE_INTEGER;
2002        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2003      } else { // Wide integers, > 64 bits in size.
2004        // We have an arbitrary precision integer value to write whose
2005        // bit width is > 64. However, in canonical unsigned integer
2006        // format it is likely that the high bits are going to be zero.
2007        // So, we only write the number of active words.
2008        unsigned NWords = IV->getValue().getActiveWords();
2009        const uint64_t *RawWords = IV->getValue().getRawData();
2010        for (unsigned i = 0; i != NWords; ++i) {
2011          emitSignedInt64(Record, RawWords[i]);
2012        }
2013        Code = bitc::CST_CODE_WIDE_INTEGER;
2014      }
2015    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2016      Code = bitc::CST_CODE_FLOAT;
2017      Type *Ty = CFP->getType();
2018      if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2019        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2020      } else if (Ty->isX86_FP80Ty()) {
2021        // api needed to prevent premature destruction
2022        // bits are not in the same order as a normal i80 APInt, compensate.
2023        APInt api = CFP->getValueAPF().bitcastToAPInt();
2024        const uint64_t *p = api.getRawData();
2025        Record.push_back((p[1] << 48) | (p[0] >> 16));
2026        Record.push_back(p[0] & 0xffffLL);
2027      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2028        APInt api = CFP->getValueAPF().bitcastToAPInt();
2029        const uint64_t *p = api.getRawData();
2030        Record.push_back(p[0]);
2031        Record.push_back(p[1]);
2032      } else {
2033        assert(0 && "Unknown FP type!");
2034      }
2035    } else if (isa<ConstantDataSequential>(C) &&
2036               cast<ConstantDataSequential>(C)->isString()) {
2037      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2038      // Emit constant strings specially.
2039      unsigned NumElts = Str->getNumElements();
2040      // If this is a null-terminated string, use the denser CSTRING encoding.
2041      if (Str->isCString()) {
2042        Code = bitc::CST_CODE_CSTRING;
2043        --NumElts; // Don't encode the null, which isn't allowed by char6.
2044      } else {
2045        Code = bitc::CST_CODE_STRING;
2046        AbbrevToUse = String8Abbrev;
2047      }
2048      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2049      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2050      for (unsigned i = 0; i != NumElts; ++i) {
2051        unsigned char V = Str->getElementAsInteger(i);
2052        Record.push_back(V);
2053        isCStr7 &= (V & 128) == 0;
2054        if (isCStrChar6)
2055          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2056      }
2057
2058      if (isCStrChar6)
2059        AbbrevToUse = CString6Abbrev;
2060      else if (isCStr7)
2061        AbbrevToUse = CString7Abbrev;
2062    } else if (const ConstantDataSequential *CDS =
2063                   dyn_cast<ConstantDataSequential>(C)) {
2064      Code = bitc::CST_CODE_DATA;
2065      Type *EltTy = CDS->getElementType();
2066      if (isa<IntegerType>(EltTy)) {
2067        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2068          Record.push_back(CDS->getElementAsInteger(i));
2069      } else if (EltTy->isFloatTy()) {
2070        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2071          union {
2072            float F;
2073            uint32_t I;
2074          };
2075          F = CDS->getElementAsFloat(i);
2076          Record.push_back(I);
2077        }
2078      } else {
2079        assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2080        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2081          union {
2082            double F;
2083            uint64_t I;
2084          };
2085          F = CDS->getElementAsDouble(i);
2086          Record.push_back(I);
2087        }
2088      }
2089    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2090               isa<ConstantVector>(C)) {
2091      Code = bitc::CST_CODE_AGGREGATE;
2092      for (const Value *Op : C->operands())
2093        Record.push_back(VE.getValueID(Op));
2094      AbbrevToUse = AggregateAbbrev;
2095    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2096      switch (CE->getOpcode()) {
2097      default:
2098        if (Instruction::isCast(CE->getOpcode())) {
2099          Code = bitc::CST_CODE_CE_CAST;
2100          Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2101          Record.push_back(
2102              getTypeID(C->getOperand(0)->getType(), C->getOperand(0)));
2103          Record.push_back(VE.getValueID(C->getOperand(0)));
2104          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2105        } else {
2106          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2107          Code = bitc::CST_CODE_CE_BINOP;
2108          Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2109          Record.push_back(VE.getValueID(C->getOperand(0)));
2110          Record.push_back(VE.getValueID(C->getOperand(1)));
2111          uint64_t Flags = getOptimizationFlags(CE);
2112          if (Flags != 0)
2113            Record.push_back(Flags);
2114        }
2115        break;
2116      case Instruction::GetElementPtr: {
2117        Code = bitc::CST_CODE_CE_GEP;
2118        const auto *GO = cast<GEPOperator>(C);
2119        if (GO->isInBounds())
2120          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2121        Record.push_back(getTypeID(GO->getSourceElementType()));
2122        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2123          Record.push_back(
2124              getTypeID(C->getOperand(i)->getType(), C->getOperand(i)));
2125          Record.push_back(VE.getValueID(C->getOperand(i)));
2126        }
2127        break;
2128      }
2129      case Instruction::Select:
2130        Code = bitc::CST_CODE_CE_SELECT;
2131        Record.push_back(VE.getValueID(C->getOperand(0)));
2132        Record.push_back(VE.getValueID(C->getOperand(1)));
2133        Record.push_back(VE.getValueID(C->getOperand(2)));
2134        break;
2135      case Instruction::ExtractElement:
2136        Code = bitc::CST_CODE_CE_EXTRACTELT;
2137        Record.push_back(getTypeID(C->getOperand(0)->getType()));
2138        Record.push_back(VE.getValueID(C->getOperand(0)));
2139        Record.push_back(getTypeID(C->getOperand(1)->getType()));
2140        Record.push_back(VE.getValueID(C->getOperand(1)));
2141        break;
2142      case Instruction::InsertElement:
2143        Code = bitc::CST_CODE_CE_INSERTELT;
2144        Record.push_back(VE.getValueID(C->getOperand(0)));
2145        Record.push_back(VE.getValueID(C->getOperand(1)));
2146        Record.push_back(getTypeID(C->getOperand(2)->getType()));
2147        Record.push_back(VE.getValueID(C->getOperand(2)));
2148        break;
2149      case Instruction::ShuffleVector:
2150        // If the return type and argument types are the same, this is a
2151        // standard shufflevector instruction.  If the types are different,
2152        // then the shuffle is widening or truncating the input vectors, and
2153        // the argument type must also be encoded.
2154        if (C->getType() == C->getOperand(0)->getType()) {
2155          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2156        } else {
2157          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2158          Record.push_back(getTypeID(C->getOperand(0)->getType()));
2159        }
2160        Record.push_back(VE.getValueID(C->getOperand(0)));
2161        Record.push_back(VE.getValueID(C->getOperand(1)));
2162        Record.push_back(VE.getValueID(C->getOperand(2)));
2163        break;
2164      case Instruction::ICmp:
2165      case Instruction::FCmp:
2166        Code = bitc::CST_CODE_CE_CMP;
2167        Record.push_back(getTypeID(C->getOperand(0)->getType()));
2168        Record.push_back(VE.getValueID(C->getOperand(0)));
2169        Record.push_back(VE.getValueID(C->getOperand(1)));
2170        Record.push_back(CE->getPredicate());
2171        break;
2172      }
2173    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2174      Code = bitc::CST_CODE_BLOCKADDRESS;
2175      Record.push_back(getTypeID(BA->getFunction()->getType()));
2176      Record.push_back(VE.getValueID(BA->getFunction()));
2177      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2178    } else {
2179#ifndef NDEBUG
2180      C->dump();
2181#endif
2182      llvm_unreachable("Unknown constant!");
2183    }
2184    Stream.EmitRecord(Code, Record, AbbrevToUse);
2185    Record.clear();
2186  }
2187
2188  Stream.ExitBlock();
2189}
2190
2191void DXILBitcodeWriter::writeModuleConstants() {
2192  const ValueEnumerator::ValueList &Vals = VE.getValues();
2193
2194  // Find the first constant to emit, which is the first non-globalvalue value.
2195  // We know globalvalues have been emitted by WriteModuleInfo.
2196  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2197    if (!isa<GlobalValue>(Vals[i].first)) {
2198      writeConstants(i, Vals.size(), true);
2199      return;
2200    }
2201  }
2202}
2203
2204/// pushValueAndType - The file has to encode both the value and type id for
2205/// many values, because we need to know what type to create for forward
2206/// references.  However, most operands are not forward references, so this type
2207/// field is not needed.
2208///
2209/// This function adds V's value ID to Vals.  If the value ID is higher than the
2210/// instruction ID, then it is a forward reference, and it also includes the
2211/// type ID.  The value ID that is written is encoded relative to the InstID.
2212bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2213                                         SmallVectorImpl<unsigned> &Vals) {
2214  unsigned ValID = VE.getValueID(V);
2215  // Make encoding relative to the InstID.
2216  Vals.push_back(InstID - ValID);
2217  if (ValID >= InstID) {
2218    Vals.push_back(getTypeID(V->getType(), V));
2219    return true;
2220  }
2221  return false;
2222}
2223
2224/// pushValue - Like pushValueAndType, but where the type of the value is
2225/// omitted (perhaps it was already encoded in an earlier operand).
2226void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2227                                  SmallVectorImpl<unsigned> &Vals) {
2228  unsigned ValID = VE.getValueID(V);
2229  Vals.push_back(InstID - ValID);
2230}
2231
2232void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2233                                        SmallVectorImpl<uint64_t> &Vals) {
2234  unsigned ValID = VE.getValueID(V);
2235  int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2236  emitSignedInt64(Vals, diff);
2237}
2238
2239/// WriteInstruction - Emit an instruction
2240void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2241                                         SmallVectorImpl<unsigned> &Vals) {
2242  unsigned Code = 0;
2243  unsigned AbbrevToUse = 0;
2244  VE.setInstructionID(&I);
2245  switch (I.getOpcode()) {
2246  default:
2247    if (Instruction::isCast(I.getOpcode())) {
2248      Code = bitc::FUNC_CODE_INST_CAST;
2249      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2250        AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2251      Vals.push_back(getTypeID(I.getType(), &I));
2252      Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2253    } else {
2254      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2255      Code = bitc::FUNC_CODE_INST_BINOP;
2256      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2257        AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2258      pushValue(I.getOperand(1), InstID, Vals);
2259      Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2260      uint64_t Flags = getOptimizationFlags(&I);
2261      if (Flags != 0) {
2262        if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2263          AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2264        Vals.push_back(Flags);
2265      }
2266    }
2267    break;
2268
2269  case Instruction::GetElementPtr: {
2270    Code = bitc::FUNC_CODE_INST_GEP;
2271    AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2272    auto &GEPInst = cast<GetElementPtrInst>(I);
2273    Vals.push_back(GEPInst.isInBounds());
2274    Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
2275    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2276      pushValueAndType(I.getOperand(i), InstID, Vals);
2277    break;
2278  }
2279  case Instruction::ExtractValue: {
2280    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2281    pushValueAndType(I.getOperand(0), InstID, Vals);
2282    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2283    Vals.append(EVI->idx_begin(), EVI->idx_end());
2284    break;
2285  }
2286  case Instruction::InsertValue: {
2287    Code = bitc::FUNC_CODE_INST_INSERTVAL;
2288    pushValueAndType(I.getOperand(0), InstID, Vals);
2289    pushValueAndType(I.getOperand(1), InstID, Vals);
2290    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2291    Vals.append(IVI->idx_begin(), IVI->idx_end());
2292    break;
2293  }
2294  case Instruction::Select:
2295    Code = bitc::FUNC_CODE_INST_VSELECT;
2296    pushValueAndType(I.getOperand(1), InstID, Vals);
2297    pushValue(I.getOperand(2), InstID, Vals);
2298    pushValueAndType(I.getOperand(0), InstID, Vals);
2299    break;
2300  case Instruction::ExtractElement:
2301    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2302    pushValueAndType(I.getOperand(0), InstID, Vals);
2303    pushValueAndType(I.getOperand(1), InstID, Vals);
2304    break;
2305  case Instruction::InsertElement:
2306    Code = bitc::FUNC_CODE_INST_INSERTELT;
2307    pushValueAndType(I.getOperand(0), InstID, Vals);
2308    pushValue(I.getOperand(1), InstID, Vals);
2309    pushValueAndType(I.getOperand(2), InstID, Vals);
2310    break;
2311  case Instruction::ShuffleVector:
2312    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2313    pushValueAndType(I.getOperand(0), InstID, Vals);
2314    pushValue(I.getOperand(1), InstID, Vals);
2315    pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID,
2316              Vals);
2317    break;
2318  case Instruction::ICmp:
2319  case Instruction::FCmp: {
2320    // compare returning Int1Ty or vector of Int1Ty
2321    Code = bitc::FUNC_CODE_INST_CMP2;
2322    pushValueAndType(I.getOperand(0), InstID, Vals);
2323    pushValue(I.getOperand(1), InstID, Vals);
2324    Vals.push_back(cast<CmpInst>(I).getPredicate());
2325    uint64_t Flags = getOptimizationFlags(&I);
2326    if (Flags != 0)
2327      Vals.push_back(Flags);
2328    break;
2329  }
2330
2331  case Instruction::Ret: {
2332    Code = bitc::FUNC_CODE_INST_RET;
2333    unsigned NumOperands = I.getNumOperands();
2334    if (NumOperands == 0)
2335      AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2336    else if (NumOperands == 1) {
2337      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2338        AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2339    } else {
2340      for (unsigned i = 0, e = NumOperands; i != e; ++i)
2341        pushValueAndType(I.getOperand(i), InstID, Vals);
2342    }
2343  } break;
2344  case Instruction::Br: {
2345    Code = bitc::FUNC_CODE_INST_BR;
2346    const BranchInst &II = cast<BranchInst>(I);
2347    Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2348    if (II.isConditional()) {
2349      Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2350      pushValue(II.getCondition(), InstID, Vals);
2351    }
2352  } break;
2353  case Instruction::Switch: {
2354    Code = bitc::FUNC_CODE_INST_SWITCH;
2355    const SwitchInst &SI = cast<SwitchInst>(I);
2356    Vals.push_back(getTypeID(SI.getCondition()->getType()));
2357    pushValue(SI.getCondition(), InstID, Vals);
2358    Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2359    for (auto Case : SI.cases()) {
2360      Vals.push_back(VE.getValueID(Case.getCaseValue()));
2361      Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2362    }
2363  } break;
2364  case Instruction::IndirectBr:
2365    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2366    Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2367    // Encode the address operand as relative, but not the basic blocks.
2368    pushValue(I.getOperand(0), InstID, Vals);
2369    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2370      Vals.push_back(VE.getValueID(I.getOperand(i)));
2371    break;
2372
2373  case Instruction::Invoke: {
2374    const InvokeInst *II = cast<InvokeInst>(&I);
2375    const Value *Callee = II->getCalledOperand();
2376    FunctionType *FTy = II->getFunctionType();
2377    Code = bitc::FUNC_CODE_INST_INVOKE;
2378
2379    Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2380    Vals.push_back(II->getCallingConv() | 1 << 13);
2381    Vals.push_back(VE.getValueID(II->getNormalDest()));
2382    Vals.push_back(VE.getValueID(II->getUnwindDest()));
2383    Vals.push_back(getTypeID(FTy));
2384    pushValueAndType(Callee, InstID, Vals);
2385
2386    // Emit value #'s for the fixed parameters.
2387    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2388      pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2389
2390    // Emit type/value pairs for varargs params.
2391    if (FTy->isVarArg()) {
2392      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2393           ++i)
2394        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2395    }
2396    break;
2397  }
2398  case Instruction::Resume:
2399    Code = bitc::FUNC_CODE_INST_RESUME;
2400    pushValueAndType(I.getOperand(0), InstID, Vals);
2401    break;
2402  case Instruction::Unreachable:
2403    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2404    AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2405    break;
2406
2407  case Instruction::PHI: {
2408    const PHINode &PN = cast<PHINode>(I);
2409    Code = bitc::FUNC_CODE_INST_PHI;
2410    // With the newer instruction encoding, forward references could give
2411    // negative valued IDs.  This is most common for PHIs, so we use
2412    // signed VBRs.
2413    SmallVector<uint64_t, 128> Vals64;
2414    Vals64.push_back(getTypeID(PN.getType()));
2415    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2416      pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2417      Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2418    }
2419    // Emit a Vals64 vector and exit.
2420    Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2421    Vals64.clear();
2422    return;
2423  }
2424
2425  case Instruction::LandingPad: {
2426    const LandingPadInst &LP = cast<LandingPadInst>(I);
2427    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2428    Vals.push_back(getTypeID(LP.getType()));
2429    Vals.push_back(LP.isCleanup());
2430    Vals.push_back(LP.getNumClauses());
2431    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2432      if (LP.isCatch(I))
2433        Vals.push_back(LandingPadInst::Catch);
2434      else
2435        Vals.push_back(LandingPadInst::Filter);
2436      pushValueAndType(LP.getClause(I), InstID, Vals);
2437    }
2438    break;
2439  }
2440
2441  case Instruction::Alloca: {
2442    Code = bitc::FUNC_CODE_INST_ALLOCA;
2443    const AllocaInst &AI = cast<AllocaInst>(I);
2444    Vals.push_back(getTypeID(AI.getAllocatedType()));
2445    Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2446    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2447    unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1;
2448    assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2449    AlignRecord |= AI.isUsedWithInAlloca() << 5;
2450    AlignRecord |= 1 << 6;
2451    Vals.push_back(AlignRecord);
2452    break;
2453  }
2454
2455  case Instruction::Load:
2456    if (cast<LoadInst>(I).isAtomic()) {
2457      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2458      pushValueAndType(I.getOperand(0), InstID, Vals);
2459    } else {
2460      Code = bitc::FUNC_CODE_INST_LOAD;
2461      if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2462        AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2463    }
2464    Vals.push_back(getTypeID(I.getType()));
2465    Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
2466    Vals.push_back(cast<LoadInst>(I).isVolatile());
2467    if (cast<LoadInst>(I).isAtomic()) {
2468      Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2469      Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2470    }
2471    break;
2472  case Instruction::Store:
2473    if (cast<StoreInst>(I).isAtomic())
2474      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2475    else
2476      Code = bitc::FUNC_CODE_INST_STORE;
2477    pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2478    pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2479    Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
2480    Vals.push_back(cast<StoreInst>(I).isVolatile());
2481    if (cast<StoreInst>(I).isAtomic()) {
2482      Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2483      Vals.push_back(
2484          getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2485    }
2486    break;
2487  case Instruction::AtomicCmpXchg:
2488    Code = bitc::FUNC_CODE_INST_CMPXCHG;
2489    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2490    pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2491    pushValue(I.getOperand(2), InstID, Vals);        // newval.
2492    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2493    Vals.push_back(
2494        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2495    Vals.push_back(
2496        getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2497    Vals.push_back(
2498        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2499    Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2500    break;
2501  case Instruction::AtomicRMW:
2502    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2503    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2504    pushValue(I.getOperand(1), InstID, Vals);        // val.
2505    Vals.push_back(
2506        getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2507    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2508    Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2509    Vals.push_back(
2510        getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2511    break;
2512  case Instruction::Fence:
2513    Code = bitc::FUNC_CODE_INST_FENCE;
2514    Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2515    Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2516    break;
2517  case Instruction::Call: {
2518    const CallInst &CI = cast<CallInst>(I);
2519    FunctionType *FTy = CI.getFunctionType();
2520
2521    Code = bitc::FUNC_CODE_INST_CALL;
2522
2523    Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2524    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2525                   unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2526    Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction()));
2527    pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2528
2529    // Emit value #'s for the fixed parameters.
2530    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2531      // Check for labels (can happen with asm labels).
2532      if (FTy->getParamType(i)->isLabelTy())
2533        Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2534      else
2535        pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2536    }
2537
2538    // Emit type/value pairs for varargs params.
2539    if (FTy->isVarArg()) {
2540      for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2541        pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2542    }
2543    break;
2544  }
2545  case Instruction::VAArg:
2546    Code = bitc::FUNC_CODE_INST_VAARG;
2547    Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
2548    pushValue(I.getOperand(0), InstID, Vals);              // valist.
2549    Vals.push_back(getTypeID(I.getType()));                // restype.
2550    break;
2551  }
2552
2553  Stream.EmitRecord(Code, Vals, AbbrevToUse);
2554  Vals.clear();
2555}
2556
2557// Emit names for globals/functions etc.
2558void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2559    const ValueSymbolTable &VST) {
2560  if (VST.empty())
2561    return;
2562  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2563
2564  SmallVector<unsigned, 64> NameVals;
2565
2566  // HLSL Change
2567  // Read the named values from a sorted list instead of the original list
2568  // to ensure the binary is the same no matter what values ever existed.
2569  SmallVector<const ValueName *, 16> SortedTable;
2570
2571  for (auto &VI : VST) {
2572    SortedTable.push_back(VI.second->getValueName());
2573  }
2574  // The keys are unique, so there shouldn't be stability issues.
2575  llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) {
2576    return A->first() < B->first();
2577  });
2578
2579  for (const ValueName *SI : SortedTable) {
2580    auto &Name = *SI;
2581
2582    // Figure out the encoding to use for the name.
2583    bool is7Bit = true;
2584    bool isChar6 = true;
2585    for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2586         C != E; ++C) {
2587      if (isChar6)
2588        isChar6 = BitCodeAbbrevOp::isChar6(*C);
2589      if ((unsigned char)*C & 128) {
2590        is7Bit = false;
2591        break; // don't bother scanning the rest.
2592      }
2593    }
2594
2595    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2596
2597    // VST_ENTRY:   [valueid, namechar x N]
2598    // VST_BBENTRY: [bbid, namechar x N]
2599    unsigned Code;
2600    if (isa<BasicBlock>(SI->getValue())) {
2601      Code = bitc::VST_CODE_BBENTRY;
2602      if (isChar6)
2603        AbbrevToUse = VST_BBENTRY_6_ABBREV;
2604    } else {
2605      Code = bitc::VST_CODE_ENTRY;
2606      if (isChar6)
2607        AbbrevToUse = VST_ENTRY_6_ABBREV;
2608      else if (is7Bit)
2609        AbbrevToUse = VST_ENTRY_7_ABBREV;
2610    }
2611
2612    NameVals.push_back(VE.getValueID(SI->getValue()));
2613    for (const char *P = Name.getKeyData(),
2614                    *E = Name.getKeyData() + Name.getKeyLength();
2615         P != E; ++P)
2616      NameVals.push_back((unsigned char)*P);
2617
2618    // Emit the finished record.
2619    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2620    NameVals.clear();
2621  }
2622  Stream.ExitBlock();
2623}
2624
2625/// Emit a function body to the module stream.
2626void DXILBitcodeWriter::writeFunction(const Function &F) {
2627  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2628  VE.incorporateFunction(F);
2629
2630  SmallVector<unsigned, 64> Vals;
2631
2632  // Emit the number of basic blocks, so the reader can create them ahead of
2633  // time.
2634  Vals.push_back(VE.getBasicBlocks().size());
2635  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2636  Vals.clear();
2637
2638  // If there are function-local constants, emit them now.
2639  unsigned CstStart, CstEnd;
2640  VE.getFunctionConstantRange(CstStart, CstEnd);
2641  writeConstants(CstStart, CstEnd, false);
2642
2643  // If there is function-local metadata, emit it now.
2644  writeFunctionMetadata(F);
2645
2646  // Keep a running idea of what the instruction ID is.
2647  unsigned InstID = CstEnd;
2648
2649  bool NeedsMetadataAttachment = F.hasMetadata();
2650
2651  DILocation *LastDL = nullptr;
2652
2653  // Finally, emit all the instructions, in order.
2654  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2655    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2656         ++I) {
2657      writeInstruction(*I, InstID, Vals);
2658
2659      if (!I->getType()->isVoidTy())
2660        ++InstID;
2661
2662      // If the instruction has metadata, write a metadata attachment later.
2663      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2664
2665      // If the instruction has a debug location, emit it.
2666      DILocation *DL = I->getDebugLoc();
2667      if (!DL)
2668        continue;
2669
2670      if (DL == LastDL) {
2671        // Just repeat the same debug loc as last time.
2672        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2673        continue;
2674      }
2675
2676      Vals.push_back(DL->getLine());
2677      Vals.push_back(DL->getColumn());
2678      Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2679      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2680      Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2681      Vals.clear();
2682
2683      LastDL = DL;
2684    }
2685
2686  // Emit names for all the instructions etc.
2687  if (auto *Symtab = F.getValueSymbolTable())
2688    writeFunctionLevelValueSymbolTable(*Symtab);
2689
2690  if (NeedsMetadataAttachment)
2691    writeFunctionMetadataAttachment(F);
2692
2693  VE.purgeFunction();
2694  Stream.ExitBlock();
2695}
2696
2697// Emit blockinfo, which defines the standard abbreviations etc.
2698void DXILBitcodeWriter::writeBlockInfo() {
2699  // We only want to emit block info records for blocks that have multiple
2700  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2701  // Other blocks can define their abbrevs inline.
2702  Stream.EnterBlockInfoBlock();
2703
2704  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2705    auto Abbv = std::make_shared<BitCodeAbbrev>();
2706    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2707    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2708    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2709    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2710    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2711                                   std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2712      assert(false && "Unexpected abbrev ordering!");
2713  }
2714
2715  { // 7-bit fixed width VST_ENTRY strings.
2716    auto Abbv = std::make_shared<BitCodeAbbrev>();
2717    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2718    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2719    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2720    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2721    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2722                                   std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2723      assert(false && "Unexpected abbrev ordering!");
2724  }
2725  { // 6-bit char6 VST_ENTRY strings.
2726    auto Abbv = std::make_shared<BitCodeAbbrev>();
2727    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2728    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2729    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2730    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2731    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2732                                   std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2733      assert(false && "Unexpected abbrev ordering!");
2734  }
2735  { // 6-bit char6 VST_BBENTRY strings.
2736    auto Abbv = std::make_shared<BitCodeAbbrev>();
2737    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2738    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2739    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2740    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2741    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2742                                   std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2743      assert(false && "Unexpected abbrev ordering!");
2744  }
2745
2746  { // SETTYPE abbrev for CONSTANTS_BLOCK.
2747    auto Abbv = std::make_shared<BitCodeAbbrev>();
2748    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2749    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2750                              VE.computeBitsRequiredForTypeIndicies()));
2751    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2752        CONSTANTS_SETTYPE_ABBREV)
2753      assert(false && "Unexpected abbrev ordering!");
2754  }
2755
2756  { // INTEGER abbrev for CONSTANTS_BLOCK.
2757    auto Abbv = std::make_shared<BitCodeAbbrev>();
2758    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2759    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2760    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2761        CONSTANTS_INTEGER_ABBREV)
2762      assert(false && "Unexpected abbrev ordering!");
2763  }
2764
2765  { // CE_CAST abbrev for CONSTANTS_BLOCK.
2766    auto Abbv = std::make_shared<BitCodeAbbrev>();
2767    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2768    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2769    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,      // typeid
2770                              VE.computeBitsRequiredForTypeIndicies()));
2771    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2772
2773    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2774        CONSTANTS_CE_CAST_Abbrev)
2775      assert(false && "Unexpected abbrev ordering!");
2776  }
2777  { // NULL abbrev for CONSTANTS_BLOCK.
2778    auto Abbv = std::make_shared<BitCodeAbbrev>();
2779    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2780    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2781        CONSTANTS_NULL_Abbrev)
2782      assert(false && "Unexpected abbrev ordering!");
2783  }
2784
2785  // FIXME: This should only use space for first class types!
2786
2787  { // INST_LOAD abbrev for FUNCTION_BLOCK.
2788    auto Abbv = std::make_shared<BitCodeAbbrev>();
2789    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2790    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2791    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2792                              VE.computeBitsRequiredForTypeIndicies()));
2793    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // Align
2794    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2795    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2796        (unsigned)FUNCTION_INST_LOAD_ABBREV)
2797      assert(false && "Unexpected abbrev ordering!");
2798  }
2799  { // INST_BINOP abbrev for FUNCTION_BLOCK.
2800    auto Abbv = std::make_shared<BitCodeAbbrev>();
2801    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2802    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2803    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2804    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2805    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2806        (unsigned)FUNCTION_INST_BINOP_ABBREV)
2807      assert(false && "Unexpected abbrev ordering!");
2808  }
2809  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2810    auto Abbv = std::make_shared<BitCodeAbbrev>();
2811    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2812    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2813    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2814    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2815    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2816    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2817        (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2818      assert(false && "Unexpected abbrev ordering!");
2819  }
2820  { // INST_CAST abbrev for FUNCTION_BLOCK.
2821    auto Abbv = std::make_shared<BitCodeAbbrev>();
2822    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2823    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2824    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2825                              VE.computeBitsRequiredForTypeIndicies()));
2826    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2827    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2828        (unsigned)FUNCTION_INST_CAST_ABBREV)
2829      assert(false && "Unexpected abbrev ordering!");
2830  }
2831
2832  { // INST_RET abbrev for FUNCTION_BLOCK.
2833    auto Abbv = std::make_shared<BitCodeAbbrev>();
2834    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2835    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2836        (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2837      assert(false && "Unexpected abbrev ordering!");
2838  }
2839  { // INST_RET abbrev for FUNCTION_BLOCK.
2840    auto Abbv = std::make_shared<BitCodeAbbrev>();
2841    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2842    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2843    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2844        (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2845      assert(false && "Unexpected abbrev ordering!");
2846  }
2847  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2848    auto Abbv = std::make_shared<BitCodeAbbrev>();
2849    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2850    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2851        (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2852      assert(false && "Unexpected abbrev ordering!");
2853  }
2854  {
2855    auto Abbv = std::make_shared<BitCodeAbbrev>();
2856    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2857    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2858    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2859                              Log2_32_Ceil(VE.getTypes().size() + 1)));
2860    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2861    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2862    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2863        (unsigned)FUNCTION_INST_GEP_ABBREV)
2864      assert(false && "Unexpected abbrev ordering!");
2865  }
2866
2867  Stream.ExitBlock();
2868}
2869
2870void DXILBitcodeWriter::writeModuleVersion() {
2871  // VERSION: [version#]
2872  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2873}
2874
2875/// WriteModule - Emit the specified module to the bitstream.
2876void DXILBitcodeWriter::write() {
2877  // The identification block is new since llvm-3.7, but the old bitcode reader
2878  // will skip it.
2879  // writeIdentificationBlock(Stream);
2880
2881  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2882
2883  // It is redundant to fully-specify this here, but nice to make it explicit
2884  // so that it is clear the DXIL module version is different.
2885  DXILBitcodeWriter::writeModuleVersion();
2886
2887  // Emit blockinfo, which defines the standard abbreviations etc.
2888  writeBlockInfo();
2889
2890  // Emit information about attribute groups.
2891  writeAttributeGroupTable();
2892
2893  // Emit information about parameter attributes.
2894  writeAttributeTable();
2895
2896  // Emit information describing all of the types in the module.
2897  writeTypeTable();
2898
2899  writeComdats();
2900
2901  // Emit top-level description of module, including target triple, inline asm,
2902  // descriptors for global variables, and function prototype info.
2903  writeModuleInfo();
2904
2905  // Emit constants.
2906  writeModuleConstants();
2907
2908  // Emit metadata.
2909  writeModuleMetadataKinds();
2910
2911  // Emit metadata.
2912  writeModuleMetadata();
2913
2914  // Emit names for globals/functions etc.
2915  // DXIL uses the same format for module-level value symbol table as for the
2916  // function level table.
2917  writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2918
2919  // Emit function bodies.
2920  for (const Function &F : M)
2921    if (!F.isDeclaration())
2922      writeFunction(F);
2923
2924  Stream.ExitBlock();
2925}
2926