1//==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of some scaled number algorithms.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Support/ScaledNumber.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/Support/Debug.h"
17#include "llvm/Support/raw_ostream.h"
18
19using namespace llvm;
20using namespace llvm::ScaledNumbers;
21
22std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
23                                                       uint64_t RHS) {
24  // Separate into two 32-bit digits (U.L).
25  auto getU = [](uint64_t N) { return N >> 32; };
26  auto getL = [](uint64_t N) { return N & UINT32_MAX; };
27  uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
28
29  // Compute cross products.
30  uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
31
32  // Sum into two 64-bit digits.
33  uint64_t Upper = P1, Lower = P4;
34  auto addWithCarry = [&](uint64_t N) {
35    uint64_t NewLower = Lower + (getL(N) << 32);
36    Upper += getU(N) + (NewLower < Lower);
37    Lower = NewLower;
38  };
39  addWithCarry(P2);
40  addWithCarry(P3);
41
42  // Check whether the upper digit is empty.
43  if (!Upper)
44    return std::make_pair(Lower, 0);
45
46  // Shift as little as possible to maximize precision.
47  unsigned LeadingZeros = llvm::countl_zero(Upper);
48  int Shift = 64 - LeadingZeros;
49  if (LeadingZeros)
50    Upper = Upper << LeadingZeros | Lower >> Shift;
51  return getRounded(Upper, Shift,
52                    Shift && (Lower & UINT64_C(1) << (Shift - 1)));
53}
54
55static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
56
57std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
58                                                     uint32_t Divisor) {
59  assert(Dividend && "expected non-zero dividend");
60  assert(Divisor && "expected non-zero divisor");
61
62  // Use 64-bit math and canonicalize the dividend to gain precision.
63  uint64_t Dividend64 = Dividend;
64  int Shift = 0;
65  if (int Zeros = llvm::countl_zero(Dividend64)) {
66    Shift -= Zeros;
67    Dividend64 <<= Zeros;
68  }
69  uint64_t Quotient = Dividend64 / Divisor;
70  uint64_t Remainder = Dividend64 % Divisor;
71
72  // If Quotient needs to be shifted, leave the rounding to getAdjusted().
73  if (Quotient > UINT32_MAX)
74    return getAdjusted<uint32_t>(Quotient, Shift);
75
76  // Round based on the value of the next bit.
77  return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
78}
79
80std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
81                                                     uint64_t Divisor) {
82  assert(Dividend && "expected non-zero dividend");
83  assert(Divisor && "expected non-zero divisor");
84
85  // Minimize size of divisor.
86  int Shift = 0;
87  if (int Zeros = llvm::countr_zero(Divisor)) {
88    Shift -= Zeros;
89    Divisor >>= Zeros;
90  }
91
92  // Check for powers of two.
93  if (Divisor == 1)
94    return std::make_pair(Dividend, Shift);
95
96  // Maximize size of dividend.
97  if (int Zeros = llvm::countl_zero(Dividend)) {
98    Shift -= Zeros;
99    Dividend <<= Zeros;
100  }
101
102  // Start with the result of a divide.
103  uint64_t Quotient = Dividend / Divisor;
104  Dividend %= Divisor;
105
106  // Continue building the quotient with long division.
107  while (!(Quotient >> 63) && Dividend) {
108    // Shift Dividend and check for overflow.
109    bool IsOverflow = Dividend >> 63;
110    Dividend <<= 1;
111    --Shift;
112
113    // Get the next bit of Quotient.
114    Quotient <<= 1;
115    if (IsOverflow || Divisor <= Dividend) {
116      Quotient |= 1;
117      Dividend -= Divisor;
118    }
119  }
120
121  return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
122}
123
124int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
125  assert(ScaleDiff >= 0 && "wrong argument order");
126  assert(ScaleDiff < 64 && "numbers too far apart");
127
128  uint64_t L_adjusted = L >> ScaleDiff;
129  if (L_adjusted < R)
130    return -1;
131  if (L_adjusted > R)
132    return 1;
133
134  return L > L_adjusted << ScaleDiff ? 1 : 0;
135}
136
137static void appendDigit(std::string &Str, unsigned D) {
138  assert(D < 10);
139  Str += '0' + D % 10;
140}
141
142static void appendNumber(std::string &Str, uint64_t N) {
143  while (N) {
144    appendDigit(Str, N % 10);
145    N /= 10;
146  }
147}
148
149static bool doesRoundUp(char Digit) {
150  switch (Digit) {
151  case '5':
152  case '6':
153  case '7':
154  case '8':
155  case '9':
156    return true;
157  default:
158    return false;
159  }
160}
161
162static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
163  assert(E >= ScaledNumbers::MinScale);
164  assert(E <= ScaledNumbers::MaxScale);
165
166  // Find a new E, but don't let it increase past MaxScale.
167  int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
168  int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
169  int Shift = 63 - (NewE - E);
170  assert(Shift <= LeadingZeros);
171  assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
172  assert(Shift >= 0 && Shift < 64 && "undefined behavior");
173  D <<= Shift;
174  E = NewE;
175
176  // Check for a denormal.
177  unsigned AdjustedE = E + 16383;
178  if (!(D >> 63)) {
179    assert(E == ScaledNumbers::MaxScale);
180    AdjustedE = 0;
181  }
182
183  // Build the float and print it.
184  uint64_t RawBits[2] = {D, AdjustedE};
185  APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits));
186  SmallVector<char, 24> Chars;
187  Float.toString(Chars, Precision, 0);
188  return std::string(Chars.begin(), Chars.end());
189}
190
191static std::string stripTrailingZeros(const std::string &Float) {
192  size_t NonZero = Float.find_last_not_of('0');
193  assert(NonZero != std::string::npos && "no . in floating point string");
194
195  if (Float[NonZero] == '.')
196    ++NonZero;
197
198  return Float.substr(0, NonZero + 1);
199}
200
201std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
202                                       unsigned Precision) {
203  if (!D)
204    return "0.0";
205
206  // Canonicalize exponent and digits.
207  uint64_t Above0 = 0;
208  uint64_t Below0 = 0;
209  uint64_t Extra = 0;
210  int ExtraShift = 0;
211  if (E == 0) {
212    Above0 = D;
213  } else if (E > 0) {
214    if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
215      D <<= Shift;
216      E -= Shift;
217
218      if (!E)
219        Above0 = D;
220    }
221  } else if (E > -64) {
222    Above0 = D >> -E;
223    Below0 = D << (64 + E);
224  } else if (E == -64) {
225    // Special case: shift by 64 bits is undefined behavior.
226    Below0 = D;
227  } else if (E > -120) {
228    Below0 = D >> (-E - 64);
229    Extra = D << (128 + E);
230    ExtraShift = -64 - E;
231  }
232
233  // Fall back on APFloat for very small and very large numbers.
234  if (!Above0 && !Below0)
235    return toStringAPFloat(D, E, Precision);
236
237  // Append the digits before the decimal.
238  std::string Str;
239  size_t DigitsOut = 0;
240  if (Above0) {
241    appendNumber(Str, Above0);
242    DigitsOut = Str.size();
243  } else
244    appendDigit(Str, 0);
245  std::reverse(Str.begin(), Str.end());
246
247  // Return early if there's nothing after the decimal.
248  if (!Below0)
249    return Str + ".0";
250
251  // Append the decimal and beyond.
252  Str += '.';
253  uint64_t Error = UINT64_C(1) << (64 - Width);
254
255  // We need to shift Below0 to the right to make space for calculating
256  // digits.  Save the precision we're losing in Extra.
257  Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
258  Below0 >>= 4;
259  size_t SinceDot = 0;
260  size_t AfterDot = Str.size();
261  do {
262    if (ExtraShift) {
263      --ExtraShift;
264      Error *= 5;
265    } else
266      Error *= 10;
267
268    Below0 *= 10;
269    Extra *= 10;
270    Below0 += (Extra >> 60);
271    Extra = Extra & (UINT64_MAX >> 4);
272    appendDigit(Str, Below0 >> 60);
273    Below0 = Below0 & (UINT64_MAX >> 4);
274    if (DigitsOut || Str.back() != '0')
275      ++DigitsOut;
276    ++SinceDot;
277  } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
278           (!Precision || DigitsOut <= Precision || SinceDot < 2));
279
280  // Return early for maximum precision.
281  if (!Precision || DigitsOut <= Precision)
282    return stripTrailingZeros(Str);
283
284  // Find where to truncate.
285  size_t Truncate =
286      std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
287
288  // Check if there's anything to truncate.
289  if (Truncate >= Str.size())
290    return stripTrailingZeros(Str);
291
292  bool Carry = doesRoundUp(Str[Truncate]);
293  if (!Carry)
294    return stripTrailingZeros(Str.substr(0, Truncate));
295
296  // Round with the first truncated digit.
297  for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
298       I != E; ++I) {
299    if (*I == '.')
300      continue;
301    if (*I == '9') {
302      *I = '0';
303      continue;
304    }
305
306    ++*I;
307    Carry = false;
308    break;
309  }
310
311  // Add "1" in front if we still need to carry.
312  return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
313}
314
315raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
316                                     int Width, unsigned Precision) {
317  return OS << toString(D, E, Width, Precision);
318}
319
320void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
321  print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
322                                << "]";
323}
324