1/*===-- blake3.c - BLAKE3 C Implementation ------------------------*- C -*-===*\
2|*                                                                            *|
3|* Released into the public domain with CC0 1.0                               *|
4|* See 'llvm/lib/Support/BLAKE3/LICENSE' for info.                            *|
5|* SPDX-License-Identifier: CC0-1.0                                           *|
6|*                                                                            *|
7\*===----------------------------------------------------------------------===*/
8
9#include <assert.h>
10#include <stdbool.h>
11#include <string.h>
12
13#include "blake3_impl.h"
14
15const char *llvm_blake3_version(void) { return BLAKE3_VERSION_STRING; }
16
17INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8],
18                             uint8_t flags) {
19  memcpy(self->cv, key, BLAKE3_KEY_LEN);
20  self->chunk_counter = 0;
21  memset(self->buf, 0, BLAKE3_BLOCK_LEN);
22  self->buf_len = 0;
23  self->blocks_compressed = 0;
24  self->flags = flags;
25}
26
27INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8],
28                              uint64_t chunk_counter) {
29  memcpy(self->cv, key, BLAKE3_KEY_LEN);
30  self->chunk_counter = chunk_counter;
31  self->blocks_compressed = 0;
32  memset(self->buf, 0, BLAKE3_BLOCK_LEN);
33  self->buf_len = 0;
34}
35
36INLINE size_t chunk_state_len(const blake3_chunk_state *self) {
37  return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) +
38         ((size_t)self->buf_len);
39}
40
41INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self,
42                                   const uint8_t *input, size_t input_len) {
43  size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len);
44  if (take > input_len) {
45    take = input_len;
46  }
47  uint8_t *dest = self->buf + ((size_t)self->buf_len);
48  memcpy(dest, input, take);
49  self->buf_len += (uint8_t)take;
50  return take;
51}
52
53INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) {
54  if (self->blocks_compressed == 0) {
55    return CHUNK_START;
56  } else {
57    return 0;
58  }
59}
60
61typedef struct {
62  uint32_t input_cv[8];
63  uint64_t counter;
64  uint8_t block[BLAKE3_BLOCK_LEN];
65  uint8_t block_len;
66  uint8_t flags;
67} output_t;
68
69INLINE output_t make_output(const uint32_t input_cv[8],
70                            const uint8_t block[BLAKE3_BLOCK_LEN],
71                            uint8_t block_len, uint64_t counter,
72                            uint8_t flags) {
73  output_t ret;
74  memcpy(ret.input_cv, input_cv, 32);
75  memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
76  ret.block_len = block_len;
77  ret.counter = counter;
78  ret.flags = flags;
79  return ret;
80}
81
82// Chaining values within a given chunk (specifically the compress_in_place
83// interface) are represented as words. This avoids unnecessary bytes<->words
84// conversion overhead in the portable implementation. However, the hash_many
85// interface handles both user input and parent node blocks, so it accepts
86// bytes. For that reason, chaining values in the CV stack are represented as
87// bytes.
88INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) {
89  uint32_t cv_words[8];
90  memcpy(cv_words, self->input_cv, 32);
91  blake3_compress_in_place(cv_words, self->block, self->block_len,
92                           self->counter, self->flags);
93  store_cv_words(cv, cv_words);
94}
95
96INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out,
97                              size_t out_len) {
98  uint64_t output_block_counter = seek / 64;
99  size_t offset_within_block = seek % 64;
100  uint8_t wide_buf[64];
101  while (out_len > 0) {
102    blake3_compress_xof(self->input_cv, self->block, self->block_len,
103                        output_block_counter, self->flags | ROOT, wide_buf);
104    size_t available_bytes = 64 - offset_within_block;
105    size_t memcpy_len;
106    if (out_len > available_bytes) {
107      memcpy_len = available_bytes;
108    } else {
109      memcpy_len = out_len;
110    }
111    memcpy(out, wide_buf + offset_within_block, memcpy_len);
112    out += memcpy_len;
113    out_len -= memcpy_len;
114    output_block_counter += 1;
115    offset_within_block = 0;
116  }
117}
118
119INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input,
120                               size_t input_len) {
121  if (self->buf_len > 0) {
122    size_t take = chunk_state_fill_buf(self, input, input_len);
123    input += take;
124    input_len -= take;
125    if (input_len > 0) {
126      blake3_compress_in_place(
127          self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter,
128          self->flags | chunk_state_maybe_start_flag(self));
129      self->blocks_compressed += 1;
130      self->buf_len = 0;
131      memset(self->buf, 0, BLAKE3_BLOCK_LEN);
132    }
133  }
134
135  while (input_len > BLAKE3_BLOCK_LEN) {
136    blake3_compress_in_place(self->cv, input, BLAKE3_BLOCK_LEN,
137                             self->chunk_counter,
138                             self->flags | chunk_state_maybe_start_flag(self));
139    self->blocks_compressed += 1;
140    input += BLAKE3_BLOCK_LEN;
141    input_len -= BLAKE3_BLOCK_LEN;
142  }
143
144  size_t take = chunk_state_fill_buf(self, input, input_len);
145  input += take;
146  input_len -= take;
147}
148
149INLINE output_t chunk_state_output(const blake3_chunk_state *self) {
150  uint8_t block_flags =
151      self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END;
152  return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter,
153                     block_flags);
154}
155
156INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
157                              const uint32_t key[8], uint8_t flags) {
158  return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT);
159}
160
161// Given some input larger than one chunk, return the number of bytes that
162// should go in the left subtree. This is the largest power-of-2 number of
163// chunks that leaves at least 1 byte for the right subtree.
164INLINE size_t left_len(size_t content_len) {
165  // Subtract 1 to reserve at least one byte for the right side. content_len
166  // should always be greater than BLAKE3_CHUNK_LEN.
167  size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
168  return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN;
169}
170
171// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
172// on a single thread. Write out the chunk chaining values and return the
173// number of chunks hashed. These chunks are never the root and never empty;
174// those cases use a different codepath.
175INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len,
176                                       const uint32_t key[8],
177                                       uint64_t chunk_counter, uint8_t flags,
178                                       uint8_t *out) {
179#if defined(BLAKE3_TESTING)
180  assert(0 < input_len);
181  assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN);
182#endif
183
184  const uint8_t *chunks_array[MAX_SIMD_DEGREE];
185  size_t input_position = 0;
186  size_t chunks_array_len = 0;
187  while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
188    chunks_array[chunks_array_len] = &input[input_position];
189    input_position += BLAKE3_CHUNK_LEN;
190    chunks_array_len += 1;
191  }
192
193  blake3_hash_many(chunks_array, chunks_array_len,
194                   BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter,
195                   true, flags, CHUNK_START, CHUNK_END, out);
196
197  // Hash the remaining partial chunk, if there is one. Note that the empty
198  // chunk (meaning the empty message) is a different codepath.
199  if (input_len > input_position) {
200    uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
201    blake3_chunk_state chunk_state;
202    chunk_state_init(&chunk_state, key, flags);
203    chunk_state.chunk_counter = counter;
204    chunk_state_update(&chunk_state, &input[input_position],
205                       input_len - input_position);
206    output_t output = chunk_state_output(&chunk_state);
207    output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]);
208    return chunks_array_len + 1;
209  } else {
210    return chunks_array_len;
211  }
212}
213
214// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
215// on a single thread. Write out the parent chaining values and return the
216// number of parents hashed. (If there's an odd input chaining value left over,
217// return it as an additional output.) These parents are never the root and
218// never empty; those cases use a different codepath.
219INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values,
220                                        size_t num_chaining_values,
221                                        const uint32_t key[8], uint8_t flags,
222                                        uint8_t *out) {
223#if defined(BLAKE3_TESTING)
224  assert(2 <= num_chaining_values);
225  assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2);
226#endif
227
228  const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2];
229  size_t parents_array_len = 0;
230  while (num_chaining_values - (2 * parents_array_len) >= 2) {
231    parents_array[parents_array_len] =
232        &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN];
233    parents_array_len += 1;
234  }
235
236  blake3_hash_many(parents_array, parents_array_len, 1, key,
237                   0, // Parents always use counter 0.
238                   false, flags | PARENT,
239                   0, // Parents have no start flags.
240                   0, // Parents have no end flags.
241                   out);
242
243  // If there's an odd child left over, it becomes an output.
244  if (num_chaining_values > 2 * parents_array_len) {
245    memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
246           &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN],
247           BLAKE3_OUT_LEN);
248    return parents_array_len + 1;
249  } else {
250    return parents_array_len;
251  }
252}
253
254// The wide helper function returns (writes out) an array of chaining values
255// and returns the length of that array. The number of chaining values returned
256// is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
257// if the input is shorter than that many chunks. The reason for maintaining a
258// wide array of chaining values going back up the tree, is to allow the
259// implementation to hash as many parents in parallel as possible.
260//
261// As a special case when the SIMD degree is 1, this function will still return
262// at least 2 outputs. This guarantees that this function doesn't perform the
263// root compression. (If it did, it would use the wrong flags, and also we
264// wouldn't be able to implement exendable ouput.) Note that this function is
265// not used when the whole input is only 1 chunk long; that's a different
266// codepath.
267//
268// Why not just have the caller split the input on the first update(), instead
269// of implementing this special rule? Because we don't want to limit SIMD or
270// multi-threading parallelism for that update().
271static size_t blake3_compress_subtree_wide(const uint8_t *input,
272                                           size_t input_len,
273                                           const uint32_t key[8],
274                                           uint64_t chunk_counter,
275                                           uint8_t flags, uint8_t *out) {
276  // Note that the single chunk case does *not* bump the SIMD degree up to 2
277  // when it is 1. If this implementation adds multi-threading in the future,
278  // this gives us the option of multi-threading even the 2-chunk case, which
279  // can help performance on smaller platforms.
280  if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) {
281    return compress_chunks_parallel(input, input_len, key, chunk_counter, flags,
282                                    out);
283  }
284
285  // With more than simd_degree chunks, we need to recurse. Start by dividing
286  // the input into left and right subtrees. (Note that this is only optimal
287  // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
288  // of 3 or something, we'll need a more complicated strategy.)
289  size_t left_input_len = left_len(input_len);
290  size_t right_input_len = input_len - left_input_len;
291  const uint8_t *right_input = &input[left_input_len];
292  uint64_t right_chunk_counter =
293      chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
294
295  // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
296  // account for the special case of returning 2 outputs when the SIMD degree
297  // is 1.
298  uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
299  size_t degree = blake3_simd_degree();
300  if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
301    // The special case: We always use a degree of at least two, to make
302    // sure there are two outputs. Except, as noted above, at the chunk
303    // level, where we allow degree=1. (Note that the 1-chunk-input case is
304    // a different codepath.)
305    degree = 2;
306  }
307  uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
308
309  // Recurse! If this implementation adds multi-threading support in the
310  // future, this is where it will go.
311  size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key,
312                                               chunk_counter, flags, cv_array);
313  size_t right_n = blake3_compress_subtree_wide(
314      right_input, right_input_len, key, right_chunk_counter, flags, right_cvs);
315
316  // The special case again. If simd_degree=1, then we'll have left_n=1 and
317  // right_n=1. Rather than compressing them into a single output, return
318  // them directly, to make sure we always have at least two outputs.
319  if (left_n == 1) {
320    memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
321    return 2;
322  }
323
324  // Otherwise, do one layer of parent node compression.
325  size_t num_chaining_values = left_n + right_n;
326  return compress_parents_parallel(cv_array, num_chaining_values, key, flags,
327                                   out);
328}
329
330// Hash a subtree with compress_subtree_wide(), and then condense the resulting
331// list of chaining values down to a single parent node. Don't compress that
332// last parent node, however. Instead, return its message bytes (the
333// concatenated chaining values of its children). This is necessary when the
334// first call to update() supplies a complete subtree, because the topmost
335// parent node of that subtree could end up being the root. It's also necessary
336// for extended output in the general case.
337//
338// As with compress_subtree_wide(), this function is not used on inputs of 1
339// chunk or less. That's a different codepath.
340INLINE void compress_subtree_to_parent_node(
341    const uint8_t *input, size_t input_len, const uint32_t key[8],
342    uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) {
343#if defined(BLAKE3_TESTING)
344  assert(input_len > BLAKE3_CHUNK_LEN);
345#endif
346
347  uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
348  size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key,
349                                                chunk_counter, flags, cv_array);
350  assert(num_cvs <= MAX_SIMD_DEGREE_OR_2);
351
352  // If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
353  // compress_subtree_wide() returns more than 2 chaining values. Condense
354  // them into 2 by forming parent nodes repeatedly.
355  uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
356  // The second half of this loop condition is always true, and we just
357  // asserted it above. But GCC can't tell that it's always true, and if NDEBUG
358  // is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious
359  // warnings here. GCC 8.5 is particularly sensitive, so if you're changing
360  // this code, test it against that version.
361  while (num_cvs > 2 && num_cvs <= MAX_SIMD_DEGREE_OR_2) {
362    num_cvs =
363        compress_parents_parallel(cv_array, num_cvs, key, flags, out_array);
364    memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
365  }
366  memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
367}
368
369INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8],
370                             uint8_t flags) {
371  memcpy(self->key, key, BLAKE3_KEY_LEN);
372  chunk_state_init(&self->chunk, key, flags);
373  self->cv_stack_len = 0;
374}
375
376void llvm_blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, IV, 0); }
377
378void llvm_blake3_hasher_init_keyed(blake3_hasher *self,
379                              const uint8_t key[BLAKE3_KEY_LEN]) {
380  uint32_t key_words[8];
381  load_key_words(key, key_words);
382  hasher_init_base(self, key_words, KEYED_HASH);
383}
384
385void llvm_blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context,
386                                       size_t context_len) {
387  blake3_hasher context_hasher;
388  hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT);
389  llvm_blake3_hasher_update(&context_hasher, context, context_len);
390  uint8_t context_key[BLAKE3_KEY_LEN];
391  llvm_blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN);
392  uint32_t context_key_words[8];
393  load_key_words(context_key, context_key_words);
394  hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL);
395}
396
397void llvm_blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) {
398  llvm_blake3_hasher_init_derive_key_raw(self, context, strlen(context));
399}
400
401// As described in hasher_push_cv() below, we do "lazy merging", delaying
402// merges until right before the next CV is about to be added. This is
403// different from the reference implementation. Another difference is that we
404// aren't always merging 1 chunk at a time. Instead, each CV might represent
405// any power-of-two number of chunks, as long as the smaller-above-larger stack
406// order is maintained. Instead of the "count the trailing 0-bits" algorithm
407// described in the spec, we use a "count the total number of 1-bits" variant
408// that doesn't require us to retain the subtree size of the CV on top of the
409// stack. The principle is the same: each CV that should remain in the stack is
410// represented by a 1-bit in the total number of chunks (or bytes) so far.
411INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) {
412  size_t post_merge_stack_len = (size_t)popcnt(total_len);
413  while (self->cv_stack_len > post_merge_stack_len) {
414    uint8_t *parent_node =
415        &self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN];
416    output_t output = parent_output(parent_node, self->key, self->chunk.flags);
417    output_chaining_value(&output, parent_node);
418    self->cv_stack_len -= 1;
419  }
420}
421
422// In reference_impl.rs, we merge the new CV with existing CVs from the stack
423// before pushing it. We can do that because we know more input is coming, so
424// we know none of the merges are root.
425//
426// This setting is different. We want to feed as much input as possible to
427// compress_subtree_wide(), without setting aside anything for the chunk_state.
428// If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
429// as a single subtree, if at all possible.
430//
431// This leads to two problems:
432// 1) This 64 KiB input might be the only call that ever gets made to update.
433//    In this case, the root node of the 64 KiB subtree would be the root node
434//    of the whole tree, and it would need to be ROOT finalized. We can't
435//    compress it until we know.
436// 2) This 64 KiB input might complete a larger tree, whose root node is
437//    similarly going to be the the root of the whole tree. For example, maybe
438//    we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
439//    node at the root of the 256 KiB subtree until we know how to finalize it.
440//
441// The second problem is solved with "lazy merging". That is, when we're about
442// to add a CV to the stack, we don't merge it with anything first, as the
443// reference impl does. Instead we do merges using the *previous* CV that was
444// added, which is sitting on top of the stack, and we put the new CV
445// (unmerged) on top of the stack afterwards. This guarantees that we never
446// merge the root node until finalize().
447//
448// Solving the first problem requires an additional tool,
449// compress_subtree_to_parent_node(). That function always returns the top
450// *two* chaining values of the subtree it's compressing. We then do lazy
451// merging with each of them separately, so that the second CV will always
452// remain unmerged. (That also helps us support extendable output when we're
453// hashing an input all-at-once.)
454INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN],
455                           uint64_t chunk_counter) {
456  hasher_merge_cv_stack(self, chunk_counter);
457  memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
458         BLAKE3_OUT_LEN);
459  self->cv_stack_len += 1;
460}
461
462void llvm_blake3_hasher_update(blake3_hasher *self, const void *input,
463                          size_t input_len) {
464  // Explicitly checking for zero avoids causing UB by passing a null pointer
465  // to memcpy. This comes up in practice with things like:
466  //   std::vector<uint8_t> v;
467  //   blake3_hasher_update(&hasher, v.data(), v.size());
468  if (input_len == 0) {
469    return;
470  }
471
472  const uint8_t *input_bytes = (const uint8_t *)input;
473
474  // If we have some partial chunk bytes in the internal chunk_state, we need
475  // to finish that chunk first.
476  if (chunk_state_len(&self->chunk) > 0) {
477    size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk);
478    if (take > input_len) {
479      take = input_len;
480    }
481    chunk_state_update(&self->chunk, input_bytes, take);
482    input_bytes += take;
483    input_len -= take;
484    // If we've filled the current chunk and there's more coming, finalize this
485    // chunk and proceed. In this case we know it's not the root.
486    if (input_len > 0) {
487      output_t output = chunk_state_output(&self->chunk);
488      uint8_t chunk_cv[32];
489      output_chaining_value(&output, chunk_cv);
490      hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter);
491      chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1);
492    } else {
493      return;
494    }
495  }
496
497  // Now the chunk_state is clear, and we have more input. If there's more than
498  // a single chunk (so, definitely not the root chunk), hash the largest whole
499  // subtree we can, with the full benefits of SIMD (and maybe in the future,
500  // multi-threading) parallelism. Two restrictions:
501  // - The subtree has to be a power-of-2 number of chunks. Only subtrees along
502  //   the right edge can be incomplete, and we don't know where the right edge
503  //   is going to be until we get to finalize().
504  // - The subtree must evenly divide the total number of chunks up until this
505  //   point (if total is not 0). If the current incomplete subtree is only
506  //   waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have
507  //   to complete the current subtree first.
508  // Because we might need to break up the input to form powers of 2, or to
509  // evenly divide what we already have, this part runs in a loop.
510  while (input_len > BLAKE3_CHUNK_LEN) {
511    size_t subtree_len = round_down_to_power_of_2(input_len);
512    uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
513    // Shrink the subtree_len until it evenly divides the count so far. We know
514    // that subtree_len itself is a power of 2, so we can use a bitmasking
515    // trick instead of an actual remainder operation. (Note that if the caller
516    // consistently passes power-of-2 inputs of the same size, as is hopefully
517    // typical, this loop condition will always fail, and subtree_len will
518    // always be the full length of the input.)
519    //
520    // An aside: We don't have to shrink subtree_len quite this much. For
521    // example, if count_so_far is 1, we could pass 2 chunks to
522    // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still
523    // get the right answer in the end, and we might get to use 2-way SIMD
524    // parallelism. The problem with this optimization, is that it gets us
525    // stuck always hashing 2 chunks. The total number of chunks will remain
526    // odd, and we'll never graduate to higher degrees of parallelism. See
527    // https://github.com/BLAKE3-team/BLAKE3/issues/69.
528    while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
529      subtree_len /= 2;
530    }
531    // The shrunken subtree_len might now be 1 chunk long. If so, hash that one
532    // chunk by itself. Otherwise, compress the subtree into a pair of CVs.
533    uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
534    if (subtree_len <= BLAKE3_CHUNK_LEN) {
535      blake3_chunk_state chunk_state;
536      chunk_state_init(&chunk_state, self->key, self->chunk.flags);
537      chunk_state.chunk_counter = self->chunk.chunk_counter;
538      chunk_state_update(&chunk_state, input_bytes, subtree_len);
539      output_t output = chunk_state_output(&chunk_state);
540      uint8_t cv[BLAKE3_OUT_LEN];
541      output_chaining_value(&output, cv);
542      hasher_push_cv(self, cv, chunk_state.chunk_counter);
543    } else {
544      // This is the high-performance happy path, though getting here depends
545      // on the caller giving us a long enough input.
546      uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
547      compress_subtree_to_parent_node(input_bytes, subtree_len, self->key,
548                                      self->chunk.chunk_counter,
549                                      self->chunk.flags, cv_pair);
550      hasher_push_cv(self, cv_pair, self->chunk.chunk_counter);
551      hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN],
552                     self->chunk.chunk_counter + (subtree_chunks / 2));
553    }
554    self->chunk.chunk_counter += subtree_chunks;
555    input_bytes += subtree_len;
556    input_len -= subtree_len;
557  }
558
559  // If there's any remaining input less than a full chunk, add it to the chunk
560  // state. In that case, also do a final merge loop to make sure the subtree
561  // stack doesn't contain any unmerged pairs. The remaining input means we
562  // know these merges are non-root. This merge loop isn't strictly necessary
563  // here, because hasher_push_chunk_cv already does its own merge loop, but it
564  // simplifies blake3_hasher_finalize below.
565  if (input_len > 0) {
566    chunk_state_update(&self->chunk, input_bytes, input_len);
567    hasher_merge_cv_stack(self, self->chunk.chunk_counter);
568  }
569}
570
571void llvm_blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out,
572                            size_t out_len) {
573  llvm_blake3_hasher_finalize_seek(self, 0, out, out_len);
574#if LLVM_MEMORY_SANITIZER_BUILD
575  // Avoid false positives due to uninstrumented assembly code.
576  __msan_unpoison(out, out_len);
577#endif
578}
579
580void llvm_blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek,
581                                 uint8_t *out, size_t out_len) {
582  // Explicitly checking for zero avoids causing UB by passing a null pointer
583  // to memcpy. This comes up in practice with things like:
584  //   std::vector<uint8_t> v;
585  //   blake3_hasher_finalize(&hasher, v.data(), v.size());
586  if (out_len == 0) {
587    return;
588  }
589
590  // If the subtree stack is empty, then the current chunk is the root.
591  if (self->cv_stack_len == 0) {
592    output_t output = chunk_state_output(&self->chunk);
593    output_root_bytes(&output, seek, out, out_len);
594    return;
595  }
596  // If there are any bytes in the chunk state, finalize that chunk and do a
597  // roll-up merge between that chunk hash and every subtree in the stack. In
598  // this case, the extra merge loop at the end of blake3_hasher_update
599  // guarantees that none of the subtrees in the stack need to be merged with
600  // each other first. Otherwise, if there are no bytes in the chunk state,
601  // then the top of the stack is a chunk hash, and we start the merge from
602  // that.
603  output_t output;
604  size_t cvs_remaining;
605  if (chunk_state_len(&self->chunk) > 0) {
606    cvs_remaining = self->cv_stack_len;
607    output = chunk_state_output(&self->chunk);
608  } else {
609    // There are always at least 2 CVs in the stack in this case.
610    cvs_remaining = self->cv_stack_len - 2;
611    output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key,
612                           self->chunk.flags);
613  }
614  while (cvs_remaining > 0) {
615    cvs_remaining -= 1;
616    uint8_t parent_block[BLAKE3_BLOCK_LEN];
617    memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32);
618    output_chaining_value(&output, &parent_block[32]);
619    output = parent_output(parent_block, self->key, self->chunk.flags);
620  }
621  output_root_bytes(&output, seek, out, out_len);
622}
623
624void llvm_blake3_hasher_reset(blake3_hasher *self) {
625  chunk_state_reset(&self->chunk, self->key, 0);
626  self->cv_stack_len = 0;
627}
628