1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// basic correctness checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15//  * Both of a binary operator's parameters are of the same type
16//  * Verify that the indices of mem access instructions match other operands
17//  * Verify that arithmetic and other things are only performed on first-class
18//    types.  Verify that shifts & logicals only happen on integrals f.e.
19//  * All of the constants in a switch statement are of the correct type
20//  * The code is in valid SSA form
21//  * It should be illegal to put a label into any other type (like a structure)
22//    or to return one. [except constant arrays!]
23//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24//  * PHI nodes must have an entry for each predecessor, with no extras.
25//  * PHI nodes must be the first thing in a basic block, all grouped together
26//  * All basic blocks should only end with terminator insts, not contain them
27//  * The entry node to a function must not have predecessors
28//  * All Instructions must be embedded into a basic block
29//  * Functions cannot take a void-typed parameter
30//  * Verify that a function's argument list agrees with it's declared type.
31//  * It is illegal to specify a name for a void value.
32//  * It is illegal to have a internal global value with no initializer
33//  * It is illegal to have a ret instruction that returns a value that does not
34//    agree with the function return value type.
35//  * Function call argument types match the function prototype
36//  * A landing pad is defined by a landingpad instruction, and can be jumped to
37//    only by the unwind edge of an invoke instruction.
38//  * A landingpad instruction must be the first non-PHI instruction in the
39//    block.
40//  * Landingpad instructions must be in a function with a personality function.
41//  * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42//    The applied restrictions are too numerous to list here.
43//  * The convergence entry intrinsic and the loop heart must be the first
44//    non-PHI instruction in their respective block. This does not conflict with
45//    the landing pads, since these two kinds cannot occur in the same block.
46//  * All other things that are tested by asserts spread about the code...
47//
48//===----------------------------------------------------------------------===//
49
50#include "llvm/IR/Verifier.h"
51#include "llvm/ADT/APFloat.h"
52#include "llvm/ADT/APInt.h"
53#include "llvm/ADT/ArrayRef.h"
54#include "llvm/ADT/DenseMap.h"
55#include "llvm/ADT/MapVector.h"
56#include "llvm/ADT/PostOrderIterator.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallPtrSet.h"
59#include "llvm/ADT/SmallSet.h"
60#include "llvm/ADT/SmallVector.h"
61#include "llvm/ADT/StringExtras.h"
62#include "llvm/ADT/StringMap.h"
63#include "llvm/ADT/StringRef.h"
64#include "llvm/ADT/Twine.h"
65#include "llvm/BinaryFormat/Dwarf.h"
66#include "llvm/IR/Argument.h"
67#include "llvm/IR/AttributeMask.h"
68#include "llvm/IR/Attributes.h"
69#include "llvm/IR/BasicBlock.h"
70#include "llvm/IR/CFG.h"
71#include "llvm/IR/CallingConv.h"
72#include "llvm/IR/Comdat.h"
73#include "llvm/IR/Constant.h"
74#include "llvm/IR/ConstantRange.h"
75#include "llvm/IR/Constants.h"
76#include "llvm/IR/ConvergenceVerifier.h"
77#include "llvm/IR/DataLayout.h"
78#include "llvm/IR/DebugInfo.h"
79#include "llvm/IR/DebugInfoMetadata.h"
80#include "llvm/IR/DebugLoc.h"
81#include "llvm/IR/DerivedTypes.h"
82#include "llvm/IR/Dominators.h"
83#include "llvm/IR/EHPersonalities.h"
84#include "llvm/IR/Function.h"
85#include "llvm/IR/GCStrategy.h"
86#include "llvm/IR/GlobalAlias.h"
87#include "llvm/IR/GlobalValue.h"
88#include "llvm/IR/GlobalVariable.h"
89#include "llvm/IR/InlineAsm.h"
90#include "llvm/IR/InstVisitor.h"
91#include "llvm/IR/InstrTypes.h"
92#include "llvm/IR/Instruction.h"
93#include "llvm/IR/Instructions.h"
94#include "llvm/IR/IntrinsicInst.h"
95#include "llvm/IR/Intrinsics.h"
96#include "llvm/IR/IntrinsicsAArch64.h"
97#include "llvm/IR/IntrinsicsAMDGPU.h"
98#include "llvm/IR/IntrinsicsARM.h"
99#include "llvm/IR/IntrinsicsNVPTX.h"
100#include "llvm/IR/IntrinsicsWebAssembly.h"
101#include "llvm/IR/LLVMContext.h"
102#include "llvm/IR/Metadata.h"
103#include "llvm/IR/Module.h"
104#include "llvm/IR/ModuleSlotTracker.h"
105#include "llvm/IR/PassManager.h"
106#include "llvm/IR/Statepoint.h"
107#include "llvm/IR/Type.h"
108#include "llvm/IR/Use.h"
109#include "llvm/IR/User.h"
110#include "llvm/IR/VFABIDemangler.h"
111#include "llvm/IR/Value.h"
112#include "llvm/InitializePasses.h"
113#include "llvm/Pass.h"
114#include "llvm/Support/AtomicOrdering.h"
115#include "llvm/Support/Casting.h"
116#include "llvm/Support/CommandLine.h"
117#include "llvm/Support/ErrorHandling.h"
118#include "llvm/Support/MathExtras.h"
119#include "llvm/Support/raw_ostream.h"
120#include <algorithm>
121#include <cassert>
122#include <cstdint>
123#include <memory>
124#include <optional>
125#include <string>
126#include <utility>
127
128using namespace llvm;
129
130static cl::opt<bool> VerifyNoAliasScopeDomination(
131    "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
132    cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
133             "scopes are not dominating"));
134
135namespace llvm {
136
137struct VerifierSupport {
138  raw_ostream *OS;
139  const Module &M;
140  ModuleSlotTracker MST;
141  Triple TT;
142  const DataLayout &DL;
143  LLVMContext &Context;
144
145  /// Track the brokenness of the module while recursively visiting.
146  bool Broken = false;
147  /// Broken debug info can be "recovered" from by stripping the debug info.
148  bool BrokenDebugInfo = false;
149  /// Whether to treat broken debug info as an error.
150  bool TreatBrokenDebugInfoAsError = true;
151
152  explicit VerifierSupport(raw_ostream *OS, const Module &M)
153      : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
154        Context(M.getContext()) {}
155
156private:
157  void Write(const Module *M) {
158    *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
159  }
160
161  void Write(const Value *V) {
162    if (V)
163      Write(*V);
164  }
165
166  void Write(const Value &V) {
167    if (isa<Instruction>(V)) {
168      V.print(*OS, MST);
169      *OS << '\n';
170    } else {
171      V.printAsOperand(*OS, true, MST);
172      *OS << '\n';
173    }
174  }
175
176  void Write(const DPValue *V) {
177    if (V)
178      V->print(*OS, MST, false);
179  }
180
181  void Write(const Metadata *MD) {
182    if (!MD)
183      return;
184    MD->print(*OS, MST, &M);
185    *OS << '\n';
186  }
187
188  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
189    Write(MD.get());
190  }
191
192  void Write(const NamedMDNode *NMD) {
193    if (!NMD)
194      return;
195    NMD->print(*OS, MST);
196    *OS << '\n';
197  }
198
199  void Write(Type *T) {
200    if (!T)
201      return;
202    *OS << ' ' << *T;
203  }
204
205  void Write(const Comdat *C) {
206    if (!C)
207      return;
208    *OS << *C;
209  }
210
211  void Write(const APInt *AI) {
212    if (!AI)
213      return;
214    *OS << *AI << '\n';
215  }
216
217  void Write(const unsigned i) { *OS << i << '\n'; }
218
219  // NOLINTNEXTLINE(readability-identifier-naming)
220  void Write(const Attribute *A) {
221    if (!A)
222      return;
223    *OS << A->getAsString() << '\n';
224  }
225
226  // NOLINTNEXTLINE(readability-identifier-naming)
227  void Write(const AttributeSet *AS) {
228    if (!AS)
229      return;
230    *OS << AS->getAsString() << '\n';
231  }
232
233  // NOLINTNEXTLINE(readability-identifier-naming)
234  void Write(const AttributeList *AL) {
235    if (!AL)
236      return;
237    AL->print(*OS);
238  }
239
240  void Write(Printable P) { *OS << P << '\n'; }
241
242  template <typename T> void Write(ArrayRef<T> Vs) {
243    for (const T &V : Vs)
244      Write(V);
245  }
246
247  template <typename T1, typename... Ts>
248  void WriteTs(const T1 &V1, const Ts &... Vs) {
249    Write(V1);
250    WriteTs(Vs...);
251  }
252
253  template <typename... Ts> void WriteTs() {}
254
255public:
256  /// A check failed, so printout out the condition and the message.
257  ///
258  /// This provides a nice place to put a breakpoint if you want to see why
259  /// something is not correct.
260  void CheckFailed(const Twine &Message) {
261    if (OS)
262      *OS << Message << '\n';
263    Broken = true;
264  }
265
266  /// A check failed (with values to print).
267  ///
268  /// This calls the Message-only version so that the above is easier to set a
269  /// breakpoint on.
270  template <typename T1, typename... Ts>
271  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
272    CheckFailed(Message);
273    if (OS)
274      WriteTs(V1, Vs...);
275  }
276
277  /// A debug info check failed.
278  void DebugInfoCheckFailed(const Twine &Message) {
279    if (OS)
280      *OS << Message << '\n';
281    Broken |= TreatBrokenDebugInfoAsError;
282    BrokenDebugInfo = true;
283  }
284
285  /// A debug info check failed (with values to print).
286  template <typename T1, typename... Ts>
287  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
288                            const Ts &... Vs) {
289    DebugInfoCheckFailed(Message);
290    if (OS)
291      WriteTs(V1, Vs...);
292  }
293};
294
295} // namespace llvm
296
297namespace {
298
299class Verifier : public InstVisitor<Verifier>, VerifierSupport {
300  friend class InstVisitor<Verifier>;
301
302  // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
303  // the alignment size should not exceed 2^15. Since encode(Align)
304  // would plus the shift value by 1, the alignment size should
305  // not exceed 2^14, otherwise it can NOT be properly lowered
306  // in backend.
307  static constexpr unsigned ParamMaxAlignment = 1 << 14;
308  DominatorTree DT;
309
310  /// When verifying a basic block, keep track of all of the
311  /// instructions we have seen so far.
312  ///
313  /// This allows us to do efficient dominance checks for the case when an
314  /// instruction has an operand that is an instruction in the same block.
315  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
316
317  /// Keep track of the metadata nodes that have been checked already.
318  SmallPtrSet<const Metadata *, 32> MDNodes;
319
320  /// Keep track which DISubprogram is attached to which function.
321  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
322
323  /// Track all DICompileUnits visited.
324  SmallPtrSet<const Metadata *, 2> CUVisited;
325
326  /// The result type for a landingpad.
327  Type *LandingPadResultTy;
328
329  /// Whether we've seen a call to @llvm.localescape in this function
330  /// already.
331  bool SawFrameEscape;
332
333  /// Whether the current function has a DISubprogram attached to it.
334  bool HasDebugInfo = false;
335
336  /// The current source language.
337  dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
338
339  /// Stores the count of how many objects were passed to llvm.localescape for a
340  /// given function and the largest index passed to llvm.localrecover.
341  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
342
343  // Maps catchswitches and cleanuppads that unwind to siblings to the
344  // terminators that indicate the unwind, used to detect cycles therein.
345  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
346
347  /// Cache which blocks are in which funclet, if an EH funclet personality is
348  /// in use. Otherwise empty.
349  DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
350
351  /// Cache of constants visited in search of ConstantExprs.
352  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
353
354  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
355  SmallVector<const Function *, 4> DeoptimizeDeclarations;
356
357  /// Cache of attribute lists verified.
358  SmallPtrSet<const void *, 32> AttributeListsVisited;
359
360  // Verify that this GlobalValue is only used in this module.
361  // This map is used to avoid visiting uses twice. We can arrive at a user
362  // twice, if they have multiple operands. In particular for very large
363  // constant expressions, we can arrive at a particular user many times.
364  SmallPtrSet<const Value *, 32> GlobalValueVisited;
365
366  // Keeps track of duplicate function argument debug info.
367  SmallVector<const DILocalVariable *, 16> DebugFnArgs;
368
369  TBAAVerifier TBAAVerifyHelper;
370  ConvergenceVerifier ConvergenceVerifyHelper;
371
372  SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
373
374  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
375
376public:
377  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
378                    const Module &M)
379      : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
380        SawFrameEscape(false), TBAAVerifyHelper(this) {
381    TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
382  }
383
384  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
385
386  bool verify(const Function &F) {
387    assert(F.getParent() == &M &&
388           "An instance of this class only works with a specific module!");
389
390    // First ensure the function is well-enough formed to compute dominance
391    // information, and directly compute a dominance tree. We don't rely on the
392    // pass manager to provide this as it isolates us from a potentially
393    // out-of-date dominator tree and makes it significantly more complex to run
394    // this code outside of a pass manager.
395    // FIXME: It's really gross that we have to cast away constness here.
396    if (!F.empty())
397      DT.recalculate(const_cast<Function &>(F));
398
399    for (const BasicBlock &BB : F) {
400      if (!BB.empty() && BB.back().isTerminator())
401        continue;
402
403      if (OS) {
404        *OS << "Basic Block in function '" << F.getName()
405            << "' does not have terminator!\n";
406        BB.printAsOperand(*OS, true, MST);
407        *OS << "\n";
408      }
409      return false;
410    }
411
412    auto FailureCB = [this](const Twine &Message) {
413      this->CheckFailed(Message);
414    };
415    ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
416
417    Broken = false;
418    // FIXME: We strip const here because the inst visitor strips const.
419    visit(const_cast<Function &>(F));
420    verifySiblingFuncletUnwinds();
421
422    if (ConvergenceVerifyHelper.sawTokens())
423      ConvergenceVerifyHelper.verify(DT);
424
425    InstsInThisBlock.clear();
426    DebugFnArgs.clear();
427    LandingPadResultTy = nullptr;
428    SawFrameEscape = false;
429    SiblingFuncletInfo.clear();
430    verifyNoAliasScopeDecl();
431    NoAliasScopeDecls.clear();
432
433    return !Broken;
434  }
435
436  /// Verify the module that this instance of \c Verifier was initialized with.
437  bool verify() {
438    Broken = false;
439
440    // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
441    for (const Function &F : M)
442      if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
443        DeoptimizeDeclarations.push_back(&F);
444
445    // Now that we've visited every function, verify that we never asked to
446    // recover a frame index that wasn't escaped.
447    verifyFrameRecoverIndices();
448    for (const GlobalVariable &GV : M.globals())
449      visitGlobalVariable(GV);
450
451    for (const GlobalAlias &GA : M.aliases())
452      visitGlobalAlias(GA);
453
454    for (const GlobalIFunc &GI : M.ifuncs())
455      visitGlobalIFunc(GI);
456
457    for (const NamedMDNode &NMD : M.named_metadata())
458      visitNamedMDNode(NMD);
459
460    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
461      visitComdat(SMEC.getValue());
462
463    visitModuleFlags();
464    visitModuleIdents();
465    visitModuleCommandLines();
466
467    verifyCompileUnits();
468
469    verifyDeoptimizeCallingConvs();
470    DISubprogramAttachments.clear();
471    return !Broken;
472  }
473
474private:
475  /// Whether a metadata node is allowed to be, or contain, a DILocation.
476  enum class AreDebugLocsAllowed { No, Yes };
477
478  // Verification methods...
479  void visitGlobalValue(const GlobalValue &GV);
480  void visitGlobalVariable(const GlobalVariable &GV);
481  void visitGlobalAlias(const GlobalAlias &GA);
482  void visitGlobalIFunc(const GlobalIFunc &GI);
483  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
484  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
485                           const GlobalAlias &A, const Constant &C);
486  void visitNamedMDNode(const NamedMDNode &NMD);
487  void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
488  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
489  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
490  void visitDIArgList(const DIArgList &AL, Function *F);
491  void visitComdat(const Comdat &C);
492  void visitModuleIdents();
493  void visitModuleCommandLines();
494  void visitModuleFlags();
495  void visitModuleFlag(const MDNode *Op,
496                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
497                       SmallVectorImpl<const MDNode *> &Requirements);
498  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
499  void visitFunction(const Function &F);
500  void visitBasicBlock(BasicBlock &BB);
501  void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty,
502                           bool IsAbsoluteSymbol);
503  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
504  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
505  void visitProfMetadata(Instruction &I, MDNode *MD);
506  void visitCallStackMetadata(MDNode *MD);
507  void visitMemProfMetadata(Instruction &I, MDNode *MD);
508  void visitCallsiteMetadata(Instruction &I, MDNode *MD);
509  void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
510  void visitAnnotationMetadata(MDNode *Annotation);
511  void visitAliasScopeMetadata(const MDNode *MD);
512  void visitAliasScopeListMetadata(const MDNode *MD);
513  void visitAccessGroupMetadata(const MDNode *MD);
514
515  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
516#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
517#include "llvm/IR/Metadata.def"
518  void visitDIScope(const DIScope &N);
519  void visitDIVariable(const DIVariable &N);
520  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
521  void visitDITemplateParameter(const DITemplateParameter &N);
522
523  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
524
525  // InstVisitor overrides...
526  using InstVisitor<Verifier>::visit;
527  void visit(Instruction &I);
528
529  void visitTruncInst(TruncInst &I);
530  void visitZExtInst(ZExtInst &I);
531  void visitSExtInst(SExtInst &I);
532  void visitFPTruncInst(FPTruncInst &I);
533  void visitFPExtInst(FPExtInst &I);
534  void visitFPToUIInst(FPToUIInst &I);
535  void visitFPToSIInst(FPToSIInst &I);
536  void visitUIToFPInst(UIToFPInst &I);
537  void visitSIToFPInst(SIToFPInst &I);
538  void visitIntToPtrInst(IntToPtrInst &I);
539  void visitPtrToIntInst(PtrToIntInst &I);
540  void visitBitCastInst(BitCastInst &I);
541  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
542  void visitPHINode(PHINode &PN);
543  void visitCallBase(CallBase &Call);
544  void visitUnaryOperator(UnaryOperator &U);
545  void visitBinaryOperator(BinaryOperator &B);
546  void visitICmpInst(ICmpInst &IC);
547  void visitFCmpInst(FCmpInst &FC);
548  void visitExtractElementInst(ExtractElementInst &EI);
549  void visitInsertElementInst(InsertElementInst &EI);
550  void visitShuffleVectorInst(ShuffleVectorInst &EI);
551  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
552  void visitCallInst(CallInst &CI);
553  void visitInvokeInst(InvokeInst &II);
554  void visitGetElementPtrInst(GetElementPtrInst &GEP);
555  void visitLoadInst(LoadInst &LI);
556  void visitStoreInst(StoreInst &SI);
557  void verifyDominatesUse(Instruction &I, unsigned i);
558  void visitInstruction(Instruction &I);
559  void visitTerminator(Instruction &I);
560  void visitBranchInst(BranchInst &BI);
561  void visitReturnInst(ReturnInst &RI);
562  void visitSwitchInst(SwitchInst &SI);
563  void visitIndirectBrInst(IndirectBrInst &BI);
564  void visitCallBrInst(CallBrInst &CBI);
565  void visitSelectInst(SelectInst &SI);
566  void visitUserOp1(Instruction &I);
567  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
568  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
569  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
570  void visitVPIntrinsic(VPIntrinsic &VPI);
571  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
572  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
573  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
574  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
575  void visitFenceInst(FenceInst &FI);
576  void visitAllocaInst(AllocaInst &AI);
577  void visitExtractValueInst(ExtractValueInst &EVI);
578  void visitInsertValueInst(InsertValueInst &IVI);
579  void visitEHPadPredecessors(Instruction &I);
580  void visitLandingPadInst(LandingPadInst &LPI);
581  void visitResumeInst(ResumeInst &RI);
582  void visitCatchPadInst(CatchPadInst &CPI);
583  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
584  void visitCleanupPadInst(CleanupPadInst &CPI);
585  void visitFuncletPadInst(FuncletPadInst &FPI);
586  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
587  void visitCleanupReturnInst(CleanupReturnInst &CRI);
588
589  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
590  void verifySwiftErrorValue(const Value *SwiftErrorVal);
591  void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
592  void verifyMustTailCall(CallInst &CI);
593  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
594  void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
595  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
596  void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
597                                    const Value *V);
598  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
599                           const Value *V, bool IsIntrinsic, bool IsInlineAsm);
600  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
601
602  void visitConstantExprsRecursively(const Constant *EntryC);
603  void visitConstantExpr(const ConstantExpr *CE);
604  void verifyInlineAsmCall(const CallBase &Call);
605  void verifyStatepoint(const CallBase &Call);
606  void verifyFrameRecoverIndices();
607  void verifySiblingFuncletUnwinds();
608
609  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
610  template <typename ValueOrMetadata>
611  void verifyFragmentExpression(const DIVariable &V,
612                                DIExpression::FragmentInfo Fragment,
613                                ValueOrMetadata *Desc);
614  void verifyFnArgs(const DbgVariableIntrinsic &I);
615  void verifyNotEntryValue(const DbgVariableIntrinsic &I);
616
617  /// Module-level debug info verification...
618  void verifyCompileUnits();
619
620  /// Module-level verification that all @llvm.experimental.deoptimize
621  /// declarations share the same calling convention.
622  void verifyDeoptimizeCallingConvs();
623
624  void verifyAttachedCallBundle(const CallBase &Call,
625                                const OperandBundleUse &BU);
626
627  /// Verify the llvm.experimental.noalias.scope.decl declarations
628  void verifyNoAliasScopeDecl();
629};
630
631} // end anonymous namespace
632
633/// We know that cond should be true, if not print an error message.
634#define Check(C, ...)                                                          \
635  do {                                                                         \
636    if (!(C)) {                                                                \
637      CheckFailed(__VA_ARGS__);                                                \
638      return;                                                                  \
639    }                                                                          \
640  } while (false)
641
642/// We know that a debug info condition should be true, if not print
643/// an error message.
644#define CheckDI(C, ...)                                                        \
645  do {                                                                         \
646    if (!(C)) {                                                                \
647      DebugInfoCheckFailed(__VA_ARGS__);                                       \
648      return;                                                                  \
649    }                                                                          \
650  } while (false)
651
652void Verifier::visit(Instruction &I) {
653  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
654    Check(I.getOperand(i) != nullptr, "Operand is null", &I);
655  InstVisitor<Verifier>::visit(I);
656}
657
658// Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
659static void forEachUser(const Value *User,
660                        SmallPtrSet<const Value *, 32> &Visited,
661                        llvm::function_ref<bool(const Value *)> Callback) {
662  if (!Visited.insert(User).second)
663    return;
664
665  SmallVector<const Value *> WorkList;
666  append_range(WorkList, User->materialized_users());
667  while (!WorkList.empty()) {
668   const Value *Cur = WorkList.pop_back_val();
669    if (!Visited.insert(Cur).second)
670      continue;
671    if (Callback(Cur))
672      append_range(WorkList, Cur->materialized_users());
673  }
674}
675
676void Verifier::visitGlobalValue(const GlobalValue &GV) {
677  Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
678        "Global is external, but doesn't have external or weak linkage!", &GV);
679
680  if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
681
682    if (MaybeAlign A = GO->getAlign()) {
683      Check(A->value() <= Value::MaximumAlignment,
684            "huge alignment values are unsupported", GO);
685    }
686
687    if (const MDNode *Associated =
688            GO->getMetadata(LLVMContext::MD_associated)) {
689      Check(Associated->getNumOperands() == 1,
690            "associated metadata must have one operand", &GV, Associated);
691      const Metadata *Op = Associated->getOperand(0).get();
692      Check(Op, "associated metadata must have a global value", GO, Associated);
693
694      const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
695      Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
696      if (VM) {
697        Check(isa<PointerType>(VM->getValue()->getType()),
698              "associated value must be pointer typed", GV, Associated);
699
700        const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
701        Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
702              "associated metadata must point to a GlobalObject", GO, Stripped);
703        Check(Stripped != GO,
704              "global values should not associate to themselves", GO,
705              Associated);
706      }
707    }
708
709    // FIXME: Why is getMetadata on GlobalValue protected?
710    if (const MDNode *AbsoluteSymbol =
711            GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
712      verifyRangeMetadata(*GO, AbsoluteSymbol, DL.getIntPtrType(GO->getType()),
713                          true);
714    }
715  }
716
717  Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
718        "Only global variables can have appending linkage!", &GV);
719
720  if (GV.hasAppendingLinkage()) {
721    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
722    Check(GVar && GVar->getValueType()->isArrayTy(),
723          "Only global arrays can have appending linkage!", GVar);
724  }
725
726  if (GV.isDeclarationForLinker())
727    Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
728
729  if (GV.hasDLLExportStorageClass()) {
730    Check(!GV.hasHiddenVisibility(),
731          "dllexport GlobalValue must have default or protected visibility",
732          &GV);
733  }
734  if (GV.hasDLLImportStorageClass()) {
735    Check(GV.hasDefaultVisibility(),
736          "dllimport GlobalValue must have default visibility", &GV);
737    Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
738          &GV);
739
740    Check((GV.isDeclaration() &&
741           (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
742              GV.hasAvailableExternallyLinkage(),
743          "Global is marked as dllimport, but not external", &GV);
744  }
745
746  if (GV.isImplicitDSOLocal())
747    Check(GV.isDSOLocal(),
748          "GlobalValue with local linkage or non-default "
749          "visibility must be dso_local!",
750          &GV);
751
752  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
753    if (const Instruction *I = dyn_cast<Instruction>(V)) {
754      if (!I->getParent() || !I->getParent()->getParent())
755        CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
756                    I);
757      else if (I->getParent()->getParent()->getParent() != &M)
758        CheckFailed("Global is referenced in a different module!", &GV, &M, I,
759                    I->getParent()->getParent(),
760                    I->getParent()->getParent()->getParent());
761      return false;
762    } else if (const Function *F = dyn_cast<Function>(V)) {
763      if (F->getParent() != &M)
764        CheckFailed("Global is used by function in a different module", &GV, &M,
765                    F, F->getParent());
766      return false;
767    }
768    return true;
769  });
770}
771
772void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
773  if (GV.hasInitializer()) {
774    Check(GV.getInitializer()->getType() == GV.getValueType(),
775          "Global variable initializer type does not match global "
776          "variable type!",
777          &GV);
778    // If the global has common linkage, it must have a zero initializer and
779    // cannot be constant.
780    if (GV.hasCommonLinkage()) {
781      Check(GV.getInitializer()->isNullValue(),
782            "'common' global must have a zero initializer!", &GV);
783      Check(!GV.isConstant(), "'common' global may not be marked constant!",
784            &GV);
785      Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
786    }
787  }
788
789  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
790                       GV.getName() == "llvm.global_dtors")) {
791    Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
792          "invalid linkage for intrinsic global variable", &GV);
793    Check(GV.materialized_use_empty(),
794          "invalid uses of intrinsic global variable", &GV);
795
796    // Don't worry about emitting an error for it not being an array,
797    // visitGlobalValue will complain on appending non-array.
798    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
799      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
800      PointerType *FuncPtrTy =
801          PointerType::get(Context, DL.getProgramAddressSpace());
802      Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
803                STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
804                STy->getTypeAtIndex(1) == FuncPtrTy,
805            "wrong type for intrinsic global variable", &GV);
806      Check(STy->getNumElements() == 3,
807            "the third field of the element type is mandatory, "
808            "specify ptr null to migrate from the obsoleted 2-field form");
809      Type *ETy = STy->getTypeAtIndex(2);
810      Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
811            &GV);
812    }
813  }
814
815  if (GV.hasName() && (GV.getName() == "llvm.used" ||
816                       GV.getName() == "llvm.compiler.used")) {
817    Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
818          "invalid linkage for intrinsic global variable", &GV);
819    Check(GV.materialized_use_empty(),
820          "invalid uses of intrinsic global variable", &GV);
821
822    Type *GVType = GV.getValueType();
823    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
824      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
825      Check(PTy, "wrong type for intrinsic global variable", &GV);
826      if (GV.hasInitializer()) {
827        const Constant *Init = GV.getInitializer();
828        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
829        Check(InitArray, "wrong initalizer for intrinsic global variable",
830              Init);
831        for (Value *Op : InitArray->operands()) {
832          Value *V = Op->stripPointerCasts();
833          Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
834                    isa<GlobalAlias>(V),
835                Twine("invalid ") + GV.getName() + " member", V);
836          Check(V->hasName(),
837                Twine("members of ") + GV.getName() + " must be named", V);
838        }
839      }
840    }
841  }
842
843  // Visit any debug info attachments.
844  SmallVector<MDNode *, 1> MDs;
845  GV.getMetadata(LLVMContext::MD_dbg, MDs);
846  for (auto *MD : MDs) {
847    if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
848      visitDIGlobalVariableExpression(*GVE);
849    else
850      CheckDI(false, "!dbg attachment of global variable must be a "
851                     "DIGlobalVariableExpression");
852  }
853
854  // Scalable vectors cannot be global variables, since we don't know
855  // the runtime size.
856  Check(!GV.getValueType()->isScalableTy(),
857        "Globals cannot contain scalable types", &GV);
858
859  // Check if it's a target extension type that disallows being used as a
860  // global.
861  if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType()))
862    Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
863          "Global @" + GV.getName() + " has illegal target extension type",
864          TTy);
865
866  if (!GV.hasInitializer()) {
867    visitGlobalValue(GV);
868    return;
869  }
870
871  // Walk any aggregate initializers looking for bitcasts between address spaces
872  visitConstantExprsRecursively(GV.getInitializer());
873
874  visitGlobalValue(GV);
875}
876
877void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
878  SmallPtrSet<const GlobalAlias*, 4> Visited;
879  Visited.insert(&GA);
880  visitAliaseeSubExpr(Visited, GA, C);
881}
882
883void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
884                                   const GlobalAlias &GA, const Constant &C) {
885  if (GA.hasAvailableExternallyLinkage()) {
886    Check(isa<GlobalValue>(C) &&
887              cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
888          "available_externally alias must point to available_externally "
889          "global value",
890          &GA);
891  }
892  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
893    if (!GA.hasAvailableExternallyLinkage()) {
894      Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
895            &GA);
896    }
897
898    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
899      Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
900
901      Check(!GA2->isInterposable(),
902            "Alias cannot point to an interposable alias", &GA);
903    } else {
904      // Only continue verifying subexpressions of GlobalAliases.
905      // Do not recurse into global initializers.
906      return;
907    }
908  }
909
910  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
911    visitConstantExprsRecursively(CE);
912
913  for (const Use &U : C.operands()) {
914    Value *V = &*U;
915    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
916      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
917    else if (const auto *C2 = dyn_cast<Constant>(V))
918      visitAliaseeSubExpr(Visited, GA, *C2);
919  }
920}
921
922void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
923  Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
924        "Alias should have private, internal, linkonce, weak, linkonce_odr, "
925        "weak_odr, external, or available_externally linkage!",
926        &GA);
927  const Constant *Aliasee = GA.getAliasee();
928  Check(Aliasee, "Aliasee cannot be NULL!", &GA);
929  Check(GA.getType() == Aliasee->getType(),
930        "Alias and aliasee types should match!", &GA);
931
932  Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
933        "Aliasee should be either GlobalValue or ConstantExpr", &GA);
934
935  visitAliaseeSubExpr(GA, *Aliasee);
936
937  visitGlobalValue(GA);
938}
939
940void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
941  Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
942        "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
943        "weak_odr, or external linkage!",
944        &GI);
945  // Pierce through ConstantExprs and GlobalAliases and check that the resolver
946  // is a Function definition.
947  const Function *Resolver = GI.getResolverFunction();
948  Check(Resolver, "IFunc must have a Function resolver", &GI);
949  Check(!Resolver->isDeclarationForLinker(),
950        "IFunc resolver must be a definition", &GI);
951
952  // Check that the immediate resolver operand (prior to any bitcasts) has the
953  // correct type.
954  const Type *ResolverTy = GI.getResolver()->getType();
955
956  Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
957        "IFunc resolver must return a pointer", &GI);
958
959  const Type *ResolverFuncTy =
960      GlobalIFunc::getResolverFunctionType(GI.getValueType());
961  Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
962        "IFunc resolver has incorrect type", &GI);
963}
964
965void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
966  // There used to be various other llvm.dbg.* nodes, but we don't support
967  // upgrading them and we want to reserve the namespace for future uses.
968  if (NMD.getName().starts_with("llvm.dbg."))
969    CheckDI(NMD.getName() == "llvm.dbg.cu",
970            "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
971  for (const MDNode *MD : NMD.operands()) {
972    if (NMD.getName() == "llvm.dbg.cu")
973      CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
974
975    if (!MD)
976      continue;
977
978    visitMDNode(*MD, AreDebugLocsAllowed::Yes);
979  }
980}
981
982void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
983  // Only visit each node once.  Metadata can be mutually recursive, so this
984  // avoids infinite recursion here, as well as being an optimization.
985  if (!MDNodes.insert(&MD).second)
986    return;
987
988  Check(&MD.getContext() == &Context,
989        "MDNode context does not match Module context!", &MD);
990
991  switch (MD.getMetadataID()) {
992  default:
993    llvm_unreachable("Invalid MDNode subclass");
994  case Metadata::MDTupleKind:
995    break;
996#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
997  case Metadata::CLASS##Kind:                                                  \
998    visit##CLASS(cast<CLASS>(MD));                                             \
999    break;
1000#include "llvm/IR/Metadata.def"
1001  }
1002
1003  for (const Metadata *Op : MD.operands()) {
1004    if (!Op)
1005      continue;
1006    Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1007          &MD, Op);
1008    CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1009            "DILocation not allowed within this metadata node", &MD, Op);
1010    if (auto *N = dyn_cast<MDNode>(Op)) {
1011      visitMDNode(*N, AllowLocs);
1012      continue;
1013    }
1014    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
1015      visitValueAsMetadata(*V, nullptr);
1016      continue;
1017    }
1018  }
1019
1020  // Check these last, so we diagnose problems in operands first.
1021  Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1022  Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1023}
1024
1025void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1026  Check(MD.getValue(), "Expected valid value", &MD);
1027  Check(!MD.getValue()->getType()->isMetadataTy(),
1028        "Unexpected metadata round-trip through values", &MD, MD.getValue());
1029
1030  auto *L = dyn_cast<LocalAsMetadata>(&MD);
1031  if (!L)
1032    return;
1033
1034  Check(F, "function-local metadata used outside a function", L);
1035
1036  // If this was an instruction, bb, or argument, verify that it is in the
1037  // function that we expect.
1038  Function *ActualF = nullptr;
1039  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
1040    Check(I->getParent(), "function-local metadata not in basic block", L, I);
1041    ActualF = I->getParent()->getParent();
1042  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
1043    ActualF = BB->getParent();
1044  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
1045    ActualF = A->getParent();
1046  assert(ActualF && "Unimplemented function local metadata case!");
1047
1048  Check(ActualF == F, "function-local metadata used in wrong function", L);
1049}
1050
1051void Verifier::visitDIArgList(const DIArgList &AL, Function *F) {
1052  for (const ValueAsMetadata *VAM : AL.getArgs())
1053    visitValueAsMetadata(*VAM, F);
1054}
1055
1056void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1057  Metadata *MD = MDV.getMetadata();
1058  if (auto *N = dyn_cast<MDNode>(MD)) {
1059    visitMDNode(*N, AreDebugLocsAllowed::No);
1060    return;
1061  }
1062
1063  // Only visit each node once.  Metadata can be mutually recursive, so this
1064  // avoids infinite recursion here, as well as being an optimization.
1065  if (!MDNodes.insert(MD).second)
1066    return;
1067
1068  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1069    visitValueAsMetadata(*V, F);
1070
1071  if (auto *AL = dyn_cast<DIArgList>(MD))
1072    visitDIArgList(*AL, F);
1073}
1074
1075static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1076static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1077static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1078
1079void Verifier::visitDILocation(const DILocation &N) {
1080  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1081          "location requires a valid scope", &N, N.getRawScope());
1082  if (auto *IA = N.getRawInlinedAt())
1083    CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1084  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1085    CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1086}
1087
1088void Verifier::visitGenericDINode(const GenericDINode &N) {
1089  CheckDI(N.getTag(), "invalid tag", &N);
1090}
1091
1092void Verifier::visitDIScope(const DIScope &N) {
1093  if (auto *F = N.getRawFile())
1094    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1095}
1096
1097void Verifier::visitDISubrange(const DISubrange &N) {
1098  CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1099  bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
1100  CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1101              N.getRawUpperBound(),
1102          "Subrange must contain count or upperBound", &N);
1103  CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1104          "Subrange can have any one of count or upperBound", &N);
1105  auto *CBound = N.getRawCountNode();
1106  CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1107              isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1108          "Count must be signed constant or DIVariable or DIExpression", &N);
1109  auto Count = N.getCount();
1110  CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1111              cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1112          "invalid subrange count", &N);
1113  auto *LBound = N.getRawLowerBound();
1114  CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1115              isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1116          "LowerBound must be signed constant or DIVariable or DIExpression",
1117          &N);
1118  auto *UBound = N.getRawUpperBound();
1119  CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1120              isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1121          "UpperBound must be signed constant or DIVariable or DIExpression",
1122          &N);
1123  auto *Stride = N.getRawStride();
1124  CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1125              isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1126          "Stride must be signed constant or DIVariable or DIExpression", &N);
1127}
1128
1129void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1130  CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1131  CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1132          "GenericSubrange must contain count or upperBound", &N);
1133  CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1134          "GenericSubrange can have any one of count or upperBound", &N);
1135  auto *CBound = N.getRawCountNode();
1136  CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1137          "Count must be signed constant or DIVariable or DIExpression", &N);
1138  auto *LBound = N.getRawLowerBound();
1139  CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1140  CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1141          "LowerBound must be signed constant or DIVariable or DIExpression",
1142          &N);
1143  auto *UBound = N.getRawUpperBound();
1144  CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1145          "UpperBound must be signed constant or DIVariable or DIExpression",
1146          &N);
1147  auto *Stride = N.getRawStride();
1148  CheckDI(Stride, "GenericSubrange must contain stride", &N);
1149  CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1150          "Stride must be signed constant or DIVariable or DIExpression", &N);
1151}
1152
1153void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1154  CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1155}
1156
1157void Verifier::visitDIBasicType(const DIBasicType &N) {
1158  CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1159              N.getTag() == dwarf::DW_TAG_unspecified_type ||
1160              N.getTag() == dwarf::DW_TAG_string_type,
1161          "invalid tag", &N);
1162}
1163
1164void Verifier::visitDIStringType(const DIStringType &N) {
1165  CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1166  CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1167          &N);
1168}
1169
1170void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1171  // Common scope checks.
1172  visitDIScope(N);
1173
1174  CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1175              N.getTag() == dwarf::DW_TAG_pointer_type ||
1176              N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1177              N.getTag() == dwarf::DW_TAG_reference_type ||
1178              N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1179              N.getTag() == dwarf::DW_TAG_const_type ||
1180              N.getTag() == dwarf::DW_TAG_immutable_type ||
1181              N.getTag() == dwarf::DW_TAG_volatile_type ||
1182              N.getTag() == dwarf::DW_TAG_restrict_type ||
1183              N.getTag() == dwarf::DW_TAG_atomic_type ||
1184              N.getTag() == dwarf::DW_TAG_member ||
1185              (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) ||
1186              N.getTag() == dwarf::DW_TAG_inheritance ||
1187              N.getTag() == dwarf::DW_TAG_friend ||
1188              N.getTag() == dwarf::DW_TAG_set_type,
1189          "invalid tag", &N);
1190  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1191    CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1192            N.getRawExtraData());
1193  }
1194
1195  if (N.getTag() == dwarf::DW_TAG_set_type) {
1196    if (auto *T = N.getRawBaseType()) {
1197      auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1198      auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1199      CheckDI(
1200          (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1201              (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1202                         Basic->getEncoding() == dwarf::DW_ATE_signed ||
1203                         Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1204                         Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1205                         Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1206          "invalid set base type", &N, T);
1207    }
1208  }
1209
1210  CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1211  CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1212          N.getRawBaseType());
1213
1214  if (N.getDWARFAddressSpace()) {
1215    CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1216                N.getTag() == dwarf::DW_TAG_reference_type ||
1217                N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1218            "DWARF address space only applies to pointer or reference types",
1219            &N);
1220  }
1221}
1222
1223/// Detect mutually exclusive flags.
1224static bool hasConflictingReferenceFlags(unsigned Flags) {
1225  return ((Flags & DINode::FlagLValueReference) &&
1226          (Flags & DINode::FlagRValueReference)) ||
1227         ((Flags & DINode::FlagTypePassByValue) &&
1228          (Flags & DINode::FlagTypePassByReference));
1229}
1230
1231void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1232  auto *Params = dyn_cast<MDTuple>(&RawParams);
1233  CheckDI(Params, "invalid template params", &N, &RawParams);
1234  for (Metadata *Op : Params->operands()) {
1235    CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1236            &N, Params, Op);
1237  }
1238}
1239
1240void Verifier::visitDICompositeType(const DICompositeType &N) {
1241  // Common scope checks.
1242  visitDIScope(N);
1243
1244  CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1245              N.getTag() == dwarf::DW_TAG_structure_type ||
1246              N.getTag() == dwarf::DW_TAG_union_type ||
1247              N.getTag() == dwarf::DW_TAG_enumeration_type ||
1248              N.getTag() == dwarf::DW_TAG_class_type ||
1249              N.getTag() == dwarf::DW_TAG_variant_part ||
1250              N.getTag() == dwarf::DW_TAG_namelist,
1251          "invalid tag", &N);
1252
1253  CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1254  CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1255          N.getRawBaseType());
1256
1257  CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1258          "invalid composite elements", &N, N.getRawElements());
1259  CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1260          N.getRawVTableHolder());
1261  CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1262          "invalid reference flags", &N);
1263  unsigned DIBlockByRefStruct = 1 << 4;
1264  CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1265          "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1266
1267  if (N.isVector()) {
1268    const DINodeArray Elements = N.getElements();
1269    CheckDI(Elements.size() == 1 &&
1270                Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1271            "invalid vector, expected one element of type subrange", &N);
1272  }
1273
1274  if (auto *Params = N.getRawTemplateParams())
1275    visitTemplateParams(N, *Params);
1276
1277  if (auto *D = N.getRawDiscriminator()) {
1278    CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1279            "discriminator can only appear on variant part");
1280  }
1281
1282  if (N.getRawDataLocation()) {
1283    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1284            "dataLocation can only appear in array type");
1285  }
1286
1287  if (N.getRawAssociated()) {
1288    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1289            "associated can only appear in array type");
1290  }
1291
1292  if (N.getRawAllocated()) {
1293    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1294            "allocated can only appear in array type");
1295  }
1296
1297  if (N.getRawRank()) {
1298    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1299            "rank can only appear in array type");
1300  }
1301
1302  if (N.getTag() == dwarf::DW_TAG_array_type) {
1303    CheckDI(N.getRawBaseType(), "array types must have a base type", &N);
1304  }
1305}
1306
1307void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1308  CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1309  if (auto *Types = N.getRawTypeArray()) {
1310    CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1311    for (Metadata *Ty : N.getTypeArray()->operands()) {
1312      CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1313    }
1314  }
1315  CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1316          "invalid reference flags", &N);
1317}
1318
1319void Verifier::visitDIFile(const DIFile &N) {
1320  CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1321  std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1322  if (Checksum) {
1323    CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1324            "invalid checksum kind", &N);
1325    size_t Size;
1326    switch (Checksum->Kind) {
1327    case DIFile::CSK_MD5:
1328      Size = 32;
1329      break;
1330    case DIFile::CSK_SHA1:
1331      Size = 40;
1332      break;
1333    case DIFile::CSK_SHA256:
1334      Size = 64;
1335      break;
1336    }
1337    CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1338    CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1339            "invalid checksum", &N);
1340  }
1341}
1342
1343void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1344  CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1345  CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1346
1347  // Don't bother verifying the compilation directory or producer string
1348  // as those could be empty.
1349  CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1350          N.getRawFile());
1351  CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1352          N.getFile());
1353
1354  CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1355
1356  CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1357          "invalid emission kind", &N);
1358
1359  if (auto *Array = N.getRawEnumTypes()) {
1360    CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1361    for (Metadata *Op : N.getEnumTypes()->operands()) {
1362      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1363      CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1364              "invalid enum type", &N, N.getEnumTypes(), Op);
1365    }
1366  }
1367  if (auto *Array = N.getRawRetainedTypes()) {
1368    CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1369    for (Metadata *Op : N.getRetainedTypes()->operands()) {
1370      CheckDI(
1371          Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1372                                     !cast<DISubprogram>(Op)->isDefinition())),
1373          "invalid retained type", &N, Op);
1374    }
1375  }
1376  if (auto *Array = N.getRawGlobalVariables()) {
1377    CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1378    for (Metadata *Op : N.getGlobalVariables()->operands()) {
1379      CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1380              "invalid global variable ref", &N, Op);
1381    }
1382  }
1383  if (auto *Array = N.getRawImportedEntities()) {
1384    CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1385    for (Metadata *Op : N.getImportedEntities()->operands()) {
1386      CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1387              &N, Op);
1388    }
1389  }
1390  if (auto *Array = N.getRawMacros()) {
1391    CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1392    for (Metadata *Op : N.getMacros()->operands()) {
1393      CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1394    }
1395  }
1396  CUVisited.insert(&N);
1397}
1398
1399void Verifier::visitDISubprogram(const DISubprogram &N) {
1400  CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1401  CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1402  if (auto *F = N.getRawFile())
1403    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1404  else
1405    CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1406  if (auto *T = N.getRawType())
1407    CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1408  CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1409          N.getRawContainingType());
1410  if (auto *Params = N.getRawTemplateParams())
1411    visitTemplateParams(N, *Params);
1412  if (auto *S = N.getRawDeclaration())
1413    CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1414            "invalid subprogram declaration", &N, S);
1415  if (auto *RawNode = N.getRawRetainedNodes()) {
1416    auto *Node = dyn_cast<MDTuple>(RawNode);
1417    CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1418    for (Metadata *Op : Node->operands()) {
1419      CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1420                     isa<DIImportedEntity>(Op)),
1421              "invalid retained nodes, expected DILocalVariable, DILabel or "
1422              "DIImportedEntity",
1423              &N, Node, Op);
1424    }
1425  }
1426  CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1427          "invalid reference flags", &N);
1428
1429  auto *Unit = N.getRawUnit();
1430  if (N.isDefinition()) {
1431    // Subprogram definitions (not part of the type hierarchy).
1432    CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1433    CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1434    CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1435    // There's no good way to cross the CU boundary to insert a nested
1436    // DISubprogram definition in one CU into a type defined in another CU.
1437    auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
1438    if (CT && CT->getRawIdentifier() &&
1439        M.getContext().isODRUniquingDebugTypes())
1440      CheckDI(N.getDeclaration(),
1441              "definition subprograms cannot be nested within DICompositeType "
1442              "when enabling ODR",
1443              &N);
1444  } else {
1445    // Subprogram declarations (part of the type hierarchy).
1446    CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1447    CheckDI(!N.getRawDeclaration(),
1448            "subprogram declaration must not have a declaration field");
1449  }
1450
1451  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1452    auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1453    CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1454    for (Metadata *Op : ThrownTypes->operands())
1455      CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1456              Op);
1457  }
1458
1459  if (N.areAllCallsDescribed())
1460    CheckDI(N.isDefinition(),
1461            "DIFlagAllCallsDescribed must be attached to a definition");
1462}
1463
1464void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1465  CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1466  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1467          "invalid local scope", &N, N.getRawScope());
1468  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1469    CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1470}
1471
1472void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1473  visitDILexicalBlockBase(N);
1474
1475  CheckDI(N.getLine() || !N.getColumn(),
1476          "cannot have column info without line info", &N);
1477}
1478
1479void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1480  visitDILexicalBlockBase(N);
1481}
1482
1483void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1484  CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1485  if (auto *S = N.getRawScope())
1486    CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1487  if (auto *S = N.getRawDecl())
1488    CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1489}
1490
1491void Verifier::visitDINamespace(const DINamespace &N) {
1492  CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1493  if (auto *S = N.getRawScope())
1494    CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1495}
1496
1497void Verifier::visitDIMacro(const DIMacro &N) {
1498  CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1499              N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1500          "invalid macinfo type", &N);
1501  CheckDI(!N.getName().empty(), "anonymous macro", &N);
1502  if (!N.getValue().empty()) {
1503    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1504  }
1505}
1506
1507void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1508  CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1509          "invalid macinfo type", &N);
1510  if (auto *F = N.getRawFile())
1511    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1512
1513  if (auto *Array = N.getRawElements()) {
1514    CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1515    for (Metadata *Op : N.getElements()->operands()) {
1516      CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1517    }
1518  }
1519}
1520
1521void Verifier::visitDIModule(const DIModule &N) {
1522  CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1523  CheckDI(!N.getName().empty(), "anonymous module", &N);
1524}
1525
1526void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1527  CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1528}
1529
1530void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1531  visitDITemplateParameter(N);
1532
1533  CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1534          &N);
1535}
1536
1537void Verifier::visitDITemplateValueParameter(
1538    const DITemplateValueParameter &N) {
1539  visitDITemplateParameter(N);
1540
1541  CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1542              N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1543              N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1544          "invalid tag", &N);
1545}
1546
1547void Verifier::visitDIVariable(const DIVariable &N) {
1548  if (auto *S = N.getRawScope())
1549    CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1550  if (auto *F = N.getRawFile())
1551    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1552}
1553
1554void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1555  // Checks common to all variables.
1556  visitDIVariable(N);
1557
1558  CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1559  CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1560  // Check only if the global variable is not an extern
1561  if (N.isDefinition())
1562    CheckDI(N.getType(), "missing global variable type", &N);
1563  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1564    CheckDI(isa<DIDerivedType>(Member),
1565            "invalid static data member declaration", &N, Member);
1566  }
1567}
1568
1569void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1570  // Checks common to all variables.
1571  visitDIVariable(N);
1572
1573  CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1574  CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1575  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1576          "local variable requires a valid scope", &N, N.getRawScope());
1577  if (auto Ty = N.getType())
1578    CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1579}
1580
1581void Verifier::visitDIAssignID(const DIAssignID &N) {
1582  CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1583  CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1584}
1585
1586void Verifier::visitDILabel(const DILabel &N) {
1587  if (auto *S = N.getRawScope())
1588    CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1589  if (auto *F = N.getRawFile())
1590    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1591
1592  CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1593  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1594          "label requires a valid scope", &N, N.getRawScope());
1595}
1596
1597void Verifier::visitDIExpression(const DIExpression &N) {
1598  CheckDI(N.isValid(), "invalid expression", &N);
1599}
1600
1601void Verifier::visitDIGlobalVariableExpression(
1602    const DIGlobalVariableExpression &GVE) {
1603  CheckDI(GVE.getVariable(), "missing variable");
1604  if (auto *Var = GVE.getVariable())
1605    visitDIGlobalVariable(*Var);
1606  if (auto *Expr = GVE.getExpression()) {
1607    visitDIExpression(*Expr);
1608    if (auto Fragment = Expr->getFragmentInfo())
1609      verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1610  }
1611}
1612
1613void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1614  CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1615  if (auto *T = N.getRawType())
1616    CheckDI(isType(T), "invalid type ref", &N, T);
1617  if (auto *F = N.getRawFile())
1618    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1619}
1620
1621void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1622  CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1623              N.getTag() == dwarf::DW_TAG_imported_declaration,
1624          "invalid tag", &N);
1625  if (auto *S = N.getRawScope())
1626    CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1627  CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1628          N.getRawEntity());
1629}
1630
1631void Verifier::visitComdat(const Comdat &C) {
1632  // In COFF the Module is invalid if the GlobalValue has private linkage.
1633  // Entities with private linkage don't have entries in the symbol table.
1634  if (TT.isOSBinFormatCOFF())
1635    if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1636      Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1637            GV);
1638}
1639
1640void Verifier::visitModuleIdents() {
1641  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1642  if (!Idents)
1643    return;
1644
1645  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1646  // Scan each llvm.ident entry and make sure that this requirement is met.
1647  for (const MDNode *N : Idents->operands()) {
1648    Check(N->getNumOperands() == 1,
1649          "incorrect number of operands in llvm.ident metadata", N);
1650    Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1651          ("invalid value for llvm.ident metadata entry operand"
1652           "(the operand should be a string)"),
1653          N->getOperand(0));
1654  }
1655}
1656
1657void Verifier::visitModuleCommandLines() {
1658  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1659  if (!CommandLines)
1660    return;
1661
1662  // llvm.commandline takes a list of metadata entry. Each entry has only one
1663  // string. Scan each llvm.commandline entry and make sure that this
1664  // requirement is met.
1665  for (const MDNode *N : CommandLines->operands()) {
1666    Check(N->getNumOperands() == 1,
1667          "incorrect number of operands in llvm.commandline metadata", N);
1668    Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1669          ("invalid value for llvm.commandline metadata entry operand"
1670           "(the operand should be a string)"),
1671          N->getOperand(0));
1672  }
1673}
1674
1675void Verifier::visitModuleFlags() {
1676  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1677  if (!Flags) return;
1678
1679  // Scan each flag, and track the flags and requirements.
1680  DenseMap<const MDString*, const MDNode*> SeenIDs;
1681  SmallVector<const MDNode*, 16> Requirements;
1682  for (const MDNode *MDN : Flags->operands())
1683    visitModuleFlag(MDN, SeenIDs, Requirements);
1684
1685  // Validate that the requirements in the module are valid.
1686  for (const MDNode *Requirement : Requirements) {
1687    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1688    const Metadata *ReqValue = Requirement->getOperand(1);
1689
1690    const MDNode *Op = SeenIDs.lookup(Flag);
1691    if (!Op) {
1692      CheckFailed("invalid requirement on flag, flag is not present in module",
1693                  Flag);
1694      continue;
1695    }
1696
1697    if (Op->getOperand(2) != ReqValue) {
1698      CheckFailed(("invalid requirement on flag, "
1699                   "flag does not have the required value"),
1700                  Flag);
1701      continue;
1702    }
1703  }
1704}
1705
1706void
1707Verifier::visitModuleFlag(const MDNode *Op,
1708                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
1709                          SmallVectorImpl<const MDNode *> &Requirements) {
1710  // Each module flag should have three arguments, the merge behavior (a
1711  // constant int), the flag ID (an MDString), and the value.
1712  Check(Op->getNumOperands() == 3,
1713        "incorrect number of operands in module flag", Op);
1714  Module::ModFlagBehavior MFB;
1715  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1716    Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1717          "invalid behavior operand in module flag (expected constant integer)",
1718          Op->getOperand(0));
1719    Check(false,
1720          "invalid behavior operand in module flag (unexpected constant)",
1721          Op->getOperand(0));
1722  }
1723  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1724  Check(ID, "invalid ID operand in module flag (expected metadata string)",
1725        Op->getOperand(1));
1726
1727  // Check the values for behaviors with additional requirements.
1728  switch (MFB) {
1729  case Module::Error:
1730  case Module::Warning:
1731  case Module::Override:
1732    // These behavior types accept any value.
1733    break;
1734
1735  case Module::Min: {
1736    auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1737    Check(V && V->getValue().isNonNegative(),
1738          "invalid value for 'min' module flag (expected constant non-negative "
1739          "integer)",
1740          Op->getOperand(2));
1741    break;
1742  }
1743
1744  case Module::Max: {
1745    Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1746          "invalid value for 'max' module flag (expected constant integer)",
1747          Op->getOperand(2));
1748    break;
1749  }
1750
1751  case Module::Require: {
1752    // The value should itself be an MDNode with two operands, a flag ID (an
1753    // MDString), and a value.
1754    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1755    Check(Value && Value->getNumOperands() == 2,
1756          "invalid value for 'require' module flag (expected metadata pair)",
1757          Op->getOperand(2));
1758    Check(isa<MDString>(Value->getOperand(0)),
1759          ("invalid value for 'require' module flag "
1760           "(first value operand should be a string)"),
1761          Value->getOperand(0));
1762
1763    // Append it to the list of requirements, to check once all module flags are
1764    // scanned.
1765    Requirements.push_back(Value);
1766    break;
1767  }
1768
1769  case Module::Append:
1770  case Module::AppendUnique: {
1771    // These behavior types require the operand be an MDNode.
1772    Check(isa<MDNode>(Op->getOperand(2)),
1773          "invalid value for 'append'-type module flag "
1774          "(expected a metadata node)",
1775          Op->getOperand(2));
1776    break;
1777  }
1778  }
1779
1780  // Unless this is a "requires" flag, check the ID is unique.
1781  if (MFB != Module::Require) {
1782    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1783    Check(Inserted,
1784          "module flag identifiers must be unique (or of 'require' type)", ID);
1785  }
1786
1787  if (ID->getString() == "wchar_size") {
1788    ConstantInt *Value
1789      = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1790    Check(Value, "wchar_size metadata requires constant integer argument");
1791  }
1792
1793  if (ID->getString() == "Linker Options") {
1794    // If the llvm.linker.options named metadata exists, we assume that the
1795    // bitcode reader has upgraded the module flag. Otherwise the flag might
1796    // have been created by a client directly.
1797    Check(M.getNamedMetadata("llvm.linker.options"),
1798          "'Linker Options' named metadata no longer supported");
1799  }
1800
1801  if (ID->getString() == "SemanticInterposition") {
1802    ConstantInt *Value =
1803        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1804    Check(Value,
1805          "SemanticInterposition metadata requires constant integer argument");
1806  }
1807
1808  if (ID->getString() == "CG Profile") {
1809    for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1810      visitModuleFlagCGProfileEntry(MDO);
1811  }
1812}
1813
1814void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1815  auto CheckFunction = [&](const MDOperand &FuncMDO) {
1816    if (!FuncMDO)
1817      return;
1818    auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1819    Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1820          "expected a Function or null", FuncMDO);
1821  };
1822  auto Node = dyn_cast_or_null<MDNode>(MDO);
1823  Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1824  CheckFunction(Node->getOperand(0));
1825  CheckFunction(Node->getOperand(1));
1826  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1827  Check(Count && Count->getType()->isIntegerTy(),
1828        "expected an integer constant", Node->getOperand(2));
1829}
1830
1831void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1832  for (Attribute A : Attrs) {
1833
1834    if (A.isStringAttribute()) {
1835#define GET_ATTR_NAMES
1836#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1837#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1838  if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1839    auto V = A.getValueAsString();                                             \
1840    if (!(V.empty() || V == "true" || V == "false"))                           \
1841      CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1842                  "");                                                         \
1843  }
1844
1845#include "llvm/IR/Attributes.inc"
1846      continue;
1847    }
1848
1849    if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1850      CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1851                  V);
1852      return;
1853    }
1854  }
1855}
1856
1857// VerifyParameterAttrs - Check the given attributes for an argument or return
1858// value of the specified type.  The value V is printed in error messages.
1859void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1860                                    const Value *V) {
1861  if (!Attrs.hasAttributes())
1862    return;
1863
1864  verifyAttributeTypes(Attrs, V);
1865
1866  for (Attribute Attr : Attrs)
1867    Check(Attr.isStringAttribute() ||
1868              Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1869          "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1870          V);
1871
1872  if (Attrs.hasAttribute(Attribute::ImmArg)) {
1873    Check(Attrs.getNumAttributes() == 1,
1874          "Attribute 'immarg' is incompatible with other attributes", V);
1875  }
1876
1877  // Check for mutually incompatible attributes.  Only inreg is compatible with
1878  // sret.
1879  unsigned AttrCount = 0;
1880  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1881  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1882  AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1883  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1884               Attrs.hasAttribute(Attribute::InReg);
1885  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1886  AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1887  Check(AttrCount <= 1,
1888        "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1889        "'byref', and 'sret' are incompatible!",
1890        V);
1891
1892  Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1893          Attrs.hasAttribute(Attribute::ReadOnly)),
1894        "Attributes "
1895        "'inalloca and readonly' are incompatible!",
1896        V);
1897
1898  Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1899          Attrs.hasAttribute(Attribute::Returned)),
1900        "Attributes "
1901        "'sret and returned' are incompatible!",
1902        V);
1903
1904  Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1905          Attrs.hasAttribute(Attribute::SExt)),
1906        "Attributes "
1907        "'zeroext and signext' are incompatible!",
1908        V);
1909
1910  Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1911          Attrs.hasAttribute(Attribute::ReadOnly)),
1912        "Attributes "
1913        "'readnone and readonly' are incompatible!",
1914        V);
1915
1916  Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1917          Attrs.hasAttribute(Attribute::WriteOnly)),
1918        "Attributes "
1919        "'readnone and writeonly' are incompatible!",
1920        V);
1921
1922  Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1923          Attrs.hasAttribute(Attribute::WriteOnly)),
1924        "Attributes "
1925        "'readonly and writeonly' are incompatible!",
1926        V);
1927
1928  Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1929          Attrs.hasAttribute(Attribute::AlwaysInline)),
1930        "Attributes "
1931        "'noinline and alwaysinline' are incompatible!",
1932        V);
1933
1934  Check(!(Attrs.hasAttribute(Attribute::Writable) &&
1935          Attrs.hasAttribute(Attribute::ReadNone)),
1936        "Attributes writable and readnone are incompatible!", V);
1937
1938  Check(!(Attrs.hasAttribute(Attribute::Writable) &&
1939          Attrs.hasAttribute(Attribute::ReadOnly)),
1940        "Attributes writable and readonly are incompatible!", V);
1941
1942  AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1943  for (Attribute Attr : Attrs) {
1944    if (!Attr.isStringAttribute() &&
1945        IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1946      CheckFailed("Attribute '" + Attr.getAsString() +
1947                  "' applied to incompatible type!", V);
1948      return;
1949    }
1950  }
1951
1952  if (isa<PointerType>(Ty)) {
1953    if (Attrs.hasAttribute(Attribute::ByVal)) {
1954      if (Attrs.hasAttribute(Attribute::Alignment)) {
1955        Align AttrAlign = Attrs.getAlignment().valueOrOne();
1956        Align MaxAlign(ParamMaxAlignment);
1957        Check(AttrAlign <= MaxAlign,
1958              "Attribute 'align' exceed the max size 2^14", V);
1959      }
1960      SmallPtrSet<Type *, 4> Visited;
1961      Check(Attrs.getByValType()->isSized(&Visited),
1962            "Attribute 'byval' does not support unsized types!", V);
1963    }
1964    if (Attrs.hasAttribute(Attribute::ByRef)) {
1965      SmallPtrSet<Type *, 4> Visited;
1966      Check(Attrs.getByRefType()->isSized(&Visited),
1967            "Attribute 'byref' does not support unsized types!", V);
1968    }
1969    if (Attrs.hasAttribute(Attribute::InAlloca)) {
1970      SmallPtrSet<Type *, 4> Visited;
1971      Check(Attrs.getInAllocaType()->isSized(&Visited),
1972            "Attribute 'inalloca' does not support unsized types!", V);
1973    }
1974    if (Attrs.hasAttribute(Attribute::Preallocated)) {
1975      SmallPtrSet<Type *, 4> Visited;
1976      Check(Attrs.getPreallocatedType()->isSized(&Visited),
1977            "Attribute 'preallocated' does not support unsized types!", V);
1978    }
1979  }
1980
1981  if (Attrs.hasAttribute(Attribute::NoFPClass)) {
1982    uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
1983    Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
1984          V);
1985    Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
1986          "Invalid value for 'nofpclass' test mask", V);
1987  }
1988}
1989
1990void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1991                                            const Value *V) {
1992  if (Attrs.hasFnAttr(Attr)) {
1993    StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1994    unsigned N;
1995    if (S.getAsInteger(10, N))
1996      CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1997  }
1998}
1999
2000// Check parameter attributes against a function type.
2001// The value V is printed in error messages.
2002void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2003                                   const Value *V, bool IsIntrinsic,
2004                                   bool IsInlineAsm) {
2005  if (Attrs.isEmpty())
2006    return;
2007
2008  if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
2009    Check(Attrs.hasParentContext(Context),
2010          "Attribute list does not match Module context!", &Attrs, V);
2011    for (const auto &AttrSet : Attrs) {
2012      Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2013            "Attribute set does not match Module context!", &AttrSet, V);
2014      for (const auto &A : AttrSet) {
2015        Check(A.hasParentContext(Context),
2016              "Attribute does not match Module context!", &A, V);
2017      }
2018    }
2019  }
2020
2021  bool SawNest = false;
2022  bool SawReturned = false;
2023  bool SawSRet = false;
2024  bool SawSwiftSelf = false;
2025  bool SawSwiftAsync = false;
2026  bool SawSwiftError = false;
2027
2028  // Verify return value attributes.
2029  AttributeSet RetAttrs = Attrs.getRetAttrs();
2030  for (Attribute RetAttr : RetAttrs)
2031    Check(RetAttr.isStringAttribute() ||
2032              Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2033          "Attribute '" + RetAttr.getAsString() +
2034              "' does not apply to function return values",
2035          V);
2036
2037  unsigned MaxParameterWidth = 0;
2038  auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2039    if (Ty->isVectorTy()) {
2040      if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2041        unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2042        if (Size > MaxParameterWidth)
2043          MaxParameterWidth = Size;
2044      }
2045    }
2046  };
2047  GetMaxParameterWidth(FT->getReturnType());
2048  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2049
2050  // Verify parameter attributes.
2051  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2052    Type *Ty = FT->getParamType(i);
2053    AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
2054
2055    if (!IsIntrinsic) {
2056      Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2057            "immarg attribute only applies to intrinsics", V);
2058      if (!IsInlineAsm)
2059        Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2060              "Attribute 'elementtype' can only be applied to intrinsics"
2061              " and inline asm.",
2062              V);
2063    }
2064
2065    verifyParameterAttrs(ArgAttrs, Ty, V);
2066    GetMaxParameterWidth(Ty);
2067
2068    if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2069      Check(!SawNest, "More than one parameter has attribute nest!", V);
2070      SawNest = true;
2071    }
2072
2073    if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2074      Check(!SawReturned, "More than one parameter has attribute returned!", V);
2075      Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2076            "Incompatible argument and return types for 'returned' attribute",
2077            V);
2078      SawReturned = true;
2079    }
2080
2081    if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2082      Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2083      Check(i == 0 || i == 1,
2084            "Attribute 'sret' is not on first or second parameter!", V);
2085      SawSRet = true;
2086    }
2087
2088    if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2089      Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2090      SawSwiftSelf = true;
2091    }
2092
2093    if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2094      Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2095      SawSwiftAsync = true;
2096    }
2097
2098    if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2099      Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2100      SawSwiftError = true;
2101    }
2102
2103    if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2104      Check(i == FT->getNumParams() - 1,
2105            "inalloca isn't on the last parameter!", V);
2106    }
2107  }
2108
2109  if (!Attrs.hasFnAttrs())
2110    return;
2111
2112  verifyAttributeTypes(Attrs.getFnAttrs(), V);
2113  for (Attribute FnAttr : Attrs.getFnAttrs())
2114    Check(FnAttr.isStringAttribute() ||
2115              Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2116          "Attribute '" + FnAttr.getAsString() +
2117              "' does not apply to functions!",
2118          V);
2119
2120  Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2121          Attrs.hasFnAttr(Attribute::AlwaysInline)),
2122        "Attributes 'noinline and alwaysinline' are incompatible!", V);
2123
2124  if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2125    Check(Attrs.hasFnAttr(Attribute::NoInline),
2126          "Attribute 'optnone' requires 'noinline'!", V);
2127
2128    Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2129          "Attributes 'optsize and optnone' are incompatible!", V);
2130
2131    Check(!Attrs.hasFnAttr(Attribute::MinSize),
2132          "Attributes 'minsize and optnone' are incompatible!", V);
2133
2134    Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2135          "Attributes 'optdebug and optnone' are incompatible!", V);
2136  }
2137
2138  if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2139    Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2140          "Attributes 'optsize and optdebug' are incompatible!", V);
2141
2142    Check(!Attrs.hasFnAttr(Attribute::MinSize),
2143          "Attributes 'minsize and optdebug' are incompatible!", V);
2144  }
2145
2146  Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
2147        isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2148        "Attribute writable and memory without argmem: write are incompatible!",
2149        V);
2150
2151  if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2152    Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2153           "Attributes 'aarch64_pstate_sm_enabled and "
2154           "aarch64_pstate_sm_compatible' are incompatible!",
2155           V);
2156  }
2157
2158  if (Attrs.hasFnAttr("aarch64_pstate_za_new")) {
2159    Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"),
2160           "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' "
2161           "are incompatible!",
2162           V);
2163
2164    Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"),
2165           "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' "
2166           "are incompatible!",
2167           V);
2168  }
2169
2170  Check(
2171      (Attrs.hasFnAttr("aarch64_new_zt0") + Attrs.hasFnAttr("aarch64_in_zt0") +
2172       Attrs.hasFnAttr("aarch64_inout_zt0") +
2173       Attrs.hasFnAttr("aarch64_out_zt0") +
2174       Attrs.hasFnAttr("aarch64_preserves_zt0")) <= 1,
2175      "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2176      "'aarch64_inout_zt0' and 'aarch64_preserves_zt0' are mutually exclusive",
2177      V);
2178
2179  if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2180    const GlobalValue *GV = cast<GlobalValue>(V);
2181    Check(GV->hasGlobalUnnamedAddr(),
2182          "Attribute 'jumptable' requires 'unnamed_addr'", V);
2183  }
2184
2185  if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2186    auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2187      if (ParamNo >= FT->getNumParams()) {
2188        CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2189        return false;
2190      }
2191
2192      if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2193        CheckFailed("'allocsize' " + Name +
2194                        " argument must refer to an integer parameter",
2195                    V);
2196        return false;
2197      }
2198
2199      return true;
2200    };
2201
2202    if (!CheckParam("element size", Args->first))
2203      return;
2204
2205    if (Args->second && !CheckParam("number of elements", *Args->second))
2206      return;
2207  }
2208
2209  if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2210    AllocFnKind K = Attrs.getAllocKind();
2211    AllocFnKind Type =
2212        K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2213    if (!is_contained(
2214            {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2215            Type))
2216      CheckFailed(
2217          "'allockind()' requires exactly one of alloc, realloc, and free");
2218    if ((Type == AllocFnKind::Free) &&
2219        ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2220               AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2221      CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2222                  "or aligned modifiers.");
2223    AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2224    if ((K & ZeroedUninit) == ZeroedUninit)
2225      CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2226  }
2227
2228  if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2229    unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2230    if (VScaleMin == 0)
2231      CheckFailed("'vscale_range' minimum must be greater than 0", V);
2232    else if (!isPowerOf2_32(VScaleMin))
2233      CheckFailed("'vscale_range' minimum must be power-of-two value", V);
2234    std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2235    if (VScaleMax && VScaleMin > VScaleMax)
2236      CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2237    else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
2238      CheckFailed("'vscale_range' maximum must be power-of-two value", V);
2239  }
2240
2241  if (Attrs.hasFnAttr("frame-pointer")) {
2242    StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2243    if (FP != "all" && FP != "non-leaf" && FP != "none")
2244      CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2245  }
2246
2247  // Check EVEX512 feature.
2248  if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") &&
2249      TT.isX86()) {
2250    StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
2251    Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2252          "512-bit vector arguments require 'evex512' for AVX512", V);
2253  }
2254
2255  checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2256  checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2257  checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2258
2259  if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) {
2260    StringRef S = A.getValueAsString();
2261    if (S != "none" && S != "all" && S != "non-leaf")
2262      CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V);
2263  }
2264
2265  if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) {
2266    StringRef S = A.getValueAsString();
2267    if (S != "a_key" && S != "b_key")
2268      CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S,
2269                  V);
2270  }
2271
2272  if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) {
2273    StringRef S = A.getValueAsString();
2274    if (S != "true" && S != "false")
2275      CheckFailed(
2276          "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2277  }
2278
2279  if (auto A = Attrs.getFnAttr("vector-function-abi-variant"); A.isValid()) {
2280    StringRef S = A.getValueAsString();
2281    const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, FT);
2282    if (!Info)
2283      CheckFailed("invalid name for a VFABI variant: " + S, V);
2284  }
2285}
2286
2287void Verifier::verifyFunctionMetadata(
2288    ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2289  for (const auto &Pair : MDs) {
2290    if (Pair.first == LLVMContext::MD_prof) {
2291      MDNode *MD = Pair.second;
2292      Check(MD->getNumOperands() >= 2,
2293            "!prof annotations should have no less than 2 operands", MD);
2294
2295      // Check first operand.
2296      Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2297            MD);
2298      Check(isa<MDString>(MD->getOperand(0)),
2299            "expected string with name of the !prof annotation", MD);
2300      MDString *MDS = cast<MDString>(MD->getOperand(0));
2301      StringRef ProfName = MDS->getString();
2302      Check(ProfName.equals("function_entry_count") ||
2303                ProfName.equals("synthetic_function_entry_count"),
2304            "first operand should be 'function_entry_count'"
2305            " or 'synthetic_function_entry_count'",
2306            MD);
2307
2308      // Check second operand.
2309      Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2310            MD);
2311      Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2312            "expected integer argument to function_entry_count", MD);
2313    } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2314      MDNode *MD = Pair.second;
2315      Check(MD->getNumOperands() == 1,
2316            "!kcfi_type must have exactly one operand", MD);
2317      Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2318            MD);
2319      Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2320            "expected a constant operand for !kcfi_type", MD);
2321      Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2322      Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()),
2323            "expected a constant integer operand for !kcfi_type", MD);
2324      Check(cast<ConstantInt>(C)->getBitWidth() == 32,
2325            "expected a 32-bit integer constant operand for !kcfi_type", MD);
2326    }
2327  }
2328}
2329
2330void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2331  if (!ConstantExprVisited.insert(EntryC).second)
2332    return;
2333
2334  SmallVector<const Constant *, 16> Stack;
2335  Stack.push_back(EntryC);
2336
2337  while (!Stack.empty()) {
2338    const Constant *C = Stack.pop_back_val();
2339
2340    // Check this constant expression.
2341    if (const auto *CE = dyn_cast<ConstantExpr>(C))
2342      visitConstantExpr(CE);
2343
2344    if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2345      // Global Values get visited separately, but we do need to make sure
2346      // that the global value is in the correct module
2347      Check(GV->getParent() == &M, "Referencing global in another module!",
2348            EntryC, &M, GV, GV->getParent());
2349      continue;
2350    }
2351
2352    // Visit all sub-expressions.
2353    for (const Use &U : C->operands()) {
2354      const auto *OpC = dyn_cast<Constant>(U);
2355      if (!OpC)
2356        continue;
2357      if (!ConstantExprVisited.insert(OpC).second)
2358        continue;
2359      Stack.push_back(OpC);
2360    }
2361  }
2362}
2363
2364void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2365  if (CE->getOpcode() == Instruction::BitCast)
2366    Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2367                                CE->getType()),
2368          "Invalid bitcast", CE);
2369}
2370
2371bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2372  // There shouldn't be more attribute sets than there are parameters plus the
2373  // function and return value.
2374  return Attrs.getNumAttrSets() <= Params + 2;
2375}
2376
2377void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2378  const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2379  unsigned ArgNo = 0;
2380  unsigned LabelNo = 0;
2381  for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2382    if (CI.Type == InlineAsm::isLabel) {
2383      ++LabelNo;
2384      continue;
2385    }
2386
2387    // Only deal with constraints that correspond to call arguments.
2388    if (!CI.hasArg())
2389      continue;
2390
2391    if (CI.isIndirect) {
2392      const Value *Arg = Call.getArgOperand(ArgNo);
2393      Check(Arg->getType()->isPointerTy(),
2394            "Operand for indirect constraint must have pointer type", &Call);
2395
2396      Check(Call.getParamElementType(ArgNo),
2397            "Operand for indirect constraint must have elementtype attribute",
2398            &Call);
2399    } else {
2400      Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2401            "Elementtype attribute can only be applied for indirect "
2402            "constraints",
2403            &Call);
2404    }
2405
2406    ArgNo++;
2407  }
2408
2409  if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2410    Check(LabelNo == CallBr->getNumIndirectDests(),
2411          "Number of label constraints does not match number of callbr dests",
2412          &Call);
2413  } else {
2414    Check(LabelNo == 0, "Label constraints can only be used with callbr",
2415          &Call);
2416  }
2417}
2418
2419/// Verify that statepoint intrinsic is well formed.
2420void Verifier::verifyStatepoint(const CallBase &Call) {
2421  assert(Call.getCalledFunction() &&
2422         Call.getCalledFunction()->getIntrinsicID() ==
2423             Intrinsic::experimental_gc_statepoint);
2424
2425  Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2426            !Call.onlyAccessesArgMemory(),
2427        "gc.statepoint must read and write all memory to preserve "
2428        "reordering restrictions required by safepoint semantics",
2429        Call);
2430
2431  const int64_t NumPatchBytes =
2432      cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2433  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2434  Check(NumPatchBytes >= 0,
2435        "gc.statepoint number of patchable bytes must be "
2436        "positive",
2437        Call);
2438
2439  Type *TargetElemType = Call.getParamElementType(2);
2440  Check(TargetElemType,
2441        "gc.statepoint callee argument must have elementtype attribute", Call);
2442  FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2443  Check(TargetFuncType,
2444        "gc.statepoint callee elementtype must be function type", Call);
2445
2446  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2447  Check(NumCallArgs >= 0,
2448        "gc.statepoint number of arguments to underlying call "
2449        "must be positive",
2450        Call);
2451  const int NumParams = (int)TargetFuncType->getNumParams();
2452  if (TargetFuncType->isVarArg()) {
2453    Check(NumCallArgs >= NumParams,
2454          "gc.statepoint mismatch in number of vararg call args", Call);
2455
2456    // TODO: Remove this limitation
2457    Check(TargetFuncType->getReturnType()->isVoidTy(),
2458          "gc.statepoint doesn't support wrapping non-void "
2459          "vararg functions yet",
2460          Call);
2461  } else
2462    Check(NumCallArgs == NumParams,
2463          "gc.statepoint mismatch in number of call args", Call);
2464
2465  const uint64_t Flags
2466    = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2467  Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2468        "unknown flag used in gc.statepoint flags argument", Call);
2469
2470  // Verify that the types of the call parameter arguments match
2471  // the type of the wrapped callee.
2472  AttributeList Attrs = Call.getAttributes();
2473  for (int i = 0; i < NumParams; i++) {
2474    Type *ParamType = TargetFuncType->getParamType(i);
2475    Type *ArgType = Call.getArgOperand(5 + i)->getType();
2476    Check(ArgType == ParamType,
2477          "gc.statepoint call argument does not match wrapped "
2478          "function type",
2479          Call);
2480
2481    if (TargetFuncType->isVarArg()) {
2482      AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2483      Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2484            "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2485    }
2486  }
2487
2488  const int EndCallArgsInx = 4 + NumCallArgs;
2489
2490  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2491  Check(isa<ConstantInt>(NumTransitionArgsV),
2492        "gc.statepoint number of transition arguments "
2493        "must be constant integer",
2494        Call);
2495  const int NumTransitionArgs =
2496      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2497  Check(NumTransitionArgs == 0,
2498        "gc.statepoint w/inline transition bundle is deprecated", Call);
2499  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2500
2501  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2502  Check(isa<ConstantInt>(NumDeoptArgsV),
2503        "gc.statepoint number of deoptimization arguments "
2504        "must be constant integer",
2505        Call);
2506  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2507  Check(NumDeoptArgs == 0,
2508        "gc.statepoint w/inline deopt operands is deprecated", Call);
2509
2510  const int ExpectedNumArgs = 7 + NumCallArgs;
2511  Check(ExpectedNumArgs == (int)Call.arg_size(),
2512        "gc.statepoint too many arguments", Call);
2513
2514  // Check that the only uses of this gc.statepoint are gc.result or
2515  // gc.relocate calls which are tied to this statepoint and thus part
2516  // of the same statepoint sequence
2517  for (const User *U : Call.users()) {
2518    const CallInst *UserCall = dyn_cast<const CallInst>(U);
2519    Check(UserCall, "illegal use of statepoint token", Call, U);
2520    if (!UserCall)
2521      continue;
2522    Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2523          "gc.result or gc.relocate are the only value uses "
2524          "of a gc.statepoint",
2525          Call, U);
2526    if (isa<GCResultInst>(UserCall)) {
2527      Check(UserCall->getArgOperand(0) == &Call,
2528            "gc.result connected to wrong gc.statepoint", Call, UserCall);
2529    } else if (isa<GCRelocateInst>(Call)) {
2530      Check(UserCall->getArgOperand(0) == &Call,
2531            "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2532    }
2533  }
2534
2535  // Note: It is legal for a single derived pointer to be listed multiple
2536  // times.  It's non-optimal, but it is legal.  It can also happen after
2537  // insertion if we strip a bitcast away.
2538  // Note: It is really tempting to check that each base is relocated and
2539  // that a derived pointer is never reused as a base pointer.  This turns
2540  // out to be problematic since optimizations run after safepoint insertion
2541  // can recognize equality properties that the insertion logic doesn't know
2542  // about.  See example statepoint.ll in the verifier subdirectory
2543}
2544
2545void Verifier::verifyFrameRecoverIndices() {
2546  for (auto &Counts : FrameEscapeInfo) {
2547    Function *F = Counts.first;
2548    unsigned EscapedObjectCount = Counts.second.first;
2549    unsigned MaxRecoveredIndex = Counts.second.second;
2550    Check(MaxRecoveredIndex <= EscapedObjectCount,
2551          "all indices passed to llvm.localrecover must be less than the "
2552          "number of arguments passed to llvm.localescape in the parent "
2553          "function",
2554          F);
2555  }
2556}
2557
2558static Instruction *getSuccPad(Instruction *Terminator) {
2559  BasicBlock *UnwindDest;
2560  if (auto *II = dyn_cast<InvokeInst>(Terminator))
2561    UnwindDest = II->getUnwindDest();
2562  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2563    UnwindDest = CSI->getUnwindDest();
2564  else
2565    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2566  return UnwindDest->getFirstNonPHI();
2567}
2568
2569void Verifier::verifySiblingFuncletUnwinds() {
2570  SmallPtrSet<Instruction *, 8> Visited;
2571  SmallPtrSet<Instruction *, 8> Active;
2572  for (const auto &Pair : SiblingFuncletInfo) {
2573    Instruction *PredPad = Pair.first;
2574    if (Visited.count(PredPad))
2575      continue;
2576    Active.insert(PredPad);
2577    Instruction *Terminator = Pair.second;
2578    do {
2579      Instruction *SuccPad = getSuccPad(Terminator);
2580      if (Active.count(SuccPad)) {
2581        // Found a cycle; report error
2582        Instruction *CyclePad = SuccPad;
2583        SmallVector<Instruction *, 8> CycleNodes;
2584        do {
2585          CycleNodes.push_back(CyclePad);
2586          Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2587          if (CycleTerminator != CyclePad)
2588            CycleNodes.push_back(CycleTerminator);
2589          CyclePad = getSuccPad(CycleTerminator);
2590        } while (CyclePad != SuccPad);
2591        Check(false, "EH pads can't handle each other's exceptions",
2592              ArrayRef<Instruction *>(CycleNodes));
2593      }
2594      // Don't re-walk a node we've already checked
2595      if (!Visited.insert(SuccPad).second)
2596        break;
2597      // Walk to this successor if it has a map entry.
2598      PredPad = SuccPad;
2599      auto TermI = SiblingFuncletInfo.find(PredPad);
2600      if (TermI == SiblingFuncletInfo.end())
2601        break;
2602      Terminator = TermI->second;
2603      Active.insert(PredPad);
2604    } while (true);
2605    // Each node only has one successor, so we've walked all the active
2606    // nodes' successors.
2607    Active.clear();
2608  }
2609}
2610
2611// visitFunction - Verify that a function is ok.
2612//
2613void Verifier::visitFunction(const Function &F) {
2614  visitGlobalValue(F);
2615
2616  // Check function arguments.
2617  FunctionType *FT = F.getFunctionType();
2618  unsigned NumArgs = F.arg_size();
2619
2620  Check(&Context == &F.getContext(),
2621        "Function context does not match Module context!", &F);
2622
2623  Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2624  Check(FT->getNumParams() == NumArgs,
2625        "# formal arguments must match # of arguments for function type!", &F,
2626        FT);
2627  Check(F.getReturnType()->isFirstClassType() ||
2628            F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2629        "Functions cannot return aggregate values!", &F);
2630
2631  Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2632        "Invalid struct return type!", &F);
2633
2634  AttributeList Attrs = F.getAttributes();
2635
2636  Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2637        "Attribute after last parameter!", &F);
2638
2639  bool IsIntrinsic = F.isIntrinsic();
2640
2641  // Check function attributes.
2642  verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2643
2644  // On function declarations/definitions, we do not support the builtin
2645  // attribute. We do not check this in VerifyFunctionAttrs since that is
2646  // checking for Attributes that can/can not ever be on functions.
2647  Check(!Attrs.hasFnAttr(Attribute::Builtin),
2648        "Attribute 'builtin' can only be applied to a callsite.", &F);
2649
2650  Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2651        "Attribute 'elementtype' can only be applied to a callsite.", &F);
2652
2653  // Check that this function meets the restrictions on this calling convention.
2654  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2655  // restrictions can be lifted.
2656  switch (F.getCallingConv()) {
2657  default:
2658  case CallingConv::C:
2659    break;
2660  case CallingConv::X86_INTR: {
2661    Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2662          "Calling convention parameter requires byval", &F);
2663    break;
2664  }
2665  case CallingConv::AMDGPU_KERNEL:
2666  case CallingConv::SPIR_KERNEL:
2667  case CallingConv::AMDGPU_CS_Chain:
2668  case CallingConv::AMDGPU_CS_ChainPreserve:
2669    Check(F.getReturnType()->isVoidTy(),
2670          "Calling convention requires void return type", &F);
2671    [[fallthrough]];
2672  case CallingConv::AMDGPU_VS:
2673  case CallingConv::AMDGPU_HS:
2674  case CallingConv::AMDGPU_GS:
2675  case CallingConv::AMDGPU_PS:
2676  case CallingConv::AMDGPU_CS:
2677    Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2678    if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2679      const unsigned StackAS = DL.getAllocaAddrSpace();
2680      unsigned i = 0;
2681      for (const Argument &Arg : F.args()) {
2682        Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2683              "Calling convention disallows byval", &F);
2684        Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2685              "Calling convention disallows preallocated", &F);
2686        Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2687              "Calling convention disallows inalloca", &F);
2688
2689        if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2690          // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2691          // value here.
2692          Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2693                "Calling convention disallows stack byref", &F);
2694        }
2695
2696        ++i;
2697      }
2698    }
2699
2700    [[fallthrough]];
2701  case CallingConv::Fast:
2702  case CallingConv::Cold:
2703  case CallingConv::Intel_OCL_BI:
2704  case CallingConv::PTX_Kernel:
2705  case CallingConv::PTX_Device:
2706    Check(!F.isVarArg(),
2707          "Calling convention does not support varargs or "
2708          "perfect forwarding!",
2709          &F);
2710    break;
2711  }
2712
2713  // Check that the argument values match the function type for this function...
2714  unsigned i = 0;
2715  for (const Argument &Arg : F.args()) {
2716    Check(Arg.getType() == FT->getParamType(i),
2717          "Argument value does not match function argument type!", &Arg,
2718          FT->getParamType(i));
2719    Check(Arg.getType()->isFirstClassType(),
2720          "Function arguments must have first-class types!", &Arg);
2721    if (!IsIntrinsic) {
2722      Check(!Arg.getType()->isMetadataTy(),
2723            "Function takes metadata but isn't an intrinsic", &Arg, &F);
2724      Check(!Arg.getType()->isTokenTy(),
2725            "Function takes token but isn't an intrinsic", &Arg, &F);
2726      Check(!Arg.getType()->isX86_AMXTy(),
2727            "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2728    }
2729
2730    // Check that swifterror argument is only used by loads and stores.
2731    if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2732      verifySwiftErrorValue(&Arg);
2733    }
2734    ++i;
2735  }
2736
2737  if (!IsIntrinsic) {
2738    Check(!F.getReturnType()->isTokenTy(),
2739          "Function returns a token but isn't an intrinsic", &F);
2740    Check(!F.getReturnType()->isX86_AMXTy(),
2741          "Function returns a x86_amx but isn't an intrinsic", &F);
2742  }
2743
2744  // Get the function metadata attachments.
2745  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2746  F.getAllMetadata(MDs);
2747  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2748  verifyFunctionMetadata(MDs);
2749
2750  // Check validity of the personality function
2751  if (F.hasPersonalityFn()) {
2752    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2753    if (Per)
2754      Check(Per->getParent() == F.getParent(),
2755            "Referencing personality function in another module!", &F,
2756            F.getParent(), Per, Per->getParent());
2757  }
2758
2759  // EH funclet coloring can be expensive, recompute on-demand
2760  BlockEHFuncletColors.clear();
2761
2762  if (F.isMaterializable()) {
2763    // Function has a body somewhere we can't see.
2764    Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2765          MDs.empty() ? nullptr : MDs.front().second);
2766  } else if (F.isDeclaration()) {
2767    for (const auto &I : MDs) {
2768      // This is used for call site debug information.
2769      CheckDI(I.first != LLVMContext::MD_dbg ||
2770                  !cast<DISubprogram>(I.second)->isDistinct(),
2771              "function declaration may only have a unique !dbg attachment",
2772              &F);
2773      Check(I.first != LLVMContext::MD_prof,
2774            "function declaration may not have a !prof attachment", &F);
2775
2776      // Verify the metadata itself.
2777      visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2778    }
2779    Check(!F.hasPersonalityFn(),
2780          "Function declaration shouldn't have a personality routine", &F);
2781  } else {
2782    // Verify that this function (which has a body) is not named "llvm.*".  It
2783    // is not legal to define intrinsics.
2784    Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2785
2786    // Check the entry node
2787    const BasicBlock *Entry = &F.getEntryBlock();
2788    Check(pred_empty(Entry),
2789          "Entry block to function must not have predecessors!", Entry);
2790
2791    // The address of the entry block cannot be taken, unless it is dead.
2792    if (Entry->hasAddressTaken()) {
2793      Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2794            "blockaddress may not be used with the entry block!", Entry);
2795    }
2796
2797    unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2798             NumKCFIAttachments = 0;
2799    // Visit metadata attachments.
2800    for (const auto &I : MDs) {
2801      // Verify that the attachment is legal.
2802      auto AllowLocs = AreDebugLocsAllowed::No;
2803      switch (I.first) {
2804      default:
2805        break;
2806      case LLVMContext::MD_dbg: {
2807        ++NumDebugAttachments;
2808        CheckDI(NumDebugAttachments == 1,
2809                "function must have a single !dbg attachment", &F, I.second);
2810        CheckDI(isa<DISubprogram>(I.second),
2811                "function !dbg attachment must be a subprogram", &F, I.second);
2812        CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2813                "function definition may only have a distinct !dbg attachment",
2814                &F);
2815
2816        auto *SP = cast<DISubprogram>(I.second);
2817        const Function *&AttachedTo = DISubprogramAttachments[SP];
2818        CheckDI(!AttachedTo || AttachedTo == &F,
2819                "DISubprogram attached to more than one function", SP, &F);
2820        AttachedTo = &F;
2821        AllowLocs = AreDebugLocsAllowed::Yes;
2822        break;
2823      }
2824      case LLVMContext::MD_prof:
2825        ++NumProfAttachments;
2826        Check(NumProfAttachments == 1,
2827              "function must have a single !prof attachment", &F, I.second);
2828        break;
2829      case LLVMContext::MD_kcfi_type:
2830        ++NumKCFIAttachments;
2831        Check(NumKCFIAttachments == 1,
2832              "function must have a single !kcfi_type attachment", &F,
2833              I.second);
2834        break;
2835      }
2836
2837      // Verify the metadata itself.
2838      visitMDNode(*I.second, AllowLocs);
2839    }
2840  }
2841
2842  // If this function is actually an intrinsic, verify that it is only used in
2843  // direct call/invokes, never having its "address taken".
2844  // Only do this if the module is materialized, otherwise we don't have all the
2845  // uses.
2846  if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2847    const User *U;
2848    if (F.hasAddressTaken(&U, false, true, false,
2849                          /*IgnoreARCAttachedCall=*/true))
2850      Check(false, "Invalid user of intrinsic instruction!", U);
2851  }
2852
2853  // Check intrinsics' signatures.
2854  switch (F.getIntrinsicID()) {
2855  case Intrinsic::experimental_gc_get_pointer_base: {
2856    FunctionType *FT = F.getFunctionType();
2857    Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2858    Check(isa<PointerType>(F.getReturnType()),
2859          "gc.get.pointer.base must return a pointer", F);
2860    Check(FT->getParamType(0) == F.getReturnType(),
2861          "gc.get.pointer.base operand and result must be of the same type", F);
2862    break;
2863  }
2864  case Intrinsic::experimental_gc_get_pointer_offset: {
2865    FunctionType *FT = F.getFunctionType();
2866    Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2867    Check(isa<PointerType>(FT->getParamType(0)),
2868          "gc.get.pointer.offset operand must be a pointer", F);
2869    Check(F.getReturnType()->isIntegerTy(),
2870          "gc.get.pointer.offset must return integer", F);
2871    break;
2872  }
2873  }
2874
2875  auto *N = F.getSubprogram();
2876  HasDebugInfo = (N != nullptr);
2877  if (!HasDebugInfo)
2878    return;
2879
2880  // Check that all !dbg attachments lead to back to N.
2881  //
2882  // FIXME: Check this incrementally while visiting !dbg attachments.
2883  // FIXME: Only check when N is the canonical subprogram for F.
2884  SmallPtrSet<const MDNode *, 32> Seen;
2885  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2886    // Be careful about using DILocation here since we might be dealing with
2887    // broken code (this is the Verifier after all).
2888    const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2889    if (!DL)
2890      return;
2891    if (!Seen.insert(DL).second)
2892      return;
2893
2894    Metadata *Parent = DL->getRawScope();
2895    CheckDI(Parent && isa<DILocalScope>(Parent),
2896            "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2897
2898    DILocalScope *Scope = DL->getInlinedAtScope();
2899    Check(Scope, "Failed to find DILocalScope", DL);
2900
2901    if (!Seen.insert(Scope).second)
2902      return;
2903
2904    DISubprogram *SP = Scope->getSubprogram();
2905
2906    // Scope and SP could be the same MDNode and we don't want to skip
2907    // validation in that case
2908    if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2909      return;
2910
2911    CheckDI(SP->describes(&F),
2912            "!dbg attachment points at wrong subprogram for function", N, &F,
2913            &I, DL, Scope, SP);
2914  };
2915  for (auto &BB : F)
2916    for (auto &I : BB) {
2917      VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2918      // The llvm.loop annotations also contain two DILocations.
2919      if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2920        for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2921          VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2922      if (BrokenDebugInfo)
2923        return;
2924    }
2925}
2926
2927// verifyBasicBlock - Verify that a basic block is well formed...
2928//
2929void Verifier::visitBasicBlock(BasicBlock &BB) {
2930  InstsInThisBlock.clear();
2931  ConvergenceVerifyHelper.visit(BB);
2932
2933  // Ensure that basic blocks have terminators!
2934  Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2935
2936  // Check constraints that this basic block imposes on all of the PHI nodes in
2937  // it.
2938  if (isa<PHINode>(BB.front())) {
2939    SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2940    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2941    llvm::sort(Preds);
2942    for (const PHINode &PN : BB.phis()) {
2943      Check(PN.getNumIncomingValues() == Preds.size(),
2944            "PHINode should have one entry for each predecessor of its "
2945            "parent basic block!",
2946            &PN);
2947
2948      // Get and sort all incoming values in the PHI node...
2949      Values.clear();
2950      Values.reserve(PN.getNumIncomingValues());
2951      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2952        Values.push_back(
2953            std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2954      llvm::sort(Values);
2955
2956      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2957        // Check to make sure that if there is more than one entry for a
2958        // particular basic block in this PHI node, that the incoming values are
2959        // all identical.
2960        //
2961        Check(i == 0 || Values[i].first != Values[i - 1].first ||
2962                  Values[i].second == Values[i - 1].second,
2963              "PHI node has multiple entries for the same basic block with "
2964              "different incoming values!",
2965              &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2966
2967        // Check to make sure that the predecessors and PHI node entries are
2968        // matched up.
2969        Check(Values[i].first == Preds[i],
2970              "PHI node entries do not match predecessors!", &PN,
2971              Values[i].first, Preds[i]);
2972      }
2973    }
2974  }
2975
2976  // Check that all instructions have their parent pointers set up correctly.
2977  for (auto &I : BB)
2978  {
2979    Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2980  }
2981
2982  // Confirm that no issues arise from the debug program.
2983  if (BB.IsNewDbgInfoFormat) {
2984    // Configure the validate function to not fire assertions, instead print
2985    // errors and return true if there's a problem.
2986    bool RetVal = BB.validateDbgValues(false, true, OS);
2987    Check(!RetVal, "Invalid configuration of new-debug-info data found");
2988  }
2989}
2990
2991void Verifier::visitTerminator(Instruction &I) {
2992  // Ensure that terminators only exist at the end of the basic block.
2993  Check(&I == I.getParent()->getTerminator(),
2994        "Terminator found in the middle of a basic block!", I.getParent());
2995  visitInstruction(I);
2996}
2997
2998void Verifier::visitBranchInst(BranchInst &BI) {
2999  if (BI.isConditional()) {
3000    Check(BI.getCondition()->getType()->isIntegerTy(1),
3001          "Branch condition is not 'i1' type!", &BI, BI.getCondition());
3002  }
3003  visitTerminator(BI);
3004}
3005
3006void Verifier::visitReturnInst(ReturnInst &RI) {
3007  Function *F = RI.getParent()->getParent();
3008  unsigned N = RI.getNumOperands();
3009  if (F->getReturnType()->isVoidTy())
3010    Check(N == 0,
3011          "Found return instr that returns non-void in Function of void "
3012          "return type!",
3013          &RI, F->getReturnType());
3014  else
3015    Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
3016          "Function return type does not match operand "
3017          "type of return inst!",
3018          &RI, F->getReturnType());
3019
3020  // Check to make sure that the return value has necessary properties for
3021  // terminators...
3022  visitTerminator(RI);
3023}
3024
3025void Verifier::visitSwitchInst(SwitchInst &SI) {
3026  Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
3027  // Check to make sure that all of the constants in the switch instruction
3028  // have the same type as the switched-on value.
3029  Type *SwitchTy = SI.getCondition()->getType();
3030  SmallPtrSet<ConstantInt*, 32> Constants;
3031  for (auto &Case : SI.cases()) {
3032    Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
3033          "Case value is not a constant integer.", &SI);
3034    Check(Case.getCaseValue()->getType() == SwitchTy,
3035          "Switch constants must all be same type as switch value!", &SI);
3036    Check(Constants.insert(Case.getCaseValue()).second,
3037          "Duplicate integer as switch case", &SI, Case.getCaseValue());
3038  }
3039
3040  visitTerminator(SI);
3041}
3042
3043void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3044  Check(BI.getAddress()->getType()->isPointerTy(),
3045        "Indirectbr operand must have pointer type!", &BI);
3046  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
3047    Check(BI.getDestination(i)->getType()->isLabelTy(),
3048          "Indirectbr destinations must all have pointer type!", &BI);
3049
3050  visitTerminator(BI);
3051}
3052
3053void Verifier::visitCallBrInst(CallBrInst &CBI) {
3054  Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
3055  const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
3056  Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
3057
3058  verifyInlineAsmCall(CBI);
3059  visitTerminator(CBI);
3060}
3061
3062void Verifier::visitSelectInst(SelectInst &SI) {
3063  Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
3064                                        SI.getOperand(2)),
3065        "Invalid operands for select instruction!", &SI);
3066
3067  Check(SI.getTrueValue()->getType() == SI.getType(),
3068        "Select values must have same type as select instruction!", &SI);
3069  visitInstruction(SI);
3070}
3071
3072/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3073/// a pass, if any exist, it's an error.
3074///
3075void Verifier::visitUserOp1(Instruction &I) {
3076  Check(false, "User-defined operators should not live outside of a pass!", &I);
3077}
3078
3079void Verifier::visitTruncInst(TruncInst &I) {
3080  // Get the source and destination types
3081  Type *SrcTy = I.getOperand(0)->getType();
3082  Type *DestTy = I.getType();
3083
3084  // Get the size of the types in bits, we'll need this later
3085  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3086  unsigned DestBitSize = DestTy->getScalarSizeInBits();
3087
3088  Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3089  Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3090  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3091        "trunc source and destination must both be a vector or neither", &I);
3092  Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3093
3094  visitInstruction(I);
3095}
3096
3097void Verifier::visitZExtInst(ZExtInst &I) {
3098  // Get the source and destination types
3099  Type *SrcTy = I.getOperand(0)->getType();
3100  Type *DestTy = I.getType();
3101
3102  // Get the size of the types in bits, we'll need this later
3103  Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3104  Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3105  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3106        "zext source and destination must both be a vector or neither", &I);
3107  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3108  unsigned DestBitSize = DestTy->getScalarSizeInBits();
3109
3110  Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3111
3112  visitInstruction(I);
3113}
3114
3115void Verifier::visitSExtInst(SExtInst &I) {
3116  // Get the source and destination types
3117  Type *SrcTy = I.getOperand(0)->getType();
3118  Type *DestTy = I.getType();
3119
3120  // Get the size of the types in bits, we'll need this later
3121  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3122  unsigned DestBitSize = DestTy->getScalarSizeInBits();
3123
3124  Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3125  Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3126  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3127        "sext source and destination must both be a vector or neither", &I);
3128  Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3129
3130  visitInstruction(I);
3131}
3132
3133void Verifier::visitFPTruncInst(FPTruncInst &I) {
3134  // Get the source and destination types
3135  Type *SrcTy = I.getOperand(0)->getType();
3136  Type *DestTy = I.getType();
3137  // Get the size of the types in bits, we'll need this later
3138  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3139  unsigned DestBitSize = DestTy->getScalarSizeInBits();
3140
3141  Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3142  Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3143  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3144        "fptrunc source and destination must both be a vector or neither", &I);
3145  Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3146
3147  visitInstruction(I);
3148}
3149
3150void Verifier::visitFPExtInst(FPExtInst &I) {
3151  // Get the source and destination types
3152  Type *SrcTy = I.getOperand(0)->getType();
3153  Type *DestTy = I.getType();
3154
3155  // Get the size of the types in bits, we'll need this later
3156  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3157  unsigned DestBitSize = DestTy->getScalarSizeInBits();
3158
3159  Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3160  Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3161  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3162        "fpext source and destination must both be a vector or neither", &I);
3163  Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3164
3165  visitInstruction(I);
3166}
3167
3168void Verifier::visitUIToFPInst(UIToFPInst &I) {
3169  // Get the source and destination types
3170  Type *SrcTy = I.getOperand(0)->getType();
3171  Type *DestTy = I.getType();
3172
3173  bool SrcVec = SrcTy->isVectorTy();
3174  bool DstVec = DestTy->isVectorTy();
3175
3176  Check(SrcVec == DstVec,
3177        "UIToFP source and dest must both be vector or scalar", &I);
3178  Check(SrcTy->isIntOrIntVectorTy(),
3179        "UIToFP source must be integer or integer vector", &I);
3180  Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3181        &I);
3182
3183  if (SrcVec && DstVec)
3184    Check(cast<VectorType>(SrcTy)->getElementCount() ==
3185              cast<VectorType>(DestTy)->getElementCount(),
3186          "UIToFP source and dest vector length mismatch", &I);
3187
3188  visitInstruction(I);
3189}
3190
3191void Verifier::visitSIToFPInst(SIToFPInst &I) {
3192  // Get the source and destination types
3193  Type *SrcTy = I.getOperand(0)->getType();
3194  Type *DestTy = I.getType();
3195
3196  bool SrcVec = SrcTy->isVectorTy();
3197  bool DstVec = DestTy->isVectorTy();
3198
3199  Check(SrcVec == DstVec,
3200        "SIToFP source and dest must both be vector or scalar", &I);
3201  Check(SrcTy->isIntOrIntVectorTy(),
3202        "SIToFP source must be integer or integer vector", &I);
3203  Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3204        &I);
3205
3206  if (SrcVec && DstVec)
3207    Check(cast<VectorType>(SrcTy)->getElementCount() ==
3208              cast<VectorType>(DestTy)->getElementCount(),
3209          "SIToFP source and dest vector length mismatch", &I);
3210
3211  visitInstruction(I);
3212}
3213
3214void Verifier::visitFPToUIInst(FPToUIInst &I) {
3215  // Get the source and destination types
3216  Type *SrcTy = I.getOperand(0)->getType();
3217  Type *DestTy = I.getType();
3218
3219  bool SrcVec = SrcTy->isVectorTy();
3220  bool DstVec = DestTy->isVectorTy();
3221
3222  Check(SrcVec == DstVec,
3223        "FPToUI source and dest must both be vector or scalar", &I);
3224  Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3225  Check(DestTy->isIntOrIntVectorTy(),
3226        "FPToUI result must be integer or integer vector", &I);
3227
3228  if (SrcVec && DstVec)
3229    Check(cast<VectorType>(SrcTy)->getElementCount() ==
3230              cast<VectorType>(DestTy)->getElementCount(),
3231          "FPToUI source and dest vector length mismatch", &I);
3232
3233  visitInstruction(I);
3234}
3235
3236void Verifier::visitFPToSIInst(FPToSIInst &I) {
3237  // Get the source and destination types
3238  Type *SrcTy = I.getOperand(0)->getType();
3239  Type *DestTy = I.getType();
3240
3241  bool SrcVec = SrcTy->isVectorTy();
3242  bool DstVec = DestTy->isVectorTy();
3243
3244  Check(SrcVec == DstVec,
3245        "FPToSI source and dest must both be vector or scalar", &I);
3246  Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3247  Check(DestTy->isIntOrIntVectorTy(),
3248        "FPToSI result must be integer or integer vector", &I);
3249
3250  if (SrcVec && DstVec)
3251    Check(cast<VectorType>(SrcTy)->getElementCount() ==
3252              cast<VectorType>(DestTy)->getElementCount(),
3253          "FPToSI source and dest vector length mismatch", &I);
3254
3255  visitInstruction(I);
3256}
3257
3258void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3259  // Get the source and destination types
3260  Type *SrcTy = I.getOperand(0)->getType();
3261  Type *DestTy = I.getType();
3262
3263  Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3264
3265  Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3266  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3267        &I);
3268
3269  if (SrcTy->isVectorTy()) {
3270    auto *VSrc = cast<VectorType>(SrcTy);
3271    auto *VDest = cast<VectorType>(DestTy);
3272    Check(VSrc->getElementCount() == VDest->getElementCount(),
3273          "PtrToInt Vector width mismatch", &I);
3274  }
3275
3276  visitInstruction(I);
3277}
3278
3279void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3280  // Get the source and destination types
3281  Type *SrcTy = I.getOperand(0)->getType();
3282  Type *DestTy = I.getType();
3283
3284  Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3285  Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3286
3287  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3288        &I);
3289  if (SrcTy->isVectorTy()) {
3290    auto *VSrc = cast<VectorType>(SrcTy);
3291    auto *VDest = cast<VectorType>(DestTy);
3292    Check(VSrc->getElementCount() == VDest->getElementCount(),
3293          "IntToPtr Vector width mismatch", &I);
3294  }
3295  visitInstruction(I);
3296}
3297
3298void Verifier::visitBitCastInst(BitCastInst &I) {
3299  Check(
3300      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3301      "Invalid bitcast", &I);
3302  visitInstruction(I);
3303}
3304
3305void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3306  Type *SrcTy = I.getOperand(0)->getType();
3307  Type *DestTy = I.getType();
3308
3309  Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3310        &I);
3311  Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3312        &I);
3313  Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3314        "AddrSpaceCast must be between different address spaces", &I);
3315  if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3316    Check(SrcVTy->getElementCount() ==
3317              cast<VectorType>(DestTy)->getElementCount(),
3318          "AddrSpaceCast vector pointer number of elements mismatch", &I);
3319  visitInstruction(I);
3320}
3321
3322/// visitPHINode - Ensure that a PHI node is well formed.
3323///
3324void Verifier::visitPHINode(PHINode &PN) {
3325  // Ensure that the PHI nodes are all grouped together at the top of the block.
3326  // This can be tested by checking whether the instruction before this is
3327  // either nonexistent (because this is begin()) or is a PHI node.  If not,
3328  // then there is some other instruction before a PHI.
3329  Check(&PN == &PN.getParent()->front() ||
3330            isa<PHINode>(--BasicBlock::iterator(&PN)),
3331        "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3332
3333  // Check that a PHI doesn't yield a Token.
3334  Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3335
3336  // Check that all of the values of the PHI node have the same type as the
3337  // result, and that the incoming blocks are really basic blocks.
3338  for (Value *IncValue : PN.incoming_values()) {
3339    Check(PN.getType() == IncValue->getType(),
3340          "PHI node operands are not the same type as the result!", &PN);
3341  }
3342
3343  // All other PHI node constraints are checked in the visitBasicBlock method.
3344
3345  visitInstruction(PN);
3346}
3347
3348void Verifier::visitCallBase(CallBase &Call) {
3349  Check(Call.getCalledOperand()->getType()->isPointerTy(),
3350        "Called function must be a pointer!", Call);
3351  FunctionType *FTy = Call.getFunctionType();
3352
3353  // Verify that the correct number of arguments are being passed
3354  if (FTy->isVarArg())
3355    Check(Call.arg_size() >= FTy->getNumParams(),
3356          "Called function requires more parameters than were provided!", Call);
3357  else
3358    Check(Call.arg_size() == FTy->getNumParams(),
3359          "Incorrect number of arguments passed to called function!", Call);
3360
3361  // Verify that all arguments to the call match the function type.
3362  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3363    Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3364          "Call parameter type does not match function signature!",
3365          Call.getArgOperand(i), FTy->getParamType(i), Call);
3366
3367  AttributeList Attrs = Call.getAttributes();
3368
3369  Check(verifyAttributeCount(Attrs, Call.arg_size()),
3370        "Attribute after last parameter!", Call);
3371
3372  Function *Callee =
3373      dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3374  bool IsIntrinsic = Callee && Callee->isIntrinsic();
3375  if (IsIntrinsic)
3376    Check(Callee->getValueType() == FTy,
3377          "Intrinsic called with incompatible signature", Call);
3378
3379  // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3380  // convention.
3381  auto CC = Call.getCallingConv();
3382  Check(CC != CallingConv::AMDGPU_CS_Chain &&
3383            CC != CallingConv::AMDGPU_CS_ChainPreserve,
3384        "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3385        "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3386        Call);
3387
3388  auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3389    if (!Ty->isSized())
3390      return;
3391    Align ABIAlign = DL.getABITypeAlign(Ty);
3392    Align MaxAlign(ParamMaxAlignment);
3393    Check(ABIAlign <= MaxAlign,
3394          "Incorrect alignment of " + Message + " to called function!", Call);
3395  };
3396
3397  if (!IsIntrinsic) {
3398    VerifyTypeAlign(FTy->getReturnType(), "return type");
3399    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3400      Type *Ty = FTy->getParamType(i);
3401      VerifyTypeAlign(Ty, "argument passed");
3402    }
3403  }
3404
3405  if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3406    // Don't allow speculatable on call sites, unless the underlying function
3407    // declaration is also speculatable.
3408    Check(Callee && Callee->isSpeculatable(),
3409          "speculatable attribute may not apply to call sites", Call);
3410  }
3411
3412  if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3413    Check(Call.getCalledFunction()->getIntrinsicID() ==
3414              Intrinsic::call_preallocated_arg,
3415          "preallocated as a call site attribute can only be on "
3416          "llvm.call.preallocated.arg");
3417  }
3418
3419  // Verify call attributes.
3420  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3421
3422  // Conservatively check the inalloca argument.
3423  // We have a bug if we can find that there is an underlying alloca without
3424  // inalloca.
3425  if (Call.hasInAllocaArgument()) {
3426    Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3427    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3428      Check(AI->isUsedWithInAlloca(),
3429            "inalloca argument for call has mismatched alloca", AI, Call);
3430  }
3431
3432  // For each argument of the callsite, if it has the swifterror argument,
3433  // make sure the underlying alloca/parameter it comes from has a swifterror as
3434  // well.
3435  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3436    if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3437      Value *SwiftErrorArg = Call.getArgOperand(i);
3438      if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3439        Check(AI->isSwiftError(),
3440              "swifterror argument for call has mismatched alloca", AI, Call);
3441        continue;
3442      }
3443      auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3444      Check(ArgI, "swifterror argument should come from an alloca or parameter",
3445            SwiftErrorArg, Call);
3446      Check(ArgI->hasSwiftErrorAttr(),
3447            "swifterror argument for call has mismatched parameter", ArgI,
3448            Call);
3449    }
3450
3451    if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3452      // Don't allow immarg on call sites, unless the underlying declaration
3453      // also has the matching immarg.
3454      Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3455            "immarg may not apply only to call sites", Call.getArgOperand(i),
3456            Call);
3457    }
3458
3459    if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3460      Value *ArgVal = Call.getArgOperand(i);
3461      Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3462            "immarg operand has non-immediate parameter", ArgVal, Call);
3463    }
3464
3465    if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3466      Value *ArgVal = Call.getArgOperand(i);
3467      bool hasOB =
3468          Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3469      bool isMustTail = Call.isMustTailCall();
3470      Check(hasOB != isMustTail,
3471            "preallocated operand either requires a preallocated bundle or "
3472            "the call to be musttail (but not both)",
3473            ArgVal, Call);
3474    }
3475  }
3476
3477  if (FTy->isVarArg()) {
3478    // FIXME? is 'nest' even legal here?
3479    bool SawNest = false;
3480    bool SawReturned = false;
3481
3482    for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3483      if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3484        SawNest = true;
3485      if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3486        SawReturned = true;
3487    }
3488
3489    // Check attributes on the varargs part.
3490    for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3491      Type *Ty = Call.getArgOperand(Idx)->getType();
3492      AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3493      verifyParameterAttrs(ArgAttrs, Ty, &Call);
3494
3495      if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3496        Check(!SawNest, "More than one parameter has attribute nest!", Call);
3497        SawNest = true;
3498      }
3499
3500      if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3501        Check(!SawReturned, "More than one parameter has attribute returned!",
3502              Call);
3503        Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3504              "Incompatible argument and return types for 'returned' "
3505              "attribute",
3506              Call);
3507        SawReturned = true;
3508      }
3509
3510      // Statepoint intrinsic is vararg but the wrapped function may be not.
3511      // Allow sret here and check the wrapped function in verifyStatepoint.
3512      if (!Call.getCalledFunction() ||
3513          Call.getCalledFunction()->getIntrinsicID() !=
3514              Intrinsic::experimental_gc_statepoint)
3515        Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3516              "Attribute 'sret' cannot be used for vararg call arguments!",
3517              Call);
3518
3519      if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3520        Check(Idx == Call.arg_size() - 1,
3521              "inalloca isn't on the last argument!", Call);
3522    }
3523  }
3524
3525  // Verify that there's no metadata unless it's a direct call to an intrinsic.
3526  if (!IsIntrinsic) {
3527    for (Type *ParamTy : FTy->params()) {
3528      Check(!ParamTy->isMetadataTy(),
3529            "Function has metadata parameter but isn't an intrinsic", Call);
3530      Check(!ParamTy->isTokenTy(),
3531            "Function has token parameter but isn't an intrinsic", Call);
3532    }
3533  }
3534
3535  // Verify that indirect calls don't return tokens.
3536  if (!Call.getCalledFunction()) {
3537    Check(!FTy->getReturnType()->isTokenTy(),
3538          "Return type cannot be token for indirect call!");
3539    Check(!FTy->getReturnType()->isX86_AMXTy(),
3540          "Return type cannot be x86_amx for indirect call!");
3541  }
3542
3543  if (Function *F = Call.getCalledFunction())
3544    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3545      visitIntrinsicCall(ID, Call);
3546
3547  // Verify that a callsite has at most one "deopt", at most one "funclet", at
3548  // most one "gc-transition", at most one "cfguardtarget", at most one
3549  // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3550  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3551       FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3552       FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3553       FoundPtrauthBundle = false, FoundKCFIBundle = false,
3554       FoundAttachedCallBundle = false;
3555  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3556    OperandBundleUse BU = Call.getOperandBundleAt(i);
3557    uint32_t Tag = BU.getTagID();
3558    if (Tag == LLVMContext::OB_deopt) {
3559      Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3560      FoundDeoptBundle = true;
3561    } else if (Tag == LLVMContext::OB_gc_transition) {
3562      Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3563            Call);
3564      FoundGCTransitionBundle = true;
3565    } else if (Tag == LLVMContext::OB_funclet) {
3566      Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3567      FoundFuncletBundle = true;
3568      Check(BU.Inputs.size() == 1,
3569            "Expected exactly one funclet bundle operand", Call);
3570      Check(isa<FuncletPadInst>(BU.Inputs.front()),
3571            "Funclet bundle operands should correspond to a FuncletPadInst",
3572            Call);
3573    } else if (Tag == LLVMContext::OB_cfguardtarget) {
3574      Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3575            Call);
3576      FoundCFGuardTargetBundle = true;
3577      Check(BU.Inputs.size() == 1,
3578            "Expected exactly one cfguardtarget bundle operand", Call);
3579    } else if (Tag == LLVMContext::OB_ptrauth) {
3580      Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3581      FoundPtrauthBundle = true;
3582      Check(BU.Inputs.size() == 2,
3583            "Expected exactly two ptrauth bundle operands", Call);
3584      Check(isa<ConstantInt>(BU.Inputs[0]) &&
3585                BU.Inputs[0]->getType()->isIntegerTy(32),
3586            "Ptrauth bundle key operand must be an i32 constant", Call);
3587      Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3588            "Ptrauth bundle discriminator operand must be an i64", Call);
3589    } else if (Tag == LLVMContext::OB_kcfi) {
3590      Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3591      FoundKCFIBundle = true;
3592      Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3593            Call);
3594      Check(isa<ConstantInt>(BU.Inputs[0]) &&
3595                BU.Inputs[0]->getType()->isIntegerTy(32),
3596            "Kcfi bundle operand must be an i32 constant", Call);
3597    } else if (Tag == LLVMContext::OB_preallocated) {
3598      Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3599            Call);
3600      FoundPreallocatedBundle = true;
3601      Check(BU.Inputs.size() == 1,
3602            "Expected exactly one preallocated bundle operand", Call);
3603      auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3604      Check(Input &&
3605                Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3606            "\"preallocated\" argument must be a token from "
3607            "llvm.call.preallocated.setup",
3608            Call);
3609    } else if (Tag == LLVMContext::OB_gc_live) {
3610      Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3611      FoundGCLiveBundle = true;
3612    } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3613      Check(!FoundAttachedCallBundle,
3614            "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3615      FoundAttachedCallBundle = true;
3616      verifyAttachedCallBundle(Call, BU);
3617    }
3618  }
3619
3620  // Verify that callee and callsite agree on whether to use pointer auth.
3621  Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3622        "Direct call cannot have a ptrauth bundle", Call);
3623
3624  // Verify that each inlinable callsite of a debug-info-bearing function in a
3625  // debug-info-bearing function has a debug location attached to it. Failure to
3626  // do so causes assertion failures when the inliner sets up inline scope info
3627  // (Interposable functions are not inlinable, neither are functions without
3628  //  definitions.)
3629  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3630      !Call.getCalledFunction()->isInterposable() &&
3631      !Call.getCalledFunction()->isDeclaration() &&
3632      Call.getCalledFunction()->getSubprogram())
3633    CheckDI(Call.getDebugLoc(),
3634            "inlinable function call in a function with "
3635            "debug info must have a !dbg location",
3636            Call);
3637
3638  if (Call.isInlineAsm())
3639    verifyInlineAsmCall(Call);
3640
3641  ConvergenceVerifyHelper.visit(Call);
3642
3643  visitInstruction(Call);
3644}
3645
3646void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3647                                         StringRef Context) {
3648  Check(!Attrs.contains(Attribute::InAlloca),
3649        Twine("inalloca attribute not allowed in ") + Context);
3650  Check(!Attrs.contains(Attribute::InReg),
3651        Twine("inreg attribute not allowed in ") + Context);
3652  Check(!Attrs.contains(Attribute::SwiftError),
3653        Twine("swifterror attribute not allowed in ") + Context);
3654  Check(!Attrs.contains(Attribute::Preallocated),
3655        Twine("preallocated attribute not allowed in ") + Context);
3656  Check(!Attrs.contains(Attribute::ByRef),
3657        Twine("byref attribute not allowed in ") + Context);
3658}
3659
3660/// Two types are "congruent" if they are identical, or if they are both pointer
3661/// types with different pointee types and the same address space.
3662static bool isTypeCongruent(Type *L, Type *R) {
3663  if (L == R)
3664    return true;
3665  PointerType *PL = dyn_cast<PointerType>(L);
3666  PointerType *PR = dyn_cast<PointerType>(R);
3667  if (!PL || !PR)
3668    return false;
3669  return PL->getAddressSpace() == PR->getAddressSpace();
3670}
3671
3672static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3673  static const Attribute::AttrKind ABIAttrs[] = {
3674      Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3675      Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3676      Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3677      Attribute::ByRef};
3678  AttrBuilder Copy(C);
3679  for (auto AK : ABIAttrs) {
3680    Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3681    if (Attr.isValid())
3682      Copy.addAttribute(Attr);
3683  }
3684
3685  // `align` is ABI-affecting only in combination with `byval` or `byref`.
3686  if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3687      (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3688       Attrs.hasParamAttr(I, Attribute::ByRef)))
3689    Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3690  return Copy;
3691}
3692
3693void Verifier::verifyMustTailCall(CallInst &CI) {
3694  Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3695
3696  Function *F = CI.getParent()->getParent();
3697  FunctionType *CallerTy = F->getFunctionType();
3698  FunctionType *CalleeTy = CI.getFunctionType();
3699  Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3700        "cannot guarantee tail call due to mismatched varargs", &CI);
3701  Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3702        "cannot guarantee tail call due to mismatched return types", &CI);
3703
3704  // - The calling conventions of the caller and callee must match.
3705  Check(F->getCallingConv() == CI.getCallingConv(),
3706        "cannot guarantee tail call due to mismatched calling conv", &CI);
3707
3708  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3709  //   or a pointer bitcast followed by a ret instruction.
3710  // - The ret instruction must return the (possibly bitcasted) value
3711  //   produced by the call or void.
3712  Value *RetVal = &CI;
3713  Instruction *Next = CI.getNextNode();
3714
3715  // Handle the optional bitcast.
3716  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3717    Check(BI->getOperand(0) == RetVal,
3718          "bitcast following musttail call must use the call", BI);
3719    RetVal = BI;
3720    Next = BI->getNextNode();
3721  }
3722
3723  // Check the return.
3724  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3725  Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3726  Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3727            isa<UndefValue>(Ret->getReturnValue()),
3728        "musttail call result must be returned", Ret);
3729
3730  AttributeList CallerAttrs = F->getAttributes();
3731  AttributeList CalleeAttrs = CI.getAttributes();
3732  if (CI.getCallingConv() == CallingConv::SwiftTail ||
3733      CI.getCallingConv() == CallingConv::Tail) {
3734    StringRef CCName =
3735        CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3736
3737    // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3738    //   are allowed in swifttailcc call
3739    for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3740      AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3741      SmallString<32> Context{CCName, StringRef(" musttail caller")};
3742      verifyTailCCMustTailAttrs(ABIAttrs, Context);
3743    }
3744    for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3745      AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3746      SmallString<32> Context{CCName, StringRef(" musttail callee")};
3747      verifyTailCCMustTailAttrs(ABIAttrs, Context);
3748    }
3749    // - Varargs functions are not allowed
3750    Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3751                                     " tail call for varargs function");
3752    return;
3753  }
3754
3755  // - The caller and callee prototypes must match.  Pointer types of
3756  //   parameters or return types may differ in pointee type, but not
3757  //   address space.
3758  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3759    Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3760          "cannot guarantee tail call due to mismatched parameter counts", &CI);
3761    for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3762      Check(
3763          isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3764          "cannot guarantee tail call due to mismatched parameter types", &CI);
3765    }
3766  }
3767
3768  // - All ABI-impacting function attributes, such as sret, byval, inreg,
3769  //   returned, preallocated, and inalloca, must match.
3770  for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3771    AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3772    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3773    Check(CallerABIAttrs == CalleeABIAttrs,
3774          "cannot guarantee tail call due to mismatched ABI impacting "
3775          "function attributes",
3776          &CI, CI.getOperand(I));
3777  }
3778}
3779
3780void Verifier::visitCallInst(CallInst &CI) {
3781  visitCallBase(CI);
3782
3783  if (CI.isMustTailCall())
3784    verifyMustTailCall(CI);
3785}
3786
3787void Verifier::visitInvokeInst(InvokeInst &II) {
3788  visitCallBase(II);
3789
3790  // Verify that the first non-PHI instruction of the unwind destination is an
3791  // exception handling instruction.
3792  Check(
3793      II.getUnwindDest()->isEHPad(),
3794      "The unwind destination does not have an exception handling instruction!",
3795      &II);
3796
3797  visitTerminator(II);
3798}
3799
3800/// visitUnaryOperator - Check the argument to the unary operator.
3801///
3802void Verifier::visitUnaryOperator(UnaryOperator &U) {
3803  Check(U.getType() == U.getOperand(0)->getType(),
3804        "Unary operators must have same type for"
3805        "operands and result!",
3806        &U);
3807
3808  switch (U.getOpcode()) {
3809  // Check that floating-point arithmetic operators are only used with
3810  // floating-point operands.
3811  case Instruction::FNeg:
3812    Check(U.getType()->isFPOrFPVectorTy(),
3813          "FNeg operator only works with float types!", &U);
3814    break;
3815  default:
3816    llvm_unreachable("Unknown UnaryOperator opcode!");
3817  }
3818
3819  visitInstruction(U);
3820}
3821
3822/// visitBinaryOperator - Check that both arguments to the binary operator are
3823/// of the same type!
3824///
3825void Verifier::visitBinaryOperator(BinaryOperator &B) {
3826  Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3827        "Both operands to a binary operator are not of the same type!", &B);
3828
3829  switch (B.getOpcode()) {
3830  // Check that integer arithmetic operators are only used with
3831  // integral operands.
3832  case Instruction::Add:
3833  case Instruction::Sub:
3834  case Instruction::Mul:
3835  case Instruction::SDiv:
3836  case Instruction::UDiv:
3837  case Instruction::SRem:
3838  case Instruction::URem:
3839    Check(B.getType()->isIntOrIntVectorTy(),
3840          "Integer arithmetic operators only work with integral types!", &B);
3841    Check(B.getType() == B.getOperand(0)->getType(),
3842          "Integer arithmetic operators must have same type "
3843          "for operands and result!",
3844          &B);
3845    break;
3846  // Check that floating-point arithmetic operators are only used with
3847  // floating-point operands.
3848  case Instruction::FAdd:
3849  case Instruction::FSub:
3850  case Instruction::FMul:
3851  case Instruction::FDiv:
3852  case Instruction::FRem:
3853    Check(B.getType()->isFPOrFPVectorTy(),
3854          "Floating-point arithmetic operators only work with "
3855          "floating-point types!",
3856          &B);
3857    Check(B.getType() == B.getOperand(0)->getType(),
3858          "Floating-point arithmetic operators must have same type "
3859          "for operands and result!",
3860          &B);
3861    break;
3862  // Check that logical operators are only used with integral operands.
3863  case Instruction::And:
3864  case Instruction::Or:
3865  case Instruction::Xor:
3866    Check(B.getType()->isIntOrIntVectorTy(),
3867          "Logical operators only work with integral types!", &B);
3868    Check(B.getType() == B.getOperand(0)->getType(),
3869          "Logical operators must have same type for operands and result!", &B);
3870    break;
3871  case Instruction::Shl:
3872  case Instruction::LShr:
3873  case Instruction::AShr:
3874    Check(B.getType()->isIntOrIntVectorTy(),
3875          "Shifts only work with integral types!", &B);
3876    Check(B.getType() == B.getOperand(0)->getType(),
3877          "Shift return type must be same as operands!", &B);
3878    break;
3879  default:
3880    llvm_unreachable("Unknown BinaryOperator opcode!");
3881  }
3882
3883  visitInstruction(B);
3884}
3885
3886void Verifier::visitICmpInst(ICmpInst &IC) {
3887  // Check that the operands are the same type
3888  Type *Op0Ty = IC.getOperand(0)->getType();
3889  Type *Op1Ty = IC.getOperand(1)->getType();
3890  Check(Op0Ty == Op1Ty,
3891        "Both operands to ICmp instruction are not of the same type!", &IC);
3892  // Check that the operands are the right type
3893  Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3894        "Invalid operand types for ICmp instruction", &IC);
3895  // Check that the predicate is valid.
3896  Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3897
3898  visitInstruction(IC);
3899}
3900
3901void Verifier::visitFCmpInst(FCmpInst &FC) {
3902  // Check that the operands are the same type
3903  Type *Op0Ty = FC.getOperand(0)->getType();
3904  Type *Op1Ty = FC.getOperand(1)->getType();
3905  Check(Op0Ty == Op1Ty,
3906        "Both operands to FCmp instruction are not of the same type!", &FC);
3907  // Check that the operands are the right type
3908  Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3909        &FC);
3910  // Check that the predicate is valid.
3911  Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3912
3913  visitInstruction(FC);
3914}
3915
3916void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3917  Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3918        "Invalid extractelement operands!", &EI);
3919  visitInstruction(EI);
3920}
3921
3922void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3923  Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3924                                           IE.getOperand(2)),
3925        "Invalid insertelement operands!", &IE);
3926  visitInstruction(IE);
3927}
3928
3929void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3930  Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3931                                           SV.getShuffleMask()),
3932        "Invalid shufflevector operands!", &SV);
3933  visitInstruction(SV);
3934}
3935
3936void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3937  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3938
3939  Check(isa<PointerType>(TargetTy),
3940        "GEP base pointer is not a vector or a vector of pointers", &GEP);
3941  Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3942
3943  if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
3944    SmallPtrSet<Type *, 4> Visited;
3945    Check(!STy->containsScalableVectorType(&Visited),
3946          "getelementptr cannot target structure that contains scalable vector"
3947          "type",
3948          &GEP);
3949  }
3950
3951  SmallVector<Value *, 16> Idxs(GEP.indices());
3952  Check(
3953      all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
3954      "GEP indexes must be integers", &GEP);
3955  Type *ElTy =
3956      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3957  Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3958
3959  Check(GEP.getType()->isPtrOrPtrVectorTy() &&
3960            GEP.getResultElementType() == ElTy,
3961        "GEP is not of right type for indices!", &GEP, ElTy);
3962
3963  if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3964    // Additional checks for vector GEPs.
3965    ElementCount GEPWidth = GEPVTy->getElementCount();
3966    if (GEP.getPointerOperandType()->isVectorTy())
3967      Check(
3968          GEPWidth ==
3969              cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3970          "Vector GEP result width doesn't match operand's", &GEP);
3971    for (Value *Idx : Idxs) {
3972      Type *IndexTy = Idx->getType();
3973      if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3974        ElementCount IndexWidth = IndexVTy->getElementCount();
3975        Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3976      }
3977      Check(IndexTy->isIntOrIntVectorTy(),
3978            "All GEP indices should be of integer type");
3979    }
3980  }
3981
3982  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3983    Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
3984          "GEP address space doesn't match type", &GEP);
3985  }
3986
3987  visitInstruction(GEP);
3988}
3989
3990static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3991  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3992}
3993
3994/// Verify !range and !absolute_symbol metadata. These have the same
3995/// restrictions, except !absolute_symbol allows the full set.
3996void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range,
3997                                   Type *Ty, bool IsAbsoluteSymbol) {
3998  unsigned NumOperands = Range->getNumOperands();
3999  Check(NumOperands % 2 == 0, "Unfinished range!", Range);
4000  unsigned NumRanges = NumOperands / 2;
4001  Check(NumRanges >= 1, "It should have at least one range!", Range);
4002
4003  ConstantRange LastRange(1, true); // Dummy initial value
4004  for (unsigned i = 0; i < NumRanges; ++i) {
4005    ConstantInt *Low =
4006        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
4007    Check(Low, "The lower limit must be an integer!", Low);
4008    ConstantInt *High =
4009        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
4010    Check(High, "The upper limit must be an integer!", High);
4011    Check(High->getType() == Low->getType() &&
4012          High->getType() == Ty->getScalarType(),
4013          "Range types must match instruction type!", &I);
4014
4015    APInt HighV = High->getValue();
4016    APInt LowV = Low->getValue();
4017
4018    // ConstantRange asserts if the ranges are the same except for the min/max
4019    // value. Leave the cases it tolerates for the empty range error below.
4020    Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
4021          "The upper and lower limits cannot be the same value", &I);
4022
4023    ConstantRange CurRange(LowV, HighV);
4024    Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()),
4025          "Range must not be empty!", Range);
4026    if (i != 0) {
4027      Check(CurRange.intersectWith(LastRange).isEmptySet(),
4028            "Intervals are overlapping", Range);
4029      Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
4030            Range);
4031      Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
4032            Range);
4033    }
4034    LastRange = ConstantRange(LowV, HighV);
4035  }
4036  if (NumRanges > 2) {
4037    APInt FirstLow =
4038        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
4039    APInt FirstHigh =
4040        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
4041    ConstantRange FirstRange(FirstLow, FirstHigh);
4042    Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4043          "Intervals are overlapping", Range);
4044    Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
4045          Range);
4046  }
4047}
4048
4049void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
4050  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
4051         "precondition violation");
4052  verifyRangeMetadata(I, Range, Ty, false);
4053}
4054
4055void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
4056  unsigned Size = DL.getTypeSizeInBits(Ty);
4057  Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
4058  Check(!(Size & (Size - 1)),
4059        "atomic memory access' operand must have a power-of-two size", Ty, I);
4060}
4061
4062void Verifier::visitLoadInst(LoadInst &LI) {
4063  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
4064  Check(PTy, "Load operand must be a pointer.", &LI);
4065  Type *ElTy = LI.getType();
4066  if (MaybeAlign A = LI.getAlign()) {
4067    Check(A->value() <= Value::MaximumAlignment,
4068          "huge alignment values are unsupported", &LI);
4069  }
4070  Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4071  if (LI.isAtomic()) {
4072    Check(LI.getOrdering() != AtomicOrdering::Release &&
4073              LI.getOrdering() != AtomicOrdering::AcquireRelease,
4074          "Load cannot have Release ordering", &LI);
4075    Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4076          "atomic load operand must have integer, pointer, or floating point "
4077          "type!",
4078          ElTy, &LI);
4079    checkAtomicMemAccessSize(ElTy, &LI);
4080  } else {
4081    Check(LI.getSyncScopeID() == SyncScope::System,
4082          "Non-atomic load cannot have SynchronizationScope specified", &LI);
4083  }
4084
4085  visitInstruction(LI);
4086}
4087
4088void Verifier::visitStoreInst(StoreInst &SI) {
4089  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
4090  Check(PTy, "Store operand must be a pointer.", &SI);
4091  Type *ElTy = SI.getOperand(0)->getType();
4092  if (MaybeAlign A = SI.getAlign()) {
4093    Check(A->value() <= Value::MaximumAlignment,
4094          "huge alignment values are unsupported", &SI);
4095  }
4096  Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4097  if (SI.isAtomic()) {
4098    Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4099              SI.getOrdering() != AtomicOrdering::AcquireRelease,
4100          "Store cannot have Acquire ordering", &SI);
4101    Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4102          "atomic store operand must have integer, pointer, or floating point "
4103          "type!",
4104          ElTy, &SI);
4105    checkAtomicMemAccessSize(ElTy, &SI);
4106  } else {
4107    Check(SI.getSyncScopeID() == SyncScope::System,
4108          "Non-atomic store cannot have SynchronizationScope specified", &SI);
4109  }
4110  visitInstruction(SI);
4111}
4112
4113/// Check that SwiftErrorVal is used as a swifterror argument in CS.
4114void Verifier::verifySwiftErrorCall(CallBase &Call,
4115                                    const Value *SwiftErrorVal) {
4116  for (const auto &I : llvm::enumerate(Call.args())) {
4117    if (I.value() == SwiftErrorVal) {
4118      Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4119            "swifterror value when used in a callsite should be marked "
4120            "with swifterror attribute",
4121            SwiftErrorVal, Call);
4122    }
4123  }
4124}
4125
4126void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4127  // Check that swifterror value is only used by loads, stores, or as
4128  // a swifterror argument.
4129  for (const User *U : SwiftErrorVal->users()) {
4130    Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4131              isa<InvokeInst>(U),
4132          "swifterror value can only be loaded and stored from, or "
4133          "as a swifterror argument!",
4134          SwiftErrorVal, U);
4135    // If it is used by a store, check it is the second operand.
4136    if (auto StoreI = dyn_cast<StoreInst>(U))
4137      Check(StoreI->getOperand(1) == SwiftErrorVal,
4138            "swifterror value should be the second operand when used "
4139            "by stores",
4140            SwiftErrorVal, U);
4141    if (auto *Call = dyn_cast<CallBase>(U))
4142      verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
4143  }
4144}
4145
4146void Verifier::visitAllocaInst(AllocaInst &AI) {
4147  SmallPtrSet<Type*, 4> Visited;
4148  Check(AI.getAllocatedType()->isSized(&Visited),
4149        "Cannot allocate unsized type", &AI);
4150  Check(AI.getArraySize()->getType()->isIntegerTy(),
4151        "Alloca array size must have integer type", &AI);
4152  if (MaybeAlign A = AI.getAlign()) {
4153    Check(A->value() <= Value::MaximumAlignment,
4154          "huge alignment values are unsupported", &AI);
4155  }
4156
4157  if (AI.isSwiftError()) {
4158    Check(AI.getAllocatedType()->isPointerTy(),
4159          "swifterror alloca must have pointer type", &AI);
4160    Check(!AI.isArrayAllocation(),
4161          "swifterror alloca must not be array allocation", &AI);
4162    verifySwiftErrorValue(&AI);
4163  }
4164
4165  visitInstruction(AI);
4166}
4167
4168void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4169  Type *ElTy = CXI.getOperand(1)->getType();
4170  Check(ElTy->isIntOrPtrTy(),
4171        "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4172  checkAtomicMemAccessSize(ElTy, &CXI);
4173  visitInstruction(CXI);
4174}
4175
4176void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4177  Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4178        "atomicrmw instructions cannot be unordered.", &RMWI);
4179  auto Op = RMWI.getOperation();
4180  Type *ElTy = RMWI.getOperand(1)->getType();
4181  if (Op == AtomicRMWInst::Xchg) {
4182    Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4183              ElTy->isPointerTy(),
4184          "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4185              " operand must have integer or floating point type!",
4186          &RMWI, ElTy);
4187  } else if (AtomicRMWInst::isFPOperation(Op)) {
4188    Check(ElTy->isFloatingPointTy(),
4189          "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4190              " operand must have floating point type!",
4191          &RMWI, ElTy);
4192  } else {
4193    Check(ElTy->isIntegerTy(),
4194          "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4195              " operand must have integer type!",
4196          &RMWI, ElTy);
4197  }
4198  checkAtomicMemAccessSize(ElTy, &RMWI);
4199  Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4200        "Invalid binary operation!", &RMWI);
4201  visitInstruction(RMWI);
4202}
4203
4204void Verifier::visitFenceInst(FenceInst &FI) {
4205  const AtomicOrdering Ordering = FI.getOrdering();
4206  Check(Ordering == AtomicOrdering::Acquire ||
4207            Ordering == AtomicOrdering::Release ||
4208            Ordering == AtomicOrdering::AcquireRelease ||
4209            Ordering == AtomicOrdering::SequentiallyConsistent,
4210        "fence instructions may only have acquire, release, acq_rel, or "
4211        "seq_cst ordering.",
4212        &FI);
4213  visitInstruction(FI);
4214}
4215
4216void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4217  Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4218                                         EVI.getIndices()) == EVI.getType(),
4219        "Invalid ExtractValueInst operands!", &EVI);
4220
4221  visitInstruction(EVI);
4222}
4223
4224void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4225  Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4226                                         IVI.getIndices()) ==
4227            IVI.getOperand(1)->getType(),
4228        "Invalid InsertValueInst operands!", &IVI);
4229
4230  visitInstruction(IVI);
4231}
4232
4233static Value *getParentPad(Value *EHPad) {
4234  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4235    return FPI->getParentPad();
4236
4237  return cast<CatchSwitchInst>(EHPad)->getParentPad();
4238}
4239
4240void Verifier::visitEHPadPredecessors(Instruction &I) {
4241  assert(I.isEHPad());
4242
4243  BasicBlock *BB = I.getParent();
4244  Function *F = BB->getParent();
4245
4246  Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4247
4248  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4249    // The landingpad instruction defines its parent as a landing pad block. The
4250    // landing pad block may be branched to only by the unwind edge of an
4251    // invoke.
4252    for (BasicBlock *PredBB : predecessors(BB)) {
4253      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4254      Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4255            "Block containing LandingPadInst must be jumped to "
4256            "only by the unwind edge of an invoke.",
4257            LPI);
4258    }
4259    return;
4260  }
4261  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4262    if (!pred_empty(BB))
4263      Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4264            "Block containg CatchPadInst must be jumped to "
4265            "only by its catchswitch.",
4266            CPI);
4267    Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4268          "Catchswitch cannot unwind to one of its catchpads",
4269          CPI->getCatchSwitch(), CPI);
4270    return;
4271  }
4272
4273  // Verify that each pred has a legal terminator with a legal to/from EH
4274  // pad relationship.
4275  Instruction *ToPad = &I;
4276  Value *ToPadParent = getParentPad(ToPad);
4277  for (BasicBlock *PredBB : predecessors(BB)) {
4278    Instruction *TI = PredBB->getTerminator();
4279    Value *FromPad;
4280    if (auto *II = dyn_cast<InvokeInst>(TI)) {
4281      Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4282            "EH pad must be jumped to via an unwind edge", ToPad, II);
4283      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4284        FromPad = Bundle->Inputs[0];
4285      else
4286        FromPad = ConstantTokenNone::get(II->getContext());
4287    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4288      FromPad = CRI->getOperand(0);
4289      Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4290    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4291      FromPad = CSI;
4292    } else {
4293      Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4294    }
4295
4296    // The edge may exit from zero or more nested pads.
4297    SmallSet<Value *, 8> Seen;
4298    for (;; FromPad = getParentPad(FromPad)) {
4299      Check(FromPad != ToPad,
4300            "EH pad cannot handle exceptions raised within it", FromPad, TI);
4301      if (FromPad == ToPadParent) {
4302        // This is a legal unwind edge.
4303        break;
4304      }
4305      Check(!isa<ConstantTokenNone>(FromPad),
4306            "A single unwind edge may only enter one EH pad", TI);
4307      Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4308            FromPad);
4309
4310      // This will be diagnosed on the corresponding instruction already. We
4311      // need the extra check here to make sure getParentPad() works.
4312      Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4313            "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4314    }
4315  }
4316}
4317
4318void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4319  // The landingpad instruction is ill-formed if it doesn't have any clauses and
4320  // isn't a cleanup.
4321  Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4322        "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4323
4324  visitEHPadPredecessors(LPI);
4325
4326  if (!LandingPadResultTy)
4327    LandingPadResultTy = LPI.getType();
4328  else
4329    Check(LandingPadResultTy == LPI.getType(),
4330          "The landingpad instruction should have a consistent result type "
4331          "inside a function.",
4332          &LPI);
4333
4334  Function *F = LPI.getParent()->getParent();
4335  Check(F->hasPersonalityFn(),
4336        "LandingPadInst needs to be in a function with a personality.", &LPI);
4337
4338  // The landingpad instruction must be the first non-PHI instruction in the
4339  // block.
4340  Check(LPI.getParent()->getLandingPadInst() == &LPI,
4341        "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4342
4343  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4344    Constant *Clause = LPI.getClause(i);
4345    if (LPI.isCatch(i)) {
4346      Check(isa<PointerType>(Clause->getType()),
4347            "Catch operand does not have pointer type!", &LPI);
4348    } else {
4349      Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4350      Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4351            "Filter operand is not an array of constants!", &LPI);
4352    }
4353  }
4354
4355  visitInstruction(LPI);
4356}
4357
4358void Verifier::visitResumeInst(ResumeInst &RI) {
4359  Check(RI.getFunction()->hasPersonalityFn(),
4360        "ResumeInst needs to be in a function with a personality.", &RI);
4361
4362  if (!LandingPadResultTy)
4363    LandingPadResultTy = RI.getValue()->getType();
4364  else
4365    Check(LandingPadResultTy == RI.getValue()->getType(),
4366          "The resume instruction should have a consistent result type "
4367          "inside a function.",
4368          &RI);
4369
4370  visitTerminator(RI);
4371}
4372
4373void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4374  BasicBlock *BB = CPI.getParent();
4375
4376  Function *F = BB->getParent();
4377  Check(F->hasPersonalityFn(),
4378        "CatchPadInst needs to be in a function with a personality.", &CPI);
4379
4380  Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4381        "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4382        CPI.getParentPad());
4383
4384  // The catchpad instruction must be the first non-PHI instruction in the
4385  // block.
4386  Check(BB->getFirstNonPHI() == &CPI,
4387        "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4388
4389  visitEHPadPredecessors(CPI);
4390  visitFuncletPadInst(CPI);
4391}
4392
4393void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4394  Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4395        "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4396        CatchReturn.getOperand(0));
4397
4398  visitTerminator(CatchReturn);
4399}
4400
4401void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4402  BasicBlock *BB = CPI.getParent();
4403
4404  Function *F = BB->getParent();
4405  Check(F->hasPersonalityFn(),
4406        "CleanupPadInst needs to be in a function with a personality.", &CPI);
4407
4408  // The cleanuppad instruction must be the first non-PHI instruction in the
4409  // block.
4410  Check(BB->getFirstNonPHI() == &CPI,
4411        "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4412
4413  auto *ParentPad = CPI.getParentPad();
4414  Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4415        "CleanupPadInst has an invalid parent.", &CPI);
4416
4417  visitEHPadPredecessors(CPI);
4418  visitFuncletPadInst(CPI);
4419}
4420
4421void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4422  User *FirstUser = nullptr;
4423  Value *FirstUnwindPad = nullptr;
4424  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4425  SmallSet<FuncletPadInst *, 8> Seen;
4426
4427  while (!Worklist.empty()) {
4428    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4429    Check(Seen.insert(CurrentPad).second,
4430          "FuncletPadInst must not be nested within itself", CurrentPad);
4431    Value *UnresolvedAncestorPad = nullptr;
4432    for (User *U : CurrentPad->users()) {
4433      BasicBlock *UnwindDest;
4434      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4435        UnwindDest = CRI->getUnwindDest();
4436      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4437        // We allow catchswitch unwind to caller to nest
4438        // within an outer pad that unwinds somewhere else,
4439        // because catchswitch doesn't have a nounwind variant.
4440        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4441        if (CSI->unwindsToCaller())
4442          continue;
4443        UnwindDest = CSI->getUnwindDest();
4444      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4445        UnwindDest = II->getUnwindDest();
4446      } else if (isa<CallInst>(U)) {
4447        // Calls which don't unwind may be found inside funclet
4448        // pads that unwind somewhere else.  We don't *require*
4449        // such calls to be annotated nounwind.
4450        continue;
4451      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4452        // The unwind dest for a cleanup can only be found by
4453        // recursive search.  Add it to the worklist, and we'll
4454        // search for its first use that determines where it unwinds.
4455        Worklist.push_back(CPI);
4456        continue;
4457      } else {
4458        Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4459        continue;
4460      }
4461
4462      Value *UnwindPad;
4463      bool ExitsFPI;
4464      if (UnwindDest) {
4465        UnwindPad = UnwindDest->getFirstNonPHI();
4466        if (!cast<Instruction>(UnwindPad)->isEHPad())
4467          continue;
4468        Value *UnwindParent = getParentPad(UnwindPad);
4469        // Ignore unwind edges that don't exit CurrentPad.
4470        if (UnwindParent == CurrentPad)
4471          continue;
4472        // Determine whether the original funclet pad is exited,
4473        // and if we are scanning nested pads determine how many
4474        // of them are exited so we can stop searching their
4475        // children.
4476        Value *ExitedPad = CurrentPad;
4477        ExitsFPI = false;
4478        do {
4479          if (ExitedPad == &FPI) {
4480            ExitsFPI = true;
4481            // Now we can resolve any ancestors of CurrentPad up to
4482            // FPI, but not including FPI since we need to make sure
4483            // to check all direct users of FPI for consistency.
4484            UnresolvedAncestorPad = &FPI;
4485            break;
4486          }
4487          Value *ExitedParent = getParentPad(ExitedPad);
4488          if (ExitedParent == UnwindParent) {
4489            // ExitedPad is the ancestor-most pad which this unwind
4490            // edge exits, so we can resolve up to it, meaning that
4491            // ExitedParent is the first ancestor still unresolved.
4492            UnresolvedAncestorPad = ExitedParent;
4493            break;
4494          }
4495          ExitedPad = ExitedParent;
4496        } while (!isa<ConstantTokenNone>(ExitedPad));
4497      } else {
4498        // Unwinding to caller exits all pads.
4499        UnwindPad = ConstantTokenNone::get(FPI.getContext());
4500        ExitsFPI = true;
4501        UnresolvedAncestorPad = &FPI;
4502      }
4503
4504      if (ExitsFPI) {
4505        // This unwind edge exits FPI.  Make sure it agrees with other
4506        // such edges.
4507        if (FirstUser) {
4508          Check(UnwindPad == FirstUnwindPad,
4509                "Unwind edges out of a funclet "
4510                "pad must have the same unwind "
4511                "dest",
4512                &FPI, U, FirstUser);
4513        } else {
4514          FirstUser = U;
4515          FirstUnwindPad = UnwindPad;
4516          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4517          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4518              getParentPad(UnwindPad) == getParentPad(&FPI))
4519            SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4520        }
4521      }
4522      // Make sure we visit all uses of FPI, but for nested pads stop as
4523      // soon as we know where they unwind to.
4524      if (CurrentPad != &FPI)
4525        break;
4526    }
4527    if (UnresolvedAncestorPad) {
4528      if (CurrentPad == UnresolvedAncestorPad) {
4529        // When CurrentPad is FPI itself, we don't mark it as resolved even if
4530        // we've found an unwind edge that exits it, because we need to verify
4531        // all direct uses of FPI.
4532        assert(CurrentPad == &FPI);
4533        continue;
4534      }
4535      // Pop off the worklist any nested pads that we've found an unwind
4536      // destination for.  The pads on the worklist are the uncles,
4537      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4538      // for all ancestors of CurrentPad up to but not including
4539      // UnresolvedAncestorPad.
4540      Value *ResolvedPad = CurrentPad;
4541      while (!Worklist.empty()) {
4542        Value *UnclePad = Worklist.back();
4543        Value *AncestorPad = getParentPad(UnclePad);
4544        // Walk ResolvedPad up the ancestor list until we either find the
4545        // uncle's parent or the last resolved ancestor.
4546        while (ResolvedPad != AncestorPad) {
4547          Value *ResolvedParent = getParentPad(ResolvedPad);
4548          if (ResolvedParent == UnresolvedAncestorPad) {
4549            break;
4550          }
4551          ResolvedPad = ResolvedParent;
4552        }
4553        // If the resolved ancestor search didn't find the uncle's parent,
4554        // then the uncle is not yet resolved.
4555        if (ResolvedPad != AncestorPad)
4556          break;
4557        // This uncle is resolved, so pop it from the worklist.
4558        Worklist.pop_back();
4559      }
4560    }
4561  }
4562
4563  if (FirstUnwindPad) {
4564    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4565      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4566      Value *SwitchUnwindPad;
4567      if (SwitchUnwindDest)
4568        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4569      else
4570        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4571      Check(SwitchUnwindPad == FirstUnwindPad,
4572            "Unwind edges out of a catch must have the same unwind dest as "
4573            "the parent catchswitch",
4574            &FPI, FirstUser, CatchSwitch);
4575    }
4576  }
4577
4578  visitInstruction(FPI);
4579}
4580
4581void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4582  BasicBlock *BB = CatchSwitch.getParent();
4583
4584  Function *F = BB->getParent();
4585  Check(F->hasPersonalityFn(),
4586        "CatchSwitchInst needs to be in a function with a personality.",
4587        &CatchSwitch);
4588
4589  // The catchswitch instruction must be the first non-PHI instruction in the
4590  // block.
4591  Check(BB->getFirstNonPHI() == &CatchSwitch,
4592        "CatchSwitchInst not the first non-PHI instruction in the block.",
4593        &CatchSwitch);
4594
4595  auto *ParentPad = CatchSwitch.getParentPad();
4596  Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4597        "CatchSwitchInst has an invalid parent.", ParentPad);
4598
4599  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4600    Instruction *I = UnwindDest->getFirstNonPHI();
4601    Check(I->isEHPad() && !isa<LandingPadInst>(I),
4602          "CatchSwitchInst must unwind to an EH block which is not a "
4603          "landingpad.",
4604          &CatchSwitch);
4605
4606    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4607    if (getParentPad(I) == ParentPad)
4608      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4609  }
4610
4611  Check(CatchSwitch.getNumHandlers() != 0,
4612        "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4613
4614  for (BasicBlock *Handler : CatchSwitch.handlers()) {
4615    Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4616          "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4617  }
4618
4619  visitEHPadPredecessors(CatchSwitch);
4620  visitTerminator(CatchSwitch);
4621}
4622
4623void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4624  Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4625        "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4626        CRI.getOperand(0));
4627
4628  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4629    Instruction *I = UnwindDest->getFirstNonPHI();
4630    Check(I->isEHPad() && !isa<LandingPadInst>(I),
4631          "CleanupReturnInst must unwind to an EH block which is not a "
4632          "landingpad.",
4633          &CRI);
4634  }
4635
4636  visitTerminator(CRI);
4637}
4638
4639void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4640  Instruction *Op = cast<Instruction>(I.getOperand(i));
4641  // If the we have an invalid invoke, don't try to compute the dominance.
4642  // We already reject it in the invoke specific checks and the dominance
4643  // computation doesn't handle multiple edges.
4644  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4645    if (II->getNormalDest() == II->getUnwindDest())
4646      return;
4647  }
4648
4649  // Quick check whether the def has already been encountered in the same block.
4650  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4651  // uses are defined to happen on the incoming edge, not at the instruction.
4652  //
4653  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4654  // wrapping an SSA value, assert that we've already encountered it.  See
4655  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4656  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4657    return;
4658
4659  const Use &U = I.getOperandUse(i);
4660  Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4661}
4662
4663void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4664  Check(I.getType()->isPointerTy(),
4665        "dereferenceable, dereferenceable_or_null "
4666        "apply only to pointer types",
4667        &I);
4668  Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4669        "dereferenceable, dereferenceable_or_null apply only to load"
4670        " and inttoptr instructions, use attributes for calls or invokes",
4671        &I);
4672  Check(MD->getNumOperands() == 1,
4673        "dereferenceable, dereferenceable_or_null "
4674        "take one operand!",
4675        &I);
4676  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4677  Check(CI && CI->getType()->isIntegerTy(64),
4678        "dereferenceable, "
4679        "dereferenceable_or_null metadata value must be an i64!",
4680        &I);
4681}
4682
4683void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4684  Check(MD->getNumOperands() >= 2,
4685        "!prof annotations should have no less than 2 operands", MD);
4686
4687  // Check first operand.
4688  Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4689  Check(isa<MDString>(MD->getOperand(0)),
4690        "expected string with name of the !prof annotation", MD);
4691  MDString *MDS = cast<MDString>(MD->getOperand(0));
4692  StringRef ProfName = MDS->getString();
4693
4694  // Check consistency of !prof branch_weights metadata.
4695  if (ProfName.equals("branch_weights")) {
4696    if (isa<InvokeInst>(&I)) {
4697      Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4698            "Wrong number of InvokeInst branch_weights operands", MD);
4699    } else {
4700      unsigned ExpectedNumOperands = 0;
4701      if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4702        ExpectedNumOperands = BI->getNumSuccessors();
4703      else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4704        ExpectedNumOperands = SI->getNumSuccessors();
4705      else if (isa<CallInst>(&I))
4706        ExpectedNumOperands = 1;
4707      else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4708        ExpectedNumOperands = IBI->getNumDestinations();
4709      else if (isa<SelectInst>(&I))
4710        ExpectedNumOperands = 2;
4711      else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4712        ExpectedNumOperands = CI->getNumSuccessors();
4713      else
4714        CheckFailed("!prof branch_weights are not allowed for this instruction",
4715                    MD);
4716
4717      Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4718            "Wrong number of operands", MD);
4719    }
4720    for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4721      auto &MDO = MD->getOperand(i);
4722      Check(MDO, "second operand should not be null", MD);
4723      Check(mdconst::dyn_extract<ConstantInt>(MDO),
4724            "!prof brunch_weights operand is not a const int");
4725    }
4726  }
4727}
4728
4729void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4730  assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4731  bool ExpectedInstTy =
4732      isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4733  CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4734          I, MD);
4735  // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4736  // only be found as DbgAssignIntrinsic operands.
4737  if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4738    for (auto *User : AsValue->users()) {
4739      CheckDI(isa<DbgAssignIntrinsic>(User),
4740              "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4741              MD, User);
4742      // All of the dbg.assign intrinsics should be in the same function as I.
4743      if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4744        CheckDI(DAI->getFunction() == I.getFunction(),
4745                "dbg.assign not in same function as inst", DAI, &I);
4746    }
4747  }
4748  for (DPValue *DPV : cast<DIAssignID>(MD)->getAllDPValueUsers()) {
4749    CheckDI(DPV->isDbgAssign(),
4750            "!DIAssignID should only be used by Assign DPVs.", MD, DPV);
4751    CheckDI(DPV->getFunction() == I.getFunction(),
4752            "DPVAssign not in same function as inst", DPV, &I);
4753  }
4754}
4755
4756void Verifier::visitCallStackMetadata(MDNode *MD) {
4757  // Call stack metadata should consist of a list of at least 1 constant int
4758  // (representing a hash of the location).
4759  Check(MD->getNumOperands() >= 1,
4760        "call stack metadata should have at least 1 operand", MD);
4761
4762  for (const auto &Op : MD->operands())
4763    Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4764          "call stack metadata operand should be constant integer", Op);
4765}
4766
4767void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4768  Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4769  Check(MD->getNumOperands() >= 1,
4770        "!memprof annotations should have at least 1 metadata operand "
4771        "(MemInfoBlock)",
4772        MD);
4773
4774  // Check each MIB
4775  for (auto &MIBOp : MD->operands()) {
4776    MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4777    // The first operand of an MIB should be the call stack metadata.
4778    // There rest of the operands should be MDString tags, and there should be
4779    // at least one.
4780    Check(MIB->getNumOperands() >= 2,
4781          "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4782
4783    // Check call stack metadata (first operand).
4784    Check(MIB->getOperand(0) != nullptr,
4785          "!memprof MemInfoBlock first operand should not be null", MIB);
4786    Check(isa<MDNode>(MIB->getOperand(0)),
4787          "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4788    MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
4789    visitCallStackMetadata(StackMD);
4790
4791    // Check that remaining operands are MDString.
4792    Check(llvm::all_of(llvm::drop_begin(MIB->operands()),
4793                       [](const MDOperand &Op) { return isa<MDString>(Op); }),
4794          "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
4795  }
4796}
4797
4798void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4799  Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4800  // Verify the partial callstack annotated from memprof profiles. This callsite
4801  // is a part of a profiled allocation callstack.
4802  visitCallStackMetadata(MD);
4803}
4804
4805void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4806  Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4807  Check(Annotation->getNumOperands() >= 1,
4808        "annotation must have at least one operand");
4809  for (const MDOperand &Op : Annotation->operands()) {
4810    bool TupleOfStrings =
4811        isa<MDTuple>(Op.get()) &&
4812        all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) {
4813          return isa<MDString>(Annotation.get());
4814        });
4815    Check(isa<MDString>(Op.get()) || TupleOfStrings,
4816          "operands must be a string or a tuple of strings");
4817  }
4818}
4819
4820void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4821  unsigned NumOps = MD->getNumOperands();
4822  Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4823        MD);
4824  Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4825        "first scope operand must be self-referential or string", MD);
4826  if (NumOps == 3)
4827    Check(isa<MDString>(MD->getOperand(2)),
4828          "third scope operand must be string (if used)", MD);
4829
4830  MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4831  Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4832
4833  unsigned NumDomainOps = Domain->getNumOperands();
4834  Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4835        "domain must have one or two operands", Domain);
4836  Check(Domain->getOperand(0).get() == Domain ||
4837            isa<MDString>(Domain->getOperand(0)),
4838        "first domain operand must be self-referential or string", Domain);
4839  if (NumDomainOps == 2)
4840    Check(isa<MDString>(Domain->getOperand(1)),
4841          "second domain operand must be string (if used)", Domain);
4842}
4843
4844void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4845  for (const MDOperand &Op : MD->operands()) {
4846    const MDNode *OpMD = dyn_cast<MDNode>(Op);
4847    Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4848    visitAliasScopeMetadata(OpMD);
4849  }
4850}
4851
4852void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4853  auto IsValidAccessScope = [](const MDNode *MD) {
4854    return MD->getNumOperands() == 0 && MD->isDistinct();
4855  };
4856
4857  // It must be either an access scope itself...
4858  if (IsValidAccessScope(MD))
4859    return;
4860
4861  // ...or a list of access scopes.
4862  for (const MDOperand &Op : MD->operands()) {
4863    const MDNode *OpMD = dyn_cast<MDNode>(Op);
4864    Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4865    Check(IsValidAccessScope(OpMD),
4866          "Access scope list contains invalid access scope", MD);
4867  }
4868}
4869
4870/// verifyInstruction - Verify that an instruction is well formed.
4871///
4872void Verifier::visitInstruction(Instruction &I) {
4873  BasicBlock *BB = I.getParent();
4874  Check(BB, "Instruction not embedded in basic block!", &I);
4875
4876  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4877    for (User *U : I.users()) {
4878      Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4879            "Only PHI nodes may reference their own value!", &I);
4880    }
4881  }
4882
4883  // Check that void typed values don't have names
4884  Check(!I.getType()->isVoidTy() || !I.hasName(),
4885        "Instruction has a name, but provides a void value!", &I);
4886
4887  // Check that the return value of the instruction is either void or a legal
4888  // value type.
4889  Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4890        "Instruction returns a non-scalar type!", &I);
4891
4892  // Check that the instruction doesn't produce metadata. Calls are already
4893  // checked against the callee type.
4894  Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4895        "Invalid use of metadata!", &I);
4896
4897  // Check that all uses of the instruction, if they are instructions
4898  // themselves, actually have parent basic blocks.  If the use is not an
4899  // instruction, it is an error!
4900  for (Use &U : I.uses()) {
4901    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4902      Check(Used->getParent() != nullptr,
4903            "Instruction referencing"
4904            " instruction not embedded in a basic block!",
4905            &I, Used);
4906    else {
4907      CheckFailed("Use of instruction is not an instruction!", U);
4908      return;
4909    }
4910  }
4911
4912  // Get a pointer to the call base of the instruction if it is some form of
4913  // call.
4914  const CallBase *CBI = dyn_cast<CallBase>(&I);
4915
4916  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4917    Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4918
4919    // Check to make sure that only first-class-values are operands to
4920    // instructions.
4921    if (!I.getOperand(i)->getType()->isFirstClassType()) {
4922      Check(false, "Instruction operands must be first-class values!", &I);
4923    }
4924
4925    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4926      // This code checks whether the function is used as the operand of a
4927      // clang_arc_attachedcall operand bundle.
4928      auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4929                                      int Idx) {
4930        return CBI && CBI->isOperandBundleOfType(
4931                          LLVMContext::OB_clang_arc_attachedcall, Idx);
4932      };
4933
4934      // Check to make sure that the "address of" an intrinsic function is never
4935      // taken. Ignore cases where the address of the intrinsic function is used
4936      // as the argument of operand bundle "clang.arc.attachedcall" as those
4937      // cases are handled in verifyAttachedCallBundle.
4938      Check((!F->isIntrinsic() ||
4939             (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4940             IsAttachedCallOperand(F, CBI, i)),
4941            "Cannot take the address of an intrinsic!", &I);
4942      Check(!F->isIntrinsic() || isa<CallInst>(I) ||
4943                F->getIntrinsicID() == Intrinsic::donothing ||
4944                F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4945                F->getIntrinsicID() == Intrinsic::seh_try_end ||
4946                F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4947                F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4948                F->getIntrinsicID() == Intrinsic::coro_resume ||
4949                F->getIntrinsicID() == Intrinsic::coro_destroy ||
4950                F->getIntrinsicID() ==
4951                    Intrinsic::experimental_patchpoint_void ||
4952                F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4953                F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4954                F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4955                IsAttachedCallOperand(F, CBI, i),
4956            "Cannot invoke an intrinsic other than donothing, patchpoint, "
4957            "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4958            &I);
4959      Check(F->getParent() == &M, "Referencing function in another module!", &I,
4960            &M, F, F->getParent());
4961    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4962      Check(OpBB->getParent() == BB->getParent(),
4963            "Referring to a basic block in another function!", &I);
4964    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4965      Check(OpArg->getParent() == BB->getParent(),
4966            "Referring to an argument in another function!", &I);
4967    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4968      Check(GV->getParent() == &M, "Referencing global in another module!", &I,
4969            &M, GV, GV->getParent());
4970    } else if (isa<Instruction>(I.getOperand(i))) {
4971      verifyDominatesUse(I, i);
4972    } else if (isa<InlineAsm>(I.getOperand(i))) {
4973      Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4974            "Cannot take the address of an inline asm!", &I);
4975    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4976      if (CE->getType()->isPtrOrPtrVectorTy()) {
4977        // If we have a ConstantExpr pointer, we need to see if it came from an
4978        // illegal bitcast.
4979        visitConstantExprsRecursively(CE);
4980      }
4981    }
4982  }
4983
4984  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4985    Check(I.getType()->isFPOrFPVectorTy(),
4986          "fpmath requires a floating point result!", &I);
4987    Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4988    if (ConstantFP *CFP0 =
4989            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4990      const APFloat &Accuracy = CFP0->getValueAPF();
4991      Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4992            "fpmath accuracy must have float type", &I);
4993      Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4994            "fpmath accuracy not a positive number!", &I);
4995    } else {
4996      Check(false, "invalid fpmath accuracy!", &I);
4997    }
4998  }
4999
5000  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
5001    Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
5002          "Ranges are only for loads, calls and invokes!", &I);
5003    visitRangeMetadata(I, Range, I.getType());
5004  }
5005
5006  if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
5007    Check(isa<LoadInst>(I) || isa<StoreInst>(I),
5008          "invariant.group metadata is only for loads and stores", &I);
5009  }
5010
5011  if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
5012    Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
5013          &I);
5014    Check(isa<LoadInst>(I),
5015          "nonnull applies only to load instructions, use attributes"
5016          " for calls or invokes",
5017          &I);
5018    Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
5019  }
5020
5021  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
5022    visitDereferenceableMetadata(I, MD);
5023
5024  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
5025    visitDereferenceableMetadata(I, MD);
5026
5027  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
5028    TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
5029
5030  if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
5031    visitAliasScopeListMetadata(MD);
5032  if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
5033    visitAliasScopeListMetadata(MD);
5034
5035  if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
5036    visitAccessGroupMetadata(MD);
5037
5038  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
5039    Check(I.getType()->isPointerTy(), "align applies only to pointer types",
5040          &I);
5041    Check(isa<LoadInst>(I),
5042          "align applies only to load instructions, "
5043          "use attributes for calls or invokes",
5044          &I);
5045    Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
5046    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
5047    Check(CI && CI->getType()->isIntegerTy(64),
5048          "align metadata value must be an i64!", &I);
5049    uint64_t Align = CI->getZExtValue();
5050    Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
5051          &I);
5052    Check(Align <= Value::MaximumAlignment,
5053          "alignment is larger that implementation defined limit", &I);
5054  }
5055
5056  if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
5057    visitProfMetadata(I, MD);
5058
5059  if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
5060    visitMemProfMetadata(I, MD);
5061
5062  if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
5063    visitCallsiteMetadata(I, MD);
5064
5065  if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
5066    visitDIAssignIDMetadata(I, MD);
5067
5068  if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
5069    visitAnnotationMetadata(Annotation);
5070
5071  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
5072    CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
5073    visitMDNode(*N, AreDebugLocsAllowed::Yes);
5074  }
5075
5076  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
5077    verifyFragmentExpression(*DII);
5078    verifyNotEntryValue(*DII);
5079  }
5080
5081  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
5082  I.getAllMetadata(MDs);
5083  for (auto Attachment : MDs) {
5084    unsigned Kind = Attachment.first;
5085    auto AllowLocs =
5086        (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
5087            ? AreDebugLocsAllowed::Yes
5088            : AreDebugLocsAllowed::No;
5089    visitMDNode(*Attachment.second, AllowLocs);
5090  }
5091
5092  InstsInThisBlock.insert(&I);
5093}
5094
5095/// Allow intrinsics to be verified in different ways.
5096void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
5097  Function *IF = Call.getCalledFunction();
5098  Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
5099        IF);
5100
5101  // Verify that the intrinsic prototype lines up with what the .td files
5102  // describe.
5103  FunctionType *IFTy = IF->getFunctionType();
5104  bool IsVarArg = IFTy->isVarArg();
5105
5106  SmallVector<Intrinsic::IITDescriptor, 8> Table;
5107  getIntrinsicInfoTableEntries(ID, Table);
5108  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
5109
5110  // Walk the descriptors to extract overloaded types.
5111  SmallVector<Type *, 4> ArgTys;
5112  Intrinsic::MatchIntrinsicTypesResult Res =
5113      Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
5114  Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
5115        "Intrinsic has incorrect return type!", IF);
5116  Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
5117        "Intrinsic has incorrect argument type!", IF);
5118
5119  // Verify if the intrinsic call matches the vararg property.
5120  if (IsVarArg)
5121    Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5122          "Intrinsic was not defined with variable arguments!", IF);
5123  else
5124    Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5125          "Callsite was not defined with variable arguments!", IF);
5126
5127  // All descriptors should be absorbed by now.
5128  Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
5129
5130  // Now that we have the intrinsic ID and the actual argument types (and we
5131  // know they are legal for the intrinsic!) get the intrinsic name through the
5132  // usual means.  This allows us to verify the mangling of argument types into
5133  // the name.
5134  const std::string ExpectedName =
5135      Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
5136  Check(ExpectedName == IF->getName(),
5137        "Intrinsic name not mangled correctly for type arguments! "
5138        "Should be: " +
5139            ExpectedName,
5140        IF);
5141
5142  // If the intrinsic takes MDNode arguments, verify that they are either global
5143  // or are local to *this* function.
5144  for (Value *V : Call.args()) {
5145    if (auto *MD = dyn_cast<MetadataAsValue>(V))
5146      visitMetadataAsValue(*MD, Call.getCaller());
5147    if (auto *Const = dyn_cast<Constant>(V))
5148      Check(!Const->getType()->isX86_AMXTy(),
5149            "const x86_amx is not allowed in argument!");
5150  }
5151
5152  switch (ID) {
5153  default:
5154    break;
5155  case Intrinsic::assume: {
5156    for (auto &Elem : Call.bundle_op_infos()) {
5157      unsigned ArgCount = Elem.End - Elem.Begin;
5158      // Separate storage assumptions are special insofar as they're the only
5159      // operand bundles allowed on assumes that aren't parameter attributes.
5160      if (Elem.Tag->getKey() == "separate_storage") {
5161        Check(ArgCount == 2,
5162              "separate_storage assumptions should have 2 arguments", Call);
5163        Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5164                  Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5165              "arguments to separate_storage assumptions should be pointers",
5166              Call);
5167        return;
5168      }
5169      Check(Elem.Tag->getKey() == "ignore" ||
5170                Attribute::isExistingAttribute(Elem.Tag->getKey()),
5171            "tags must be valid attribute names", Call);
5172      Attribute::AttrKind Kind =
5173          Attribute::getAttrKindFromName(Elem.Tag->getKey());
5174      if (Kind == Attribute::Alignment) {
5175        Check(ArgCount <= 3 && ArgCount >= 2,
5176              "alignment assumptions should have 2 or 3 arguments", Call);
5177        Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5178              "first argument should be a pointer", Call);
5179        Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5180              "second argument should be an integer", Call);
5181        if (ArgCount == 3)
5182          Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5183                "third argument should be an integer if present", Call);
5184        return;
5185      }
5186      Check(ArgCount <= 2, "too many arguments", Call);
5187      if (Kind == Attribute::None)
5188        break;
5189      if (Attribute::isIntAttrKind(Kind)) {
5190        Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5191        Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5192              "the second argument should be a constant integral value", Call);
5193      } else if (Attribute::canUseAsParamAttr(Kind)) {
5194        Check((ArgCount) == 1, "this attribute should have one argument", Call);
5195      } else if (Attribute::canUseAsFnAttr(Kind)) {
5196        Check((ArgCount) == 0, "this attribute has no argument", Call);
5197      }
5198    }
5199    break;
5200  }
5201  case Intrinsic::coro_id: {
5202    auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5203    if (isa<ConstantPointerNull>(InfoArg))
5204      break;
5205    auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5206    Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5207          "info argument of llvm.coro.id must refer to an initialized "
5208          "constant");
5209    Constant *Init = GV->getInitializer();
5210    Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5211          "info argument of llvm.coro.id must refer to either a struct or "
5212          "an array");
5213    break;
5214  }
5215  case Intrinsic::is_fpclass: {
5216    const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5217    Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
5218          "unsupported bits for llvm.is.fpclass test mask");
5219    break;
5220  }
5221  case Intrinsic::fptrunc_round: {
5222    // Check the rounding mode
5223    Metadata *MD = nullptr;
5224    auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5225    if (MAV)
5226      MD = MAV->getMetadata();
5227
5228    Check(MD != nullptr, "missing rounding mode argument", Call);
5229
5230    Check(isa<MDString>(MD),
5231          ("invalid value for llvm.fptrunc.round metadata operand"
5232           " (the operand should be a string)"),
5233          MD);
5234
5235    std::optional<RoundingMode> RoundMode =
5236        convertStrToRoundingMode(cast<MDString>(MD)->getString());
5237    Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5238          "unsupported rounding mode argument", Call);
5239    break;
5240  }
5241#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5242#include "llvm/IR/VPIntrinsics.def"
5243    visitVPIntrinsic(cast<VPIntrinsic>(Call));
5244    break;
5245#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
5246  case Intrinsic::INTRINSIC:
5247#include "llvm/IR/ConstrainedOps.def"
5248    visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5249    break;
5250  case Intrinsic::dbg_declare: // llvm.dbg.declare
5251    Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5252          "invalid llvm.dbg.declare intrinsic call 1", Call);
5253    visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5254    break;
5255  case Intrinsic::dbg_value: // llvm.dbg.value
5256    visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5257    break;
5258  case Intrinsic::dbg_assign: // llvm.dbg.assign
5259    visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5260    break;
5261  case Intrinsic::dbg_label: // llvm.dbg.label
5262    visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5263    break;
5264  case Intrinsic::memcpy:
5265  case Intrinsic::memcpy_inline:
5266  case Intrinsic::memmove:
5267  case Intrinsic::memset:
5268  case Intrinsic::memset_inline: {
5269    break;
5270  }
5271  case Intrinsic::memcpy_element_unordered_atomic:
5272  case Intrinsic::memmove_element_unordered_atomic:
5273  case Intrinsic::memset_element_unordered_atomic: {
5274    const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5275
5276    ConstantInt *ElementSizeCI =
5277        cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5278    const APInt &ElementSizeVal = ElementSizeCI->getValue();
5279    Check(ElementSizeVal.isPowerOf2(),
5280          "element size of the element-wise atomic memory intrinsic "
5281          "must be a power of 2",
5282          Call);
5283
5284    auto IsValidAlignment = [&](MaybeAlign Alignment) {
5285      return Alignment && ElementSizeVal.ule(Alignment->value());
5286    };
5287    Check(IsValidAlignment(AMI->getDestAlign()),
5288          "incorrect alignment of the destination argument", Call);
5289    if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5290      Check(IsValidAlignment(AMT->getSourceAlign()),
5291            "incorrect alignment of the source argument", Call);
5292    }
5293    break;
5294  }
5295  case Intrinsic::call_preallocated_setup: {
5296    auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5297    Check(NumArgs != nullptr,
5298          "llvm.call.preallocated.setup argument must be a constant");
5299    bool FoundCall = false;
5300    for (User *U : Call.users()) {
5301      auto *UseCall = dyn_cast<CallBase>(U);
5302      Check(UseCall != nullptr,
5303            "Uses of llvm.call.preallocated.setup must be calls");
5304      const Function *Fn = UseCall->getCalledFunction();
5305      if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5306        auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5307        Check(AllocArgIndex != nullptr,
5308              "llvm.call.preallocated.alloc arg index must be a constant");
5309        auto AllocArgIndexInt = AllocArgIndex->getValue();
5310        Check(AllocArgIndexInt.sge(0) &&
5311                  AllocArgIndexInt.slt(NumArgs->getValue()),
5312              "llvm.call.preallocated.alloc arg index must be between 0 and "
5313              "corresponding "
5314              "llvm.call.preallocated.setup's argument count");
5315      } else if (Fn && Fn->getIntrinsicID() ==
5316                           Intrinsic::call_preallocated_teardown) {
5317        // nothing to do
5318      } else {
5319        Check(!FoundCall, "Can have at most one call corresponding to a "
5320                          "llvm.call.preallocated.setup");
5321        FoundCall = true;
5322        size_t NumPreallocatedArgs = 0;
5323        for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5324          if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5325            ++NumPreallocatedArgs;
5326          }
5327        }
5328        Check(NumPreallocatedArgs != 0,
5329              "cannot use preallocated intrinsics on a call without "
5330              "preallocated arguments");
5331        Check(NumArgs->equalsInt(NumPreallocatedArgs),
5332              "llvm.call.preallocated.setup arg size must be equal to number "
5333              "of preallocated arguments "
5334              "at call site",
5335              Call, *UseCall);
5336        // getOperandBundle() cannot be called if more than one of the operand
5337        // bundle exists. There is already a check elsewhere for this, so skip
5338        // here if we see more than one.
5339        if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5340            1) {
5341          return;
5342        }
5343        auto PreallocatedBundle =
5344            UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5345        Check(PreallocatedBundle,
5346              "Use of llvm.call.preallocated.setup outside intrinsics "
5347              "must be in \"preallocated\" operand bundle");
5348        Check(PreallocatedBundle->Inputs.front().get() == &Call,
5349              "preallocated bundle must have token from corresponding "
5350              "llvm.call.preallocated.setup");
5351      }
5352    }
5353    break;
5354  }
5355  case Intrinsic::call_preallocated_arg: {
5356    auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5357    Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5358                       Intrinsic::call_preallocated_setup,
5359          "llvm.call.preallocated.arg token argument must be a "
5360          "llvm.call.preallocated.setup");
5361    Check(Call.hasFnAttr(Attribute::Preallocated),
5362          "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5363          "call site attribute");
5364    break;
5365  }
5366  case Intrinsic::call_preallocated_teardown: {
5367    auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5368    Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5369                       Intrinsic::call_preallocated_setup,
5370          "llvm.call.preallocated.teardown token argument must be a "
5371          "llvm.call.preallocated.setup");
5372    break;
5373  }
5374  case Intrinsic::gcroot:
5375  case Intrinsic::gcwrite:
5376  case Intrinsic::gcread:
5377    if (ID == Intrinsic::gcroot) {
5378      AllocaInst *AI =
5379          dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5380      Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5381      Check(isa<Constant>(Call.getArgOperand(1)),
5382            "llvm.gcroot parameter #2 must be a constant.", Call);
5383      if (!AI->getAllocatedType()->isPointerTy()) {
5384        Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5385              "llvm.gcroot parameter #1 must either be a pointer alloca, "
5386              "or argument #2 must be a non-null constant.",
5387              Call);
5388      }
5389    }
5390
5391    Check(Call.getParent()->getParent()->hasGC(),
5392          "Enclosing function does not use GC.", Call);
5393    break;
5394  case Intrinsic::init_trampoline:
5395    Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5396          "llvm.init_trampoline parameter #2 must resolve to a function.",
5397          Call);
5398    break;
5399  case Intrinsic::prefetch:
5400    Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5401          "rw argument to llvm.prefetch must be 0-1", Call);
5402    Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5403          "locality argument to llvm.prefetch must be 0-3", Call);
5404    Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5405          "cache type argument to llvm.prefetch must be 0-1", Call);
5406    break;
5407  case Intrinsic::stackprotector:
5408    Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5409          "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5410    break;
5411  case Intrinsic::localescape: {
5412    BasicBlock *BB = Call.getParent();
5413    Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5414          Call);
5415    Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5416          Call);
5417    for (Value *Arg : Call.args()) {
5418      if (isa<ConstantPointerNull>(Arg))
5419        continue; // Null values are allowed as placeholders.
5420      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5421      Check(AI && AI->isStaticAlloca(),
5422            "llvm.localescape only accepts static allocas", Call);
5423    }
5424    FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5425    SawFrameEscape = true;
5426    break;
5427  }
5428  case Intrinsic::localrecover: {
5429    Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5430    Function *Fn = dyn_cast<Function>(FnArg);
5431    Check(Fn && !Fn->isDeclaration(),
5432          "llvm.localrecover first "
5433          "argument must be function defined in this module",
5434          Call);
5435    auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5436    auto &Entry = FrameEscapeInfo[Fn];
5437    Entry.second = unsigned(
5438        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5439    break;
5440  }
5441
5442  case Intrinsic::experimental_gc_statepoint:
5443    if (auto *CI = dyn_cast<CallInst>(&Call))
5444      Check(!CI->isInlineAsm(),
5445            "gc.statepoint support for inline assembly unimplemented", CI);
5446    Check(Call.getParent()->getParent()->hasGC(),
5447          "Enclosing function does not use GC.", Call);
5448
5449    verifyStatepoint(Call);
5450    break;
5451  case Intrinsic::experimental_gc_result: {
5452    Check(Call.getParent()->getParent()->hasGC(),
5453          "Enclosing function does not use GC.", Call);
5454
5455    auto *Statepoint = Call.getArgOperand(0);
5456    if (isa<UndefValue>(Statepoint))
5457      break;
5458
5459    // Are we tied to a statepoint properly?
5460    const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5461    const Function *StatepointFn =
5462        StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5463    Check(StatepointFn && StatepointFn->isDeclaration() &&
5464              StatepointFn->getIntrinsicID() ==
5465                  Intrinsic::experimental_gc_statepoint,
5466          "gc.result operand #1 must be from a statepoint", Call,
5467          Call.getArgOperand(0));
5468
5469    // Check that result type matches wrapped callee.
5470    auto *TargetFuncType =
5471        cast<FunctionType>(StatepointCall->getParamElementType(2));
5472    Check(Call.getType() == TargetFuncType->getReturnType(),
5473          "gc.result result type does not match wrapped callee", Call);
5474    break;
5475  }
5476  case Intrinsic::experimental_gc_relocate: {
5477    Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5478
5479    Check(isa<PointerType>(Call.getType()->getScalarType()),
5480          "gc.relocate must return a pointer or a vector of pointers", Call);
5481
5482    // Check that this relocate is correctly tied to the statepoint
5483
5484    // This is case for relocate on the unwinding path of an invoke statepoint
5485    if (LandingPadInst *LandingPad =
5486            dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5487
5488      const BasicBlock *InvokeBB =
5489          LandingPad->getParent()->getUniquePredecessor();
5490
5491      // Landingpad relocates should have only one predecessor with invoke
5492      // statepoint terminator
5493      Check(InvokeBB, "safepoints should have unique landingpads",
5494            LandingPad->getParent());
5495      Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5496            InvokeBB);
5497      Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5498            "gc relocate should be linked to a statepoint", InvokeBB);
5499    } else {
5500      // In all other cases relocate should be tied to the statepoint directly.
5501      // This covers relocates on a normal return path of invoke statepoint and
5502      // relocates of a call statepoint.
5503      auto *Token = Call.getArgOperand(0);
5504      Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5505            "gc relocate is incorrectly tied to the statepoint", Call, Token);
5506    }
5507
5508    // Verify rest of the relocate arguments.
5509    const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5510
5511    // Both the base and derived must be piped through the safepoint.
5512    Value *Base = Call.getArgOperand(1);
5513    Check(isa<ConstantInt>(Base),
5514          "gc.relocate operand #2 must be integer offset", Call);
5515
5516    Value *Derived = Call.getArgOperand(2);
5517    Check(isa<ConstantInt>(Derived),
5518          "gc.relocate operand #3 must be integer offset", Call);
5519
5520    const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5521    const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5522
5523    // Check the bounds
5524    if (isa<UndefValue>(StatepointCall))
5525      break;
5526    if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5527                       .getOperandBundle(LLVMContext::OB_gc_live)) {
5528      Check(BaseIndex < Opt->Inputs.size(),
5529            "gc.relocate: statepoint base index out of bounds", Call);
5530      Check(DerivedIndex < Opt->Inputs.size(),
5531            "gc.relocate: statepoint derived index out of bounds", Call);
5532    }
5533
5534    // Relocated value must be either a pointer type or vector-of-pointer type,
5535    // but gc_relocate does not need to return the same pointer type as the
5536    // relocated pointer. It can be casted to the correct type later if it's
5537    // desired. However, they must have the same address space and 'vectorness'
5538    GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5539    auto *ResultType = Call.getType();
5540    auto *DerivedType = Relocate.getDerivedPtr()->getType();
5541    auto *BaseType = Relocate.getBasePtr()->getType();
5542
5543    Check(BaseType->isPtrOrPtrVectorTy(),
5544          "gc.relocate: relocated value must be a pointer", Call);
5545    Check(DerivedType->isPtrOrPtrVectorTy(),
5546          "gc.relocate: relocated value must be a pointer", Call);
5547
5548    Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5549          "gc.relocate: vector relocates to vector and pointer to pointer",
5550          Call);
5551    Check(
5552        ResultType->getPointerAddressSpace() ==
5553            DerivedType->getPointerAddressSpace(),
5554        "gc.relocate: relocating a pointer shouldn't change its address space",
5555        Call);
5556
5557    auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5558    Check(GC, "gc.relocate: calling function must have GCStrategy",
5559          Call.getFunction());
5560    if (GC) {
5561      auto isGCPtr = [&GC](Type *PTy) {
5562        return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5563      };
5564      Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5565      Check(isGCPtr(BaseType),
5566            "gc.relocate: relocated value must be a gc pointer", Call);
5567      Check(isGCPtr(DerivedType),
5568            "gc.relocate: relocated value must be a gc pointer", Call);
5569    }
5570    break;
5571  }
5572  case Intrinsic::eh_exceptioncode:
5573  case Intrinsic::eh_exceptionpointer: {
5574    Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5575          "eh.exceptionpointer argument must be a catchpad", Call);
5576    break;
5577  }
5578  case Intrinsic::get_active_lane_mask: {
5579    Check(Call.getType()->isVectorTy(),
5580          "get_active_lane_mask: must return a "
5581          "vector",
5582          Call);
5583    auto *ElemTy = Call.getType()->getScalarType();
5584    Check(ElemTy->isIntegerTy(1),
5585          "get_active_lane_mask: element type is not "
5586          "i1",
5587          Call);
5588    break;
5589  }
5590  case Intrinsic::experimental_get_vector_length: {
5591    ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1));
5592    Check(!VF->isNegative() && !VF->isZero(),
5593          "get_vector_length: VF must be positive", Call);
5594    break;
5595  }
5596  case Intrinsic::masked_load: {
5597    Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5598          Call);
5599
5600    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5601    Value *Mask = Call.getArgOperand(2);
5602    Value *PassThru = Call.getArgOperand(3);
5603    Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5604          Call);
5605    Check(Alignment->getValue().isPowerOf2(),
5606          "masked_load: alignment must be a power of 2", Call);
5607    Check(PassThru->getType() == Call.getType(),
5608          "masked_load: pass through and return type must match", Call);
5609    Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5610              cast<VectorType>(Call.getType())->getElementCount(),
5611          "masked_load: vector mask must be same length as return", Call);
5612    break;
5613  }
5614  case Intrinsic::masked_store: {
5615    Value *Val = Call.getArgOperand(0);
5616    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5617    Value *Mask = Call.getArgOperand(3);
5618    Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5619          Call);
5620    Check(Alignment->getValue().isPowerOf2(),
5621          "masked_store: alignment must be a power of 2", Call);
5622    Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5623              cast<VectorType>(Val->getType())->getElementCount(),
5624          "masked_store: vector mask must be same length as value", Call);
5625    break;
5626  }
5627
5628  case Intrinsic::masked_gather: {
5629    const APInt &Alignment =
5630        cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5631    Check(Alignment.isZero() || Alignment.isPowerOf2(),
5632          "masked_gather: alignment must be 0 or a power of 2", Call);
5633    break;
5634  }
5635  case Intrinsic::masked_scatter: {
5636    const APInt &Alignment =
5637        cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5638    Check(Alignment.isZero() || Alignment.isPowerOf2(),
5639          "masked_scatter: alignment must be 0 or a power of 2", Call);
5640    break;
5641  }
5642
5643  case Intrinsic::experimental_guard: {
5644    Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5645    Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5646          "experimental_guard must have exactly one "
5647          "\"deopt\" operand bundle");
5648    break;
5649  }
5650
5651  case Intrinsic::experimental_deoptimize: {
5652    Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5653          Call);
5654    Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5655          "experimental_deoptimize must have exactly one "
5656          "\"deopt\" operand bundle");
5657    Check(Call.getType() == Call.getFunction()->getReturnType(),
5658          "experimental_deoptimize return type must match caller return type");
5659
5660    if (isa<CallInst>(Call)) {
5661      auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5662      Check(RI,
5663            "calls to experimental_deoptimize must be followed by a return");
5664
5665      if (!Call.getType()->isVoidTy() && RI)
5666        Check(RI->getReturnValue() == &Call,
5667              "calls to experimental_deoptimize must be followed by a return "
5668              "of the value computed by experimental_deoptimize");
5669    }
5670
5671    break;
5672  }
5673  case Intrinsic::vector_reduce_and:
5674  case Intrinsic::vector_reduce_or:
5675  case Intrinsic::vector_reduce_xor:
5676  case Intrinsic::vector_reduce_add:
5677  case Intrinsic::vector_reduce_mul:
5678  case Intrinsic::vector_reduce_smax:
5679  case Intrinsic::vector_reduce_smin:
5680  case Intrinsic::vector_reduce_umax:
5681  case Intrinsic::vector_reduce_umin: {
5682    Type *ArgTy = Call.getArgOperand(0)->getType();
5683    Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5684          "Intrinsic has incorrect argument type!");
5685    break;
5686  }
5687  case Intrinsic::vector_reduce_fmax:
5688  case Intrinsic::vector_reduce_fmin: {
5689    Type *ArgTy = Call.getArgOperand(0)->getType();
5690    Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5691          "Intrinsic has incorrect argument type!");
5692    break;
5693  }
5694  case Intrinsic::vector_reduce_fadd:
5695  case Intrinsic::vector_reduce_fmul: {
5696    // Unlike the other reductions, the first argument is a start value. The
5697    // second argument is the vector to be reduced.
5698    Type *ArgTy = Call.getArgOperand(1)->getType();
5699    Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5700          "Intrinsic has incorrect argument type!");
5701    break;
5702  }
5703  case Intrinsic::smul_fix:
5704  case Intrinsic::smul_fix_sat:
5705  case Intrinsic::umul_fix:
5706  case Intrinsic::umul_fix_sat:
5707  case Intrinsic::sdiv_fix:
5708  case Intrinsic::sdiv_fix_sat:
5709  case Intrinsic::udiv_fix:
5710  case Intrinsic::udiv_fix_sat: {
5711    Value *Op1 = Call.getArgOperand(0);
5712    Value *Op2 = Call.getArgOperand(1);
5713    Check(Op1->getType()->isIntOrIntVectorTy(),
5714          "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5715          "vector of ints");
5716    Check(Op2->getType()->isIntOrIntVectorTy(),
5717          "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5718          "vector of ints");
5719
5720    auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5721    Check(Op3->getType()->isIntegerTy(),
5722          "third operand of [us][mul|div]_fix[_sat] must be an int type");
5723    Check(Op3->getBitWidth() <= 32,
5724          "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
5725
5726    if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5727        ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5728      Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5729            "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5730            "the operands");
5731    } else {
5732      Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5733            "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5734            "to the width of the operands");
5735    }
5736    break;
5737  }
5738  case Intrinsic::lrint:
5739  case Intrinsic::llrint: {
5740    Type *ValTy = Call.getArgOperand(0)->getType();
5741    Type *ResultTy = Call.getType();
5742    Check(
5743        ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(),
5744        "llvm.lrint, llvm.llrint: argument must be floating-point or vector "
5745        "of floating-points, and result must be integer or vector of integers",
5746        &Call);
5747    Check(ValTy->isVectorTy() == ResultTy->isVectorTy(),
5748          "llvm.lrint, llvm.llrint: argument and result disagree on vector use",
5749          &Call);
5750    if (ValTy->isVectorTy()) {
5751      Check(cast<VectorType>(ValTy)->getElementCount() ==
5752                cast<VectorType>(ResultTy)->getElementCount(),
5753            "llvm.lrint, llvm.llrint: argument must be same length as result",
5754            &Call);
5755    }
5756    break;
5757  }
5758  case Intrinsic::lround:
5759  case Intrinsic::llround: {
5760    Type *ValTy = Call.getArgOperand(0)->getType();
5761    Type *ResultTy = Call.getType();
5762    Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5763          "Intrinsic does not support vectors", &Call);
5764    break;
5765  }
5766  case Intrinsic::bswap: {
5767    Type *Ty = Call.getType();
5768    unsigned Size = Ty->getScalarSizeInBits();
5769    Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5770    break;
5771  }
5772  case Intrinsic::invariant_start: {
5773    ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5774    Check(InvariantSize &&
5775              (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5776          "invariant_start parameter must be -1, 0 or a positive number",
5777          &Call);
5778    break;
5779  }
5780  case Intrinsic::matrix_multiply:
5781  case Intrinsic::matrix_transpose:
5782  case Intrinsic::matrix_column_major_load:
5783  case Intrinsic::matrix_column_major_store: {
5784    Function *IF = Call.getCalledFunction();
5785    ConstantInt *Stride = nullptr;
5786    ConstantInt *NumRows;
5787    ConstantInt *NumColumns;
5788    VectorType *ResultTy;
5789    Type *Op0ElemTy = nullptr;
5790    Type *Op1ElemTy = nullptr;
5791    switch (ID) {
5792    case Intrinsic::matrix_multiply: {
5793      NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5794      ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3));
5795      NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5796      Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
5797                    ->getNumElements() ==
5798                NumRows->getZExtValue() * N->getZExtValue(),
5799            "First argument of a matrix operation does not match specified "
5800            "shape!");
5801      Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
5802                    ->getNumElements() ==
5803                N->getZExtValue() * NumColumns->getZExtValue(),
5804            "Second argument of a matrix operation does not match specified "
5805            "shape!");
5806
5807      ResultTy = cast<VectorType>(Call.getType());
5808      Op0ElemTy =
5809          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5810      Op1ElemTy =
5811          cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5812      break;
5813    }
5814    case Intrinsic::matrix_transpose:
5815      NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5816      NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5817      ResultTy = cast<VectorType>(Call.getType());
5818      Op0ElemTy =
5819          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5820      break;
5821    case Intrinsic::matrix_column_major_load: {
5822      Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5823      NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5824      NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5825      ResultTy = cast<VectorType>(Call.getType());
5826      break;
5827    }
5828    case Intrinsic::matrix_column_major_store: {
5829      Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5830      NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5831      NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5832      ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5833      Op0ElemTy =
5834          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5835      break;
5836    }
5837    default:
5838      llvm_unreachable("unexpected intrinsic");
5839    }
5840
5841    Check(ResultTy->getElementType()->isIntegerTy() ||
5842              ResultTy->getElementType()->isFloatingPointTy(),
5843          "Result type must be an integer or floating-point type!", IF);
5844
5845    if (Op0ElemTy)
5846      Check(ResultTy->getElementType() == Op0ElemTy,
5847            "Vector element type mismatch of the result and first operand "
5848            "vector!",
5849            IF);
5850
5851    if (Op1ElemTy)
5852      Check(ResultTy->getElementType() == Op1ElemTy,
5853            "Vector element type mismatch of the result and second operand "
5854            "vector!",
5855            IF);
5856
5857    Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5858              NumRows->getZExtValue() * NumColumns->getZExtValue(),
5859          "Result of a matrix operation does not fit in the returned vector!");
5860
5861    if (Stride)
5862      Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
5863            "Stride must be greater or equal than the number of rows!", IF);
5864
5865    break;
5866  }
5867  case Intrinsic::experimental_vector_splice: {
5868    VectorType *VecTy = cast<VectorType>(Call.getType());
5869    int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5870    int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5871    if (Call.getParent() && Call.getParent()->getParent()) {
5872      AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5873      if (Attrs.hasFnAttr(Attribute::VScaleRange))
5874        KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5875    }
5876    Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5877              (Idx >= 0 && Idx < KnownMinNumElements),
5878          "The splice index exceeds the range [-VL, VL-1] where VL is the "
5879          "known minimum number of elements in the vector. For scalable "
5880          "vectors the minimum number of elements is determined from "
5881          "vscale_range.",
5882          &Call);
5883    break;
5884  }
5885  case Intrinsic::experimental_stepvector: {
5886    VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5887    Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5888              VecTy->getScalarSizeInBits() >= 8,
5889          "experimental_stepvector only supported for vectors of integers "
5890          "with a bitwidth of at least 8.",
5891          &Call);
5892    break;
5893  }
5894  case Intrinsic::vector_insert: {
5895    Value *Vec = Call.getArgOperand(0);
5896    Value *SubVec = Call.getArgOperand(1);
5897    Value *Idx = Call.getArgOperand(2);
5898    unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5899
5900    VectorType *VecTy = cast<VectorType>(Vec->getType());
5901    VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5902
5903    ElementCount VecEC = VecTy->getElementCount();
5904    ElementCount SubVecEC = SubVecTy->getElementCount();
5905    Check(VecTy->getElementType() == SubVecTy->getElementType(),
5906          "vector_insert parameters must have the same element "
5907          "type.",
5908          &Call);
5909    Check(IdxN % SubVecEC.getKnownMinValue() == 0,
5910          "vector_insert index must be a constant multiple of "
5911          "the subvector's known minimum vector length.");
5912
5913    // If this insertion is not the 'mixed' case where a fixed vector is
5914    // inserted into a scalable vector, ensure that the insertion of the
5915    // subvector does not overrun the parent vector.
5916    if (VecEC.isScalable() == SubVecEC.isScalable()) {
5917      Check(IdxN < VecEC.getKnownMinValue() &&
5918                IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5919            "subvector operand of vector_insert would overrun the "
5920            "vector being inserted into.");
5921    }
5922    break;
5923  }
5924  case Intrinsic::vector_extract: {
5925    Value *Vec = Call.getArgOperand(0);
5926    Value *Idx = Call.getArgOperand(1);
5927    unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5928
5929    VectorType *ResultTy = cast<VectorType>(Call.getType());
5930    VectorType *VecTy = cast<VectorType>(Vec->getType());
5931
5932    ElementCount VecEC = VecTy->getElementCount();
5933    ElementCount ResultEC = ResultTy->getElementCount();
5934
5935    Check(ResultTy->getElementType() == VecTy->getElementType(),
5936          "vector_extract result must have the same element "
5937          "type as the input vector.",
5938          &Call);
5939    Check(IdxN % ResultEC.getKnownMinValue() == 0,
5940          "vector_extract index must be a constant multiple of "
5941          "the result type's known minimum vector length.");
5942
5943    // If this extraction is not the 'mixed' case where a fixed vector is
5944    // extracted from a scalable vector, ensure that the extraction does not
5945    // overrun the parent vector.
5946    if (VecEC.isScalable() == ResultEC.isScalable()) {
5947      Check(IdxN < VecEC.getKnownMinValue() &&
5948                IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5949            "vector_extract would overrun.");
5950    }
5951    break;
5952  }
5953  case Intrinsic::experimental_noalias_scope_decl: {
5954    NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5955    break;
5956  }
5957  case Intrinsic::preserve_array_access_index:
5958  case Intrinsic::preserve_struct_access_index:
5959  case Intrinsic::aarch64_ldaxr:
5960  case Intrinsic::aarch64_ldxr:
5961  case Intrinsic::arm_ldaex:
5962  case Intrinsic::arm_ldrex: {
5963    Type *ElemTy = Call.getParamElementType(0);
5964    Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
5965          &Call);
5966    break;
5967  }
5968  case Intrinsic::aarch64_stlxr:
5969  case Intrinsic::aarch64_stxr:
5970  case Intrinsic::arm_stlex:
5971  case Intrinsic::arm_strex: {
5972    Type *ElemTy = Call.getAttributes().getParamElementType(1);
5973    Check(ElemTy,
5974          "Intrinsic requires elementtype attribute on second argument.",
5975          &Call);
5976    break;
5977  }
5978  case Intrinsic::aarch64_prefetch: {
5979    Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5980          "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5981    Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5982          "target argument to llvm.aarch64.prefetch must be 0-3", Call);
5983    Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5984          "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5985    Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
5986          "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5987    break;
5988  }
5989  case Intrinsic::callbr_landingpad: {
5990    const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0));
5991    Check(CBR, "intrinstic requires callbr operand", &Call);
5992    if (!CBR)
5993      break;
5994
5995    const BasicBlock *LandingPadBB = Call.getParent();
5996    const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
5997    if (!PredBB) {
5998      CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call);
5999      break;
6000    }
6001    if (!isa<CallBrInst>(PredBB->getTerminator())) {
6002      CheckFailed("Intrinsic must have corresponding callbr in predecessor",
6003                  &Call);
6004      break;
6005    }
6006    Check(llvm::any_of(CBR->getIndirectDests(),
6007                       [LandingPadBB](const BasicBlock *IndDest) {
6008                         return IndDest == LandingPadBB;
6009                       }),
6010          "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6011          "block in indirect destination list",
6012          &Call);
6013    const Instruction &First = *LandingPadBB->begin();
6014    Check(&First == &Call, "No other instructions may proceed intrinsic",
6015          &Call);
6016    break;
6017  }
6018  case Intrinsic::amdgcn_cs_chain: {
6019    auto CallerCC = Call.getCaller()->getCallingConv();
6020    switch (CallerCC) {
6021    case CallingConv::AMDGPU_CS:
6022    case CallingConv::AMDGPU_CS_Chain:
6023    case CallingConv::AMDGPU_CS_ChainPreserve:
6024      break;
6025    default:
6026      CheckFailed("Intrinsic can only be used from functions with the "
6027                  "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6028                  "calling conventions",
6029                  &Call);
6030      break;
6031    }
6032
6033    Check(Call.paramHasAttr(2, Attribute::InReg),
6034          "SGPR arguments must have the `inreg` attribute", &Call);
6035    Check(!Call.paramHasAttr(3, Attribute::InReg),
6036          "VGPR arguments must not have the `inreg` attribute", &Call);
6037    break;
6038  }
6039  case Intrinsic::amdgcn_set_inactive_chain_arg: {
6040    auto CallerCC = Call.getCaller()->getCallingConv();
6041    switch (CallerCC) {
6042    case CallingConv::AMDGPU_CS_Chain:
6043    case CallingConv::AMDGPU_CS_ChainPreserve:
6044      break;
6045    default:
6046      CheckFailed("Intrinsic can only be used from functions with the "
6047                  "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6048                  "calling conventions",
6049                  &Call);
6050      break;
6051    }
6052
6053    unsigned InactiveIdx = 1;
6054    Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg),
6055          "Value for inactive lanes must not have the `inreg` attribute",
6056          &Call);
6057    Check(isa<Argument>(Call.getArgOperand(InactiveIdx)),
6058          "Value for inactive lanes must be a function argument", &Call);
6059    Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(),
6060          "Value for inactive lanes must be a VGPR function argument", &Call);
6061    break;
6062  }
6063  case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6064  case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6065    Value *V = Call.getArgOperand(0);
6066    unsigned RegCount = cast<ConstantInt>(V)->getZExtValue();
6067    Check(RegCount % 8 == 0,
6068          "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6069    Check((RegCount >= 24 && RegCount <= 256),
6070          "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
6071    break;
6072  }
6073  case Intrinsic::experimental_convergence_entry:
6074    LLVM_FALLTHROUGH;
6075  case Intrinsic::experimental_convergence_anchor:
6076    break;
6077  case Intrinsic::experimental_convergence_loop:
6078    break;
6079  case Intrinsic::ptrmask: {
6080    Type *Ty0 = Call.getArgOperand(0)->getType();
6081    Type *Ty1 = Call.getArgOperand(1)->getType();
6082    Check(Ty0->isPtrOrPtrVectorTy(),
6083          "llvm.ptrmask intrinsic first argument must be pointer or vector "
6084          "of pointers",
6085          &Call);
6086    Check(
6087        Ty0->isVectorTy() == Ty1->isVectorTy(),
6088        "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6089        &Call);
6090    if (Ty0->isVectorTy())
6091      Check(cast<VectorType>(Ty0)->getElementCount() ==
6092                cast<VectorType>(Ty1)->getElementCount(),
6093            "llvm.ptrmask intrinsic arguments must have the same number of "
6094            "elements",
6095            &Call);
6096    Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(),
6097          "llvm.ptrmask intrinsic second argument bitwidth must match "
6098          "pointer index type size of first argument",
6099          &Call);
6100    break;
6101  }
6102  };
6103
6104  // Verify that there aren't any unmediated control transfers between funclets.
6105  if (IntrinsicInst::mayLowerToFunctionCall(ID)) {
6106    Function *F = Call.getParent()->getParent();
6107    if (F->hasPersonalityFn() &&
6108        isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) {
6109      // Run EH funclet coloring on-demand and cache results for other intrinsic
6110      // calls in this function
6111      if (BlockEHFuncletColors.empty())
6112        BlockEHFuncletColors = colorEHFunclets(*F);
6113
6114      // Check for catch-/cleanup-pad in first funclet block
6115      bool InEHFunclet = false;
6116      BasicBlock *CallBB = Call.getParent();
6117      const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second;
6118      assert(CV.size() > 0 && "Uncolored block");
6119      for (BasicBlock *ColorFirstBB : CV)
6120        if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI()))
6121          InEHFunclet = true;
6122
6123      // Check for funclet operand bundle
6124      bool HasToken = false;
6125      for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
6126        if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet)
6127          HasToken = true;
6128
6129      // This would cause silent code truncation in WinEHPrepare
6130      if (InEHFunclet)
6131        Check(HasToken, "Missing funclet token on intrinsic call", &Call);
6132    }
6133  }
6134}
6135
6136/// Carefully grab the subprogram from a local scope.
6137///
6138/// This carefully grabs the subprogram from a local scope, avoiding the
6139/// built-in assertions that would typically fire.
6140static DISubprogram *getSubprogram(Metadata *LocalScope) {
6141  if (!LocalScope)
6142    return nullptr;
6143
6144  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
6145    return SP;
6146
6147  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
6148    return getSubprogram(LB->getRawScope());
6149
6150  // Just return null; broken scope chains are checked elsewhere.
6151  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
6152  return nullptr;
6153}
6154
6155void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
6156  if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
6157    auto *RetTy = cast<VectorType>(VPCast->getType());
6158    auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
6159    Check(RetTy->getElementCount() == ValTy->getElementCount(),
6160          "VP cast intrinsic first argument and result vector lengths must be "
6161          "equal",
6162          *VPCast);
6163
6164    switch (VPCast->getIntrinsicID()) {
6165    default:
6166      llvm_unreachable("Unknown VP cast intrinsic");
6167    case Intrinsic::vp_trunc:
6168      Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6169            "llvm.vp.trunc intrinsic first argument and result element type "
6170            "must be integer",
6171            *VPCast);
6172      Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6173            "llvm.vp.trunc intrinsic the bit size of first argument must be "
6174            "larger than the bit size of the return type",
6175            *VPCast);
6176      break;
6177    case Intrinsic::vp_zext:
6178    case Intrinsic::vp_sext:
6179      Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6180            "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6181            "element type must be integer",
6182            *VPCast);
6183      Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6184            "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6185            "argument must be smaller than the bit size of the return type",
6186            *VPCast);
6187      break;
6188    case Intrinsic::vp_fptoui:
6189    case Intrinsic::vp_fptosi:
6190      Check(
6191          RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
6192          "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
6193          "type must be floating-point and result element type must be integer",
6194          *VPCast);
6195      break;
6196    case Intrinsic::vp_uitofp:
6197    case Intrinsic::vp_sitofp:
6198      Check(
6199          RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
6200          "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6201          "type must be integer and result element type must be floating-point",
6202          *VPCast);
6203      break;
6204    case Intrinsic::vp_fptrunc:
6205      Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6206            "llvm.vp.fptrunc intrinsic first argument and result element type "
6207            "must be floating-point",
6208            *VPCast);
6209      Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6210            "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6211            "larger than the bit size of the return type",
6212            *VPCast);
6213      break;
6214    case Intrinsic::vp_fpext:
6215      Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6216            "llvm.vp.fpext intrinsic first argument and result element type "
6217            "must be floating-point",
6218            *VPCast);
6219      Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6220            "llvm.vp.fpext intrinsic the bit size of first argument must be "
6221            "smaller than the bit size of the return type",
6222            *VPCast);
6223      break;
6224    case Intrinsic::vp_ptrtoint:
6225      Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
6226            "llvm.vp.ptrtoint intrinsic first argument element type must be "
6227            "pointer and result element type must be integer",
6228            *VPCast);
6229      break;
6230    case Intrinsic::vp_inttoptr:
6231      Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
6232            "llvm.vp.inttoptr intrinsic first argument element type must be "
6233            "integer and result element type must be pointer",
6234            *VPCast);
6235      break;
6236    }
6237  }
6238  if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
6239    auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6240    Check(CmpInst::isFPPredicate(Pred),
6241          "invalid predicate for VP FP comparison intrinsic", &VPI);
6242  }
6243  if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
6244    auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6245    Check(CmpInst::isIntPredicate(Pred),
6246          "invalid predicate for VP integer comparison intrinsic", &VPI);
6247  }
6248  if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
6249    auto TestMask = cast<ConstantInt>(VPI.getOperand(1));
6250    Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
6251          "unsupported bits for llvm.vp.is.fpclass test mask");
6252  }
6253}
6254
6255void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
6256  unsigned NumOperands;
6257  bool HasRoundingMD;
6258  switch (FPI.getIntrinsicID()) {
6259#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6260  case Intrinsic::INTRINSIC:                                                   \
6261    NumOperands = NARG;                                                        \
6262    HasRoundingMD = ROUND_MODE;                                                \
6263    break;
6264#include "llvm/IR/ConstrainedOps.def"
6265  default:
6266    llvm_unreachable("Invalid constrained FP intrinsic!");
6267  }
6268  NumOperands += (1 + HasRoundingMD);
6269  // Compare intrinsics carry an extra predicate metadata operand.
6270  if (isa<ConstrainedFPCmpIntrinsic>(FPI))
6271    NumOperands += 1;
6272  Check((FPI.arg_size() == NumOperands),
6273        "invalid arguments for constrained FP intrinsic", &FPI);
6274
6275  switch (FPI.getIntrinsicID()) {
6276  case Intrinsic::experimental_constrained_lrint:
6277  case Intrinsic::experimental_constrained_llrint: {
6278    Type *ValTy = FPI.getArgOperand(0)->getType();
6279    Type *ResultTy = FPI.getType();
6280    Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6281          "Intrinsic does not support vectors", &FPI);
6282  }
6283    break;
6284
6285  case Intrinsic::experimental_constrained_lround:
6286  case Intrinsic::experimental_constrained_llround: {
6287    Type *ValTy = FPI.getArgOperand(0)->getType();
6288    Type *ResultTy = FPI.getType();
6289    Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6290          "Intrinsic does not support vectors", &FPI);
6291    break;
6292  }
6293
6294  case Intrinsic::experimental_constrained_fcmp:
6295  case Intrinsic::experimental_constrained_fcmps: {
6296    auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
6297    Check(CmpInst::isFPPredicate(Pred),
6298          "invalid predicate for constrained FP comparison intrinsic", &FPI);
6299    break;
6300  }
6301
6302  case Intrinsic::experimental_constrained_fptosi:
6303  case Intrinsic::experimental_constrained_fptoui: {
6304    Value *Operand = FPI.getArgOperand(0);
6305    ElementCount SrcEC;
6306    Check(Operand->getType()->isFPOrFPVectorTy(),
6307          "Intrinsic first argument must be floating point", &FPI);
6308    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6309      SrcEC = cast<VectorType>(OperandT)->getElementCount();
6310    }
6311
6312    Operand = &FPI;
6313    Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6314          "Intrinsic first argument and result disagree on vector use", &FPI);
6315    Check(Operand->getType()->isIntOrIntVectorTy(),
6316          "Intrinsic result must be an integer", &FPI);
6317    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6318      Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6319            "Intrinsic first argument and result vector lengths must be equal",
6320            &FPI);
6321    }
6322  }
6323    break;
6324
6325  case Intrinsic::experimental_constrained_sitofp:
6326  case Intrinsic::experimental_constrained_uitofp: {
6327    Value *Operand = FPI.getArgOperand(0);
6328    ElementCount SrcEC;
6329    Check(Operand->getType()->isIntOrIntVectorTy(),
6330          "Intrinsic first argument must be integer", &FPI);
6331    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6332      SrcEC = cast<VectorType>(OperandT)->getElementCount();
6333    }
6334
6335    Operand = &FPI;
6336    Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6337          "Intrinsic first argument and result disagree on vector use", &FPI);
6338    Check(Operand->getType()->isFPOrFPVectorTy(),
6339          "Intrinsic result must be a floating point", &FPI);
6340    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6341      Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6342            "Intrinsic first argument and result vector lengths must be equal",
6343            &FPI);
6344    }
6345  } break;
6346
6347  case Intrinsic::experimental_constrained_fptrunc:
6348  case Intrinsic::experimental_constrained_fpext: {
6349    Value *Operand = FPI.getArgOperand(0);
6350    Type *OperandTy = Operand->getType();
6351    Value *Result = &FPI;
6352    Type *ResultTy = Result->getType();
6353    Check(OperandTy->isFPOrFPVectorTy(),
6354          "Intrinsic first argument must be FP or FP vector", &FPI);
6355    Check(ResultTy->isFPOrFPVectorTy(),
6356          "Intrinsic result must be FP or FP vector", &FPI);
6357    Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6358          "Intrinsic first argument and result disagree on vector use", &FPI);
6359    if (OperandTy->isVectorTy()) {
6360      Check(cast<VectorType>(OperandTy)->getElementCount() ==
6361                cast<VectorType>(ResultTy)->getElementCount(),
6362            "Intrinsic first argument and result vector lengths must be equal",
6363            &FPI);
6364    }
6365    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6366      Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6367            "Intrinsic first argument's type must be larger than result type",
6368            &FPI);
6369    } else {
6370      Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6371            "Intrinsic first argument's type must be smaller than result type",
6372            &FPI);
6373    }
6374  }
6375    break;
6376
6377  default:
6378    break;
6379  }
6380
6381  // If a non-metadata argument is passed in a metadata slot then the
6382  // error will be caught earlier when the incorrect argument doesn't
6383  // match the specification in the intrinsic call table. Thus, no
6384  // argument type check is needed here.
6385
6386  Check(FPI.getExceptionBehavior().has_value(),
6387        "invalid exception behavior argument", &FPI);
6388  if (HasRoundingMD) {
6389    Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6390          &FPI);
6391  }
6392}
6393
6394void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6395  auto *MD = DII.getRawLocation();
6396  CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6397              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6398          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6399  CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6400          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6401          DII.getRawVariable());
6402  CheckDI(isa<DIExpression>(DII.getRawExpression()),
6403          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6404          DII.getRawExpression());
6405
6406  if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6407    CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6408            "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6409            DAI->getRawAssignID());
6410    const auto *RawAddr = DAI->getRawAddress();
6411    CheckDI(
6412        isa<ValueAsMetadata>(RawAddr) ||
6413            (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6414        "invalid llvm.dbg.assign intrinsic address", &DII,
6415        DAI->getRawAddress());
6416    CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6417            "invalid llvm.dbg.assign intrinsic address expression", &DII,
6418            DAI->getRawAddressExpression());
6419    // All of the linked instructions should be in the same function as DII.
6420    for (Instruction *I : at::getAssignmentInsts(DAI))
6421      CheckDI(DAI->getFunction() == I->getFunction(),
6422              "inst not in same function as dbg.assign", I, DAI);
6423  }
6424
6425  // Ignore broken !dbg attachments; they're checked elsewhere.
6426  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6427    if (!isa<DILocation>(N))
6428      return;
6429
6430  BasicBlock *BB = DII.getParent();
6431  Function *F = BB ? BB->getParent() : nullptr;
6432
6433  // The scopes for variables and !dbg attachments must agree.
6434  DILocalVariable *Var = DII.getVariable();
6435  DILocation *Loc = DII.getDebugLoc();
6436  CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6437          &DII, BB, F);
6438
6439  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6440  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6441  if (!VarSP || !LocSP)
6442    return; // Broken scope chains are checked elsewhere.
6443
6444  CheckDI(VarSP == LocSP,
6445          "mismatched subprogram between llvm.dbg." + Kind +
6446              " variable and !dbg attachment",
6447          &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6448          Loc->getScope()->getSubprogram());
6449
6450  // This check is redundant with one in visitLocalVariable().
6451  CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6452          Var->getRawType());
6453  verifyFnArgs(DII);
6454}
6455
6456void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6457  CheckDI(isa<DILabel>(DLI.getRawLabel()),
6458          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6459          DLI.getRawLabel());
6460
6461  // Ignore broken !dbg attachments; they're checked elsewhere.
6462  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6463    if (!isa<DILocation>(N))
6464      return;
6465
6466  BasicBlock *BB = DLI.getParent();
6467  Function *F = BB ? BB->getParent() : nullptr;
6468
6469  // The scopes for variables and !dbg attachments must agree.
6470  DILabel *Label = DLI.getLabel();
6471  DILocation *Loc = DLI.getDebugLoc();
6472  Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6473        BB, F);
6474
6475  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6476  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6477  if (!LabelSP || !LocSP)
6478    return;
6479
6480  CheckDI(LabelSP == LocSP,
6481          "mismatched subprogram between llvm.dbg." + Kind +
6482              " label and !dbg attachment",
6483          &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6484          Loc->getScope()->getSubprogram());
6485}
6486
6487void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6488  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
6489  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6490
6491  // We don't know whether this intrinsic verified correctly.
6492  if (!V || !E || !E->isValid())
6493    return;
6494
6495  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6496  auto Fragment = E->getFragmentInfo();
6497  if (!Fragment)
6498    return;
6499
6500  // The frontend helps out GDB by emitting the members of local anonymous
6501  // unions as artificial local variables with shared storage. When SROA splits
6502  // the storage for artificial local variables that are smaller than the entire
6503  // union, the overhang piece will be outside of the allotted space for the
6504  // variable and this check fails.
6505  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6506  if (V->isArtificial())
6507    return;
6508
6509  verifyFragmentExpression(*V, *Fragment, &I);
6510}
6511
6512template <typename ValueOrMetadata>
6513void Verifier::verifyFragmentExpression(const DIVariable &V,
6514                                        DIExpression::FragmentInfo Fragment,
6515                                        ValueOrMetadata *Desc) {
6516  // If there's no size, the type is broken, but that should be checked
6517  // elsewhere.
6518  auto VarSize = V.getSizeInBits();
6519  if (!VarSize)
6520    return;
6521
6522  unsigned FragSize = Fragment.SizeInBits;
6523  unsigned FragOffset = Fragment.OffsetInBits;
6524  CheckDI(FragSize + FragOffset <= *VarSize,
6525          "fragment is larger than or outside of variable", Desc, &V);
6526  CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6527}
6528
6529void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6530  // This function does not take the scope of noninlined function arguments into
6531  // account. Don't run it if current function is nodebug, because it may
6532  // contain inlined debug intrinsics.
6533  if (!HasDebugInfo)
6534    return;
6535
6536  // For performance reasons only check non-inlined ones.
6537  if (I.getDebugLoc()->getInlinedAt())
6538    return;
6539
6540  DILocalVariable *Var = I.getVariable();
6541  CheckDI(Var, "dbg intrinsic without variable");
6542
6543  unsigned ArgNo = Var->getArg();
6544  if (!ArgNo)
6545    return;
6546
6547  // Verify there are no duplicate function argument debug info entries.
6548  // These will cause hard-to-debug assertions in the DWARF backend.
6549  if (DebugFnArgs.size() < ArgNo)
6550    DebugFnArgs.resize(ArgNo, nullptr);
6551
6552  auto *Prev = DebugFnArgs[ArgNo - 1];
6553  DebugFnArgs[ArgNo - 1] = Var;
6554  CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6555          Prev, Var);
6556}
6557
6558void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6559  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6560
6561  // We don't know whether this intrinsic verified correctly.
6562  if (!E || !E->isValid())
6563    return;
6564
6565  if (isa<ValueAsMetadata>(I.getRawLocation())) {
6566    Value *VarValue = I.getVariableLocationOp(0);
6567    if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
6568      return;
6569    // We allow EntryValues for swift async arguments, as they have an
6570    // ABI-guarantee to be turned into a specific register.
6571    if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
6572        ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
6573      return;
6574  }
6575
6576  CheckDI(!E->isEntryValue(),
6577          "Entry values are only allowed in MIR unless they target a "
6578          "swiftasync Argument",
6579          &I);
6580}
6581
6582void Verifier::verifyCompileUnits() {
6583  // When more than one Module is imported into the same context, such as during
6584  // an LTO build before linking the modules, ODR type uniquing may cause types
6585  // to point to a different CU. This check does not make sense in this case.
6586  if (M.getContext().isODRUniquingDebugTypes())
6587    return;
6588  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
6589  SmallPtrSet<const Metadata *, 2> Listed;
6590  if (CUs)
6591    Listed.insert(CUs->op_begin(), CUs->op_end());
6592  for (const auto *CU : CUVisited)
6593    CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
6594  CUVisited.clear();
6595}
6596
6597void Verifier::verifyDeoptimizeCallingConvs() {
6598  if (DeoptimizeDeclarations.empty())
6599    return;
6600
6601  const Function *First = DeoptimizeDeclarations[0];
6602  for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
6603    Check(First->getCallingConv() == F->getCallingConv(),
6604          "All llvm.experimental.deoptimize declarations must have the same "
6605          "calling convention",
6606          First, F);
6607  }
6608}
6609
6610void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6611                                        const OperandBundleUse &BU) {
6612  FunctionType *FTy = Call.getFunctionType();
6613
6614  Check((FTy->getReturnType()->isPointerTy() ||
6615         (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6616        "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6617        "function returning a pointer or a non-returning function that has a "
6618        "void return type",
6619        Call);
6620
6621  Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6622        "operand bundle \"clang.arc.attachedcall\" requires one function as "
6623        "an argument",
6624        Call);
6625
6626  auto *Fn = cast<Function>(BU.Inputs.front());
6627  Intrinsic::ID IID = Fn->getIntrinsicID();
6628
6629  if (IID) {
6630    Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6631           IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6632          "invalid function argument", Call);
6633  } else {
6634    StringRef FnName = Fn->getName();
6635    Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6636           FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6637          "invalid function argument", Call);
6638  }
6639}
6640
6641void Verifier::verifyNoAliasScopeDecl() {
6642  if (NoAliasScopeDecls.empty())
6643    return;
6644
6645  // only a single scope must be declared at a time.
6646  for (auto *II : NoAliasScopeDecls) {
6647    assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6648           "Not a llvm.experimental.noalias.scope.decl ?");
6649    const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6650        II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6651    Check(ScopeListMV != nullptr,
6652          "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
6653          "argument",
6654          II);
6655
6656    const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
6657    Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
6658    Check(ScopeListMD->getNumOperands() == 1,
6659          "!id.scope.list must point to a list with a single scope", II);
6660    visitAliasScopeListMetadata(ScopeListMD);
6661  }
6662
6663  // Only check the domination rule when requested. Once all passes have been
6664  // adapted this option can go away.
6665  if (!VerifyNoAliasScopeDomination)
6666    return;
6667
6668  // Now sort the intrinsics based on the scope MDNode so that declarations of
6669  // the same scopes are next to each other.
6670  auto GetScope = [](IntrinsicInst *II) {
6671    const auto *ScopeListMV = cast<MetadataAsValue>(
6672        II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6673    return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
6674  };
6675
6676  // We are sorting on MDNode pointers here. For valid input IR this is ok.
6677  // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
6678  auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
6679    return GetScope(Lhs) < GetScope(Rhs);
6680  };
6681
6682  llvm::sort(NoAliasScopeDecls, Compare);
6683
6684  // Go over the intrinsics and check that for the same scope, they are not
6685  // dominating each other.
6686  auto ItCurrent = NoAliasScopeDecls.begin();
6687  while (ItCurrent != NoAliasScopeDecls.end()) {
6688    auto CurScope = GetScope(*ItCurrent);
6689    auto ItNext = ItCurrent;
6690    do {
6691      ++ItNext;
6692    } while (ItNext != NoAliasScopeDecls.end() &&
6693             GetScope(*ItNext) == CurScope);
6694
6695    // [ItCurrent, ItNext) represents the declarations for the same scope.
6696    // Ensure they are not dominating each other.. but only if it is not too
6697    // expensive.
6698    if (ItNext - ItCurrent < 32)
6699      for (auto *I : llvm::make_range(ItCurrent, ItNext))
6700        for (auto *J : llvm::make_range(ItCurrent, ItNext))
6701          if (I != J)
6702            Check(!DT.dominates(I, J),
6703                  "llvm.experimental.noalias.scope.decl dominates another one "
6704                  "with the same scope",
6705                  I);
6706    ItCurrent = ItNext;
6707  }
6708}
6709
6710//===----------------------------------------------------------------------===//
6711//  Implement the public interfaces to this file...
6712//===----------------------------------------------------------------------===//
6713
6714bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6715  Function &F = const_cast<Function &>(f);
6716
6717  // Don't use a raw_null_ostream.  Printing IR is expensive.
6718  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6719
6720  // Note that this function's return value is inverted from what you would
6721  // expect of a function called "verify".
6722  return !V.verify(F);
6723}
6724
6725bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6726                        bool *BrokenDebugInfo) {
6727  // Don't use a raw_null_ostream.  Printing IR is expensive.
6728  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6729
6730  bool Broken = false;
6731  for (const Function &F : M)
6732    Broken |= !V.verify(F);
6733
6734  Broken |= !V.verify();
6735  if (BrokenDebugInfo)
6736    *BrokenDebugInfo = V.hasBrokenDebugInfo();
6737  // Note that this function's return value is inverted from what you would
6738  // expect of a function called "verify".
6739  return Broken;
6740}
6741
6742namespace {
6743
6744struct VerifierLegacyPass : public FunctionPass {
6745  static char ID;
6746
6747  std::unique_ptr<Verifier> V;
6748  bool FatalErrors = true;
6749
6750  VerifierLegacyPass() : FunctionPass(ID) {
6751    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6752  }
6753  explicit VerifierLegacyPass(bool FatalErrors)
6754      : FunctionPass(ID),
6755        FatalErrors(FatalErrors) {
6756    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6757  }
6758
6759  bool doInitialization(Module &M) override {
6760    V = std::make_unique<Verifier>(
6761        &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6762    return false;
6763  }
6764
6765  bool runOnFunction(Function &F) override {
6766    if (!V->verify(F) && FatalErrors) {
6767      errs() << "in function " << F.getName() << '\n';
6768      report_fatal_error("Broken function found, compilation aborted!");
6769    }
6770    return false;
6771  }
6772
6773  bool doFinalization(Module &M) override {
6774    bool HasErrors = false;
6775    for (Function &F : M)
6776      if (F.isDeclaration())
6777        HasErrors |= !V->verify(F);
6778
6779    HasErrors |= !V->verify();
6780    if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6781      report_fatal_error("Broken module found, compilation aborted!");
6782    return false;
6783  }
6784
6785  void getAnalysisUsage(AnalysisUsage &AU) const override {
6786    AU.setPreservesAll();
6787  }
6788};
6789
6790} // end anonymous namespace
6791
6792/// Helper to issue failure from the TBAA verification
6793template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6794  if (Diagnostic)
6795    return Diagnostic->CheckFailed(Args...);
6796}
6797
6798#define CheckTBAA(C, ...)                                                      \
6799  do {                                                                         \
6800    if (!(C)) {                                                                \
6801      CheckFailed(__VA_ARGS__);                                                \
6802      return false;                                                            \
6803    }                                                                          \
6804  } while (false)
6805
6806/// Verify that \p BaseNode can be used as the "base type" in the struct-path
6807/// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
6808/// struct-type node describing an aggregate data structure (like a struct).
6809TBAAVerifier::TBAABaseNodeSummary
6810TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6811                                 bool IsNewFormat) {
6812  if (BaseNode->getNumOperands() < 2) {
6813    CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6814    return {true, ~0u};
6815  }
6816
6817  auto Itr = TBAABaseNodes.find(BaseNode);
6818  if (Itr != TBAABaseNodes.end())
6819    return Itr->second;
6820
6821  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6822  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6823  (void)InsertResult;
6824  assert(InsertResult.second && "We just checked!");
6825  return Result;
6826}
6827
6828TBAAVerifier::TBAABaseNodeSummary
6829TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6830                                     bool IsNewFormat) {
6831  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6832
6833  if (BaseNode->getNumOperands() == 2) {
6834    // Scalar nodes can only be accessed at offset 0.
6835    return isValidScalarTBAANode(BaseNode)
6836               ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6837               : InvalidNode;
6838  }
6839
6840  if (IsNewFormat) {
6841    if (BaseNode->getNumOperands() % 3 != 0) {
6842      CheckFailed("Access tag nodes must have the number of operands that is a "
6843                  "multiple of 3!", BaseNode);
6844      return InvalidNode;
6845    }
6846  } else {
6847    if (BaseNode->getNumOperands() % 2 != 1) {
6848      CheckFailed("Struct tag nodes must have an odd number of operands!",
6849                  BaseNode);
6850      return InvalidNode;
6851    }
6852  }
6853
6854  // Check the type size field.
6855  if (IsNewFormat) {
6856    auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6857        BaseNode->getOperand(1));
6858    if (!TypeSizeNode) {
6859      CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6860      return InvalidNode;
6861    }
6862  }
6863
6864  // Check the type name field. In the new format it can be anything.
6865  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6866    CheckFailed("Struct tag nodes have a string as their first operand",
6867                BaseNode);
6868    return InvalidNode;
6869  }
6870
6871  bool Failed = false;
6872
6873  std::optional<APInt> PrevOffset;
6874  unsigned BitWidth = ~0u;
6875
6876  // We've already checked that BaseNode is not a degenerate root node with one
6877  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6878  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6879  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6880  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6881           Idx += NumOpsPerField) {
6882    const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6883    const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6884    if (!isa<MDNode>(FieldTy)) {
6885      CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6886      Failed = true;
6887      continue;
6888    }
6889
6890    auto *OffsetEntryCI =
6891        mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6892    if (!OffsetEntryCI) {
6893      CheckFailed("Offset entries must be constants!", &I, BaseNode);
6894      Failed = true;
6895      continue;
6896    }
6897
6898    if (BitWidth == ~0u)
6899      BitWidth = OffsetEntryCI->getBitWidth();
6900
6901    if (OffsetEntryCI->getBitWidth() != BitWidth) {
6902      CheckFailed(
6903          "Bitwidth between the offsets and struct type entries must match", &I,
6904          BaseNode);
6905      Failed = true;
6906      continue;
6907    }
6908
6909    // NB! As far as I can tell, we generate a non-strictly increasing offset
6910    // sequence only from structs that have zero size bit fields.  When
6911    // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6912    // pick the field lexically the latest in struct type metadata node.  This
6913    // mirrors the actual behavior of the alias analysis implementation.
6914    bool IsAscending =
6915        !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6916
6917    if (!IsAscending) {
6918      CheckFailed("Offsets must be increasing!", &I, BaseNode);
6919      Failed = true;
6920    }
6921
6922    PrevOffset = OffsetEntryCI->getValue();
6923
6924    if (IsNewFormat) {
6925      auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6926          BaseNode->getOperand(Idx + 2));
6927      if (!MemberSizeNode) {
6928        CheckFailed("Member size entries must be constants!", &I, BaseNode);
6929        Failed = true;
6930        continue;
6931      }
6932    }
6933  }
6934
6935  return Failed ? InvalidNode
6936                : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6937}
6938
6939static bool IsRootTBAANode(const MDNode *MD) {
6940  return MD->getNumOperands() < 2;
6941}
6942
6943static bool IsScalarTBAANodeImpl(const MDNode *MD,
6944                                 SmallPtrSetImpl<const MDNode *> &Visited) {
6945  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6946    return false;
6947
6948  if (!isa<MDString>(MD->getOperand(0)))
6949    return false;
6950
6951  if (MD->getNumOperands() == 3) {
6952    auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6953    if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6954      return false;
6955  }
6956
6957  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6958  return Parent && Visited.insert(Parent).second &&
6959         (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6960}
6961
6962bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6963  auto ResultIt = TBAAScalarNodes.find(MD);
6964  if (ResultIt != TBAAScalarNodes.end())
6965    return ResultIt->second;
6966
6967  SmallPtrSet<const MDNode *, 4> Visited;
6968  bool Result = IsScalarTBAANodeImpl(MD, Visited);
6969  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6970  (void)InsertResult;
6971  assert(InsertResult.second && "Just checked!");
6972
6973  return Result;
6974}
6975
6976/// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6977/// Offset in place to be the offset within the field node returned.
6978///
6979/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6980MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6981                                                   const MDNode *BaseNode,
6982                                                   APInt &Offset,
6983                                                   bool IsNewFormat) {
6984  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6985
6986  // Scalar nodes have only one possible "field" -- their parent in the access
6987  // hierarchy.  Offset must be zero at this point, but our caller is supposed
6988  // to check that.
6989  if (BaseNode->getNumOperands() == 2)
6990    return cast<MDNode>(BaseNode->getOperand(1));
6991
6992  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6993  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6994  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6995           Idx += NumOpsPerField) {
6996    auto *OffsetEntryCI =
6997        mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6998    if (OffsetEntryCI->getValue().ugt(Offset)) {
6999      if (Idx == FirstFieldOpNo) {
7000        CheckFailed("Could not find TBAA parent in struct type node", &I,
7001                    BaseNode, &Offset);
7002        return nullptr;
7003      }
7004
7005      unsigned PrevIdx = Idx - NumOpsPerField;
7006      auto *PrevOffsetEntryCI =
7007          mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
7008      Offset -= PrevOffsetEntryCI->getValue();
7009      return cast<MDNode>(BaseNode->getOperand(PrevIdx));
7010    }
7011  }
7012
7013  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
7014  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
7015      BaseNode->getOperand(LastIdx + 1));
7016  Offset -= LastOffsetEntryCI->getValue();
7017  return cast<MDNode>(BaseNode->getOperand(LastIdx));
7018}
7019
7020static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
7021  if (!Type || Type->getNumOperands() < 3)
7022    return false;
7023
7024  // In the new format type nodes shall have a reference to the parent type as
7025  // its first operand.
7026  return isa_and_nonnull<MDNode>(Type->getOperand(0));
7027}
7028
7029bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
7030  CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
7031            &I, MD);
7032
7033  CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
7034                isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
7035                isa<AtomicCmpXchgInst>(I),
7036            "This instruction shall not have a TBAA access tag!", &I);
7037
7038  bool IsStructPathTBAA =
7039      isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
7040
7041  CheckTBAA(IsStructPathTBAA,
7042            "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7043            &I);
7044
7045  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
7046  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
7047
7048  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
7049
7050  if (IsNewFormat) {
7051    CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
7052              "Access tag metadata must have either 4 or 5 operands", &I, MD);
7053  } else {
7054    CheckTBAA(MD->getNumOperands() < 5,
7055              "Struct tag metadata must have either 3 or 4 operands", &I, MD);
7056  }
7057
7058  // Check the access size field.
7059  if (IsNewFormat) {
7060    auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7061        MD->getOperand(3));
7062    CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
7063  }
7064
7065  // Check the immutability flag.
7066  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7067  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
7068    auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
7069        MD->getOperand(ImmutabilityFlagOpNo));
7070    CheckTBAA(IsImmutableCI,
7071              "Immutability tag on struct tag metadata must be a constant", &I,
7072              MD);
7073    CheckTBAA(
7074        IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7075        "Immutability part of the struct tag metadata must be either 0 or 1",
7076        &I, MD);
7077  }
7078
7079  CheckTBAA(BaseNode && AccessType,
7080            "Malformed struct tag metadata: base and access-type "
7081            "should be non-null and point to Metadata nodes",
7082            &I, MD, BaseNode, AccessType);
7083
7084  if (!IsNewFormat) {
7085    CheckTBAA(isValidScalarTBAANode(AccessType),
7086              "Access type node must be a valid scalar type", &I, MD,
7087              AccessType);
7088  }
7089
7090  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
7091  CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
7092
7093  APInt Offset = OffsetCI->getValue();
7094  bool SeenAccessTypeInPath = false;
7095
7096  SmallPtrSet<MDNode *, 4> StructPath;
7097
7098  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
7099       BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
7100                                               IsNewFormat)) {
7101    if (!StructPath.insert(BaseNode).second) {
7102      CheckFailed("Cycle detected in struct path", &I, MD);
7103      return false;
7104    }
7105
7106    bool Invalid;
7107    unsigned BaseNodeBitWidth;
7108    std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
7109                                                             IsNewFormat);
7110
7111    // If the base node is invalid in itself, then we've already printed all the
7112    // errors we wanted to print.
7113    if (Invalid)
7114      return false;
7115
7116    SeenAccessTypeInPath |= BaseNode == AccessType;
7117
7118    if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
7119      CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
7120                &I, MD, &Offset);
7121
7122    CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
7123                  (BaseNodeBitWidth == 0 && Offset == 0) ||
7124                  (IsNewFormat && BaseNodeBitWidth == ~0u),
7125              "Access bit-width not the same as description bit-width", &I, MD,
7126              BaseNodeBitWidth, Offset.getBitWidth());
7127
7128    if (IsNewFormat && SeenAccessTypeInPath)
7129      break;
7130  }
7131
7132  CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
7133            MD);
7134  return true;
7135}
7136
7137char VerifierLegacyPass::ID = 0;
7138INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
7139
7140FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
7141  return new VerifierLegacyPass(FatalErrors);
7142}
7143
7144AnalysisKey VerifierAnalysis::Key;
7145VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
7146                                               ModuleAnalysisManager &) {
7147  Result Res;
7148  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
7149  return Res;
7150}
7151
7152VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
7153                                               FunctionAnalysisManager &) {
7154  return { llvm::verifyFunction(F, &dbgs()), false };
7155}
7156
7157PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
7158  auto Res = AM.getResult<VerifierAnalysis>(M);
7159  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7160    report_fatal_error("Broken module found, compilation aborted!");
7161
7162  return PreservedAnalyses::all();
7163}
7164
7165PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
7166  auto res = AM.getResult<VerifierAnalysis>(F);
7167  if (res.IRBroken && FatalErrors)
7168    report_fatal_error("Broken function found, compilation aborted!");
7169
7170  return PreservedAnalyses::all();
7171}
7172