1//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAGISel class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/SelectionDAGISel.h"
14#include "ScheduleDAGSDNodes.h"
15#include "SelectionDAGBuilder.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/AssumptionCache.h"
26#include "llvm/Analysis/BranchProbabilityInfo.h"
27#include "llvm/Analysis/CFG.h"
28#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29#include "llvm/Analysis/OptimizationRemarkEmitter.h"
30#include "llvm/Analysis/ProfileSummaryInfo.h"
31#include "llvm/Analysis/TargetLibraryInfo.h"
32#include "llvm/Analysis/TargetTransformInfo.h"
33#include "llvm/Analysis/UniformityAnalysis.h"
34#include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
35#include "llvm/CodeGen/CodeGenCommonISel.h"
36#include "llvm/CodeGen/FastISel.h"
37#include "llvm/CodeGen/FunctionLoweringInfo.h"
38#include "llvm/CodeGen/GCMetadata.h"
39#include "llvm/CodeGen/ISDOpcodes.h"
40#include "llvm/CodeGen/MachineBasicBlock.h"
41#include "llvm/CodeGen/MachineFrameInfo.h"
42#include "llvm/CodeGen/MachineFunction.h"
43#include "llvm/CodeGen/MachineFunctionPass.h"
44#include "llvm/CodeGen/MachineInstr.h"
45#include "llvm/CodeGen/MachineInstrBuilder.h"
46#include "llvm/CodeGen/MachineMemOperand.h"
47#include "llvm/CodeGen/MachineModuleInfo.h"
48#include "llvm/CodeGen/MachineOperand.h"
49#include "llvm/CodeGen/MachinePassRegistry.h"
50#include "llvm/CodeGen/MachineRegisterInfo.h"
51#include "llvm/CodeGen/MachineValueType.h"
52#include "llvm/CodeGen/SchedulerRegistry.h"
53#include "llvm/CodeGen/SelectionDAG.h"
54#include "llvm/CodeGen/SelectionDAGNodes.h"
55#include "llvm/CodeGen/StackMaps.h"
56#include "llvm/CodeGen/StackProtector.h"
57#include "llvm/CodeGen/SwiftErrorValueTracking.h"
58#include "llvm/CodeGen/TargetInstrInfo.h"
59#include "llvm/CodeGen/TargetLowering.h"
60#include "llvm/CodeGen/TargetRegisterInfo.h"
61#include "llvm/CodeGen/TargetSubtargetInfo.h"
62#include "llvm/CodeGen/ValueTypes.h"
63#include "llvm/CodeGen/WinEHFuncInfo.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfo.h"
68#include "llvm/IR/DebugInfoMetadata.h"
69#include "llvm/IR/DebugLoc.h"
70#include "llvm/IR/DiagnosticInfo.h"
71#include "llvm/IR/EHPersonalities.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/InlineAsm.h"
74#include "llvm/IR/InstIterator.h"
75#include "llvm/IR/Instruction.h"
76#include "llvm/IR/Instructions.h"
77#include "llvm/IR/IntrinsicInst.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/IntrinsicsWebAssembly.h"
80#include "llvm/IR/Metadata.h"
81#include "llvm/IR/PrintPasses.h"
82#include "llvm/IR/Statepoint.h"
83#include "llvm/IR/Type.h"
84#include "llvm/IR/User.h"
85#include "llvm/IR/Value.h"
86#include "llvm/InitializePasses.h"
87#include "llvm/MC/MCInstrDesc.h"
88#include "llvm/Pass.h"
89#include "llvm/Support/BranchProbability.h"
90#include "llvm/Support/Casting.h"
91#include "llvm/Support/CodeGen.h"
92#include "llvm/Support/CommandLine.h"
93#include "llvm/Support/Compiler.h"
94#include "llvm/Support/Debug.h"
95#include "llvm/Support/ErrorHandling.h"
96#include "llvm/Support/KnownBits.h"
97#include "llvm/Support/Timer.h"
98#include "llvm/Support/raw_ostream.h"
99#include "llvm/Target/TargetIntrinsicInfo.h"
100#include "llvm/Target/TargetMachine.h"
101#include "llvm/Target/TargetOptions.h"
102#include "llvm/Transforms/Utils/BasicBlockUtils.h"
103#include <algorithm>
104#include <cassert>
105#include <cstdint>
106#include <iterator>
107#include <limits>
108#include <memory>
109#include <optional>
110#include <string>
111#include <utility>
112#include <vector>
113
114using namespace llvm;
115
116#define DEBUG_TYPE "isel"
117#define ISEL_DUMP_DEBUG_TYPE DEBUG_TYPE "-dump"
118
119STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
120STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
121STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
122STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
123STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
124STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
125STATISTIC(NumFastIselFailLowerArguments,
126          "Number of entry blocks where fast isel failed to lower arguments");
127
128static cl::opt<int> EnableFastISelAbort(
129    "fast-isel-abort", cl::Hidden,
130    cl::desc("Enable abort calls when \"fast\" instruction selection "
131             "fails to lower an instruction: 0 disable the abort, 1 will "
132             "abort but for args, calls and terminators, 2 will also "
133             "abort for argument lowering, and 3 will never fallback "
134             "to SelectionDAG."));
135
136static cl::opt<bool> EnableFastISelFallbackReport(
137    "fast-isel-report-on-fallback", cl::Hidden,
138    cl::desc("Emit a diagnostic when \"fast\" instruction selection "
139             "falls back to SelectionDAG."));
140
141static cl::opt<bool>
142UseMBPI("use-mbpi",
143        cl::desc("use Machine Branch Probability Info"),
144        cl::init(true), cl::Hidden);
145
146#ifndef NDEBUG
147static cl::opt<std::string>
148FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
149                        cl::desc("Only display the basic block whose name "
150                                 "matches this for all view-*-dags options"));
151static cl::opt<bool>
152ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
153          cl::desc("Pop up a window to show dags before the first "
154                   "dag combine pass"));
155static cl::opt<bool>
156ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
157          cl::desc("Pop up a window to show dags before legalize types"));
158static cl::opt<bool>
159    ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
160                     cl::desc("Pop up a window to show dags before the post "
161                              "legalize types dag combine pass"));
162static cl::opt<bool>
163    ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
164                     cl::desc("Pop up a window to show dags before legalize"));
165static cl::opt<bool>
166ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the second "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewISelDAGs("view-isel-dags", cl::Hidden,
171          cl::desc("Pop up a window to show isel dags as they are selected"));
172static cl::opt<bool>
173ViewSchedDAGs("view-sched-dags", cl::Hidden,
174          cl::desc("Pop up a window to show sched dags as they are processed"));
175static cl::opt<bool>
176ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
177      cl::desc("Pop up a window to show SUnit dags after they are processed"));
178#else
179static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
180                  ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
181                  ViewDAGCombine2 = false, ViewISelDAGs = false,
182                  ViewSchedDAGs = false, ViewSUnitDAGs = false;
183#endif
184
185#ifndef NDEBUG
186#define ISEL_DUMP(X)                                                           \
187  do {                                                                         \
188    if (llvm::DebugFlag &&                                                     \
189        (isCurrentDebugType(DEBUG_TYPE) ||                                     \
190         (isCurrentDebugType(ISEL_DUMP_DEBUG_TYPE) && MatchFilterFuncName))) { \
191      X;                                                                       \
192    }                                                                          \
193  } while (false)
194#else
195#define ISEL_DUMP(X) do { } while (false)
196#endif
197
198//===---------------------------------------------------------------------===//
199///
200/// RegisterScheduler class - Track the registration of instruction schedulers.
201///
202//===---------------------------------------------------------------------===//
203MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
204    RegisterScheduler::Registry;
205
206//===---------------------------------------------------------------------===//
207///
208/// ISHeuristic command line option for instruction schedulers.
209///
210//===---------------------------------------------------------------------===//
211static cl::opt<RegisterScheduler::FunctionPassCtor, false,
212               RegisterPassParser<RegisterScheduler>>
213ISHeuristic("pre-RA-sched",
214            cl::init(&createDefaultScheduler), cl::Hidden,
215            cl::desc("Instruction schedulers available (before register"
216                     " allocation):"));
217
218static RegisterScheduler
219defaultListDAGScheduler("default", "Best scheduler for the target",
220                        createDefaultScheduler);
221
222static bool dontUseFastISelFor(const Function &Fn) {
223  // Don't enable FastISel for functions with swiftasync Arguments.
224  // Debug info on those is reliant on good Argument lowering, and FastISel is
225  // not capable of lowering the entire function. Mixing the two selectors tend
226  // to result in poor lowering of Arguments.
227  return any_of(Fn.args(), [](const Argument &Arg) {
228    return Arg.hasAttribute(Attribute::AttrKind::SwiftAsync);
229  });
230}
231
232namespace llvm {
233
234  //===--------------------------------------------------------------------===//
235  /// This class is used by SelectionDAGISel to temporarily override
236  /// the optimization level on a per-function basis.
237  class OptLevelChanger {
238    SelectionDAGISel &IS;
239    CodeGenOptLevel SavedOptLevel;
240    bool SavedFastISel;
241
242  public:
243    OptLevelChanger(SelectionDAGISel &ISel, CodeGenOptLevel NewOptLevel)
244        : IS(ISel) {
245      SavedOptLevel = IS.OptLevel;
246      SavedFastISel = IS.TM.Options.EnableFastISel;
247      if (NewOptLevel != SavedOptLevel) {
248        IS.OptLevel = NewOptLevel;
249        IS.TM.setOptLevel(NewOptLevel);
250        LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
251                          << IS.MF->getFunction().getName() << "\n");
252        LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(SavedOptLevel)
253                          << " ; After: -O" << static_cast<int>(NewOptLevel)
254                          << "\n");
255        if (NewOptLevel == CodeGenOptLevel::None)
256          IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
257      }
258      if (dontUseFastISelFor(IS.MF->getFunction()))
259        IS.TM.setFastISel(false);
260      LLVM_DEBUG(
261          dbgs() << "\tFastISel is "
262                 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
263                 << "\n");
264    }
265
266    ~OptLevelChanger() {
267      if (IS.OptLevel == SavedOptLevel)
268        return;
269      LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
270                        << IS.MF->getFunction().getName() << "\n");
271      LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(IS.OptLevel)
272                        << " ; After: -O" << static_cast<int>(SavedOptLevel) << "\n");
273      IS.OptLevel = SavedOptLevel;
274      IS.TM.setOptLevel(SavedOptLevel);
275      IS.TM.setFastISel(SavedFastISel);
276    }
277  };
278
279  //===--------------------------------------------------------------------===//
280  /// createDefaultScheduler - This creates an instruction scheduler appropriate
281  /// for the target.
282  ScheduleDAGSDNodes *createDefaultScheduler(SelectionDAGISel *IS,
283                                             CodeGenOptLevel OptLevel) {
284    const TargetLowering *TLI = IS->TLI;
285    const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
286
287    // Try first to see if the Target has its own way of selecting a scheduler
288    if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
289      return SchedulerCtor(IS, OptLevel);
290    }
291
292    if (OptLevel == CodeGenOptLevel::None ||
293        (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
294        TLI->getSchedulingPreference() == Sched::Source)
295      return createSourceListDAGScheduler(IS, OptLevel);
296    if (TLI->getSchedulingPreference() == Sched::RegPressure)
297      return createBURRListDAGScheduler(IS, OptLevel);
298    if (TLI->getSchedulingPreference() == Sched::Hybrid)
299      return createHybridListDAGScheduler(IS, OptLevel);
300    if (TLI->getSchedulingPreference() == Sched::VLIW)
301      return createVLIWDAGScheduler(IS, OptLevel);
302    if (TLI->getSchedulingPreference() == Sched::Fast)
303      return createFastDAGScheduler(IS, OptLevel);
304    if (TLI->getSchedulingPreference() == Sched::Linearize)
305      return createDAGLinearizer(IS, OptLevel);
306    assert(TLI->getSchedulingPreference() == Sched::ILP &&
307           "Unknown sched type!");
308    return createILPListDAGScheduler(IS, OptLevel);
309  }
310
311} // end namespace llvm
312
313// EmitInstrWithCustomInserter - This method should be implemented by targets
314// that mark instructions with the 'usesCustomInserter' flag.  These
315// instructions are special in various ways, which require special support to
316// insert.  The specified MachineInstr is created but not inserted into any
317// basic blocks, and this method is called to expand it into a sequence of
318// instructions, potentially also creating new basic blocks and control flow.
319// When new basic blocks are inserted and the edges from MBB to its successors
320// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
321// DenseMap.
322MachineBasicBlock *
323TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
324                                            MachineBasicBlock *MBB) const {
325#ifndef NDEBUG
326  dbgs() << "If a target marks an instruction with "
327          "'usesCustomInserter', it must implement "
328          "TargetLowering::EmitInstrWithCustomInserter!\n";
329#endif
330  llvm_unreachable(nullptr);
331}
332
333void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
334                                                   SDNode *Node) const {
335  assert(!MI.hasPostISelHook() &&
336         "If a target marks an instruction with 'hasPostISelHook', "
337         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
338}
339
340//===----------------------------------------------------------------------===//
341// SelectionDAGISel code
342//===----------------------------------------------------------------------===//
343
344SelectionDAGISel::SelectionDAGISel(char &ID, TargetMachine &tm,
345                                   CodeGenOptLevel OL)
346    : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
347      SwiftError(new SwiftErrorValueTracking()),
348      CurDAG(new SelectionDAG(tm, OL)),
349      SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
350                                                OL)),
351      OptLevel(OL) {
352  initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
353  initializeBranchProbabilityInfoWrapperPassPass(
354      *PassRegistry::getPassRegistry());
355  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
356  initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
357}
358
359SelectionDAGISel::~SelectionDAGISel() {
360  delete CurDAG;
361  delete SwiftError;
362}
363
364void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
365  if (OptLevel != CodeGenOptLevel::None)
366      AU.addRequired<AAResultsWrapperPass>();
367  AU.addRequired<GCModuleInfo>();
368  AU.addRequired<StackProtector>();
369  AU.addPreserved<GCModuleInfo>();
370  AU.addRequired<TargetLibraryInfoWrapperPass>();
371  AU.addRequired<TargetTransformInfoWrapperPass>();
372  AU.addRequired<AssumptionCacheTracker>();
373  if (UseMBPI && OptLevel != CodeGenOptLevel::None)
374      AU.addRequired<BranchProbabilityInfoWrapperPass>();
375  AU.addRequired<ProfileSummaryInfoWrapperPass>();
376  // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for
377  // the module.
378  AU.addRequired<AssignmentTrackingAnalysis>();
379  AU.addPreserved<AssignmentTrackingAnalysis>();
380  if (OptLevel != CodeGenOptLevel::None)
381      LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
382  MachineFunctionPass::getAnalysisUsage(AU);
383}
384
385static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
386                                         MachineModuleInfo &MMI) {
387  // Only needed for MSVC
388  if (!TT.isWindowsMSVCEnvironment())
389    return;
390
391  // If it's already set, nothing to do.
392  if (MMI.usesMSVCFloatingPoint())
393    return;
394
395  for (const Instruction &I : instructions(F)) {
396    if (I.getType()->isFPOrFPVectorTy()) {
397      MMI.setUsesMSVCFloatingPoint(true);
398      return;
399    }
400    for (const auto &Op : I.operands()) {
401      if (Op->getType()->isFPOrFPVectorTy()) {
402        MMI.setUsesMSVCFloatingPoint(true);
403        return;
404      }
405    }
406  }
407}
408
409bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
410  // If we already selected that function, we do not need to run SDISel.
411  if (mf.getProperties().hasProperty(
412          MachineFunctionProperties::Property::Selected))
413    return false;
414  // Do some sanity-checking on the command-line options.
415  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
416         "-fast-isel-abort > 0 requires -fast-isel");
417
418  const Function &Fn = mf.getFunction();
419  MF = &mf;
420
421#ifndef NDEBUG
422  StringRef FuncName = Fn.getName();
423  MatchFilterFuncName = isFunctionInPrintList(FuncName);
424#else
425  (void)MatchFilterFuncName;
426#endif
427
428  // Decide what flavour of variable location debug-info will be used, before
429  // we change the optimisation level.
430  bool InstrRef = mf.shouldUseDebugInstrRef();
431  mf.setUseDebugInstrRef(InstrRef);
432
433  // Reset the target options before resetting the optimization
434  // level below.
435  // FIXME: This is a horrible hack and should be processed via
436  // codegen looking at the optimization level explicitly when
437  // it wants to look at it.
438  TM.resetTargetOptions(Fn);
439  // Reset OptLevel to None for optnone functions.
440  CodeGenOptLevel NewOptLevel = OptLevel;
441  if (OptLevel != CodeGenOptLevel::None && skipFunction(Fn))
442    NewOptLevel = CodeGenOptLevel::None;
443  OptLevelChanger OLC(*this, NewOptLevel);
444
445  TII = MF->getSubtarget().getInstrInfo();
446  TLI = MF->getSubtarget().getTargetLowering();
447  RegInfo = &MF->getRegInfo();
448  LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
449  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
450  ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
451  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(mf.getFunction());
452  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
453  BlockFrequencyInfo *BFI = nullptr;
454  if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOptLevel::None)
455    BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
456
457  FunctionVarLocs const *FnVarLocs = nullptr;
458  if (isAssignmentTrackingEnabled(*Fn.getParent()))
459    FnVarLocs = getAnalysis<AssignmentTrackingAnalysis>().getResults();
460
461  ISEL_DUMP(dbgs() << "\n\n\n=== " << FuncName << "\n");
462
463  UniformityInfo *UA = nullptr;
464  if (auto *UAPass = getAnalysisIfAvailable<UniformityInfoWrapperPass>())
465    UA = &UAPass->getUniformityInfo();
466  CurDAG->init(*MF, *ORE, this, LibInfo, UA, PSI, BFI, FnVarLocs);
467  FuncInfo->set(Fn, *MF, CurDAG);
468  SwiftError->setFunction(*MF);
469
470  // Now get the optional analyzes if we want to.
471  // This is based on the possibly changed OptLevel (after optnone is taken
472  // into account).  That's unfortunate but OK because it just means we won't
473  // ask for passes that have been required anyway.
474
475  if (UseMBPI && OptLevel != CodeGenOptLevel::None)
476    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
477  else
478    FuncInfo->BPI = nullptr;
479
480  if (OptLevel != CodeGenOptLevel::None)
481    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
482  else
483    AA = nullptr;
484
485  SDB->init(GFI, AA, AC, LibInfo);
486
487  MF->setHasInlineAsm(false);
488
489  FuncInfo->SplitCSR = false;
490
491  // We split CSR if the target supports it for the given function
492  // and the function has only return exits.
493  if (OptLevel != CodeGenOptLevel::None && TLI->supportSplitCSR(MF)) {
494    FuncInfo->SplitCSR = true;
495
496    // Collect all the return blocks.
497    for (const BasicBlock &BB : Fn) {
498      if (!succ_empty(&BB))
499        continue;
500
501      const Instruction *Term = BB.getTerminator();
502      if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
503        continue;
504
505      // Bail out if the exit block is not Return nor Unreachable.
506      FuncInfo->SplitCSR = false;
507      break;
508    }
509  }
510
511  MachineBasicBlock *EntryMBB = &MF->front();
512  if (FuncInfo->SplitCSR)
513    // This performs initialization so lowering for SplitCSR will be correct.
514    TLI->initializeSplitCSR(EntryMBB);
515
516  SelectAllBasicBlocks(Fn);
517  if (FastISelFailed && EnableFastISelFallbackReport) {
518    DiagnosticInfoISelFallback DiagFallback(Fn);
519    Fn.getContext().diagnose(DiagFallback);
520  }
521
522  // Replace forward-declared registers with the registers containing
523  // the desired value.
524  // Note: it is important that this happens **before** the call to
525  // EmitLiveInCopies, since implementations can skip copies of unused
526  // registers. If we don't apply the reg fixups before, some registers may
527  // appear as unused and will be skipped, resulting in bad MI.
528  MachineRegisterInfo &MRI = MF->getRegInfo();
529  for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
530                                              E = FuncInfo->RegFixups.end();
531       I != E; ++I) {
532    Register From = I->first;
533    Register To = I->second;
534    // If To is also scheduled to be replaced, find what its ultimate
535    // replacement is.
536    while (true) {
537      DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
538      if (J == E)
539        break;
540      To = J->second;
541    }
542    // Make sure the new register has a sufficiently constrained register class.
543    if (From.isVirtual() && To.isVirtual())
544      MRI.constrainRegClass(To, MRI.getRegClass(From));
545    // Replace it.
546
547    // Replacing one register with another won't touch the kill flags.
548    // We need to conservatively clear the kill flags as a kill on the old
549    // register might dominate existing uses of the new register.
550    if (!MRI.use_empty(To))
551      MRI.clearKillFlags(From);
552    MRI.replaceRegWith(From, To);
553  }
554
555  // If the first basic block in the function has live ins that need to be
556  // copied into vregs, emit the copies into the top of the block before
557  // emitting the code for the block.
558  const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
559  RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
560
561  // Insert copies in the entry block and the return blocks.
562  if (FuncInfo->SplitCSR) {
563    SmallVector<MachineBasicBlock*, 4> Returns;
564    // Collect all the return blocks.
565    for (MachineBasicBlock &MBB : mf) {
566      if (!MBB.succ_empty())
567        continue;
568
569      MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
570      if (Term != MBB.end() && Term->isReturn()) {
571        Returns.push_back(&MBB);
572        continue;
573      }
574    }
575    TLI->insertCopiesSplitCSR(EntryMBB, Returns);
576  }
577
578  DenseMap<unsigned, unsigned> LiveInMap;
579  if (!FuncInfo->ArgDbgValues.empty())
580    for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
581      if (LI.second)
582        LiveInMap.insert(LI);
583
584  // Insert DBG_VALUE instructions for function arguments to the entry block.
585  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
586    MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
587    assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
588           "Function parameters should not be described by DBG_VALUE_LIST.");
589    bool hasFI = MI->getDebugOperand(0).isFI();
590    Register Reg =
591        hasFI ? TRI.getFrameRegister(*MF) : MI->getDebugOperand(0).getReg();
592    if (Reg.isPhysical())
593      EntryMBB->insert(EntryMBB->begin(), MI);
594    else {
595      MachineInstr *Def = RegInfo->getVRegDef(Reg);
596      if (Def) {
597        MachineBasicBlock::iterator InsertPos = Def;
598        // FIXME: VR def may not be in entry block.
599        Def->getParent()->insert(std::next(InsertPos), MI);
600      } else
601        LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
602                          << Register::virtReg2Index(Reg) << "\n");
603    }
604
605    // Don't try and extend through copies in instruction referencing mode.
606    if (InstrRef)
607      continue;
608
609    // If Reg is live-in then update debug info to track its copy in a vreg.
610    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
611    if (LDI != LiveInMap.end()) {
612      assert(!hasFI && "There's no handling of frame pointer updating here yet "
613                       "- add if needed");
614      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
615      MachineBasicBlock::iterator InsertPos = Def;
616      const MDNode *Variable = MI->getDebugVariable();
617      const MDNode *Expr = MI->getDebugExpression();
618      DebugLoc DL = MI->getDebugLoc();
619      bool IsIndirect = MI->isIndirectDebugValue();
620      if (IsIndirect)
621        assert(MI->getDebugOffset().getImm() == 0 &&
622               "DBG_VALUE with nonzero offset");
623      assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
624             "Expected inlined-at fields to agree");
625      assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
626             "Didn't expect to see a DBG_VALUE_LIST here");
627      // Def is never a terminator here, so it is ok to increment InsertPos.
628      BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
629              IsIndirect, LDI->second, Variable, Expr);
630
631      // If this vreg is directly copied into an exported register then
632      // that COPY instructions also need DBG_VALUE, if it is the only
633      // user of LDI->second.
634      MachineInstr *CopyUseMI = nullptr;
635      for (MachineRegisterInfo::use_instr_iterator
636           UI = RegInfo->use_instr_begin(LDI->second),
637           E = RegInfo->use_instr_end(); UI != E; ) {
638        MachineInstr *UseMI = &*(UI++);
639        if (UseMI->isDebugValue()) continue;
640        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
641          CopyUseMI = UseMI; continue;
642        }
643        // Otherwise this is another use or second copy use.
644        CopyUseMI = nullptr; break;
645      }
646      if (CopyUseMI &&
647          TRI.getRegSizeInBits(LDI->second, MRI) ==
648              TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
649        // Use MI's debug location, which describes where Variable was
650        // declared, rather than whatever is attached to CopyUseMI.
651        MachineInstr *NewMI =
652            BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
653                    CopyUseMI->getOperand(0).getReg(), Variable, Expr);
654        MachineBasicBlock::iterator Pos = CopyUseMI;
655        EntryMBB->insertAfter(Pos, NewMI);
656      }
657    }
658  }
659
660  // For debug-info, in instruction referencing mode, we need to perform some
661  // post-isel maintenence.
662  if (MF->useDebugInstrRef())
663    MF->finalizeDebugInstrRefs();
664
665  // Determine if there are any calls in this machine function.
666  MachineFrameInfo &MFI = MF->getFrameInfo();
667  for (const auto &MBB : *MF) {
668    if (MFI.hasCalls() && MF->hasInlineAsm())
669      break;
670
671    for (const auto &MI : MBB) {
672      const MCInstrDesc &MCID = TII->get(MI.getOpcode());
673      if ((MCID.isCall() && !MCID.isReturn()) ||
674          MI.isStackAligningInlineAsm()) {
675        MFI.setHasCalls(true);
676      }
677      if (MI.isInlineAsm()) {
678        MF->setHasInlineAsm(true);
679      }
680    }
681  }
682
683  // Determine if there is a call to setjmp in the machine function.
684  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
685
686  // Determine if floating point is used for msvc
687  computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
688
689  // Release function-specific state. SDB and CurDAG are already cleared
690  // at this point.
691  FuncInfo->clear();
692
693  ISEL_DUMP(dbgs() << "*** MachineFunction at end of ISel ***\n");
694  ISEL_DUMP(MF->print(dbgs()));
695
696  return true;
697}
698
699static void reportFastISelFailure(MachineFunction &MF,
700                                  OptimizationRemarkEmitter &ORE,
701                                  OptimizationRemarkMissed &R,
702                                  bool ShouldAbort) {
703  // Print the function name explicitly if we don't have a debug location (which
704  // makes the diagnostic less useful) or if we're going to emit a raw error.
705  if (!R.getLocation().isValid() || ShouldAbort)
706    R << (" (in function: " + MF.getName() + ")").str();
707
708  if (ShouldAbort)
709    report_fatal_error(Twine(R.getMsg()));
710
711  ORE.emit(R);
712  LLVM_DEBUG(dbgs() << R.getMsg() << "\n");
713}
714
715void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
716                                        BasicBlock::const_iterator End,
717                                        bool &HadTailCall) {
718  // Allow creating illegal types during DAG building for the basic block.
719  CurDAG->NewNodesMustHaveLegalTypes = false;
720
721  // Lower the instructions. If a call is emitted as a tail call, cease emitting
722  // nodes for this block. If an instruction is elided, don't emit it, but do
723  // handle any debug-info attached to it.
724  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
725    if (!ElidedArgCopyInstrs.count(&*I))
726      SDB->visit(*I);
727    else
728      SDB->visitDbgInfo(*I);
729  }
730
731  // Make sure the root of the DAG is up-to-date.
732  CurDAG->setRoot(SDB->getControlRoot());
733  HadTailCall = SDB->HasTailCall;
734  SDB->resolveOrClearDbgInfo();
735  SDB->clear();
736
737  // Final step, emit the lowered DAG as machine code.
738  CodeGenAndEmitDAG();
739}
740
741void SelectionDAGISel::ComputeLiveOutVRegInfo() {
742  SmallPtrSet<SDNode *, 16> Added;
743  SmallVector<SDNode*, 128> Worklist;
744
745  Worklist.push_back(CurDAG->getRoot().getNode());
746  Added.insert(CurDAG->getRoot().getNode());
747
748  KnownBits Known;
749
750  do {
751    SDNode *N = Worklist.pop_back_val();
752
753    // Otherwise, add all chain operands to the worklist.
754    for (const SDValue &Op : N->op_values())
755      if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
756        Worklist.push_back(Op.getNode());
757
758    // If this is a CopyToReg with a vreg dest, process it.
759    if (N->getOpcode() != ISD::CopyToReg)
760      continue;
761
762    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
763    if (!Register::isVirtualRegister(DestReg))
764      continue;
765
766    // Ignore non-integer values.
767    SDValue Src = N->getOperand(2);
768    EVT SrcVT = Src.getValueType();
769    if (!SrcVT.isInteger())
770      continue;
771
772    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
773    Known = CurDAG->computeKnownBits(Src);
774    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
775  } while (!Worklist.empty());
776}
777
778void SelectionDAGISel::CodeGenAndEmitDAG() {
779  StringRef GroupName = "sdag";
780  StringRef GroupDescription = "Instruction Selection and Scheduling";
781  std::string BlockName;
782  bool MatchFilterBB = false; (void)MatchFilterBB;
783#ifndef NDEBUG
784  TargetTransformInfo &TTI =
785      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
786#endif
787
788  // Pre-type legalization allow creation of any node types.
789  CurDAG->NewNodesMustHaveLegalTypes = false;
790
791#ifndef NDEBUG
792  MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
793                   FilterDAGBasicBlockName ==
794                       FuncInfo->MBB->getBasicBlock()->getName());
795#endif
796#ifdef NDEBUG
797  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
798      ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
799      ViewSUnitDAGs)
800#endif
801  {
802    BlockName =
803        (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
804  }
805  ISEL_DUMP(dbgs() << "\nInitial selection DAG: "
806                   << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
807                   << "'\n";
808            CurDAG->dump());
809
810#ifndef NDEBUG
811  if (TTI.hasBranchDivergence())
812    CurDAG->VerifyDAGDivergence();
813#endif
814
815  if (ViewDAGCombine1 && MatchFilterBB)
816    CurDAG->viewGraph("dag-combine1 input for " + BlockName);
817
818  // Run the DAG combiner in pre-legalize mode.
819  {
820    NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
821                       GroupDescription, TimePassesIsEnabled);
822    CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
823  }
824
825  ISEL_DUMP(dbgs() << "\nOptimized lowered selection DAG: "
826                   << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
827                   << "'\n";
828            CurDAG->dump());
829
830#ifndef NDEBUG
831  if (TTI.hasBranchDivergence())
832    CurDAG->VerifyDAGDivergence();
833#endif
834
835  // Second step, hack on the DAG until it only uses operations and types that
836  // the target supports.
837  if (ViewLegalizeTypesDAGs && MatchFilterBB)
838    CurDAG->viewGraph("legalize-types input for " + BlockName);
839
840  bool Changed;
841  {
842    NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
843                       GroupDescription, TimePassesIsEnabled);
844    Changed = CurDAG->LegalizeTypes();
845  }
846
847  ISEL_DUMP(dbgs() << "\nType-legalized selection DAG: "
848                   << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
849                   << "'\n";
850            CurDAG->dump());
851
852#ifndef NDEBUG
853  if (TTI.hasBranchDivergence())
854    CurDAG->VerifyDAGDivergence();
855#endif
856
857  // Only allow creation of legal node types.
858  CurDAG->NewNodesMustHaveLegalTypes = true;
859
860  if (Changed) {
861    if (ViewDAGCombineLT && MatchFilterBB)
862      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
863
864    // Run the DAG combiner in post-type-legalize mode.
865    {
866      NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
867                         GroupName, GroupDescription, TimePassesIsEnabled);
868      CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
869    }
870
871    ISEL_DUMP(dbgs() << "\nOptimized type-legalized selection DAG: "
872                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
873                     << "'\n";
874              CurDAG->dump());
875
876#ifndef NDEBUG
877    if (TTI.hasBranchDivergence())
878      CurDAG->VerifyDAGDivergence();
879#endif
880  }
881
882  {
883    NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
884                       GroupDescription, TimePassesIsEnabled);
885    Changed = CurDAG->LegalizeVectors();
886  }
887
888  if (Changed) {
889    ISEL_DUMP(dbgs() << "\nVector-legalized selection DAG: "
890                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
891                     << "'\n";
892              CurDAG->dump());
893
894#ifndef NDEBUG
895    if (TTI.hasBranchDivergence())
896      CurDAG->VerifyDAGDivergence();
897#endif
898
899    {
900      NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
901                         GroupDescription, TimePassesIsEnabled);
902      CurDAG->LegalizeTypes();
903    }
904
905    ISEL_DUMP(dbgs() << "\nVector/type-legalized selection DAG: "
906                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
907                     << "'\n";
908              CurDAG->dump());
909
910#ifndef NDEBUG
911    if (TTI.hasBranchDivergence())
912      CurDAG->VerifyDAGDivergence();
913#endif
914
915    if (ViewDAGCombineLT && MatchFilterBB)
916      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
917
918    // Run the DAG combiner in post-type-legalize mode.
919    {
920      NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
921                         GroupName, GroupDescription, TimePassesIsEnabled);
922      CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
923    }
924
925    ISEL_DUMP(dbgs() << "\nOptimized vector-legalized selection DAG: "
926                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
927                     << "'\n";
928              CurDAG->dump());
929
930#ifndef NDEBUG
931    if (TTI.hasBranchDivergence())
932      CurDAG->VerifyDAGDivergence();
933#endif
934  }
935
936  if (ViewLegalizeDAGs && MatchFilterBB)
937    CurDAG->viewGraph("legalize input for " + BlockName);
938
939  {
940    NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
941                       GroupDescription, TimePassesIsEnabled);
942    CurDAG->Legalize();
943  }
944
945  ISEL_DUMP(dbgs() << "\nLegalized selection DAG: "
946                   << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
947                   << "'\n";
948            CurDAG->dump());
949
950#ifndef NDEBUG
951  if (TTI.hasBranchDivergence())
952    CurDAG->VerifyDAGDivergence();
953#endif
954
955  if (ViewDAGCombine2 && MatchFilterBB)
956    CurDAG->viewGraph("dag-combine2 input for " + BlockName);
957
958  // Run the DAG combiner in post-legalize mode.
959  {
960    NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
961                       GroupDescription, TimePassesIsEnabled);
962    CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
963  }
964
965  ISEL_DUMP(dbgs() << "\nOptimized legalized selection DAG: "
966                   << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
967                   << "'\n";
968            CurDAG->dump());
969
970#ifndef NDEBUG
971  if (TTI.hasBranchDivergence())
972    CurDAG->VerifyDAGDivergence();
973#endif
974
975  if (OptLevel != CodeGenOptLevel::None)
976    ComputeLiveOutVRegInfo();
977
978  if (ViewISelDAGs && MatchFilterBB)
979    CurDAG->viewGraph("isel input for " + BlockName);
980
981  // Third, instruction select all of the operations to machine code, adding the
982  // code to the MachineBasicBlock.
983  {
984    NamedRegionTimer T("isel", "Instruction Selection", GroupName,
985                       GroupDescription, TimePassesIsEnabled);
986    DoInstructionSelection();
987  }
988
989  ISEL_DUMP(dbgs() << "\nSelected selection DAG: "
990                   << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
991                   << "'\n";
992            CurDAG->dump());
993
994  if (ViewSchedDAGs && MatchFilterBB)
995    CurDAG->viewGraph("scheduler input for " + BlockName);
996
997  // Schedule machine code.
998  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
999  {
1000    NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
1001                       GroupDescription, TimePassesIsEnabled);
1002    Scheduler->Run(CurDAG, FuncInfo->MBB);
1003  }
1004
1005  if (ViewSUnitDAGs && MatchFilterBB)
1006    Scheduler->viewGraph();
1007
1008  // Emit machine code to BB.  This can change 'BB' to the last block being
1009  // inserted into.
1010  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
1011  {
1012    NamedRegionTimer T("emit", "Instruction Creation", GroupName,
1013                       GroupDescription, TimePassesIsEnabled);
1014
1015    // FuncInfo->InsertPt is passed by reference and set to the end of the
1016    // scheduled instructions.
1017    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1018  }
1019
1020  // If the block was split, make sure we update any references that are used to
1021  // update PHI nodes later on.
1022  if (FirstMBB != LastMBB)
1023    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1024
1025  // Free the scheduler state.
1026  {
1027    NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1028                       GroupDescription, TimePassesIsEnabled);
1029    delete Scheduler;
1030  }
1031
1032  // Free the SelectionDAG state, now that we're finished with it.
1033  CurDAG->clear();
1034}
1035
1036namespace {
1037
1038/// ISelUpdater - helper class to handle updates of the instruction selection
1039/// graph.
1040class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1041  SelectionDAG::allnodes_iterator &ISelPosition;
1042
1043public:
1044  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1045    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1046
1047  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1048  /// deleted is the current ISelPosition node, update ISelPosition.
1049  ///
1050  void NodeDeleted(SDNode *N, SDNode *E) override {
1051    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1052      ++ISelPosition;
1053  }
1054
1055  /// NodeInserted - Handle new nodes inserted into the graph: propagate
1056  /// metadata from root nodes that also applies to new nodes, in case the root
1057  /// is later deleted.
1058  void NodeInserted(SDNode *N) override {
1059    SDNode *CurNode = &*ISelPosition;
1060    if (MDNode *MD = DAG.getPCSections(CurNode))
1061      DAG.addPCSections(N, MD);
1062  }
1063};
1064
1065} // end anonymous namespace
1066
1067// This function is used to enforce the topological node id property
1068// leveraged during instruction selection. Before the selection process all
1069// nodes are given a non-negative id such that all nodes have a greater id than
1070// their operands. As this holds transitively we can prune checks that a node N
1071// is a predecessor of M another by not recursively checking through M's
1072// operands if N's ID is larger than M's ID. This significantly improves
1073// performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1074
1075// However, when we fuse multiple nodes into a single node during the
1076// selection we may induce a predecessor relationship between inputs and
1077// outputs of distinct nodes being merged, violating the topological property.
1078// Should a fused node have a successor which has yet to be selected,
1079// our legality checks would be incorrect. To avoid this we mark all unselected
1080// successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1081// (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1082// We use bit-negation to more clearly enforce that node id -1 can only be
1083// achieved by selected nodes. As the conversion is reversable to the original
1084// Id, topological pruning can still be leveraged when looking for unselected
1085// nodes. This method is called internally in all ISel replacement related
1086// functions.
1087void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1088  SmallVector<SDNode *, 4> Nodes;
1089  Nodes.push_back(Node);
1090
1091  while (!Nodes.empty()) {
1092    SDNode *N = Nodes.pop_back_val();
1093    for (auto *U : N->uses()) {
1094      auto UId = U->getNodeId();
1095      if (UId > 0) {
1096        InvalidateNodeId(U);
1097        Nodes.push_back(U);
1098      }
1099    }
1100  }
1101}
1102
1103// InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1104// NodeId with the equivalent node id which is invalid for topological
1105// pruning.
1106void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1107  int InvalidId = -(N->getNodeId() + 1);
1108  N->setNodeId(InvalidId);
1109}
1110
1111// getUninvalidatedNodeId - get original uninvalidated node id.
1112int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1113  int Id = N->getNodeId();
1114  if (Id < -1)
1115    return -(Id + 1);
1116  return Id;
1117}
1118
1119void SelectionDAGISel::DoInstructionSelection() {
1120  LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1121                    << printMBBReference(*FuncInfo->MBB) << " '"
1122                    << FuncInfo->MBB->getName() << "'\n");
1123
1124  PreprocessISelDAG();
1125
1126  // Select target instructions for the DAG.
1127  {
1128    // Number all nodes with a topological order and set DAGSize.
1129    DAGSize = CurDAG->AssignTopologicalOrder();
1130
1131    // Create a dummy node (which is not added to allnodes), that adds
1132    // a reference to the root node, preventing it from being deleted,
1133    // and tracking any changes of the root.
1134    HandleSDNode Dummy(CurDAG->getRoot());
1135    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1136    ++ISelPosition;
1137
1138    // Make sure that ISelPosition gets properly updated when nodes are deleted
1139    // in calls made from this function. New nodes inherit relevant metadata.
1140    ISelUpdater ISU(*CurDAG, ISelPosition);
1141
1142    // The AllNodes list is now topological-sorted. Visit the
1143    // nodes by starting at the end of the list (the root of the
1144    // graph) and preceding back toward the beginning (the entry
1145    // node).
1146    while (ISelPosition != CurDAG->allnodes_begin()) {
1147      SDNode *Node = &*--ISelPosition;
1148      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1149      // but there are currently some corner cases that it misses. Also, this
1150      // makes it theoretically possible to disable the DAGCombiner.
1151      if (Node->use_empty())
1152        continue;
1153
1154#ifndef NDEBUG
1155      SmallVector<SDNode *, 4> Nodes;
1156      Nodes.push_back(Node);
1157
1158      while (!Nodes.empty()) {
1159        auto N = Nodes.pop_back_val();
1160        if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1161          continue;
1162        for (const SDValue &Op : N->op_values()) {
1163          if (Op->getOpcode() == ISD::TokenFactor)
1164            Nodes.push_back(Op.getNode());
1165          else {
1166            // We rely on topological ordering of node ids for checking for
1167            // cycles when fusing nodes during selection. All unselected nodes
1168            // successors of an already selected node should have a negative id.
1169            // This assertion will catch such cases. If this assertion triggers
1170            // it is likely you using DAG-level Value/Node replacement functions
1171            // (versus equivalent ISEL replacement) in backend-specific
1172            // selections. See comment in EnforceNodeIdInvariant for more
1173            // details.
1174            assert(Op->getNodeId() != -1 &&
1175                   "Node has already selected predecessor node");
1176          }
1177        }
1178      }
1179#endif
1180
1181      // When we are using non-default rounding modes or FP exception behavior
1182      // FP operations are represented by StrictFP pseudo-operations.  For
1183      // targets that do not (yet) understand strict FP operations directly,
1184      // we convert them to normal FP opcodes instead at this point.  This
1185      // will allow them to be handled by existing target-specific instruction
1186      // selectors.
1187      if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1188        // For some opcodes, we need to call TLI->getOperationAction using
1189        // the first operand type instead of the result type.  Note that this
1190        // must match what SelectionDAGLegalize::LegalizeOp is doing.
1191        EVT ActionVT;
1192        switch (Node->getOpcode()) {
1193        case ISD::STRICT_SINT_TO_FP:
1194        case ISD::STRICT_UINT_TO_FP:
1195        case ISD::STRICT_LRINT:
1196        case ISD::STRICT_LLRINT:
1197        case ISD::STRICT_LROUND:
1198        case ISD::STRICT_LLROUND:
1199        case ISD::STRICT_FSETCC:
1200        case ISD::STRICT_FSETCCS:
1201          ActionVT = Node->getOperand(1).getValueType();
1202          break;
1203        default:
1204          ActionVT = Node->getValueType(0);
1205          break;
1206        }
1207        if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1208            == TargetLowering::Expand)
1209          Node = CurDAG->mutateStrictFPToFP(Node);
1210      }
1211
1212      LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1213                 Node->dump(CurDAG));
1214
1215      Select(Node);
1216    }
1217
1218    CurDAG->setRoot(Dummy.getValue());
1219  }
1220
1221  LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1222
1223  PostprocessISelDAG();
1224}
1225
1226static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1227  for (const User *U : CPI->users()) {
1228    if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1229      Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1230      if (IID == Intrinsic::eh_exceptionpointer ||
1231          IID == Intrinsic::eh_exceptioncode)
1232        return true;
1233    }
1234  }
1235  return false;
1236}
1237
1238// wasm.landingpad.index intrinsic is for associating a landing pad index number
1239// with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1240// and store the mapping in the function.
1241static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1242                                   const CatchPadInst *CPI) {
1243  MachineFunction *MF = MBB->getParent();
1244  // In case of single catch (...), we don't emit LSDA, so we don't need
1245  // this information.
1246  bool IsSingleCatchAllClause =
1247      CPI->arg_size() == 1 &&
1248      cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1249  // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1250  // and they don't need LSDA info
1251  bool IsCatchLongjmp = CPI->arg_size() == 0;
1252  if (!IsSingleCatchAllClause && !IsCatchLongjmp) {
1253    // Create a mapping from landing pad label to landing pad index.
1254    bool IntrFound = false;
1255    for (const User *U : CPI->users()) {
1256      if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1257        Intrinsic::ID IID = Call->getIntrinsicID();
1258        if (IID == Intrinsic::wasm_landingpad_index) {
1259          Value *IndexArg = Call->getArgOperand(1);
1260          int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1261          MF->setWasmLandingPadIndex(MBB, Index);
1262          IntrFound = true;
1263          break;
1264        }
1265      }
1266    }
1267    assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1268    (void)IntrFound;
1269  }
1270}
1271
1272/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1273/// do other setup for EH landing-pad blocks.
1274bool SelectionDAGISel::PrepareEHLandingPad() {
1275  MachineBasicBlock *MBB = FuncInfo->MBB;
1276  const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1277  const BasicBlock *LLVMBB = MBB->getBasicBlock();
1278  const TargetRegisterClass *PtrRC =
1279      TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1280
1281  auto Pers = classifyEHPersonality(PersonalityFn);
1282
1283  // Catchpads have one live-in register, which typically holds the exception
1284  // pointer or code.
1285  if (isFuncletEHPersonality(Pers)) {
1286    if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1287      if (hasExceptionPointerOrCodeUser(CPI)) {
1288        // Get or create the virtual register to hold the pointer or code.  Mark
1289        // the live in physreg and copy into the vreg.
1290        MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1291        assert(EHPhysReg && "target lacks exception pointer register");
1292        MBB->addLiveIn(EHPhysReg);
1293        unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1294        BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1295                TII->get(TargetOpcode::COPY), VReg)
1296            .addReg(EHPhysReg, RegState::Kill);
1297      }
1298    }
1299    return true;
1300  }
1301
1302  // Add a label to mark the beginning of the landing pad.  Deletion of the
1303  // landing pad can thus be detected via the MachineModuleInfo.
1304  MCSymbol *Label = MF->addLandingPad(MBB);
1305
1306  const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1307  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1308    .addSym(Label);
1309
1310  // If the unwinder does not preserve all registers, ensure that the
1311  // function marks the clobbered registers as used.
1312  const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1313  if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1314    MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1315
1316  if (Pers == EHPersonality::Wasm_CXX) {
1317    if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1318      mapWasmLandingPadIndex(MBB, CPI);
1319  } else {
1320    // Assign the call site to the landing pad's begin label.
1321    MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1322    // Mark exception register as live in.
1323    if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1324      FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1325    // Mark exception selector register as live in.
1326    if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1327      FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1328  }
1329
1330  return true;
1331}
1332
1333// Mark and Report IPToState for each Block under IsEHa
1334void SelectionDAGISel::reportIPToStateForBlocks(MachineFunction *MF) {
1335  MachineModuleInfo &MMI = MF->getMMI();
1336  llvm::WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo();
1337  if (!EHInfo)
1338    return;
1339  for (auto MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) {
1340    MachineBasicBlock *MBB = &*MBBI;
1341    const BasicBlock *BB = MBB->getBasicBlock();
1342    int State = EHInfo->BlockToStateMap[BB];
1343    if (BB->getFirstMayFaultInst()) {
1344      // Report IP range only for blocks with Faulty inst
1345      auto MBBb = MBB->getFirstNonPHI();
1346      MachineInstr *MIb = &*MBBb;
1347      if (MIb->isTerminator())
1348        continue;
1349
1350      // Insert EH Labels
1351      MCSymbol *BeginLabel = MMI.getContext().createTempSymbol();
1352      MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
1353      EHInfo->addIPToStateRange(State, BeginLabel, EndLabel);
1354      BuildMI(*MBB, MBBb, SDB->getCurDebugLoc(),
1355              TII->get(TargetOpcode::EH_LABEL))
1356          .addSym(BeginLabel);
1357      auto MBBe = MBB->instr_end();
1358      MachineInstr *MIe = &*(--MBBe);
1359      // insert before (possible multiple) terminators
1360      while (MIe->isTerminator())
1361        MIe = &*(--MBBe);
1362      ++MBBe;
1363      BuildMI(*MBB, MBBe, SDB->getCurDebugLoc(),
1364              TII->get(TargetOpcode::EH_LABEL))
1365          .addSym(EndLabel);
1366    }
1367  }
1368}
1369
1370/// isFoldedOrDeadInstruction - Return true if the specified instruction is
1371/// side-effect free and is either dead or folded into a generated instruction.
1372/// Return false if it needs to be emitted.
1373static bool isFoldedOrDeadInstruction(const Instruction *I,
1374                                      const FunctionLoweringInfo &FuncInfo) {
1375  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1376         !I->isTerminator() &&     // Terminators aren't folded.
1377         !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1378         !I->isEHPad() &&             // EH pad instructions aren't folded.
1379         !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1380}
1381
1382static bool processIfEntryValueDbgDeclare(FunctionLoweringInfo &FuncInfo,
1383                                          const Value *Arg, DIExpression *Expr,
1384                                          DILocalVariable *Var,
1385                                          DebugLoc DbgLoc) {
1386  if (!Expr->isEntryValue() || !isa<Argument>(Arg))
1387    return false;
1388
1389  auto ArgIt = FuncInfo.ValueMap.find(Arg);
1390  if (ArgIt == FuncInfo.ValueMap.end())
1391    return false;
1392  Register ArgVReg = ArgIt->getSecond();
1393
1394  // Find the corresponding livein physical register to this argument.
1395  for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
1396    if (VirtReg == ArgVReg) {
1397      // Append an op deref to account for the fact that this is a dbg_declare.
1398      Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
1399      FuncInfo.MF->setVariableDbgInfo(Var, Expr, PhysReg, DbgLoc);
1400      LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1401                        << ", Expr=" << *Expr << ",  MCRegister=" << PhysReg
1402                        << ", DbgLoc=" << DbgLoc << "\n");
1403      return true;
1404    }
1405  return false;
1406}
1407
1408static bool processDbgDeclare(FunctionLoweringInfo &FuncInfo,
1409                              const Value *Address, DIExpression *Expr,
1410                              DILocalVariable *Var, DebugLoc DbgLoc) {
1411  if (!Address) {
1412    LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *Var
1413                      << " (bad address)\n");
1414    return false;
1415  }
1416
1417  if (processIfEntryValueDbgDeclare(FuncInfo, Address, Expr, Var, DbgLoc))
1418    return true;
1419
1420  MachineFunction *MF = FuncInfo.MF;
1421  const DataLayout &DL = MF->getDataLayout();
1422
1423  assert(Var && "Missing variable");
1424  assert(DbgLoc && "Missing location");
1425
1426  // Look through casts and constant offset GEPs. These mostly come from
1427  // inalloca.
1428  APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1429  Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1430
1431  // Check if the variable is a static alloca or a byval or inalloca
1432  // argument passed in memory. If it is not, then we will ignore this
1433  // intrinsic and handle this during isel like dbg.value.
1434  int FI = std::numeric_limits<int>::max();
1435  if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1436    auto SI = FuncInfo.StaticAllocaMap.find(AI);
1437    if (SI != FuncInfo.StaticAllocaMap.end())
1438      FI = SI->second;
1439  } else if (const auto *Arg = dyn_cast<Argument>(Address))
1440    FI = FuncInfo.getArgumentFrameIndex(Arg);
1441
1442  if (FI == std::numeric_limits<int>::max())
1443    return false;
1444
1445  if (Offset.getBoolValue())
1446    Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1447                                 Offset.getZExtValue());
1448
1449  LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1450                    << ", Expr=" << *Expr << ",  FI=" << FI
1451                    << ", DbgLoc=" << DbgLoc << "\n");
1452  MF->setVariableDbgInfo(Var, Expr, FI, DbgLoc);
1453  return true;
1454}
1455
1456/// Collect llvm.dbg.declare information. This is done after argument lowering
1457/// in case the declarations refer to arguments.
1458static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1459  for (const auto &I : instructions(*FuncInfo.Fn)) {
1460    const auto *DI = dyn_cast<DbgDeclareInst>(&I);
1461    if (DI && processDbgDeclare(FuncInfo, DI->getAddress(), DI->getExpression(),
1462                                DI->getVariable(), DI->getDebugLoc()))
1463      FuncInfo.PreprocessedDbgDeclares.insert(DI);
1464
1465    for (const DPValue &DPV : I.getDbgValueRange()) {
1466      if (DPV.getType() == DPValue::LocationType::Declare &&
1467          processDbgDeclare(FuncInfo, DPV.getVariableLocationOp(0),
1468                            DPV.getExpression(), DPV.getVariable(),
1469                            DPV.getDebugLoc()))
1470        FuncInfo.PreprocessedDPVDeclares.insert(&DPV);
1471    }
1472  }
1473}
1474
1475/// Collect single location variable information generated with assignment
1476/// tracking. This is done after argument lowering in case the declarations
1477/// refer to arguments.
1478static void processSingleLocVars(FunctionLoweringInfo &FuncInfo,
1479                                 FunctionVarLocs const *FnVarLocs) {
1480  for (auto It = FnVarLocs->single_locs_begin(),
1481            End = FnVarLocs->single_locs_end();
1482       It != End; ++It) {
1483    assert(!It->Values.hasArgList() && "Single loc variadic ops not supported");
1484    processDbgDeclare(FuncInfo, It->Values.getVariableLocationOp(0), It->Expr,
1485                      FnVarLocs->getDILocalVariable(It->VariableID), It->DL);
1486  }
1487}
1488
1489void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1490  FastISelFailed = false;
1491  // Initialize the Fast-ISel state, if needed.
1492  FastISel *FastIS = nullptr;
1493  if (TM.Options.EnableFastISel) {
1494    LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1495    FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1496  }
1497
1498  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1499
1500  // Lower arguments up front. An RPO iteration always visits the entry block
1501  // first.
1502  assert(*RPOT.begin() == &Fn.getEntryBlock());
1503  ++NumEntryBlocks;
1504
1505  // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1506  FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1507  FuncInfo->InsertPt = FuncInfo->MBB->begin();
1508
1509  CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1510
1511  if (!FastIS) {
1512    LowerArguments(Fn);
1513  } else {
1514    // See if fast isel can lower the arguments.
1515    FastIS->startNewBlock();
1516    if (!FastIS->lowerArguments()) {
1517      FastISelFailed = true;
1518      // Fast isel failed to lower these arguments
1519      ++NumFastIselFailLowerArguments;
1520
1521      OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1522                                 Fn.getSubprogram(),
1523                                 &Fn.getEntryBlock());
1524      R << "FastISel didn't lower all arguments: "
1525        << ore::NV("Prototype", Fn.getFunctionType());
1526      reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1527
1528      // Use SelectionDAG argument lowering
1529      LowerArguments(Fn);
1530      CurDAG->setRoot(SDB->getControlRoot());
1531      SDB->clear();
1532      CodeGenAndEmitDAG();
1533    }
1534
1535    // If we inserted any instructions at the beginning, make a note of
1536    // where they are, so we can be sure to emit subsequent instructions
1537    // after them.
1538    if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1539      FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1540    else
1541      FastIS->setLastLocalValue(nullptr);
1542  }
1543
1544  bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1545
1546  if (FastIS && Inserted)
1547    FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1548
1549  if (isAssignmentTrackingEnabled(*Fn.getParent())) {
1550    assert(CurDAG->getFunctionVarLocs() &&
1551           "expected AssignmentTrackingAnalysis pass results");
1552    processSingleLocVars(*FuncInfo, CurDAG->getFunctionVarLocs());
1553  } else {
1554    processDbgDeclares(*FuncInfo);
1555  }
1556
1557  // Iterate over all basic blocks in the function.
1558  StackProtector &SP = getAnalysis<StackProtector>();
1559  for (const BasicBlock *LLVMBB : RPOT) {
1560    if (OptLevel != CodeGenOptLevel::None) {
1561      bool AllPredsVisited = true;
1562      for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1563        if (!FuncInfo->VisitedBBs.count(Pred)) {
1564          AllPredsVisited = false;
1565          break;
1566        }
1567      }
1568
1569      if (AllPredsVisited) {
1570        for (const PHINode &PN : LLVMBB->phis())
1571          FuncInfo->ComputePHILiveOutRegInfo(&PN);
1572      } else {
1573        for (const PHINode &PN : LLVMBB->phis())
1574          FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1575      }
1576
1577      FuncInfo->VisitedBBs.insert(LLVMBB);
1578    }
1579
1580    BasicBlock::const_iterator const Begin =
1581        LLVMBB->getFirstNonPHI()->getIterator();
1582    BasicBlock::const_iterator const End = LLVMBB->end();
1583    BasicBlock::const_iterator BI = End;
1584
1585    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1586    if (!FuncInfo->MBB)
1587      continue; // Some blocks like catchpads have no code or MBB.
1588
1589    // Insert new instructions after any phi or argument setup code.
1590    FuncInfo->InsertPt = FuncInfo->MBB->end();
1591
1592    // Setup an EH landing-pad block.
1593    FuncInfo->ExceptionPointerVirtReg = 0;
1594    FuncInfo->ExceptionSelectorVirtReg = 0;
1595    if (LLVMBB->isEHPad())
1596      if (!PrepareEHLandingPad())
1597        continue;
1598
1599    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1600    if (FastIS) {
1601      if (LLVMBB != &Fn.getEntryBlock())
1602        FastIS->startNewBlock();
1603
1604      unsigned NumFastIselRemaining = std::distance(Begin, End);
1605
1606      // Pre-assign swifterror vregs.
1607      SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1608
1609      // Do FastISel on as many instructions as possible.
1610      for (; BI != Begin; --BI) {
1611        const Instruction *Inst = &*std::prev(BI);
1612
1613        // If we no longer require this instruction, skip it.
1614        if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1615            ElidedArgCopyInstrs.count(Inst)) {
1616          --NumFastIselRemaining;
1617          FastIS->handleDbgInfo(Inst);
1618          continue;
1619        }
1620
1621        // Bottom-up: reset the insert pos at the top, after any local-value
1622        // instructions.
1623        FastIS->recomputeInsertPt();
1624
1625        // Try to select the instruction with FastISel.
1626        if (FastIS->selectInstruction(Inst)) {
1627          --NumFastIselRemaining;
1628          ++NumFastIselSuccess;
1629
1630          FastIS->handleDbgInfo(Inst);
1631          // If fast isel succeeded, skip over all the folded instructions, and
1632          // then see if there is a load right before the selected instructions.
1633          // Try to fold the load if so.
1634          const Instruction *BeforeInst = Inst;
1635          while (BeforeInst != &*Begin) {
1636            BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1637            if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1638              break;
1639          }
1640          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1641              BeforeInst->hasOneUse() &&
1642              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1643            // If we succeeded, don't re-select the load.
1644            LLVM_DEBUG(dbgs()
1645                       << "FastISel folded load: " << *BeforeInst << "\n");
1646            FastIS->handleDbgInfo(BeforeInst);
1647            BI = std::next(BasicBlock::const_iterator(BeforeInst));
1648            --NumFastIselRemaining;
1649            ++NumFastIselSuccess;
1650          }
1651          continue;
1652        }
1653
1654        FastISelFailed = true;
1655
1656        // Then handle certain instructions as single-LLVM-Instruction blocks.
1657        // We cannot separate out GCrelocates to their own blocks since we need
1658        // to keep track of gc-relocates for a particular gc-statepoint. This is
1659        // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1660        // visitGCRelocate.
1661        if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1662            !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1663          OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1664                                     Inst->getDebugLoc(), LLVMBB);
1665
1666          R << "FastISel missed call";
1667
1668          if (R.isEnabled() || EnableFastISelAbort) {
1669            std::string InstStrStorage;
1670            raw_string_ostream InstStr(InstStrStorage);
1671            InstStr << *Inst;
1672
1673            R << ": " << InstStr.str();
1674          }
1675
1676          reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1677
1678          if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1679              !Inst->use_empty()) {
1680            Register &R = FuncInfo->ValueMap[Inst];
1681            if (!R)
1682              R = FuncInfo->CreateRegs(Inst);
1683          }
1684
1685          bool HadTailCall = false;
1686          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1687          SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1688
1689          // If the call was emitted as a tail call, we're done with the block.
1690          // We also need to delete any previously emitted instructions.
1691          if (HadTailCall) {
1692            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1693            --BI;
1694            break;
1695          }
1696
1697          // Recompute NumFastIselRemaining as Selection DAG instruction
1698          // selection may have handled the call, input args, etc.
1699          unsigned RemainingNow = std::distance(Begin, BI);
1700          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1701          NumFastIselRemaining = RemainingNow;
1702          continue;
1703        }
1704
1705        OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1706                                   Inst->getDebugLoc(), LLVMBB);
1707
1708        bool ShouldAbort = EnableFastISelAbort;
1709        if (Inst->isTerminator()) {
1710          // Use a different message for terminator misses.
1711          R << "FastISel missed terminator";
1712          // Don't abort for terminator unless the level is really high
1713          ShouldAbort = (EnableFastISelAbort > 2);
1714        } else {
1715          R << "FastISel missed";
1716        }
1717
1718        if (R.isEnabled() || EnableFastISelAbort) {
1719          std::string InstStrStorage;
1720          raw_string_ostream InstStr(InstStrStorage);
1721          InstStr << *Inst;
1722          R << ": " << InstStr.str();
1723        }
1724
1725        reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1726
1727        NumFastIselFailures += NumFastIselRemaining;
1728        break;
1729      }
1730
1731      FastIS->recomputeInsertPt();
1732    }
1733
1734    if (SP.shouldEmitSDCheck(*LLVMBB)) {
1735      bool FunctionBasedInstrumentation =
1736          TLI->getSSPStackGuardCheck(*Fn.getParent());
1737      SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1738                                   FunctionBasedInstrumentation);
1739    }
1740
1741    if (Begin != BI)
1742      ++NumDAGBlocks;
1743    else
1744      ++NumFastIselBlocks;
1745
1746    if (Begin != BI) {
1747      // Run SelectionDAG instruction selection on the remainder of the block
1748      // not handled by FastISel. If FastISel is not run, this is the entire
1749      // block.
1750      bool HadTailCall;
1751      SelectBasicBlock(Begin, BI, HadTailCall);
1752
1753      // But if FastISel was run, we already selected some of the block.
1754      // If we emitted a tail-call, we need to delete any previously emitted
1755      // instruction that follows it.
1756      if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1757        FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1758    }
1759
1760    if (FastIS)
1761      FastIS->finishBasicBlock();
1762    FinishBasicBlock();
1763    FuncInfo->PHINodesToUpdate.clear();
1764    ElidedArgCopyInstrs.clear();
1765  }
1766
1767  // AsynchEH: Report Block State under -AsynchEH
1768  if (Fn.getParent()->getModuleFlag("eh-asynch"))
1769    reportIPToStateForBlocks(MF);
1770
1771  SP.copyToMachineFrameInfo(MF->getFrameInfo());
1772
1773  SwiftError->propagateVRegs();
1774
1775  delete FastIS;
1776  SDB->clearDanglingDebugInfo();
1777  SDB->SPDescriptor.resetPerFunctionState();
1778}
1779
1780void
1781SelectionDAGISel::FinishBasicBlock() {
1782  LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1783                    << FuncInfo->PHINodesToUpdate.size() << "\n";
1784             for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1785                  ++i) dbgs()
1786             << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1787             << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1788
1789  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1790  // PHI nodes in successors.
1791  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1792    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1793    assert(PHI->isPHI() &&
1794           "This is not a machine PHI node that we are updating!");
1795    if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1796      continue;
1797    PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1798  }
1799
1800  // Handle stack protector.
1801  if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1802    // The target provides a guard check function. There is no need to
1803    // generate error handling code or to split current basic block.
1804    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1805
1806    // Add load and check to the basicblock.
1807    FuncInfo->MBB = ParentMBB;
1808    FuncInfo->InsertPt =
1809        findSplitPointForStackProtector(ParentMBB, *TII);
1810    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1811    CurDAG->setRoot(SDB->getRoot());
1812    SDB->clear();
1813    CodeGenAndEmitDAG();
1814
1815    // Clear the Per-BB State.
1816    SDB->SPDescriptor.resetPerBBState();
1817  } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1818    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1819    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1820
1821    // Find the split point to split the parent mbb. At the same time copy all
1822    // physical registers used in the tail of parent mbb into virtual registers
1823    // before the split point and back into physical registers after the split
1824    // point. This prevents us needing to deal with Live-ins and many other
1825    // register allocation issues caused by us splitting the parent mbb. The
1826    // register allocator will clean up said virtual copies later on.
1827    MachineBasicBlock::iterator SplitPoint =
1828        findSplitPointForStackProtector(ParentMBB, *TII);
1829
1830    // Splice the terminator of ParentMBB into SuccessMBB.
1831    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1832                       SplitPoint,
1833                       ParentMBB->end());
1834
1835    // Add compare/jump on neq/jump to the parent BB.
1836    FuncInfo->MBB = ParentMBB;
1837    FuncInfo->InsertPt = ParentMBB->end();
1838    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1839    CurDAG->setRoot(SDB->getRoot());
1840    SDB->clear();
1841    CodeGenAndEmitDAG();
1842
1843    // CodeGen Failure MBB if we have not codegened it yet.
1844    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1845    if (FailureMBB->empty()) {
1846      FuncInfo->MBB = FailureMBB;
1847      FuncInfo->InsertPt = FailureMBB->end();
1848      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1849      CurDAG->setRoot(SDB->getRoot());
1850      SDB->clear();
1851      CodeGenAndEmitDAG();
1852    }
1853
1854    // Clear the Per-BB State.
1855    SDB->SPDescriptor.resetPerBBState();
1856  }
1857
1858  // Lower each BitTestBlock.
1859  for (auto &BTB : SDB->SL->BitTestCases) {
1860    // Lower header first, if it wasn't already lowered
1861    if (!BTB.Emitted) {
1862      // Set the current basic block to the mbb we wish to insert the code into
1863      FuncInfo->MBB = BTB.Parent;
1864      FuncInfo->InsertPt = FuncInfo->MBB->end();
1865      // Emit the code
1866      SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1867      CurDAG->setRoot(SDB->getRoot());
1868      SDB->clear();
1869      CodeGenAndEmitDAG();
1870    }
1871
1872    BranchProbability UnhandledProb = BTB.Prob;
1873    for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1874      UnhandledProb -= BTB.Cases[j].ExtraProb;
1875      // Set the current basic block to the mbb we wish to insert the code into
1876      FuncInfo->MBB = BTB.Cases[j].ThisBB;
1877      FuncInfo->InsertPt = FuncInfo->MBB->end();
1878      // Emit the code
1879
1880      // If all cases cover a contiguous range, it is not necessary to jump to
1881      // the default block after the last bit test fails. This is because the
1882      // range check during bit test header creation has guaranteed that every
1883      // case here doesn't go outside the range. In this case, there is no need
1884      // to perform the last bit test, as it will always be true. Instead, make
1885      // the second-to-last bit-test fall through to the target of the last bit
1886      // test, and delete the last bit test.
1887
1888      MachineBasicBlock *NextMBB;
1889      if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1890        // Second-to-last bit-test with contiguous range or omitted range
1891        // check: fall through to the target of the final bit test.
1892        NextMBB = BTB.Cases[j + 1].TargetBB;
1893      } else if (j + 1 == ej) {
1894        // For the last bit test, fall through to Default.
1895        NextMBB = BTB.Default;
1896      } else {
1897        // Otherwise, fall through to the next bit test.
1898        NextMBB = BTB.Cases[j + 1].ThisBB;
1899      }
1900
1901      SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1902                            FuncInfo->MBB);
1903
1904      CurDAG->setRoot(SDB->getRoot());
1905      SDB->clear();
1906      CodeGenAndEmitDAG();
1907
1908      if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1909        // Since we're not going to use the final bit test, remove it.
1910        BTB.Cases.pop_back();
1911        break;
1912      }
1913    }
1914
1915    // Update PHI Nodes
1916    for (const std::pair<MachineInstr *, unsigned> &P :
1917         FuncInfo->PHINodesToUpdate) {
1918      MachineInstrBuilder PHI(*MF, P.first);
1919      MachineBasicBlock *PHIBB = PHI->getParent();
1920      assert(PHI->isPHI() &&
1921             "This is not a machine PHI node that we are updating!");
1922      // This is "default" BB. We have two jumps to it. From "header" BB and
1923      // from last "case" BB, unless the latter was skipped.
1924      if (PHIBB == BTB.Default) {
1925        PHI.addReg(P.second).addMBB(BTB.Parent);
1926        if (!BTB.ContiguousRange) {
1927          PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB);
1928         }
1929      }
1930      // One of "cases" BB.
1931      for (const SwitchCG::BitTestCase &BT : BTB.Cases) {
1932        MachineBasicBlock* cBB = BT.ThisBB;
1933        if (cBB->isSuccessor(PHIBB))
1934          PHI.addReg(P.second).addMBB(cBB);
1935      }
1936    }
1937  }
1938  SDB->SL->BitTestCases.clear();
1939
1940  // If the JumpTable record is filled in, then we need to emit a jump table.
1941  // Updating the PHI nodes is tricky in this case, since we need to determine
1942  // whether the PHI is a successor of the range check MBB or the jump table MBB
1943  for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1944    // Lower header first, if it wasn't already lowered
1945    if (!SDB->SL->JTCases[i].first.Emitted) {
1946      // Set the current basic block to the mbb we wish to insert the code into
1947      FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1948      FuncInfo->InsertPt = FuncInfo->MBB->end();
1949      // Emit the code
1950      SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1951                                SDB->SL->JTCases[i].first, FuncInfo->MBB);
1952      CurDAG->setRoot(SDB->getRoot());
1953      SDB->clear();
1954      CodeGenAndEmitDAG();
1955    }
1956
1957    // Set the current basic block to the mbb we wish to insert the code into
1958    FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1959    FuncInfo->InsertPt = FuncInfo->MBB->end();
1960    // Emit the code
1961    SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1962    CurDAG->setRoot(SDB->getRoot());
1963    SDB->clear();
1964    CodeGenAndEmitDAG();
1965
1966    // Update PHI Nodes
1967    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1968         pi != pe; ++pi) {
1969      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1970      MachineBasicBlock *PHIBB = PHI->getParent();
1971      assert(PHI->isPHI() &&
1972             "This is not a machine PHI node that we are updating!");
1973      // "default" BB. We can go there only from header BB.
1974      if (PHIBB == SDB->SL->JTCases[i].second.Default)
1975        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1976           .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1977      // JT BB. Just iterate over successors here
1978      if (FuncInfo->MBB->isSuccessor(PHIBB))
1979        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1980    }
1981  }
1982  SDB->SL->JTCases.clear();
1983
1984  // If we generated any switch lowering information, build and codegen any
1985  // additional DAGs necessary.
1986  for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1987    // Set the current basic block to the mbb we wish to insert the code into
1988    FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1989    FuncInfo->InsertPt = FuncInfo->MBB->end();
1990
1991    // Determine the unique successors.
1992    SmallVector<MachineBasicBlock *, 2> Succs;
1993    Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1994    if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1995      Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1996
1997    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1998    SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1999    CurDAG->setRoot(SDB->getRoot());
2000    SDB->clear();
2001    CodeGenAndEmitDAG();
2002
2003    // Remember the last block, now that any splitting is done, for use in
2004    // populating PHI nodes in successors.
2005    MachineBasicBlock *ThisBB = FuncInfo->MBB;
2006
2007    // Handle any PHI nodes in successors of this chunk, as if we were coming
2008    // from the original BB before switch expansion.  Note that PHI nodes can
2009    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
2010    // handle them the right number of times.
2011    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
2012      FuncInfo->MBB = Succs[i];
2013      FuncInfo->InsertPt = FuncInfo->MBB->end();
2014      // FuncInfo->MBB may have been removed from the CFG if a branch was
2015      // constant folded.
2016      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
2017        for (MachineBasicBlock::iterator
2018             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
2019             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
2020          MachineInstrBuilder PHI(*MF, MBBI);
2021          // This value for this PHI node is recorded in PHINodesToUpdate.
2022          for (unsigned pn = 0; ; ++pn) {
2023            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2024                   "Didn't find PHI entry!");
2025            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2026              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2027              break;
2028            }
2029          }
2030        }
2031      }
2032    }
2033  }
2034  SDB->SL->SwitchCases.clear();
2035}
2036
2037/// Create the scheduler. If a specific scheduler was specified
2038/// via the SchedulerRegistry, use it, otherwise select the
2039/// one preferred by the target.
2040///
2041ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2042  return ISHeuristic(this, OptLevel);
2043}
2044
2045//===----------------------------------------------------------------------===//
2046// Helper functions used by the generated instruction selector.
2047//===----------------------------------------------------------------------===//
2048// Calls to these methods are generated by tblgen.
2049
2050/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
2051/// the dag combiner simplified the 255, we still want to match.  RHS is the
2052/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2053/// specified in the .td file (e.g. 255).
2054bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2055                                    int64_t DesiredMaskS) const {
2056  const APInt &ActualMask = RHS->getAPIntValue();
2057  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2058
2059  // If the actual mask exactly matches, success!
2060  if (ActualMask == DesiredMask)
2061    return true;
2062
2063  // If the actual AND mask is allowing unallowed bits, this doesn't match.
2064  if (!ActualMask.isSubsetOf(DesiredMask))
2065    return false;
2066
2067  // Otherwise, the DAG Combiner may have proven that the value coming in is
2068  // either already zero or is not demanded.  Check for known zero input bits.
2069  APInt NeededMask = DesiredMask & ~ActualMask;
2070  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2071    return true;
2072
2073  // TODO: check to see if missing bits are just not demanded.
2074
2075  // Otherwise, this pattern doesn't match.
2076  return false;
2077}
2078
2079/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
2080/// the dag combiner simplified the 255, we still want to match.  RHS is the
2081/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2082/// specified in the .td file (e.g. 255).
2083bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2084                                   int64_t DesiredMaskS) const {
2085  const APInt &ActualMask = RHS->getAPIntValue();
2086  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2087
2088  // If the actual mask exactly matches, success!
2089  if (ActualMask == DesiredMask)
2090    return true;
2091
2092  // If the actual AND mask is allowing unallowed bits, this doesn't match.
2093  if (!ActualMask.isSubsetOf(DesiredMask))
2094    return false;
2095
2096  // Otherwise, the DAG Combiner may have proven that the value coming in is
2097  // either already zero or is not demanded.  Check for known zero input bits.
2098  APInt NeededMask = DesiredMask & ~ActualMask;
2099  KnownBits Known = CurDAG->computeKnownBits(LHS);
2100
2101  // If all the missing bits in the or are already known to be set, match!
2102  if (NeededMask.isSubsetOf(Known.One))
2103    return true;
2104
2105  // TODO: check to see if missing bits are just not demanded.
2106
2107  // Otherwise, this pattern doesn't match.
2108  return false;
2109}
2110
2111/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2112/// by tblgen.  Others should not call it.
2113void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2114                                                     const SDLoc &DL) {
2115  std::vector<SDValue> InOps;
2116  std::swap(InOps, Ops);
2117
2118  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2119  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2120  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2121  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2122
2123  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2124  if (InOps[e-1].getValueType() == MVT::Glue)
2125    --e;  // Don't process a glue operand if it is here.
2126
2127  while (i != e) {
2128    InlineAsm::Flag Flags(InOps[i]->getAsZExtVal());
2129    if (!Flags.isMemKind() && !Flags.isFuncKind()) {
2130      // Just skip over this operand, copying the operands verbatim.
2131      Ops.insert(Ops.end(), InOps.begin() + i,
2132                 InOps.begin() + i + Flags.getNumOperandRegisters() + 1);
2133      i += Flags.getNumOperandRegisters() + 1;
2134    } else {
2135      assert(Flags.getNumOperandRegisters() == 1 &&
2136             "Memory operand with multiple values?");
2137
2138      unsigned TiedToOperand;
2139      if (Flags.isUseOperandTiedToDef(TiedToOperand)) {
2140        // We need the constraint ID from the operand this is tied to.
2141        unsigned CurOp = InlineAsm::Op_FirstOperand;
2142        Flags = InlineAsm::Flag(InOps[CurOp]->getAsZExtVal());
2143        for (; TiedToOperand; --TiedToOperand) {
2144          CurOp += Flags.getNumOperandRegisters() + 1;
2145          Flags = InlineAsm::Flag(InOps[CurOp]->getAsZExtVal());
2146        }
2147      }
2148
2149      // Otherwise, this is a memory operand.  Ask the target to select it.
2150      std::vector<SDValue> SelOps;
2151      const InlineAsm::ConstraintCode ConstraintID =
2152          Flags.getMemoryConstraintID();
2153      if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2154        report_fatal_error("Could not match memory address.  Inline asm"
2155                           " failure!");
2156
2157      // Add this to the output node.
2158      Flags = InlineAsm::Flag(Flags.isMemKind() ? InlineAsm::Kind::Mem
2159                                                : InlineAsm::Kind::Func,
2160                              SelOps.size());
2161      Flags.setMemConstraint(ConstraintID);
2162      Ops.push_back(CurDAG->getTargetConstant(Flags, DL, MVT::i32));
2163      llvm::append_range(Ops, SelOps);
2164      i += 2;
2165    }
2166  }
2167
2168  // Add the glue input back if present.
2169  if (e != InOps.size())
2170    Ops.push_back(InOps.back());
2171}
2172
2173/// findGlueUse - Return use of MVT::Glue value produced by the specified
2174/// SDNode.
2175///
2176static SDNode *findGlueUse(SDNode *N) {
2177  unsigned FlagResNo = N->getNumValues()-1;
2178  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2179    SDUse &Use = I.getUse();
2180    if (Use.getResNo() == FlagResNo)
2181      return Use.getUser();
2182  }
2183  return nullptr;
2184}
2185
2186/// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2187/// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2188static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2189                          bool IgnoreChains) {
2190  SmallPtrSet<const SDNode *, 16> Visited;
2191  SmallVector<const SDNode *, 16> WorkList;
2192  // Only check if we have non-immediate uses of Def.
2193  if (ImmedUse->isOnlyUserOf(Def))
2194    return false;
2195
2196  // We don't care about paths to Def that go through ImmedUse so mark it
2197  // visited and mark non-def operands as used.
2198  Visited.insert(ImmedUse);
2199  for (const SDValue &Op : ImmedUse->op_values()) {
2200    SDNode *N = Op.getNode();
2201    // Ignore chain deps (they are validated by
2202    // HandleMergeInputChains) and immediate uses
2203    if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2204      continue;
2205    if (!Visited.insert(N).second)
2206      continue;
2207    WorkList.push_back(N);
2208  }
2209
2210  // Initialize worklist to operands of Root.
2211  if (Root != ImmedUse) {
2212    for (const SDValue &Op : Root->op_values()) {
2213      SDNode *N = Op.getNode();
2214      // Ignore chains (they are validated by HandleMergeInputChains)
2215      if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2216        continue;
2217      if (!Visited.insert(N).second)
2218        continue;
2219      WorkList.push_back(N);
2220    }
2221  }
2222
2223  return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2224}
2225
2226/// IsProfitableToFold - Returns true if it's profitable to fold the specific
2227/// operand node N of U during instruction selection that starts at Root.
2228bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2229                                          SDNode *Root) const {
2230  if (OptLevel == CodeGenOptLevel::None)
2231    return false;
2232  return N.hasOneUse();
2233}
2234
2235/// IsLegalToFold - Returns true if the specific operand node N of
2236/// U can be folded during instruction selection that starts at Root.
2237bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2238                                     CodeGenOptLevel OptLevel,
2239                                     bool IgnoreChains) {
2240  if (OptLevel == CodeGenOptLevel::None)
2241    return false;
2242
2243  // If Root use can somehow reach N through a path that doesn't contain
2244  // U then folding N would create a cycle. e.g. In the following
2245  // diagram, Root can reach N through X. If N is folded into Root, then
2246  // X is both a predecessor and a successor of U.
2247  //
2248  //          [N*]           //
2249  //         ^   ^           //
2250  //        /     \          //
2251  //      [U*]    [X]?       //
2252  //        ^     ^          //
2253  //         \   /           //
2254  //          \ /            //
2255  //         [Root*]         //
2256  //
2257  // * indicates nodes to be folded together.
2258  //
2259  // If Root produces glue, then it gets (even more) interesting. Since it
2260  // will be "glued" together with its glue use in the scheduler, we need to
2261  // check if it might reach N.
2262  //
2263  //          [N*]           //
2264  //         ^   ^           //
2265  //        /     \          //
2266  //      [U*]    [X]?       //
2267  //        ^       ^        //
2268  //         \       \       //
2269  //          \      |       //
2270  //         [Root*] |       //
2271  //          ^      |       //
2272  //          f      |       //
2273  //          |      /       //
2274  //         [Y]    /        //
2275  //           ^   /         //
2276  //           f  /          //
2277  //           | /           //
2278  //          [GU]           //
2279  //
2280  // If GU (glue use) indirectly reaches N (the load), and Root folds N
2281  // (call it Fold), then X is a predecessor of GU and a successor of
2282  // Fold. But since Fold and GU are glued together, this will create
2283  // a cycle in the scheduling graph.
2284
2285  // If the node has glue, walk down the graph to the "lowest" node in the
2286  // glueged set.
2287  EVT VT = Root->getValueType(Root->getNumValues()-1);
2288  while (VT == MVT::Glue) {
2289    SDNode *GU = findGlueUse(Root);
2290    if (!GU)
2291      break;
2292    Root = GU;
2293    VT = Root->getValueType(Root->getNumValues()-1);
2294
2295    // If our query node has a glue result with a use, we've walked up it.  If
2296    // the user (which has already been selected) has a chain or indirectly uses
2297    // the chain, HandleMergeInputChains will not consider it.  Because of
2298    // this, we cannot ignore chains in this predicate.
2299    IgnoreChains = false;
2300  }
2301
2302  return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2303}
2304
2305void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2306  SDLoc DL(N);
2307
2308  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2309  SelectInlineAsmMemoryOperands(Ops, DL);
2310
2311  const EVT VTs[] = {MVT::Other, MVT::Glue};
2312  SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2313  New->setNodeId(-1);
2314  ReplaceUses(N, New.getNode());
2315  CurDAG->RemoveDeadNode(N);
2316}
2317
2318void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2319  SDLoc dl(Op);
2320  MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2321  const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2322
2323  EVT VT = Op->getValueType(0);
2324  LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2325  Register Reg =
2326      TLI->getRegisterByName(RegStr->getString().data(), Ty,
2327                             CurDAG->getMachineFunction());
2328  SDValue New = CurDAG->getCopyFromReg(
2329                        Op->getOperand(0), dl, Reg, Op->getValueType(0));
2330  New->setNodeId(-1);
2331  ReplaceUses(Op, New.getNode());
2332  CurDAG->RemoveDeadNode(Op);
2333}
2334
2335void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2336  SDLoc dl(Op);
2337  MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2338  const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2339
2340  EVT VT = Op->getOperand(2).getValueType();
2341  LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2342
2343  Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2344                                        CurDAG->getMachineFunction());
2345  SDValue New = CurDAG->getCopyToReg(
2346                        Op->getOperand(0), dl, Reg, Op->getOperand(2));
2347  New->setNodeId(-1);
2348  ReplaceUses(Op, New.getNode());
2349  CurDAG->RemoveDeadNode(Op);
2350}
2351
2352void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2353  CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2354}
2355
2356void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2357  // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2358  // If FREEZE instruction is added later, the code below must be changed as
2359  // well.
2360  CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2361                       N->getOperand(0));
2362}
2363
2364void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2365  CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2366                       N->getOperand(0));
2367}
2368
2369void SelectionDAGISel::Select_MEMBARRIER(SDNode *N) {
2370  CurDAG->SelectNodeTo(N, TargetOpcode::MEMBARRIER, N->getValueType(0),
2371                       N->getOperand(0));
2372}
2373
2374void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops,
2375                                                SDValue OpVal, SDLoc DL) {
2376  SDNode *OpNode = OpVal.getNode();
2377
2378  // FrameIndex nodes should have been directly emitted to TargetFrameIndex
2379  // nodes at DAG-construction time.
2380  assert(OpNode->getOpcode() != ISD::FrameIndex);
2381
2382  if (OpNode->getOpcode() == ISD::Constant) {
2383    Ops.push_back(
2384        CurDAG->getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
2385    Ops.push_back(CurDAG->getTargetConstant(OpNode->getAsZExtVal(), DL,
2386                                            OpVal.getValueType()));
2387  } else {
2388    Ops.push_back(OpVal);
2389  }
2390}
2391
2392void SelectionDAGISel::Select_STACKMAP(SDNode *N) {
2393  SmallVector<SDValue, 32> Ops;
2394  auto *It = N->op_begin();
2395  SDLoc DL(N);
2396
2397  // Stash the chain and glue operands so we can move them to the end.
2398  SDValue Chain = *It++;
2399  SDValue InGlue = *It++;
2400
2401  // <id> operand.
2402  SDValue ID = *It++;
2403  assert(ID.getValueType() == MVT::i64);
2404  Ops.push_back(ID);
2405
2406  // <numShadowBytes> operand.
2407  SDValue Shad = *It++;
2408  assert(Shad.getValueType() == MVT::i32);
2409  Ops.push_back(Shad);
2410
2411  // Live variable operands.
2412  for (; It != N->op_end(); It++)
2413    pushStackMapLiveVariable(Ops, *It, DL);
2414
2415  Ops.push_back(Chain);
2416  Ops.push_back(InGlue);
2417
2418  SDVTList NodeTys = CurDAG->getVTList(MVT::Other, MVT::Glue);
2419  CurDAG->SelectNodeTo(N, TargetOpcode::STACKMAP, NodeTys, Ops);
2420}
2421
2422void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) {
2423  SmallVector<SDValue, 32> Ops;
2424  auto *It = N->op_begin();
2425  SDLoc DL(N);
2426
2427  // Cache arguments that will be moved to the end in the target node.
2428  SDValue Chain = *It++;
2429  std::optional<SDValue> Glue;
2430  if (It->getValueType() == MVT::Glue)
2431    Glue = *It++;
2432  SDValue RegMask = *It++;
2433
2434  // <id> operand.
2435  SDValue ID = *It++;
2436  assert(ID.getValueType() == MVT::i64);
2437  Ops.push_back(ID);
2438
2439  // <numShadowBytes> operand.
2440  SDValue Shad = *It++;
2441  assert(Shad.getValueType() == MVT::i32);
2442  Ops.push_back(Shad);
2443
2444  // Add the callee.
2445  Ops.push_back(*It++);
2446
2447  // Add <numArgs>.
2448  SDValue NumArgs = *It++;
2449  assert(NumArgs.getValueType() == MVT::i32);
2450  Ops.push_back(NumArgs);
2451
2452  // Calling convention.
2453  Ops.push_back(*It++);
2454
2455  // Push the args for the call.
2456  for (uint64_t I = NumArgs->getAsZExtVal(); I != 0; I--)
2457    Ops.push_back(*It++);
2458
2459  // Now push the live variables.
2460  for (; It != N->op_end(); It++)
2461    pushStackMapLiveVariable(Ops, *It, DL);
2462
2463  // Finally, the regmask, chain and (if present) glue are moved to the end.
2464  Ops.push_back(RegMask);
2465  Ops.push_back(Chain);
2466  if (Glue.has_value())
2467    Ops.push_back(*Glue);
2468
2469  SDVTList NodeTys = N->getVTList();
2470  CurDAG->SelectNodeTo(N, TargetOpcode::PATCHPOINT, NodeTys, Ops);
2471}
2472
2473/// GetVBR - decode a vbr encoding whose top bit is set.
2474LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
2475GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2476  assert(Val >= 128 && "Not a VBR");
2477  Val &= 127;  // Remove first vbr bit.
2478
2479  unsigned Shift = 7;
2480  uint64_t NextBits;
2481  do {
2482    NextBits = MatcherTable[Idx++];
2483    Val |= (NextBits&127) << Shift;
2484    Shift += 7;
2485  } while (NextBits & 128);
2486
2487  return Val;
2488}
2489
2490void SelectionDAGISel::Select_JUMP_TABLE_DEBUG_INFO(SDNode *N) {
2491  SDLoc dl(N);
2492  CurDAG->SelectNodeTo(N, TargetOpcode::JUMP_TABLE_DEBUG_INFO, MVT::Glue,
2493                       CurDAG->getTargetConstant(N->getConstantOperandVal(1),
2494                                                 dl, MVT::i64, true));
2495}
2496
2497/// When a match is complete, this method updates uses of interior chain results
2498/// to use the new results.
2499void SelectionDAGISel::UpdateChains(
2500    SDNode *NodeToMatch, SDValue InputChain,
2501    SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2502  SmallVector<SDNode*, 4> NowDeadNodes;
2503
2504  // Now that all the normal results are replaced, we replace the chain and
2505  // glue results if present.
2506  if (!ChainNodesMatched.empty()) {
2507    assert(InputChain.getNode() &&
2508           "Matched input chains but didn't produce a chain");
2509    // Loop over all of the nodes we matched that produced a chain result.
2510    // Replace all the chain results with the final chain we ended up with.
2511    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2512      SDNode *ChainNode = ChainNodesMatched[i];
2513      // If ChainNode is null, it's because we replaced it on a previous
2514      // iteration and we cleared it out of the map. Just skip it.
2515      if (!ChainNode)
2516        continue;
2517
2518      assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2519             "Deleted node left in chain");
2520
2521      // Don't replace the results of the root node if we're doing a
2522      // MorphNodeTo.
2523      if (ChainNode == NodeToMatch && isMorphNodeTo)
2524        continue;
2525
2526      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2527      if (ChainVal.getValueType() == MVT::Glue)
2528        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2529      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2530      SelectionDAG::DAGNodeDeletedListener NDL(
2531          *CurDAG, [&](SDNode *N, SDNode *E) {
2532            std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2533                         static_cast<SDNode *>(nullptr));
2534          });
2535      if (ChainNode->getOpcode() != ISD::TokenFactor)
2536        ReplaceUses(ChainVal, InputChain);
2537
2538      // If the node became dead and we haven't already seen it, delete it.
2539      if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2540          !llvm::is_contained(NowDeadNodes, ChainNode))
2541        NowDeadNodes.push_back(ChainNode);
2542    }
2543  }
2544
2545  if (!NowDeadNodes.empty())
2546    CurDAG->RemoveDeadNodes(NowDeadNodes);
2547
2548  LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2549}
2550
2551/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2552/// operation for when the pattern matched at least one node with a chains.  The
2553/// input vector contains a list of all of the chained nodes that we match.  We
2554/// must determine if this is a valid thing to cover (i.e. matching it won't
2555/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2556/// be used as the input node chain for the generated nodes.
2557static SDValue
2558HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2559                       SelectionDAG *CurDAG) {
2560
2561  SmallPtrSet<const SDNode *, 16> Visited;
2562  SmallVector<const SDNode *, 8> Worklist;
2563  SmallVector<SDValue, 3> InputChains;
2564  unsigned int Max = 8192;
2565
2566  // Quick exit on trivial merge.
2567  if (ChainNodesMatched.size() == 1)
2568    return ChainNodesMatched[0]->getOperand(0);
2569
2570  // Add chains that aren't already added (internal). Peek through
2571  // token factors.
2572  std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2573    if (V.getValueType() != MVT::Other)
2574      return;
2575    if (V->getOpcode() == ISD::EntryToken)
2576      return;
2577    if (!Visited.insert(V.getNode()).second)
2578      return;
2579    if (V->getOpcode() == ISD::TokenFactor) {
2580      for (const SDValue &Op : V->op_values())
2581        AddChains(Op);
2582    } else
2583      InputChains.push_back(V);
2584  };
2585
2586  for (auto *N : ChainNodesMatched) {
2587    Worklist.push_back(N);
2588    Visited.insert(N);
2589  }
2590
2591  while (!Worklist.empty())
2592    AddChains(Worklist.pop_back_val()->getOperand(0));
2593
2594  // Skip the search if there are no chain dependencies.
2595  if (InputChains.size() == 0)
2596    return CurDAG->getEntryNode();
2597
2598  // If one of these chains is a successor of input, we must have a
2599  // node that is both the predecessor and successor of the
2600  // to-be-merged nodes. Fail.
2601  Visited.clear();
2602  for (SDValue V : InputChains)
2603    Worklist.push_back(V.getNode());
2604
2605  for (auto *N : ChainNodesMatched)
2606    if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2607      return SDValue();
2608
2609  // Return merged chain.
2610  if (InputChains.size() == 1)
2611    return InputChains[0];
2612  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2613                         MVT::Other, InputChains);
2614}
2615
2616/// MorphNode - Handle morphing a node in place for the selector.
2617SDNode *SelectionDAGISel::
2618MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2619          ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2620  // It is possible we're using MorphNodeTo to replace a node with no
2621  // normal results with one that has a normal result (or we could be
2622  // adding a chain) and the input could have glue and chains as well.
2623  // In this case we need to shift the operands down.
2624  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2625  // than the old isel though.
2626  int OldGlueResultNo = -1, OldChainResultNo = -1;
2627
2628  unsigned NTMNumResults = Node->getNumValues();
2629  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2630    OldGlueResultNo = NTMNumResults-1;
2631    if (NTMNumResults != 1 &&
2632        Node->getValueType(NTMNumResults-2) == MVT::Other)
2633      OldChainResultNo = NTMNumResults-2;
2634  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2635    OldChainResultNo = NTMNumResults-1;
2636
2637  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2638  // that this deletes operands of the old node that become dead.
2639  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2640
2641  // MorphNodeTo can operate in two ways: if an existing node with the
2642  // specified operands exists, it can just return it.  Otherwise, it
2643  // updates the node in place to have the requested operands.
2644  if (Res == Node) {
2645    // If we updated the node in place, reset the node ID.  To the isel,
2646    // this should be just like a newly allocated machine node.
2647    Res->setNodeId(-1);
2648  }
2649
2650  unsigned ResNumResults = Res->getNumValues();
2651  // Move the glue if needed.
2652  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2653      static_cast<unsigned>(OldGlueResultNo) != ResNumResults - 1)
2654    ReplaceUses(SDValue(Node, OldGlueResultNo),
2655                SDValue(Res, ResNumResults - 1));
2656
2657  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2658    --ResNumResults;
2659
2660  // Move the chain reference if needed.
2661  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2662      static_cast<unsigned>(OldChainResultNo) != ResNumResults - 1)
2663    ReplaceUses(SDValue(Node, OldChainResultNo),
2664                SDValue(Res, ResNumResults - 1));
2665
2666  // Otherwise, no replacement happened because the node already exists. Replace
2667  // Uses of the old node with the new one.
2668  if (Res != Node) {
2669    ReplaceNode(Node, Res);
2670  } else {
2671    EnforceNodeIdInvariant(Res);
2672  }
2673
2674  return Res;
2675}
2676
2677/// CheckSame - Implements OP_CheckSame.
2678LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2679CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2680          const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2681  // Accept if it is exactly the same as a previously recorded node.
2682  unsigned RecNo = MatcherTable[MatcherIndex++];
2683  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2684  return N == RecordedNodes[RecNo].first;
2685}
2686
2687/// CheckChildSame - Implements OP_CheckChildXSame.
2688LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2689    const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2690    const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2691    unsigned ChildNo) {
2692  if (ChildNo >= N.getNumOperands())
2693    return false;  // Match fails if out of range child #.
2694  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2695                     RecordedNodes);
2696}
2697
2698/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2699LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2700CheckPatternPredicate(unsigned Opcode, const unsigned char *MatcherTable,
2701                      unsigned &MatcherIndex, const SelectionDAGISel &SDISel) {
2702  bool TwoBytePredNo =
2703      Opcode == SelectionDAGISel::OPC_CheckPatternPredicateTwoByte;
2704  unsigned PredNo =
2705      TwoBytePredNo || Opcode == SelectionDAGISel::OPC_CheckPatternPredicate
2706          ? MatcherTable[MatcherIndex++]
2707          : Opcode - SelectionDAGISel::OPC_CheckPatternPredicate0;
2708  if (TwoBytePredNo)
2709    PredNo |= MatcherTable[MatcherIndex++] << 8;
2710  return SDISel.CheckPatternPredicate(PredNo);
2711}
2712
2713/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2714LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2715CheckNodePredicate(unsigned Opcode, const unsigned char *MatcherTable,
2716                   unsigned &MatcherIndex, const SelectionDAGISel &SDISel,
2717                   SDNode *N) {
2718  unsigned PredNo = Opcode == SelectionDAGISel::OPC_CheckPredicate
2719                        ? MatcherTable[MatcherIndex++]
2720                        : Opcode - SelectionDAGISel::OPC_CheckPredicate0;
2721  return SDISel.CheckNodePredicate(N, PredNo);
2722}
2723
2724LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2725CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2726            SDNode *N) {
2727  uint16_t Opc = MatcherTable[MatcherIndex++];
2728  Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8;
2729  return N->getOpcode() == Opc;
2730}
2731
2732LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckType(MVT::SimpleValueType VT,
2733                                                   SDValue N,
2734                                                   const TargetLowering *TLI,
2735                                                   const DataLayout &DL) {
2736  if (N.getValueType() == VT)
2737    return true;
2738
2739  // Handle the case when VT is iPTR.
2740  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2741}
2742
2743LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2744CheckChildType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI,
2745               const DataLayout &DL, unsigned ChildNo) {
2746  if (ChildNo >= N.getNumOperands())
2747    return false; // Match fails if out of range child #.
2748  return ::CheckType(VT, N.getOperand(ChildNo), TLI, DL);
2749}
2750
2751LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2752CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2753              SDValue N) {
2754  return cast<CondCodeSDNode>(N)->get() ==
2755         static_cast<ISD::CondCode>(MatcherTable[MatcherIndex++]);
2756}
2757
2758LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2759CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2760                    SDValue N) {
2761  if (2 >= N.getNumOperands())
2762    return false;
2763  return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2764}
2765
2766LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2767CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2768               SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2769  MVT::SimpleValueType VT =
2770      static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]);
2771  if (cast<VTSDNode>(N)->getVT() == VT)
2772    return true;
2773
2774  // Handle the case when VT is iPTR.
2775  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2776}
2777
2778// Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2779// shifted left by 1.
2780static uint64_t decodeSignRotatedValue(uint64_t V) {
2781  if ((V & 1) == 0)
2782    return V >> 1;
2783  if (V != 1)
2784    return -(V >> 1);
2785  // There is no such thing as -0 with integers.  "-0" really means MININT.
2786  return 1ULL << 63;
2787}
2788
2789LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2790CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2791             SDValue N) {
2792  int64_t Val = MatcherTable[MatcherIndex++];
2793  if (Val & 128)
2794    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2795
2796  Val = decodeSignRotatedValue(Val);
2797
2798  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2799  return C && C->getAPIntValue().trySExtValue() == Val;
2800}
2801
2802LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2803CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2804                  SDValue N, unsigned ChildNo) {
2805  if (ChildNo >= N.getNumOperands())
2806    return false;  // Match fails if out of range child #.
2807  return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2808}
2809
2810LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2811CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2812            SDValue N, const SelectionDAGISel &SDISel) {
2813  int64_t Val = MatcherTable[MatcherIndex++];
2814  if (Val & 128)
2815    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2816
2817  if (N->getOpcode() != ISD::AND) return false;
2818
2819  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2820  return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2821}
2822
2823LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2824CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2825           const SelectionDAGISel &SDISel) {
2826  int64_t Val = MatcherTable[MatcherIndex++];
2827  if (Val & 128)
2828    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2829
2830  if (N->getOpcode() != ISD::OR) return false;
2831
2832  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2833  return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2834}
2835
2836/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2837/// scope, evaluate the current node.  If the current predicate is known to
2838/// fail, set Result=true and return anything.  If the current predicate is
2839/// known to pass, set Result=false and return the MatcherIndex to continue
2840/// with.  If the current predicate is unknown, set Result=false and return the
2841/// MatcherIndex to continue with.
2842static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2843                                       unsigned Index, SDValue N,
2844                                       bool &Result,
2845                                       const SelectionDAGISel &SDISel,
2846                  SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2847  unsigned Opcode = Table[Index++];
2848  switch (Opcode) {
2849  default:
2850    Result = false;
2851    return Index-1;  // Could not evaluate this predicate.
2852  case SelectionDAGISel::OPC_CheckSame:
2853    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2854    return Index;
2855  case SelectionDAGISel::OPC_CheckChild0Same:
2856  case SelectionDAGISel::OPC_CheckChild1Same:
2857  case SelectionDAGISel::OPC_CheckChild2Same:
2858  case SelectionDAGISel::OPC_CheckChild3Same:
2859    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2860                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2861    return Index;
2862  case SelectionDAGISel::OPC_CheckPatternPredicate:
2863  case SelectionDAGISel::OPC_CheckPatternPredicate0:
2864  case SelectionDAGISel::OPC_CheckPatternPredicate1:
2865  case SelectionDAGISel::OPC_CheckPatternPredicate2:
2866  case SelectionDAGISel::OPC_CheckPatternPredicate3:
2867  case SelectionDAGISel::OPC_CheckPatternPredicate4:
2868  case SelectionDAGISel::OPC_CheckPatternPredicate5:
2869  case SelectionDAGISel::OPC_CheckPatternPredicate6:
2870  case SelectionDAGISel::OPC_CheckPatternPredicate7:
2871  case SelectionDAGISel::OPC_CheckPatternPredicateTwoByte:
2872    Result = !::CheckPatternPredicate(Opcode, Table, Index, SDISel);
2873    return Index;
2874  case SelectionDAGISel::OPC_CheckPredicate:
2875  case SelectionDAGISel::OPC_CheckPredicate0:
2876  case SelectionDAGISel::OPC_CheckPredicate1:
2877  case SelectionDAGISel::OPC_CheckPredicate2:
2878  case SelectionDAGISel::OPC_CheckPredicate3:
2879  case SelectionDAGISel::OPC_CheckPredicate4:
2880  case SelectionDAGISel::OPC_CheckPredicate5:
2881  case SelectionDAGISel::OPC_CheckPredicate6:
2882  case SelectionDAGISel::OPC_CheckPredicate7:
2883    Result = !::CheckNodePredicate(Opcode, Table, Index, SDISel, N.getNode());
2884    return Index;
2885  case SelectionDAGISel::OPC_CheckOpcode:
2886    Result = !::CheckOpcode(Table, Index, N.getNode());
2887    return Index;
2888  case SelectionDAGISel::OPC_CheckType:
2889  case SelectionDAGISel::OPC_CheckTypeI32:
2890  case SelectionDAGISel::OPC_CheckTypeI64: {
2891    MVT::SimpleValueType VT;
2892    switch (Opcode) {
2893    case SelectionDAGISel::OPC_CheckTypeI32:
2894      VT = MVT::i32;
2895      break;
2896    case SelectionDAGISel::OPC_CheckTypeI64:
2897      VT = MVT::i64;
2898      break;
2899    default:
2900      VT = static_cast<MVT::SimpleValueType>(Table[Index++]);
2901      break;
2902    }
2903    Result = !::CheckType(VT, N, SDISel.TLI, SDISel.CurDAG->getDataLayout());
2904    return Index;
2905  }
2906  case SelectionDAGISel::OPC_CheckTypeRes: {
2907    unsigned Res = Table[Index++];
2908    Result = !::CheckType(static_cast<MVT::SimpleValueType>(Table[Index++]),
2909                          N.getValue(Res), SDISel.TLI,
2910                          SDISel.CurDAG->getDataLayout());
2911    return Index;
2912  }
2913  case SelectionDAGISel::OPC_CheckChild0Type:
2914  case SelectionDAGISel::OPC_CheckChild1Type:
2915  case SelectionDAGISel::OPC_CheckChild2Type:
2916  case SelectionDAGISel::OPC_CheckChild3Type:
2917  case SelectionDAGISel::OPC_CheckChild4Type:
2918  case SelectionDAGISel::OPC_CheckChild5Type:
2919  case SelectionDAGISel::OPC_CheckChild6Type:
2920  case SelectionDAGISel::OPC_CheckChild7Type:
2921  case SelectionDAGISel::OPC_CheckChild0TypeI32:
2922  case SelectionDAGISel::OPC_CheckChild1TypeI32:
2923  case SelectionDAGISel::OPC_CheckChild2TypeI32:
2924  case SelectionDAGISel::OPC_CheckChild3TypeI32:
2925  case SelectionDAGISel::OPC_CheckChild4TypeI32:
2926  case SelectionDAGISel::OPC_CheckChild5TypeI32:
2927  case SelectionDAGISel::OPC_CheckChild6TypeI32:
2928  case SelectionDAGISel::OPC_CheckChild7TypeI32:
2929  case SelectionDAGISel::OPC_CheckChild0TypeI64:
2930  case SelectionDAGISel::OPC_CheckChild1TypeI64:
2931  case SelectionDAGISel::OPC_CheckChild2TypeI64:
2932  case SelectionDAGISel::OPC_CheckChild3TypeI64:
2933  case SelectionDAGISel::OPC_CheckChild4TypeI64:
2934  case SelectionDAGISel::OPC_CheckChild5TypeI64:
2935  case SelectionDAGISel::OPC_CheckChild6TypeI64:
2936  case SelectionDAGISel::OPC_CheckChild7TypeI64: {
2937    MVT::SimpleValueType VT;
2938    unsigned ChildNo;
2939    if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 &&
2940        Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) {
2941      VT = MVT::i32;
2942      ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32;
2943    } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 &&
2944               Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) {
2945      VT = MVT::i64;
2946      ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64;
2947    } else {
2948      VT = static_cast<MVT::SimpleValueType>(Table[Index++]);
2949      ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type;
2950    }
2951    Result = !::CheckChildType(VT, N, SDISel.TLI,
2952                               SDISel.CurDAG->getDataLayout(), ChildNo);
2953    return Index;
2954  }
2955  case SelectionDAGISel::OPC_CheckCondCode:
2956    Result = !::CheckCondCode(Table, Index, N);
2957    return Index;
2958  case SelectionDAGISel::OPC_CheckChild2CondCode:
2959    Result = !::CheckChild2CondCode(Table, Index, N);
2960    return Index;
2961  case SelectionDAGISel::OPC_CheckValueType:
2962    Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2963                               SDISel.CurDAG->getDataLayout());
2964    return Index;
2965  case SelectionDAGISel::OPC_CheckInteger:
2966    Result = !::CheckInteger(Table, Index, N);
2967    return Index;
2968  case SelectionDAGISel::OPC_CheckChild0Integer:
2969  case SelectionDAGISel::OPC_CheckChild1Integer:
2970  case SelectionDAGISel::OPC_CheckChild2Integer:
2971  case SelectionDAGISel::OPC_CheckChild3Integer:
2972  case SelectionDAGISel::OPC_CheckChild4Integer:
2973    Result = !::CheckChildInteger(Table, Index, N,
2974                     Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2975    return Index;
2976  case SelectionDAGISel::OPC_CheckAndImm:
2977    Result = !::CheckAndImm(Table, Index, N, SDISel);
2978    return Index;
2979  case SelectionDAGISel::OPC_CheckOrImm:
2980    Result = !::CheckOrImm(Table, Index, N, SDISel);
2981    return Index;
2982  }
2983}
2984
2985namespace {
2986
2987struct MatchScope {
2988  /// FailIndex - If this match fails, this is the index to continue with.
2989  unsigned FailIndex;
2990
2991  /// NodeStack - The node stack when the scope was formed.
2992  SmallVector<SDValue, 4> NodeStack;
2993
2994  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2995  unsigned NumRecordedNodes;
2996
2997  /// NumMatchedMemRefs - The number of matched memref entries.
2998  unsigned NumMatchedMemRefs;
2999
3000  /// InputChain/InputGlue - The current chain/glue
3001  SDValue InputChain, InputGlue;
3002
3003  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
3004  bool HasChainNodesMatched;
3005};
3006
3007/// \A DAG update listener to keep the matching state
3008/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
3009/// change the DAG while matching.  X86 addressing mode matcher is an example
3010/// for this.
3011class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
3012{
3013  SDNode **NodeToMatch;
3014  SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
3015  SmallVectorImpl<MatchScope> &MatchScopes;
3016
3017public:
3018  MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
3019                    SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
3020                    SmallVectorImpl<MatchScope> &MS)
3021      : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
3022        RecordedNodes(RN), MatchScopes(MS) {}
3023
3024  void NodeDeleted(SDNode *N, SDNode *E) override {
3025    // Some early-returns here to avoid the search if we deleted the node or
3026    // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
3027    // do, so it's unnecessary to update matching state at that point).
3028    // Neither of these can occur currently because we only install this
3029    // update listener during matching a complex patterns.
3030    if (!E || E->isMachineOpcode())
3031      return;
3032    // Check if NodeToMatch was updated.
3033    if (N == *NodeToMatch)
3034      *NodeToMatch = E;
3035    // Performing linear search here does not matter because we almost never
3036    // run this code.  You'd have to have a CSE during complex pattern
3037    // matching.
3038    for (auto &I : RecordedNodes)
3039      if (I.first.getNode() == N)
3040        I.first.setNode(E);
3041
3042    for (auto &I : MatchScopes)
3043      for (auto &J : I.NodeStack)
3044        if (J.getNode() == N)
3045          J.setNode(E);
3046  }
3047};
3048
3049} // end anonymous namespace
3050
3051void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
3052                                        const unsigned char *MatcherTable,
3053                                        unsigned TableSize) {
3054  // FIXME: Should these even be selected?  Handle these cases in the caller?
3055  switch (NodeToMatch->getOpcode()) {
3056  default:
3057    break;
3058  case ISD::EntryToken:       // These nodes remain the same.
3059  case ISD::BasicBlock:
3060  case ISD::Register:
3061  case ISD::RegisterMask:
3062  case ISD::HANDLENODE:
3063  case ISD::MDNODE_SDNODE:
3064  case ISD::TargetConstant:
3065  case ISD::TargetConstantFP:
3066  case ISD::TargetConstantPool:
3067  case ISD::TargetFrameIndex:
3068  case ISD::TargetExternalSymbol:
3069  case ISD::MCSymbol:
3070  case ISD::TargetBlockAddress:
3071  case ISD::TargetJumpTable:
3072  case ISD::TargetGlobalTLSAddress:
3073  case ISD::TargetGlobalAddress:
3074  case ISD::TokenFactor:
3075  case ISD::CopyFromReg:
3076  case ISD::CopyToReg:
3077  case ISD::EH_LABEL:
3078  case ISD::ANNOTATION_LABEL:
3079  case ISD::LIFETIME_START:
3080  case ISD::LIFETIME_END:
3081  case ISD::PSEUDO_PROBE:
3082    NodeToMatch->setNodeId(-1); // Mark selected.
3083    return;
3084  case ISD::AssertSext:
3085  case ISD::AssertZext:
3086  case ISD::AssertAlign:
3087    ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
3088    CurDAG->RemoveDeadNode(NodeToMatch);
3089    return;
3090  case ISD::INLINEASM:
3091  case ISD::INLINEASM_BR:
3092    Select_INLINEASM(NodeToMatch);
3093    return;
3094  case ISD::READ_REGISTER:
3095    Select_READ_REGISTER(NodeToMatch);
3096    return;
3097  case ISD::WRITE_REGISTER:
3098    Select_WRITE_REGISTER(NodeToMatch);
3099    return;
3100  case ISD::UNDEF:
3101    Select_UNDEF(NodeToMatch);
3102    return;
3103  case ISD::FREEZE:
3104    Select_FREEZE(NodeToMatch);
3105    return;
3106  case ISD::ARITH_FENCE:
3107    Select_ARITH_FENCE(NodeToMatch);
3108    return;
3109  case ISD::MEMBARRIER:
3110    Select_MEMBARRIER(NodeToMatch);
3111    return;
3112  case ISD::STACKMAP:
3113    Select_STACKMAP(NodeToMatch);
3114    return;
3115  case ISD::PATCHPOINT:
3116    Select_PATCHPOINT(NodeToMatch);
3117    return;
3118  case ISD::JUMP_TABLE_DEBUG_INFO:
3119    Select_JUMP_TABLE_DEBUG_INFO(NodeToMatch);
3120    return;
3121  }
3122
3123  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
3124
3125  // Set up the node stack with NodeToMatch as the only node on the stack.
3126  SmallVector<SDValue, 8> NodeStack;
3127  SDValue N = SDValue(NodeToMatch, 0);
3128  NodeStack.push_back(N);
3129
3130  // MatchScopes - Scopes used when matching, if a match failure happens, this
3131  // indicates where to continue checking.
3132  SmallVector<MatchScope, 8> MatchScopes;
3133
3134  // RecordedNodes - This is the set of nodes that have been recorded by the
3135  // state machine.  The second value is the parent of the node, or null if the
3136  // root is recorded.
3137  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
3138
3139  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
3140  // pattern.
3141  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
3142
3143  // These are the current input chain and glue for use when generating nodes.
3144  // Various Emit operations change these.  For example, emitting a copytoreg
3145  // uses and updates these.
3146  SDValue InputChain, InputGlue;
3147
3148  // ChainNodesMatched - If a pattern matches nodes that have input/output
3149  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
3150  // which ones they are.  The result is captured into this list so that we can
3151  // update the chain results when the pattern is complete.
3152  SmallVector<SDNode*, 3> ChainNodesMatched;
3153
3154  LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
3155
3156  // Determine where to start the interpreter.  Normally we start at opcode #0,
3157  // but if the state machine starts with an OPC_SwitchOpcode, then we
3158  // accelerate the first lookup (which is guaranteed to be hot) with the
3159  // OpcodeOffset table.
3160  unsigned MatcherIndex = 0;
3161
3162  if (!OpcodeOffset.empty()) {
3163    // Already computed the OpcodeOffset table, just index into it.
3164    if (N.getOpcode() < OpcodeOffset.size())
3165      MatcherIndex = OpcodeOffset[N.getOpcode()];
3166    LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
3167
3168  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
3169    // Otherwise, the table isn't computed, but the state machine does start
3170    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
3171    // is the first time we're selecting an instruction.
3172    unsigned Idx = 1;
3173    while (true) {
3174      // Get the size of this case.
3175      unsigned CaseSize = MatcherTable[Idx++];
3176      if (CaseSize & 128)
3177        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
3178      if (CaseSize == 0) break;
3179
3180      // Get the opcode, add the index to the table.
3181      uint16_t Opc = MatcherTable[Idx++];
3182      Opc |= static_cast<uint16_t>(MatcherTable[Idx++]) << 8;
3183      if (Opc >= OpcodeOffset.size())
3184        OpcodeOffset.resize((Opc+1)*2);
3185      OpcodeOffset[Opc] = Idx;
3186      Idx += CaseSize;
3187    }
3188
3189    // Okay, do the lookup for the first opcode.
3190    if (N.getOpcode() < OpcodeOffset.size())
3191      MatcherIndex = OpcodeOffset[N.getOpcode()];
3192  }
3193
3194  while (true) {
3195    assert(MatcherIndex < TableSize && "Invalid index");
3196#ifndef NDEBUG
3197    unsigned CurrentOpcodeIndex = MatcherIndex;
3198#endif
3199    BuiltinOpcodes Opcode =
3200        static_cast<BuiltinOpcodes>(MatcherTable[MatcherIndex++]);
3201    switch (Opcode) {
3202    case OPC_Scope: {
3203      // Okay, the semantics of this operation are that we should push a scope
3204      // then evaluate the first child.  However, pushing a scope only to have
3205      // the first check fail (which then pops it) is inefficient.  If we can
3206      // determine immediately that the first check (or first several) will
3207      // immediately fail, don't even bother pushing a scope for them.
3208      unsigned FailIndex;
3209
3210      while (true) {
3211        unsigned NumToSkip = MatcherTable[MatcherIndex++];
3212        if (NumToSkip & 128)
3213          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3214        // Found the end of the scope with no match.
3215        if (NumToSkip == 0) {
3216          FailIndex = 0;
3217          break;
3218        }
3219
3220        FailIndex = MatcherIndex+NumToSkip;
3221
3222        unsigned MatcherIndexOfPredicate = MatcherIndex;
3223        (void)MatcherIndexOfPredicate; // silence warning.
3224
3225        // If we can't evaluate this predicate without pushing a scope (e.g. if
3226        // it is a 'MoveParent') or if the predicate succeeds on this node, we
3227        // push the scope and evaluate the full predicate chain.
3228        bool Result;
3229        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3230                                              Result, *this, RecordedNodes);
3231        if (!Result)
3232          break;
3233
3234        LLVM_DEBUG(
3235            dbgs() << "  Skipped scope entry (due to false predicate) at "
3236                   << "index " << MatcherIndexOfPredicate << ", continuing at "
3237                   << FailIndex << "\n");
3238        ++NumDAGIselRetries;
3239
3240        // Otherwise, we know that this case of the Scope is guaranteed to fail,
3241        // move to the next case.
3242        MatcherIndex = FailIndex;
3243      }
3244
3245      // If the whole scope failed to match, bail.
3246      if (FailIndex == 0) break;
3247
3248      // Push a MatchScope which indicates where to go if the first child fails
3249      // to match.
3250      MatchScope NewEntry;
3251      NewEntry.FailIndex = FailIndex;
3252      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3253      NewEntry.NumRecordedNodes = RecordedNodes.size();
3254      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3255      NewEntry.InputChain = InputChain;
3256      NewEntry.InputGlue = InputGlue;
3257      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3258      MatchScopes.push_back(NewEntry);
3259      continue;
3260    }
3261    case OPC_RecordNode: {
3262      // Remember this node, it may end up being an operand in the pattern.
3263      SDNode *Parent = nullptr;
3264      if (NodeStack.size() > 1)
3265        Parent = NodeStack[NodeStack.size()-2].getNode();
3266      RecordedNodes.push_back(std::make_pair(N, Parent));
3267      continue;
3268    }
3269
3270    case OPC_RecordChild0: case OPC_RecordChild1:
3271    case OPC_RecordChild2: case OPC_RecordChild3:
3272    case OPC_RecordChild4: case OPC_RecordChild5:
3273    case OPC_RecordChild6: case OPC_RecordChild7: {
3274      unsigned ChildNo = Opcode-OPC_RecordChild0;
3275      if (ChildNo >= N.getNumOperands())
3276        break;  // Match fails if out of range child #.
3277
3278      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3279                                             N.getNode()));
3280      continue;
3281    }
3282    case OPC_RecordMemRef:
3283      if (auto *MN = dyn_cast<MemSDNode>(N))
3284        MatchedMemRefs.push_back(MN->getMemOperand());
3285      else {
3286        LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3287                   dbgs() << '\n');
3288      }
3289
3290      continue;
3291
3292    case OPC_CaptureGlueInput:
3293      // If the current node has an input glue, capture it in InputGlue.
3294      if (N->getNumOperands() != 0 &&
3295          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3296        InputGlue = N->getOperand(N->getNumOperands()-1);
3297      continue;
3298
3299    case OPC_MoveChild: {
3300      unsigned ChildNo = MatcherTable[MatcherIndex++];
3301      if (ChildNo >= N.getNumOperands())
3302        break;  // Match fails if out of range child #.
3303      N = N.getOperand(ChildNo);
3304      NodeStack.push_back(N);
3305      continue;
3306    }
3307
3308    case OPC_MoveChild0: case OPC_MoveChild1:
3309    case OPC_MoveChild2: case OPC_MoveChild3:
3310    case OPC_MoveChild4: case OPC_MoveChild5:
3311    case OPC_MoveChild6: case OPC_MoveChild7: {
3312      unsigned ChildNo = Opcode-OPC_MoveChild0;
3313      if (ChildNo >= N.getNumOperands())
3314        break;  // Match fails if out of range child #.
3315      N = N.getOperand(ChildNo);
3316      NodeStack.push_back(N);
3317      continue;
3318    }
3319
3320    case OPC_MoveSibling:
3321    case OPC_MoveSibling0:
3322    case OPC_MoveSibling1:
3323    case OPC_MoveSibling2:
3324    case OPC_MoveSibling3:
3325    case OPC_MoveSibling4:
3326    case OPC_MoveSibling5:
3327    case OPC_MoveSibling6:
3328    case OPC_MoveSibling7: {
3329      // Pop the current node off the NodeStack.
3330      NodeStack.pop_back();
3331      assert(!NodeStack.empty() && "Node stack imbalance!");
3332      N = NodeStack.back();
3333
3334      unsigned SiblingNo = Opcode == OPC_MoveSibling
3335                               ? MatcherTable[MatcherIndex++]
3336                               : Opcode - OPC_MoveSibling0;
3337      if (SiblingNo >= N.getNumOperands())
3338        break; // Match fails if out of range sibling #.
3339      N = N.getOperand(SiblingNo);
3340      NodeStack.push_back(N);
3341      continue;
3342    }
3343    case OPC_MoveParent:
3344      // Pop the current node off the NodeStack.
3345      NodeStack.pop_back();
3346      assert(!NodeStack.empty() && "Node stack imbalance!");
3347      N = NodeStack.back();
3348      continue;
3349
3350    case OPC_CheckSame:
3351      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3352      continue;
3353
3354    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3355    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3356      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3357                            Opcode-OPC_CheckChild0Same))
3358        break;
3359      continue;
3360
3361    case OPC_CheckPatternPredicate:
3362    case OPC_CheckPatternPredicate0:
3363    case OPC_CheckPatternPredicate1:
3364    case OPC_CheckPatternPredicate2:
3365    case OPC_CheckPatternPredicate3:
3366    case OPC_CheckPatternPredicate4:
3367    case OPC_CheckPatternPredicate5:
3368    case OPC_CheckPatternPredicate6:
3369    case OPC_CheckPatternPredicate7:
3370    case OPC_CheckPatternPredicateTwoByte:
3371      if (!::CheckPatternPredicate(Opcode, MatcherTable, MatcherIndex, *this))
3372        break;
3373      continue;
3374    case SelectionDAGISel::OPC_CheckPredicate0:
3375    case SelectionDAGISel::OPC_CheckPredicate1:
3376    case SelectionDAGISel::OPC_CheckPredicate2:
3377    case SelectionDAGISel::OPC_CheckPredicate3:
3378    case SelectionDAGISel::OPC_CheckPredicate4:
3379    case SelectionDAGISel::OPC_CheckPredicate5:
3380    case SelectionDAGISel::OPC_CheckPredicate6:
3381    case SelectionDAGISel::OPC_CheckPredicate7:
3382    case OPC_CheckPredicate:
3383      if (!::CheckNodePredicate(Opcode, MatcherTable, MatcherIndex, *this,
3384                                N.getNode()))
3385        break;
3386      continue;
3387    case OPC_CheckPredicateWithOperands: {
3388      unsigned OpNum = MatcherTable[MatcherIndex++];
3389      SmallVector<SDValue, 8> Operands;
3390
3391      for (unsigned i = 0; i < OpNum; ++i)
3392        Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3393
3394      unsigned PredNo = MatcherTable[MatcherIndex++];
3395      if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3396        break;
3397      continue;
3398    }
3399    case OPC_CheckComplexPat:
3400    case OPC_CheckComplexPat0:
3401    case OPC_CheckComplexPat1:
3402    case OPC_CheckComplexPat2:
3403    case OPC_CheckComplexPat3:
3404    case OPC_CheckComplexPat4:
3405    case OPC_CheckComplexPat5:
3406    case OPC_CheckComplexPat6:
3407    case OPC_CheckComplexPat7: {
3408      unsigned CPNum = Opcode == OPC_CheckComplexPat
3409                           ? MatcherTable[MatcherIndex++]
3410                           : Opcode - OPC_CheckComplexPat0;
3411      unsigned RecNo = MatcherTable[MatcherIndex++];
3412      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3413
3414      // If target can modify DAG during matching, keep the matching state
3415      // consistent.
3416      std::unique_ptr<MatchStateUpdater> MSU;
3417      if (ComplexPatternFuncMutatesDAG())
3418        MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3419                                        MatchScopes));
3420
3421      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3422                               RecordedNodes[RecNo].first, CPNum,
3423                               RecordedNodes))
3424        break;
3425      continue;
3426    }
3427    case OPC_CheckOpcode:
3428      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3429      continue;
3430
3431    case OPC_CheckType:
3432    case OPC_CheckTypeI32:
3433    case OPC_CheckTypeI64:
3434      MVT::SimpleValueType VT;
3435      switch (Opcode) {
3436      case OPC_CheckTypeI32:
3437        VT = MVT::i32;
3438        break;
3439      case OPC_CheckTypeI64:
3440        VT = MVT::i64;
3441        break;
3442      default:
3443        VT = static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]);
3444        break;
3445      }
3446      if (!::CheckType(VT, N, TLI, CurDAG->getDataLayout()))
3447        break;
3448      continue;
3449
3450    case OPC_CheckTypeRes: {
3451      unsigned Res = MatcherTable[MatcherIndex++];
3452      if (!::CheckType(
3453              static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]),
3454              N.getValue(Res), TLI, CurDAG->getDataLayout()))
3455        break;
3456      continue;
3457    }
3458
3459    case OPC_SwitchOpcode: {
3460      unsigned CurNodeOpcode = N.getOpcode();
3461      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3462      unsigned CaseSize;
3463      while (true) {
3464        // Get the size of this case.
3465        CaseSize = MatcherTable[MatcherIndex++];
3466        if (CaseSize & 128)
3467          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3468        if (CaseSize == 0) break;
3469
3470        uint16_t Opc = MatcherTable[MatcherIndex++];
3471        Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8;
3472
3473        // If the opcode matches, then we will execute this case.
3474        if (CurNodeOpcode == Opc)
3475          break;
3476
3477        // Otherwise, skip over this case.
3478        MatcherIndex += CaseSize;
3479      }
3480
3481      // If no cases matched, bail out.
3482      if (CaseSize == 0) break;
3483
3484      // Otherwise, execute the case we found.
3485      LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3486                        << MatcherIndex << "\n");
3487      continue;
3488    }
3489
3490    case OPC_SwitchType: {
3491      MVT CurNodeVT = N.getSimpleValueType();
3492      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3493      unsigned CaseSize;
3494      while (true) {
3495        // Get the size of this case.
3496        CaseSize = MatcherTable[MatcherIndex++];
3497        if (CaseSize & 128)
3498          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3499        if (CaseSize == 0) break;
3500
3501        MVT CaseVT =
3502            static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]);
3503        if (CaseVT == MVT::iPTR)
3504          CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3505
3506        // If the VT matches, then we will execute this case.
3507        if (CurNodeVT == CaseVT)
3508          break;
3509
3510        // Otherwise, skip over this case.
3511        MatcherIndex += CaseSize;
3512      }
3513
3514      // If no cases matched, bail out.
3515      if (CaseSize == 0) break;
3516
3517      // Otherwise, execute the case we found.
3518      LLVM_DEBUG(dbgs() << "  TypeSwitch[" << CurNodeVT
3519                        << "] from " << SwitchStart << " to " << MatcherIndex
3520                        << '\n');
3521      continue;
3522    }
3523    case OPC_CheckChild0Type:
3524    case OPC_CheckChild1Type:
3525    case OPC_CheckChild2Type:
3526    case OPC_CheckChild3Type:
3527    case OPC_CheckChild4Type:
3528    case OPC_CheckChild5Type:
3529    case OPC_CheckChild6Type:
3530    case OPC_CheckChild7Type:
3531    case OPC_CheckChild0TypeI32:
3532    case OPC_CheckChild1TypeI32:
3533    case OPC_CheckChild2TypeI32:
3534    case OPC_CheckChild3TypeI32:
3535    case OPC_CheckChild4TypeI32:
3536    case OPC_CheckChild5TypeI32:
3537    case OPC_CheckChild6TypeI32:
3538    case OPC_CheckChild7TypeI32:
3539    case OPC_CheckChild0TypeI64:
3540    case OPC_CheckChild1TypeI64:
3541    case OPC_CheckChild2TypeI64:
3542    case OPC_CheckChild3TypeI64:
3543    case OPC_CheckChild4TypeI64:
3544    case OPC_CheckChild5TypeI64:
3545    case OPC_CheckChild6TypeI64:
3546    case OPC_CheckChild7TypeI64: {
3547      MVT::SimpleValueType VT;
3548      unsigned ChildNo;
3549      if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 &&
3550          Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) {
3551        VT = MVT::i32;
3552        ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32;
3553      } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 &&
3554                 Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) {
3555        VT = MVT::i64;
3556        ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64;
3557      } else {
3558        VT = static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]);
3559        ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type;
3560      }
3561      if (!::CheckChildType(VT, N, TLI, CurDAG->getDataLayout(), ChildNo))
3562        break;
3563      continue;
3564    }
3565    case OPC_CheckCondCode:
3566      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3567      continue;
3568    case OPC_CheckChild2CondCode:
3569      if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3570      continue;
3571    case OPC_CheckValueType:
3572      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3573                            CurDAG->getDataLayout()))
3574        break;
3575      continue;
3576    case OPC_CheckInteger:
3577      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3578      continue;
3579    case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3580    case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3581    case OPC_CheckChild4Integer:
3582      if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3583                               Opcode-OPC_CheckChild0Integer)) break;
3584      continue;
3585    case OPC_CheckAndImm:
3586      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3587      continue;
3588    case OPC_CheckOrImm:
3589      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3590      continue;
3591    case OPC_CheckImmAllOnesV:
3592      if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3593        break;
3594      continue;
3595    case OPC_CheckImmAllZerosV:
3596      if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3597        break;
3598      continue;
3599
3600    case OPC_CheckFoldableChainNode: {
3601      assert(NodeStack.size() != 1 && "No parent node");
3602      // Verify that all intermediate nodes between the root and this one have
3603      // a single use (ignoring chains, which are handled in UpdateChains).
3604      bool HasMultipleUses = false;
3605      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3606        unsigned NNonChainUses = 0;
3607        SDNode *NS = NodeStack[i].getNode();
3608        for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3609          if (UI.getUse().getValueType() != MVT::Other)
3610            if (++NNonChainUses > 1) {
3611              HasMultipleUses = true;
3612              break;
3613            }
3614        if (HasMultipleUses) break;
3615      }
3616      if (HasMultipleUses) break;
3617
3618      // Check to see that the target thinks this is profitable to fold and that
3619      // we can fold it without inducing cycles in the graph.
3620      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3621                              NodeToMatch) ||
3622          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3623                         NodeToMatch, OptLevel,
3624                         true/*We validate our own chains*/))
3625        break;
3626
3627      continue;
3628    }
3629    case OPC_EmitInteger:
3630    case OPC_EmitInteger8:
3631    case OPC_EmitInteger16:
3632    case OPC_EmitInteger32:
3633    case OPC_EmitInteger64:
3634    case OPC_EmitStringInteger:
3635    case OPC_EmitStringInteger32: {
3636      MVT::SimpleValueType VT;
3637      switch (Opcode) {
3638      case OPC_EmitInteger8:
3639        VT = MVT::i8;
3640        break;
3641      case OPC_EmitInteger16:
3642        VT = MVT::i16;
3643        break;
3644      case OPC_EmitInteger32:
3645      case OPC_EmitStringInteger32:
3646        VT = MVT::i32;
3647        break;
3648      case OPC_EmitInteger64:
3649        VT = MVT::i64;
3650        break;
3651      default:
3652        VT = static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]);
3653        break;
3654      }
3655      int64_t Val = MatcherTable[MatcherIndex++];
3656      if (Val & 128)
3657        Val = GetVBR(Val, MatcherTable, MatcherIndex);
3658      if (Opcode >= OPC_EmitInteger && Opcode <= OPC_EmitInteger64)
3659        Val = decodeSignRotatedValue(Val);
3660      RecordedNodes.push_back(std::pair<SDValue, SDNode *>(
3661          CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), VT), nullptr));
3662      continue;
3663    }
3664    case OPC_EmitRegister:
3665    case OPC_EmitRegisterI32:
3666    case OPC_EmitRegisterI64: {
3667      MVT::SimpleValueType VT;
3668      switch (Opcode) {
3669      case OPC_EmitRegisterI32:
3670        VT = MVT::i32;
3671        break;
3672      case OPC_EmitRegisterI64:
3673        VT = MVT::i64;
3674        break;
3675      default:
3676        VT = static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]);
3677        break;
3678      }
3679      unsigned RegNo = MatcherTable[MatcherIndex++];
3680      RecordedNodes.push_back(std::pair<SDValue, SDNode *>(
3681          CurDAG->getRegister(RegNo, VT), nullptr));
3682      continue;
3683    }
3684    case OPC_EmitRegister2: {
3685      // For targets w/ more than 256 register names, the register enum
3686      // values are stored in two bytes in the matcher table (just like
3687      // opcodes).
3688      MVT::SimpleValueType VT =
3689          static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]);
3690      unsigned RegNo = MatcherTable[MatcherIndex++];
3691      RegNo |= MatcherTable[MatcherIndex++] << 8;
3692      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3693                              CurDAG->getRegister(RegNo, VT), nullptr));
3694      continue;
3695    }
3696
3697    case OPC_EmitConvertToTarget:
3698    case OPC_EmitConvertToTarget0:
3699    case OPC_EmitConvertToTarget1:
3700    case OPC_EmitConvertToTarget2:
3701    case OPC_EmitConvertToTarget3:
3702    case OPC_EmitConvertToTarget4:
3703    case OPC_EmitConvertToTarget5:
3704    case OPC_EmitConvertToTarget6:
3705    case OPC_EmitConvertToTarget7: {
3706      // Convert from IMM/FPIMM to target version.
3707      unsigned RecNo = Opcode == OPC_EmitConvertToTarget
3708                           ? MatcherTable[MatcherIndex++]
3709                           : Opcode - OPC_EmitConvertToTarget0;
3710      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3711      SDValue Imm = RecordedNodes[RecNo].first;
3712
3713      if (Imm->getOpcode() == ISD::Constant) {
3714        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3715        Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3716                                        Imm.getValueType());
3717      } else if (Imm->getOpcode() == ISD::ConstantFP) {
3718        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3719        Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3720                                          Imm.getValueType());
3721      }
3722
3723      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3724      continue;
3725    }
3726
3727    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3728    case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3729    case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3730      // These are space-optimized forms of OPC_EmitMergeInputChains.
3731      assert(!InputChain.getNode() &&
3732             "EmitMergeInputChains should be the first chain producing node");
3733      assert(ChainNodesMatched.empty() &&
3734             "Should only have one EmitMergeInputChains per match");
3735
3736      // Read all of the chained nodes.
3737      unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3738      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3739      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3740
3741      // If the chained node is not the root, we can't fold it if it has
3742      // multiple uses.
3743      // FIXME: What if other value results of the node have uses not matched
3744      // by this pattern?
3745      if (ChainNodesMatched.back() != NodeToMatch &&
3746          !RecordedNodes[RecNo].first.hasOneUse()) {
3747        ChainNodesMatched.clear();
3748        break;
3749      }
3750
3751      // Merge the input chains if they are not intra-pattern references.
3752      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3753
3754      if (!InputChain.getNode())
3755        break;  // Failed to merge.
3756      continue;
3757    }
3758
3759    case OPC_EmitMergeInputChains: {
3760      assert(!InputChain.getNode() &&
3761             "EmitMergeInputChains should be the first chain producing node");
3762      // This node gets a list of nodes we matched in the input that have
3763      // chains.  We want to token factor all of the input chains to these nodes
3764      // together.  However, if any of the input chains is actually one of the
3765      // nodes matched in this pattern, then we have an intra-match reference.
3766      // Ignore these because the newly token factored chain should not refer to
3767      // the old nodes.
3768      unsigned NumChains = MatcherTable[MatcherIndex++];
3769      assert(NumChains != 0 && "Can't TF zero chains");
3770
3771      assert(ChainNodesMatched.empty() &&
3772             "Should only have one EmitMergeInputChains per match");
3773
3774      // Read all of the chained nodes.
3775      for (unsigned i = 0; i != NumChains; ++i) {
3776        unsigned RecNo = MatcherTable[MatcherIndex++];
3777        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3778        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3779
3780        // If the chained node is not the root, we can't fold it if it has
3781        // multiple uses.
3782        // FIXME: What if other value results of the node have uses not matched
3783        // by this pattern?
3784        if (ChainNodesMatched.back() != NodeToMatch &&
3785            !RecordedNodes[RecNo].first.hasOneUse()) {
3786          ChainNodesMatched.clear();
3787          break;
3788        }
3789      }
3790
3791      // If the inner loop broke out, the match fails.
3792      if (ChainNodesMatched.empty())
3793        break;
3794
3795      // Merge the input chains if they are not intra-pattern references.
3796      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3797
3798      if (!InputChain.getNode())
3799        break;  // Failed to merge.
3800
3801      continue;
3802    }
3803
3804    case OPC_EmitCopyToReg:
3805    case OPC_EmitCopyToReg0:
3806    case OPC_EmitCopyToReg1:
3807    case OPC_EmitCopyToReg2:
3808    case OPC_EmitCopyToReg3:
3809    case OPC_EmitCopyToReg4:
3810    case OPC_EmitCopyToReg5:
3811    case OPC_EmitCopyToReg6:
3812    case OPC_EmitCopyToReg7:
3813    case OPC_EmitCopyToRegTwoByte: {
3814      unsigned RecNo =
3815          Opcode >= OPC_EmitCopyToReg0 && Opcode <= OPC_EmitCopyToReg7
3816              ? Opcode - OPC_EmitCopyToReg0
3817              : MatcherTable[MatcherIndex++];
3818      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3819      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3820      if (Opcode == OPC_EmitCopyToRegTwoByte)
3821        DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3822
3823      if (!InputChain.getNode())
3824        InputChain = CurDAG->getEntryNode();
3825
3826      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3827                                        DestPhysReg, RecordedNodes[RecNo].first,
3828                                        InputGlue);
3829
3830      InputGlue = InputChain.getValue(1);
3831      continue;
3832    }
3833
3834    case OPC_EmitNodeXForm: {
3835      unsigned XFormNo = MatcherTable[MatcherIndex++];
3836      unsigned RecNo = MatcherTable[MatcherIndex++];
3837      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3838      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3839      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3840      continue;
3841    }
3842    case OPC_Coverage: {
3843      // This is emitted right before MorphNode/EmitNode.
3844      // So it should be safe to assume that this node has been selected
3845      unsigned index = MatcherTable[MatcherIndex++];
3846      index |= (MatcherTable[MatcherIndex++] << 8);
3847      dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3848      dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3849      continue;
3850    }
3851
3852    case OPC_EmitNode:
3853    case OPC_EmitNode0:
3854    case OPC_EmitNode1:
3855    case OPC_EmitNode2:
3856    case OPC_EmitNode0None:
3857    case OPC_EmitNode1None:
3858    case OPC_EmitNode2None:
3859    case OPC_EmitNode0Chain:
3860    case OPC_EmitNode1Chain:
3861    case OPC_EmitNode2Chain:
3862    case OPC_MorphNodeTo:
3863    case OPC_MorphNodeTo0:
3864    case OPC_MorphNodeTo1:
3865    case OPC_MorphNodeTo2:
3866    case OPC_MorphNodeTo0None:
3867    case OPC_MorphNodeTo1None:
3868    case OPC_MorphNodeTo2None:
3869    case OPC_MorphNodeTo0Chain:
3870    case OPC_MorphNodeTo1Chain:
3871    case OPC_MorphNodeTo2Chain:
3872    case OPC_MorphNodeTo0GlueInput:
3873    case OPC_MorphNodeTo1GlueInput:
3874    case OPC_MorphNodeTo2GlueInput:
3875    case OPC_MorphNodeTo0GlueOutput:
3876    case OPC_MorphNodeTo1GlueOutput:
3877    case OPC_MorphNodeTo2GlueOutput: {
3878      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3879      TargetOpc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8;
3880      unsigned EmitNodeInfo;
3881      if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2Chain) {
3882        if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain)
3883          EmitNodeInfo = OPFL_Chain;
3884        else
3885          EmitNodeInfo = OPFL_None;
3886      } else if (Opcode >= OPC_MorphNodeTo0None &&
3887                 Opcode <= OPC_MorphNodeTo2GlueOutput) {
3888        if (Opcode >= OPC_MorphNodeTo0Chain && Opcode <= OPC_MorphNodeTo2Chain)
3889          EmitNodeInfo = OPFL_Chain;
3890        else if (Opcode >= OPC_MorphNodeTo0GlueInput &&
3891                 Opcode <= OPC_MorphNodeTo2GlueInput)
3892          EmitNodeInfo = OPFL_GlueInput;
3893        else if (Opcode >= OPC_MorphNodeTo0GlueOutput &&
3894                 Opcode <= OPC_MorphNodeTo2GlueOutput)
3895          EmitNodeInfo = OPFL_GlueOutput;
3896        else
3897          EmitNodeInfo = OPFL_None;
3898      } else
3899        EmitNodeInfo = MatcherTable[MatcherIndex++];
3900      // Get the result VT list.
3901      unsigned NumVTs;
3902      // If this is one of the compressed forms, get the number of VTs based
3903      // on the Opcode. Otherwise read the next byte from the table.
3904      if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3905        NumVTs = Opcode - OPC_MorphNodeTo0;
3906      else if (Opcode >= OPC_MorphNodeTo0None && Opcode <= OPC_MorphNodeTo2None)
3907        NumVTs = Opcode - OPC_MorphNodeTo0None;
3908      else if (Opcode >= OPC_MorphNodeTo0Chain &&
3909               Opcode <= OPC_MorphNodeTo2Chain)
3910        NumVTs = Opcode - OPC_MorphNodeTo0Chain;
3911      else if (Opcode >= OPC_MorphNodeTo0GlueInput &&
3912               Opcode <= OPC_MorphNodeTo2GlueInput)
3913        NumVTs = Opcode - OPC_MorphNodeTo0GlueInput;
3914      else if (Opcode >= OPC_MorphNodeTo0GlueOutput &&
3915               Opcode <= OPC_MorphNodeTo2GlueOutput)
3916        NumVTs = Opcode - OPC_MorphNodeTo0GlueOutput;
3917      else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3918        NumVTs = Opcode - OPC_EmitNode0;
3919      else if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2None)
3920        NumVTs = Opcode - OPC_EmitNode0None;
3921      else if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain)
3922        NumVTs = Opcode - OPC_EmitNode0Chain;
3923      else
3924        NumVTs = MatcherTable[MatcherIndex++];
3925      SmallVector<EVT, 4> VTs;
3926      for (unsigned i = 0; i != NumVTs; ++i) {
3927        MVT::SimpleValueType VT =
3928            static_cast<MVT::SimpleValueType>(MatcherTable[MatcherIndex++]);
3929        if (VT == MVT::iPTR)
3930          VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3931        VTs.push_back(VT);
3932      }
3933
3934      if (EmitNodeInfo & OPFL_Chain)
3935        VTs.push_back(MVT::Other);
3936      if (EmitNodeInfo & OPFL_GlueOutput)
3937        VTs.push_back(MVT::Glue);
3938
3939      // This is hot code, so optimize the two most common cases of 1 and 2
3940      // results.
3941      SDVTList VTList;
3942      if (VTs.size() == 1)
3943        VTList = CurDAG->getVTList(VTs[0]);
3944      else if (VTs.size() == 2)
3945        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3946      else
3947        VTList = CurDAG->getVTList(VTs);
3948
3949      // Get the operand list.
3950      unsigned NumOps = MatcherTable[MatcherIndex++];
3951      SmallVector<SDValue, 8> Ops;
3952      for (unsigned i = 0; i != NumOps; ++i) {
3953        unsigned RecNo = MatcherTable[MatcherIndex++];
3954        if (RecNo & 128)
3955          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3956
3957        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3958        Ops.push_back(RecordedNodes[RecNo].first);
3959      }
3960
3961      // If there are variadic operands to add, handle them now.
3962      if (EmitNodeInfo & OPFL_VariadicInfo) {
3963        // Determine the start index to copy from.
3964        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3965        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3966        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3967               "Invalid variadic node");
3968        // Copy all of the variadic operands, not including a potential glue
3969        // input.
3970        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3971             i != e; ++i) {
3972          SDValue V = NodeToMatch->getOperand(i);
3973          if (V.getValueType() == MVT::Glue) break;
3974          Ops.push_back(V);
3975        }
3976      }
3977
3978      // If this has chain/glue inputs, add them.
3979      if (EmitNodeInfo & OPFL_Chain)
3980        Ops.push_back(InputChain);
3981      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3982        Ops.push_back(InputGlue);
3983
3984      // Check whether any matched node could raise an FP exception.  Since all
3985      // such nodes must have a chain, it suffices to check ChainNodesMatched.
3986      // We need to perform this check before potentially modifying one of the
3987      // nodes via MorphNode.
3988      bool MayRaiseFPException =
3989          llvm::any_of(ChainNodesMatched, [this](SDNode *N) {
3990            return mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept();
3991          });
3992
3993      // Create the node.
3994      MachineSDNode *Res = nullptr;
3995      bool IsMorphNodeTo =
3996          Opcode == OPC_MorphNodeTo ||
3997          (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2GlueOutput);
3998      if (!IsMorphNodeTo) {
3999        // If this is a normal EmitNode command, just create the new node and
4000        // add the results to the RecordedNodes list.
4001        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
4002                                     VTList, Ops);
4003
4004        // Add all the non-glue/non-chain results to the RecordedNodes list.
4005        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
4006          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
4007          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
4008                                                             nullptr));
4009        }
4010      } else {
4011        assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
4012               "NodeToMatch was removed partway through selection");
4013        SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
4014                                                              SDNode *E) {
4015          CurDAG->salvageDebugInfo(*N);
4016          auto &Chain = ChainNodesMatched;
4017          assert((!E || !is_contained(Chain, N)) &&
4018                 "Chain node replaced during MorphNode");
4019          llvm::erase(Chain, N);
4020        });
4021        Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
4022                                            Ops, EmitNodeInfo));
4023      }
4024
4025      // Set the NoFPExcept flag when no original matched node could
4026      // raise an FP exception, but the new node potentially might.
4027      if (!MayRaiseFPException && mayRaiseFPException(Res)) {
4028        SDNodeFlags Flags = Res->getFlags();
4029        Flags.setNoFPExcept(true);
4030        Res->setFlags(Flags);
4031      }
4032
4033      // If the node had chain/glue results, update our notion of the current
4034      // chain and glue.
4035      if (EmitNodeInfo & OPFL_GlueOutput) {
4036        InputGlue = SDValue(Res, VTs.size()-1);
4037        if (EmitNodeInfo & OPFL_Chain)
4038          InputChain = SDValue(Res, VTs.size()-2);
4039      } else if (EmitNodeInfo & OPFL_Chain)
4040        InputChain = SDValue(Res, VTs.size()-1);
4041
4042      // If the OPFL_MemRefs glue is set on this node, slap all of the
4043      // accumulated memrefs onto it.
4044      //
4045      // FIXME: This is vastly incorrect for patterns with multiple outputs
4046      // instructions that access memory and for ComplexPatterns that match
4047      // loads.
4048      if (EmitNodeInfo & OPFL_MemRefs) {
4049        // Only attach load or store memory operands if the generated
4050        // instruction may load or store.
4051        const MCInstrDesc &MCID = TII->get(TargetOpc);
4052        bool mayLoad = MCID.mayLoad();
4053        bool mayStore = MCID.mayStore();
4054
4055        // We expect to have relatively few of these so just filter them into a
4056        // temporary buffer so that we can easily add them to the instruction.
4057        SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
4058        for (MachineMemOperand *MMO : MatchedMemRefs) {
4059          if (MMO->isLoad()) {
4060            if (mayLoad)
4061              FilteredMemRefs.push_back(MMO);
4062          } else if (MMO->isStore()) {
4063            if (mayStore)
4064              FilteredMemRefs.push_back(MMO);
4065          } else {
4066            FilteredMemRefs.push_back(MMO);
4067          }
4068        }
4069
4070        CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
4071      }
4072
4073      LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
4074                     << "  Dropping mem operands\n";
4075                 dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
4076                        << " node: ";
4077                 Res->dump(CurDAG););
4078
4079      // If this was a MorphNodeTo then we're completely done!
4080      if (IsMorphNodeTo) {
4081        // Update chain uses.
4082        UpdateChains(Res, InputChain, ChainNodesMatched, true);
4083        return;
4084      }
4085      continue;
4086    }
4087
4088    case OPC_CompleteMatch: {
4089      // The match has been completed, and any new nodes (if any) have been
4090      // created.  Patch up references to the matched dag to use the newly
4091      // created nodes.
4092      unsigned NumResults = MatcherTable[MatcherIndex++];
4093
4094      for (unsigned i = 0; i != NumResults; ++i) {
4095        unsigned ResSlot = MatcherTable[MatcherIndex++];
4096        if (ResSlot & 128)
4097          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
4098
4099        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
4100        SDValue Res = RecordedNodes[ResSlot].first;
4101
4102        assert(i < NodeToMatch->getNumValues() &&
4103               NodeToMatch->getValueType(i) != MVT::Other &&
4104               NodeToMatch->getValueType(i) != MVT::Glue &&
4105               "Invalid number of results to complete!");
4106        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
4107                NodeToMatch->getValueType(i) == MVT::iPTR ||
4108                Res.getValueType() == MVT::iPTR ||
4109                NodeToMatch->getValueType(i).getSizeInBits() ==
4110                    Res.getValueSizeInBits()) &&
4111               "invalid replacement");
4112        ReplaceUses(SDValue(NodeToMatch, i), Res);
4113      }
4114
4115      // Update chain uses.
4116      UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
4117
4118      // If the root node defines glue, we need to update it to the glue result.
4119      // TODO: This never happens in our tests and I think it can be removed /
4120      // replaced with an assert, but if we do it this the way the change is
4121      // NFC.
4122      if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
4123              MVT::Glue &&
4124          InputGlue.getNode())
4125        ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
4126                    InputGlue);
4127
4128      assert(NodeToMatch->use_empty() &&
4129             "Didn't replace all uses of the node?");
4130      CurDAG->RemoveDeadNode(NodeToMatch);
4131
4132      return;
4133    }
4134    }
4135
4136    // If the code reached this point, then the match failed.  See if there is
4137    // another child to try in the current 'Scope', otherwise pop it until we
4138    // find a case to check.
4139    LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
4140                      << "\n");
4141    ++NumDAGIselRetries;
4142    while (true) {
4143      if (MatchScopes.empty()) {
4144        CannotYetSelect(NodeToMatch);
4145        return;
4146      }
4147
4148      // Restore the interpreter state back to the point where the scope was
4149      // formed.
4150      MatchScope &LastScope = MatchScopes.back();
4151      RecordedNodes.resize(LastScope.NumRecordedNodes);
4152      NodeStack.clear();
4153      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
4154      N = NodeStack.back();
4155
4156      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
4157        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
4158      MatcherIndex = LastScope.FailIndex;
4159
4160      LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
4161
4162      InputChain = LastScope.InputChain;
4163      InputGlue = LastScope.InputGlue;
4164      if (!LastScope.HasChainNodesMatched)
4165        ChainNodesMatched.clear();
4166
4167      // Check to see what the offset is at the new MatcherIndex.  If it is zero
4168      // we have reached the end of this scope, otherwise we have another child
4169      // in the current scope to try.
4170      unsigned NumToSkip = MatcherTable[MatcherIndex++];
4171      if (NumToSkip & 128)
4172        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
4173
4174      // If we have another child in this scope to match, update FailIndex and
4175      // try it.
4176      if (NumToSkip != 0) {
4177        LastScope.FailIndex = MatcherIndex+NumToSkip;
4178        break;
4179      }
4180
4181      // End of this scope, pop it and try the next child in the containing
4182      // scope.
4183      MatchScopes.pop_back();
4184    }
4185  }
4186}
4187
4188/// Return whether the node may raise an FP exception.
4189bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
4190  // For machine opcodes, consult the MCID flag.
4191  if (N->isMachineOpcode()) {
4192    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
4193    return MCID.mayRaiseFPException();
4194  }
4195
4196  // For ISD opcodes, only StrictFP opcodes may raise an FP
4197  // exception.
4198  if (N->isTargetOpcode())
4199    return N->isTargetStrictFPOpcode();
4200  return N->isStrictFPOpcode();
4201}
4202
4203bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
4204  assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
4205  auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4206  if (!C)
4207    return false;
4208
4209  // Detect when "or" is used to add an offset to a stack object.
4210  if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
4211    MachineFrameInfo &MFI = MF->getFrameInfo();
4212    Align A = MFI.getObjectAlign(FN->getIndex());
4213    int32_t Off = C->getSExtValue();
4214    // If the alleged offset fits in the zero bits guaranteed by
4215    // the alignment, then this or is really an add.
4216    return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
4217  }
4218  return false;
4219}
4220
4221void SelectionDAGISel::CannotYetSelect(SDNode *N) {
4222  std::string msg;
4223  raw_string_ostream Msg(msg);
4224  Msg << "Cannot select: ";
4225
4226  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
4227      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
4228      N->getOpcode() != ISD::INTRINSIC_VOID) {
4229    N->printrFull(Msg, CurDAG);
4230    Msg << "\nIn function: " << MF->getName();
4231  } else {
4232    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
4233    unsigned iid = N->getConstantOperandVal(HasInputChain);
4234    if (iid < Intrinsic::num_intrinsics)
4235      Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
4236    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
4237      Msg << "target intrinsic %" << TII->getName(iid);
4238    else
4239      Msg << "unknown intrinsic #" << iid;
4240  }
4241  report_fatal_error(Twine(Msg.str()));
4242}
4243